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Abstract Laconic function evaluation (LFE) allows Alice to compress a large circuit C into a small
digest d. Given Alice’s digest, Bob can encrypt some input x under d in a way that enables Alice to
recover C(x), without learning anything beyond that. The scheme is said to be laconic if the size of d,
the runtime of the encryption algorithm, and the size of the ciphertext are all sublinear in the size of
C.
Until now, all known LFE constructions have ciphertexts whose size depends on the depth of the
circuit C, akin to the limitation of levelled homomorphic encryption. In this work we close this gap
and present the first LFE scheme (for Turing machines) with asymptotically optimal parameters. Our
scheme assumes the existence of indistinguishability obfuscation and somewhere statistically binding
hash functions. As further contributions, we show how our scheme enables a wide range of new
applications, including two previously unknown constructions:
– Non-interactive zero-knowledge (NIZK) proofs with optimal prover complexity.
– Witness encryption and attribute-based encryption (ABE) for Turing machines from falsifiable

assumptions.

1 Introduction

Laconic function evaluation (LFE) is a cryptographic primitive recently introduced by Quach, Wee, and
Wichs [FOCS’18]. Using LFE, Alice can compress a large circuit C into a small digest d. Given Alice’s
digest, Bob can encrypt some input x under d in a way that enables Alice to recover C(x) without learning
anything about Bob’s input. The scheme is said to be laconic if the size of the digest d, the runtime of the
encryption algorithm LFE.Enc, and the size of the ciphertext c are all sublinear in the size of C.

LFE is particularly interesting in the context of two-party and multi-party computation (2PC, MPC),
since it enables the construction of protocols with novel properties. As an example, LFE enables a
“Bob-optimised” two-round 2PC protocol in which Alice does all the work, while Bob’s computation and
communication are smaller than both the function being evaluated and Alice’s input. However, for all
known LFE constructions [QWW18, AR21, NRS21], the runtime of the encryption procedure and the size
of Bob’s ciphertext depend on the depth of the circuit being evaluated by Alice. This is a severe limitation
which restricts the applicability of this primitive to “shallow” circuits. In some sense, this mirrors the
efficiency gap between levelled and fully homomorphic encryption. This leaves us with the following open
problem (also stated in [QWW18]):

Is it possible to construct LFE where Bob’s work is independent of the circuit size?
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1.1 Our Results

We answer this question in the affirmative and our main result is the construction of an asymptotically
optimal LFE scheme assuming indistinguishability obfuscation [BGI+01] and somewhere statistically binding
(SSB) hash functions [HW15]. Our construction enables the computation of any Turing machine M and,
unlike all prior constructions [QWW18] [AR21] [NRS21], removes the dependency on the depth of the circuit
(the runtime of the Turing machine in our case). In the standard simulation-security setting, we obtain the
following result.

Theorem 1 (Informal). Assuming indistinguishability obfuscation for circuits and somewhere statistically
binding hash functions, there exists a simulation secure LFE scheme with the following parameters:

– The size of the digest d is poly(λ).

– The runtime of the encryption procedure is O(|x|+ |M(x)|) · poly(λ).
– The size of the ciphertext c is O(|x|+ |M(x)|) · poly(λ).

If we relax the security to an indistinguishability-based notion, we can further improve the parameters
by removing the dependency on the size of the output.

Theorem 2 (Informal). Assuming indistinguishability obfuscation for circuits and somewhere statistically
binding hash functions, there exists a LFE scheme with ciphertext indistinguishability and the following
parameters:

– The size of the digest d is poly(λ).

– The runtime of the encryption procedure is O(|x|) · poly(λ).
– The size of the ciphertext c is O(|x|) · poly(λ).

As for the underlying assumptions, SSB hash functions [OPWW15] can be constructed from a variety
of standard assumptions (e.g. LWE or DDH), whereas indistinguishability obfuscation is a less understood
primitive and currently the subject of a large body of research. Numerous recent works [BDGM20, GP20,
JLS20, WW21, JLS22, BDGM22] show provably-secure constructions of indistinguishability obfuscation for
circuits under simple assumptions, some of which are regarded as well-founded.

We briefly describe some additional implications which show how our construction enables a wide range
of new results in cryptography.

(1) Witness Encryption for Turing Machines: We construct the first witness encryption where the size
of the ciphertext depends only on the size of the witness and the security parameter (but not on the NP
relation R). Furthermore, the decryption runtime is only proportional to the runtime of the Turing machine
computingR, rather than its circuit representation. This implies the first ABE for Turing machines [GKP+13]
from falsifiable assumptions. Prior to our work, Goldwasser et al. [GKP+13] constructed the same primitive
from extractable witness encryption,4 which is a considerably stronger and non-falsifiable assumption, whose
validity has often been called into question [GGHW14, BP15, BSW16].

(2) NIZKs with Optimal Prover Complexity: By applying a known transformation [KNYY19], we
construct the first prover-optimal NIZK proof system, where the prover’s computational complexity depends
only on the size of the witness and on the security parameter (and is otherwise independent of the size of
the NP relation).

(3) MPC Compiler: By applying the transformation described in [QWW18] we obtain a compiler for multi-
party computation (MPC) that reduces the communication complexity to be independent of the circuit size,
without introducing additional rounds of interaction.

4 We should also mention a recent work of Ananth et al. [AFS19], which constructs ABE for RAM programs from
LWE, although it achieves only a weaker form of efficiency where the public parameters and the ciphertexts grow
with the runtime of the RAM program.
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1.2 Technical Overview

Following is a brief overview of the techniques developed in this work. Before delving into our approach, we
briefly discuss why trivial solutions fall short in constructing LFE.

Why Trivial Solutions Fail. An astute reader may wonder why this is still a challenging problem, given
iO for circuits. One plausible approach to constructing LFE via this route would be to place the hash of the
circuit d := H(C) in the common reference string. Bob could then obfuscate and send Alice the following
universal circuit

U(C′) : if d
?
= H(C′) return C′(x).

Intuitively, Alice should only be able to run the obfuscated circuit on C unless she is able to find a collision
for H. Unfortunately, this approach has two major flaws:

(1) Efficiency: The construction is not laconic since both the runtime of Bob and the size of the ciphertext
depend on the size of C. Even recent constructions of iO for Turing machines [AJS17] suffer from the
drawback that the size of the obfuscated Turing machine depends on the maximum input size. An
exception is the recent work of [BFK+19] which, however, requires a large shared random string or a
random oracle. At present, constructing iO without input-size dependence remains an open problem.

(2) Provable Security: The above informal argument assumes the strong notion of virtual-blackbox
obfuscation, which is known to be impossible [BGI+01]. Constructing a provably secure scheme
requires a significant modification of the template in order to be able to leverage the weak
indistinguishability security of iO.

Even if iO for Turing machines does not appear to be sufficient to construct LFE, it turns out that other
techniques from the area [KLW15, CCHR15, CH16, CCC+16, ACC+16, GS18] will help us in building a
provably-secure scheme, as we explain in the following.

Our Approach. Our construction builds on the techniques introduced in [GS18], and requires us to modify
the construction in a non-blackbox manner, in order to constrain Alice to execute the Turing machine M on
Bob’s input while at the same time making Bob’s runtime independent of it. To gain some intuition on the
approach, we consider the simplified setting in which both parties know a public Turing machine M, where
the transition function is denoted by CM and Bob holds an input x. Later in this overview, we show that
this template can be lifted to the more generic setting where Alice evaluates a private Turing machine by
letting M be a universal Turing machine with an additional input. To establish some notation, consider the
insecure protocol where Bob sends his input x in plain: Alice can evaluate M by maintaining a database D
that encodes x and the current state of the memory of M. Each operation of CM consists of reading the
current state, one bit from Alice, and one from Bob.

Garbled Circuits. One possible way to secure this approach is to use Yao’s garbled circuits [Yao82, Yao86],

that allow for the secure computation of a circuit C by creating a garbled version C̃ and encoding the input
x = (x1, . . . , xn) as a set of labels (lbs1, . . . , lbsn). Security is guaranteed as long as a single input encoding is
revealed to the evaluator. If we were to garble the step circuit CM, we immediately run into two problems: (1)
From an efficiency perspective, Bob would need to garble one circuit for each step of the computation, which
would be more expensive than just evaluatingM locally. (2) With regards to functionality, the evaluator needs
to receive the labels corresponding to an input encoding. This corresponds to a particular set of locations in
D (depending on which bits CM needs to read). The difficulty here stems from the fact that the state of D
evolves over the course of the computation, as it includes the memory tape of the Turing machines. Thus,
we would need a way to dynamically select labels depending on the intermediate state of D. Fortunately, (1)
can be solved using iO: Instead of garbling all step circuits explicitly, Bob sends an obfuscated circuit that,
given an index i, returns the ith garbled step circuit. The remainder of this overview is devoted to solving
the second challenge (2).

Updatable Laconic Oblivious Transfer. Before explaining our solution, we recall the notion of updatable
laconic oblivious transfer (ULOT) [CDG+17]. With an ULOT protocol, a large database D can be hashed
to a small digest d offering the sender two operations.
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Read: Given a pair of messages (m0,m1) and an index i, the sender can compute a ciphertext c such that
the receiver (knowing D and d) can recover mD[i], where D[i] is the value of the bit at the ith location
of D.

Write: Given |d|-many pairs of messages {m0,i,m1,i}i∈[|d|], a bit b, and index i, the sender can compute a

ciphertext c such that the receiver (knowing D and d) can recover
(
mD′

1,1
, . . . ,mD′

|d|,|d|

)
. Here, d′ is the

hash of D′, the database D updated by writing b at index i.

Equipped with this functionality, we can now devise a mechanism to provide the evaluator with the
appropriate input encodings. Bob compresses his input x, using the hashing procedure of the ULOT
scheme and sends it to Alice, who will act as the evaluator. At each step of the computation, Alice is
provided with the labels corresponding to the database locations needed by the current step circuit. She
then uses these labels to evaluate the garbled step circuit, which performs the computation step and
computes a ULOT ciphertext containing the pairs of labels for the next step of the computation. In the
next step, Alice will be able to retrieve the set corresponding to the locations of the updated database, by
running the receive algorithm of the ULOT. These include an encoding of the updated hash of D, as a
result of the write operation of the step circuit.

Piecing it Together. Now only two problems remain. First, the state of D is given in clear to Alice,
meaning the intermediate values of the computation are leaked. This is solved by adding a layer of symmetric
encryption to the memory of the Turing machine. To ensure the correctness of the computation, we remove
this layer before feeding the input into CM. The output is then re-encrypted using a new key that is only
available in the next step circuit. As this happens within the garbled circuit, security is preserved. We can
now lift the construction to the setting where Alice’s M is not known to Bob. This is done by including
an additional ULOT digest of the description of the Turing machine, which allows the step circuit to read
the description (via ULOT read) and determines the next operation of the computation. Given the above
procedure, the database lookup algorithm can be naturally extended to the case of an additional tape,
encoding the machine’s instructions. To ensure that the random coins used in the garbled circuits are
consistent across different computations steps, we use a (puncturable) PRF to sample the labels.

