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Abstract
The beautiful work of Applebaum, Ishai, and Kushilevitz [FOCS’11] initiated the study

of arithmetic variants of Yao’s garbled circuits. An arithmetic garbling scheme is an effi-
cient transformation that converts an arithmetic circuit 𝐶 : R𝑛 → R𝑚 over a ring R into
a garbled circuit 𝐶 and 𝑛 affine functions 𝐿𝑖 for 𝑖 ∈ [𝑛], such that 𝐶 and 𝐿𝑖 (𝑥𝑖) reveals
only the output 𝐶(𝑥) and no other information of 𝑥. AIK presented the first arithmetic
garbling scheme supporting computation over integers from a bounded (possibly expo-
nentially large) range, based on Learning With Errors (LWE). In contrast, converting 𝐶

into a Boolean circuit and applying Yao’s garbled circuit treats the inputs as bit strings
instead of ring elements, and hence is not “arithmetic”.

In this work, we present new ways to garble arithmetic circuits, which improve the
state-of-the-art on efficiency, modularity, and functionality. To measure efficiency, we
define the rate of a garbling scheme as the maximal ratio between the bit-length of the
garbled circuit |𝐶 | and that of the computation tableau |𝐶 |ℓ in the clear, where ℓ is the
bit length of wire values (e.g., Yao’s garbled circuit has rate 𝑂(_)).

• We present the first constant-rate arithmetic garbled circuit for computation over
large integers based on the Decisional Composite Residuosity (DCR) assumption,
significantly improving the efficiency of the schemes of Applebaum, Ishai, and
Kushilevitz.

• We construct an arithmetic garbling scheme for modular computation overR = ℤ𝑝

for any integer modulus 𝑝, based on either DCR or LWE. The DCR-based instan-
tiation achieves rate 𝑂(_) for large 𝑝. Furthermore, our construction is modular
and makes black-box use of the underlying ring and a simple key extension gadget.

• We describe a variant of the first scheme supporting arithmetic circuits over
bounded integers that are augmented with Boolean computation (e.g., truncation
of an integer value, and comparison between two values), while keeping the con-
stant rate when garbling the arithmetic part.

To the best of our knowledge, constant-rate (Boolean or arithmetic) garbling was only
achieved before using the powerful primitive of indistinguishability obfuscation, or for
restricted circuits with small depth.
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1 Introduction

Garbled circuits, introduced by Yao [Yao82], enable a “Garbler” to efficiently transform a Boolean
circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 into a garbled circuit 𝐶 and a pair of keys k𝑖

0,k
𝑖
1 for every input bit.

In particular, the input keys are short, of length polynomial in the security parameter only, in-
dependent of the complexity of the circuit. An input 𝑥 ∈ {0, 1}𝑛 to the circuit can be encoded by
choosing the right keys corresponding to each input bit L𝑥 = {k𝑖

𝑥𝑖
}𝑖∈[𝑛], referred to as the input

labels. The garbled circuit and input labels (𝐶, L𝑥) together reveal the output of the computation
𝑦 = 𝐶(𝑥), and hide all other information of 𝑥. Yao’s seminal result [Yao82] constructed gar-
bled circuit using Pseudo-Random Generators (PRGs), which in turn can be based on one-way
functions. Since its conception, garbled circuits has found a wide range of applications, and is
recognized as one of the most fundamental and useful tools in cryptography.

The arithmetic setting. While there have been remarkable optimizations and analytical im-
provements in the intervening years, the currently most widely applied approaches to garbling
circuits still largely follow Yao’s paradigm from the 1980s1. Yao’s idea involves encrypting the
truth tables of gates in the circuit, which becomes inefficient or even infeasible when the truth
tables are large. A longstanding open question is designing arithmetic garbling, namely, variants
of garbled circuits that apply naturally to arithmetic circuits without “Booleanizing” the compu-
tation, meaning bit-decomposing the inputs and intermediate values and garbling the Boolean
circuit implementation of arithmetic operations. To achieve arithmetic garbling, fundamentally
new techniques different from the mainstream encrypted truth-table methods must be devel-
oped.

The work of Applebaum, Ishai, and Kushilevitz (AIK) [AIK11] initiated the study of arithmetic
garbling. They first formalized the notion of Decomposable Affine Randomzed Encoding (DARE) as
follows:

ARITHMETIC GARBLING (I.E., DARE) is an efficient transformation Garble that converts an
arithmetic circuit 𝐶 : R𝑛 → R𝑚 over a ring R into a garbled circuit 𝐶, along with 2𝑛
key vectors k𝑖

0,k
𝑖
1 ∈ Rℓ , such that 𝐶 together with the input labels L𝑥 = {L𝑖 = k𝑖

0𝑥𝑖 + k
𝑖
1}

computed over the ring R, reveal 𝐶(𝑥) and no additional information about 𝑥 ∈ R𝑛.

The main difference between arithmetic and Boolean garbling is that the input encoding pro-
cedure of the former consists of affine functions over the ring R, and does not require the
bit-representation of the inputs. There are natural information theoretic methods for garbling
arithmetic formulas and branching programs over any ring R [IW14,AIK04]. But garbling gen-
eral (unbounded depth) arithmetic circuits is significantly more challenging. AIK proposed the
first construction supporting bounded integer computation – namely computation over integers
R = ℤ from a bounded (but possibly exponential) range [−𝐵, 𝐵] – based on the Learning With
Errors (LWE) assumption. In addition, they presented an alternative construction that generi-
cally reduce arithmetic garbled circuits to Yao’s Boolean garbled circuits, via a gadget that con-
verts integer inputs into their bit representation using the Chinese Remainder Theorem (CRT).
Though general, the CRT-based solution does not satisfy many desiderata of arithmetic garbling,
in particular, it still relies on bit-decomposing the inputs and garbling the Boolean circuit im-

1There have been alternative approaches that rely on strong primitives such as a combination of fully
homomorphic encryption and attribute-based encryption [BGG+14,GKP+13,LLL22], or indistinguishabilty
obfuscation [AJS17]. These approaches however are much more complex than Yao’s garbling and less
employed in applications. See Section 1.2 for more discussion.
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Garbling Scheme Assumption Rate Input Label Size

Boolean Baseline OWFs 𝑂(𝑘SKE log ℓ ) 𝑂(𝑛ℓ 𝑘SKE)
AIK - CRT-based [AIK11] OWF 𝑂(𝑘SKE log ℓ ) 𝑂(𝑛ℓ 6𝑘SKE)
AIK - LWE-based [AIK11] LWE 𝑂(𝑘LWE) �̃�(𝑛ℓ 𝑘LWE)
This work DCR 𝑂(1 + 𝑘DCR

ℓ
) 𝑂(𝑛(𝑘DCR + ℓ ))

Table 1: Comparison of Arithmetic Garbling for Bounded Integer Computation.

plementation of arithmetic operations. So far, the AIK LWE-based construction gives the only
known scheme that can garble to general arithmetic circuits without “Booleanizing” them.

1.1 Our Results

Despite its importance, little progress were made on arithmetic garbling in the past decade af-
ter the work of AIK. In this paper, we revisit this topic and present new ways of arithmetic gar-
bling. Our contributions include 1) a significantly more efficient arithmetic garbling scheme for
bounded integer computations, achieving constant rate, 2) the first scheme supporting modular
arithmetic computation mod 𝑝 that makes only black-box calls to the implementation of arith-
metic operations, and 3) a new way of mixing arithmetic garbling with Boolean garbling. Finally,
we diversify the assumptions, showing the Decisional Composite Residuosity (DCR) assumption
is also sufficient, in addition to LWE.

Part 1: Constant-Rate Garbling Scheme for Bounded Arithmetic. To highlight our efficiency
improvement for bounded integer garbling, we define the rate of a garbling scheme to be the
maximal ratio between the bit-length of the produced garbled circuit |𝐶 | and input encoding,
and the bit-length of the tableau of the computation in the clear |𝐶 |ℓ (i.e., the bit length of
merely writing down all the input and intermediate computation values). Let ℓ be bit length of
wire values. For a 𝐵-bounded integer computation, ℓ = ⌈log(2𝐵 + 1)⌉.

rate = max
𝐶,x

|𝐶 | + |Lx |
|𝐶 |ℓ

For example, the rate of Yao’s garbling for Boolean circuits is 𝑂 ( ( |𝐶′ |+ |x |)𝑘SKE)
|𝐶′ |×(ℓ=1) = 𝑂(𝑘SKE), where

𝑘SKE is the key length of the symmetric key encryption (or PRF) used. For arithmetic garbling,
the Boolean baseline of applying Yao’s garbling on the Boolean circuit implementation of the
arithmetic circuit achieves a rate of 𝑂(log ℓ · 𝑘SKE), when implementing integer addition/multi-
plication using the most asymptotically efficient algorithms of complexity 𝑂(ℓ log ℓ ) [HVDH21]2.
The CRT-based construction by AIK reduces arithmetic garbling to Yao’s Boolean garbling and
achieves the same asymptotic rate 𝑂(log ℓ · 𝑘SKE) when the circuit size is sufficient large. How-
ever, the size of the input labels is 𝑂(𝑛ℓ 6𝑘SKE) where 𝑛 is the number of input elements, which is
prohibitive even for relatively small range, say 10-bit, integer computation. The AIK LWE-based
construction, on the other hand, has a larger rate of 𝑂(𝑘LWE) where 𝑘LWE is the LWE dimension,
which must be larger than ℓ 1+Y for some constant Y ∈ (0, 1). See table 1 for a summary.

We show that arithmetic garbling can actually be significantly more efficient than the Boolean
baseline. Based on the Decisional Composite Residuosity (DCR) assumption over Paillier groups

2Note that this approach is entirely impractical for any reasonable length input due to the astronom-
ical constants involved in fast multiplication.
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ℤ∗
𝑁𝑟+1 for 𝑁 = 𝑝𝑞 with primes 𝑝, 𝑞 and integer 𝑟 ≥ 1 [Pai99,DJ01], we present a scheme producing

garbled circuits of size |𝐶 | = 𝑂( |𝐶 | (ℓ + 𝑘DCR)), and input label of size |L𝑥 | = 𝑂(𝑛(ℓ + 𝑘DCR)), where
𝑘DCR = log 𝑁 is the bit-length of the modulus 𝑁. As such, the rate is just a constant 𝑂(1) when
the integer values are sufficiently large, namely ℓ = Ω(𝑘DCR). To the best of our knowledge, this
is the first garbling scheme for general unbounded depth circuits (in any model of computation)
that achieve a constant rate, without relying on the strong primitive of iO (see Section 1.2 for a
more detailed comparison).

Theorem 1 (Informal, Arithmetic Garbling for Bounded Integer Computation). Assume the DCR
assumption over ℤ∗

𝑁𝑟+1 for 𝑁 = 𝑝𝑞 with primes 𝑝, 𝑞 and 𝑟 a sufficiently large positive integer. Let
𝑘DCR = ⌊log 𝑁⌉, 𝐵 ∈ ℕ, and ℓ = ⌈(log 2𝐵 + 1)⌉. There is an arithmetic garbling scheme for 𝐵-bounded
integer computation, where the size of the garbled circuit is |𝐶 | = 𝑂( |𝐶 | (ℓ+𝑘DCR)) (i.e., rate𝑂(1+ 𝑘DCR

ℓ
)),

and the length of input label is 𝑂(𝑛(ℓ + 𝑘DCR)) bits.

Part 2: Arithmetic Garbled Circuit over ℤ𝑝. Beyond bounded integer computations, can we
support other important models of arithmetic computation? We consider modular arithmetic
computation over a finite ringR = ℤ𝑝 (where 𝑝 is not necessarily a prime), which arises naturally
in applications, in particular, in cryptosystems.

It turns out that the AIK CRT-based garbling scheme can be adapted to support ℤ𝑝-computation3.
However, as mentioned above, this solution does not satisfy many desiderata of arithmetic gar-
bling, in particular, it makes non-black-box use of the Boolean circuit implementation of arith-
metic operations. Though integer multiplication and mod-𝑝 reduction are basic operations,
there are actually many different algorithms (such as, Karasuba, Tom-Cook, Schönhage–Strassen,
Barrett Reduction, Montgomery reduction to name a few), software implementation, and even
hardware implementation. It is preferable to avoid applying cryptography to these algorithm-
s/implementation, and have a modular design that can reap the benefits of any software/hard-
ware optimization.

We present an arithmetic garbling scheme for ℤ𝑝-computations, which makes only black-box
call to the implementation of arithmetic operations.

Theorem 2 (Informal, Arithmetic Garbling Scheme for Modular Computation). Let 𝑝 ∈ ℕ and
ℓ = ⌈log 𝑝⌉. There are arithmetic garbling schemes for computation over ℤ𝑝 that make only black-box
use of implementation of arithmetic operations over ℤ𝑝, as described below.

• Assume DCR. The size of the garbled circuit is 𝑂( |𝐶 | (ℓ + 𝑘DCR)𝑘DCR) and the length of input
labels is 𝑂(𝑛ℓ 𝑘DCR) bits (i.e., rate 𝑂(𝑘DCR +

𝑘2
DCR
ℓ
)).

• Assume LWE with dimension 𝑘LWE, modulus 𝑞, and noise distribution 𝜒 that is poly(𝑘LWE)-
bounded, such that log 𝑞 = 𝑂(ℓ ) +𝜔(log 𝑘LWE). The size of the garbled circuit is |𝐶 | · ℓ · �̃�(𝑘LWE)
and the length of input labels is �̃�(𝑛ℓ 𝑘LWE) bits (i.e., rate �̃�(𝑘LWE)).

We note that being black-box in the implementation of arithmetic operations, is different
from being black-box in the ring. The latter has stringent conditions so that a construction that
is black-box in the ring can automatically be applied to any ring. Unfortunately, Applebaum,
Avron, and Brzuska [AAB15] showed that such garbling is impossible for general circuits. Never-
theless, being black-box in the implementation of arithmetic operations already provides some

3This scheme reduces to Yao’s garbling by first decomposing the input elements into a bit represen-
tation using CRT. As such, this approach works as long as the inputs are integers from a bounded range
and the computation can be implemented using Boolean circuits.
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of the benefits of a modular design. The garbler does not need to choose which algorithm/im-
plementation of arithmetic operations to use, and evaluation can work with any algorithm/im-
plementation.

Part 3: Mixing Bounded Integer and Boolean Computation. Many natural computational tasks
mix arithmetic and Boolean computation. For example, a simple neural network component is
a (fixed-point) linear functions fed into a ReLU activation functions, where ReLU(𝑧) = max(0, 𝑧)
is much more efficient using (partially) Boolean computation. Even natural arithmetic computa-
tional tasks can benefit from (partial) boolean computation. Take the example of fast exponen-
tiation: given (𝑥, 𝑦) one can efficiently compute 𝑥𝑦 if one has access to the bits of 𝑦, 𝑦ℓ , . . . , 𝑦0

using the fact that 𝑥𝑦 = 𝑥
∑ℓ

𝑖=0 𝑦𝑖2𝑖

=
∏

𝑖:𝑦𝑖=1 𝑥
2𝑖 .

This motivates us to consider the following mixed model of computation, represented by
a circuit consisting of three types of gates: 1) arithmetic operation gates +/−/× : R2 → R, 2)
Boolean function gates, 𝑔 : {0, 1}𝑟 → {0, 1}𝑟′, where 𝑔 is implemented using a Boolean circuit,
and 3) the bit decomposition gate, bits : R→ {0, 1}ℓ , that maps a ring element to its bit represen-
tation. Naturally, a Boolean function gate can only take input from the bit decomposition gate
or other Boolean function gates (otherwise, there is no restriction on how gates are connected).

We gave a construction for mixed bounded integer and Boolean computation. Our scheme
naturally uses Yao’s garbled circuit to garble the Boolean function gates, and arithmetic garbled
circuit (from Theorem 1 or AIK) to garble the arithmetic operation gates over bounded integers.
Finally, we design a new gadget for bit decomposition, based on either DCR or LWE.

THE BIT DECOMPOSITION GADGET is an arithmetic garbling scheme for functions of form
BD{c 𝑗 ,d 𝑗 } that maps an integer 𝑥 ∈ [−𝐵, 𝐵] to ℓ labels, where the 𝑗’th label is c 𝑗bits(𝑥) 𝑗 + d 𝑗.
This means given the garbled circuit B̂D and input label a𝑥+d, the output labels are revealed
and nothing else.

Our scheme puts together the above three components in a modular and black-box way. In
terms of efficiency, the size of the garbled circuit naturally depends on the number of gates of
each type. More specifically, garbling the Boolean computation gates incurs an rate of 𝑂(𝑘SKE)
inherited from Yao’s garbled circuit, whereas the arithmetic operation gates can be garbled with
close to constant rate if using our DCR-based scheme in Theorem 1. Our bit decomposition
gadget produces a garbled circuit of size 𝑂(ℓ 2 · 𝑘DCR) for sufficiently large integers ℓ = Ω(𝑘DCR)
if based on DCR, and of size ℓ 2 · �̃�(𝑘LWE) if based on LWE, where 𝑘LWE is the LWE dimension.
Recall that the AIK CRT-based scheme also relies on performing bit decomposition, however, at
a much larger cost of 𝑂(ℓ 6𝑘SKE).

Theorem 3 (Informal, Arithmetic Garbling Schemes for Mixed Computation). Let 𝐵 ∈ ℕ and
ℓ = ⌈log 2𝐵 + 1⌉. There are arithmetic garbling schemes for mixed 𝐵-bounded integer and Boolean
computation as described below.

• Assume DCR. The size of the garbled circuit is 𝑂(𝑠𝑏𝑘DCR +𝑚𝑎(ℓ + 𝑘DCR) +𝑚𝑏(ℓ + 𝑘DCR)2 · 𝑘DCR),
where 𝑠𝑏 is the total circuit size of all Boolean function gates, 𝑚𝑎 the number of arithmetic
operation gates, and 𝑚𝑏 the number of bit-decomposition gates. The length of input label is
𝑂(𝑛(ℓ + 𝑘DCR)) bits.

• Assume LWE with dimension 𝑘LWE, modulus 𝑞, and noise distribution 𝜒 that is poly(𝑘LWE)-
bounded, such that log 𝑞 = 𝑂(ℓ ) + 𝜔(log 𝑘LWE). The size of the garbled circuit is 𝑠𝑏𝑂(_) + 𝑚𝑎 ·
ℓ · �̃�(𝑘LWE) + 𝑚𝑏 · ℓ 2 · �̃�(𝑘LWE). The length of input label is 𝑂(𝑛ℓ 𝑘LWE) bits, where Y is a fixed
constant.
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Computation Assumption Rate Input Label Size

Bounded Arithmetic DCR 𝑂(1 + 𝑘DCR/ℓ ) 𝑂(𝑛(𝑘DCR + ℓ ))
Mod 𝑝 DCR 𝑂(𝑘DCR + 𝑘2

DCR/ℓ ) 𝑂(𝑛𝑘DCRℓ ))
Mod 𝑝 LWE �̃�(𝑘LWE) �̃�(𝑛ℓ 𝑘LWE)
Mixed DCR 𝑂((ℓ + 𝑘DCR)𝑘DCR)* 𝑂(𝑛(ℓ + 𝑘DCR))
Mixed LWE �̃�(ℓ 𝑘LWE)* 𝑂(𝑛ℓ 𝑘LWE)

*Rate of Mixed Computation Schemes depends on relative frequency of gate types. Numbers here
conservatively assume all gates are the most expensive type.

Table 2: Summary of Our Garbling Schemes.

Potential for Concrete Efficiency Improvement. The primary goal of this work is designing
new arithmetic garbling with good asymptotic efficiency. Though we do not focus on optimizing
concrete efficiency, our DCR-based schemes do show potential towards practical garbling. Our
concrete analysis demonstrates that when the input domains are large, ℓ ∼ 𝑘DCR = 4096 bits,
the size of garbled circuits produced by our constant-rate bounded integer garbling scheme is
significantly smaller than that of the Boolean baseline using the state-of-the-art Boolean garbling
scheme of [RR21] – the garbling size of addition is ∼100× smaller, and the size of multiplication
is ∼600× to ∼880× smaller. See Section 8.

1.2 Related Works

We briefly survey approaches to garbling Boolean circuits that achieve good rate.
AIK showed that their LWE-based scheme when applied to constant-degree polynomials rep-

resented as a sum of monomials has constant-rate. The work of [AJS17] yields a garbling scheme
with size 𝑂( |𝐶 |) + poly(_) and input size 𝑂(𝑛 + 𝑚 + poly(_)), assuming subexponentially secure
indistinguishability obfuscation and rerandomizable encryption.

The work of [BGG+14,GKP+13] presents a 𝑂( |𝐶 | +poly(_, 𝑑))-size garbling of Boolean circuits,
with input labels of size 𝑂(𝑛𝑚poly(_, 𝑑)) where 𝑑 is the circuit depth, 𝑛 is the input length, 𝑚
is the output length, and _ the security parameter. One significant advantage of their scheme
is that the circuit description is given in the clear. We analyze the sizes of garbled circuits and
input labels when using their scheme to garble a 𝐵-bounded integer computation (𝐶, 𝑥) of depth
𝑑, in particular, spelling out the exponent in the poly term. For simplicity of notation, we set
the input length 𝑛, output length 𝑚, wire-value bit length log 𝐵 = ℓ , and the size of a FHE bit
encryption all to 𝑂(𝑘).

[BGG+14,GKP+13]: |�̃� | + |Lx | > |𝐶 | + �̃�(𝑘3𝑑6 + 𝑘6𝑑4)
Our DCR-based scheme: |�̃� | + |Lx | = 𝑂( |𝐶 |𝑘)

In comparison, the garbling of [BGG+14, GKP+13] has smaller size when 𝑘 and 𝑑 are suf-
ficiently small comparing with |𝐶 |, achieving even sub-constant rate 𝑂( |𝐶 |/𝑘). However, our
garbled circuits are smaller when 𝑘 and 𝑑 are larger, achieving a constant rate for all 𝑘 and 𝑑.
The term �̃�(𝑘3𝑑6+𝑘6𝑑4) associated with [BGG+14,GKP+13] is prohibitive, even for small 𝑘, 𝑑 such
as 100, whereas the complexity of our scheme does not have such large exponents. Our scheme
is also simpler than [BGG+14,GKP+13], which combines ABE, FHE, and Yao’s garbled circuit in
an intricate way.
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The works of [BMR16,BCM+19] generalized FreeXOR [KS08], a technique that allows one to
garble XOR gates at zero cost, to general arithmetic setting. They present a scheme for bounded
integer computation where addition is for free. They also present a gadget (similar to our bit
decomposition gadget) that converts integers to a primorial-mixed-radix representation, which
has similar advantage as a Boolean representation (e.g. cheap comparisons). Leveraging free
addition, they show that their scheme has concrete performance benefit for certain bounded
arithmetic computations, in comparison to directly applying Boolean garbling to arithmetic cir-
cuits. However, their construction is not arithmetic; in particular, the input encoding requires
a “bit representation” of the inputs.

Finally, the work of [AIKW13] describes a method for generically shortening the length of
input labels to |Lx | = 𝑛ℓ+𝑜(𝑛ℓ ) – that is, rate-1 input labels. However, the transformation does not
preserve decomposability, which is a property that each input element 𝑥𝑖 is encoded separately
L𝑖 (𝑥𝑖). Many applications of garbling rely on decomposability, e.g., in 2PC, the party holding 𝑥𝑖

can use OT/OLE to obtain L𝑖 (𝑥𝑖). The encoding of our schemes, AIK, and Yao’s garbled circuits
all satisfy decomposability, and our DCR-based bounded integer garbling has the shortest input
encoding (see Table 3).

1.3 Technical Overview

We start with reviewing the modular design paradigm of AIK, which is the basis of our approach.
As an arithmetic analog of Yao’s Boolean garbled circuits, the AIK garbling shares a similar

high-level structure. Like Yao’s scheme, AIK’s scheme associates each wire value, 𝑥𝑖, with a wire
label, L𝑖, (which hides/encrypts the wire value).4 Also like Yao’s scheme, the Garbler generates
“garbled tables” that enable an evaluator holding a wire label for each input wire to a gate in
the circuit to derive the corresponding output wire label. However, unlike in Yao’s scheme, the
tables do not directly correspond to encryptions of the output wire labels under all possible
input label pairs.

Instead, AIK builds bounded arithmetic garbled circuits in two steps: (1) they construct an
information-theoretically secure garbling scheme for low depth arithmetic circuits over a ringR
(via black-box use of R), (2) they then construct a key extension gadget for bounded arithmetic
computation that allows them to efficiently circumvent the depth restriction (the key extension
gadget makes non-black-box use of R, but the overall garbling scheme makes use of the key
extension gadget in a black-box way).

To begin, let us recall how AIK construct (1) the information-theoretic scheme. This scheme
does away with garbled gate information entirely, at the expense of long input labels whose
structure depends explicitly on the circuit being garbled. In particular, for every wire of the
circuit, the Garbler generates two keys k𝑖

0,k
𝑖
1 which are vectors in R. During evaluation, for

every wire, the evaluator should obtain a label L𝑖 = k𝑖
0𝑥𝑖 + k

𝑖
1 corresponding to the correct value

of the wire as follows:

• Input Labels: For each input wire, its label is given to the evaluator.

• Garbled Gate: For every gate 𝑥𝑖 = 𝑔(𝑥 𝑗1 , 𝑥 𝑗2), the invariant is that given the labels L 𝑗1 , L 𝑗2

corresponding to inputs 𝑥 𝑗1 and 𝑥 𝑗2 , the evaluator can learn a label L𝑖 corresponding to the
output 𝑥𝑖 for each output wire, and no other information. This is achieved using the arith-
metic computation gadget described in AIK, which are essentially information theoretically

4In Yao’s scheme, these labels may be chosen independently and uniformly at random. In the arith-
metic setting, this is infeasible as the domain may be exponentially large.
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Arithmetic Operation Gadgets

Gadget for Addition 𝑥𝑖 = 𝑥 𝑗1 + 𝑥 𝑗2 : At garbling time, given a pair of keys (k
𝑖
0,k

𝑖
1) for the output wire 𝑖,

it produces a pair of keys (k 𝑗1
0 ,k 𝑗1

1 ) and (k
𝑗2
0 ,k 𝑗2

1 ) for each input wire (and no garbled table) as
follows:

Set k 𝑗1
0 = k 𝑗2

0 = k𝑖
0 Sample additive shares k 𝑗1

1 + k
𝑗2
1 = k𝑖

1 .

At evaluation time, the output label can be obtained as follows

L 𝑗1 + L 𝑗2 = (k 𝑗1
0 𝑥 𝑗1 + k

𝑗1
1 ) + (k

𝑗2
0 𝑥 𝑗2 + k

𝑗2
1 ) = k

𝑖
0 (𝑥 𝑗1 + 𝑥 𝑗2 ) + k

𝑖
1 = L

𝑖 .

Gadget for Multiplication 𝑥𝑖 = 𝑥 𝑗1 × 𝑥 𝑗2 : At garbling time, given output keys (k
𝑖
0,k

𝑖
1), it produces input

key pairs (k 𝑗1
0 ,k 𝑗1

1 ) and (k
𝑗2
0 ,k 𝑗2

1 ) (and no garbled table) as follows:

k 𝑗1
0 := (k𝑖

0, 𝑠k
𝑖
0), k

𝑗1
1 := (r,u) , k 𝑗2

0 := (1, r), k 𝑗2
1 := (𝑠, 𝑠r − k𝑖

1 − u) .

where 𝑠 is a random scalar and r,u are random vectors.
At evaluation time, given input labels L 𝑗1 = (k𝑖

0𝑥 𝑗1 +r, 𝑠k
𝑖
0𝑥 𝑗1 +u) and L 𝑗2 = (𝑥 𝑗2 + 𝑠, r𝑥 𝑗2 + 𝑠r−k

𝑖
1−u),

the output label can be obtained as follows:

L𝑖 = L 𝑗1
leftL

𝑗2
left − L

𝑗1
right − L

𝑗2
right .

Figure 1: AIK Arithmetic Operation Gadgets

secure DARE (Decomposable Affine Randomized Encoding) for functions 𝑓+,k𝑖
0,k

𝑖
1
(𝑥 𝑗1 , 𝑥 𝑗2) =

k𝑖
0(𝑥 𝑗1 + 𝑥 𝑗2) + k

𝑖
1 and 𝑓×,k𝑖

0,k
𝑖
1
(𝑥 𝑗1 , 𝑥 𝑗2) = k

𝑖
0(𝑥 𝑗1 × 𝑥 𝑗2) + k

𝑖
1. They are summarized in Figure 1.5

Remark: Having separate gadgets for addition and multiplication leaks the type of gate. There
also exists an universal garbling gadget for arithmetic operation, which hides the gate operation,
so that only the topology of the circuit is revealed.

• Outputs: For each output wire, the evaluator learns L𝑖 = k𝑖
0𝑥𝑖 +k

𝑖
1, which reveals the output

𝑥𝑖 by setting k𝑖
0 = 1 and k𝑖

1 = 0.

The above paradigm gives an information-theoretic arithmetic garbling scheme, however,
only for logarithmic depth circuits. Its major issue is that the key-length increases exponentially
in the depth of the circuit, because 1) the key-length of the input wires of a multiplication gate
is twice the key-length of its output wire, and 2) the key-length of input wires of any gate grows
linearly with the fan-out that gate. On the flip side, this scheme has constant overhead for
constant depth circuits.

To go beyond low-depth circuits, AIK introduced a key-extension gadget — a DARE for func-
tions 𝑓KE,c,d(𝑥) = c · 𝑥 + d. It ensures that given the input label a · 𝑥 + b and garbled table, the
evaluator can obtain a new longer label c · 𝑥 +d, and no other information. Now to support arbi-
trary depth circuit, AIK uses the arithmetic operation gadgets to handle the computation gates,
and whenever the key length |c|, |d| becomes too long, it uses the key-extension gadget to shrink
the key length down |a|, |b| < |c|, |d|.

