
Private Computation Based On Polynomial
Operations

Shuailiang Hu1[0000−0003−3934−9093]

Huazhong University of Science and Technology
HSL 03299319@126.com

Abstract. Privacy computing is a collection of a series of technical sys-
tems that intersect and integrate many disciplines such as cryptography,
statistics, artificial intelligence, and computer hardware. On the premise
of not exposing the original data, it can realize the fusion, sharing, circu-
lation and calculation of data and its value in a manageable, controllable
and measurable way. In the case of ensuring that the data is not leaked,
it can achieve the purpose of making the data available and invisible, as
well as the conversion and release of data value.
We propose a privacy computing algorithm based on polynomial opera-
tions based on the unsolvable problem of high-degree polynomial mod-
ulo n. Encryptors can encrypt their own private information to generate
ciphertext that can be calculated. This ciphertext can support any inte-
ger calculation including addition, multiplication, power calculation, etc.
Different ciphertexts generated by the same key are fully homomorphic,
and addition and multiplication operations can be performed between
these ciphertexts. All calculations in our encryption system are carried
out with polynomials as the medium, so the calculation efficiency is guar-
anteed. Our ciphertext can be provided to a third party for processing
without revealing the encryption party’s key and secret information.

Keywords: privacy computing · Lagrangian Interpolation Polynomials
· Secure Multiparty Computation.

1 Introduction

With the rapid development of the mobile Internet and the advent of the era of
big data, private information has become an important part of big data. At the
same time, users also enjoy personalized services provided by different applica-
tions, which brings great convenience to life. However, the information collected
by big data includes sensitive information such as identity, hobbies, geographical
location, and personal income. Once this personal privacy information is leaked,
it will bring great security risks. Therefore, the emergence of privacy computing
provides a solution for our data security. To put it simply, privacy computing
realizes the purpose of ”data is available but not visible” and the transformation
and release of data value to ensure that the data itself is not leaked to the outside
world.

Compared with traditional data usage methods, the privacy computing en-
cryption mechanism can enhance data protection and reduce the risk of data
leakage. Traditional data security methods, such as data desensitization or anonymiza-
tion, must sacrifice part of the data At the expense of dimensionality, data in-
formation cannot be effectively used, while privacy computing provides another
solution to ensure that the value of data is maximized as much as possible under
the premise of security.

Therefore, we design a privacy computing mechanism based on polynomial
operations by combining the unsolvable properties of high-degree polynomial
modulo n (n=p*q, p, q are both private primes). Our security is based on the
fact that the plaintext information corresponding to the ciphertext is unknow-
able. Assuming that for attackers, they can only obtain the encrypted ciphertext
without knowing the corresponding plaintext, then our encryption mechanism
is safe.

1.1 Our Result

– We propose a privacy computing algorithm based on polynomial operations
based on the unsolvable problem of high-degree polynomial modulo n. En-
cryptors can encrypt plaintext information to obtain a ciphertext that can
be used for calculation. Computation of fully homomorphic properties is
supported between different ciphertexts generated by the same key.

– We present a private computation that supports batch operations. We si-
multaneously encrypt multiple plaintext messages to generate an integrated
ciphertext. The operation on the ciphertext can be fed back to multiple
plaintexts at the same time.

2 Preliminaries

2.1 Finding Roots of Polynomial Modulo n

We define the assumption of Finding Roots of Polynomial Modulon (FROP-MN)
as follows:

Assumption 1 FROP-MN. In the case of modulo n(n=p*q, p, q are both
private primes), the polynomial with a degree of at least 2 cannot be solved if
neither p nor q is known. That means that given a polynomial with a degree of
at least 2 such as the cubic polynomial, or quartic polynomial equation satisfying
P (x) = c, we cannot find even a root of P .

Through the Rabin encryption algorithm[?], we have known that quadratic
polynomials cannot be solved modulo n (n=p*q, p, q are both private large
primes). Then, we have the following theorem:

Theorem 1. In the case of modulo n(n=p*q, p, q are both private primes), a
quadratic equation P satisfying P (x) = c cannot be solved if neither p nor q is
known.