The Final Scheme. We provide some intuition for the encryption and decryption procedures in [Fig. 1].
For the encryption procedure, Bob starts by obfuscating the Garbling Step Circuit and computing the first
set of labels that will be needed to evaluate the garbled circuit. These are then sent along with his encrypted
input to Alice. For the decryption procedure, Alice evaluates the garbled circuit using the first set of labels
sent by Bob. The output from the Step Circuit is then used for receiving the updatable laconic oblivious
transfer. This is repeated for all steps of the computation until the final output is returned by the decryption
procedure.

Security Proof. Next, we provide some intuition about the security argument. To prove the security of
our construction we use a similar proof strategy to that of [GS18]. In particular, our proof proceeds via a
hybrid argument. In each hybrid we change the way the obfuscated circuit computes the garbled circuits for
each step of the computation. Each garbled step circuit can be computed in three modes. The first mode is
real, where the computations are just as in the real protocol. The second mode is dummy, where the output
of the garbled circuit is constant and hardwired, but the same as in the real execution. The third mode is
sim, which is similar to real mode, with the difference being that the garbled circuit only outputs dummy
values which are not the same as in the real execution. We cannot change directly from real mode to sim
mode because at each step of the computation the labels from the previous step are visible to the adversary.
Hence, we first need to change to dummy mode and then to sim mode. We show a set of rules that define a
pebbling game, where the pebbles are represented by simulation slots. The aim of the game is to switch the
pebbles from real (white pebbles) to sim (black pebbles), while minimizing the number of nodes in dummy
(grey pebbles). Our objective is to minimize the number of grey pebbles at any point in time because the size
of the obfuscated circuit grows with the number of simulation slots in dummy mode. Finally, with help of a
pebbling strategy [GS18], we prove that our LFE construction is secure while having only a poly-logarithmic
number of grey pebbles at any point in the simulation.
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LFE.Enc(d, x)

1 : Block-wise encrypt x

2 : Obfuscate Garbling Step Circuit GarbleSC

iO(GarbleSC) : Garbling Step Cicruit

1 : Computes labels for current and next Step Circuit

2 : Computes Step Circuit SC

SC : Step Circuit

1 : Decrypts secret inputs

2 : Performs one step of the computation

3 : Encrypts secret outputs

4 : Writes outputs to D using ULOT.Write

5 : Sends next operation using ULOT.Read

3 : Compute initial labels for GarbleSC

4 : return encrypted x, iO(GarbleSC), initial labels

LFE.Dec(d, c)

1 : Compute GarbleSC at 1 using initial inputs

2 : while M is not done

3 : Compute GarbleSC at i

iO(GarbleSC)(i) : Garbling Step Cicruit

1 : Compute labels for current and next Step Circuit

2 : Compute Step Circuit SC at i

SCi : Step Circuit

1 : Decrypt secret inputs

2 : Perform one step of the computation

3 : Encrypt secret outputs

4 : Write outputs to D using ULOT.Write

5 : Send next operation using ULOT.Read

4 : Run ULOT.Receive to obtain labels used as inputs for iO(GarbleSC)(i+ 1)

5 : return final output from Step Circuit

Figure 1. High level overview of the encryption and decryption procedures.

Application: Witness Encryption for Turing Machines. We show how our newly constructed LFE
scheme allows us to construct witness encryption for Turing machines. To encrypt a message m with
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respect to a relation R, the witness encryption algorithm computes the crs of the LFE and hashes
d← LFE.Hash(crs,MR), where the Turing machine is defined as

MR(m,w) :=

{
return m if R(x,w) = 1

return ⊥ else
.

Then it returns the obfuscation of a circuit obC← iO(Cx,m) where Cx,m is defined as

Cx,m(w) := return LFE.Enc(crs, d, (m,w)).

Given a witness w, one can recover m by querying the obfuscated circuit and evaluating the LFE decryption
algorithm:

LFE.Dec(crs,MR, obC(w)) = LFE.Dec(crs,MR,Cx,m(w))

= LFE.Dec(crs,MR, LFE.Enc(crs, d, (m,w)))

= MR(m,w)

= m.

Note that the size of the ciphertext is only dependent on the size of the witness w, the size of the message
m, and the security parameter. Furthermore, the runtime of the decryption algorithm only depends on the
runtime of the Turing machine computing MR. Security follows via a standard puncturing argument.

Application: ABE for Turing Machines. We also sketch how to turn the above witness encryption into
an ABE for Turing machines. This is a standard transformation [GGSW13] and therefore we only include an
outline of the construction. To delegate a decryption key for a Turing machine M, the authority computes
a signature σ on the tuple (crs, dM), where dM ← LFE.Hash(crs, M̃) and M̃(x,m) returns m if and only if
M(x) = 1. Then encrypting a message m with respect to an attribute x can be done by obfuscating

Cx,m(crs, d, σ, x) : if Verify(σ, (crs, d)) = 1; return LFE.Enc(crs, d, (m,x)).

Note that the runtime of the encryption algorithm (and consequently the size of the ciphertext) only depends
on the size of the attribute x and the message m. Furthermore, the runtime of the decryption algorithm is
only proportional to the runtime of the Turing machine M. We refer the reader to Appendix B for a more
detailed discussion regarding applications and new implications.

1.3 Related Works

The notion of LFE was introduced in the work of Quach et al. [QWW18], in which they presented a
construction for depth-bounded polynomial-size circuits from the learning with errors problem. Work by
Pang, Chen, Fan, and Tang [PCFT20] extended the notion of (single-input) LFE to the multi-input
settings, by additionally assuming the existence of indistinguishability obfuscation. Their protocol uses
single-input LFE (and in particular the scheme from [QWW18]) generically. Thus, our scheme can be
plugged into their work to obtain improved parameters. Recent work by Agrawal and Roşie [AR21] shows a
new construction of LFE with adaptive security (based on the ring learning with errors assumption).
However, the scheme is limited to the computation of NC1 circuits. Another recent work by Naccache,
Roşie, and Spignoli [NRS21] improves the concrete efficiency of LFE. In particular, the authors present a
construction based on the LWE assumption with asymptotically smaller parameters than those used
in [QWW18]. However, their construction is restricted to the class L/poly, i.e., the class of circuits that can
be represented by branching programs of polynomial length.

A notion related to LFE is that of succinct randomized encodings (SRE) [BGL+15]: SRE allows one
to encode an input x with respect to a public Turing machine M in such a way that nothing is revealed
beyond M(x). The crucial difference is that the runtime of the encoding algorithm and the size of the encoding
depend on the size of M, whereas in LFE Bob’s ciphertext only depends on the size of his input (and the
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security parameter). Furthermore, SRE do not allow Alice to privately hash her circuit/Turing machine. In
this sense, LFE can be though of as a stronger primitive than SRE.

Differences to [GS18]. Although our approach is intimately related to the work of [GS18], we explicitly
mention that one cannot use their result “off the shelf” to build LFE for Turing machines, for similar reasons
why the generic approach using iO for Turing machines does not work. Conceptually, one can think of our
construction as a “double tape” variant of [GS18] where the obfuscated universal Turing machine has a tape
in the clear (that encodes Bob’s input) and the hash (which plays the role of a succinct commitment) of
a tape encoding Alice’s Turing machine. During the evaluation phase, Alice can run her Turing machine,
provided that she supplies a valid opening for each chunk of the tape fed into the obfuscated Turing machine.

2 Definitions

Let λ ∈ N denote the security parameter. We say that a function negl(·) is negligible if it vanishes faster
than the inverse of any polynomial. Given a set S, we denote by s ←$ S the uniform sampling from S.
We say that an algorithm is PPT if it can be implemented by a probabilistic Turing machine running in
time poly(λ). Let X and Y denote two random variables and let {X}λ∈N and {Y }λ∈N be two distribution
ensembles. We say that these distributions are computationally indistinguishable if for all PPT algorithms

A, |Prx←Xλ
[A(x) = 1]− Prx←Yλ

[A(x) = 1]| ≤ negl(λ). We denote this by Xλ
c
≈ Yλ. Let Gpar denote a

game, defined relative to a set of parameters par, where an adversary A interacts with a challenger that
answers oracle queries issued by A. We denote the output of the game Gpar, between a challenger and an
adversary A, as GApar. A is said to win the game if GApar = 1. We define the advantage of A in Gpar as

AdvGpar,A := Pr[GApar = 1].

2.1 Laconic Function Evaluation for Turing Machines

Here, we adapt the definition of laconic function evaluation (LFE), a primitive recently introduced by Quach,
Wichs, and Wee [QWW18], to that of LFE for Turing machines. The runtime of the Turing machine, denoted
T , is publicly known and available to all parties. Without loss of generality we assume the Turing machine
to be oblivious.

Definition 1 (Laconic Function Evaluation for Turing Machines). A laconic function evaluation
scheme LFE := (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) for Turing machines is defined as the following tuple
of PPT algorithms.

crs← LFE.Gen
(
1λ, 1N

)
: Given the security parameter 1λ and the block size 1N (encoded in unary), the

generation algorithm returns a common reference string crs.
d← LFE.Hash(crs,M): Given the common reference string crs and the description of a Turing machine M,

the compression algorithm returns a digest d.
c← LFE.Enc(crs, d, x): Given the common reference string crs, a digest d, and a message x, the encoding

algorithm returns a ciphertext c.
y ← LFE.Dec(crs,M, c): Given the common reference string crs, the description of a Turing machine M, and

a ciphertext c, the decoding algorithm returns a message y.

For correctness, we require the encoding of an input with respect to the digest of a Turing machine, when
decoded, to return the same result as evaluating the machine on the input. A more formal definition follows.

Definition 2 (Correctness). A laconic function evaluation scheme LFE := (LFE.Gen, LFE.Hash, LFE.Enc,
LFE.Dec) for Turing machines is correct if for all λ ∈ N, N ∈ N, for all Turing machines M, and all messages
x it holds that

Pr

M(x) = y

∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ, 1N )
d← LFE.Hash(crs,M)
c← LFE.Enc(crs, d, x)
y ← LFE.Dec(crs,M, c)

 = 1,

where the probability is taken over the random coins of LFE.Gen and LFE.Enc.
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The security notion captures the requirement that the encryption of a message x with respect to a
compressed Turing machine M reveals nothing beyond M(x).

Definition 3 (Security: Sender-Privacy Against Semi-Honest Receivers). A laconic function
evaluation scheme LFE := (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) for Turing machines is secure if there
exists a PPT simulator SimLFE such that for any stateful PPT adversaries A = (A1,A2) and N ∈ N there
exists a negligible function negl(·) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

A2(c, st) = 1

∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ, 1N )

(x,M, st)← A1(crs)
d← LFE.Hash(crs,M)
c← LFE.Enc(crs, d, x)


−Pr

A2(c, st) = 1

∣∣∣∣∣∣∣∣
crs← LFE.Gen(1λ, 1N )

(x,M, st)← A1(crs)
d← LFE.Hash(crs,M)
c← SimLFE(crs, d,M,M(x), T )



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the probability is taken over the random coins of LFE.Gen, A1, LFE.Enc and SimLFE. Here, T denotes
the runtime of M(x) and st the state of A.

An additional security property of an LFE scheme is that of function hiding, which captures the notion
that the digest d ← LFE.Hash(crs,M) should hide the description of the Turing machine M. We note that
our scheme can be generically transformed to satisfy function-hiding using the transformation of [QWW18].
The transformation uses 2-round 2PC based on OT and garbled circuits, and maintains the same asymptotic
efficiency.