5Note that while the evaluator can efficiently evaluate the garbled circuit from the bottom-up (inputs
to outputs), the garbler (as described here) proceeds from the top-down: generating labels for the output
wires and then recursively generating increasingly complex keys for the wire layers below.
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It may seem counter-intuitive that a key “extension” gadget would be used to “shrink” keys, so
let us discuss how this works in slightly more detail. First, recall that the information-theoretic
DARE gadgets described in Figure 1 derive (possibly longer) labels for the inputs to a gate from
the output labels corresponding to that gate. Next, we break each wire 𝑖 into two sub wires: the
part that comes out of the preceding gate, 𝑖out, and the part that goes into the next gate, 𝑖in (for
higher fan-out there will other 𝑖in wires). By breaking up all wires in this manner, we can garble
gates in parallel (as opposed to from the top-down) by independently and locally (a) sampling
the (short) labels L𝑖out , and (b) locally applying the gadgets from Figure 1 to derive (long) input
labels L 𝑗in1 , L 𝑗in2 . At this point each wire value is now associated with two labels: a short output
label and long input label(s). The key extension gadget allows the evaluator to derive the long
input portion(s) from the short input label portion (using some extra information: the gabled
table).

Therefore, this paradigm reduces the problem of constructing constant-overhead arithmetic
garbling for bounded integer computation (Theorem 1) and arithmetic garbling for modular
computation (Theorem 2) to the problem of designing (efficient) key-extension gadgets for the
respective model of computation.

Abstract Key-Extension Gadget. Instead of describing AIK’s gadget, we will instead introduce an
abstract approach to constructing key-extension gadgets (that also captures AIK’s key-extension
gadget). Instantiating this approach has encounter significant technical barriers (discussed at
length below), but we believe the high level paradigm is nonetheless instructive.

Recall that to construct a key-extension gadget the garbler knows short keys (a,b) corre-
sponding to short wire labels of the form S𝑥 = a · 𝑥 + b as well as long keys (c,d) corresponding
to long wire labels of the form L𝑥 = c · 𝑥 + d. The garbler’s task is to output some succinct in-
formation, tb, so that an evaluator holding a short wire label S𝑥 can derive the long wire label
corresponding to the same value L𝑥 without learning anything about the other wire labels L𝑦

(for 𝑦 ≠ 𝑥).
As a warm up, observe that the Yao’s approach can be adapted to give an efficient key exten-

sion gadget for small domains. In particular for the boolean case of 𝑥 ∈ {0, 1}, the garbler can
simply set tb to consist of two (one-time symmetric key) encryptions: Encb(d) = EncS0 (L0) and
Enca+b(c + d) = EncS1 (L1) (randomly permuted). Using tb the evaluator can simply decrypt the
relevant ciphertext (using the short label as a key) to derive the long label corresponding to the
same value. Semantic security implies that the evaluator learns nothing about the other label.

Unfortunately, it is not clear how to extend Yao’s approach to large arithmetic domains (with
succinct garbled tables). Instead, it seems we need a stronger arithmetic properties from the
encryption scheme. In particular, assume we have an encryption scheme, (Enc,Dec), which
is linearly homomorphic in both the key and message space: there are operations ⊞,⊠ such that
𝑥 ⊠ Enca(c) ⊞ Encb(d) = Enca𝑥+b(c𝑥 + d).

Given such an encryption scheme, consider the case that the wire value 𝑥 is public (we will
relax this assumption momentarily). Then note that given a garbled table, tb, comprised of just
two cipher texts Enca(c) and Encb(d) the evaluator can use 𝑥, S𝑥 to derive a long label L𝑥 by
homomorphically evaluating 𝑥 ⊠ Enca(c) ⊞ Encb(d) = Enca𝑥+b(c𝑥 + d) = EncS𝑥 (L𝑥) and decrypting.
We need to additionally show that the evaluator learns nothing about the other output labels.
In more detail, observe that we can simulate the view of evaluator holding S𝑥, L𝑥, 𝑥 which is
comprised of 3 cipher texts: (1) Enca(c), (2) Encb(d), and (3) EncS𝑥 (L𝑥). First, note that given
L𝑥, 𝑥, one can derive ciphertext (2) from ciphertexts (1) and (3) (and 𝑥) by simply homorphically
computing EncS𝑥L𝑥)⊟Enca(c)⊠𝑥 = Encb(d). Armed with this observation we can invoke semantic
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security and simply simulate (given S𝑥, L𝑥, 𝑥) by encrypting (3) honestly, replacing (1) with a
random encryption, and homomorphically evaluating (2) from the other two ciphertexts.

There are two issues with this approach: the first (which we have already mentioned) is that
the wire label is public, the second (and more subtle issue) is that we are implicitly assuming
that encryption scheme has a key space that is identical to the message space which is in fact
the ring R we wish to compute over. We will describe a generic approach to dealing with the
first issue here, but leave the second issue to the specific settings and implementations below.

We observe that one can effectively assume the wire label is public without loss of generality.
The idea is that instead of extending the wire value 𝑥 directly, we will mask 𝑥 with a random
value, 𝑟, that is known to the garbler to get 𝑥′ = 𝑥 + 𝑟. Note that 𝑥′ can be safely output by the
garbled circuit while statistically hiding 𝑥. Then we can use our key extension gadget to extend
𝑥′. Then once we have a long label L𝑥′ we can easily use another gadget to remove 𝑟 (known to
the garbler).6

Key Extension Gadget for Bounded Integer Computation. Our first key extension gadget relies
on the Paillier extension of the Paillier encryption [Pai99,DJ01]. This gadget is very efficient: the
input label only consists of 𝑂(1) ring elements and the table size is proportional to the output
label size.

We use a one-time secure version of the Paillier encryption. To generate the public parame-
ters, sample two large safe primes and let 𝑁 be the product of the two safe primes. Choose a
small integer Z ≥ 1, and the ciphertexts are vectors modulo 𝑁Z+1. The group ℤ∗

𝑁Z+1 contains a
hard subgroup of unknown order (i.e., the 2𝑁Z ’th residue subgroup, the order of which is hard
to compute given 𝑁) and an easy subgroup of order 𝑁Z generated by 1 + 𝑁, in which discrete
logarithm is easy. The public parameters are (𝑁, Z, g), where g = (𝑔1, 𝑔2, . . . , 𝑔𝜓) are randomly-
sampled generators of the “hard” subgroup. The one-time use key 𝑠 is an integer sampled uni-
formly from {0, . . . , 𝑁}. The encryption algorithm takes a message vectorm ∈ ℤ𝜓

𝑁Z of dimension
at most 𝜓 as the input message, and generates a ciphertext as follows:

Enc(𝑠,m) = g𝑠 · (1 + 𝑁)m = (𝑔𝑠
1 · (1 + 𝑁)

𝑚1 , . . . , 𝑔𝑠
𝜓 · (1 + 𝑁)𝑚𝜓 ) .

The Decisional Composite Residuosity (DCR) assumption implies that the ciphertext is pseudo-
random. Indeed, the secret key can only be used once; in fact, the encryption algorithm is
deterministic.

For our application, the following properties of the Paillier encryption are important:

• Small Keys: the secret key 𝑠 is an integer upper bounded by 𝑁 which is much smaller than
the message space modulus 𝑁Z.

• Linear Homomorphism: for any keys 𝑠1, 𝑠2 ∈ ℤ and messages m1,m2 ∈ ℤ𝜓

𝑁Z ,

Enc(𝑠1,m1) · Enc(𝑠2,m2) = Enc(𝑠1 + 𝑠2︸ ︷︷ ︸
over ℤ

,m1 +m2︸    ︷︷    ︸
over ℤ

𝑁Z

).

In particular, given ciphertexts Enc(𝑠1, c), Enc(𝑠2,d) and 𝑥, one can homomorphically com-
pute Enc(𝑠1𝑥 + 𝑠2, c𝑥 + d).

6Similar ideas are found in the well-known “half-gates” construction [ZRE15] of Zahur, Rosulek, and
Evans for garbling boolean circuits comprised of XOR and AND gates.
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• Integer Keys: To decrypt the output ciphertext produced by the homomorphic evaluation,
we need the key 𝑠1𝑥 + 𝑠2. Importantly, since the order of the hard group is unknown, we
can only hope to use the key 𝑠1𝑥 + 𝑠2 computed over ℤ.

The above observations immediately suggest a naïve construction of key extension gadget:
Let Enc(𝑠1, c), Enc(𝑠2,d) be the garbled table, and (𝑥, 𝑠1𝑥 + 𝑠2) computed over ℤ be the input
label. Decryption gives c · 𝑥 + d mod 𝑁Z as desired. However, such a naïve construction faces
two problems:

• Input label over ℤ. The output label is in ring ℤ𝑁Z . We will set 𝑁Z ≫ 𝐵 to be sufficiently
large so that a 𝐵-bounded computation can be “embeded” in computation modulo 𝑁Z.
As such, arithmetic operations can be garbled using AIK arithmetic operation gadgets in
Figure 1 with modulus 𝑁Z. However, a problem is that to decrypt Paillier encryption, the
input label 𝑠1𝑥 + 𝑠2 must be computed over ℤ. To close the gap, we crucially rely on the
fact that in bounded integer computation, every wire value 𝑥 is bounded. We can also
sample 𝑠1, 𝑠2 from a bounded range so that 𝑠1𝑥+ 𝑠2 < 𝑁Z. Therefore, the input label can be
(𝑥, 𝑠1𝑥 + 𝑠2) mod 𝑁Z = (𝑥, 𝑠1𝑥 + 𝑠2) over ℤ.

• Leakage. In the naïve construction, 𝑥 is revealed. To hide 𝑥, we replace 𝑥 by 𝑦 = 𝑥 + 𝑟, a
one-time pad of 𝑥. Let (𝑦, 𝑠1𝑦 + 𝑠2) be the input label, let Enc(𝑠1, c), Enc(𝑠2,d − 𝑟c) be the
table. The evaluator homomorphically computes Enc(𝑠1𝑦 + 𝑠2, c𝑦 + d − 𝑟c), then decrypts
c𝑦 + d − 𝑟c = c𝑥 + d.

For clarity, we sketch how this works. Say the wire value 𝑥 is guaranteed to be bounded by
−𝐵 ≤ 𝑥 ≤ 𝐵. Sample 𝑟 ← {−𝐵′, . . . , 𝐵′} for some 𝐵′ ≫ 𝐵, thus 𝑟 + 𝑥 statistically hides 𝑥. Sample
𝑠1 ← {0, . . . , 𝑁}. Sample 𝑠2 ← {0, . . . , 𝐵′′} for some 𝐵′′ ≫ 𝑁𝐵′, so that 𝑠1(𝑟 + 𝑥) + 𝑠2 statistically
hides 𝑠1(𝑟 + 𝑥), which in turn preserves semantic security for encryptions under 𝑠1.7 Choose Z

so that 𝑁Z > 2𝐵′′. Overall, the gadget consists of the following:

Input Key: a = (1, 𝑠1) b = (𝑟, 𝑠1𝑟 + 𝑠2)
Input Label: Lin = (𝑟 + 𝑥, 𝑠1(𝑟 + 𝑥) + 𝑠2)

Garbled Table: Enc(𝑠1, c) Enc(𝑠2,d − 𝑟c) .

We observe that the garbled table has “constant-rate”, which is the key leading to constant-rate
garbled circuit. More precisely, the size of the above garbled table is |c| (Z + 1) log 𝑁. When
the integer bound 𝐵 is sufficiently large, it suffices to set the modulus 𝑁 to be a constant
times longer than 𝐵, i.e., log 𝑁 = 𝑂(log 𝐵). In addition, the dimension of the output key |c|
is proportional to the fan out 𝑘 of the wire with value 𝑥. Therefore, the garbled table has size
|c| (Z + 1) log 𝑁 = 𝑂(𝑘 log 𝐵), incurring a constant overhead. See Section 4 for more details.

Key Extension Gadget for Modulo-𝑝 Computation. There are two barriers when we try to ex-
tend the previous key extension gadget to the modulo-𝑝 computation setting.

• Arbitrary Message Ring ℤ𝑝. In the Paillier encryption, the message is a vector over ring
ℤ𝑁Z . It supports linear homomorphic evaluation modulo 𝑁Z, where 𝑁 is the product of
two randomly sampled primes. But we need to perform computation modulo 𝑝, where 𝑝

is an arbitrary integer specified by the given arithmetic circuit.
7We do not need protect 𝑠2 because the corresponding ciphertext can be simulated using the cipher-

text encrypted under 𝑠1 and the output label c𝑥 + d.
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• The Input Label over ℤ. The AIK arithmetic operations gadgets now uses keys and labels
over ℤ𝑝. However, as discussed above, to decrypt Paillier encryption, we need the input
label 𝑠1𝑦+ 𝑠2 to be computed over ℤ, where 𝑦 now equals to (𝑟+ 𝑥) mod 𝑝). In the previous
setting, we get around this problem easily because the wire value 𝑥 is bounded, and hence
computing 𝑠1𝑦+ 𝑠2 modulo 𝑁Z is the same as computing it over the integers. Now, the wire
value 𝑥 could be an arbitrary element in ℤ𝑝, certainly 𝑠1𝑦+ 𝑠2 mod 𝑝 is very different from
𝑠1𝑦 + 𝑠2 over ℤ. We need a new technique to recover the latter.

To overcome the first barrier, we construct another encryption scheme on top of Paillier
encryption, such that the message space is over ℤ𝑝. The new encryption scheme is defined as

Enc(𝑠,m) = Enc(𝑠, ⌊m · 𝑁Z

𝑝
⌉) , Dec(𝑠, c) = ⌊Dec(𝑠, c) · 𝑝

𝑁Z ⌉ .

The new scheme satisfies a weaker form of linear homomorphism. Notice that for any 𝑚1, 𝑚2 ∈
ℤ𝑝,

⌊𝑚1 · 𝑁
Z

𝑝
⌉ + ⌊𝑚2 · 𝑁

Z

𝑝
⌉ = ⌊(𝑚1 + 𝑚2) · 𝑁

Z

𝑝
⌉ + 𝑒

for some 𝑒 ∈ {−1, 0, 1}. Therefore, for any 𝑠1, 𝑠2 ∈ ℤ and m1,m2 ∈ ℤ𝜓
𝑝 ,

Enc(𝑠1,m1) · Enc(𝑠2,m2) = Enc(𝑠1 + 𝑠2︸ ︷︷ ︸
over ℤ

,m1 +m2︸    ︷︷    ︸
modulo 𝑝

) · (1 + 𝑁)e

for some e ∈ {−1, 0, 1}𝜓, and it can be correctly decrypted to m1 +m2 given key 𝑠1 + 𝑠2, by simply
decrypting according to Paillier and rounding the result to the nearest multiple of 𝑁Z/𝑝. The
homomorphic evaluation can be extended to any linear function 𝑓 (𝑥1, . . . , 𝑥ℓ ) = 𝑐1𝑥1 + · · · + 𝑐ℓ 𝑥ℓ .
For any 𝑠1, . . . , 𝑠ℓ ∈ ℤ and m1, . . . ,mℓ ∈ ℤ𝜓

𝑝 ,

Dec
(
𝑓 (𝑠1, . . . , 𝑠ℓ ),

ℓ∏
𝑖=1

Enc(𝑠𝑖,m𝑖)𝑐𝑖
)
= 𝑓 (m1, . . . ,mℓ )

as long as | 𝑓 |1 =
∑

𝑖 |𝑐𝑖 | ≪ 𝑁Z

𝑝
. Otherwise, if the magnitude of the coefficients are large, then the

accumulation of the rounding error may break correctness.
In the main body, we also present an alternative construction of linear homomorphic en-

cryption scheme based on the LWE assumption.

Now, using such a linear homomorphic encryption scheme (whose message space is over
ℤ𝑝), we construct our key extension gadget: Sample random 𝑟 ∈ ℤ𝑝 and let 𝑦 = 𝑥 + 𝑟 mod 𝑝 be
the the one-time pad of 𝑥. Sample random s1 ∈ {0, 1}ℓ , s2 ∈ {0, . . . , ⌊𝑝/2⌋}ℓ . We set the input
label as

Lin = (𝑦, s1𝑦 + (1 − s1) · ⌊𝑝/2⌋ + s2) mod 𝑝 .

Also define

sres = s1𝑦 + (1 − s1) · ⌊𝑝/2⌋ + s2 mod 𝑝 ,

s′res = s1𝑦 + (1 − s1) · ⌊𝑝/2⌋ + s2 (over ℤ) .

Then Lin = (𝑦, sres) and sres = s′res mod 𝑝.
Our key observation is that, given Lin = (𝑦, sres), one can recover s′res.
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0 𝑝/2 𝑝

𝑠1,𝑖 = 0

𝑠1,𝑖 = 1 ∧ 𝑦 < 𝑝/2

𝑠1,𝑖 = 1 ∧ 𝑦 > 𝑝/2

Figure 2: The range of 𝑠′res,𝑖, conditioning on 𝑠1,𝑖 and 𝑦

Let 𝑠res,𝑖 (resp. 𝑠′res,𝑖, 𝑠1,𝑖, 𝑠2,𝑖) denote the 𝑖-th coordinate of sres (resp. s′res, s1, s2). Then

𝑠′res,𝑖 = 𝑠1,𝑖𝑦 + (1 − 𝑠1,𝑖) · ⌊𝑝/2⌋ + 𝑠2,𝑖 =

{
𝑦 + 𝑠2,𝑖, if 𝑠1,𝑖 = 1 ,
⌊𝑝/2⌋ + 𝑠2,𝑖, if 𝑠1,𝑖 = 0 .

(1)

As illustrated by Figure 2,

• In case 𝑦 < 𝑝/2, we have 0 ≤ 𝑠′res,𝑖 < 𝑝, thus 𝑠′res,𝑖 = 𝑠res,𝑖.

• In case 𝑦 > 𝑝/2, we have ⌊𝑝/2⌋ ≤ 𝑠′res,𝑖 < ⌊𝑝/2⌋ + 𝑝, thus 𝑠′res,𝑖 can also be recovered from
𝑠res,𝑖.

Therefore,

𝑠′res,𝑖 =

{
𝑠res,𝑖 + 𝑝, if 𝑦 > 𝑝/2 and 𝑠res,𝑖 < ⌊𝑝/2⌋ ,
𝑠res,𝑖, otherwise.

Since the evaluator can recover s′res = s1𝑦 + (1 − s1) · ⌊𝑝/2⌋ + s2, if the table consists of

“Enc(s1, c)” and “Enc((1 − s1) · ⌊𝑝/2⌋ + s2,d − 𝑟c),”

then the evaluator can homomorphically compute Enc(s′res, c𝑥 + d) and decrypt it to get c𝑥 + d.
To formalize this idea, there are a few problems we have to overcome.

Problem 1: Format Mismatch. In the linear homomorphic encryption scheme, the key should be
an integer sampled from a large interval. While s1 is a vector consisting of 0’s and 1’s. To close
the gap, we introduce a linear function Lin : ℤℓ → ℤ to compress the length and to increase the
magnitude. For example, if we let Lin(𝑠1, 𝑠2, . . . , 𝑠ℓ ) = 𝑠1 + 2𝑠2 + 22𝑠3 + 23𝑠4 + . . . , then Lin(s1) is
the uniform distribution over {0, . . . , 2ℓ − 1} since s1 is sampled uniformly from {0, 1}ℓ .

Let the table be

Enc
(
Lin(s1), c

)
, Enc

(
Lin((1 − s1) · ⌊𝑝/2⌋ + s2),d − 𝑟c

)
.

The evaluator homomorphically computes Enc(Lin(s′res), c𝑥 + d) and decrypts it to get c𝑥 + d.
After the introduction of Lin, the construction satisfies the correctness requirement. From

now on, we will focus on the privacy issues.
Problem 2: the Leakage of s1. As shown by Equation (1) and illustrated in Figure 2,

𝑠1,𝑖 = 1 =⇒ 𝑠′res,𝑖 is uniform in [𝑦, 𝑦 + 𝑝/2) ,
𝑠1,𝑖 = 0 =⇒ 𝑠′res,𝑖 is uniform in [𝑝/2, 𝑝) .

Therefore, 𝑠1,𝑖 is hidden only if 𝑠′res,𝑖 ∈ [𝑦, 𝑦+ 𝑝/2) ∩ [𝑝/2, 𝑝). Otherwise, when 𝑠′res,𝑖 ∉ [𝑦, 𝑦+ 𝑝/2) ∩
[𝑝/2, 𝑝), the value of 𝑠1,𝑖 is leaked by 𝑠′res,𝑖. For example, in the most extreme case when 𝑦 = 0,
the value of s1 is completely leaked by s′res.
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We will later discuss how to repair the construction when 𝑦 is close to zero. For now, let us
assume 𝑦 ∈ (𝑝/4, 3𝑝/4). Under such assumption, for each 𝑖, there is a ≥ 50% chance that 𝑠1,𝑖 is
not revealed by s′res.

For privacy of the encryption scheme, we require that Lin(s1) is “sufficiently random” con-
ditioning on s′res. In Section 9, we construct a (seeded) linear function Lin, such that with over-
whelming probability, Lin(s1) smudges8 the uniform distribution over {0, . . . , 𝑁}.

As analyzed in Section 9, let Lin(𝑠1, 𝑠2, . . . , 𝑠ℓ ) =
∑

𝑖 𝑐𝑖𝑠𝑖, where the coefficients 𝑐1, . . . , 𝑐ℓ are
i.i.d. sampled from {0, . . . , 𝑁}. Then as long as ℓ ≥ log 𝑁, Lin(s1) will smudge the uniform
distribution over {0, . . . , 𝑁} even if about half of the coordinates of s1 ∈ {0, 1}ℓ are revealed.
Here Lin is essentially a randomness extractor that is linear over ℤ.
Problem 3: the “Bad” Values of 𝑦. So far, we have constructed a key extension gadget that works
well when the one-time pad 𝑦 = 𝑥 + 𝑟 mod 𝑝 is in (𝑝/4, 3𝑝/4), but it has serious privacy issue if
𝑦 ∈ [0, 𝑝/4) ∪ (3𝑝/4, 𝑝).

To close the leakage, we repeat the gadget one more time. This time use a different one-time
pad �̃� = 𝑥 + 𝑟 + ⌊𝑝/2⌋ mod 𝑝. Note that, 𝑦 lies in the “bad” region [0, 𝑝/4) ∪ (3𝑝/4, 𝑝) if and only
if �̃� is in the “good” region (𝑝/4, 3𝑝/4).

In greater detail, sample random 𝑟 ∈ ℤ𝑝 and let

𝑦 = 𝑥 + 𝑟 mod 𝑝, �̃� = 𝑦 + 𝑟 + ⌊𝑝/2⌋ mod 𝑝 .

Sample random s1, s̃1 ∈ {0, 1}ℓ , s2, s̃2 ∈ {0, . . . , ⌊𝑝/2⌋}ℓ , and let

sres = s1𝑦 + (1 − s1) · ⌊𝑝/2⌋ + s2 mod 𝑝 ,

s̃res = s̃1 �̃� + (1 − s̃1) · ⌊𝑝/2⌋ + s̃2 mod 𝑝 ,

s′res = s1𝑦 + (1 − s1) · ⌊𝑝/2⌋ + s2 (over ℤ) ,
s̃′res = s̃1 �̃� + (1 − s̃1) · ⌊𝑝/2⌋ + s̃2 (over ℤ) .

Set Lin = (𝑦, sres, s̃res) as the input label. Let (c1,d1), (c2,d2) be additive sharings of (c,d). The
table consists of

Enc
(
Lin(s1), c1

)
, Enc

(
Lin((1 − s1) · ⌊𝑝/2⌋ + s2),d1 − 𝑟c1

)
,

Enc
(
Lin(s̃1), c2

)
, Enc

(
Lin((1 − s̃1) · ⌊𝑝/2⌋ + s̃2),d2 − 𝑟c2

)
.

Given the table and input label, the evaluator homomorphically evaluates Enc(Lin(s′res), c1𝑥 +
d1), Enc(Lin(s̃′res), c2𝑥 + d2). The evaluator recovers s′res, s̃′res from the input label, and decrypts
both ciphertexts to get c1𝑥 + d1, c2𝑥 + d2. In the end, output Lout = c𝑥 + d = (c1𝑥 + d1) + (c2𝑥 + d2)
mod 𝑝.

Bit Decomposition Gadget. Besides purely arithmetic computation, we also consider a compu-
tation model that combines Boolean operations and arithmetic operation. Garbling such mixed
computation is enabled by the bit decomposition gadget — a DARE for functions 𝑓BD,{c 𝑗 ,d 𝑗 } (𝑥) =
{c 𝑗bits(𝑥) 𝑗 + d 𝑗}. It ensures that given a𝑥 + b and the garbled table, the evaluator can get a label
c 𝑗bits(𝑥) 𝑗 + d 𝑗 for every bit in the bit representation of 𝑥.

Notice that, in order to build the bit decomposition gadget, it suffices to design the truncation
gadget. Let ⌊𝑥⌋2 𝑗 :=

⌊
𝑥/2 𝑗

⌋
denotes the integer quotient of 𝑥 divided by 2 𝑗. This operation trun-

cates 𝑗 least significant bits. The truncation gadget is a DARE for functions 𝑓TC,c,d(𝑥) = c · ⌊𝑥⌋2+d.
8Formally, Lin(s1) smudges the uniform distribution over {0, . . . , 𝑁} if Lin(s1) and Lin(s1) + 𝑢 are sta-

tistically indistinguishable, where 𝑢 is sampled from {0, . . . , 𝑁}.
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Given a label of 𝑥 and the garbled table, the evaluator can get a label for the truncated value
⌊𝑥⌋2. Once we have the truncation gadget, the evaluator can use the truncation gadgets 𝑗 times
to get a label for the truncated value ⌊𝑥⌋2 𝑗 for every 𝑗. Thus the evaluator can compute a label
of the 𝑗-th bit of 𝑥 via

c ⌊𝑥⌋2 𝑗−1 + d1︸          ︷︷          ︸
a label of ⌊𝑥⌋2 𝑗−1

− 2 · (c ⌊𝑥⌋2 𝑗 + d2︸        ︷︷        ︸
a label of ⌊𝑥⌋2 𝑗

) = c · bits(𝑥) 𝑗 + (d1 − 2d2)︸                          ︷︷                          ︸
a label of the 𝑗-th bit of 𝑥

.

Now the task has been reduced to designing the truncation gadget. Our construction of the
truncation gadget is inspired by the techniques used in the key extension gadgets. The first idea
is to sample random 𝑟 from a sufficiently large range, and to consider the one-time pad 𝑦 = 𝑥+𝑟.
Instead of generating the labels of bits(𝑥) 𝑗, we construct an (imperfect) bit decomposition gadget
that generates the labels of each bits(𝑦) 𝑗. Once evaluator has the labels of every bit of 𝑦, it
can compute the labels of every bit of 𝑥, as long as we additionally give the evaluator a Yao’s
Boolean garbled circuit, with 𝑟 hard-coded inside. Thus correspondingly, it suffices to construct
an (imperfect) truncation gadget that allows the evaluator to get c ⌊𝑦⌋2 + d.

Inspired by our key extension gadget for modulo-𝑝 computation, the gadget table of the
(imperfect) truncation gadget looks like

Enc(Lin(s1), c), Enc(Lin(⌊s2⌋2),d).

The evaluator can homomorphically evaluate Enc(Lin(s1 ⌊𝑦⌋2 + ⌊s2⌋2), c ⌊𝑦⌋2 + d).
The input label of the truncation gadget is

(𝑦, s1𝑦 + s2) , which equals (𝑥 + 𝑟, s1𝑥 + (s1𝑟 + s2)) .

If the evaluator can recover s1 ⌊𝑦⌋2 + ⌊s2⌋2 from the input label, it can decrypts c ⌊𝑦⌋2 + d using
the key Lin(s1 ⌊𝑦⌋2 + ⌊s2⌋2).

To enable the recovery, s1, s2 ∈ ℤℓ are sampled from carefully chosen distributions. s1 is
sampled uniformly from {0, 1}ℓ . s2 is sampled conditioning on s1: for each 𝑖 ≤ ℓ ,

𝑠2,𝑖 =

{
a random integer in [0, 𝐵smdg), if 𝑠1,𝑖 = 1
a random odd integer in [0, 𝐵smdg), if 𝑠1,𝑖 = 0

where 𝐵smdg is a sufficiently large bound. We sample s1, s2 in such a way to ensure that 𝑠1, 𝑗 ⌊𝑦⌋2+⌊
𝑠2, 𝑗

⌋
2 can be recovered from (𝑦, 𝑠1, 𝑗𝑦 + 𝑠2, 𝑗).

Given (𝑦, 𝑠1, 𝑗𝑦+𝑠2, 𝑗), the evaluator can compute
⌊
𝑠1, 𝑗𝑦 + 𝑠2, 𝑗

⌋
2, which is very close to the target

value. In particular,

𝑠1, 𝑗 ⌊𝑦⌋2 +
⌊
𝑠2, 𝑗

⌋
2 =

{⌊
𝑠1, 𝑗𝑦 + 𝑠2, 𝑗

⌋
2 − 1, if both 𝑠1, 𝑗𝑦 and 𝑠2, 𝑗 are odd⌊

𝑠1, 𝑗𝑦 + 𝑠2, 𝑗
⌋

2 , otherwise

The evaluator can offset the error if it can tell whether both 𝑠1, 𝑗𝑦 and 𝑠2, 𝑗 are odd. We claim:

both 𝑠1, 𝑗𝑦 and 𝑠2, 𝑗 are odd ⇐⇒ 𝑦 is odd and 𝑠1, 𝑗𝑦 + 𝑠2, 𝑗 is even, (2)

By this, the evaluator can recover s1 ⌊𝑦⌋2 + ⌊s2⌋2.
The claim (2) can be proved by enumerating the possible parities of 𝑠1, 𝑗 , 𝑦, 𝑠2, 𝑗. We also

provide a visualized proof of this claim. Let {𝑧}2 := 𝑧 − 2 ⌊𝑧⌋2 denote the remainder of 𝑧 divided
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0 1 2 (rounding error occurs)

▲ ▲

▲

▲ ▲

𝑠1,𝑖 = 1 ∧ {𝑦}2 = 1

𝑠1,𝑖 = 0

𝑠1,𝑖 = 1 ∧ {𝑦}2 = 0

Figure 3: The range of {𝑠1, 𝑗𝑦}2 + {𝑠2, 𝑗}2, conditioning on 𝑠1,𝑖 and {𝑦}2

by 2. The rounding error occurs if and only if {𝑠1, 𝑗𝑦}2 + {𝑠2, 𝑗}2 = 2. As shown by Figure 3, when
𝑦 is even, there is no rounding error; when 𝑦 is odd, the rounding error occurs only if 𝑠1, 𝑗𝑦+ 𝑠2, 𝑗
is even.