2

Proof. Suppose p, q are two large prime numbers satisfying n=p*q, and c is an
element in Zn. We want to solve the following equation:

x2 ≡ c(mod n)

This is a quadratic equation about the unknown element x in Zn. Decryption
requires finding the square root modulo n, equivalent to solving the following
congruence equations. {

x2 ≡ c(mod p)

x2 ≡ c(mod q)

Because p, q are unknowns, solving x2 ≡ c(mod n) is as difficult as factoring
a large integer n to get p, q and it is impossible as p and q are large enough.
As shown above, the quadratic equation can be transformed into a quadratic
congruence equation, so a quadratic equation modulus n cannot be solved.

Theorem 2. If two independent polynomials P1 and P2 are given at the same
time and P1(x1) = P2(x1) = 0, then the minimum order of solving equations can
be reduced by 1. But given two non-independent polynomials P1 and P2 satisfying
P1(x1) = P2(x1) = 0 at the same time, no effective information about x1 can be
obtained.

Proof. Here we take quadratic polynomials and cubic polynomials as an example.
Suppose there are two polynomials satisfying P2(x1) ≡ 0, P3(x1) ≡ 0(mod n,
n=p*q, and p, q are unknown) and P2, P3 are independent for each other, where
P2 and P3 are quadratic polynomial and cubic polynomial respectively.

Suppose we have P2 = x2 + ax+ b and P3 = x3 + a′x2 + b′x+ c′ satisfy:

P3 ≡0(mod n)

and

P2 ≡0(mod n)

To find intersection coordinate point x1, let us combine two polynomials to
get the following system of equations:{

P3 = x3 + a′x2 + b′x+ c′ ≡ 0(mod n)

P2 = x2 + ax+ b ≡ 0(mod n)

Then, we can change the solution of the above system of equations into
the solution of the following system of equations(convert P3 to the quadratic
equation) {

P3 = x3 + a′x2 + b′x+ c′ ≡ 0(mod n)

x2 = −ax− b ≡ 0(mod n)

3

Finally, we can compute the above system of equations to obtain a first-order
equation for x(convert P3 to a first-order equation by using x2). On the contrary,
if P2 and P3 are not independent of each other, P3 can not be calculated through
P2, and the result obtained through the above equation will be 0=0 instead of a
usable first-degree polynomial. This method is also applicable to higher-degree
equations.

Proof of Assumption 1. We perform a generous condition to this assumption.
We use the polynomial intersection problem to prove it: Given multiple poly-
nomials passing through the same point at the same time, we can reduce the
intersection problem to the problem of solving polynomials with a lower degree.
Suppose we have a polynomial P1 of degree s-1(s is an integer) that satisfies
P1(x1) = 0. In order to solve intersection point x1, we generously give another
s-3 polynomials satisfying P2(x1) = 0, P3(x1) = 0, ..., Ps−2(x1) = 0.

We know that given two polynomials passing through the same point, the
minimum degree of polynomials to be solved can be reduced by 1(Reference to
Theorem 2). In this proof process, we have generously given s-2 polynomials
P1(x1) = 0, P2(x1) = 0, P3(x1) = 0, ..., Ps−2(x1) = 0 and we can combine these
polynomials to get a quadratic polynomial P through point x1 satisfying P (x1) =
0. For example, we can first combine P1, P2 through Theorem 2 to obtain a
polynomial of degree s-2, and then combine the new polynomial with P3 to
obtain a polynomial of degree s-3. In this way, we can finally get a quadratic
polynomial P through the point x1 satisfying P (x1) = 0 by combing these s-2
polynomials. Then, according to Theorem 1, we have known that the second-
degree polynomial modulo n is unsolvable, so we say higher-degree polynomials
are also unsolvable.

In other words, assuming an algorithm F exists that can solve the roots of
high-degree polynomials modulo n in polynomial time, then the theorem 1 is
incorrect and the quadratic polynomial can also be solved. It is said that given
a polynomial f(x) of quadratic or greater, F(f) can output a value x1 satisfy-
ing f(x1)=0. Then, according to the Rabin algorithm, we already know that the
quadratic congruence equation is unsolvable in the case of modulo n since fac-
toring is intractable. Therefore, a quadratic polynomial cannot be solved when
modulo n (n=p*q, p, q are both private primes). However, if the algorithm F ex-
ists, the quadratic polynomial can be solved and the Rabin encryption algorithm
can be cracked. But we all know Rabin’s algorithm is safe if the large integer is
not decomposed, so F does not exist and Assumption 1 holds.