3 Laconic Function Evaluation for Turing Machines

In this section we will construct a laconic function evaluation scheme [Fig. 4] with asymptotically optimal
parameters.

Notation. We consider the case where the protocol computes a function F (mA,mB), where mA and mB

are the inputs of Alice and Bob, respectively. We assume that the function F (mA,mB) is computed by a
Turing machine M, where mA and mB are given to M on two different input tapes. We assume without loss
of generality that the Turing machine M is publicly known.5 More formally, M denotes the 4-tape Turing
machine consisting of two read-only input tapes, a read/write work tape, and a read/write output tape. M
is described by the tuple (Γ,Q, δ), where Γ denotes the finite alphabet of M containing a blank symbol □
as well as a start symbol ▷, and the numbers 0 and 1; Q denotes a finite set of states containing a start
state qstart and a halting state qhalt; and δ : Q × Γ 4 → Q × Γ 2 × {L,S,R}4 denotes the transition function.
We assume that the transition function δ of M is given by a circuit CM. It is going to be convenient for us
to load the input mB onto the working tape of the Turing machine. For the remainder of this description,
we consider the working tape and the input tape of mB as a single tape. Furthermore, M is an oblivious
Turing machine, meaning its head movements do not depend on the input but only on the input length.
Note, that by a classical result of Pippinger and Fischer, Turing machines can be simulated by an oblivious
(and deterministic) Turing machine with only a logarithmic slowdown [PF79]. For convenience, we denote
by HeadPos(i) the function that outputs the state st′, the write location on the working tape Iw, and the
read locations Ir, Jr on the input tapes mB and mA respectively; all at step i of CM’s computation.

Description. Our scheme assumes the existence of:

– A symmetric encryption scheme Π := (Sym.Gen,Sym.Enc,Sym.Dec) that is IND-CPA secure.

5 One can always make the function F private by including an encoding of F in the input of Alice and computing
LFE of a universal Turing machine.
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– An updatable laconic oblivious transfer ULOT := (ULOT.Gen,ULOT.Hash,ULOT.Send,ULOT.Receive,
ULOT.SendWriteRead,ULOT.ReceiveWriteRead) with sender privacy against semi-honest receivers.

– An indistinguishability obfuscator iO.
– A garbling scheme GC := (GC.Garble,GC.Eval,GC.Input) with selective security.

– A puncturable pseudorandom function PPRF := (PPRF.Gen,PPRF.Eval,PPRF.Punc).

For convenience we make a few simplifying assumptions: (1) The Turing machine never writes to the
same position twice (this does not affect its runtime, as we can just write to a new memory location every
time) and (2) The input mB is of length exactly N . Our scheme can be modified to handle the more general
case but the description and the proof become somewhat more contrived.

The step circuit [Fig. 2] handles the tasks performed at each step of M’s computation. Namely, decrypting
the secret input into CM, computing one step of CM and encrypting the output with a new key. Furthermore,
after each step, additional outputs are used to specify a location in the database where the encrypted data
is to be written using the updatable laconic oblivious transfer. The garbling step circuit [Fig. 3] garbles each
step circuit and generates the relevant labels and keys so that the garbled circuit can be evaluated.

We define the step circuit SCi as in Fig. 2. As inputs, CM takes the state st ∈ Q of the Turing machine
M, as well as two input blocks xA ⊆ mA and xB = mB both of size N . After evaluating the circuit on its
inputs, CM returns a new state st′ ∈ Q; a write location Iw on the working tape, at which the next block
of symbols yB is written; a read location Ir on the input tape mB ; a read location Jr on the input tape
mA; and q = ⊥, unless the halting state qhalt has been reached, in which case q is the only output of the
computation.

SCi

[
crs, ki, ki+1, lbsst, lbsA, lbsB

]
(st, zA, zB):

1. Parse (dA, xA) := zA
2. Parse (dB , x

′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. xB ← Sym.Dec(ki, x
′
B)

5. (st′, Iw, yB , Ir, Jr, q)← CM(st, xA, xB)
6. y′

B ← Sym.Enc(ki+1, yB)
7. eA ← ULOT.Send(crs, dA, Jr, lbsA)
8. eB ← ULOT.SendWriteRead

(
crs, dB , Iw, y

′
B , lbsB[0], Ir, lbsB[1]

)
9. ŝt← GC.Input(st′, lbsst)

return
(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Figure 2. Step Circuit.

Now we define the following circuit GarbleSC, which has the crs and a PRF seed s hardwired [Fig. 3].

It takes as input an index i and outputs a garbled circuit GC(i). We are now ready to present our laconic
function evaluation protocol [Fig. 4].

3.1 Correctness

The correctness of our LFE construction follows routinely from the correctness of its components, namely the
indistinguishability obfuscator iO, the garbling scheme GC, the updatable laconic oblivious transfer protocol
ULOT, the symmetric encryption scheme Π and the puncturable pseudorandom function PPRF.

Proposition 1 (Correctness). The Laconic Function Evaluation protocol in Fig. 4 is correct.
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GarbleSC[crs, s, k](i):
1. (lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i)
2. (lbs′st || lbs′A || lbs′B || ·)← PPRF.Eval(s, i+ 1)
3. (st, Iw, Ir, Jr)← HeadPos(i)
4. (st′, I ′w, I

′
r, J

′
r)← HeadPos(i+ 1)

5. ki ← PPRF.Eval(k, Iw)
6. ki+1 ← PPRF.Eval(k, I ′w)
7. C′ ← SCi

[
crs, ki, ki+1, lbs

′
st, lbs

′
A, lbs

′
B

]
8. GC← GC.Garble

(
1λ,C′, (lbsst

∣∣∣∣ lbsA ∣∣∣∣ lbsB ;R)
)

return GC

Figure 3. Garbling Step Circuit. The circuit is padded to the maximum size of SimGarbleSC [See proof of Theorem 3].

Proof of Proposition 1. We prove the claim via an inductive argument. Let c
(i)
B denote the contents of the

databases at the beginning of the ith iteration of the while loop in LFE.Dec. Let tr′i denote the transcript
tri of M, except that we remove Alice’s input tape mA, and let T denote the runtime of M. We argue that

∀i ∈ {1, . . . , T}, c(i)B block-wise decrypts to the transcript tr′i at step i of M’s computation. We also show

that at each i, the garbled input labels
(
ŝt

(i)
∣∣∣∣∣∣ ẑ(i)A

∣∣∣∣∣∣ ẑ(i)B

)
are a valid encoding of the state of the Turing

machine M, dA the block of mA, and dB the block of cB all in step circuit SCi.

The base case, when i = 1, follows trivially. Initially, the database c
(1)
B contains a block-wise encryption

of mB [step 5 of LFE.Enc]. In step 9 of LFE.Enc x′B is set to c
(1)
B , i.e. x′B contains mB and the content of the

(empty) worktape. Similarly, xA is also initialised to 0N in step 8 of LFE.Enc. Hence, the transcript tr′1 consists

of the input tapemB concatenated with an empty working tape and the state. Thus, Sym.Dec
(
k1, c

(1)
B

)
= tr′1.

The garbled input labels
(
ŝt

(1)
∣∣∣∣∣∣ ẑ(1)A

∣∣∣∣∣∣ ẑ(1)B

)
are passed to LFE.Dec in the ciphertext.

By the inductive hypothesis we assume that the database c
(i−1)
B block-wise decrypts to give tr′i−1. We

now show that Sym.Dec
(
ki, c

(i)
B

)
= tr′i. In the ith iteration of the while loop in LFE.Dec, SCi is evaluated by

GC(i). Due to the correctness of the indistinguishability obfuscator iO, the obfuscated garbling step circuit
obG can be correctly evaluated on input i, and GC(i) is given by

GC(i) = obG(i)

= iO (GarbleSC[crs, s, k](i))

= GC.Garble
(
1λ,SCi

[
crs, ki, ki+1, lbs

′
st, lbs

′
A, lbs

′
B

]
(·, ·, ·), lbsst|| lbsA|| lbsB ;R

)
.

By the induction hypothesis, the garbled input labels
(
ŝt

(i)
∣∣∣∣∣∣ ẑ(i)A

∣∣∣∣∣∣ ẑ(i)B

)
are a valid encoding of the

state of the Turing machine M, dA and the block of mA, and dB and the block of cB all in step circuit

SCi. In SCi, the decryption of x′
(i)
B gives x

(i)
B . After running CM, y

(i)
B is then written to the work tape at

I
(i)
w , and encrypted to y′

(i)
B . By the correctness of updatable laconic oblivious transfer, ULOT.SendWriteRead

specifies y′
(i)
B to be written to a database and in step 5 of LFE.Dec, y′

(i)
B is written to cB at position I

(i)
w .

Therefore, Sym.Dec
(
ki, c

(i)
B

)
= tr′i−1 with y

(i)
B written on the work tape at I

(i)
w . I.e., Sym.Dec

(
ki, c

(i)
B

)
= tr′i.

Furthermore, the garbled input labels ẑ
(i+1)
A and ẑ

(i+1)
B are given by

ẑ
(i+1)
A = ULOT.Receivem

(i)
A

(
crs, e

(i)
A , J (i)

r

)
= ULOT.Receivem

(i)
A

(
crs,ULOT.Send

(
crs, dA, J

(i)
r , lbsA

)
, J (i)

r

)
,
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LFE.Gen
(
1λ, 1N

)
:

1. Compute crs← ULOT.Gen
(
1λ, 1N

)
return crs

LFE.Hash(crs,mA):
1. Compute (dA, m̂A)← ULOT.Hash(crs,mA)

return (dA, m̂A)
LFE.Enc(crs, dA,mB):

1. Choose two uniformly random PRF seeds (s, k)
2. Compute (lbsst || lbsA || lbsB || R)← PPRF.Eval(s, 1)
3. Compute k1 ← PPRF.Eval(k, 1)
4. Compute obG← iO (GarbleSC[crs, s, k])
5. Block-wise encrypt cB ← Sym.Enc(k1,mB)
6. Compute (dB , ĉB)← ULOT.Hash(crs, cB)
7. Set st← 0N

8. Set zA ←
(
dA, 0

N
)

9. Set zB ← (dB , cB)
10. Compute ŝt← GC.Input(st, lbsst)
11. Compute ẑA ← GC.Input(zA, lbsA)
12. Compute ẑB ← GC.Input(zB , lbsB)
13. Set c←

(
ĉB , obG, ŝt, ẑA, ẑB

)
return c

LFE.Dec(crs,mA, c):
1. Parse

(
ĉB , obG, ŝt, ẑA, ẑB

)
:= c

2. Set m
(1)
B ← ĉB , ŝt

(1) ← ŝt, ẑ
(1)
A ← ẑA, ẑ

(1)
B ← ẑB

3. Set i := 1
4. q := ⊥
5. while true do

if q ̸= ⊥ then
return q

Compute GC(i) ← obG(i)

Compute
(
ŝt

(i+1)
∣∣∣∣∣∣ Iw ∣∣∣∣∣∣ m(i+1)