Figure 3 also shows that 𝑠1, 𝑗 is not always hidden by 𝑠1, 𝑗𝑦 + 𝑠2, 𝑗. For privacy, we require that
Lin(s1) is “sufficiently random” even conditioning on the leakage. Such (seeded) linear function
Lin is constructed in Section 9.

Organization. In Section 2, we define three models of computations, bounded integer, modular
arithmetic, and mixed computation, our garbling scheme, and the key extension, arithmetic
computation and bit decomposition gadgets. In Section 3, we introduce a linearly homomorphic
encryption scheme (LHE) as a tool for constructing the gadgets. In Section 4, 5, and 6, we
construct key extension gadgets in the bounded integer and the modular arithmetic models, and
a bit decomposition gadget in the mixed model respectively. We construct the overall garbling
schemes for all three models in Section 7. In Section 8, we compare the concrete efficiency of
our scheme with the scheme of [BMR16] and the Boolean baseline using [RR21].

2 Definitions

A circuit over some domain I ⊆ ℤ consists of connected gates that each computes some func-
tion over I. For a circuit 𝐶 with 𝑛 input wires and a vector x ∈ I𝑛, (𝐶, x) is referred to as a
computation.

In the following, we define three classes of circuits by specifying their respective domains,
allowed types of gates, and admissible inputs. Each class of circuits is also referred to as a model
of computation.

Modular Arithmetic Computation. In this model, a circuit 𝐶 consists of three types of gates:
addition, subtraction, and multiplication over ℤ𝑝 (all with fan-in two). Its domain is simply
I = ℤ𝑝. That is, every input and intermediate computation value is in ℤ𝑝. For a circuit 𝐶
with 𝑛 inputs, all input vectors in ℤ𝑛

𝑝 are admissible.

Bounded Integer Computation. In this model, a circuit 𝐶 consists of the same arithmetic gates
as above, computed over ℤ. Its domain is the set of integers whose absolute values are
bounded by some positive integer 𝐵, denoted as I = ℤ≤𝐵. For a circuit 𝐶, an input vec-
tor is admissiable if and only if (𝐶, x) is 𝐵-bounded, i.e., every input and intermediate
computation value while evaluating 𝐶(x) is in the range [−𝐵, 𝐵].

Mixed Bounded Integer and Boolean Computation. This model extends bounded integer com-
putation, with domain I = ℤ≤𝐵 and bit length 𝑑 = ⌈log (2𝐵 + 1)⌉, to include the following
additional gates.
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• The bit decomposition gate 𝑔𝐵𝐷 : ℤ≤𝐵 → {0, 1}𝑑 is defined by 𝑔BD(𝑥) = bits(𝑥)1, . . . , bits(𝑥)𝑑,
where bits(𝑥)𝑖 represents the 𝑖th bit 𝑥. By default, we let bits(𝑥)𝑑 represent the “sign” of
𝑥: for a non-negative integer 𝑥, bits(𝑥)𝑑 = 0, and for a negative integer 𝑥, bits(𝑥)𝑑 = 1.
The rest of the bits represent the magnitude of 𝑥 such that |𝑥| = ∑𝑑−1

𝑖=1 2𝑖−1bits(𝑥)𝑖.

The output of 𝑔BD can be used in two ways. First, they can be interpreted as 0, 1 values in
ℤ≤𝐵, and fed into further arithmetic computations. Second, they can be used as inputs to
other Boolean computation gates 𝑔 : {0, 1}𝑑1 → {0, 1}𝑑2 . In general, we allow any Boolean
computation gate 𝑔 that can be computed by a polynomial-size Boolean circuit. Interesting
examples include comparison and truncation.

• A comparison gate 𝑔comp : {0, 1}𝑑×{0, 1}𝑑 → {0, 1} is defined as 𝑔comp(bits(𝑥), bits(𝑦)) =
1 iff 𝑥 > 𝑦.

• A truncation gate 𝑔∆
trun : {0, 1}𝑑 → {0, 1}𝑑 with parameter ∆ ∈ ℤ≤𝐵 is defined as

𝑔comp(bits(𝑥)) = bits(⌊ 𝑥∆⌋).

Formally, we define classes of polynomial-sized circuits in above-described models: Let
CArith
ℤ𝑝

=
{
CArith
ℤ𝑝(_) ,_

}
_
, CBI

ℤ≤𝐵
=

{
CBI
ℤ≤𝐵(_) ,_

}
_
, and CBI-decomp

ℤ≤𝐵
=

{
CBI-decomp
ℤ≤𝐵(_) ,_

}
_
contain circuits consist-

ing of a polynomial number of gates in respectively the modular arithmetic computation with
modulus 𝑝(_), 𝐵(_)-bounded integer computation, and 𝐵(_)-bounded integer and Boolean com-
putation model. The bound 𝐵(_) and modulus 𝑝(_) are bounded by 2poly(_) for some fixed
polynomial. When talking about a general model of computation, we will use the notation
C ∈

{
CArith
ℤ𝑝

, CBI
ℤ≤𝐵

, CBI-decomp
ℤ≤𝐵

}
over I ∈ {ℤ𝑝,ℤ≤𝐵}.

Notations for Garbling. For a model of computation C over I, our garbling scheme introduces
two more spaces: a label space L, and a ciphertext space E, where I ⊆ L.

Similar to prior garbling schemes [AIK11], the garbling algorithm assigns two keys z1, z2 ∈ Lℓ

of dimension ℓ to each wire in a computation (𝐶, x). If this wire has a value 𝑥 ∈ I, then the
evaluator should obtain a label L = z1𝑥 + z2 computed over L (by interpreting 𝑥 ∈ I as elements
in L).

For each gate in 𝐶, the garbling algorithm outputs a garbled table consisting of some cipher-
texts in E. These ciphertexts, together with labels for the input wires, allow an evaluator to
obtain a label for each of its output wires.

2.1 Definition of Garbling Schemes

Definition 1 (garbling). Let C ∈
{
CArith
ℤ𝑝

, CBI
ℤ≤𝐵

, CBI-decomp
ℤ≤𝐵

}
be a model of computation over the domain

I ∈ {ℤ𝑝,ℤ≤𝐵}. A garbling scheme for C = {C_}_ over I = I (_), with a label space L = L(_) consists
of three efficient algorithms.

• Setup(1_) takes a security parameter _ as input, and outputs public parameters pp, which define
a ciphertext space E, and specify a polynomial dimension ℓ for keys and labels.

The rest of the algorithms have access to pp.

• Garblepp(1_, 1ℓ , 𝐶) takes as inputs a security parameter _, and a circuit 𝐶 ∈ C_ with input length
𝑛. It outputs 𝑛 key pairs {z𝑖1, z

𝑖
2}𝑖∈[𝑛] ∈ Lℓ of dimension ℓ specified by pp, independent of the

circuit size |𝐶 |, and a garbled circuit 𝐶 (consisting of many garbled tables, each further contains
ciphertexts in E).
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• Decpp({L𝑖}𝑖∈[𝑛] , 𝐶) takes as inputs 𝑛 labels L𝑖 ∈ Lℓ , and a garbled circuit 𝐶. It outputs an
evaluation result 𝑦 ∈ I.

Correctness. The scheme is correct if for all _ ∈ ℕ, pp ∈ Supp
(
Setup(1_)

)
, circuit 𝐶 ∈ C_ with 𝑛

input wires, and input x = (𝑥1, . . . , 𝑥𝑛) ∈ I𝑛 that’s admissible to 𝐶, the following holds.

Pr

[
Decpp({L𝑖}𝑖∈[𝑛] , 𝐶)
= 𝐶(x) (over I)

����� {z𝑖1,z𝑖2}𝑖∈[𝑛] , 𝐶← Garblepp(1_, 𝐶),
L𝑖 = z𝑖1𝑥𝑖 + z

𝑖
2 (over L)

]
= 1.

Security. A simulator Sim for the garbling scheme has following syntax.

• Sim(1_, pp, 𝐶, 𝑦) takes as inputs a security parameter _, public parameters pp, a circuit 𝐶 ∈ C_,
and an evaluation result 𝑦 ∈ I. It outputs 𝑛 simulated labels {L̃𝑖}𝑖∈[𝑛] and a simulated garbled
circuit 𝐶.

The garbling scheme is secure if there exists an effcient simulator Sim such that for all sequence
of circuits {𝐶_}_ where each 𝐶_ ∈ C_ has 𝑛 = 𝑛(_) inputs, and sequence of admissible inputs {x_}_
where x_ = (𝑥1,_, . . . , 𝑥𝑛,_) ∈ I𝑛, the following indistinguishability holds. (We surpress the index _

below.) {
pp, Sim(1_, pp, 𝐶, 𝑦)

}
≈𝑐

{
pp, {L𝑖}𝑖∈[𝑛] , 𝐶

}
.

�������
pp← Setup(1_),

{z𝑖1, z
𝑖
2}𝑖∈[𝑛] , 𝐶← Garblepp(1_, 𝐶),
L𝑖 = z𝑖1𝑥𝑖 + z

𝑖
2, 𝑦 = 𝐶(x)

Recall that in bounded integer computations (i.e., C = CBI
ℤ≤𝐵

or CBI-decomp
ℤ≤𝐵

), an input x is admissible to
a circuit 𝐶 if and only if (𝐶, x) is 𝐵-bounded. In modular arithmetic computations (i.e., C = CArith

ℤ𝑝
) all

inputs are admissible.

2.2 Definition of Garbling Gadgets

Our garbling scheme garbles a circuit in a gate-by-gate fashion. To handle different types of
gates, we introduce different garbling gadgets. In addition to the arithmetic computation gates,
bit decomposition gates, and general Boolean computation gates as introduced earlier, we also
consider the following key extension gates, which are artificially added to every circuit at gar-
bling time.

Key Extension Gate has one input and one output wire and implements the identity function
𝑓 (𝑥) = 𝑥. Inserting this gate anywhere in a circuit does not change the function computed.
However, garbling the key extension gate has the following effect during evaluation: Given
a short label for the input wire z𝑖𝑛1 𝑥 + z𝑖𝑛2 of dimention ℓ , the evaluator can obtain a much
longer label for the output wire z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 of some dimension ℓ ′ > ℓ .

Our key extension gadget for handling the above gate is exactly the “key shrinking” gadget
in [AIK11], and is the technical core of this work. We define it formally below. For complete-
ness, we also provide analogous definitions for the arithmetic computation, bit composition,
and Boolean computation gadgets.

Gadgets Share Setup of Garbling Scheme. Each gadget is defined with respect to a garbling
scheme for some model of computation C over a domain I and a label space L. The gadget
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depends on the public parameters pp generated by the Setup algorithm of the garbling scheme,
which specifies a ciphertext space E, and a key dimension ℓ ∈ ℕ. Its algorithms all have random
access to pp.

Key Extension Gadget. The key extension gadget consists of three algorithms, KeyGen, Garble,
and Dec. To handle a key extension gate, we assume each of its output wires is already assigned
an output key pair. Their concatenation form a long “target” key pair z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 . At garbling time,
the garbler uses KeyGen,Garble to generate a short key pair z𝑖𝑛1 , z𝑖𝑛 for the input wire, and a
garbled table tb. At evaluation time, the evaluator uses Dec on the input label L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 for
some value 𝑥, and the garbled table tb to recover the output lable L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 . We define
the algorithms formally below.

Definition 2 (key extension).

• KE.KeyGenpp(1_, 1ℓ ) takes as inputs a security parameter _, and the key dimension ℓ specified by
pp. It samples a key pair z𝑖𝑛1 , z𝑖𝑛2 ∈ L

ℓ .

• KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ) takes as inputs a (long) key pair z
𝑜𝑢𝑡
1 , z𝑜𝑢𝑡2 ∈ Lℓ ′, and a (short) key

pair z𝑖𝑛1 , z𝑖𝑛2 ∈ L
ℓ . It outputs a garbled table tb (consisting of many ciphertexts in E).

• KE.Decpp(L𝑖𝑛, tb) takes as inputs a short label L𝑖𝑛 ∈ Lℓ and a garbled table tb. It outputs a long
label L𝑜𝑢𝑡 ∈ Lℓ ′.

Correctness. The scheme is correct if for all _ ∈ ℕ, pp ∈ Supp
(
Setup(1_)

)
, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ∈ Lℓ ′ of

dimension ℓ ′ ∈ ℕ, and 𝑥 ∈ I, the following holds.

Pr


KE.Decpp(L𝑖𝑛, tb)
= L𝑜𝑢𝑡

�������
z𝑖𝑛1 , z𝑖𝑛2 ← KE.KeyGenpp(1_, 1ℓ ),

tb← KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ),
L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 , L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2

 = 1.

Security. A simulator KE.Sim for the scheme has the following syntax.

• KE.Sim(1_, pp, L𝑜𝑢𝑡) takes as inputs a security parameter _, public parameters pp, and a long
label L𝑜𝑢𝑡 ∈ Lℓ ′. It outputs a simulated short label L̃𝑖𝑛 ∈ Lℓ and a simulated garbled table t̃b.

The scheme is secure if there exists an efficient simulator KE.Sim such that for all polynomial
ℓ ′ = ℓ ′(_), sequence of key pairs {z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ }_ where z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ ∈ Lℓ ′, and sequence of inputs {𝑥_}_

where 𝑥_ ∈ I, the following indistinguishability holds. (We suppress the index _ below.){
pp, KE.Sim(1_, pp, L𝑜𝑢𝑡)

}
≈𝑐

{
pp, L𝑖𝑛, tb

}
.

�������
pp← Setup(1_), z𝑖𝑛1 , z𝑖𝑛2 ← KE.KeyGenpp(1_, 1ℓ ),
tb← KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ),
L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 , L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2

Arithmetic Computation Gadget. Let 𝑔 : I × I → I denote a general arithmetic computation
gate that’s either addition, subtraction, or multiplication over I. It has two input wires 𝑥 and 𝑦,
and one output wire 𝑤.

The garbling algorithm of the gadget for 𝑔 on input a pair of keys (z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ) for the output
wire 𝑤, produces two pairs of (potentially longer) keys, (z𝑥1 , z

𝑥
2) and (z

𝑦

1 , z
𝑦

2), for the two input
wires respectively, together with a (possibly empty) garbled table tb. At evaluation time, given
labels for the input wires 𝑥, 𝑦 and the garbled table, the evaluator should obtain the correspond-
ing label for 𝑤, and nothing else.
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Definition 3 (arithmetic computation gadget). An arithmetic computation gadget for an arithmetic
gate 𝑔 consists of two efficient algorithms.

• ACmp.Garblepp(1_, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ) takes as inputs a security parameter _, and a key pair z
𝑜𝑢𝑡
1 , z𝑜𝑢𝑡2 ∈

Lℓ ′ of dimension ℓ ′. It outputs two key pairs z𝑥1 , z
𝑥
2, z

𝑦

1 , z
𝑦

2 ∈ Lℓ ′′ of (possibly greater) dimension
ℓ ′′, and a garbled table tb (which may be empty, as we will see in the construction).

• ACmp.Decpp(L𝑥, L𝑦, tb) takes as inputs two labels L𝑥, L𝑦 ∈ Lℓ ′′ and a garbled table tb. It outputs
a label L𝑜𝑢𝑡 ∈ Lℓ ′.

Correctness. The scheme is correct if for all _ ∈ ℕ, pp ∈ Supp
(
Setup(1_)

)
, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ∈ Lℓ ′ of

dimension ℓ ′ ∈ ℕ, and 𝑥, 𝑦 ∈ I, the following holds.

Pr


ACmp.Decpp(L𝑥, L𝑦, tb)
= L𝑜𝑢𝑡

����� z
𝑥
1 , z

𝑥
2, z

𝑦

1 , z
𝑦

2, tb← ACmp.Garblepp(1_, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ),
L𝑥 = z𝑥1𝑥 + z

𝑥
2, L

𝑦 = z𝑦1 𝑦 + z
𝑦

2,

L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑔(𝑥, 𝑦) + z𝑜𝑢𝑡2

 = 1.

Security. A simulator ACmp.Sim for the arithmetic computation gadget is an efficient algorithm with
the following syntax.

• ACmp.Sim(1_, pp, L𝑜𝑢𝑡) takes as inputs a security parameter _, public parameters pp, and a label
L𝑜𝑢𝑡 ∈ Lℓ ′. It outputs two simulated labels L̃𝑥

, L̃𝑦 ∈ Lℓ ′′ and a simulated garbled table t̃b.

The scheme is secure if there exists a simulator ACmp.Sim such that for all polynomial ℓ ′ = ℓ ′(_),
sequence of key pairs {z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ }_ where z

𝑜𝑢𝑡
1,_ , z

𝑜𝑢𝑡
2,_ ∈ L

ℓ ′, and sequence of inputs {𝑥_, 𝑦_}_ where 𝑥_, 𝑦_ ∈
I, the following indistinguishability holds. (For more concise notations, the index _ is suppressed
below.)

{
pp, ACmp.Sim(1_, pp, L𝑜𝑢𝑡)

}
≈𝑐 {pp, L𝑥, L𝑦, tb}

����������
pp← Setup(1_),

z𝑥1 , z
𝑥
2, z

𝑦

1 , z
𝑦

2, tb← ACmp.Garblepp(1_, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ),
L𝑥 = z𝑥1𝑥 + z

𝑥
2, L

𝑦 = z𝑦1 𝑦 + z
𝑦

2,

L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑔(𝑥, 𝑦) + z𝑜𝑢𝑡2

.

Bit Decomposition Gadget. The garbling algorithm of the bit-decomposition gadget takes as
input 𝑑 key pairs {(z𝑖1, z

𝑖
2)}𝑖∈[𝑑] each associated with one of the 𝑑 output wires, produces a key

pair (z𝑖𝑛1 , z𝑖𝑛2 ) for the input wire, together with a garbled table. At evaluation time, the evaluator
given a label for input 𝑥 and the garbled table, obtains one label for each output bit bits(𝑥)𝑖 for
𝑖 ∈ [𝑑], and learn nothing else.

Definition 4 (bit decomposition). Consider the computation model C = CBD-decomp
ℤ≤𝐵

over the domain
I = ℤ≤𝐵 for some bound 𝐵 = 𝐵(_) ≤ 2poly(_) . Let 𝑑 = ⌈log (2𝐵 + 1)⌉ be the bit length of values in
ℤ≤𝐵. A bit decomposition gadget consists of two efficient algorithms.

• BD.Garblepp(1_, 1ℓ , {z𝑖1, z
𝑖
2}𝑖∈[𝑑]) takes as inputs a security parameter _, the key dimension ℓ spec-

ified by pp, and 𝑟 key pairs {z𝑖1, z
𝑖
2}𝑖∈[𝑑] ∈ L

ℓ ′ of dimension ℓ ′. It outputs a key pair z𝑖𝑛1 , z𝑖𝑛2 ∈ L
ℓ ,

and a garbled table tb.

• BD.Decpp(L𝑖𝑛, tb) takes as inputs a label L𝑖𝑛 ∈ Lℓ and a garbled table tb. It outputs 𝑑 labels
{L𝑖}𝑖∈[𝑑] ∈ Lℓ ′.
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Correctness. The scheme is correct if for all _ ∈ ℕ, pp ∈ Supp
(
Setup(1_)

)
, {z𝑖1, z

𝑖
2}𝑖∈[𝑑] ∈ Lℓ ′ of

dimension ℓ ′ ∈ ℕ, and 𝑥 ∈ ℤ≤𝐵, the following holds.

Pr


BD.Decpp(L𝑖𝑛, tb)
= {L𝑖}𝑖∈[𝑑]

�������
z𝑖𝑛1 , z𝑖𝑛2 , tb← BD.Garblepp(1_, 1ℓ , {z𝑖1, z

𝑖
2}𝑖∈[𝑑]),

L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 ,

L𝑖 = z𝑖1bits(𝑥)𝑖 + z
𝑖
2 (over L)

 = 1.

Security. A simulator BD.Sim for the bit decomposition gadget is an efficient algorithm with the fol-
lowing syntax.

• BD.Sim(1_, pp, {L𝑖}𝑖∈[𝑑]) takes as inputs a security parameter _, public parameters pp, and 𝑑

labels L𝑖 ∈ Lℓ ′. It outputs a simulated label L̃𝑖𝑛 ∈ Lℓ and a simulated garbled table t̃b.

The scheme is secure if there exists a simulator BD.Sim such that for all polynomial ℓ ′ = ℓ ′(_),
sequence of 𝑑 key pairs, {{z𝑖1,_, z

𝑖
2,_}𝑖∈[𝑑]}_ where z

𝑖
1,_, z

𝑖
2,_ ∈ Lℓ ′, and sequence of inputs {𝑥_}_ where

𝑥_ ∈ ℤ≤𝐵, the following indistinguishability holds. (For more concise notations, the index _ is sup-
pressed below.)

{
pp,BD.Sim(1_, pp, {L𝑖}𝑖∈[𝑑])

}
≈𝑐

{
pp, L𝑖𝑛, tb

}
����������

pp← Setup(1_),
z𝑖𝑛1 , z𝑖𝑛2 , tb← BD.Garblepp(1_, {z𝑖1, z

𝑖
2}𝑖∈[𝑑]),

L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 ,

L𝑖 = z𝑖1bits(𝑥)𝑖 + z
𝑖
2

.

Boolean Computation Gadget. Let 𝑔𝐵 : {0, 1}𝑑1 → {0, 1}𝑑2 a general function that can be im-
plemented by a polynomial size Boolean circuit. Gate 𝑔𝐵 has 𝑑1 input wires 𝑥1, . . . , 𝑥𝑑1 and 𝑑2
output wires 𝑦1, . . . , 𝑦𝑑2 .

The garbling algorithm of the gadget 𝑔𝐵 takes input 𝑑2 key pair {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖∈[𝑑2 ] for the out-
put wire, produces 𝑑1 key pairs {(z𝑖𝑛,𝑖1 , z𝑖𝑛,𝑖2 )}𝑖∈[𝑑1 ], one for each input wire, and a garbled table.
At evaluation time, given one label for each input bit 𝑥𝑖, the evaluator learns the corresponding
label for each output bit 𝑦𝑖 and nothing else.

Definition 5 (Boolean computation gadget). Consider the computation model C = CBD-decomp
ℤ≤𝐵

over
the domain I = ℤ≤𝐵. Let 𝑔𝐵 : {0, 1}𝑑1 → {0, 1}𝑑2 be a Boolean computation gate where 𝑑1 =

𝑑1(_), 𝑑2 = 𝑑2(_) are polynomial bounded. A Boolean computation gadget consists of two efficient
algorithms.

• BCmp.Garblepp(1_, 1ℓ , {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖∈[𝑑2 ]) takes as inputs a security parameter _, the key dimen-
sion ℓ specified by pp, and 𝑑2 key pairs {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖∈[𝑑2 ], where z

𝑜𝑢𝑡,𝑖

1 , z𝑜𝑢𝑡,𝑖2 ∈ Lℓ ′ of dimension
ℓ ′. It outputs 𝑑1 key pairs {z𝑖𝑛,𝑖1 , z𝑖𝑛,𝑖2 }𝑖∈[𝑑1 ], where z

𝑖𝑛,𝑖

1 , z𝑖𝑛,𝑖2 ∈ Lℓ , and a garbled table tb.

• BCmp.Decpp({L𝑖𝑛,𝑖}𝑖∈[𝑑1 ] , tb) takes as inputs 𝑑1 labels {L𝑖𝑛,𝑖}𝑖∈[𝑑1 ] where L𝑖𝑛,𝑖 ∈ Lℓ and a garbled
table tb. It outputs 𝑑2 labels {L𝑜𝑢𝑡,𝑖}𝑖∈[𝑑2 ] where L𝑜𝑢𝑡,𝑖 ∈ Lℓ ′.

20



Correctness. The scheme is correct if for all _ ∈ ℕ, pp ∈ Supp
(
Setup(1_)

)
, {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖∈[𝑑2 ] where

z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 ∈ Lℓ ′ of dimension ℓ ′ ∈ ℕ, and x = (𝑥1, . . . , 𝑥𝑑1) ∈ {0, 1}𝑑1 , the following holds.

Pr


BCmp.Decpp({L𝑖𝑛,𝑖}𝑖∈[𝑑1 ] , tb)
= {L𝑜𝑢𝑡,𝑖}𝑖∈[𝑑2 ]

�������������

{z𝑖𝑛,𝑖1 , z𝑖𝑛,𝑖2 }𝑖∈[𝑑1 ] , tb

← BCmp.Garblepp(1_, 1ℓ , {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖∈[𝑑2 ]),
y = (𝑦1, . . . , 𝑦𝑑2) = 𝑔𝐵(x),
L𝑖𝑛,𝑖 = z𝑖𝑛,𝑖1 𝑥𝑖 + z𝑖𝑛,𝑖2 ,

L𝑜𝑢𝑡,𝑖 = z𝑜𝑢𝑡,𝑖1 𝑦𝑖 + z𝑜𝑢𝑡,𝑖2 (over L)


= 1.

Security. A simulator BCmp.Sim for the Boolean computation gadget is an efficient algorithm with
the following syntax.

• BCmp.Sim(1_, pp, {L𝑜𝑢𝑡,𝑖}𝑖∈[𝑑2 ]) takes as input a security parameter _, public parameters pp, and
𝑑2 output-wire labels {L𝑜𝑢𝑡,𝑖}𝑖∈[𝑑2 ] where L𝑜𝑢𝑡,𝑖 ∈ Lℓ ′. It outputs 𝑑1 simulated labels {L̃

𝑖𝑛,𝑖}𝑖∈[𝑑1 ]
where L𝑖𝑛,𝑖 ∈ Lℓ and a simulated garbled table t̃b.

The scheme is secure if there exists a simulator BCmp.Sim such that for all polynomial ℓ ′ = ℓ ′(_),
sequence of key pairs {{z𝑜𝑢𝑡,𝑖1,_ , z𝑜𝑢𝑡,𝑖2,_ }𝑖∈[𝑑2 ]}_ where z𝑜𝑢𝑡,𝑖1,_ , z𝑜𝑢𝑡,𝑖2,_ ∈ Lℓ ′, and sequence of inputs {x_}_
where x_ ∈ {0, 1}𝑑1 , the following indistinguishability holds. (For more concise notations, the index _

is suppressed below.)

{
pp,BCmp.Sim(1_, pp, {L𝑜𝑢𝑡,𝑖}𝑖)

}
≈𝑐

{
pp, {L𝑖𝑛,𝑖}𝑖, tb

}
.

����������������

pp← Setup(1_),
{z𝑖𝑛,𝑖1 , z𝑖𝑛,𝑖2 }𝑖, tb
← BCmp.Garblepp(1_, 1ℓ , {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖),
y = (𝑦1, . . . , 𝑦𝑑2) = 𝑔𝐵(x),
L𝑖𝑛,𝑖 = z𝑖𝑛,𝑖1 𝑥𝑖 + z𝑖𝑛,𝑖2 ,

L𝑜𝑢𝑡,𝑖 = z𝑜𝑢𝑡,𝑖1 𝑦𝑖 + z𝑜𝑢𝑡,𝑖2

3 Linearly Homomorphic Encryption

3.1 Definition of Basic LHE

We first define a very simple base scheme that creates noisy ciphertexts. Decryption doesn’t try
to remove the noise, and simply recovers the encrypted message with noise. The scheme allows
evaluating linear functions homomorphically over ciphertexts, which increases the level/mag-
nitude of noise in the ciphertexts.

The base scheme can be instantiated under either the learning with error (LWE) assumption
or the decisional composite residuosity (DCR) assumption (Construction 2, Construction 3). We
will then implement another scheme on top of a base instantiation that’s tailored to the needs
of our application.

Definition 6 (noisy linearly homomorphic encryption). A noisy linearly homomorphic encryption
scheme consists of five efficient algorithms, and is associated with two exponentially bounded functions
in the security parameter _, 𝐵𝑒(_), 𝐵𝑠(_) ≤ 2poly(_) .
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• Setup(1_, 1Ψ, param) takes as inputs a security parameter _, an upper bound Ψ ∈ ℕ on the
dimensions of message vectors to be encrypted, and additional parameters param. It outputs
public parameters pp, which defines a key space S = ℤℓ𝑠 , a ciphertext space E, and a message
modulus 𝑃, that satisfy certain properties specified by param.

By default, the rest of the algorithms have random access to pp, and receive as inputs 1_, param in
addition to other inputs, i.e., we use the simplified notation X(𝑥1, 𝑥2, . . .) to mean Xpp(1_, param, 𝑥1, 𝑥2, . . .).

• KeyGen(1ℓ𝑠) takes the key dimension ℓ𝑠 (specified by pp) as input, and outputs a key 𝑠 ∈ ℤℓ𝑠 ,
satisfying that |𝑠|∞ < 𝐵𝑠(_).

• Enc(𝑠,m) takes as inputs a key 𝑠 ∈ ℤℓ𝑠 , and a message vector m ∈ ℤ𝜓 of dimension 𝜓 ≤ Ψ. It
outputs a ciphertext ct ∈ E.

• Dec(𝑠, ct) takes as inputs a key 𝑠 ∈ ℤℓ𝑠 , and a ciphertext ct ∈ E. It outputs a (noisy) message
vector m′ ∈ ℤ𝜓

𝑃
of dimension 𝜓 ≤ Ψ, or the symbol ⊥ in case of a decryption error.

• Eval( 𝑓 , {ct𝑖}) takes as input a linear function 𝑓 specified by 𝑑 integer coefficients i.e., 𝑓 (𝑥1, . . . , 𝑥𝑑) =∑
𝑖∈[𝑑] 𝑎𝑖𝑥𝑖, and 𝑑 ciphertexts {ct𝑖}𝑖∈[𝑑]. It outputs an evaluated ciphertext ct𝑓 ∈ E.