2.2 Lagrangian Interpolation Polynomial

The Lagrange interpolation formula refers to a node basis function given on the
nodes of a two-dimensional coordinate system. A polynomial function with the
degree of s-1 can be determined by s coordinate points (xi, yi)(1 ≤ i ≤ s) in
a two-dimensional rectangular coordinate system. As shown in Fig. 1, a curve
can be determined according to s (s is an integer and s≥2) points that are

4

different from each other in the rectangular coordinate system. For this curve,
there is only one definite polynomial corresponding to it. Similarly, if a curve’s
polynomial function expression (polynomial coefficient) is known, as long as any
abscissa value xi can be given, its ordinate value yi can be obtained. Therefore,
if we can give s coordinate points, we can also construct a polynomial with
polynomial degree s-1.

x

y

A(x1, y1)

B(x2, y2)

C(x3, y3)

D(x4, y4)

Fig. 1. Lagrangian interpolation polynomial

Suppose there are s pairs of coordinate points, the generalized definition of
the Lagrangian interpolation formula is shown in equation (1).

p(x) =

s∑
i=1

s∏
j ̸=i

(x− xj)

(xi − xj)
∗ yi

=
(x− x2). . . (x− xs)

(x1 − x2). . . (x1 − xs)
∗ y1+

(x− x1)(x− x3). . . (x− xs)

(x2 − x1). . . (x2 − xs)
∗ y2+

... +

(x− x1). . . (x− xs−1)

(xs − x1). . . (xs − xs−1)
∗ ys

=Ps−1 ∗ xs−1 + Ps−2 ∗ xs−2 + ...+ P0 ∗ x0

(1)

We extract the coefficients of each term and give the following definition:

5

Ri =

s∏
j ̸=i

(x− xj)

(xi − xj)

then Ri(xi) = 1 and Ri(xj) = 0 j ̸= i satisfy 1 ≤ i, j ≤ s

Ri(xl) = else s < l

(2)

(We ignore the case where values of two coordinate points are equal.)
To facilitate the construction of our encryption scheme, we denote x above

as k, y as m, and approximately denote Ri as a candidate encryption key, ki as a

decryption key. Therefore, according to equation (2) we have Ri =
∏s

j ̸=i
(k−kj)
(ki−kj)

and Ri(ki) = 1, Ri(kj) = 0, Ri(kl) = else(1 ≤ i, j ≤ s < l, j ̸= i). Then we

have R1 =
∏s

j ̸=1
(k−kj)
(k1−kj)

and R1(k1) = 1, R1(kj) = 0, R1(kl) = else(1 < j ≤
s < l, j ̸= i). We can find that for users with k1, he can calculate R1 = 1
and Rj = 0(1 ≤ j ≤ s < l, j ̸= 1). But other users without k1 get nothing
from these polynomials. We already know that high-order congruence equations
are unsolvable modulo n (p, q are unknown) according to Assumption 1. Then,
according to the particularity of the Lagrange interpolation polynomials, we
know that the s-coefficient polynomials R1, R2, ..., Rs are independent of each
other since we have the following equations:

R1[k1, k2, ..., ks] = [1, 0, ..., 0, ..., 0]

R2[k1, k2, ..., ks] = [0, 1, ..., 0, ..., 0]

......