B

∣∣∣∣∣∣ Ir ∣∣∣∣∣∣ Jr

∣∣∣∣∣∣ eA ∣∣∣∣∣∣ eB ∣∣∣∣∣∣ q)← GC.Eval
(
GC(i),

(
ŝt

(i)
∣∣∣∣∣∣ ẑ(i)A

∣∣∣∣∣∣ ẑ(i)B

))
Compute ẑ

(i+1)
A ← ULOT.ReceivemA (crs, eA, Jr)

Compute ẑ
(i+1)
B ← ULOT.ReceiveWriteReadĉB

(
crs, Iw,m

(i)
B , eB , Ir

)
Set i := i+ 1

Figure 4. Laconic Function Evaluation Protocol.

and

ẑ
(i+1)
B = UL OT.ReceiveWriteReadĉ

(i)
B

(
crs, I

(i)
w ,m

(i)
B , e

(i)
B , I

(i)
r

)
= UL OT.ReceiveWriteReadĉ

(i)
B

(
crs, I

(i)
w ,m

(i)
B ,

ULOT.SendWriteRead
(
crs, dB , I

(i)
w , y′

(i)
B , lbsB[0], Ir, lbsB[1]

)
, I

(i)
r

)
,

respectively. ■

3.2 Proof of Security

We will now establish sender simulation security for our protocol, and start by stating the main security
theorem.
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Theorem 3 (Security). Assume that iO is an indistinguishability obfuscator, (GC.Garble, GC.Input,
GC.Eval) is simulation secure, (ULOT.Gen, ULOT.Hash, ULOT.Send, ULOT.Receive, ULOT.SendWriteRead,
ULOT.ReceiveWriteRead) has sender privacy against semi-honest receivers, (Sym.Gen,Sym.Enc,Sym.Dec) is
IND-CPA secure, and that (PPRF.Gen, PPRF.Eval, PPRF.Punc) is a puncturable pseudorandom function.
Then (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec) has sender privacy against semi-honest receivers.

To prove the security of our construction we use a similar proof strategy to that of [GS18]. In particular,
our proof will proceed via a hybrid argument. In each hybrid we change the way the circuit obG computes
the garbled circuits GC(i). Each garbled step circuit GC(i) can be computed in three modes [Fig. 8]. The
first mode is real, where the computations are just as in the real protocol. The second mode is dummy, where
the output of the garbled circuit is constant and hardwired, but the same as in the real execution [Fig. 5-6].
The third mode is sim, which is similar to real mode, with the difference being that the garbled circuit only
outputs dummy values which are not the same as in the real execution [Fig. 2].

Both garbled circuits in real and dummy mode will keep the intermediate states and memory consistent
(recall that the memory is accessed via an updatable laconic OT). On the other hand, a garbled circuit in sim
mode will only output the dummy state and perform dummy read and writes to memory. Garbled circuits
in real and sim mode are computed on-the-fly by obG, whereas circuits in dummy need to be hardwired into
obG. As a result, the size of obG depends on the maximum number of dummy circuits needed in any given
hybrid.

We will briefly discuss the necessary conditions under which we can switch the mode of a garbled step
circuit. The first garbled circuit in the in line GC(1) can always be switched from real to dummy or vice versa,
provided there is a free simulation slot available, i.e., the number of currently simulated garbled circuits is
less than some maximum amount t. For any other garbled circuit GC(i), we can switch its mode from real
to dummy or vice versa, given that the circuit GC(i−1) is in dummy mode and a simulation slot is available.
To switch a node into sim mode, we require that its successor node is in sim mode and that its predecessor
is in dummy mode. In the case of the first node we only have the requirement for its successor node and for
the last node we only have the requirement for its predecessor.

These rules define a pebbling game, where we identify pebbles as simulation slots. The goal of the game
is to switch the nodes from real (white pebbles) to sim (black pebbles), while minimizing the number of
nodes in dummy (grey pebbles). To win the game, we can use the same pebbling strategy as in [GS18], where
O(log(T )) pebbles suffice to set a pebble at the last node (with index T ) in poly(T ) steps. Consequently,
with this strategy we only need to simulate O(log(T )) = O(λ) nodes in any given hybrid. We refer the
reader to the works of [GPSZ17] and [GS18] for an optimal strategy for the pebbling game. For the sake of
completeness we state the main Lemmas here.

Lemma 1 ([GPSZ17]). For any p ∈ Z, such that n + 1 ≤ p ≤ n + 2k − 1, it is possible to make
O
(
(p− n)log2 3

)
≈ O

(
(p− n)1.585

)
moves and get a black pebble at position p using k gray pebbles.

Lemma 2 ([GS18]). For any T ∈ N, there exists a strategy for pebbling the line graph {1, . . . , T} according
to rules A and B by using at most log(T ) grey pebbles and making poly(λ) moves.

Thus, our proof strategy will proceed as follows. First we will use the above pebbling argument to switch
the last node, i.e. the node with index T to sim mode. This will take poly(T ) steps. Next, we will again use
the same pebbling argument to switch node T − 1 to sim mode. This will take poly(T − 1) = poly(T ) steps.
Consequently, we replace nodes T − 2, T − 3, . . . , 2, 1 with sim nodes, in this order. In total, this will require
T · poly(T ) = poly(T ) steps. In the very last hybrid, we will replace the encryption of that database mB by
an encryption of 0. Once all pebbles (step circuits) are in sim mode, and the encryption of mB has been
replaced with the encryption of 0, this corresponds to the simulator SimLFE, which takes as input the crs, d,
the machine M, the output M(x) and the time bound T . The simulator then outputs the ciphertext c. As a
result, the view of the adversary, in this last hybrid, is independent of the sender input mB . Hence, we can
use this hybrid to simulate the view of a semi-honest receiver by only using the receiver’s output. The full
proof of Theorem 3 follows from that of two lemmas [Lem. 3, Lem. 4].
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SCdummy
i∗ [crs, ki∗ , ki∗+1, lbsst, lbsA, lbsB ](st, zA, zB):
1. Parse (dA, xA) := zA
2. Parse (dB , x

′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. xB ← Sym.Dec(ki∗ , x
′
B)

5. (st′, Iw, yB , Ir, Jr, q)← CM(st, xA, xB)
6. y′

B ← Sym.Enc(ki∗+1, yB)
7. d∗B ← ULOT.Hash (crs,m∗

B)
8. eA ← SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr ]

))
9. eB ← SimULOT.WR

(
crs,mB , Iw, y

′
B ,GC.Input

(
lbsB[0], d

∗
B

)
, Ir,

GC.Input
(
lbsB[1],m

∗
B[Ir ]

) )
10. ŝt← GC.Input(st′, lbsst)

return
(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Figure 5. Step Circuit in dummy mode. Let m∗
B denote the database that is identical to mB except that m∗

B [Iw] = y′
B .

GCdummy
i∗ [crs, s, k]:
1. (lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i)
2. (lbs′st || lbs′A || lbs′B || ·)← PPRF.Eval(s, i+ 1)
3. (st, Iw, Ir, Jr)← HeadPos(i)
4. (st′, I ′w, I

′
r, J

′
r)← HeadPos(i+ 1)

5. ki ← PPRF.Eval(k, Iw)
6. ki+1 ← PPRF.Eval(k, I ′w)

7. Lst ← GC.Input
(
lbsst, st

(i∗)
)

8. LA ← GC.Input
(
lbsA, z

(i∗)
A

)
9. LB ← GC.Input

(
lbsB , z

(i∗)
B

)
10. out← SCdummy

i∗
[
crs, ki∗ , ki∗+1,lbs

′
st, lbs

′
A, lbs

′
B

](
st(i

∗+1),z
(i∗+1)
A ,z

(i∗+1)
B

)
11. GC← SimGC

(
1λ, 1|SC

dummy
i∗ |, out, (Lst || LA || LB ;R)

)
return GC

Figure 6. Garbling Step Circuit in dummy mode.

Circuit Configuration. A circuit configuration conf consists of a subset of garbling step circuits in dummy
mode as well as an index i∗ ∈ {1, . . . , T} denoting the garbling step circuit to be changed by the rule.

Rules of Indistinguishability. We define the rules of indistinguishability (which determine the
configurations in the pebbling game) below.

Rule A: Rule A dictates when a garbling step circuit can be indistinguishably changed from real mode to
dummy mode. Let conf and conf ′ be two valid configurations and i∗ be an index of the garbling step
circuit, such that:

– Index i∗ is changed from real mode to dummy mode, and there are no indices in sim mode to the left
of i∗.

– Index i∗ is either the first or its predecessor is in dummy mode.
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SCsim
i∗ [crs, ki∗ , ki∗+1, lbsst, lbsA, lbsB ](st, zA, zB):
1. Parse (dA, xA) := zA
2. Parse (dB , x

′
B) := zB

3. Parse
(
lbsB[0], lbsB[1]

)
:= lbsB

4. (st′, Iw, Ir, Jr)← HeadPos(i∗)
5. y′

B ← Sym.Enc(ki∗+1, 0)
6. if i∗ = T then

q := C(x)
7. else

q := ⊥
8. eA ← ULOT.Send(crs, dA, Jr, lbsA)
9. eB ← ULOT.SendWriteRead

(
crs, dB , Iw, y

′
B , lbsB[0], Ir, lbsB[1]

)
10. ŝt← GC.Input(st′, lbsst)

return
(
ŝt, Iw, y

′
B , Ir, Jr, eA, eB , q

)

Figure 7. Step Circuit in sim mode.

SimGarbleSC[crs, s](i∗):
1. if i∗ ∈ dummy then

return GCdummy
i∗ [crs, s, k]

2. else
(lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i)
(lbs′st || lbs′A || lbs′B || ·)← PPRF.Eval(s, i+ 1)
(st, Iw, Ir, Jr)← HeadPos(i)
(st′, I ′w, I

′
r, J

′
r)← HeadPos(i+ 1)

ki ← PPRF.Eval(k, Iw)
ki+1 ← PPRF.Eval(k, I ′w)

3. if i∗ ∈ real then
Set C′ ← SCi∗ [crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B ]

4. if i∗ ∈ sim then
Set C′ ← SCsim

i∗ [crs, ki∗ , ki∗+1, lbs
′
st, lbs

′
A, lbs

′
B ]

GC← GC.Garble
(
1λ,C′, (lbsst

∣∣∣∣ lbsA ∣∣∣∣ lbsB ;R)
)

return GC

Figure 8. Garbling Step Circuit in real, dummy and sim mode.

– The garbling step circuits in sim mode remain unchanged.

In Lemma 3 we show that for two valid circuit configurations conf and conf ′, satisfying the above
constraints, the two distributions Hconf and Hconf′ are computationally indistinguishable.

Rule B: Rule B dictates when a step circuit can be indistinguishably changed from dummy mode to sim
mode. Let conf and conf ′ be two valid configurations and i∗ be an index of the garbling step circuit, such
that:

– Index i∗ is changed from dummy mode to sim mode.
– Index i∗ is either the last or its predecessor is in dummy mode.
– The garbling step circuits in real mode remain unchanged.

In Lemma 4 we show that for two valid circuit configurations conf and conf ′, satisfying the above
constraints, the two distributions Hconf and Hconf′ are computationally indistinguishable.