(If ct𝑖 encrypts a message vector m𝑖 ∈ ℤ
𝜓
𝑃
of dimension 𝜓 ≤ Ψ, under a key 𝑠𝑖, ct𝑓 should

encrypt the vector m𝑓 = 𝑓 (m1, . . . ,m𝑑), evaluated coordinate-wise over ℤ𝑃, under the key 𝑠𝑓 =

𝑓 (𝑠1, . . . , 𝑠𝑑), evaluated over ℤ.

Correctness w.r.t. 𝐵𝑒. The scheme is correct if for all _, Ψ ∈ ℕ, param, pp ∈ Supp
(
Setup(1_, 1Ψ, param)

)
,

𝑠 ∈ ℤℓ𝑠 , m ∈ ℤ𝜓 where 𝜓 ≤ Ψ, it holds that

Pr

[
∥e∥∞ ≤ 𝐵𝑒

����� ct← Enc(𝑠,m), m′ = Dec(𝑠, ct),
e = m′ −m mod 𝑃

]
= 1,

where we calculate the infinity norm ∥ · ∥∞ of e ∈ ℤ
𝜓
𝑃
by identifying it as an integer vector over

[−𝑃/2, 𝑃/2]𝜓.

One-time Security. The scheme is (one-time) secure if for all polynomial Ψ = Ψ(_), sequence of
parameters {param_}_ each of bit length |param_ | ≤ poly(_), and sequence of integer message vectors
{m1,_,m2,_}_ where m1,_,m2,_ ∈ ℤ𝜓_ of dimension 𝜓_ ≤ Ψ(_), ∥m𝑖,_∥∞ ≤ 2poly(_) , the following
indistinguishability holds. (We surpress the index _ below.)

{ct1, pp} ≈𝑐 {ct2, pp} .
����� pp← Setup(1_, 1Ψ, param),

𝑠← KeyGen(1ℓ𝑠), ct𝑖 ← Enc(𝑠,m𝑖),

Below we define two additional properties satisfied by our base instantiations under either
the LWE or the DCR assumption.

Definition 7 (linear homomorphism). A LHE scheme (per Definition 6) has linear homomor-
phism if for all linear function 𝑓 specified by 𝑑 integer coefficients, for all _, Ψ ∈ ℕ, param, pp ∈
Supp

(
Setup(1_, 1Ψ, param)

)
, 𝑠𝑖 ∈ ℤℓ𝑠 for each 𝑖 ∈ [𝑑], and ct𝑖 ∈ E for each 𝑖 ∈ [𝑑], such that,

Dec(𝑠𝑖, ct𝑖) outputs m𝑖 ≠ ⊥ and all m𝑖 have the same dimension 𝜓 ≤ Ψ, then the following holds:

Pr

[
Dec(𝑠𝑓 , ct𝑓 )
= 𝑓 ({m𝑖}) mod 𝑃

�����m𝑖 = Dec(𝑠𝑖, ct𝑖), ct𝑓 ← Eval( 𝑓 , {ct𝑖}),
𝑠𝑓 = 𝑓 ({𝑠𝑖}) (over ℤ)

]
= 1.
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Definition 8 (statistical closeness). A LHE scheme (per Definition 6) has statistical closeness if for
all _, Ψ ∈ ℕ, param, pp ∈ Supp

(
Setup(1_, 1Ψ, param)

)
, 𝑠 ∈ ℤℓ𝑠 , and any two distributions 𝐷1, 𝐷2 of

ciphertexts over E such that, for all 𝑖 ∈ {1, 2}, Pr [Dec(𝑠, ct𝑖) ≠ ⊥ | ct𝑖 ← 𝐷𝑖] = 1, the following holds:

∆SD (ct1, ct2) = ∆SD (Dec(𝑠, ct1),Dec(𝑠, ct2)) | ct𝑖 ← 𝐷𝑖, .

3.2 A Construction of Special-Purpose LHE

We next construct a special-purpose LHE scheme lhe using a basic LHE scheme lhe defined in
the previous subsection as a black-box. The special-purpose LHE lhe is taylored to the needs of
our garbling construction in the following ways:

• ARBITRARY MESSAGE SPACE: Note that the message space ℤ𝑃 of the basic LHE scheme
is specified by the public parameter pp during setup time, and may not match domain,
e.g. ℤ𝑝 of the computation to be garbled. (For example, in the DCR instantiation, 𝑃 =

𝑁𝑟, where 𝑁 is a randomly sampled RSA modulus). In lhe, the setup algorithm Setup
takes an arbitrary modulus 𝑝 as an additional parameter, and sets up public parameters
pp with exactly ℤ𝑝 as the message space. In the construction, Setup invokes the basic
setup algorithm Setup and makes sure that the basic modulus 𝑃 is sufficiently large. lhe
then embeds the actual message space ℤ𝑝 in ℤ𝑃.

• EXACT DECRYPTION: lhe decryption produces noisy message, where the noise is bounded
by 𝐵𝑒, while lhe decryption produces the exact message.

• SPECIAL-PURPOSE LINEAR HOMOMORPHISM, AND NOISE SMUDGING: Relying on the linear
homomorphism and statistical closeness of lhe (Definition 7, Definition 8), we show in
Lemma 2 and Lemma 1 that lhe satisfies properties tailored for our construction of garbling
schemes. Roughly speaking, it allows evaluating simple linear functions, e.g., 𝑓 (𝑥1, 𝑥2) =
𝑦𝑥1 + 𝑥2, and 𝑓 ′(𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1, and we can smudge the noise in a noisy ciphertext by
homomorphically adding an encryption of the smudging noise.

Construction 1 (LHE for ℤ𝑝). We construct the special purpose scheme lhe on top of a basic
scheme lhe (instantiated under either LWE in Construction 2 or DCR in Construction 3,) be-
low. Let 𝐵𝑒 = 𝐵𝑒(_) ≤ 2poly(_) be the fixed noise bound for lhe guaranteed by its correctness
(Definition 6).

• Setup(1_, 1Ψ, 𝑝, 𝐵max) takes as input an arbitrary message modulus 𝑝 ∈ ℕ, and an upper
bound 𝐵max ∈ ℕ on noise levels in ciphertexts, and proceeds in the following steps:

– Set 𝐵msg = 2𝑝 ·max(𝐵max, 𝐵𝑒), and run Setup(1_, 1Ψ, param = 𝐵msg) to obtain pp, which
specifies a key dimension ℓ𝑠, a ciphertext space E, and a message modulus 𝑃.
Our instantiations of lhe guarantee that 𝑃 ≥ 𝐵msg, and ℓ𝑠 is polynomial in _ and
log 𝐵msg, independent of the maximal message dimension Ψ.

– Set a scaling factor ∆ = ⌊𝑃/𝑝⌋, and output pp = (pp, ∆), which specifies a key space
S = ℤℓ𝑠 , a ciphertext space E, and a message modulus 𝑝.

Note: By our setting of 𝐵msg, and the guarantee that 𝑃 ≥ 𝐵msg, we have

∆ ≥
⌊
𝐵msg/𝑝

⌋
= 2 max(𝐵max, 𝐵𝑒) . (3)
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• KeyGen(1ℓ𝑠) directly runs 𝑠← KeyGen(1ℓ𝑠), and outputs 𝑠.

• Enc(𝑠,m) takes as input a secret key 𝑠 and a message vector m ∈ ℤ𝜓. It computes m′ =
(m mod 𝑝) · ∆ ∈ ℤ𝜓

𝑃
, and outputs ct← Enc(𝑠,m′).

Note: The one-time security of lhe follows directly from that of lhe.

• Dec(𝑠, ct) first runs m′ = Dec(𝑠, ct) to recover m′ ∈ ℤ𝜓
𝑃
, and then computes m𝑝 = ⌊m′/∆⌉ to

recover m𝑝 ∈ ℤ𝜓
𝑝 . It outputs m𝑝.

Note: By the correctness of lhe, we have

Dec(𝑠, Enc(𝑠,m)) = Dec(𝑠, Enc(𝑠,m𝑝 · ∆)) = m𝑝 · ∆ + e ∈ ℤ𝜓
𝑃
,

for some noise vector e such that ∥e∥∞ ≤ 𝐵𝑒. As noted in Equation (3), we have ∆ ≥ 2𝐵𝑒.
Hence rounding by ∆ recovers the correct message m𝑝 ∈ ℤ

𝜓
𝑝 exactly, i.e., the construction has

correctness with noise bound 𝐵𝑒 = 0.

• Eval( 𝑓 , {ct𝑖}) directly runs ct𝑓 ← Eval( 𝑓 , {ct𝑖}) and outputs ct𝑓 .

Note: Eval ≡ Eval, hence it can operate on ciphertexts of both lhe and lhe.

Next, relying on the linear homomorphism of lhe, we show that lhe satisfies linear homo-
morphism w.r.t. linear functions of the form 𝑓 (𝑥1, 𝑥2) = 𝑦𝑥1 + 𝑥2, which suffices for our garbling
constructions.

Lemma 1 shows how to “smudge” the noises in an evaluated lhe ciphertext ct𝑅 by homo-
morphically adding a fresh lhe encryption ct𝑒 of a smudging noise vector e to it, as ct′

𝑅
=

Eval(+, ct𝑅, ct𝑒). As long as the smudging noise is large enough, the result ct′
𝑅
is statistically

close to homomorphically adding ct𝑒 to a fresh lhe ciphertext ct2, as ct′2 = Eval(+, ct2, ct𝑒).
Lemma 2 shows how to set the noise upper bound 𝐵max during Setup so that evaluated lhe

ciphertexts can still be decrypted exactly.

Lemma 1 (noise smudging). Suppose the underlying LHE scheme lhe in Construction 1 satisfies linear
homomorphism (Definition 7) and statistical closeness (Definition 8). For all _, Ψ, 𝑝, 𝐵max,𝛼1 ∈ ℕ, set
the smudging noise level to

𝛼2 = _𝜔 (1) max(𝑝, 𝐵𝑒,𝛼1)2 .

For any pp ∈ Supp
(
Setup(1_, 1Ψ, 𝑝, 𝐵max)

)
, 𝑠1, 𝑠2 ∈ ℤℓ𝑠 , m1,m2 ∈ ℤ𝜓 where 𝜓 ≤ Ψ, and func-

tion 𝑓 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1, where |𝑦| < 𝑝, the following two ciphertexts are statistically close, i.e,
∆SD

(
ct′2, ct

′
𝑅

)
≤ negl(_).

SAMPLING ct′2:

• generate fresh ciphertext ct2 ← Enc(𝑠2,m2).

• sample noise e← [−𝛼2,𝛼2]𝜓, and encrypt it using key 0, ct𝑒 ← Enc(0, e).

• smudge noise in ct2 via ct′2 ← Eval(+, ct2, ct𝑒).

SAMPLING ct′
𝑅
:

• generate fresh ciphertext ct1 ← Enc(𝑠1,m1).

24



• sample noise e1 ← [−𝛼1,𝛼1]𝜓, and encrypt it using key 0, ct𝑒,1 ← Enc(0, e1).

• generate additionally noisy ciphertext ct′1 ← Eval(+, ct1, ct𝑒,1).

• generate fresh ciphertext ct𝑟𝑒𝑠 ← Enc(𝑠𝑟𝑒𝑠,m𝑟𝑒𝑠), where 𝑠𝑟𝑒𝑠 = 𝑦𝑠1 + 𝑠2, and m𝑟𝑒𝑠 = 𝑦m1 +m2
mod 𝑝.

• homomophically evaluate 𝑓 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1 to obtain ct𝑅 ← Eval( 𝑓 , ct𝑟𝑒𝑠, ct′1).

• smudge noise in ct𝑅 via ct′𝑅 ← Eval(+, ct𝑅, ct𝑒), using the same ct𝑒 as above.

THE SIMPLER CASE: The statistical closeness also holds when 𝛼1 = 0 and ct′
𝑅
is generated using ct1

directly, instead of ct′1.

Proof (Lemma 1).Proof (Lemma 1). First, by the correctness of lhe, we have

Dec(0, ct𝑒,𝑖) = e𝑖 + e𝑒,𝑖 mod 𝑃,

Dec(0, ct𝑒) = e + e𝑒 mod 𝑃,

for 𝑖 = 1, 2, Dec(𝑠𝑖, ct𝑖) = Dec(𝑠𝑖, Enc(𝑠𝑖,m𝑖,𝑝∆))
= m𝑖,𝑝∆ + e𝑚,𝑖 mod 𝑃,

Dec(𝑠𝑟𝑒𝑠, ct𝑟𝑒𝑠) = Dec(𝑠𝑟𝑒𝑠, Enc(𝑠𝑟𝑒𝑠,m𝑟𝑒𝑠∆))
= m𝑟𝑒𝑠∆ + e𝑟𝑒𝑠 mod 𝑃,

for some e𝑟𝑒𝑠, e𝑒,𝑖, e𝑚,𝑖 ∈ [−𝐵𝑒, 𝐵𝑒]𝜓, and m𝑖,𝑝 = m𝑖 mod 𝑝. Next, by the linear homomorphism
of lhe, for 𝑖 = 1, 2 we have

Dec(𝑠𝑖, ct′𝑖) = Dec(𝑠𝑖 + 0, Eval(+, ct𝑖, ct𝑒,𝑖))
(Definition 7) = Dec(𝑠𝑖, ct𝑖) + Dec(0, ct𝑒,𝑖)

= m𝑖,𝑝∆ + e𝑖 + e𝑚,𝑖 + e𝑒,𝑖︸            ︷︷            ︸
=e𝐿,𝑖

mod 𝑃,

where ∥e𝐿,𝑖∥∞ ≤ 𝛼𝑖 + 2𝐵𝑒, and

Dec(𝑠2, ct𝑅) = Dec( 𝑓 (𝑠𝑟𝑒𝑠, 𝑠1), Eval( 𝑓 , ct𝑟𝑒𝑠, ct′1))
(Definition 7) = 𝑓 (Dec(𝑠𝑟𝑒𝑠, ct𝑟𝑒𝑠),Dec(𝑠1, ct′1))

= (𝑦m1,𝑝 +m2,𝑝)𝑝∆ + e𝑟𝑒𝑠 − 𝑦(m1,𝑝∆ + e𝐿,1) mod 𝑃.

By Claim 1, we have

(𝑦m1,𝑝 +m2,𝑝)𝑝∆ = (𝑦m1,𝑝 +m2,𝑝)∆ − eY mod 𝑃,

where ∥eY ∥∞ ≤ 𝑝2 + 𝑝. Hence

Dec(𝑠2, ct𝑅) = (𝑦m1,𝑝 +m2,𝑝)𝑝∆ + e𝑟𝑒𝑠 − 𝑦m1,𝑝∆ − 𝑦e𝐿,1
(Claim 1) = (���𝑦m1,𝑝 +m2,𝑝)∆ − eY + e𝑟𝑒𝑠 −����𝑦m1,𝑝∆ − 𝑦e𝐿,1

= m2,𝑝∆−eY + e𝑟𝑒𝑠 − 𝑦e𝐿,1︸                 ︷︷                 ︸
=e𝑅

mod 𝑃,
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where ∥e𝑅∥∞ ≤ 𝑝2 + 𝑝 + 𝐵𝑒 + 𝑝(𝛼1 + 2𝐵𝑒) = 𝑂(max(𝑝, 𝐵𝑒,𝛼1)2). Finally, we have

Dec(𝑠2, ct′𝑅) = Dec(𝑠2 + 0, Eval(+, ct𝑅, ct𝑒))
(Claim 1) = Dec(𝑠2, ct𝑅) + Dec(0, ct𝑒)

= m2,𝑝∆ + e𝑅 + e + e𝑒︸       ︷︷       ︸
e′
𝑅

mod 𝑃.

By the setting of𝛼2, we have ∆SD
(
e𝐿,2, e2

)
≤ negl(_), and ∆SD

(
e′
𝑅
, e2

)
≤ negl(_). Hence ∆SD

(
e𝐿,2, e′𝑅

)
≤

negl(_). By the statistical closeness (Definition 8) of lhe, we conclude

∆SD
(
ct′2, ct

′
𝑅

)
(Definition 8) = ∆SD

(
Dec(𝑠2, ct′2),Dec(𝑠2, ct′𝑅)

)
≤ ∆SD

(
e𝐿,2, e′𝑅

)
≤ negl(_).

Similar analysis shows that the above also holds when ct′
𝑅
is generated using ct1 (instead of ct′1)

directly. □

Lemma 2 (homomorphic evaluation). Suppose the underlying LHE scheme lhe in Construction 1
satisfies linear homomorphism (Definition 7). For all _, Ψ, 𝑝,𝛼1,𝛼2 ∈ ℕ, if the maximal noise level is
set sufficient large

𝐵max ≥ 𝑝(𝑝 + 1 +𝛼 + 2𝐵𝑒) , 𝛼 = max(𝛼1,𝛼2)

then for all pp ∈ Supp
(
Setup(1_, 1Ψ, 𝑝, 𝐵max)

)
, 𝑠1, 𝑠2 ∈ ℤℓ𝑠 ,m1,m2 ∈ ℤ𝜓 where 𝜓 ≤ Ψ, homomorphic

evaluation of functions of form 𝑓 (𝑥1, 𝑥2) = 𝑦𝑥1+𝑥2 where |𝑦| < 𝑝 on additionally noisy ciphertexts yields
correct decryption:

Pr


Dec(𝑦𝑠1 + 𝑠2, ct𝑟𝑒𝑠)
= 𝑦m1 +m2 mod 𝑝

��������
∀𝑖 ∈ {1, 2}, e𝑖,← [−𝛼𝑖,𝛼𝑖]𝜓 , ct𝑒,𝑖 ← Enc(0, e𝑖),
ct𝑖 ← Enc(𝑠𝑖,m𝑖), ct′𝑖 ← Eval(+, ct𝑖, ct𝑒,𝑖)
ct𝑟𝑒𝑠 ← Eval( 𝑓 , ct′1, ct′2)

 = 1.

THE SIMPLER CASE: The above also holds when 𝛼1 = 0 and ct′𝑟𝑒𝑠 is generated using ct1, instead of ct′1.

Proof (Lemma 2).Proof (Lemma 2). First, by the correctness of lhe, we have

Dec(0, ct𝑒,𝑖) = e𝑖 + e𝑒,𝑖 mod 𝑃,

for 𝑖 = 1, 2, Dec(𝑠𝑖, ct𝑖) = Dec(𝑠𝑖, Enc(𝑠𝑖,m𝑖,𝑝∆))
= m𝑖,𝑝∆ + e𝑚,𝑖 mod 𝑃,

for some e𝑒,1, e𝑒,2, e𝑚,1, e𝑚,2 ∈ [−𝐵𝑒, 𝐵𝑒]𝜓, and m𝑖,𝑝 = m𝑖 mod 𝑝. Next, by the linear homomor-
phism (Definition 7) of lhe, for 𝑖 = 1, 2 we have

Dec(𝑠𝑖, ct′𝑖) = Dec(𝑠𝑖 + 0, Eval(+, ct𝑖, ct𝑒,𝑖))
(Definition 7) = Dec(𝑠𝑖, ct𝑖) + Dec(0, ct𝑒,𝑖)

= m𝑖,𝑝∆ + e𝑖 + e𝑖 + e𝑒,𝑖 mod 𝑃,
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and

Dec(𝑦𝑠1 + 𝑠2, ct𝑟𝑒𝑠) = Dec( 𝑓 (𝑠1, 𝑠2), Eval( 𝑓 , ct′1, ct′2))
(Definition 7) = 𝑓 (Dec(𝑠1ct′1),Dec(𝑠2, ct′2))

= 𝑦(m1,𝑝∆ + e𝑚,1 + e1 + e𝑒,1)
+m2,𝑝∆ + e𝑚,2 + e2 + e𝑒,2

= (𝑦m1,𝑝 +m2,𝑝)∆ + e𝑓 mod 𝑃,

where e𝑓 = 𝑦(e1+e𝑚,1+e𝑒,1) +e2+e𝑚,2+e𝑒,2 over ℤ. Since |𝑦| < 𝑝, ∥e𝑖∥∞ ≤ 𝛼, and ∥e𝑒,𝑖∥∞, ∥e𝑚,𝑖∥∞ ≤
𝐵𝑒, we can bound

∥e𝑓 ∥∞ ≤ 𝑝(𝛼 + 2𝐵𝑒).

We now analyse the term (𝑦m1,𝑝 +m2,𝑝)∆ mod 𝑃 using the following claim.

Claim 1. Let 𝑃, 𝑝 ∈ ℕ be two modulus, where 𝑃 > 𝑝, and let ∆ = ⌊𝑃/𝑝⌋. Let 𝑓 be any linear function
with 𝑑 integer coefficients, and {m𝑖}𝑖∈[𝑑] ∈ ℤ𝜓 of dimension 𝜓 ∈ ℕ. Let m𝑓 = 𝑓 ({m𝑖}) evaluated
coordinate-wise over ℤ. (For more concise notations, we use the short hand (𝑥)𝑝 to mean 𝑥 mod 𝑝 in
the following derivations.) It holds that

m𝑓 · ∆ = (m𝑓 )𝑝 · ∆ + eY mod 𝑃,

for some error vector eY ∈ ℤ𝜓 with magnitude ∥eY ∥∞ ≤ ∥ 𝑓 ({m𝑖})∥∞ + 𝑝.

Proof.Proof. We first write m𝑓 = (m𝑓 )𝑝 + 𝑝k where k =
⌊
m𝑓 /𝑝

⌋
. By the setting of ∆ = ⌊𝑃/𝑝⌋ = 𝑃/𝑝 − Y,

0 ≤ Y < 1, we have

m𝑓 ∆ = ((m𝑓 )𝑝 + 𝑝k)∆ = (m𝑓 )𝑝∆ + 𝑝k · (𝑃/𝑝 − Y)
= (m𝑓 )𝑝∆ +��k𝑃 −Y𝑝k︸︷︷︸

eY

mod 𝑃.

It remains to verify that

∥eY ∥∞ ≤ 𝑝∥k∥∞ = 𝑝∥
⌊
m𝑓 /𝑝

⌋
∥∞ ≤ 𝑝(∥m𝑓 ∥∞/𝑝 + 1) ≤ ∥m𝑓 ∥∞ + 𝑝. □

Using Claim 1, we have

Dec(𝑦𝑠1 + 𝑠2, ct𝑟𝑒𝑠) = (𝑦m1,𝑝 +m2,𝑝)∆ + e𝑓
= (𝑦m1,𝑝 +m2,𝑝)𝑝∆ + eY + e𝑓︸  ︷︷  ︸

noise

mod 𝑃,

where ∥eY ∥∞ ≤ ∥𝑦m1,𝑝 +m2,𝑝∥∞ + 𝑝 ≤ 𝑝2 + 𝑝. Hence

∥noise∥∞ ≤ 𝑝2 + 𝑝 + 𝑝(𝛼 + 2𝐵𝑒) = 𝑝(𝑝 + 1 +𝛼 + 2𝐵𝑒).

As noted in Setup, our setting ensures ∆ ≥ 2𝐵max ≥ 2∥noise∥∞. Hence Dec of ct𝑟𝑒𝑠 succeeds by
rounding off ∆. Similar analysis shows that decryption of ct′𝑟𝑒𝑠 also succeeds. □
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3.3 Instantiation Based on LWE

We first construct a noisy linearly homomorphic encryption (LHE) scheme under the learning
with errors (LWE) assumption, which we state below.

Definition 9 (LWE assumption [Reg05]). Let _ be the security parameter, 𝑛 = 𝑛(_) ≤ poly(_)
be a dimension, 𝑞 = 𝑞(_) ≤ 2poly(_) be a modulus, and 𝜒 = 𝜒(_) be an error distribution over
ℤ. The assumption LWE𝑛,𝑞,𝜒 states that for all polynomial 𝑚 = 𝑚(_), the following (computational)
indistinguishability holds:

{𝐴, 𝐴s + e} ≈𝑐 {𝐴,u}
����� 𝐴← ℤ𝑚×𝑛

𝑞 , u← ℤ𝑚
𝑞

s← ℤ𝑛
𝑞, e← 𝜒𝑚

Construction 2. This construction relies on learning with errors (LWE) assumption in which
the error distribution is bounded in [−𝐵𝑒, 𝐵𝑒] for some 𝐵𝑒(_) ≤ 𝑞/2

√
_.

• Setup(1_, 1Ψ, 𝐵msg) chooses the key dimension ℓ𝑠 = 𝑂(_), chooses message modulus 𝑃 such
that 𝑃 ≥ 𝐵msg. Sample a random matrix 𝐴← ℤ

Ψ×ℓ𝑠
𝑃

.
It outputs pp = (𝑃, 𝐴). The key space is ℤℓ𝑠 . The message modulus is 𝑃. The ciphertext
space is ℤ≤Ψ.

• KeyGen samples a random s← ℤ
ℓ𝑠
𝑃
.

• Enc(s,m), for message vector of length 𝜓 ≤ Ψ, samples vector e ← 𝜒𝜓 from the error
distribution 𝜒, and outputs ciphertext

ct := 𝐴1:𝜓s + e +m (over ℤ𝑃)

where 𝐴1:𝜓 denotes the first 𝜓 rows of 𝐴.

• Dec(s, ct), for ciphertext ct = (𝑐1, . . . , 𝑐𝜓) ∈ E, outputs m′ = ct − 𝐴1:𝜓s.

• Eval( 𝑓 , {ct𝑖}) takes as input a linear function 𝑓 (𝑥1, . . . , 𝑥𝑑) =
∑

𝑖∈[𝑑] 𝑎𝑖𝑥𝑖, and 𝑑 ciphertexts
{ct𝑖}𝑖∈[𝑑]. It outputs ct𝑓 =

∑
𝑖 𝑎𝑖ct𝑖.

Proof of Correctness. The decrypted message is

m′ = Dec(s, Enc(s,m)) = Dec(s, 𝐴1:𝜓s + e +m) = e +m,

where e← 𝜒𝜓 is sampled by the encryption algorithm. Therefore,

∥m′ −m∥∞ = ∥e∥∞ ≤ 𝐵𝑒.

Proof of Linear Homomorphism. It follows directly form that fact that Dec is a linear function.
Proof of One-time Security. Put Construction 2 in the definition of one-time security, we need
to show that for any m1,m2 ∈ ℤ𝜓

{
𝐴, 𝐴1:𝜓s + e +m1

}
≈𝑐

{
𝐴, 𝐴1:𝜓s + e +m2

} ����� 𝐴← ℤ
Ψ×ℓ𝑠
𝑃

,

s← ℤℓ𝑠 , e← 𝜒𝜓

By the LWE assumption,

{𝐴, 𝐴1:𝜓s + e +m1} ≈𝑐 {𝐴,u +m1}
≈𝑠 {𝐴,u +m2} ≈𝑐 {𝐴, 𝐴1:𝜓s + e +m2}

����� 𝐴← ℤ
Ψ×ℓ𝑠
𝑃

, u← ℤ
𝜓
𝑃
,

s← ℤℓ𝑠 , e← 𝜒𝜓
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3.4 Instantiation Based on Paillier

We next construct a LHE scheme under the decisional composite residuosity (DCR) assumption,
which we state below.

Definition 10 (DCR assumption [Pai99,DJ01]). Let _ be the security parameter, let SP(_) denote the
set of _ bit primes 𝑝 such that 𝑝 = 2𝑝′ + 1 for some other prime 𝑝′, and let Z = Z (_) be a polynomial.
The assumption DCRZ states that the following (computational) indistinguishability holds:

{𝑁, 𝑢} ≈𝑐 {𝑁, 𝑣}

�������
𝑝, 𝑞← SP(_), 𝑁 = 𝑝 · 𝑞 (over ℤ),

𝑢← QR𝑁Z+1 ,

𝑣← HC𝑁Z+1 ,

where QR𝑁Z+1 := {𝑎2 |𝑎 ∈ ℤ∗
𝑁Z+1} denote the subgroup of quadratic residues, and HC𝑁Z+1 := {𝑎2𝑁Z |𝑎 ∈

ℤ∗
𝑁Z+1} denote the “hard” subgroup of ℤ∗𝑁Z+1 . It is known that HC𝑁Z+1 is a cyclic group of size 𝑝′𝑞′ ≈ 𝑁

4 .

Construction 3. This construction relies on the decisional composite residuosity (DCR) assump-
tion.

• Setup(1_, 1Ψ, 𝐵msg) samples two safe primes 𝑝, 𝑞 ← SP(1_). Let 𝑁 := 𝑝𝑞. Choose Z as
the minimum integer that 𝑁Z ≥ 𝐵msg and let 𝑃 := 𝑁Z. Sample Ψ random generators
𝜏1, . . . , 𝜏Ψ ← HC𝑁Z+1 . That is, it samples a random 𝑎 ← ℤ∗

𝑁Z+1 and sets 𝑔 = 𝑎2𝑁Z , then
samples 𝑡1, . . . , 𝑡Ψ ← [𝑁 · 2_] and sets 𝜏1 = 𝑔𝑡1 , . . . , 𝜏Ψ = 𝑔𝑡Ψ .
It outputs pp = (𝑁, Z, 𝜏1, . . . , 𝜏Ψ). The key space is ℤ (i.e. ℓ𝑠 = 1). The message modulus is
𝑃. The ciphertext space is (ℤ∗

𝑁Z+1)≤Ψ.

• KeyGen samples a random 𝑠← [𝑁/4].

• Enc(𝑠,m), for message vector m = (𝑚1, . . . , 𝑚𝜓) ∈ ℤ𝜓 of dimension 𝜓 ≤ Ψ, outputs a
ciphertext

ct := (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)2m = (𝜏𝑠
1 · (1 + 𝑁)

2𝑚1 , . . . , 𝜏𝑠
𝜓 · (1 + 𝑁)2𝑚𝜓 ) .

• Dec(𝑠, ct), for ciphertext ct = (𝑐1, . . . , 𝑐𝜓) ∈ E, for each 𝑖 ∈ [𝜓], computes 𝜏−𝑠
𝑖
·𝑐𝑖 and decodes

𝑚′
𝑖
∈ [𝑁Z] that (1 + 𝑁)𝑚′𝑖 = 𝜏−𝑠

𝑖
· 𝑐𝑖. (𝑚′𝑖 can be efficiently decoded from (1 + 𝑁)

𝑚′
𝑖 , as shown

in [DJ01].) It outputs m′ = (𝑚′1, . . . , 𝑚′𝜓).