Ri[k1, k2, ..., ks] = [0, 0, ..., 1, ..., 0]

Rs[k1, k2, ..., ks] = [0, 0, ..., 0, ..., 1]

3 Private Computation Based On Polynomial Operations

3.1 Construction of P-PC

A complete Private computation based on polynomial operations(P-PC) is a 4-
tuple of ppt algorithms(Gen, Enc, Com, Dec) such that:

Gen(1λ, s): The key generation algorithm Gen takes a security parameter 1λ

and a lagrangian interpolation parameter s=5 as input. Gen does the following:
1. Generate two large primes p, q and compute n=p*q.
2. Randomly select k1, k2, k3, k4, k5.
3. Use k1, k2, k3, k4, k5 to generate :R1, R2, R3 according to equation (2).
Output: dk=k1, ek=[R1, R2], inf={n, R3}

Enc(ek,m, inf): The encryption algorithm Enc takes ek, a message m← Zn,
and supplementary information inf as input. Then, Enc does the following:

1. Sample random element r1, r2 ← Zn.

6

2. Use ek, r1, r1, {m1,m2, ...} and inf to generate c=[{cm1, cm2, ...}, inf]:
cmi = Enc(ek,mi, inf) = R1 ∗mi + (R1 − 1) ∗ r1 +R2 ∗ r2 mod n

Com(c): Com takes a ciphertext and a privacy algorithm C as input. Dec
outputs c′ = C(c).

Dec(dk, c′): The decryption algorithm Dec takes c′ and the decryption key
dk as input. Dec does the following:
C(m) =

∑4
i=0 c

′[i] ∗ ki1

3.2 Composition of Algorithm C

In the above computing system, the privacy computing algorithm C is a set of ad-
dition and multiplication algorithms on Zn. In fact, our calculations support the
four arithmetic operations of addition, subtraction, multiplication, and division.
However, existing literature tells us that addition and multiplication are already
Turing complete, so we only discuss addition and multiplication. Therefore, in
this section, we discuss several situations that may arise in Com(c).

cm∆ t. cm + t is to add a t to the constant term of the ciphertext polynomial
cm. Suppose cm = [a, b, c, d, e], then cm + t = [a, b, c, d, e+ t]. The calculation is
equivalent to Enc(ek,m+ t, inf). cm + t is to add a t to the constant term
of the ciphertext polynomial cm. cm ∗ t is to multiply the ciphertext polynomial
cm by an integer t. This calculation is equivalent to Enc(ek,m + t, inf) =
cm ∗ t = [a ∗ t, b ∗ t, c ∗ t, d ∗ t, e ∗ t].

We can find that the above two operations are relatively simple, and the infor-
mation of C may be leaked when facing an algorithm C that only involves integers
in the operation. Therefore, when facing simple C, we can get Enc(ek,1, inf)
advance, and then perform calculations based on addition and multiplication
between polynomials. But for complex algorithms C, Enc(ek,1, inf) is not
needed and we use cm∆ t.

cm1∆ cm2. In our system, the ciphertexts generated by Enc(ek,m, inf) are
polynomials of degree s-1 represented by s-dimensional vectors and s is equal
to 5 here. Therefore, cm1 + cm2 represents the addition between two quartic
polynomials, and cm1 ∗ cm2 represents the multiplication modulus between two
quartic polynomials R3 ∗ k in inf . Therefore, cm1 + cm2 represents the addition
between two quartic polynomials, and cm1 ∗ cm2 represents the multiplication
between two quartic polynomials. In addition, cm1∗cm2 needs to modulo R3∗k in
inf to ensure that the length of the new ciphertext does not change. For example,
cm1 = [a, b, c, d, e], cm2 = [a′, b′, c′, d′, e′]. We have cm1 + cm2 = [a+ a′, b+ b′, c+
c′, d+d′, e+e′] and cm1∗cm2 = (ak4+bk3+ck2+dk+e)∗(a′k4+b′k3+c′k2+d′k+e′)
mod R3. This calculation can make the Com(c) algorithm support the fully
homomorphic property among the same type of ciphertexts and make Com(c)
support non-linear operations such as power operations.

7

3.3 Correctness

First, for the ciphertext c = R1 ∗ m + (R1 − 1) ∗ r1 + R2 ∗ r2 generated by
Enc(ek,m, inf), we have R1(k1) = 1, R2(k1) = R3(k1) = 0. Thus we have
Dec(dk,Enc(ek,m, inf)) = m. Then, for several cases that appear inCom(c),
we have: 1)Dec(dk, cm∆t) = m∆t; 2)Dec(dk, cm1∆cm2) = m1∆m2. There-
fore, the calculation information of c in Com(c) will be directly reflected in the
plaintext information. Thus, we have Dec(dk,Com(c)) = C(m) and the above
privacy calculation process is correct.