14



3.3 Proof of Indistinguishability for the Rules

Implementing Rule A

Lemma 3 (Rule A). Let conf and conf ′ be two valid circuit configurations satisfying the constraints of rule
A. Assume that iO is an indistinguishability obfuscator, GC is simulation secure, ULOT has sender privacy
against semi-honest receivers, and that PPRF is a puncturable pseudorandom function. Then, for the two
distribution ensembles {Hconfλ}λ∈N and {Hconf′λ}λ∈N it holds that∣∣∣∣∣ Pr

c←Hconfλ

[
A
(
1λ, c

)
= 1

]
− Pr

c←Hconf′λ

[
A
(
1λ, c

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

Proof of Lemma 3. We prove this with help of a hybrid argument.

Hconfλ : The garbling step circuit is in real mode.
H1: Instead of hardwiring the PPRF key s into SimGarbleSC, we hardwire the key s{i∗} ← PPRF.Punc(s, i∗),

that is punctured at i∗. Since we cannot evaluate PPRF.Eval(s{i∗}, i∗), we additionally hardwire the labels
and key that are output by PPRF.Eval(s, i∗) into SimGarbleSC.

(lbsst || lbsA || lbsB || R)← PPRF.Eval(s, i∗)

To be able to use the security of iO, the size of GarbleSC is padded to be the same size as SimGarbleSC.

Claim (Hconf → H1). The advantage of any PPT adversary in distinguishing between Hconf and H1 is:

AdvHconf→H1

A1
≤ AdviO-sec

iO,B1
.

Hconf → H1. The proof relies on the security of the indistinguishability obfuscator iO to be able to switch
the PPRF key and hardwire the labels. The reduction B1 gets a bit b from the adversary A1, where b = 0
if the obfuscated circuit is as described in Hconf and b = 1 if the obfuscated circuit is as described in H1.
If A1 wins the game with advantage ϵ, B1 wins the iO-sec game with greater than ϵ probability. □

H2: As opposed to using the labels output by PPRF.Eval(s, i∗), we sample a string u from the uniform
distribution Uλ.

Claim (H1 → H2). The advantage of any PPT adversary in distinguishing between H1 and H2 is:

AdvH1→H2

A2
≤ AdvPPRF-randPPRF,B2

.

H1 → H2. The proof relies on the pseudorandomness property of PPRF, to be able to switch the output
of PPRF.Eval(s, i∗) with u. The reduction B2 gets a bit b from the adversary A2, where b = 0 if the
output of PPRF.Eval(s, i∗) is used, and b = 1 if the uniform string is used. If A2 wins the game with
advantage ϵ, B2 wins the PPRF-rand game with greater than ϵ probability. □

H3: Since each label is computed twice, once in step i∗− 1 and once in step i∗, we now remove the following
labels at step i∗ − 1;

lbsst \ GC.Input
(
lbsst, st

(i∗−1)
)

lbsA \ GC.Input
(
lbsA, z

(i∗−1)
A

)
lbsB \ GC.Input

(
lbsB , z

(i∗−1)
B

)
.

I.e., those used in steps 8-10 in SCdummy
i∗−1 . This is possible, since by the constraints of rule A, the previous

step is known to be in dummy mode.
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Claim (H2 → H3). The distributions H2 and H3 are identical.

H2 → H3. We note that SCdummy
i∗ is not executed in the obfuscated circuit, but rather computed locally

by the simulator. The output is hardwired in the obfuscated circuit, and we are simply removing unused
variables. □

H4: We hardwire the output out of

GC.Garble
(
1λ,SCi∗

[
crs, ki∗ , ki∗+1, lbs

′, lbs′A, lbs
′
B

]
, (lbsst || lbsA || lbsB ;R)

)
into SimGarbleSC. iO reduction.

Claim (H3 → H4). The advantage of any PPT adversary in distinguishing between H3 and H4 is:

AdvH3→H4

A4
≤ AdviO-sec

iO,B4
.

H3 → H4. The proof relies on the security of the indistinguishability obfuscator iO to be able to hardwire
the output of the garbling scheme. The reduction B4 gets a bit b from the adversary A4, where b = 0 if
the obfuscated circuit is as described in H3 and b = 1 if the obfuscated circuit is as described in H4. If
A4 wins the game with advantage ϵ, B4 wins the iO-sec game with greater than ϵ probability. □

H5: We simulate the garbling step circuit, as

GC← SimGC

(
1λ, 1|SCi∗ |, out, (Lst || LA || LB ;R)

)
,

where out ← SCi∗
[
crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B

] (
st(i

∗+1), z
(i∗+1)
A , z

(i∗+1)
B

)
, and

(lbs′st || lbs
′
A || lbs

′
B || R′) ← PPRF.Eval (s{i∗}, i∗ + 1). Recall that st(i

∗+1), z
(i∗+1)
A , and z

(i∗+1)
B denote

the state of the Turing machine M; the digest dA and the input block xA; as well as the digest dB and
the encrypted input block xB , respectively, each at step i∗ + 1 of the computation.

Claim (H4 → H5). The advantage of any PPT adversary in distinguishing between H4 and H5 is:

AdvH4→H5

A5
≤ AdvGC-secGC,B5

.

H4 → H5. The proof relies on the selective simulation security of the garbling scheme GC to be able to
simulate the garbling step circuit. The reduction B5 gets a bit b from the adversary A5, where b = 0 if
A5 identified{

GC.Garble
(
1λ,SCi∗

[
crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B

]
, (lbsst || lbsA || lbsB ;R)

)
, (Lst || LA || LB ;R)

}
and b = 1 if A5 identified{

SimGC

(
1λ, 1|SCi∗ |, out, (Lst || LA || LB ;R)

)
, (Lst || LA || LB ;R)

}
.

If A5 wins the game with advantage ϵ, B5 wins the GC-sec game with greater than ϵ probability. □

H6: We simulate the ULOT.Send ciphertext as eA ← SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr]

))
. Recall

that mA[Jr] denotes M’s input tape mA at read location Jr, all at step i∗.

Claim (H5 → H6). The advantage of any PPT adversary in distinguishing between H5 and H6 is:

AdvH5→H6

A6
≤ AdvSenPriExptULOT,B6

.
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H5 → H6. The proof relies on the semi-honest sender privacy of ULOT to be able to simulate the
ciphertext. The reduction B6 gets a bit b from the adversary A6, where b = 0 if A6 identified the
ciphertext as

{ULOT.Send (crs, dA, Jr, lbsA)}

and b = 1 if A6 identified the ciphertext as{
SimULOT.S

(
crs,mA, Jr,GC.Input

(
lbsA,mA[Jr]

))}
.

If A6 wins the game with advantage ϵ, B6 wins the SenPriExpt game with greater than ϵ probability. □

H7: We simulate the ULOT.SendWriteRead ciphertext as eB ← SimULOT.WR

(
crs,mB , Iw, y

′
B ,

GC.Input
(
lbsB[0], d

∗
B

)
, Ir,GC.Input

(
lbsB[1],m

∗
B[Ir]

))
. Here, m∗B denotes the database that is identical

to mB except that m∗B [Iw] = y′B , and d∗B ← ULOT.Hash (crs,m∗B). Recall that Iw, Ir, and y′B denote
the write location on the working tape; the read location on the input tape mB ; and the encrypted
block of symbols that are output by M, respectively, all step i∗ of the computation.

Claim (H6 → H7). The advantage of any PPT adversary in distinguishing between H6 and H7 is:

AdvH6→H7

A7
≤ AdvWriReaSenPriExpt

ULOT,B7
.

H6 → H7. The proof relies on the semi-honest sender privacy for writes and reads of ULOT to be able
to simulate the ciphertext. The reduction B7 gets a bit b from the adversary A7, where b = 0 if A7

identified the ciphertext as{
ULOT.SendWriteRead

(
crs, dB , Iw, y

′
B , lbsB[0], Ir, lbsB[1]

)}
and b = 1 if A7 identified the ciphertext as{

SimULOT.WR

(
crs,mB , Iw, y

′
B ,GC.Input

(
lbsB[0], d

∗
B

)
, Ir,GC.Input

(
lbsB[1],m

∗
B[Ir]

))}
.

IfA7 wins the game with advantage ϵ, B7 wins theWriReaSenPriExpt game with greater than ϵ probability.
□

H8 −H10: Finally, we revert the changes made in H1−H3. Here, the indistinguishability between H8−H10

follows analogous to that of H1 −H3.
Hconf′λ : The step circuit is in dummy mode.

This concludes the proof of Lemma 3. ■

Implementing Rule B

Lemma 4 (Rule B). Let conf and conf ′ be two valid circuit configurations satisfying the constraints of rule
B. Assume that iO is an indistinguishability obfuscator, GC is simulation secure, ULOT has sender privacy
against semi-honest receivers, and that PPRF is a puncturable pseudorandom function. Then, for the two
distribution ensembles {Hconfλ}λ∈N and {Hconf′λ}λ∈N it holds that∣∣∣∣∣ Pr

c←Hconfλ

[
A
(
1λ, c

)
= 1

]
− Pr

c←Hconf′λ

[
A
(
1λ, c

)
= 1

]∣∣∣∣∣ ≤ negl(λ).

Proof of Lemma 4. We prove this with help of a hybrid argument. To keep the proof similar to that of
Lemma 3, we start with hybrid Hconf′ and end with hybrid Hconf .

Hconf′ : The garbling step circuit is in sim mode.
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H1: Same as H1 in Lemma 3.
H2: Same as H2 in Lemma 3.
H3: Same as H3 in Lemma 3.
H4: Instead of hardwiring the PPRF key k into SimGarbleSC, we hardwire the key k{i∗} ← PPRF.Punc(s, Iw),

where Iw is the position of the writing head of the Turing Machine at step i∗. We additionally hardwire
the labels and key that are output by PPRF.Eval(k, Iw) into SimGarbleSC.

ki∗ ← PPRF.Eval(k, Iw)

To be able to use the security of iO, the size of GarbleSC is padded to be the same size as SimGarbleSC.

Claim (H3 → H4). The advantage of any PPT adversary in distinguishing between H3 and H4 is:

AdvH3→H4

A4
≤ AdviO-sec

iO,B4
.

H3 → H4. The proof follows by a reduction to the security of the obfuscator, since the two circuits are
functionally equivalent. □

H5: As opposed to using the key output by PPRF.Eval(k, Iw), we sample a string u from the uniform
distribution Uλ.

Claim (H4 → H5). The advantage of any PPT adversary in distinguishing between H4 and H5 is:

AdvH4→H5

A5
≤ AdvPPRF-randPPRF,B5

.

H4 → H5. Follows by the pseudorandomness of the puncturable PRF. □

H6: We hardwire the output out of

GC.Garble
(
1λ,SCsim

i∗
[
crs, ki∗ , ki∗+1, lbs

′, lbs′A, lbs
′
B

]
, (lbsst || lbsA || lbsB ;R)

)
into SimGarbleSC.

Claim (H5 → H6). The advantage of any PPT adversary in distinguishing between H5 and H6 is:

AdvH5→H6

A6
≤ AdviO-sec

iO,C6 .