• Eval( 𝑓 , {ct𝑖}) takes as input a linear function 𝑓 (𝑥1, . . . , 𝑥𝑑) =
∑

𝑖∈[𝑑] 𝑎𝑖𝑥𝑖, and 𝑑 ciphertexts
{ct𝑖}𝑖∈[𝑑]. It outputs ct𝑓 =

∏
𝑖 ct𝑎𝑖𝑖 .

Proof of Correctness. The correctness of the decryption is shown in [DJ01].

Proof of Linear Homomorphism. To show the correctness of the homomorphic evaluation: As-
sume ciphertexts ct1, . . . , ct𝑑 are the encryption of m1, . . . ,m𝑑 using keys 𝑠1, . . . , 𝑠𝑑 respectively.
Then for any linear function 𝑓 (𝑥1, . . . , 𝑥𝑑) =

∑
𝑖∈[𝑑] 𝑎𝑖𝑥𝑖,

Eval( 𝑓 , {ct𝑖}) =
∏
𝑖

ct𝑎𝑖
𝑖
=
∏
𝑖

(
(𝜏1, . . . , 𝜏𝜓)𝑠𝑖 · (1 + 𝑁)2m𝑖

)𝑎𝑖
= (𝜏1, . . . , 𝜏𝜓)

∑
𝑖 𝑎𝑖𝑠𝑖 · (1 + 𝑁)2

∑
𝑖 𝑎𝑖m𝑖

= (𝜏1, . . . , 𝜏𝜓) 𝑓 (𝑠1,...,𝑠𝑑) · (1 + 𝑁)2𝑓 (m1,...,m𝑑) ,
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which is the encryption of 𝑓 (m1, . . . ,m𝑑) under key 𝑓 (𝑠1, . . . , 𝑠𝑑).

Proof of One-time Security. Put Construction 3 in the definition of one-time security, we need
to show that for any m1,m2 ∈ ℤ𝜓

{
𝜏1, . . . , 𝜏𝜓 , ct1

}
≈𝑐

{
𝜏1, . . . , 𝜏𝜓 , ct2

}
.

����������
𝑝, 𝑞← SP(_), 𝑁 = 𝑝 · 𝑞,

𝜏1, . . . , 𝜏𝜓 ← HC𝑁Z+1 ,

𝑠← [𝑁/4],
ct𝑖 = (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)2m𝑖

As shown by [HO12], DCR implies the Extended-DDH assumption

{
𝜏1, . . . , 𝜏𝜓

(𝜏1, . . . , 𝜏𝜓)𝑠

}
≈𝑐

{
𝜏1, . . . , 𝜏𝜓

(𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)r

}����������
𝑝, 𝑞← SP(_), 𝑁 = 𝑝 · 𝑞,

𝜏1, . . . , 𝜏𝜓 ← HC𝑁Z+1

r← [𝑁Z]𝜓

𝑠← [𝑁/4]

Since (𝜏1, . . . , 𝜏𝜓)𝑠 is computationally indistinguishable from (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)r, we can
consider a hybrid world where (𝜏1, . . . , 𝜏𝜓)𝑠 is replaced by (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)r. In such hybrid
world, ct1 and ct2 are perfectly indistinguishable, as they are one-time padded by r.

{𝜏1, . . . , 𝜏𝜓 , ct1}
= {𝜏1, . . . , 𝜏𝜓 , (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)2m1}
≈𝑐 {𝜏1, . . . , 𝜏𝜓 , (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)r+2m1}
≈𝑠 {𝜏1, . . . , 𝜏𝜓 , (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)r+2m2}
≈𝑐 {𝜏1, . . . , 𝜏𝜓 , (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)2m2}
= {𝜏1, . . . , 𝜏𝜓 , ct2}.

������������

𝑝, 𝑞← SP(_), 𝑁 = 𝑝 · 𝑞,
𝜏1, . . . , 𝜏𝜓 ← HC𝑁Z+1 ,

r← [𝑁Z+1]𝜓 ,
𝑠← [𝑁/4],

ct𝑖 = (𝜏1, . . . , 𝜏𝜓)𝑠 · (1 + 𝑁)2m𝑖

4 Key Extension for Bounded Integer Computation

In this section, we construct the key-extension gadget for 𝐵-bounded integer computation. Our
starting point is the following observation: A 𝐵-bounded computation can be “embedded" in
modulo-𝑝 computation as long as 𝑝 > 2𝐵:

(𝐶, 𝑥) is 𝐵-bounded ∧ 𝑝 > 2𝐵 =⇒ 𝐶(𝑥) over ℤ = 𝐶(𝑥) mod 𝑝.

Therefore, we can directly use the (information theoretic) arithmetic operation gadget for ring
ℤ𝑝 from AIK (recalled in Section 7.1). What remains is to design a key-extension gadget for ℤ𝑝,
i.e., a mechanism that enables expanding a short label a𝑥 + b mod 𝑝 to an arbitrarily long label
c𝑥 + d mod 𝑝.

As shown in this section, the fact that every intermediate values 𝑥 is bounded tremendously
simplifies the key extension gadget, especially if it is compared with the key extension gadget
for modular computation in Section 5.
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Setup Algorithm of Bounded Integer Garbling

Parameters and Tools: The computation is 𝐵-bounded. The construction uses the scheme lhe from
Construction 1, which is associated with a bound 𝐵𝑠 on the infinity norm of LHE keys sampled by
lhe.KeyGen, and a bound 𝐵𝑒 on the decryption noise of the scheme lhe underlying lhe. All of 𝐵, 𝐵𝑠,
and 𝐵𝑒 are bounded by 2poly(_) .

Setup(1_) invokes the setup algorithm of the lhe scheme

pp← lhe.Setup(1_, 1Ψ, 𝑝, 𝐵max),

and outputs pp = (pp, ℓ ), where the parameters are set as below.

• Parameters of the lhe scheme (with key dimension ℓ𝑠 = poly(_, log 𝐵max)):

message modulus 𝑝 = _𝜔 (1)𝐵 · 𝐵𝑠 (4)

smudging noise level 𝛼 = _𝜔 (1) max(𝑝, 𝐵𝑒)2 (5)
maximal noise level 𝐵max = 𝑝(𝑝 + 1 +𝛼 + 2𝐵𝑒)
message dimension bound Ψ = 2(ℓ𝑠 + 1) = 2ℓ .

• The dimension of keys/labels of the key extension gadget is set to ℓ = ℓ𝑠 + 1.

Figure 4: Setup for bounded integer garbling.

4.1 The Setup Algorithm

Our key extension gadget for bounded integer uses the special-purpose LHE scheme lhe in Con-
struction 1. The parameters of the LHE scheme is setup once by the Setup algorithm of the
entire garbling scheme, as shown in Figure 4, and is shared by all invocation of gadgets when
garbling an arithmetic circuit.

We emphasize that the Setup algorithm depends only on the security parameter and the
integer bound 𝐵. It’s independent of any parameters (e.g., maximal size, fan-out, depth) of the
circuit to be garbled later. As such, the public parameter pp is generated once and re-used for
garbling many poly-sized circuits.

4.2 Length-Doubling Key Extension

We present the construction in two steps:

Step 1: Length-doubling. In Construction 4, we present a basic length-doubling key extension
gadget, that is, at evaluation time, given a label z𝑖𝑛1 𝑥 + z𝑖𝑛2 of dimension ℓ produces a label
z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 of dimension 2ℓ . This construction already contains our main idea.

Step 2: Arbitrary Expansion. Next, we present a generic transformation 1 in Section 4.3 that
converts a length-doubling key extension gadget, to a full-fledged key extension gadget that
produces an output-wire label of arbitrary polynomial dimension ℓ ′ > ℓ . At a high-level,
the transformation recursively calls the length-doubling key extension gadget in a tree fash-
ion till the desired output-wire label dimension ℓ ′ is reached.
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Construction 4 (length-doubling key extension for bounded integers). The algorithms below
uses the parameters, 𝑝, 𝛼, 𝐵max, Ψ, specified in Setup (Figure 4), and have random access to the
public parameters pp, which contains the public parameter pp of the LHE scheme lhe and the
key dimension ℓ .

• KE.KeyGenpp(1_, 1ℓ ): Generate a lhe secret key s1 ← lhe.KeyGen(1ℓ𝑠), which is an integer
vector in ℤℓ𝑠 with ∥s1∥∞ ≤ 𝐵𝑠. Output input-wire keys z1, z2:

z𝑖𝑛1 = (s1, 1), z𝑖𝑛2 = (𝑟s1 + s2, 𝑟) (over ℤ),

where 𝑟 ← [−𝐵smdg, 𝐵smdg] and s2 ← [−𝐵′smdg, 𝐵
′
smdg]

ℓ𝑠 , with 𝐵smdg = _𝜔 (1)𝐵 and 𝐵′smdg =

_𝜔 (1)𝐵smdg𝐵𝑠 < 𝑝/4 (the inequality can be satisfied because the message modulus 𝑝 is set
sufficient large; see Equation (4)).

Note: We make a few observations: i) the input-wire keys are 𝑝 bounded, that is, they belong to
the label/key space z𝑖𝑛1 , z𝑖𝑛1 ∈ ℤ𝑝 as the definition requires, and ii) a label for 𝑥 equals

L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 = (s1(𝑥 + 𝑟) + s2, 𝑥 + 𝑟) mod 𝑝

= (s1(𝑥 + 𝑟) + s2︸           ︷︷           ︸
s𝑟𝑒𝑠

, 𝑥 + 𝑟︸︷︷︸
𝑦

) over ℤ

The last equality holds because the magnitude of entries of s𝑟𝑒𝑠 and 𝑦 do not exceed 𝑝/2. The fact
that the labels are effectively computed over the integers is crucial for decoding later, and this
crucially relies on the fact that values 𝑥 are 𝐵-bounded and that 𝑝 can be set sufficiently larger
than 𝐵.

• KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ): First recover s1, s2, 𝑟 from the input-wire keys. Then encrypt
z𝑜𝑢𝑡1 and z′𝑜𝑢𝑡2 = z𝑜𝑢𝑡2 − 𝑟z

𝑜𝑢𝑡
1 using lhe under keys s1, s2 respectively. This is possible because

z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 has dimension 2ℓ ≤ Ψ, as set in Figure 4, and any integer vector of dimension ℓ𝑠,
e.g. s2, can be used as a secret key for lhe.

ct1 ← lhe.Enc(s1, z𝑜𝑢𝑡1 ), ct2 ← lhe.Enc(s2, z′𝑜𝑢𝑡2 ).

Finally, add a smudging noise of magnitude 𝛼 (set in Equation (5)) to ct2 to obtain ct′2, and
output garbled table tb = (ct1, ct′2).

e← [−𝛼,𝛼]ℓ ′ , ct𝑒 ← lhe.Enc(0, e) , ct′2 ← lhe.Eval(+, ct2, ct𝑒) .

• KE.Decpp(L𝑖𝑛, tb = (ct1, ct′2)) Treat L𝑖𝑛 as an integer vector and parse it as L𝑖𝑛 = (s𝑟𝑒𝑠, 𝑦),
where s𝑟𝑒𝑠 ∈ ℤℓ𝑠 , 𝑦 ∈ ℤ. Homomorphically evaluate the linear function 𝑓 (𝑥1, 𝑥2) = 𝑦𝑥1 + 𝑥2
over ct1 and ct′2, decrypt the output ciphertext to obtain m𝑟𝑒𝑠, and output L𝑜𝑢𝑡 = m𝑟𝑒𝑠 as
the output-wire label:

ct′𝑟𝑒𝑠 ← lhe.Eval( 𝑓 , ct1, ct′2) , L𝑜𝑢𝑡 = m𝑟𝑒𝑠 = lhe.Dec(𝑠𝑟𝑒𝑠, ct′𝑟𝑒𝑠) .

Correctness. We show that the above scheme is correct, which requires that given a correctly
generated input-wire label L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 (mod 𝑝) and garbled table tb, the decoding algorithm
KE.Dec recovers the correct output-wire label L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 (mod 𝑝). As we analyzed above
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L𝑖𝑛 = (s𝑟𝑒𝑠, 𝑦) where s𝑟𝑒𝑠 = s1𝑦 + s2 and 𝑦 = 𝑥 + 𝑟 are computed over the integers. By construction,
KE.Dec uses s𝑟𝑒𝑠 as the secret key to decrypt the lhe ciphertext ct′𝑟𝑒𝑠, where ct′𝑟𝑒𝑠 is the output
ciphertext obtained by homomorphically evaluating 𝑓 (𝑥1, 𝑥2) = 𝑦𝑥1 + 𝑥2 over ct1 and ct2 encrypt-
ing z𝑜𝑢𝑡1 and z′𝑜𝑢𝑡2 respectively. By the special-purpose linear homomorphism of lhe, namely
Lemma 2 (the simpler case), ct′𝑟𝑒𝑠 can be decrypted using secret key 𝑓 (s1, s2) = s1𝑦+s2 computed
over the integers, which is exactly s𝑟𝑒𝑠. Therefore,

m𝑟𝑒𝑠 = lhe.Dec(s𝑟𝑒𝑠 = (s1𝑦 + s2), ct′𝑟𝑒𝑠) = (𝑦z𝑜𝑢𝑡1 + z′𝑜𝑢𝑡2 ) mod 𝑝

= ((𝑥 + 𝑟)︸ ︷︷ ︸
=𝑦

z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 − 𝑟z𝑜𝑢𝑡1︸        ︷︷        ︸
z′𝑜𝑢𝑡2

) mod 𝑝 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 mod 𝑝 = L𝑜𝑢𝑡 .

In order to invoke Lemma 2, we still need to verify that the prerequisite 𝐵max ≥ 𝑝(𝑝+1+𝛼+2𝐵𝑒)
is indeed satisfied. This is the case as set by Setup in Figure 4.

Lemma 3. Construction 4 is secure per Definition 2.

Proof (Lemma 3).Proof (Lemma 3). We construct a simulator KE.Sim, that on input a security parameter _, public
parameters pp = (lhe.pp,𝛼) generated by Setup in Figure 4, and an arbitrary output-wire label
L𝑜𝑢𝑡 ∈ ℤ2ℓ

𝑝 of dimension 2ℓ , simulates the input-wire label L̃𝑖𝑛 and the garbled table t̃b = (c̃t1, c̃t
′
2).

• KE.Sim(1_, pp, L𝑜𝑢𝑡): Simulate the input-wire label L̃𝑖𝑛
= (̃s𝑟𝑒𝑠, �̃�), by sampling s̃𝑟𝑒𝑠 and �̃� as

sufficiently large random integer values.

�̃�← [−𝐵smdg, 𝐵smdg], s̃𝑟𝑒𝑠 ← [−𝐵′smdg, 𝐵
′
smdg]

ℓ𝑠 , L̃𝑖𝑛
= (̃s𝑟𝑒𝑠, �̃�),

where 𝐵smdg = _𝜔 (1)𝐵, 𝐵′smdg = _𝜔 (1)𝐵smdg𝐵𝑠 are set to the same values as in KE.KeyGen.

Next, simulate the garbled table tb = (c̃t1, c̃t
′
2) by generating the former c̃t1 as a fresh

encryption of 0, that is,

s1 ← lhe.KeyGen(1ℓ𝑠) , c̃t1 ← lhe.Enc(s1, 0) , (0 ∈ ℤℓ ′) ,

and sampling c̃t′2 via homomorphic evaluation of lhe, subject to the constraint that de-
coding must produce the correct output-wire label L𝑜𝑢𝑡. More specifically, consider the
function 𝑓𝑅 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1, and generate c̃t2 as follows.

c̃t𝑟𝑒𝑠 ← lhe.Enc (̃s𝑟𝑒𝑠, L𝑜𝑢𝑡) , c̃t2 ← lhe.Eval( 𝑓𝑅, c̃t𝑟𝑒𝑠 , c̃t1).

Finally, smudge the noise in c̃t2 to produce c̃t
′
2 as follows.

e← [−𝛼,𝛼]ℓ ′ , ct𝑒 ← lhe.Enc(0, e) , c̃t′2 ← lhe.Eval(+, c̃t2, ct𝑒).

We now argue that KE.Sim described above satisfies the security requirement. Consider any
sequences {z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ }_ where z

𝑜𝑢𝑡
1,_ , z

𝑜𝑢𝑡
2,_ ∈ L2ℓ , and {𝑥_}_ where 𝑥_ ∈ I. We define four hybrids,

Hyb1, . . . ,Hyb4, where the first hybrid is exactly the real-world distribution, and the last hybrid
is exactly the simulated distribution using KE.Sim, and show their indistinguishability. (In the
following, we suppress the subscript _.)

• Hyb1: This hybrid generates pp, L𝑖𝑛, tb = (ct1, ct′2) honestly using the algorithms Setup,
KE.KeyGen, and KE.Garble. More concretely, the variables are sampled as follows:
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– Generate pp← Setup(1_).
– Sample a lhe secret key s1 ← lhe.KeyGen(1ℓ𝑠), a random integer scalar 𝑟 ← [−𝐵smdg, 𝐵smdg],
and a random integer vector s2 ← [−𝐵′smdg, 𝐵

′
smdg]

ℓ𝑠 .

– The input label for 𝑥 is L𝑖𝑛 = (s𝑟𝑒𝑠, 𝑦) where 𝑦 = 𝑥 + 𝑟, s𝑟𝑒𝑠 = 𝑦s1 + s2.
– ct1 is a fresh encryption of z𝑜𝑢𝑡1 under secret key s1, ct1 ← lhe.Enc(𝑠1, z𝑜𝑢𝑡1 ).
– ct′2 is an additionally noisy encryption of (z𝑜𝑢𝑡2 − 𝑟z𝑜𝑢𝑡1 ) under key s2. That is, sample
e← [−𝛼,𝛼]2ℓ and generate

ct2 ← lhe.Enc(𝑠2, (z𝑜𝑢𝑡2 − 𝑟z𝑜𝑢𝑡1 )), ct𝑒 ← lhe.Enc(0, e), ct′2 ← lhe.Eval(+, ct2, ct𝑒) .

• Hyb2: This hybrid proceeds identically as Hyb1, except that c̃t
′
2 is generated via homomor-

phic evaluation of lhe, under the constraint that decryption recovers the correct output-
wire label L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 . That is, Hyb2 first generates c̃t𝑟𝑒𝑠 as

L𝑜𝑢𝑡 = 𝑥z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 mod 𝑝, c̃t𝑟𝑒𝑠 ← lhe.Enc(s𝑟𝑒𝑠, L𝑜𝑢𝑡).

We next compute c̃t2 via homomorphic evaluation of the function 𝑓𝑅 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1:

c̃t2 ← lhe.Eval( 𝑓𝑅, c̃t𝑟𝑒𝑠, ct1),

Finally, smudge c̃t2 with noise 𝑒← [−𝛼,𝛼] to get c̃t′2

ct𝑒 ← lhe.Enc(0, e), c̃t′2 ← lhe.Eval(+, c̃t2, ct𝑒) .

Note that the only difference between Hyb1 and Hyb2 lies in how ct′2 and c̃t
′
2 are generated.

In the former, ct′2 is an additionally noisy ciphertext of (z𝑜𝑢𝑡2 −𝑟z
𝑜𝑢𝑡
1 ) encrypted under secret

key s2. In the latter, c̃t
′
2 is the output ciphertext produced by homomorphically evaluating

𝑓𝑅 on ct𝑟𝑒𝑠, ct1, smudged with additional noise. It is easy to verify that 𝑓𝑅 (s𝑟𝑒𝑠, s1) = s2
and 𝑓𝑅 (L𝑜𝑢𝑡, z𝑜𝑢𝑡1 ) = (z

𝑜𝑢𝑡
2 − 𝑟z𝑜𝑢𝑡1 ). Lemma 1 (the simpler case) shows that these two ways

of generating ciphertexts are statistically close, provided that the the magnitude 𝛼 of the
smudging noises is sufficiently large. This is indeed the case since 𝛼 = _𝜔 (1) max(𝑝, 𝐵𝑒)2
(Equation (5)). Therefore by the lemma, the distributions of ct′2 in Hyb1 and c̃t

′
2 in Hyb2 are

statistically close, and so are these two hybrids.

• Hyb3: This hybrid proceeds identically as Hyb2, except that instead of computing s𝑟𝑒𝑠 =

𝑦s1 + s2 and 𝑦 = 𝑥 + 𝑟 over the integers as in Hyb2, Hyb3 directly samples s𝑟𝑒𝑠 and 𝑦 as
follows:

�̃�← [−𝐵smdg, 𝐵smdg], s̃𝑟𝑒𝑠 ← [−𝐵′smdg, 𝐵
′
smdg].

The distributions of (𝑦, s𝑟𝑒𝑠) in Hyb2 and ( �̃�, s̃𝑟𝑒𝑠) Hyb3 are statistically close. This is because
in Hyb2, the magnitude of 𝑟, 𝐵smdg = _𝜔 (1)𝐵, is superpolynomially larger than 𝑥, which is
bounded by 𝐵. Hence, 𝑟 statistically hides 𝑥 and the distribution of 𝑦 is statistically close
that of �̃�. Similarly, the magnitude of entries of s2, 𝐵′smdg = _𝜔 (1)𝐵smdg𝐵𝑠, is superpolyno-
mially larger than the entries of 𝑦s1, which are bounded by 𝐵smdg𝐵𝑠. Hence s2 statistically
hides 𝑦s1 and s2 is statistically close to s̃2. Therefore Hyb2 and Hyb3 are statistically close.

• Hyb4: This hybrid proceeds identically as Hyb3, except that instead of generating ct1 as a
fresh encryption of z𝑜𝑢𝑡1 using secret key s1 as in Hyb3, ct1 is now generated as an encryption
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of the zero vector 0 still using secret key s1. Observe that since in Hyb3 and Hyb4, s𝑟𝑒𝑠 is
sampled randomly, the secret key s1 is not used anywhere else except for generating ct1.
Therefore, by the one-time security of lhe w.r.t. secret key s1, we have that Hyb3 and Hyb4
are computationally indistinguishable.

By a hybrid argument, we have that Hyb1 and Hyb4 are computationally indistinguishable. Since
Hyb1 samples (pp, L𝑖𝑛, tb) exactly as in the real-world, and Hyb4 samples (p̃p, L̃

𝑖𝑛
, t̃b) as the sim-

ulator KE.Sim does, we conclude that the simulated distribution is indistinguishable to the real
distribution, and Construction 4 is a secure length-doubling key-extension gadget for bounded
integer computation. □

4.3 Arbitrary Expansion Key Extension

Next we present a generic transformation from length-doubling key expansion, to arbitrary ex-
pansion. We note that this transformation applies not only to key-expansion for bounded inte-
ger computation, but also for modular arithmetic computation handled in the next Section. This
transformation starts with a length-doubling key-extension gadget (KE.KeyGen′, KE.Garble′, KE.Dec′),
and produces a new key-extension gadget (KE.KeyGen′, KE.Garble′, KE.Dec′) that can expand the
label length from ℓ to an arbitrary polynomial ℓ ′. The basic idea is very simple: Keep calling the
length-doubling gadget recursively in a tree-fashion, doubling the label-length at each recursive
level, till the desired length ℓ ′ is reached.

Transformation 1 (length-doubling to arbitrary-expansion key extension).

• KE.KeyGenpp(1_, 1ℓ ): Simply generate a pair of input-wire keys of the length-doubling scheme
(kY1 ,k

Y
2) ← KE.KeyGen′pp(1_, 1ℓ ); the keys have dimension ℓ .

• KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , zY1 , z
Y
2): The output-wire keys z

𝑜𝑢𝑡
1 , z𝑜𝑢𝑡2 have dimension ℓ ′, where 2𝐷−1ℓ <

ℓ ′ ≤ 2𝐷ℓ for some integer 𝐷. Divide each of z𝑜𝑢𝑡1 and z𝑜𝑢𝑡2 into 2𝐷 chunks of dimension ℓ

each: z𝑜𝑢𝑡
𝑖

= (z𝛾
𝑖
)𝛾∈{0,1}𝐷 (append 0’s if z𝑜𝑢𝑡𝑖

is shorter than 2𝐷). Consider a complete binary
tree of depth 𝐷, every node 𝛾 ∈ {0, 1}≤𝐷 in the tree is associated with a pair of keys:

– The root is associated with (zY1 , z
Y
2).

– The 𝛾’th leaf for 𝛾 ∈ {0, 1}𝐷 is associated with (z𝛾1 , z
𝛾
2), a chunk in the output-wire

keys.
– The intermediate node indexed by 𝛾 ≠ Y ∈ {0, 1}<𝐷 is associated with freshly sampled
input-wire keys (z𝛾1 , z

𝛾
2) ← KE.KeyGen′pp(1_, 1ℓ ).

For every non-leaf node 𝛾 ∈ {0, 1}<𝐷, invoke the garbling algorithm of the length-doubling
scheme to generate a garbled table

tb𝛾 ← KE.Garble′pp((z𝛾 | |01 , z𝛾 | |11 ), (z
𝛾 | |0
2 , z𝛾 | |12 ), z

𝛾
1 , z

𝛾
2) .

Output all the gabled tables generated tb = {tb𝛾}𝛾∈{0,1}≤𝐷 .

• KE.Decpp(LY, tb): For every non-leaf node 𝛾 ∈ {0, 1}<𝐷, invoke the decoding algorithm of
the length-doubling gadget to expand the label from the root to the leaves.

(L𝛾 | |0, L𝛾 | |1) ← KE.Dec′pp(L𝛾 , tb𝛾) .

Output all the labels associated with the leaves L𝑜𝑢𝑡 = {L𝛾}𝛾∈{0,1}𝐷 .

35



The correctness of the above key-extension gadget follows immediately from that of the un-
derlying length-doubling gadget. The security follows as well. We describe the simulator here
and omit the full proof. The simulator KE.Sim(1_, pp, L𝑜𝑢𝑡) recursively calls the the simulator
KE.Sim′ of the underlying gadget. More specifically,

• KE.Sim(1_, pp, L𝑜𝑢𝑡): For every non-leaf node 𝛾 ∈ {0, 1}<𝐷, use the simulator of the length-
doubling gadget to recursively simulate the garbled table and input-wire keys associated
with node 𝛾, from nodes in layer 𝐷 − 1 to the root.

L𝛾 , tb𝛾 ← KE.Sim′(1_, pp, (L𝛾 | |0, L𝛾 | |1))

5 Key Extension for Modular Arithmetic Computation

5.1 Linear Seeded Smudger

We briefly introduce a primitive, linear seeded smudger, that will be used for constructing the
key extension for modular arithmetic computation. Details of a formal definition and the con-
struction of linear seeded smudger is in Section 9.

A linear seeded smudger is essentially a (linear) randomness extractor. It is well-known
how to construct exactor that is linear over a finite field. Our challenge is that we require the
smudger to be linear over the integer ring ℤ. Therefore, we define a smudger so that

• The extracted randomness does not need to be close to uniform. (There does not exist an
uniform distribution of ℤ in the first place.) We only require that the extracted randomness
can “smudge” a given distribution with high probability.
For a distribution X over {0, 1}ℓ and an extractor 𝐸 : {0, 1}ℓ → ℤ, let 𝐸(X ) denote the
distribution of the extracted randomness. We say 𝐸(X ) smudges a distribution D, if the
two distributions

𝐸(X ) and 𝐸(X ) +D
are statistically close.

• Instead of considering any high-entropy source, we only require the smudger to work with
the so-called bix-fixing source.
For ℓ ∈ ℤ and 𝜌 ∈ (0, 1], a distribution X over {0, 1}ℓ is a (ℓ , 𝜌)-bit-fixing source, if 𝜌ℓ bits
of it are i.i.d. uniform, and the remaining (1 − 𝜌)ℓ bits are fixed.

We introduce the notion of linear seeded (ℓ , 𝜌,_1,_2)-smudgers. We say a seeded extractor is
an (ℓ , 𝜌,_1,_2)-smudger, if for every (ℓ , 𝜌)-bit-fixing source, the extracted randomness smudges
any distribution over {0, . . . , 2_1} with an 𝑂(2−_2) statistical error.

In our application, we will use the smudger for smudging LHE keys generated by the lhe.KeyGen
algorithm, which has infinity norm bounded by 𝐵𝑠. To this end, we require a (ℓ , 1/4,_1,_2)-
smudger Smdg = (Smdg.Gen, Smdg.Smudge), where the (log) smudging range is _1 = log 𝐵𝑠,
the (log) smudging distance is _2 = 𝜔(log_), and the smudging source dimension is ℓsmdg =

𝑂(_1 + _2). To smudge an LHE key s∗ ∈ ℤℓ𝑠 , we will first generate a long source vector s ∈ ℤℓ ∗ ,
where ℓ ∗ = ℓ𝑠ℓsmdg and ℓ𝑠 seeds sd𝑖 ← Smdg.Gen(1ℓsmdg , 1/4) for 𝑖 ∈ [ℓ𝑠]. We then write the
following shorthand

s∗ = Smdg.Smudge(s; {sd𝑖}𝑖∈[ℓ𝑠 ]) (6)
to mean each component of s∗ is computed by running Smdg.Smudge(·; sd𝑖) on the correspond-
ing chunk of s of dimension ℓsmdg.
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Setup Algorithm of Modular Arithmetic Garbling

Parameters and Tools: The computation is modular arithmetic over ℤ𝑝. The construction uses two
ingredients:

• the scheme lhe from Construction 1, which is associated with a bound 𝐵𝑠 on the infinity norm
of LHE keys sampled by lhe.KeyGen, and a bound 𝐵𝑒 on the decryption noise of the scheme
lhe underlying lhe.

• a linear seeded (ℓsmdg, 1/4,_1,_2)-smudger scheme Smudge from Theorem 4, which is able to
smudge any distribution over {0, 2_1 } with 𝑂(2−_2 ) statistical distance, using a (ℓsmdg, 1/4)-bit-
fixing source.

Setup(1_) invokes the setup algorithm of the lhe scheme

pp← lhe.Setup(1_, 1Ψ, 𝑝, 𝐵max),

and outputs pp = (pp, ℓ ), where the parameters are set as below.