3.4 Security

The security proof of the above calculation process is divided into two aspects:
the security of k1 and the security of m. The security requirement of k1 is based
on the fact that the attacker cannot solve the encryption party’s private key
dk = k1. The security of m requires that the attacker cannot obtain its plaintext
information m through the parameter inf and ciphertext c.

First, in the above encryption and calculation system, we set s=5 and only
use R1, R2, R3 as encryption parameters. We know that R1, R2, R3 are all quartic
polynomials, and we can only get a quadratic equation about k1 by combining
them. According to the Assumption 1 and the polynomial intersection problem,
even if the attacker obtains the ciphertext corresponding to a certain amount of
plaintext, he cannot solve k1.

For the ciphertext c = R1 ∗ m + (R1 − 1) ∗ r1 + R2 ∗ r2 generated by the
Enc algorithm, we only have n and R3 in inf for the calculation side, while
R1 and R2 are all unknown. Because R1, R2, R3 are linearly independent, given
R3 will not affect the encryption of plaintext information by R1, R2. Therefore,
it is impossible for an attacker to construct an equation to solve the plaintext
information m through the ciphertext. However, it is worth noting that if the
attacker obtains a certain amount of ciphertext corresponding to the plaintext,
it is possible to crack the ciphertext to obtain the plaintext m. Therefore, we
only give the ciphertext of the message m without revealing the corresponding
plaintext in the system.

In addition, we need to carefully consider whether to reuse ek to encrypt
the same plaintext information m, because this may reveal some information
about R1, R2 in actual use. For example, we have two ciphertexts cm1, cm2 and
m1 = m2. Then we have cm1 − cm2 = R2 ∗ (r1 − r2). Therefore, we do not
recommend reusing ek to encrypt the same plaintext information but we can use
the same ciphertext corresponding to the same message m.

4 Batched Private Computation Based On Polynomial
Operations

4.1 Construction of BP-PC

beginConstruction Let P-PC = (Gen, Enc, Com, Dec) be a Private Computation
Based On Polynomial Operations. We construct b-Batched Private Computation

8

Based On Polynomial Operations(b is the size of a batch), BP-PC, as follows:

Gen(1λ, s): The key generation algorithm Gen takes a security parameter 1λ,
a batch size b, and a lagrangian interpolation parameter s=b+3 as input. Gen
does the following:

1. Generate two large primes p, q and compute n=p*q.
2. Randomly select k1, k2, k3, ..., kb+3.
3. Use k1, k2, k3, ..., kb+3 to generate :R1, R2, R3, ..., Rb+1 according to

equation (2).
Output: dk={k1, k2, k3, ..., kb}, ek=[R1, R2, R3, ..., Rb+1], inf={n, Rb+1}

Enc(ek,m, inf): The encryption algorithm Enc takes ek, a message m← Zn,
and supplementary information inf as input. Then, Enc does the following:

1. Sample random element r1, r2 ← Zn.
2. Use ek, r, {[m11,m12, ...,m1b], [m21,m22, ...,m2b], ... } and inf to generate

c=[{cm1, cm2, ...}, inf]:
cmi = Enc(ek,mi, inf) =

∑b
j=1 R1∗(mij+r1)+Rb+1∗r2−r1 mod n (1 ≤ i)

Com(c): Com takes a ciphertext and a privacy algorithm C as input. Dec
outputs c′ = C(c) mod Rb+1 ∗ k.