H5 → H6. The proof relies on the security of the indistinguishability obfuscator iO to be able to hardwire
the output of the garbling scheme. The reduction C6 gets a bit b from the adversary A6, where b = 0 if
the obfuscated circuit is as described in H5 and b = 1 if the obfuscated circuit is as described in H6. If
A6 wins the game with advantage ϵ, B6 wins the iO-sec game with greater than ϵ probability. □

H7: We simulate the garbling step circuit, as

GC← SimGC

(
1λ, 1|SC

sim
i∗ |, out, (Lst || LA || LB ;R)

)
,

where out ← SCsim
i∗ [crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B ]

(
st(i

∗+1), z
(i∗+1)
A , z

(i∗+1)
B

)
, and

(lbs′st || lbs
′
A || lbs

′
B ;R

′) ← PPRF.Eval (s{i∗}, i∗ + 1). Recall that st(i
∗+1), z

(i∗+1)
A , and z

(i∗+1)
B denote the

state of the Turing machine M; the digest dA and the input block xA; as well as the digest dB and the
encrypted input block xB , respectively, each at step i∗ + 1 of the computation.

Claim (H6 → H7). The advantage of any PPT adversary in distinguishing between H6 and H7 is:

AdvH6→H7

A7
≤ AdvGC-secGC,B7

.
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H6 → H7. The proof relies on the selective simulation security of the garbling scheme GC to be able to
simulate the garbling step circuit. The reduction B7 gets a bit b from the adversary A7, where b = 0 if
A7 identified{

GC.Garble
(
1λ,SCsim

i∗
[
crs, ki∗ , ki∗+1, lbs

′
st, lbs

′
A, lbs

′
B

]
, (lbsst || lbsA || lbsB ;R)

)
, (Lst || LA || LB ;R)

}
and b = 1 if A7 identified{

SimGC

(
1λ, 1|SC

sim
i∗ |, out, (Lst || LA || LB ;R)

)
, (Lst || LA || LB ;R)

}
.

If A7 wins the game with advantage ϵ, B7 wins the GC-sec game with greater than ϵ probability. □

H8: Same as H6 in Lemma 3.
H9: Same as H7 in Lemma 3.
H10: Instead of computing the state st′, the write location Iw, the read locations Ir and Jr using

HeadPos(i), as well as computing y′B as Sym.Enc
(
ki∗+1, 0

)
; we compute the output of CM, and y′B as

Sym.Enc
(
ki∗+1, yB

)
.

Claim (H9 → H10). The advantage of any PPT adversary in distinguishing between H9 and H10 is:

AdvH9→H10

A10
≤ AdvΠ,B10

.

H9 → H10. The proof relies on the chosen plaintext attack security of the symmetric encryption scheme
Π to be able to switch from encrypting 0 to yB . We can do this, since the constraints of ruleB ensure that
the next circuit is in sim mode and therefore the key ki∗+1 is not present in the view of the distinguisher.
The reduction C10 gets a bit b from the adversary A10, where b = 0 if the plaintext is 0, and b = 1 if the
plaintext is yB . If A10 wins the game with advantage ϵ, B10 wins the symmetric encryption game with
greater than ϵ probability. □

H11 −H13: Finally, we revert the changes made in H1−H3. Here, the indistinguishability between H11−H13

follows analogously to that of H1 −H3.
Hconf : The garbling step circuit is in dummy mode.

This concludes the proof of Lemma 4. ■

Proof of Theorem 3. The sequence of hybrids shown in the proof of Lemma 3 and Lemma 4 are reversible,
and imply an inverse of rule A and rule B. Thus, the proof of Theorem 3 follows directly from the proofs of
Lemma 3 and Lemma 4. ■

3.4 Removing the Output Dependency

We note that our whilst our construction [Fig. 4] outputs only one bit, a generic transformation can be used
to output multiple bits. Depending on the security definition that we want to achieve, there are two generic
ways to carry out such a transformation.

Simulation Security. If we insist on simulation security (which is the same definition achieved by the
protocol in [Fig. 4]) we can simply hash the circuit Φ as d← LFE.Hash(crs, Φ), where Φ takes as input an mB

and an index i and returns the i-th output bit of C(x)i. Then, for all output bits we let the sender compute

c :=
(
c1 ← LFE.Enc(crs, d, (x, 1)), . . . , c|y| ← LFE.Enc(crs, d, (x, |y|))

)
where |y| denotes the output size. The reciever can then recover the output bit-by-bit. Security follows from
a standard hybrid argument.
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Indistinguishability. If we relax the requirements to indistinguishability-based security, then it becomes
possible to remove the output dependency entirely. Specifically, we require that LFE.Enc(crs, d, x) and
LFE.Enc(crs, d, x̄) are computationally indistinguishable, for pairs (x, x̄) such that C(x) = C(x̄).

Our scheme proceeds as described above except that the sender does not explicitly compute the
ciphertexts

(
c1, . . . , c|y|

)
, instead the sender obfuscates a circuit that given an index i ∈ {1, . . . , |y|} returns

LFE.Enc
(
crs, d, (x, i);PPRF.Eval(k, i)

)
where k is the key of a puncturable PRF. To compute the output, the receiver evaluates the obfuscated
circuit on all possible indices to recover

(
c1, . . . , c|y|

)
, then she applies the LFE.Dec algorithm to recover the

output bit-by-bit. Observe that now the size of the ciphertext depends on |y| only logarithmically.
In terms of security, we can show indistinguishabilty by defining (|y|+1)-many intermediate distributions,

where in the i∗-th distribution Hi∗ we obfuscate the circuit that given an index i ∈ {1, . . . , |y|} returns

LFE.Enc
(
crs, d, (x̄, i);PPRF.Eval(k, i)

)
, if i < i∗

LFE.Enc
(
crs, d, (x, i);PPRF.Eval(k, i)

)
, otherwise.

Note that H0 is functionally equivalent to the original obfuscated circuit, whereas H|y|+1 is functionally
equivalent to the encryption of x̄. Thus, it suffices to show that Hi∗ and Hi∗+1 are computationally
indistinguishable. This is done with help of a five-steps argument:

– First we puncture the PRF key at point i∗, and indistinguishability follows from the security of iO.
– We switch PPRF.Eval(k, i∗) with a uniform string u, which is indistinguishable by the security of the

puncturable PRF.
– We hardwire the output of c∗ ← LFE.Enc(crs, d, (x, i∗);u) in the obfuscated circuit. Again,

indistinguishability follows from the security of iO.
– We set c∗ ← LFE.Enc(crs, d, (x̄, i∗);u). Indistinguishability follows from the security of LFE.
– We undo the modifications done by the first three steps.

Note that the first distribution is identical to Hi∗ , whereas the latter is identical to Hi∗+1.
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A Cryptographic Preliminaries

A.1 Models of Computation

In this section we recall some computational models, namely the Turing machine and Boolean circuits. We
start by recalling the definition of a Turing machine M which is described by a tuple (Γ,Q, δ). Note that for
our LFE construction [Sec. 3], we will make use of a 4-tape Turing machine consisting of two input tapes,
one work tape, and an output tape.

Definition 4 (Turing Machine [AB09]). A k-tape Turing Machine (Γ,Q, δ) is defined as the following
tuple.

Γ : A finite set of symbols that M’s tapes can contain, where the tapes can be read only for input, read/write
for working, and read/write for output. We assume that Γ contains a blank symbol □ as well as a start
symbol ▷, and the numbers 0 and 1.

Q: A finite set of states containing a start state qstart and a halting state qhalt.
δ: A transition function δ : Q× Γ k → Q× Γ k−1 × {L,S,R}k describing the computations done by M.

Without loss of generality, we can think of a Turing machine M as being deterministic. Next, we introduce
the notion of a transcript tr that can be thought of as the memory of a machine. Let tri denote the input
tapes concatenated with the content of M’s worktape at the start of step i of M’s computation. For a Turing
machine M that takes T steps to halt, running M on trT gives the output of M.

Definition 5 (Boolean Circuits [AB09]). ∀n ∈ N, an n-input, single-output Boolean circuit
C : {0, 1}n → {0, 1}, is a directed acyclic graph with n sources and one sink. All non-source vertices are
called gates and are labelled with one of ∧, ∨, or ¬. The vertices labeled with ∧ and ∨ have fan-in 2 and the
vertices labeled with ¬ have fan-in 1. The size of C, denoted |C|, is the number of vertices in it.

A.2 Symmetric Encryption

Definition 6 (Symmetric Encryption). A Symmetric Encryption scheme Π := (Sym.Gen,Sym.Enc,
Sym.Dec) is defined as the following tuple of PPT algorithms.

k← Sym.Gen(1λ): Given the security parameter 1λ (encoded in unary) the generation algorithm returns a
key k ∈ K.

c← Sym.Enc(k, x): Given a key k and a message x, the encryption algorithm returns a ciphertext c.
x← Sym.Dec(k, c): Given a key k and a ciphertext c, the decryption algorithm returns a message x.

We require a symmetric encryption scheme to satisfy the following properties.

Correctness: For any message x ∈M and any key k ∈ K it holds that,

Pr

[
Sym.Dec(k, c) = x

∣∣∣∣k← Sym.Gen(1λ)
c← Sym.Enc(k, x)

]
= 1,

where the probability is taken over the random coins of Sym.Enc, andM and K denote the message space
and key space respectively.

Security: For any two message x0, x1 ∈M and any key k ∈ K, it holds that,∣∣Pr [A(c, x0, x1) = 1
∣∣ c← Sym.Enc(k, x0)

]
− Pr

[
A(c, x0, x1) = 1

∣∣ c← Sym.Enc(k, x1)
]∣∣ ≤ negl(λ),

where the probability is taken over the random coins of Sym.Gen,Sym.Enc, and A, andM and K denote
the message space and key space respectively.
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A.3 Updatable Laconic Oblivious Transfer

We recall the definition of Updatable Laconic Oblivious Transfer (ULOT) [CDG+17]. Informally, ULOT
allows a receiver to commit to a large input D via a short message. Then, a single short message by a
sender enables the receiver to learn mD[L], where the messages m0,m1 and the location L ∈ [|D|] are
dynamically chosen by the sender. Similar to the work of [GOS18], we operate on blocks of data as opposed
to bits. Furthermore, our definition combines the ULOT.Send and ULOT.SendWrite algorithms, as well as
the ULOT.Receive and ULOT.ReceiveWrite algorithms. Intuitively, sender privacy does not reveal anything
about the message being sent in the transfer. A more formal definition follows.

Definition 7 (Updatable Laconic Oblivious Transfer [CDG+17]). An Updatable Laconic Oblivious
Transfer is defined as the following tuple of PPT algorithms. ULOT := (ULOT.Gen,ULOT.Hash,ULOT.Send,
ULOT.Receive, ,ULOT.SendWriteReadULOT.ReceiveWriteRead).

crs← ULOT.Gen
(
1λ, 1N

)
: Given the security parameter 1λ and the block size 1N , the generation algorithm

returns a common reference string crs.(
d, D̂

)
← ULOT.Hash(crs, D): Given the common reference string crs and a database D ∈

{
{0, 1}N

}∗
, the

compression algorithm returns a digest d and a state D̂.
e← ULOT.Send

(
crs, d, L, {mi,0,mi,1}i∈[N ]

)
: Given the common reference string crs, a digest d, a read

location L ∈ N, and a set of messages {mi,0,mi,1}i∈[N ] with mi,0,mi,1 ∈ {0, 1}poly(λ) for every i ∈ [N ],
the send algorithm returns a ciphertext e.