• Parameters of the lhe scheme (with key dimension ℓ𝑠 = poly(_, log 𝐵max)):

message modulus 𝑝 = the modulus of the computation

smudging noise level 𝛼 = _𝜔 (1) max(𝑝, 𝐵𝑒)4 (7)
maximal noise level 𝐵max = 𝑝(𝑝 + 1 +𝛼 + 2𝐵𝑒)
message dimension bound Ψ = 2ℓ𝑠ℓsmdg

• The dimension of keys/labels associated with input wires of key extension gate is set to ℓ =

ℓ𝑠ℓsmdg + 1.

Figure 5: Setup for modular arithmetic garbling.

5.2 The Setup Algorithm

Similarly to Section 4, we describe the Setup algorithm (Figure 5) of the entire garbling scheme
that computes appropriate parameters for setting up the special-purpose LHE scheme lhe in
Construction 1. The label space L of the garbling scheme is ℤ𝑝.

5.3 Key Extension

When constructing a key extension gadget for modular arithmetic over ℤ𝑝, we need to solve a
correctness issue. During KE.Dec, the algorithm receives a LHE key s𝑟𝑒𝑠 = 𝑥s1 + s2 mod 𝑝, and
needs to further recover s′𝑟𝑒𝑠 = 𝑥s1+s2 over ℤ. In the bounded integer computation model, where
the input 𝑥 has magnitude bounded by 𝐵, and the LHE keys s1, s2 have magnitude bounded by
𝐵𝑠, we can make s′𝑟𝑒𝑠 = s𝑟𝑒𝑠 over ℤ by setting 𝑝 ≫ 𝐵 · 𝐵𝑠. However, in the modular arithmetic
computation model (over ℤ𝑝), the input 𝑥 can have any value between [0, 𝑝 − 1]. It’s no longer
possible to set 𝑝 such that s′𝑟𝑒𝑠 = s𝑟𝑒𝑠 over ℤ.

We first construct a key extension gadget for modular arithmetic computation over ℤ𝑝 that
solves the above issue at the cost of achieving a weaker security. We will then combine two
instances of the weaker gadget to achieve full security. Similarly to Section 4.2, we first construct
the weak and the fully secure key extension schemes under the assumption that the dimension
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of output-wire keys ℓ ′ is double the length of the dimension of input-wire keys ℓ , i.e. ℓ ′ = 2ℓ .
Applying Transformation. 1 to the fully secure scheme then removes this restriction.

Construction 5 (length-doubling weak key extension for modular arithmetic). This construction
uses two LHE schemes lhe, lhe as ingredients, where lhe has a fixed key magnitude bound 𝐵𝑠 =

𝐵𝑠(_) < 2poly(_) . This construction additionally uses a (ℓsmdg, 1/4,_1,_2)-seeded smudger scheme
Smdg as described in Section 5.1, which is guaranteed to exist by Theorem 4.

• KE.KeyGenpp(1_, 1ℓ ): Generate two smudging source vectors s1 ← {0, 1}ℓ ∗ where ℓ ∗ = ℓ𝑠ℓsmdg,
and s2 as

r2 ← [0, ⌊(𝑝 − 1)/2⌋]ℓ ∗ , s2 = (1 − s1) · ⌊𝑝/2⌋ + r2 mod 𝑝. (8)

Sample a one-time pad 𝑟 ← ℤ𝑝, and output z𝑖𝑛1 = (s1, 1), z𝑖𝑛2 = (𝑟s1 + s2, 𝑟) computed over
ℤ𝑝.

Note: For any 𝑥 ∈ I = ℤ𝑝, let 𝑦 = 𝑥 + 𝑟 mod 𝑝, we have

L𝑖𝑛 = 𝑥z𝑖𝑛1 + z
𝑖𝑛
2 = (𝑦s1 + s2, 𝑦) mod 𝑝.

We also define a convenient syntax KE.KeyGenpp(1_, 1ℓ ; 𝑟) to mean the algorithm uses the pro-
vided 𝑟 value in the above description, while still sampling s1, r2 at random.

• KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ): Recover smudging source vectors s1, s2 ∈ ℤℓ ∗ and a one-time
pad 𝑟 ∈ ℤ𝑝 from the input-wire keys z𝑖𝑛1 , z𝑖𝑛2 . Sample ℓ𝑠 smudging seeds sd𝑖 ← Smdg.Gen(1ℓ𝑠𝑚𝑑𝑔 , 1/4)
for 𝑖 ∈ [ℓ𝑠], and compute two LHE keys s∗1 , s∗2 ∈ ℤℓ𝑠 from the source vectors.

s∗1 = Smdg.Smudge(s1; {sd𝑖}), s∗2 = Smdg.Smudge(s2; {sd𝑖}).

Then encrypt z𝑜𝑢𝑡1 and z′𝑜𝑢𝑡2 = z𝑜𝑢𝑡2 − 𝑟z𝑜𝑢𝑡1 (mod 𝑝) under the LHE keys s∗1 , s
∗
2 to produce

ciphertexts ct1, ct2.

ct1 ← lhe.Enc(𝑠∗1 , z𝑜𝑢𝑡1 ), ct2 ← lhe.Enc(𝑠∗2, z′
𝑜𝑢𝑡
2 ).

Finally, add smudging noises e𝑖 ← [−𝛼𝑖,𝛼𝑖]ℓ
∗ to ct1, ct2 via homomorphic evaluation to

produce ct′1, ct
′
2.

𝑖 = 1, 2 ct𝑒,𝑖 ← lhe.Enc(0, e𝑖), ct′𝑖 ← lhe.Eval(+, ct𝑖, ct𝑒,𝑖).

The smudging noise magnitudes 𝛼1,𝛼2 are set to 𝛼1 = _𝜔 (1) max(𝑝, 𝐵𝑒)2, 𝛼2 = _𝜔 (1)𝛼2
1 , such

that 𝛼2 = 𝛼 as set in Eq. (7). Output the garbled table tb = (ct′1, ct′2, {sd𝑖}𝑖∈[ℓ𝑠 ]).

Note: The smudging seeds {sd𝑖}𝑖∈[ℓ𝑠 ] in the above construction can computed using a PRG in-
stead. We can output only the short PRG seed as an optimization.

• KE.Decpp(L𝑖𝑛, tb): Parse the input-wire label as L𝑖𝑛 = (s𝑟𝑒𝑠, 𝑦) where s𝑟𝑒𝑠 ∈ ℤℓ ∗
𝑝 , and 𝑦 ∈ ℤ𝑝,

and tb = (ct′1, ct′2, {sd𝑖}𝑖∈[ℓ𝑠 ]). Treat s𝑟𝑒𝑠, 𝑦 as values over [0, 𝑝 − 1] ⊂ ℤ, and compute a
smudging source vector s′𝑟𝑒𝑠 ∈ ℤℓ ∗ (with components 𝑠′

𝑟𝑒𝑠,𝑖
) as follows:

𝑠′𝑟𝑒𝑠,𝑖 =

{
𝑠𝑟𝑒𝑠,𝑖 + 𝑝 if 𝑦 > ⌊𝑝/2⌋ , 𝑠𝑟𝑒𝑠,𝑖 < ⌊𝑝/2⌋
𝑠𝑟𝑒𝑠,𝑖 otherwise.

(9)
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Then use s′𝑟𝑒𝑠 to compute a LHE key s∗𝑟𝑒𝑠 = Smdg.Smudge(s′𝑟𝑒𝑠; {sd𝑖}). Finally, recover m𝑟𝑒𝑠

by computing homomorphically evaluating the function 𝑓 (𝑥1, 𝑥2) = 𝑦𝑥1 + 𝑥2 over ct′1, ct
′
2,

and decrypt the output ciphertext using the LHE key s∗𝑟𝑒𝑠.

ct𝑟𝑒𝑠 ← lhe.Eval( 𝑓 , ct′1, ct′2), m𝑟𝑒𝑠 = lhe.Dec(s∗𝑟𝑒𝑠, ct𝑟𝑒𝑠),

Output L𝑜𝑢𝑡 = m𝑟𝑒𝑠 ∈ ℤℓ ′
𝑝 .

Correctness. We show that the scheme is correct. Similar to the correctness arguments for
Construction 4, we will show that

s∗𝑟𝑒𝑠 = 𝑦s∗1 + s∗2 (over ℤ),

and then invoke Lemma 2.
We have noted in the construction of KE.KeyGen that L𝑖𝑛 = (𝑦s1+s2, 𝑦) mod 𝑝, where 𝑦 = 𝑥+𝑟.

That is, KE.Decpp(L𝑖𝑛, tb) parses L𝑖𝑛 into s𝑟𝑒𝑠 = 𝑦s1 + s2 mod 𝑝, and 𝑦 as values over [0, 𝑝− 1]. Let

s′′𝑟𝑒𝑠 = 𝑦s1 + s2 = 𝑦s1 + (1 − s1) ⌊𝑝/2⌋ + r2 (over ℤ).

We verify the following facts about s′′𝑟𝑒𝑠 (with components 𝑠′′
𝑟𝑒𝑠,𝑖

).

• ∀𝑖 ∈ [ℓ ∗], either 𝑠1,𝑖 = 1, and 𝑠′′
𝑟𝑒𝑠,𝑖

= 𝑦 + 𝑟2,𝑖, or 𝑠1,𝑖 = 0, and 𝑠′′
𝑟𝑒𝑠,𝑖

= ⌊𝑝/2⌋ + 𝑟2,𝑖. That is,

min(𝑦, ⌊𝑝/2⌋) + 𝑟2,𝑖 ≤ 𝑠′′𝑟𝑒𝑠,𝑖 ≤ max(𝑦, ⌊𝑝/2⌋) + 𝑟2,𝑖.

• ∀𝑖 ∈ [ℓ ∗], if 𝑦 ≤ ⌊𝑝/2⌋, then we have

𝑠′′𝑟𝑒𝑠,𝑖 ≤ max(𝑦, ⌊𝑝/2⌋) + 𝑟2,𝑖 ≤ ⌊𝑝/2⌋ + ⌊(𝑝 − 1)/2⌋ < 𝑝.

That is, 𝑠′′
𝑟𝑒𝑠,𝑖

= 𝑠𝑟𝑒𝑠,𝑖 over ℤ.

• ∀𝑖 ∈ [ℓ ∗], if 𝑦 > ⌊𝑝/2⌋, then we have

𝑠′′𝑟𝑒𝑠,𝑖 ≥ min(𝑦, ⌊𝑝/2⌋) + 𝑟2,𝑖 ≥ ⌊𝑝/2⌋ ,

and
𝑠′′𝑟𝑒𝑠,𝑖 ≤ max(𝑦, ⌊𝑝/2⌋) + 𝑟2,𝑖 ≤ (𝑝 − 1) + ⌊(𝑝 − 1)/2⌋ < 𝑝 + ⌊𝑝/2⌋ .

It follows that if 𝑠𝑟𝑒𝑠,𝑖 ≥ ⌊𝑝/2⌋, then 𝑠′′
𝑟𝑒𝑠,𝑖

= 𝑠𝑟𝑒𝑠,𝑖, and if 𝑠𝑟𝑒𝑠,𝑖 < ⌊𝑝/2⌋, then 𝑠′′
𝑟𝑒𝑠,𝑖

= 𝑠𝑟𝑒𝑠,𝑖 + 𝑝.

The above facts about 𝑠′′
𝑟𝑒𝑠,𝑖

matches exactly how we compute 𝑠′
𝑟𝑒𝑠,𝑖

from 𝑠𝑟𝑒𝑠,𝑖 in KE.Dec (Eq. (9)).
Therefore, we have s′𝑟𝑒𝑠 = s′′𝑟𝑒𝑠 = 𝑦s1 + s2 (over ℤ). Note that Smdg.Smudge(·; {sd𝑖}) is a linear
function over ℤ. Hence we have

s∗𝑟𝑒𝑠 = Smdg.Smudge(s′𝑟𝑒𝑠; {sd𝑖})
(linearity) = 𝑦 · Smdg.Smudge(s1; {sd𝑖}) + Smdg.Smudge(s2; {sd𝑖})

= 𝑦s∗1 + s∗2 (over ℤ).

Finally, correctness follows from invoking Lemma 2.
We now define and prove the weaker security satisfied by Construction 5.
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Definition 11 (weak key extension security). Consider a key extension gadget (per Definition 2) for
C = CArith

ℤ𝑝
over I = ℤ𝑝, 𝑝 = 𝑝(_) ≤ 2poly(_) , and a garbling scheme (per Definition 1) with L = ℤ𝑝.

A pair of weak simulators KE.Sim′, KE.Sim′′ for the key extension gadget are two efficient algorithm
with the following syntax.

• KE.Sim′(1_, pp, L𝑜𝑢𝑡, 𝑦) takes the same inputs as KE.Sim in Definition 2, and additionally a value
𝑦 ∈ L = ℤ𝑝. It outputs L̃

𝑖𝑛
, t̃b, similarly to KE.Sim.

• KE.Sim′′(1_, pp, L𝑜𝑢𝑡, 𝑦, z𝑜𝑢𝑡1 ) takes the same inputs as KE.Sim
′, and additionally an output-wire

key z𝑜𝑢𝑡1 ∈ Lℓ ′. It outputs L̃𝑖𝑛
, t̃b, similarly to KE.Sim.

Let 𝛿 = max(1, ⌊𝑝/5⌋). Define the good region GOOD = [𝛿, 𝑝 − 𝛿] ⊂ L = ℤ𝑝. The key exten-
sion gadget is weakly secure if there exists simulators KE.Sim′, KE.Sim′′ such that for all sequences
{z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ }_ where z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ ∈ Lℓ ′, ℓ ′ ≤ 2ℓ , {𝑥_, 𝑦_, 𝑦′_}_ where 𝑥_ ∈ I, 𝑦′_ ∈ L, 𝑦_ ∈ GOOD, the

following indistinguishabilities hold. (For more concise notations, the index _ is suppressed below.){
pp, KE.Sim′(1_, pp, L𝑜𝑢𝑡, 𝑦)

}
≈𝑐

{
pp, L𝑖𝑛, tb

}
,

�������
pp← Setup(1_), 𝑟 = 𝑦 − 𝑥 mod 𝑝,

z𝑖𝑛1 , z𝑖𝑛2 ,← KE.KeyGenpp(1_, 1ℓ ; 𝑟),
tb← KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ),{

pp, KE.Sim′′(1_, pp, L𝑜𝑢𝑡, 𝑦′, z𝑜𝑢𝑡1 )
}

≈𝑠
{
pp, L𝑖𝑛, tb

}
,

�������
pp← Setup(1_), 𝑟′ = 𝑦′ − 𝑥 mod 𝑝

z𝑖𝑛1 , z𝑖𝑛2 ,← KE.KeyGenpp(1_, 1ℓ ; 𝑟′),
tb← KE.Garblepp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ),

where L𝑖𝑛 = z𝑖𝑛1 𝑥 + z𝑖𝑛2 , L
𝑜𝑢𝑡 = z𝑜𝑢𝑡1 𝑥 + z𝑜𝑢𝑡2 mod 𝑝 in the above.

Lemma 4. Construction 4 is weakly secure per Definition 11.

Proof (Lemma 4).Proof (Lemma 4). We construct a simulator KE.Sim′′(1_, pp, L𝑜𝑢𝑡, 𝑦, z𝑜𝑢𝑡1 ) that on input a security
parameter _, public parameters pp = lhe.pp,𝛼 generated by Setup in Figure 5, an arbitray output-
wire label L𝑜𝑢𝑡 ∈ ℤ2ℓ

𝑝 of dimension 2ℓ , the masked input 𝑦 ∈ ℤ𝑝, and one of the output-wire key
z𝑜𝑢𝑡1 ∈ ℤℓ

𝑝, simulates the input-wire label L̃
𝑖𝑛 and the garbled table t̃b = (c̃t′1, c̃t

′
2).

• KE.Sim′′(1_, pp, L𝑜𝑢𝑡, 𝑦, z𝑜𝑢𝑡1 ): Follow the honest algorithms KE.KeyGen and KE.Garble to com-
pute the smudging source vectors s1, s2, the LHE keys s∗1 , s

∗
2, and the first output ciphertext

ct′1 (encrypting the provided output-wire key z
𝑜𝑢𝑡
1 under the LHE key s∗1).

Simulate ct′2 via homomorphic evaluation of lhe, subject to the constraint that decoding
must produce the correct output-wire label L𝑜𝑢𝑡. More specifically, compute the LHE key
s∗𝑟𝑒𝑠 = 𝑦s∗1 + s∗2 over ℤ, and compute

c̃t𝑟𝑒𝑠 ← lhe.Enc(s∗𝑟𝑒𝑠, L𝑜𝑢𝑡).

Then, evaluate the function 𝑓𝑅 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1, over c̃t𝑟𝑒𝑠 and ct′1 to produce c̃t2

c̃t2 ← lhe.Eval( 𝑓𝑅, c̃t𝑟𝑒𝑠, ct′1).

Finally, smudge the noise in c̃t2 to produce c̃t
′
2 as follows

e2 ← [−𝛼2,𝛼]2ℓ , ct𝑒,2 ← lhe.Eval(0, e2), c̃t′2 ← lhe.Eval(+, c̃t2, ct𝑒,2).

Computes s𝑟𝑒𝑠 = 𝑦s1 + s2 (mod 𝑝), and output L̃𝑖𝑛
= (s𝑟𝑒𝑠, 𝑦), t̃b = (ct′1, c̃t

′
2).
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The fact that KE.Sim′′ statistically simulates ct′2 follows from Lemma 1 in a similar way as argued
in the proof of Lemma 3, Hyb2. We omit details here, and conclude that KE.Sim′′ described above
is secure.

We next construct a simulator KE.Sim′′(1_, pp, L𝑜𝑢𝑡, 𝑦), that on input a security parameter _,
public parameters pp = (lhe.pp,𝛼) generated by Setup in Figure 5, an arbitray output-wire label
L𝑜𝑢𝑡 ∈ ℤ2ℓ

𝑝 of dimension 2ℓ , and the masked input 𝑦 ∈ ℤ𝑝, simulates the input-wire label L̃
𝑖𝑛 and

the garbled table t̃b = (c̃t′1, c̃t
′
2).

• KE.Sim′(1_, pp, L𝑜𝑢𝑡, 𝑦): Follow the honest algorithms KE.KeyGen and KE.Garble to sample
the smudging source vectors s1 ← {0, 1}ℓ ∗ , and s2 as

r2 ← [0, ⌊(𝑝 − 1)/2⌋]ℓ ∗ , s2 = (1 − s1) · ⌊𝑝/2⌋ + r2 mod 𝑝.

Sample smudging seeds sd𝑖 ← Smdg.Gen(1ℓ𝑠𝑚𝑑𝑔 , 1/4) for 𝑖 ∈ [ℓ𝑠], and compute the two LHE
keys s∗1 , s

∗
2 ∈ ℤℓ𝑠 from the source vectors.

s∗1 = Smdg.Smudge(s1; {sd𝑖}), s∗2 = Smdg.Smudge(s2; {sd𝑖}).

Simulate the ciphertext c̃t1 as the sum of two encrpytions of 0 ∈ ℤ2ℓ , under a fresh LHE
key s← lhe.KeyGen(1ℓ𝑠) and the key s∗1 respectively.

ct𝑠 ← lhe.Enc(s, 0), ct0 ← lhe.Enc(s∗1 , 0), c̃t1 ← lhe.Eval(+, ct𝑠, ct0).

Then smudge the noise in c̃t1 with a noise vector e1 ← [−𝛼1,𝛼1]2ℓ to produce c̃t
′
1 as follows:

ct𝑒1 ← lhe.Enc(0, e1), c̃t′1 ← lhe.Eval(+, c̃t1, ct𝑒1).

Next, compute the vector s𝑟𝑒𝑠 = 𝑦s1+s2 mod 𝑝 and follow the honest decryption algorithm
KE.Dec to compute 𝑠∗𝑟𝑒𝑠. Then simulate c̃t

′
2 in the same way as described in KE.Sim′′ above:

c̃t𝑟𝑒𝑠 ← lhe.Enc(s∗𝑟𝑒𝑠, L𝑜𝑢𝑡), c̃t2 ← lhe.Eval( 𝑓𝑅, c̃t𝑟𝑒𝑠, ct′1),

where 𝑓𝑅 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑥1. Finally, smudge the noise in c̃t2 to produce c̃t
′
2 as follows

e2 ← [−𝛼2,𝛼2]2ℓ , ct𝑒,2 ← lhe.Eval(0, e2), c̃t′2 ← lhe.Eval(+, c̃t2, ct𝑒,2).

Output L̃𝑖𝑛
= (s𝑟𝑒𝑠, 𝑦) and t̃b = (c̃t′1, c̃t

′
2, {sd𝑖}).

We now argue that KE.Sim′ described above satisfies the security requirement. In particular, let
ℓ ′ = ℓ ′(_) be any polynomial, consider any sequences {z𝑜𝑢𝑡1,_ , z

𝑜𝑢𝑡
2,_ }_ where z

𝑜𝑢𝑡
1,_ , z

𝑜𝑢𝑡
2,_ ∈ Kℓ ′, and

{𝑥_, 𝑦_}_ where 𝑥_ ∈ I, 𝑦_ ∈ GOOD. We define five hybrids, Hyb1, . . . ,Hyb5, where the first hybrid
is exactly the real-world distribution in Definition 11, and the last hybrid is exactly the simulated
distribution using KE.Sim′. (In the following, we surpress the subscript _.)

• Hyb1: compute pp ← Setup(1_), and compute L𝑖𝑛, tb = (ct′1, ct′2, {sd𝑖}) as described in
KE.KeyGen, KE.Garble:

s1 ← {0, 1}ℓ ∗ , r2 ← [0, ⌊(𝑝 − 1)/2⌋]ℓ ∗ , s2 = (1 − s1) · ⌊𝑝/2⌋ + r2 mod 𝑝,

𝑖 ∈ [ℓ𝑠], sd𝑖 ← Smdg.Gen(1ℓsmdg , 1/4),
s∗1 = Smdg.Smudge(s1; {sd𝑖}𝑖), s∗2 = Smdg.Smudge(s2; {sd𝑖}𝑖),

z′𝑜𝑢𝑡2 = z𝑜𝑢𝑡2 − 𝑟z𝑜𝑢𝑡2 mod 𝑝, ct1 ← lhe.Enc(s∗1 , z𝑜𝑢𝑡1 ), ct2 ← lhe.Enc(s∗2, z′
𝑜𝑢𝑡
1 ),

𝑖 = 1, 2 e𝑖 ← [−𝛼𝑖,𝛼𝑖]ℓ
′
, ct𝑒,𝑖 ← lhe.Enc(0, e𝑖), ct′𝑖 ← lhe.Eval(+, ct𝑖, ct𝑒,𝑖),

Let 𝑦 = 𝑥 + 𝑟, s𝑟𝑒𝑠 = 𝑦s1 + s2 mod 𝑝, and set L𝑖𝑛 = (s𝑟𝑒𝑠, 𝑦).
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• Hyb2: We use L𝑜𝑢𝑡 = 𝑥z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 mod 𝑝 to simulate c̃t′2, while keeping everything else
unchanged. We first compute s∗𝑟𝑒𝑠 from s𝑟𝑒𝑠, 𝑦 in the same way as described in KE.Dec. We
next compute

c̃t𝑟𝑒𝑠 = lhe.Enc(s∗𝑟𝑒𝑠, L𝑜𝑢𝑡), c̃t2 ← lhe.Eval( 𝑓𝑅, c̃t𝑟𝑒𝑠, ct′1),

where 𝑓𝑅 (𝑥1, 𝑥2) = 𝑥1−𝑦𝑥2. Finally we add a smudging noise to c̃t2 to produce c̃t
′
2 as follows:

e2 ← [−𝛼2,𝛼2]2ℓ , ct𝑒,2 ← lhe.Eval(0, e2), c̃t′2 ← lhe.Eval(+, c̃t2, ct𝑒,2).

We have shown in correctness that s∗𝑟𝑒𝑠 = 𝑦s∗1 + s∗2 over ℤ. Hence by Lemma 1, this hybrid is
statistically close to the previous one.

• Hyb3: We use s∗1 to smudge a fresh LHE key s, while keeping everything else unchanged.
We compute

s← lhe.KeyGen(1ℓ𝑠), s̃∗1 = s
∗
1 + s (over ℤ).

We first argue that given s𝑟𝑒𝑠 = 𝑦s1 + s2 mod 𝑝, with overwhelming probability, at least 1/4
of the components of s1 remains hidden.

Claim 2. Let s1, s𝑟𝑒𝑠 be computed as described in Hyb1. Let 𝑠1,𝑖, 𝑠𝑟𝑒𝑠,𝑖 be their components. If
𝑦 ≤ ⌊𝑝/2⌋, then for all 𝑣 ∈ [⌊𝑝/2⌋ , 𝑦 + ⌊(𝑝 − 1)/2⌋], we have

∀𝑖 ∈ [ℓ ∗], Pr
[
𝑠1,𝑖 = 1

�� 𝑠𝑟𝑒𝑠,𝑖 = 𝑣
]
= Pr

[
𝑠1,𝑖 = 0

�� 𝑠𝑟𝑒𝑠,𝑖 = 𝑣
]
= 1/2.

If 𝑦 > ⌊𝑝/2⌋, then for all 𝑣 ∈ [𝑦, 𝑝 − 1], we similarly have

∀𝑖 ∈ [ℓ ∗], Pr
[
𝑠1,𝑖 = 1

�� 𝑠𝑟𝑒𝑠,𝑖 = 𝑣
]
= Pr

[
𝑠1,𝑖 = 0

�� 𝑠𝑟𝑒𝑠,𝑖 = 𝑣
]
= 1/2.

Claim 3. Let s1, s𝑟𝑒𝑠 be computed as described in Hyb1. Then with overwhelming probability, at
least 1/4 components of s𝑟𝑒𝑠 have values satisfying the condition in Claim 2.

Now, we can invoke the smudging property of Smdg.Smudge to argue that

{̃s∗1 , s𝑟𝑒𝑠, {sd𝑖}} ≈𝑠 {s∗1 , s𝑟𝑒𝑠, {sd𝑖}}.

Hence this hybrid is statistically close to the previous one.

• Hyb4: We simulate c̃t
′
1, while keeping everything else unchanged. We compute

ct𝑠 ← lhe.Enc(s, z𝑜𝑢𝑡1 ), ct0 ← lhe.Enc(s∗1 , 0),
c̃t1 ← lhe.Eval(+, ct𝑠, ct0).

Then smudge the noise in c̃t1 to produce c̃t
′
1 as follows.

e1 ← [−𝛼1,𝛼1]2ℓ , ct𝑒,1 ← lhe.Eval(0, e1), c̃t′1 ← lhe.Eval(+, c̃t1, ct𝑒,1).

By Lemma 1, this hybrid is statistically close to the previous one.

• Hyb5: We simulate c̃t𝑠 as an encryption of 0 (instead of z𝑜𝑢𝑡1 ), while keeping everything else
unchanged. We compute

c̃t𝑠 ← lhe.Enc(s, 0).
Because s is a fresh LHE key, not used for computing anything else, by the security of lhe,
this hybrid is computationally indistinguishable from the previous one. □
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We now construct a fully secure key extension gadget using Construction 5.

Construction 6 (length-doubling key extension for modular arithmetic). This construction uses
the weakly secure key extension scheme KE in Construction 5 as an ingredient.

• KE.KeyGenpp(1_, 1ℓ ): Sample two correlated random values 𝑟 ← ℤ𝑝, 𝑟′ = 𝑟 + 2𝛿 mod 𝑝,
where 𝛿 = max(1, ⌊𝑝/5⌋). Then run two instances of the weakly secure scheme, using 𝑟, 𝑟′

respectively (using the convenient syntax defined in Construction 5)

z𝑖𝑛1,1, z
𝑖𝑛
2,1 ← KE.KeyGenpp(1_, 1ℓ ; 𝑟), z𝑖𝑛1,2, z

𝑖𝑛
2,2 ← KE.KeyGenpp(1_, 1ℓ ; 𝑟′).

Concatenate the outputs from the weak schemes, and output them as z𝑖𝑛1 = (z𝑖𝑛1,1, z
𝑖𝑛
1,2), and

z𝑖𝑛2 = (z𝑖𝑛2,1, z
𝑖𝑛
2,2).

• KE.Garble
pp(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , z𝑖𝑛1 , z𝑖𝑛2 ): Parse the input-wire keys z

𝑖𝑛
1 , z𝑖𝑛2 as z𝑖𝑛1 = (z𝑖𝑛1,1, z

𝑖𝑛
1,2), z

𝑖𝑛
2 =

(z𝑖𝑛2,1, z
𝑖𝑛
2,2). Additively share the output-wire keys z𝑖𝑛1 , z𝑖𝑛2 as z𝑜𝑢𝑡1,1 , r

𝑜𝑢𝑡
2,1 ← ℤℓ ′

𝑝 and z𝑜𝑢𝑡1,2 =

z𝑜𝑢𝑡1 − z𝑜𝑢𝑡1,1 , z
𝑜𝑢𝑡
2,2 = z𝑜𝑢𝑡2 − z𝑜𝑢𝑡2,1 (mod 𝑝). Then run two instances of the weakly secure scheme

using the two shares respectively.

tb1 ← KE.Garblepp(z𝑜𝑢𝑡1,1 , z
𝑜𝑢𝑡
2,1 , z

𝑖𝑛
1,1, z

𝑖𝑛
2,1),

tb2 ← KE.Garblepp(z𝑜𝑢𝑡1,2 , z
𝑜𝑢𝑡
2,2 , z

𝑖𝑛
1,2, z

𝑖𝑛
2,2),

Output the garbled table tb = (tb1, tb2).

• KE.Decpp(L𝑖𝑛, tb): Parse the input-wire label L𝑖𝑛 and the garbled table tb as a concatenation
of two (weak) instances: L𝑖𝑛 = (L𝑖𝑛

1 , L𝑖𝑛
2 ), tb = (tb1, tb2). Run the decoding algorithm from

the weak scheme on each of the two instances to recover two output-wire labels L𝑜𝑢𝑡
1 , L𝑜𝑢𝑡

2 ,
and output their sum L𝑜𝑢𝑡 = L𝑜𝑢𝑡

1 + L𝑜𝑢𝑡
2 mod 𝑝.