Dec(dk, c′): The decryption algorithm Dec takes c′ and the decryption key
dk as input. Dec does the following:
C(ml) =

∑4
j=0 c

′[j] ∗ kjl (1 ≤ l ≤ b)

4.2 Correctness

According to Equation (2), we know Ri(ki) = 1, Ri(kj) = 0, Ri(kl) = else(1 ≤
i, j ≤ s < l, i ̸= j), so we have R2

i (ki) = 1, Ri ∗Rj(ki) = 0. Therefore, for the ci-
phertext cm generated by Enc(ek,m, inf) we haveDec(dk,Enc(ek,m, inf)) =
m = [m1,m2,m3, ...,mb]. For the calculated ciphertext c′ = cm∆t, obviously
Dec(dk, c′) = m∆t = [m1∆t,m2∆t,m3∆t, ...,mb∆t] is correct. For c′ = cm1∆cm2,
we have Dec(dk, c′) = Dec(dk, cm1∆cm2) = Dec(dk, cm1)∆Dec(cm2) =
m1∆tm2 = [m11∆m21,m12∆m22,m13∆m23, ...,m1b∆m2b]. The result of the op-
eration between polynomial ciphertexts will not be affected by Rb+1 ∗k, because
any ki in dk has Rb+1 ∗ k(ki) = 0(1 lei ≤ b).

4.3 Security

We set s=b+3 and only use b+1 independent R as encryption parameters in
the encryption process. According to the Assumption 1 and the polynomial in-
tersection problem, the attacker cannot crack any Decryption key ki(1 ≤ i ≤ b).

In addition, compared to c = R1 ∗m + (R1 − 1) ∗ r1 + R2 ∗ r2, c =
∑b

j=1 R1 ∗
(mj + r1)+Rb+1 ∗ r2− r1 contains more plaintext information. Because multiple
plaintexts are sufficiently confused in one ciphertext, it will be more difficult

9

for an attacker to obtain the plaintext information in the ciphertext. Because
R1, R2, ..., Rb are all unknown, it is impossible for an attacker to obtain a certain
plaintext when only having the ciphertext.

5 Conclusion

We propose a privacy computing algorithm based on polynomial operations.
This algorithm enables the encryption party to hide its private information and
provide it to other users for calculation. In our scheme, the encryption party
encrypts the plaintext information and provides it to an algorithm mechanism
for any integer calculation (including addition, multiplication, power, and cal-
culation between ciphertexts). In addition, we provide a batch of encryption
algorithms for privacy calculations. We encrypt multiple plaintext information
and generate an integrated ciphertext, and the operation of this ciphertext will
be fed back to multiple plaintext information at the same time. There is no
doubt about the efficiency of our scheme because of the efficiency of polynomi-
als. When building an encryption system, we can use a sufficiently large modulus
n to make our encryption scheme more secure. In addition, it is not difficult to
see that those ciphertexts in our scheme can be directly used for addition, sub-
traction, multiplication, and division calculations without any key. Based on
this property, our schemes can be used in various blind computing application
scenarios. For example, we can try them in the following application scenarios:

– The stock market. Assuming that the stock index of shareholder A has risen
by a certain percentage, he does not want others to know how much capital
he has invested. He can encrypt his wallet, and then send the encrypted
ciphertext wallet to the stock center for new stock calculation directly. After
receiving the encrypted Wallet over evaluation, shareholder A can decrypt it
to obtain the final stock. But users except A cannot know how much amount
A owns because they do not have A’s decryption key.

– Encrypted digital wallet. When conducting a transaction, user A encrypts
his wallet and sends the encrypted wallet to the transaction partner. Then
transaction partner directly performs operations such as deduction and pay-
ment on the received encrypted wallet and sends it to A in the form of
ciphertext. A can get his balance after decrypting the encrypted wallet as
the transaction closes. This idea is generally used in public domains such
as digital wallets. We can perform encrypted homomorphic calculations on
users’ wallets. Then users can use their encrypted wallets to perform any
transaction, but only the wallet’s owner can know the balance during the
transaction.

To facilitate the improvement of our scheme and propose a better fully homo-
morphic encryption scheme, we give the prospect of future work:

1) Further analyze the feasibility and security of our scheme, and hope to im-
prove our scheme to a fully homomorphic scheme. Our encryption scheme

10

uses Lagrange interpolation polynomials to generate ciphertexts. We know
that there are many polynomials available in the Lagrange interpolation the-
orem, and it can be considered whether our scheme can be extended to realize
the fully homomorphic encryption based on the polynomial operation.

2) Find other techniques that are more suitable for constructing our scheme
to replace the Lagrangian interpolation polynomials, and try more efficient
methods to improve our scheme.

References

11

	Private Computation Based On Polynomial Operations