(m1, . . . ,mN )← ULOT.ReceiveD̂(crs, e, L): Given the common reference string crs, a ciphertext e, and a read

location L ∈ N, the receive algorithm (a RAM algorithm with random read access to D̂) returns a set of
messages (m1, . . . ,mN ).

e←ULOT.SendWriteRead
(
crs,d,Lw,{bi}i∈[N ],{µj,0,µj,1}|d|j=1,Lr,{mk,0,mk,1}k∈[N ]

)
: Given the common

reference string crs, a digest d, a write location Lw ∈ N, a set of bits {bi}i∈[N ] to be written with

bi ∈ {0, 1} for every i ∈ [N ], |d| many pairs of messages {µj,0, µj,1}|d|j=1, where every µj,0 and µj,1 is of
length poly(λ), a read location Lr ∈ N, and a set of messages {mk,0,mk,1}k∈[N ] with

mk,0,mk,1 ∈ {0, 1}poly(λ) for every k ∈ [N ], the algorithm returns a ciphertext e. In other words, the
algorithm runs ULOT.SendWrite(·) followed by ULOT.Send(·) from [GOS18].(

{µj}|d|j=1, (m1, . . . ,mN )
)
←ULOT.ReceiveWriteReadD̂

(
crs, Lw, {bi}i∈[N ], e, Lr

)
: Given the common reference

string crs, a write location Lw ∈ N, a set of bits {bi}i∈[N ] with bi ∈ {0, 1} for every i ∈ [N ], a ciphertext

e, and a read location Lr ∈ N, the algorithm (a RAM algorithm with random read/write access to D̂)

updates the database D, such that D[Lw] = b1 . . . bN , and returns a set of messages {µj}|d|j=1, as well as

a set of messages (m1, . . . ,mN ). In other words, the algorithm runs ULOT.ReceiveWriteD̂(·) followed by

ULOT.ReceiveD̂(·) from [GOS18].

We require an updatable laconic oblivious transfer to satisfy the following properties.

Correctness: For any database D of size at most M = poly(λ), any memory location L ∈ [M ], any set of
messages (mi,0,mi,1) ∈ {0, 1}poly(λ) where i ∈ [N ] it holds that,

Pr

∀i ∈ [N ],
mi = mi,D[L,i]

∣∣∣∣∣∣∣∣
crs← ULOT.Gen(1λ, 1N )

(d, D̂)← ULOT.Hash(crs, D)
e← ULOT.Send

(
crs, d, L, {mi,0,mi,1}i∈[N ]

)
(m1, . . . ,mN )← ULOT.ReceiveD̂(crs, e, L)

 = 1,

where D[L, i] denotes the ith bit in the Lth block of D and the probability is taken over the random coins
of ULOT.Gen,ULOT.Send and ULOT.Receive.
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Sender Privacy: There exists a PPT simulator SimULOT.S such that for any non-uniform PPT adversary
A = (A1,A2) there exists a negligible function negl(·) such that,∣∣∣Pr [SenPriExptreal (1λ,A) = 1

]
− Pr

[
SenPriExptsim

(
1λ,A

)
= 1

]∣∣∣ ≤ negl(λ),

where SenPriExptreal and SenPriExptsim are described in Figure 9.

SenPriExptreal
(
1λ,A

)
1 : crs← ULOT.Gen(1λ, 1N )

2 :
(
D,L, {mi,0,mi,1}i∈[N ], st

)
← A1(crs)

3 : (d, D̂)← ULOT.Hash(crs, D)

4 : e← ULOT.Send
(
crs, d, L, {mi,0,mi,1}i∈[N ]

)
5 : return A2(st, e)

SenPriExptsim
(
1λ,A

)
1 : crs← ULOT.Gen(1λ, 1N )

2 :
(
D,L, {mi,0,mi,1}i∈[N ], st

)
← A1(crs)

3 : (d, D̂)← ULOT.Hash(crs, D)

4 : e← SimULOT.S

(
crs, D, L, {mi,D[L,i]}i∈[N ]

)
5 : return A2(st, e)

Figure 9. Sender Privacy Security Game.

Correctness of Writes & Reads: For any database D of size at most M = poly(λ), and any memory
location Lw ∈ [M ], let D∗ denote the database that is identical to D except that D∗[Lw, i] = bi for all
i ∈ [N ] and some sequence {bi} ∈ {0, 1}, any sequence of messages {µj,0, µj,1}j∈[|d|] ∈ {0, 1}poly(λ), any
memory location Lr ∈ [M ], and any set of messages (mk,0,mk,1) ∈ {0, 1}poly(λ) where k ∈ [N ] it holds
that,

Pr



∀j ∈ [|d|],
µ′j = µj,d∗j∧
∀k ∈ [N ],
mk = mk,D∗[Lr,k]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

crs← ULOT.Gen(1λ, 1N )

(d, D̂)← ULOT.Hash(crs, D)

(d∗, D̂∗)← ULOT.Hash(crs, D∗)

e← ULOT.SWR
(
crs, d, Lw, {bi}i∈[N ],

{µj,0, µj,1}|d|j=1 , Lr, {mk,0,mk,1}k∈[N ]

)
(
{µ′j}

|d|
j=1, (m1, . . . ,mN )

)
← ULOT.RWRD̂

(
crs,

Lw, {bi}i∈[N ], e, Lr

)


= 1,

where D∗[Lr, k] denotes the kth bit in the Lr
th block of D∗ and the probability is taken over the random

coins of ULOT.Gen,ULOT.SWR and ULOT.RWR6.
Sender Privacy for Writes & Reads: There exists a PPT simulator SimULOT.WR such that for any non-

uniform PPT adversary A = (A1,A2) there exists a negligible function negl(·) such that,∣∣∣∣Pr[WriReaSenPriExptreal
(
1λ,A

)
= 1

]
−Pr

[
WriReaSenPriExptsim

(
1λ,A

)
= 1

] ∣∣∣∣≤negl(λ),

where WriReaSenPriExptreal and WriReaSenPriExptsim are described in Figure 10.
Efficiency: The algorithm ULOT.Gen runs in poly(λ) time, and ULOT.Hash runs in |D|poly(log(|D|), λ).

ULOT.Send, ULOT.Receive, ULOT.SendWriteRead, ULOT.ReceiveWriteRead all run in poly(log(|D|), λ)
time.

6 Here, for the sake of improved readability we abbreviate ULOT.SendWriteRead and ULOT.ReceiveWriteRead to
ULOT.SWR and ULOT.RWR.
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WriReaSenPriExptreal
(
1λ,A

)
1 : crs← ULOT.Gen(1λ, 1N )

2 :
(
D,Lw, {bi}i∈[N ], {µj,0, µj,1}[λ], Lr, {mk,0,mk,1}k∈[N ], st

)
← A1(crs)

3 : (d, D̂)← ULOT.Hash(crs, D)

4 : e← ULOT.SendWriteRead
(
crs, d, Lw, {bi}i∈[N ], {µj,0, µj,1}|d|j=1, Lr,

{mk,0,mk,1}k∈[N ]

)
5 : return A2(st, e)

WriReaSenPriExptsim
(
1λ,A

)
1 : crs← ULOT.Gen(1λ, 1N )

2 :
(
D,Lw, {bi}i∈[N ], {µj,0, µj,1}[λ], Lr, {mk,0,mk,1}k∈[N ], st

)
← A1(crs)

3 : (d, D̂)← ULOT.Hash(crs, D)

4 : (d∗, D̂∗)← ULOT.Hash(crs, D∗),where D∗ denotes the database that is

identical to D except that D∗[Lw, i] = bi for all i ∈ [N ].

5 : e← SimULOT.WR

(
crs, D, Lw, {bi}i∈[N ],{µj,d∗j

}j∈[λ], Lr, {mk,D∗[Lr,k]}k∈[N ]

)
return A2(st, e)

Figure 10. Sender Privacy Security Game for Writes & Reads.

Theorem 4 ([CDG+17]). Assuming iO for circuits and somewhere statistically binding hash
functions [HW15, KLW15, OPWW15], there exists a construction of an updatable laconic oblivious
transfer.

In our LFE construction we will need to write to an index that exceeds the current size of the database,
i.e., the database should stretch dynamically. However, the construction of Updatable Laconic Oblivious
Transfer presented in [CDG+17] requires the contents of the entire database to be specified in advance. We
observe that there exist methods for allowing out of bound writes to the database, and we refer the reader
to the works of [GS18] and [OPWW15] for details.

A.4 Indistinguishability Obfuscation

Next we recall the definition of Indistinguishability Obfuscation (iO) [BGI+01, GGH+13]. Informally, two
circuits are said to be functionally equivalent if they return the same result when evaluated on the same
input. Given two functionally equivalent circuits, their obfuscations are computationally indistinguishable.

Definition 8 (Indistinguishability Obfuscation). An indistinguishability obfuscator (iO) for a family
of circuits {Cλ}λ is defined as the following PPT algorithm.

obC← iO(C): Given a circuit C ∈ Cλ, the obfuscation algorithm returns an obfuscated circuit obC.

We require an indistinguishability obfuscator to satisfy the following properties.

Correctness: For all λ ∈ N and for all C ∈ Cλ and for all x,

Pr[iO(C)(x) = C(x)] = 1,

where the probability is taken over the random coins of iO.
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Security (iO-sec): For all C0,C1 ∈ Cλ such that for all x, C0(x) = C1(x) ∧ |C0| = |C1| and for all
polynomial sized adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(λ),

where the probability is taken over the random coins of iO.

A.5 Garbled Circuits

Informally, Garbled Circuits allow two parties to jointly evaluate a function, without introducing the need
for a trusted third party or revealing each other’s inputs. We recall the definition of Garbled Circuits [Yao82,
Yao86, AIK04].

Definition 9 (Garbled Circuits). A garbling scheme GC := (GC.Garble,GC.Eval,GC.Input) for circuits is
defined as the following tuple of PPT algorithms.

C̃← GC.Garble
(
1λ,C, {lbsw,b}w∈N,b∈{0,1}

)
: Given the security parameter 1λ, a circuit C, and input labels

lbsw,b (where w ∈ N and N is the set of input wires to C and b ∈ {0, 1}), the garbling algorithm returns

a garbled circuit C̃. We assume that for each w and b the corresponding label lbsw,b is selected uniformly
at random from {0, 1}λ.

{lbsw,xw
}w∈N ← GC.Input

(
{lbsw,b}w∈N,b∈{0,1}, x

)
: Given a set of pairs of labels {lbsw,b}w∈N,b∈{0,1} and an

input x ∈ {0, 1}N , the algorithm selects the label for the ith pair based on the value of xi for all i ∈ |x|,
and returns the input labels {lbsw,xw

}w∈N .

y ← GC.Eval
(
C̃, {lbsw,xw

}w∈N
)
: Given a garbled circuit C̃ and garbled input labels {lbsw,xw

}w∈N , GC.Eval

returns a string y.