L𝑜𝑢𝑡
1 = KE.Decpp(L𝑖𝑛

1 , tb1), L𝑜𝑢𝑡
2 = KE.Decpp(L𝑖𝑛

2 , tb2).

Note: The correctness of this construction directly follows from that of KE.

Lemma 5. Construction 6 is secure per Definition 2.

Proof (Lemma 5).Proof (Lemma 5). We construct a simulator KE.Sim(1_, pp, L𝑜𝑢𝑡) whose goal is to simulate L̃𝑖𝑛 and
t̃b = (t̃b1, t̃b2). It first samples 𝑦 ← ℤ𝑝, and computes 𝑦′ = 𝑦 + 2𝛿 mod 𝑝. The following claim
shows that at least one of 𝑦, 𝑦′ is in the GOOD region, as defined in Definition 11. Without loss
of generality, assume 𝑦 ∈ GOOD.

Claim 4. For all integer 𝑝 > 2, let 𝛿 = max(1, ⌊𝑝/5⌋), and GOOD = [𝛿, 𝑝 − 𝛿] ⊂ ℤ𝑝. For all 𝑦 ∈ ℤ𝑝,
𝑦′ = 𝑦 + 2𝛿 mod 𝑝, at least one of 𝑦, 𝑦′ is in GOOD.

The simulator samples
z𝑜𝑢𝑡1,2 ← ℤℓ ′

𝑝 , L𝑜𝑢𝑡
2 ← ℤℓ ′

𝑝 ,

and computes L𝑜𝑢𝑡
1 = L𝑜𝑢𝑡 − L𝑜𝑢𝑡

2 mod 𝑝. It runs

L̃𝑖𝑛

1 , t̃b1 ← KE.Sim′(1_, pp, L𝑜𝑢𝑡
1 , 𝑦),

L̃𝑖𝑛

2 , t̃b2 ← KE.Sim′′(1_, pp, L𝑜𝑢𝑡
2 , 𝑦′, z𝑜𝑢𝑡1,2 ),
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where KE.Sim′, KE.Sim′′ are two weak simulators guaranteed by the security of KE. Finally, it
outputs L̃𝑖𝑛

= (L̃𝑖𝑛

1 , L̃𝑖𝑛

2 ), t̃b = (t̃b1, t̃b2).
We now argue that KE.Sim described above satisfies the security requirement. In particular,

let ℓ ′ = ℓ ′(_) be any polynomial, consider any sequences {z𝑜𝑢𝑡1,_ , z
𝑜𝑢𝑡
2,_ }_ where z

𝑜𝑢𝑡
1,_ , z

𝑜𝑢𝑡
2,_ ∈ L

ℓ ′, and
{𝑥_}_ where 𝑥_ ∈ I. We define four hybrids, Hyb1, . . . ,Hyb4, where the first hybrid is exactly the
real-world distribution in Definition 2, and the last hybrid is exactly the simulated distribution
using KE.Sim. (In the following, we surpress the subscript _.)

• Hyb1: We first compute pp ← Setup(1_), and compute z𝑖𝑛1,1, z
𝑖𝑛
2,1, z

𝑖𝑛
1,2, z

𝑖𝑛
2,2, and tb1, tb2 as

described in KE.KeyGen, KE.Garble:

𝑟 ← ℤ𝑝, 𝑟′ = 𝑟 + 2𝛿,

z𝑖𝑛1,1, z
𝑖𝑛
2,1 ← KE.KeyGenpp(1_, 1ℓ ; 𝑟), z𝑖𝑛1,2, z

𝑖𝑛
2,2 ← KE.KeyGenpp(1_, 1ℓ ; 𝑟′),

z𝑜𝑢𝑡1,2 , z
𝑜𝑢𝑡
2,2 ← ℤℓ ′

𝑝 , z𝑜𝑢𝑡1,1 = z𝑜𝑢𝑡1 − z𝑜𝑢𝑡1,2 , z𝑜𝑢𝑡2,1 = z𝑜𝑢𝑡2 − z𝑜𝑢𝑡2,2 mod 𝑝,

𝑖 = 1, 2 tb𝑖 ← KE.Garblepp(z𝑜𝑢𝑡1,𝑖 , z
𝑜𝑢𝑡
2,𝑖 , z

𝑖𝑛
1,𝑖, z

𝑖𝑛
2,𝑖).

Let L𝑖𝑛
𝑖
= 𝑥z𝑖𝑛1,𝑖 + z

𝑖𝑛
2,𝑖 mod 𝑝 for 𝑖 = 1, 2. The distribution is defined as

Hyb1 = {pp, L𝑖𝑛 = (L𝑖𝑛
1 , L𝑖𝑛

2 ), tb = (tb1, tb2)}.

• Hyb2: Let 𝑦 = 𝑥 + 𝑟, 𝑦′ = 𝑥 + 𝑟′ mod 𝑝. By Claim 4, at least one of 𝑦, 𝑦′ is in GOOD. Without
loss of generality, assume 𝑦 ∈ GOOD. We use KE.Sim′′ to simulate L̃𝑖𝑛

2 , t̃b2, while keeping
everything else unchanged. Let L𝑜𝑢𝑡

2 = 𝑥z𝑜𝑢𝑡1,2 + z
𝑜𝑢𝑡
2,2 mod 𝑝. We run

L̃𝑖𝑛

2 , t̃b2 ← KE.Sim′′(1_, pp, L𝑜𝑢𝑡
2 , 𝑦′, z𝑜𝑢𝑡1,2 ).

By the security of KE.Sim′′, this hybrid is statistically close to the previous one.

Claim 5. Hyb2 ≈𝑠 Hyb1.

• Hyb3: We use KE.Sim′ to simulate L̃
𝑖𝑛

1 , t̃b1, while keeping everything else unchanged. Let
L𝑜𝑢𝑡

1 = L𝑜𝑢𝑡 − L𝑜𝑢𝑡
2 mod 𝑝. We run

L̃𝑖𝑛

1 , t̃b1 ← KE.Sim′(1_, pp, L𝑜𝑢𝑡
1 , 𝑦).

Since 𝑦 ∈ GOOD, by the security of KE.Sim′, this hybrid is computationally indistinguishable
from the previous one.

Claim 6. Hyb3 ≈𝑐 Hyb2.

• Hyb4: We simulate 𝑦, 𝑦′ and L𝑜𝑢𝑡
2 as

𝑦← ℤ𝑝, 𝑦′ = 𝑦 + 2𝛿 mod 𝑝, L𝑜𝑢𝑡
2 ← ℤℓ ′

𝑝 .

By the randomness of 𝑟 and z𝑜𝑢𝑡2,2 , this hybrid is identical to the previous one.

Claim 7. Hyb4 ≡ Hyb3.

□
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Setup Algorithm of Mixed Bounded Integer and Boolean Computation

Parameters and Tools: The computation is 𝐵-bounded. The construction uses two ingredients:

• the scheme lhe from Construction 1, which is associated with a bound 𝐵𝑠 on the infinity norm
of LHE keys sampled by lhe.KeyGen, and a bound 𝐵𝑒 on the decryption noise of the scheme
lhe underlying lhe;

• a linear seeded (ℓsmdg, 1/4,_1,_2)-smudger scheme Smudge from Theorem 4, which is able to
smudge any distribution over {0, 2_1 } with 𝑂(2−_2 ) statistical distance, using a (ℓsmdg, 1/4)-bit-
fixing source.

• a garbling scheme for Boolean circuits BG, which is associated with a bound ℓ𝑘 = 𝑂(_) on the
bit length of a evaluation key.

All of 𝑝, 𝐵𝑠, and 𝐵𝑒 are bounded by 2poly(_) .

Setup(1_) invokes the setup algorithm of the lhe scheme

pp← lhe.Setup(1_, 1Ψ, 𝑝, 𝐵max),

and outputs pp = (pp, ℓ ), where the parameters are set as below.

• Parameters of the lhe scheme (with key dimension ℓ𝑠 = poly(_, log 𝐵max)):

message modulus 𝑝 = _𝜔 (1)𝐵 · 𝐵𝑠 (10)

smudging noise level 𝛼 = _𝜔 (1) max(𝑝, 𝐵𝑒)4 (11)
maximal noise level 𝐵max = 𝑝(𝑝 + 1 +𝛼 + 2𝐵𝑒)
message dimension bound Ψ = 2(ℓ𝑠ℓsmdg + ℓ𝑘)

• The dimension of keys/labels associated with input wires of key extension gate is set to ℓ =

ℓ𝑠 + 1.

Figure 6: Setup for mixed bounded integer and Boolean computation garbling.

6 Bit Decomposition for Mixed Computation

In this section we construct the bit decomposition gadget for mixed bounded integer and Boolean
computation.

6.1 The Setup Algorithm

Similarly to Section 4, we first describe Setup (in Figure 6) of the garbling scheme, which is
shared by our gadget constructions in the mixed bounded integer and Boolean computation
model. The label space L of the garbling scheme is ℤ𝑝.
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6.2 Bit Decomposition

Our observation for constructing the bit decomposition gadget is that it’s enough to construct a
gadget for truncation (by powers-of-2). Such a gadget has the following simplified syntax:

TC.Garble(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , 𝑖) → z𝑖𝑛1 , z𝑖𝑛2 , tb

TC.Dec(L𝑖𝑛
𝑥 , tb) → L𝑜𝑢𝑡

⌊𝑥⌋2𝑖
.

����� L𝑖𝑛
𝑥 = 𝑥z𝑖𝑛1 + z

𝑖𝑛
2 ,

L𝑜𝑢𝑡
⌊𝑥⌋2𝑖

= ⌊𝑥⌋2𝑖 z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 mod 𝑝.

It says that given an input label L𝑖𝑛
𝑥 and the garbled table tb, an evaluator can recover the output

label L𝑜𝑢𝑡
⌊𝑥⌋2𝑖

. Note that for any non-negative integer 𝑥, we have bits(𝑥)𝑖 = ⌊𝑥⌋2𝑖−1 − 2 ⌊𝑥⌋2𝑖 . (For
simplicity, we only consider non-negative integer input 𝑥 in this overview.) Therefore, if we
want to obtain an output label L𝑜𝑢𝑡

bits(𝑥)𝑖 = bits(𝑥)𝑖z
𝑜𝑢𝑡
1 + z𝑜𝑢𝑡2 mod 𝑝, it’s enough to obtain

u = ⌊𝑥⌋2𝑖 z𝑜𝑢𝑡1 + r
v = ⌊𝑥⌋2𝑖−1 z𝑜𝑢𝑡1 + 2r + z𝑜𝑢𝑡2

=⇒ L𝑜𝑢𝑡
bits(𝑥)𝑖 = v − 2u mod 𝑝,

where r can be just a random vector over ℤ𝑝. Now, to obtain the labels u, v in the above, we
just run TC.Garble(z𝑜𝑢𝑡1 , r, 𝑖) and TC.Garble(z𝑜𝑢𝑡1 , 2r + z𝑜𝑢𝑡2 , 𝑖 − 1). Repeating the above for each bit
position 𝑖 gives a bit decomposition gadget.

However, we can only construct a truncation scheme TC′ with a weaker correctness and
security guarantee. TC′.Garble takes additionally an argument 𝑟, such that TC′.Dec recovers L𝑜𝑢𝑡

⌊𝑦⌋2𝑖
,

where 𝑦 = 𝑥 + 𝑟 over ℤ.

TC′.Garble(z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 , 𝑖, 𝑟) → z𝑖𝑛1 , z𝑖𝑛2 , tb

TC′.Dec(L𝑖𝑛
𝑥 , tb) → L𝑜𝑢𝑡

⌊𝑦⌋2𝑖
.

����� L𝑖𝑛
𝑥 = 𝑥z𝑖𝑛1 + z

𝑖𝑛
2 ,

L𝑜𝑢𝑡
⌊𝑦⌋2𝑖

= ⌊𝑦⌋2𝑖 z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 mod 𝑝.

Security only holds if the additional argument 𝑟 is set to be a secret random integer that can
statistically smudge the input 𝑥.

With this imperfect truncation scheme TC′, the earlier observation only allows us to obtain
L𝑜𝑢𝑡
bits(𝑦)𝑖 = bits(𝑦)𝑖z

𝑜𝑢𝑡
1 + z

𝑜𝑢𝑡
2 mod 𝑝, where 𝑦 = 𝑥 + 𝑟 over ℤ, for some secret random non-negative

integer 𝑟. To construct a true bit decomposition scheme that “removes” the random value 𝑟

without hurting security, our idea is to use the labels L𝑜𝑢𝑡
bits(𝑦)𝑖 to encode evaluation keys of a Yao’s

garbled (Boolean) circuit 𝐶𝑟
sub, whose input is exactly bits(𝑦), and has 𝑟 hard-coded within. To

achieve this, we set

z̄𝑖1 = k̄
𝑖

1 − k̄
𝑖

0 mod 𝑝

z̄𝑖2 = k̄𝑖

0

=⇒
L̄𝑖
bits(𝑦)𝑖 = bits(𝑦)𝑖z̄

𝑖
1 + z̄

𝑖
2

= k̄𝑖

bits(𝑦)𝑖 mod 𝑝,
(12)

where k̄𝑖

0, k̄
𝑖

1 encodes (as ℤ𝑝 vectors) the binary evaluation keys k𝑖
0,k

𝑖
1 of a Yao’s garbled circuit.

Now, when an evaluator obtains {L̄𝑖
bits(𝑦)𝑖}𝑖, it can further use them to evaluate the garbled

circuit 𝐶𝑟
sub, which we define 𝐶𝑟

sub(bits(𝑦)) to output the desired labels {L𝑖
bits(𝑥)𝑖}𝑖. This gives

us a correct bit decomposition scheme. By the security of Yao’s garbled circuit, 𝐶𝑟
sub hides the

random value 𝑟, which allows us to prove security.
Below, we follow the above outline to first construct an imperfect truncation scheme TC′,

with a more convenient “batch” syntax.
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Constructing the Imperfect Truncation Scheme. The algorithms below have access to the pub-
lic parameter pp that Setup algorithm (Figure 6) generates, which contains the public parameter
pp of the LHE scheme lhe and the dimension ℓ of keys of the input wire (z𝑖𝑛1 , z𝑖𝑛2 ). The dimension
of output-wire keys ({z𝑖1, z

𝑖
2}) is 2ℓ𝑘, where ℓ𝑘 is the length of an (Boolean) evaluation key in the

Boolean garbling scheme BG.

• TC′.Garblepp(1_, {z𝑖1, z
𝑖
2}𝑖∈[𝑑] , 𝑟): Takes as input a security parameter _, 𝑑 output-wire key

pairs {z𝑖1, z
𝑖
2}𝑖∈[𝑑] where z

𝑖
1, z

𝑖
1 ∈ ℤ

2ℓ𝑘
𝑝 , and a integer 𝑟 in the range of [0, 2𝐵smdg], where

𝐵smdg = _𝜔 (1)𝐵. It outputs an input-wire key pair z𝑖𝑛1 , z𝑖𝑛2 ∈ ℤ
ℓ
𝑝, and a garbled table tb.

• TC′.Decpp(L𝑖𝑛, tb): Takes as input an input-wire label L𝑖𝑛 ∈ ℤℓ
𝑝 and a garbled table tb. It

outputs the 𝑑 corresponding output-wire labels {L𝑖}𝑖∈[𝑑], where L𝑖 ∈ ℤ2ℓ𝑘
𝑝 .

The correctness of the scheme TC′ is described below.

TC′.Garble(1_, {z𝑖1, z
𝑖
2}𝑖∈[𝑑] , 𝑟) → z𝑖𝑛1 , z𝑖𝑛2 , tb

TC′.Dec(L𝑖𝑛
𝑥 , tb) → {L𝑖}𝑖∈[𝑑] ,

�����L𝑖𝑛
𝑥 = 𝑥z𝑖𝑛1 + z

𝑖𝑛
2 ,

L𝑖 = ⌊𝑦⌋2𝑖−1 z𝑖1 + z
𝑖
2 mod 𝑝.

(13)

where 𝑦 = 𝑟 + 𝑥 over ℤ.

Construction 7 (imperfect truncation). The algorithm uses a linear seeded (ℓsmdg, 1/4,_1,_2)-
smudger scheme Smudge (Theorem 4), used for smudging LHE keys generated by the lhe.KeyGen
algorithm, which has infinity norm bounded by 𝐵𝑠. To this end, we set the (log) smudging range
_1 = log 𝐵𝑠, the (log) smudging distance _2 = 𝜔(log_), and the smudging source dimension
ℓsmdg = 𝑂(_1 + _2).

• TC′Garblepp(1_, {z𝑖1, z
𝑖
2}𝑖∈[𝑑] , 𝑟): Proceeds in two steps.

1. Prepare 𝑑 pairs of LHE keys {s𝑖,∗1 , s𝑖,∗2 }𝑖∈[𝑑]. For 𝑖 = 1, sample s1,∗
1 ← lhe.KeyGen(1ℓ𝑠),

s1,∗
2 ← [−𝐵

′
smdg, 𝐵

′
smdg]

ℓ𝑠 , where 𝐵′smdg = _𝜔 (1)𝐵smdg < 𝑝/4. (The inequality is satisfied
because the message modulus 𝑝 is set sufficiently large; see Eq. (10)). Define the input
keys z𝑖𝑛1 , z𝑖𝑛2 as

z𝑖𝑛1 = (s1,∗
1 , 1), z𝑖𝑛2 = (𝑟s1,∗

1 + s
1,∗
2 , 𝑟), (over ℤ).

For 𝑖 = 2, . . . , 𝑑, compute two source vectors s𝑖1 ← {0, 1}ℓ𝑠ℓsmdg , and s𝑖2 as

r𝑖2 ← {0, 1}ℓ𝑠ℓsmdg , s𝑖2,1 ← [−𝐵
′
smdg, 𝐵

′
smdg]

ℓ𝑠ℓsmdg ,

s𝑖2,2 = 1 − s𝑖1 + s
𝑖
1 ⊗ r

𝑖
2, s𝑖2 = 2s𝑖2,1 + s

𝑖
2,2 (over ℤ),

(14)

where ⊗ means coordinate-wise multiplication, and sample smudging seeds sd𝑖𝑗 ←
Smdg.Gen(1ℓsmdg , 1/4) for 𝑗 ∈ [ℓ𝑠]. Next, compute LHE keys s𝑖,∗1 , s𝑖,∗2 as (using the short
hand in Eq. (6))

s𝑖,∗1 ← Smdg.Smudge(s𝑖1; {sd𝑖𝑗} 𝑗), s𝑖,∗2 ← Smdg.Smudge(
⌊
s𝑖2
⌋

2 ; {sd𝑖𝑗} 𝑗).

2. Compute LHE ciphertexts ct′,𝑖1 , ct′,𝑖2 encrypting the vectors z𝑖1, z
𝑖
2 under LHE keys s

1,∗
1 , s1,∗

2 ,
for 𝑖 ∈ [𝑑]. First, define noise smudging magnitudes 𝛼1 = _𝜔 (1) max(𝑝, 𝐵𝑒)2, 𝛼2 =

_𝜔 (1)𝛼2
1 such that 𝛼2 = 𝛼 as set in Eq. (11), and compute

𝑗 = 1, 2 ct𝑖𝑗 ← lhe.Enc(s𝑖,∗
𝑗
, (z𝑖𝑗 , s

𝑖+1
𝑗 )).
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Deal with the edge case of 𝑖 = 𝑑 by setting dummy vectors s𝑑+1
1 = s𝑑+1

2 = 0. Next, add
a smudging noise of magnitude 𝛼 𝑗 to ct𝑖𝑗 to obtain ct

′,𝑖
𝑗
, and define the garbled table

tb = ({ct′,𝑖1 , ct′,𝑖2 }, {sd
𝑖
𝑗}). Output z𝑖𝑛1 , z𝑖𝑛2 , tb.

e𝑖𝑗 ← [−𝛼 𝑗 ,𝛼 𝑗]2ℓ𝑘+ℓ𝑠ℓsmdg , ct𝑖𝑒, 𝑗 ← lhe.Enc(0, e 𝑗), ct′,𝑖
𝑗
← lhe.Eval(+, ct𝑖𝑗 , ct

𝑖
𝑒, 𝑗).

• TC′.Decpp(L𝑖𝑛, tb): Treat the input-wire label L𝑖𝑛 as an integer vector and parse it as L𝑖𝑛 =

(s1,∗
𝑟𝑒𝑠, 𝑦), where s1,∗

𝑟𝑒𝑠 ∈ ℤℓ𝑠 , 𝑦 ∈ ℤ. Parse the garbled table tb as tb = ({ct′,𝑖1 , ct′,𝑖2 }𝑖∈[𝑑] , {sd
𝑖
𝑗}

𝑖∈[𝑑]
𝑗∈[ℓ𝑠 ]).

Repeat the following for 𝑖 = 1, . . . , 𝑑: (We use 𝑦𝑖 = ⌊𝑦⌋2𝑖 as short hand in the following.)

1. Homomorphically evaluate the linear function 𝑓 (𝑥1, 𝑥2) = 𝑦𝑖−1𝑥1 + 𝑥2 over ct′,𝑖1 , ct′,𝑖2 ,
decrypt the output ciphertext to obtain m𝑖

𝑟𝑒𝑠.

ct𝑖𝑟𝑒𝑠 ← lhe.Eval( 𝑓 , ct′𝑖1 , ct
′𝑖
2 ), m𝑖

𝑟𝑒𝑠 = lhe.Dec(s
𝑖,∗
𝑟𝑒𝑠, ct𝑖𝑟𝑒𝑠).

Parse m𝑖
𝑟𝑒𝑠 as m𝑖

𝑟𝑒𝑠 = (L𝑖, s𝑖+1
𝑟𝑒𝑠), where L𝑖 ∈ ℤ2ℓ𝑘

𝑝 , and s𝑖+1
𝑟𝑒𝑠 ∈ ℤ

ℓ𝑠ℓsmdg
𝑝 .

2. Treat s𝑖+1
𝑟𝑒𝑠 as an integer vector (denote its 𝑗-th entry by 𝑠𝑖+1

𝑟𝑒𝑠, 𝑗
). Recover the smudging

source vector s′,𝑖+1
𝑟𝑒𝑠 (denote its 𝑗-th entry by 𝑠

′,𝑖+1
𝑟𝑒𝑠, 𝑗

) via

𝑠
′,𝑖+1
𝑟𝑒𝑠, 𝑗

=

⌊
𝑠𝑖+1
𝑟𝑒𝑠, 𝑗

⌋
2
−
{

1 if 𝑦𝑖−1 = 1, 𝑠𝑖+1
𝑟𝑒𝑠, 𝑗

= 0 mod 2
0 otherwise.

(15)

Finally, compute the LHE key s𝑖+1,∗
𝑟𝑒𝑠 for the next iteration

s𝑖+1,∗
𝑟𝑒𝑠 ← Smdg.Smudge(s′,𝑖+1

𝑟𝑒𝑠 ; {sd𝑖𝑗} 𝑗).

After iteration 𝑖 = 𝑑, output the recovered labels {L𝑖}𝑖∈[𝑑].

Correctness. We show that the above scheme is correct as specified by Eq. (13), which requires
that given a correctly generated input-wire label L𝑖𝑛 = 𝑥z𝑖𝑛1 + z

𝑖𝑛
2 (mod 𝑝) with input 𝑥 ∈ ℤ≤𝐵

and a integer 𝑟, and the garbled table tb, the decoding algorithm TC′.Dec recovers the correct
output-wire labels L𝑖 = 𝑦𝑖−1z𝑖1 + z

𝑖
2 (mod 𝑝), where 𝑦 = 𝑥 + 𝑟 over ℤ, and 𝑦𝑖−1 = ⌊𝑦⌋2𝑖 .

By construction, TC′.Dec uses s𝑖,∗𝑟𝑒𝑠 as the secret key to decrypt the lhe ciphertext ct𝑖𝑟𝑒𝑠, which
is the result of homomorphically evaluating 𝑓𝑖 (𝑥1, 𝑥2) = 𝑦𝑖−1𝑥1 + 𝑥2 over ct′,𝑖1 , ct′,𝑖2 respectively. By
the special-purpose linear homomorphism of lhe (Lemma 2), ct𝑖𝑟𝑒𝑠 can be decrypted using secret
key 𝑓𝑖 (s𝑖,∗1 , s𝑖,∗2 ) computed over ℤ, i.e., we need to show

∀𝑖 ∈ [𝑑], s𝑖,∗𝑟𝑒𝑠 = 𝑓𝑖 (s𝑖,∗1 , s𝑖,∗2 ) = 𝑦𝑖−1s𝑖,∗1 + s
𝑖,∗
2 (over ℤ). (16)

Note that if Eq. (16) holds, then invoking Lemma 2 shows correctness:

m𝑖
𝑟𝑒𝑠 = 𝑓 ((z𝑖1, s

𝑖+1
1 ), (z

𝑖
2, s

𝑖+1
2 ))

= ( 𝑓 (z𝑖1, z
𝑖
2), 𝑓 (s

𝑖+1
1 , s𝑖+1

2 ))
= (𝑦𝑖−1z𝑖1 + z

𝑖
2︸      ︷︷      ︸

L𝑖

, 𝑦𝑖−1s𝑖+1
1 + s

𝑖+1
2︸           ︷︷           ︸

s𝑖+1
𝑟𝑒𝑠

, ) mod 𝑝.
(17)
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We now prove by induction that Eq. (16) holds. The base case for 𝑖 = 1 follows directly by
construction. For 𝑖 > 1, recall that by construction the LHE keys s𝑖,∗1 , s𝑖,∗2 , s𝑖,∗𝑟𝑒𝑠 are each computed
by applying Smdg.Smudge(·; {sd𝑖𝑗} 𝑗) to the source vectors s𝑖1,

⌊
s𝑖2
⌋

2 , s
′,𝑖
𝑟𝑒𝑠, respectively. Therefore,

it’s enough to show
s′,𝑖𝑟𝑒𝑠 = 𝑓𝑖 (s𝑖1,

⌊
s𝑖2
⌋

2) = 𝑦𝑖−1s𝑖1 +
⌊
s𝑖2
⌋
(over ℤ)

instead.
Suppose s𝑡,∗𝑟𝑒𝑠 = 𝑦𝑖−1s𝑡,∗ + s𝑡,∗ holds over ℤ, for some integer 𝑡 ≥ 1. Then Eq. (17) implies that

s𝑡+1
𝑟𝑒𝑠 = 𝑦𝑡−1s𝑡+1

1 + s
𝑡+1
2 mod 𝑝 = 𝑦𝑡−1s𝑡+1

1 + s
𝑡+1
2 (over ℤ),

where the last equality holds because the magnitude of every entry in s𝑡+1
𝑟𝑒𝑠 does not exceed 𝑝/2.

In the following, we use the short hand (𝑥)𝑝 to mean 𝑥 mod 𝑝. We further derive:

s𝑡+1
𝑟𝑒𝑠 = 𝑦𝑡−1s𝑡+1

1 + s
𝑡+1
2

= ((𝑦𝑡−1)2 + 2𝑦𝑡)s𝑡+1
1 + (s

𝑡+1
2 )2 + 2

⌊
s𝑡+1

2
⌋

2

= (𝑦𝑡−1)2s𝑡+1
1 + (s

𝑡+1
2 )2︸                   ︷︷                   ︸

=c

+2 𝑦𝑡s𝑡+1
1 +

⌊
s𝑡+1

2
⌋

2︸             ︷︷             ︸
=𝑓𝑡+1 (s𝑡+1

1 ,⌊s𝑡+1
2 ⌋2)

=⇒
⌊
s𝑡+1
𝑟𝑒𝑠

⌋
2 = 𝑓𝑡+1(s𝑡+1

1 ,
⌊
s𝑡+1

2
⌋

2) + ⌊c⌋2 .

Compare with Eq. (15), we observe that if each coordinate of c satisfies

𝑐 𝑗 =

{
1 if 𝑦𝑖−1 = 1, 𝑠𝑡+1

𝑟𝑒𝑠, 𝑗
= 0 mod 2

0 otherwise,
(18)

then we can conclude that the source vector s′,𝑡+1
𝑟𝑒𝑠 computed by the decryption algorithm TC′.Dec

indeed satisfy s′,𝑡+1
𝑟𝑒𝑠 =

⌊
s𝑡+1
𝑟𝑒𝑠

⌋
2 − ⌊c⌋ = 𝑓𝑡+1(s𝑡+1

1 ,
⌊
s𝑡+1

2
⌋

2), i.e. Eq. (16) holds for 𝑖 = 𝑡 + 1.
It remains to show Eq. (18). We expand each coordinate of c:

𝑐 𝑗 = (𝑦𝑡−1)2𝑠𝑡+1
1 + (𝑠

𝑡+1
2 )2

(Eq. 14)= (𝑦𝑡−1)2𝑠𝑡+1
1, 𝑗 + 1 − 𝑠𝑡+1

1, 𝑗 + 𝑠
𝑡+1
1, 𝑗 · 𝑟

𝑡+1
2, 𝑗 ,

where the terms (𝑦𝑡−1)2, 𝑠𝑡+1
1, 𝑗 , and 𝑟𝑡+1

2, 𝑗 are all binary values. We now directly analyze the values
of 𝑐 𝑗 in all possible cases. If (𝑦𝑡−1)2 = 0, then 0 ≤ 𝑒 𝑗 ≤ 1. If (𝑦)2 = 1, then 𝑐 𝑗 = 1 + 𝑠2

1, 𝑗 · 𝑟
2
2, 𝑗 ≤ 2.

That is, the only case when
⌊
𝑐 𝑗
⌋

2 = 1 is when (𝑦)2 = 1, and 𝑐 𝑗 = 2 ⇐⇒ (𝑠𝑡+1
𝑟𝑒𝑠, 𝑗
)2 = 0. We have

shown Eq. (18).

Security. We show that the scheme TC′ in Construction 7 admits a weaker simulator TC′.Sim that
besides the output-wire labels {L𝑖} needs the value 𝑦 = 𝑥 + 𝑟 over ℤ to help with the simulation.