Definition 10 (Correctness). A garbling scheme GC := (GC.Garble,GC.Input,GC.Eval) is correct if for all
C ∈ Cλ, for all inputs x ∈ {0, 1}|N |, and input labels {lbsw,b}w∈N,b∈{0,1},

Pr

[
C(x) = GC.Eval

(
C̃, {lbsw,xw

}w∈N
) ∣∣∣∣∣ C̃← GC.Garble

(
1λ,C, {lbsw,b}w∈N,b∈{0,1}

)
{lbsw,xw

}w∈N ← GC.Input
(
{lbsw,b}w∈N,b∈{0,1}, x

)] = 1,

where the probability is taken over the random coins of GC.Garble.

Definition 11 (Selective Security (GC-sec)). There exists a PPT simulator SimGC such that for any
polynomial time adversary A, any circuit C ∈ Cλ and input x ∈ {0, 1}|N |,∣∣∣∣Pr [A(

C̃, {lbsw,xw}w∈N
)
= 1

]
− Pr

[
A
(
SimGC

(
1λ, 1|C|,C(x), {lbsw,xw}w∈N

)
, {lbsw,xw}w∈N

)
= 1

] ∣∣∣∣ ≤ negl(λ),

where the probability is taken over the random coins of GC.Garble, C̃← GC.Garble
(
1λ,C, {lbsw,b}w∈N,b∈{0,1}

)
,

and for each w ∈ N and b ∈ {0, 1} the label lbsw,b is selected uniformly at random from {0, 1}λ.

A.6 Puncturable Pseudorandom Functions

Informally, a Puncturable Pseudorandom Function (PPRF) [SW14] must be efficiently computable and
maintain its functionality after being punctured. It also remains pseudorandom at the punctured point.

Definition 12 (Puncturable Pseudorandom Function). A puncturable pseudorandom function
PPRF := (PPRF.Gen,PPRF.Eval,PPRF.Punc) is defined as the following tuple of PPT algorithms.

PPRF.Gen(1λ): Given the security parameter 1λ, the generation algorithm returns a key k.
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PPRF.Eval(k, x): Given a key k ∈ {0, 1}λ and given an input x ∈ {0, 1}λ, the pseudo random function returns
a pseudo random output R ∈ {0, 1}λ.7

PPRF.Punc(k, y): Given a key k ∈ {0, 1}λ and a point y ∈ {0, 1}λ, the puncturing algorithm returns the
punctured key at point y, denoted k{y}.

We require a puncturable pseudorandom function to satisfy the following properties.

Functionality: For all λ ∈ N and for all y ∈ {0, 1}λ, and for all x ̸= y,

Pr

[
PPRF.Eval(k{y}, x) = PPRF.Eval(k, x)

∣∣∣∣ k← PPRF.Gen(1λ)
k{y} ← PPRF.Punc(k, y)

]
= 1,

where the probability is taken over the random coins of PPRF.Gen and PPRF.Punc.
Pseudorandomness (PPRF-rand): For all λ ∈ N, for all y ∈ {0, 1}λ, and for all polynomial sized

adversaries A, ∣∣∣∣∣Pr
[
A(PPRF.Eval(k, y), k{y}) = 1

∣∣∣∣ k← PPRF.Gen(1λ)
k{y} ← PPRF.Punc(k, y)

]

−Pr

A(u, k{y}) = 1

∣∣∣∣∣∣
k← PPRF.Gen(1λ)
u←$ Uλ

k{y} ← PPRF.Punc(k, y)

∣∣∣∣∣∣ ≤ negl(λ),

where the probability is taken over the random coins of A, PPRF.Gen, and PPRF.Punc; and the random
choices of u, where Uλ denotes the uniform distribution over {0, 1}λ.

B Applications

In the following section we present some new implications of our LFE construction.

B.1 Witness Encryption for Turing Machines

We show how to obtain a witness encryption scheme where the ciphertext size is independent of the size of
(the circuit representation of) the underlying NP relation R and the decryption runtime is only proportional
to the runtime of the Turing machine computing R.
Definition. We recall the definition of witness encryption [GGSW13] and establish some notation.

Definition 13 (Witness Encryption). A witness encryption scheme (WE.Enc,WE.Dec) for an NP
language L with relation R, is defined as the following tuple of PPT algorithms.

c←WE.Enc(1λ, x,m): Given the security parameter 1λ, a statement x, and a message m, the encryption
algorithm returns a ciphertext c.

m←WE.Dec(w, c): Given a witness w and a ciphertext c, the decryption algorithm returns a message m.

We require a witness encryption scheme to satisfy the following properties.

Correctness: For any message m, any statement x ∈ L, and any witness w ∈ R(x,w) it holds that,

WE.Dec(w,WE.Enc(1λ, x,m)) = m.

Security: For any two message (m0,m1) and any x /∈ L it holds that,∣∣∣Pr [A(c) = 1
∣∣ c←WE.Enc(1λ, x,m0)

]
− Pr

[
A(c) = 1

∣∣ c←WE.Enc(1λ, x,m1)
] ∣∣∣ ≤ negl(λ).

7 Note that k can also be punctured at at point y (denoted k{y}), in which case PPRF.Eval(k{y}, x) is called.
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Construction. Given an LFE scheme LFE := (LFE.Gen, LFE.Hash, LFE.Enc, LFE.Dec), an
indistinguishability obfuscator iO, and a puncturable PRF PPRF := (PPRF.Gen,PPRF.Eval,PPRF.Punc)
(all with sub-exponential security) our scheme is defined as follows. The encryption algorithm (WE.Enc)
samples a key k ← PPRF.Gen(1λ) a crs ← LFE.Gen

(
1λ, 1N

)
and computes the hash of

d← LFE.Hash(crs,MR) where

MR(m,w) : if R(x,w) = 1 return m else return ⊥.

The algorithm further defines the circuit Cx,m as

Cx,m(w) : return LFE.Enc(crs, d, (m,w);PPRF.Eval(k, w))

and returns (crs, obC ← iO(Cx,m)). Given a witness w, the decryption algorithm (WE.Dec) recovers the
message by computing

LFE.Dec(crs,MR, obC(w)) = LFE.Dec(crs,MR,Cx,m(w))

= LFE.Dec(crs,MR, LFE.Enc(crs, d, (m,w)))

= MR(m,w)

= m.

Note that the size of the ciphertext is only dependent on the size of the witness ω = |w|, the size of the
message |m|, and the security parameter. Furthermore, the runtime of the decryption algorithm only depends
on the runtime of the Turing machine computing MR.

Security. The security of the scheme follows by a standard hybrid argument over all possible witnesses
w ∈ {0, 1}ω. For all i = 0 . . . 2ω, the ciphertext in hybrid Hi is computed as the obfuscation of the following
circuit:

Ci(w) : if w < i return LFE.Enc(crs, d, (m1, w);PPRF.Eval(k, w))

else return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k, w)).

Note that in hybrid H0 the circuit C0 is functionally identical to an encryption of m0, whereas in H2ω , the
obfuscated circuit C2ω is functionally equivalent to an encryption of m1. By the sub-exponential security of
iO, it follows that the resulting ciphertexts are computationally indistinguishable. To complete the analysis,
it suffices to show that, for all i = 0 . . . 2ω − 1, hybrids Hi and Hi+1 are computationally indistinguishable.
This is done via a puncturing argument that we detail below.

H0: This is identical to Hi.
H1: Here we redefine the obfuscated circuit as

Ci(w) : if w < i return LFE.Enc(crs, d, (m1, w);PPRF.Eval(k, w))

elseif w = i return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k, w))

else return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k, w)).

Indistinguishability follows from the sub-exponential security of iO, since the circuits are functionally
equivalent.

H2: Here we compute k{i} ← PPRF.Punc(k, i) and we define the obfuscated circuit as

Ci(w) : if w < i return LFE.Enc(crs, d, (m1, w);PPRF.Eval(k{i}, w))
elseif w = i return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k, w))

else return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k{i}, w)).

Indistinguishability follows from the sub-exponential security of iO, since the circuits are functionally
equivalent.
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H3: Here we redefine the obfuscated circuit as

Ci(w) : if w < i return LFE.Enc(crs, d, (m1, w);PPRF.Eval(k{i}, w))
elseif w = i return LFE.Enc(crs, d, (m0, w); ri)

else return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k{i}, w))

where ri ← {0, 1}λ is uniformly sampled. Indistinguishability follows from the sub-exponential security
of the puncturable PRF.

H4: Here we redefine the obfuscated circuit as

Ci(w) : if w < i return LFE.Enc(crs, d, (m1, w);PPRF.Eval(k{i}, w))
elseif w = i return LFE.Enc(crs, d, (m1, w); ri)

else return LFE.Enc(crs, d, (m0, w);PPRF.Eval(k{i}, w))

and security follows from the sub-exponential sender privacy of the LFE scheme.
H5 −H7: We undo the modifications done in H3 . . .H1.

The proof is concluded by observing that the last hybrid is identical to Hi+1.

B.2 Corollaries for Prior Work

The following new implications follow by plugging our new LFE construction into existing generic compilers.
Due to the essentially optimal parameters, we obtain a large spectrum of new feasibility results.

Computation Complexity of 2PC/MPC. Using the compiler presented in [QWW18], we can use our
LFE scheme to bring the communication complexity and the online computation complexity of 2PC/MPC
protocols to be independent of the circuit size, without increasing the round complexity of the protocol. In
a nutshell, the parties use the underlying 2PC/MPC protocol to compute LFE.Enc (crs, d, x1∥ . . . ∥xn),
where (x1, . . . , xn) are the inputs of the n parties and the digest is the hash of the circuit
d ← LFE.Hash(crs,C). This is particularly interesting for the case of multi-party reusable non-interactive
secure computation (mrNISC) [BL20], for which a protocol with optimal communication complexity was
previously unknown.

Corollary 1 ([BL20, BJKL21, AJJM21]). Assuming indistinguishability obfuscation and {SXDH,LWE}
there exists a mrNISC protocol with communication complexity poly(λ, |x1|, . . . , |xn|).

Reverse Delegation. A recent work [DGGM19] shows how to add malicious security to LFE from standard
cryptographic assumptions. As a main application, they obtain a “reverse delegation” scheme where a client
can delegate the computation of a large circuit C to a server on some private input x, where the server is
in the end receiving the output C(x). Security also holds in the presence of malicious parties. Using our
scheme, we overcome the client’s depth dependency of previous schemes, which significantly restricted the
applicability of the protocol.

Corollary 2 ([DGGM19]). Assuming indistinguishability obfuscation and {DDH,LWE} there exists a
reverse delegation protocol with communication complexity and client’s computational complexity of
poly(λ, |x|).

NIZK with Optimal Prover Complexity. A recent work [KNYY19] shows that LFE gives rise to a
non-interactive zero-knowledge proof system which optimises the prover’s work. Loosely speaking, this is
done by letting the prover compute LFE.Enc(crs, d, w), where w is the witness and d is the hash of the circuit
that computes the NIZK proof algorithm d← LFE.Hash(crs,NIZK.Prove). Using our scheme, we can obtain
a NIZK with optimal prover complexity.

Corollary 3 ([KNYY19]). Assuming indistinguishability obfuscation, somewhere statistically binding hash
functions, and a (standard) NIZK scheme for NP there exists a NIZK scheme for NP where the prover’s
computational complexity is poly(λ, |w|).

31


	Laconic Function Evaluation for Turing Machines