• TC′.Sim(1_, pp, {L𝑖}𝑖∈[𝑑] , 𝑦) takes as inputs a security parameter 1_, the public parameters
generated by Setup in Figure 6, 𝑑 arbitrary output-wire labels L𝑖 ∈ ℤ2ℓ𝑘

𝑝 , and a integer 𝑦. It
outputs the simulated input-wire label L̃𝑖𝑛 and garbled table t̃b

Lemma 6. There exists a simulator TC′.Sim defined above such that for all sequences {z𝑖1,_, z
𝑖
2,_}_ where

z𝑖1,_, z
𝑖
2,_ ∈ ℤ

2ℓ𝑘
𝑝 , {𝑥_, 𝑟_}_ where 𝑥_ ∈ ℤ≤𝐵 𝑟_ ∈ [0, 2𝐵smdg], the following indistinguishability holds.
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(For more concise notations, the index _ is suppressed below.)

{pp, TC′.Sim(1_, pp, {L𝑖}𝑖∈[𝑑] , 𝑦)}
≈𝑐 {pp, L𝑖𝑛, tb}.

����������
pp← Setup1_ ,

z𝑖𝑛1 , z𝑖𝑛2 , tb← TC′.Garblepp(1_, {z𝑖1, z
𝑖
2}𝑖∈[𝑑] , 𝑟)

L𝑖 = 𝑥z𝑖𝑛1 + z
𝑖𝑛
2 mod 𝑝,

𝑦 = 𝑥 + 𝑟 (over ℤ)

Proof.Proof. We construct a simulator TC′.Sim that takes as inputs a security parameter 1_, the public
parameters generated by Setup in Figure 6, 𝑑 arbitrary output-wire labels L𝑖 ∈ ℤ

2ℓ𝑘
𝑝 , and an

integer 𝑦. It simulates the input-wire label L̃𝑖𝑛 and garbled table t̃b = ({c̃t′,𝑖1 , c̃t′,𝑖2 }𝑖∈[𝑑] , {s̃d
𝑖

𝑗}
𝑖∈[𝑑]
𝑗∈[ℓ𝑠 ]).

• TC′.Sim(1_, pp, {L𝑖}𝑖∈[𝑑] , 𝑦): Simulate the input-wire label L̃
𝑖𝑛

= (̃s1,∗
𝑟𝑒𝑠, 𝑦) by sampling s̃

1,∗
𝑟𝑒𝑠 as

sufficiently large random integer values, and using the provided argument 𝑦 directly.

s̃1,∗
𝑟𝑒𝑠 = [−𝐵′smdg, 𝐵

′
smdg]

ℓ𝑠 , L̃𝑖𝑛
= (̃s1,∗

𝑟𝑒𝑠, 𝑦),

where the smudging magnitude 𝐵′smdg = _𝜔 (1)𝐵smdg𝐵𝑠 is set to the same value as in TC′.Garble.
For 𝑖 = 2, . . . , 𝑑, sample smudging source vectors s𝑖1 ← {0, 1}ℓ𝑠ℓsmdg and s𝑖2 ∈ ℤℓ𝑠ℓsmdg as de-
scribed in Eq. (14), and compute the source vectors s𝑖𝑟𝑒𝑠, s

′,𝑖
𝑟𝑒𝑠 as

s𝑖𝑟𝑒𝑠 = 𝑦𝑖−2s𝑖1 + s
𝑖
2, s′,𝑖𝑟𝑒𝑠 = 𝑦𝑖−1s𝑖1 +

⌊
s𝑖2
⌋
(over ℤ),

where we use 𝑦𝑖 = ⌊𝑦⌋2𝑖 as a shorthand. Sample smudging seeds s̃d
𝑖

𝑗 ← Smdg.Gen(1ℓsmdg , 1/4)
for 𝑗 ∈ [ℓ𝑠], and compute LHE keys s𝑖,∗1 , s𝑖,∗𝑟𝑒𝑠 ∈ ℤℓ𝑠 as

s𝑖,∗1 ← Smdg.Smudge(s𝑖1; {s̃d𝑖𝑗} 𝑗), s𝑖,∗𝑟𝑒𝑠 ← Smdg.Smudge(s′,𝑖𝑟𝑒𝑠; {s̃d
𝑖

𝑗} 𝑗).

Next, simulate the ciphertexts c̃t′,𝑖1 . The case of 𝑖 = 1 is simpler: We simulate c̃t11 as a fresh
encryption of 0 ∈ ℤ2ℓ𝑘+ℓ𝑠ℓsmdg .

s1,∗
1 ← lhe.KeyGen(1ℓ𝑠), c̃t11 = lhe.Enc(s

1,∗
1 , 0).

For the cases of 𝑖 = 2, . . . 𝑑, sample a fresh LHE key s𝑖 ← lhe.KeyGen(1ℓ𝑠), and simulate c̃t𝑖1
by homomorphically adding two encryptions of 0, each using the LHE key s𝑖 and s𝑖,∗1 .

ct𝑖𝑠 ← lhe.Enc(s𝑖, 0), ct𝑖0 ← lhe.Enc(s𝑖,∗1 , 0), c̃t𝑖1 ← lhe.Eval(+, ct𝑖𝑠, ct𝑖0).

For all 𝑖 ∈ [𝑑], smudge the noise in c̃t𝑖1 to produce c̃t
′,𝑖
1 using an encryption of a fresh noise

vector e𝑖1 ← [−𝛼1,𝛼1]2ℓ𝑘+ℓ𝑠ℓsmdg under the LHE key 0.

ct𝑖𝑒,1 ← lhe.Enc(0, e𝑖1), c̃t′,𝑖1 ← lhe.Eval(+, c̃t𝑖1, ct𝑖𝑒,1).

Finally, simulate the ciphertexts c̃t′,𝑖2 , for all 𝑖 ∈ [𝑑], via homomorphic evaluation of lhe,
subject to the constraint that the decryption procedure in TC′.Decmust produce the correct
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results m𝑖
𝑟𝑒𝑠 = (L𝑖, s𝑖+1

𝑟𝑒𝑠). More specifically, consider the function 𝑓𝑅 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑖−1𝑥1,
and generate c̃t𝑖2 as follows.

c̃t𝑖𝑟𝑒𝑠 ← lhe.Enc(𝑠𝑖,∗𝑟𝑒𝑠,m𝑖
𝑟𝑒𝑠), c̃t𝑖2 ← lhe.Enc( 𝑓𝑅, c̃t

𝑖

𝑟𝑒𝑠, c̃t
′,𝑖
1 ).

Smudge the noise in c̃t′𝑖2 similarly as the computation of c̃t′𝑖1 , using a fresh noise vector
e𝑖2 ← [−𝛼2,𝛼2]2ℓ𝑘+ℓ𝑠ℓsmdg .

ct𝑖𝑒,2 ← lhe.Enc(0, e𝑖2), c̃t′,𝑖2 ← lhe.Eval(+, c̃t𝑖2, ct𝑖𝑒,2).

We now argue that TC′.Sim described above satisfies the security requirement. Consider and
sequences {z𝑖1,_, z

𝑖
2,_}_ where z𝑖1,_, z

𝑖
2,_ ∈ ℤ

2ℓ𝑘
𝑝 , {𝑥_, 𝑟_}_ where 𝑥_ ∈ ℤ≤𝐵 𝑟_ ∈ [0, 2𝐵smdg]. We

define 3𝑑 + 2 hybrids where the first hybrid is exactly the real-world distribution, and the last
hybrid is exactly the simulated distribution using TC′.Sim, and show their indistinguishability.
(In the following, we suppress the subscript _.)

• Hyb1: This hybrid generates pp, L𝑖𝑛, tb = ({ct′,𝑖1 , ct′,𝑖2 }𝑖∈[𝑑] , {sd
𝑖
𝑗}

𝑖∈[𝑑]
𝑗∈[ℓ𝑠 ]) honestly using the

algorithms Setup, and TC′.Garble. More concretely, the variables are sampled as follows:

– Generate pp← Setup(1_).
– For 𝑖 = 1, sample LHE keys s1,∗

1 ← lhe.Enc(1ℓ𝑠), s1,∗
2 ← [−𝐵

′
smdg, 𝐵

′
smdg]

ℓ𝑠 . The input-wire
label L𝑖𝑛 equals

𝑦 = 𝑥 + 𝑟 (over ℤ), L𝑖𝑛 = (𝑦s1,∗
1 + s

1,∗
2 , 𝑦) mod 𝑝.

– For 𝑖 = 2, first sample smudging source vectors s𝑖1 ← {0, 1}ℓ𝑠ℓsmdg , and s𝑖2 as Eq. (14).
Next sample smudging seeds sd𝑖𝑗 ← Smdg.Gen(1ℓsmdg , 1/4) for 𝑗 ∈ [ℓ𝑠], and compute
LHE keys s𝑖,∗1 , s𝑖,∗2 as

s𝑖,∗1 ← Smdg.Smudge(s𝑖1; {sd𝑖𝑗} 𝑗), s𝑖,∗2 ← Smdg.Smudge(
⌊
s𝑖2
⌋

2 ; {sd𝑖𝑗} 𝑗).

– Compute the ciphertexts ct𝑖1, ct
𝑖
2 as ct

𝑖
𝑗
← lhe.Enc(s𝑖,∗

𝑗
, (z𝑖

𝑗
, s𝑖+1

𝑗
)) for 𝑗 = 1, 2. Then add

smudging noises via homomorphic evaluation to produce ct′,𝑖1 , ct′,𝑖2 .

e𝑖𝑗 ← [−𝛼 𝑗 ,𝛼 𝑗]2ℓ𝑘+ℓ𝑠ℓsmdg , ct𝑖𝑒, 𝑗 ← lhe.Enc(0, e 𝑗), ct′,𝑖
𝑗
← lhe.Eval(+, ct𝑖𝑗 , ct

𝑖
𝑒, 𝑗).

• Hyb2: This hybrid proceeds identically as Hyb1, except that the ciphertexts c̃t
′,𝑖
2 are gener-

ated via homomorphic evaluation of lhe, under the constraint that decryption recovers the
correct values m𝑖

𝑟𝑒𝑠 = (L𝑖, s𝑖+1
𝑟𝑒𝑠) where

s𝑖𝑟𝑒𝑠 = 𝑦𝑖−2s𝑖1 + s
𝑖
2 (over ℤ), L𝑖 = 𝑦𝑖−1z𝑖1 + z

𝑖
2 mod 𝑝.

More specifically, Hyb2 first computes the LHE key s
𝑖,∗
𝑟𝑒𝑠 as

s′,𝑖𝑟𝑒𝑠 = 𝑦𝑖−1s𝑖1 +
⌊
s𝑖2
⌋
(over ℤ), s𝑖,∗𝑟𝑒𝑠 = Smdg.Smudge(s′,𝑖𝑟𝑒𝑠; {s̃d

𝑖

𝑗} 𝑗),

51



and then compute c̃t𝑖2 as

c̃t𝑖𝑟𝑒𝑠 ← lhe.Enc(s𝑖,∗𝑟𝑒𝑠,m𝑖
𝑟𝑒𝑠), c̃t𝑖2 ← lhe.Eval( 𝑓𝑅, c̃t

𝑖

𝑟𝑒𝑠, ct
′,𝑖
1 ),

where 𝑓𝑅 (𝑥𝑟𝑒𝑠, 𝑥1) = 𝑥𝑟𝑒𝑠 − 𝑦𝑖−1𝑥1. Finally, smudge c̃t
𝑖

2 with noise e𝑖2 ← [−𝛼,𝛼]
2ℓ𝑘+ℓ𝑠ℓsmdg to get

c̃t′,𝑖2

ct𝑖𝑒,2 ← lhe.Enc(0, e𝑖2), c̃t
′,𝑖
2 ← lhe.Eval(+, c̃t𝑖2, ct𝑖𝑒,2).

Note that the only difference between Hyb1 and Hyb2 lies in how ct′2 and c̃t
′
2 are generated.

In the former, ct′2 is an additionally noisy ciphertext of (z𝑖2, s
𝑖+1
2 ) encrypted under the LHE

key s𝑖,∗2 . In the latter, c̃t
′
2 is the output ciphertext produced by homomorphically evaluating

𝑓𝑅 on ct𝑖𝑟𝑒𝑠, ct
′,𝑖
1 , smudged with additional noise.

By the linearity of Smdg.Smudge(·; {sd𝑖𝑗} 𝑗), we have 𝑓𝑅 (s𝑖,∗𝑟𝑒𝑠, s𝑖,∗1 ) = s𝑖,∗2 . It’s also easy to
verify that 𝑓𝑅 (m𝑖

𝑟𝑒𝑠, (z𝑖1, s
𝑖+1
1 )) = (z

𝑖
2, s

𝑖+1
2 ). Lemma 1 shows that these two ways of generat-

ing ciphertexts are statistically close, provided that the the magnitude 𝛼2 of the smudging
noises is sufficiently large. This is indeed the case since 𝛼2 = _𝜔 (1) max(𝑝, 𝐵𝑒,𝛼1)2 (Equa-
tion (5)). Therefore by the lemma, the distributions of ct′𝑖2 in Hyb1 and c̃t

′,𝑖
2 in Hyb2 are

statistically close, and so are these two hybrids.

• Hyb3.1.1: This hybrid proceeds identically as Hyb2, except that instead of computing s
1,∗
𝑟𝑒𝑠 =

𝑦s1
1 + s𝑖2 over the integers as in Hyb2, Hyb3.1.1 directly samples

s̃1,∗
𝑟𝑒𝑠 ← [−𝐵′smdg, 𝐵

′
smdg].

Similar arguments to those in Hyb3 of Lemma 3 shows that Hyb3.1.1 is statistically close to
Hyb2.

• Hyb3.1.2 = Hyb3.1.3: This hybrid proceeds identically as Hyb3.1.1, except that instead of gen-
erating ct11 as a fresh encryption of (z1

1, s
2
1 ) using the LHE key s

1,∗
1 as in Hyb3.1.1, c̃t

1
1 is now

generated as an encryption of the vector 0, still using the LHE key s1,∗
1 . Similar arguments

to those in Hyb4 of Lemma 3 shows that Hyb3.1.2 and Hyb3.1.1 are computationally indistin-
guishable.

• Hyb3.𝑖.1, 𝑖 = 2, . . . , 𝑑: This hybrid proceeds identically as Hyb3.(𝑖−1) .3, except that the LHE
key s̃𝑖,∗1 is generated as the sum of a fresh LHE key s𝑖 and the original s𝑖,∗1 as computed in
Hyb3.(𝑖−1) .3.

s𝑖 ← lhe.KeyGen(1ℓ𝑠), s̃𝑖,∗1 = s𝑖,∗1 + s
𝑖 (over ℤ),

where
s𝑖,∗1 = Smdg.Smudge(s𝑖1; {s̃d𝑖𝑗} 𝑗).

By the smudging property of Smdg.Smudge, if we can show that at least 1/4 coordinates
of s𝑖1 remains hidden in Hyb3.(𝑖−1) .3, then we can conclude that Hyb3.𝑖.1 and Hyb3.(𝑖−1) .3 are
statistically close.

Recall that in Hyb3.𝑖−1.1, the ciphertexts c̃t
′,𝑖
1 , c̃t′,𝑖1 that originally encrypt vectors that contain

s𝑖1, s
𝑖
2 in the honest world, have been simulated using only the vector s

𝑖
𝑟𝑒𝑠 = 𝑦𝑖−2s𝑖1 + s

𝑖
2 over

ℤ. Therefore, the only values that possibly leak information about s𝑖1 are s
𝑖
𝑟𝑒𝑠,𝑦. We show

that given those, with overwhelming probability, at least 1/4 coordinates of s𝑖1 remains
hidden using the following claims.
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Claim 8. Let s𝑖1, s
𝑖
𝑟𝑒𝑠 be computed as described in Hyb3.(𝑖−1) .3. Let 𝑠𝑖1, 𝑗 , 𝑠

𝑖
𝑟𝑒𝑠, 𝑗

be the 𝑗th entries, we
have

∀ 𝑗 ∈ [ℓ ∗], Pr[𝑠𝑖1, 𝑗 = 1|𝑠𝑖𝑟𝑒𝑠, 𝑗 = 1] = Pr[𝑠𝑖1, 𝑗 = 0|𝑠𝑖𝑟𝑒𝑠, 𝑗 = 1] = 1/2.

Claim 9. let s𝑖1, s
𝑖
𝑟𝑒𝑠 be computed as described in Hyb3.(𝑖−1) .3. With overwhelming probability, at

least 1/4 coordinates of s𝑖𝑟𝑒𝑠 have value 1.

Now, we can invoke the smudging property of Smdg.Smudge to conclude that Hyb3.𝑖.1 and
Hyb3.(𝑖−1) .3 are statistically close.

• Hyb3.𝑖.2, 𝑖 = 2, . . . , 𝑑: This hybrid proceeds identically as Hyb3.(𝑖−1) .3, except that instead
of generating the ciphertext ct′,𝑖1 as an additional noisy encryption of (z𝑖1, s

𝑖+1
1 ) under the

key s̃𝑖,∗1 = s𝑖,∗1 + s
𝑖, Hyb3.𝑖.2 computes c̃t

′,𝑖
1 via homomorphic addition of ciphertexts ct𝑖𝑠, ct𝑖0,

where ct𝑖𝑠 encrypts the above vector under the fresh LHE key s𝑖, and ct𝑖0 encrypts the vector
0 under the LHE key s𝑖,∗1 .

ct𝑖𝑠 ← lhe.Enc(s𝑖, (z𝑖1, s
𝑖+1
1 )), ct𝑖0 ← lhe.Enc(s𝑖,∗1 , 0), c̃t𝑖1 ← lhe.Eval(+, ct𝑖𝑠, ct𝑖0).

Finally, smudge the noise in c̃t𝑖1 with noise e𝑖1 ← [−𝛼1,𝛼1]2ℓ𝑘+ℓ𝑠ℓsmdg to get c̃t
′,𝑖
1 .

ct𝑖𝑒,1 ← lhe.Enc(0, e𝑖1), c̃t′,𝑖1 ← lhe.Eval(+, c̃t𝑖1, ct𝑖𝑒,1).

Similar arguments to those in Hyb3 of Lemma 3 shows that Hyb3.𝑖.2 is statistically close to
Hyb3.𝑖.1.

• Hyb3.𝑖.3, 𝑖 = 2, . . . , 𝑑: This hybrid proceeds identically as Hyb3.𝑖.2, except that instead of
generating ct𝑖𝑠 as a fresh encryption of (z𝑖1, s

𝑖+1
1 ) using the LHE key s𝑖 as in Hyb3.𝑖.2, c̃t

𝑖

𝑠

is now generated as an encryption of the vector 0, still using the LHE key s𝑖. Similar
arguments to those in Hyb4 of Lemma 3 shows that Hyb3.1.2 and Hyb3.1.1 are computationally
indistinguishable.

By a hybrid argument, we have that Hyb1 and Hyb3.𝑑.3 are computationally indistinguishable.
Since Hyb1 samples (pp, L𝑖𝑛, tb) exactly as in the real-world, and Hyb3.𝑑.3 samples (p̃p, L̃

𝑖𝑛
, t̃b) as

the simulator TC′.Sim does, we conclude that the simulated distribution is indistinguishable to
the real distribution. Hence Lemma 6 holds. □

Constructing the Bit Decomposition Gadget. Next, we construct a bit decomposition scheme
using the imperfect truncation scheme in Construction 7, and a garbling scheme for Boolean
circuits, as summarized below

Definition 12 (garbling for Boolean circuits). A Boolean garbling scheme consists of the following
two efficient algorithms.

• BG.Garble(1_, 𝐶) takes as input a security parameter _, a Boolean circuit 𝐶 with 𝑛 inputs, 𝑚
outputs. It outputs a garbled circuit 𝐶 and 𝑛 pairs of evaluation keys {k𝑖

0,k
𝑖
1}𝑖∈[𝑛], where each

key k𝑖
0 ∈ {0, 1}ℓ𝑘 has a fixed dimension ℓ𝑘 = ℓ𝑘 (_) = 𝑂(_).

• BG.Dec(𝐶, {k𝑖}𝑖∈[𝑛]) takes a garbled circuit 𝐶 and 𝑛 evaluation keys. It outputs a evaluation
result 𝑦 ∈ {0, 1}𝑚.
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Correctness. The scheme is correct if for all _ ∈ ℕ, Boolean circuit 𝐶 with 𝑛 inputs, 𝑚 outputs, and
x ∈ {0, 1}𝑛, the following holds.

Pr

[
BG.Dec(𝐶, {k𝑖

𝑥𝑖
}𝑖∈[𝑛]) = y

�����𝐶, {k𝑖
0,k

𝑖
0}𝑖∈[𝑛] ← BG.Garble(1_, 𝐶),

y = 𝐶(x)

]
Security. A simulator for the scheme has is the following efficient algorithm.

• BG.Sim(1_, y, ΦTopo(𝐶)) takes as inputs a security parameter _, an evaluation result y and the
topology of a Boolean circuit ΦTopo(𝐶). It outputs a simulated garbled circuit 𝐶 and 𝑛 evaluation

keys {k̃
𝑖
}𝑖∈[𝑛].

The scheme is secure if for all sequence of Boolean circuits {𝐶_}_ where 𝐶_ has 𝑛_ inputs, 𝑚_ outputs,
and has size |𝐶_ | ≤ poly(_), {x_}_ where x_ ∈ {0, 1}𝑛_ , the following indistinguishability holds. (In
the following, we surpress the subscript _).

Pr

[
{BG.Sim(1_, y, ΦTopo(𝐶))}

≈𝑐 {𝐶, {k𝑖
𝑥𝑖
}𝑖∈[𝑛]}

�����𝐶, {k𝑖
0,k

𝑖
0}𝑖∈[𝑛] ← BG.Garble(1_, 𝐶),

y = 𝐶(x)

]
Construction 8 (bit decomposition). We construct a bit decomposition scheme for the mixed
bounded integer and boolean computation model, over the domain I = ℤ≤𝐵. An element in
ℤ≤𝐵 has bit length 𝑑 = ⌈log (2𝐵 + 1)⌉.

• BD.Garblepp(1_, 1ℓ , {z𝑖1, z
𝑖
2}𝑖∈[𝑑]) proceeds in two steps.

1. Sample a random non-negative integer 𝑟′ ← [0, 𝐵smdg], where 𝐵smdg = _𝜔 (1)𝐵, and
shift it by 𝐵 to obtain a random integer 𝑟 = 𝐵 + 𝑟′. Defines the Boolean circuit 𝐶𝑟

sub as

𝐶𝑟
sub(bits(𝑦))

= {L𝑖}𝑖∈[𝑑] ,

����� 𝑥 = 𝑦 − 𝑟 (over ℤ)
L𝑖 = bits(𝑥)𝑖z𝑖1 + z

𝑖
2 mod 𝑝

(19)

where 𝐶𝑟
sub has the value 𝑟 and the keys z

𝑖
1, z

𝑖
2 hardcoded. Let 𝑑

′ =
⌈
log (𝐵smdg + 2𝐵 + 1)

⌉
+

1 be the bit length of 𝑦. Compute the garbled circuit and (Boolean) evaluation keys
𝐶𝑟
sub, {k

𝑖
0,k

𝑖
1}𝑖∈[𝑑′] ← BG.Garble(1_, 𝐶𝑟

sub).

2. Define vectors z̄𝑖1, z̄
𝑖
2 to encode the evaluation keys k

𝑖
0,k

𝑖
1 as described in Eq. (12): z̄𝑖1 =

k̄𝑖

1 − k̄
𝑖

0 mod 𝑝, z̄𝑖2 = k̄𝑖

0, where k̄
𝑖

𝑏 ∈ ℤ
ℓ𝑘
𝑝 encodes k𝑖

𝑏 ∈ {0, 1}ℓ𝑘 . Next, sample random
vectors {r𝑖 ← ℤ

ℓ𝑘
𝑝 }𝑖∈[𝑑′], and define vectors {z̄′,𝑖1 , z̄′,𝑖2 }𝑖∈[𝑑′] to be passed as arguments

into TC′.Garble:
z̄′,𝑖1 = (z̄𝑖−1

1 , z̄𝑖1)
z̄′,𝑖2 = (r𝑖−1, 2r𝑖 + z̄𝑖2) mod 𝑝.

(20)

To deal with the edge case 𝑖 = 1, set dummy vectors r0 = z̄0
1 = 0. Finally, compute the

keys of the input wire z𝑖𝑛1 , z𝑖𝑛2 , and the garbled table tb
′ using TC′.Garble, and output

z𝑖𝑛1 , z𝑖𝑛2 , tb = (tb′, 𝐶𝑟
sub).

z𝑖𝑛1 , z𝑖𝑛2 , tb′← TC′.Garblepp(1_, {z̄′,𝑖1 , z̄′,𝑖2 }𝑖∈[𝑑′] , 𝑟).
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• BD.Decpp(L𝑖𝑛, tb): Parse the garbled table tb as tb = (tb′, 𝐶), and recover labels {L̄𝑖}𝑖∈[𝑑′] by
running TC′.Dec. {L̄𝑖}𝑖∈[𝑑′] ← TC′.Dec(L𝑖𝑛, tb′). Parse each label L̄𝑖 as L̄𝑖

= (u𝑖−1, v𝑖), and
recover the encoding z̄𝑖𝑟𝑒𝑠 for the Boolean evaluation key k

𝑖 as

z̄𝑖𝑟𝑒𝑠 = v
𝑖 − 2u𝑖 mod 𝑝.

Finally, use {k𝑖}𝑖∈[𝑑′] to evaluate the garbled circuit 𝐶 to recover and output {L𝑖}𝑖∈[𝑑].

{L𝑖}𝑖∈[𝑑] ← BG.Dec(𝐶, {k𝑖}𝑖∈[𝑑′]).

Correctness. By the correctness of the Boolean garbling scheme BG, the decryption result is
correct if the encodings z̄𝑖𝑟𝑒𝑠 recovered during BD.Dec are indeed the encodings for evaluation
keys k𝑖

bits(𝑦)𝑖 , i.e., z̄
𝑖
𝑟𝑒𝑠 = k

𝑖
bits(𝑦)𝑖 .

By the correctness of TC′.Garble and TC′.Dec as specified in Eq. (13), for all 𝑖 ∈ [𝑑′], we have

L̄𝑖
= 𝑦𝑖−1z̄′,𝑖1 + z̄

′,𝑖
2

(Eq. 20) = 𝑦𝑖−1 · (z̄𝑖−1
1 , z̄𝑖1) + (r

𝑖−1, 2r𝑖 + z̄𝑖2)
= (𝑦𝑖−1z̄𝑖−1

1 + r
𝑖−1︸           ︷︷           ︸

=u𝑖−1

, 𝑦𝑖−1z̄𝑖1 + 2r𝑖 + z̄𝑖2︸              ︷︷              ︸
=v𝑖

) mod 𝑝

=⇒ u𝑖 = 𝑦𝑖z̄𝑖1 + r
𝑖

v𝑖 = 𝑦𝑖−1z̄𝑖1 + 2r𝑖 + z̄𝑖2 mod 𝑝,

(21)

where 𝑦𝑖 = ⌊𝑦⌋2𝑖 . Recall that in BD.Garble, we set the smudging integer 𝑟 as 𝑟 = 𝐵 + 𝑟′, where 𝑟′

is sampled from [0, 𝐵smdg]. For any 𝑥 ∈ ℤ≤𝐵, we are guaranteed that 𝑦 = 𝑥 + 𝑟 = (𝑥 + 𝐵) + 𝑟′ is a
non-negative integer. Using the above, we verify that for all 𝑖 ∈ [𝑑′],

z̄𝑖𝑟𝑒𝑠 = v
𝑖 − 2u𝑖 = (𝑦𝑖−1 − 2𝑦𝑖)︸        ︷︷        ︸

bits(𝑦)𝑖

z̄𝑖1 + z̄
𝑖
2

(Eq. 12) = k𝑖
bits(𝑦)𝑖 mod 𝑝.

(22)

Security.

Lemma 7. Construction 8 is secure per Definition 4.

Proof.Proof. We construct a simulator BD.Sim that takes as inputs a security parameter _, the public
parameters pp = (lhe.pp,𝛼) generated by Setup in Figure 6, and 𝑑 arbitray output-wire labels
L𝑖 ∈ ℤℓ ′

𝑝 , where 𝑑 is the bit length of 𝐵-bounded integers, and the dimension ℓ ′ of the output-
wire labels can be an arbitrary polynomial in _. It simulates the input wire label L̃𝑖𝑛, and the
garbled table t̃b = (t̃b′, 𝐶𝑟

sub).

• BD.Sim(1_, pp, {L𝑖}𝑖∈[𝑑]): Simulate the Boolean garbled circuit 𝐶𝑟
sub and the Boolean evalua-

tion keys {k̃
𝑖
} by running the simulator BG.Sim, guaranteed by the security of the scheme

BG.
{k̃

𝑖
}𝑖∈[𝑑′] , 𝐶𝑟

sub ← BG.Sim(1_, {L𝑖}𝑖∈[𝑑] , ΦTopo(𝐶𝑟
sub)),
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where the topology ΦTopo(𝐶𝑟
sub) of the circuit 𝐶

𝑟
sub can be computed without knowing the

hardcoded values in it. Encode each Boolean evaluation key k̃
𝑖
as a vector z̃𝑖𝑟𝑒𝑠 in ℤ𝑝. Next

simulate intermediate vectors {ũ𝑖}𝑖∈[𝑑′] as random ℤ𝑝 vectors, and simulate {ṽ𝑖}𝑖∈[𝑑′] to
satisfy the constraint that z̃𝑖𝑟𝑒𝑠 = ṽ

𝑖 − 2ũ𝑖 (mod 𝑝).

ũ𝑖 ← ℤ
ℓ𝑘
𝑝 , ṽ𝑖 = 2ũ𝑖 + z̃𝑖𝑟𝑒𝑠 mod 𝑝.

Finally, simulate the output-wire labels {L̃𝑖}𝑖∈[𝑑′] that are supposed to be recovered by
TC′.Dec as concatenations of the intermediate vectors {ũ𝑖

, ṽ𝑖}𝑖∈[𝑑′].

L̃𝑖
= (ũ𝑖−1

, ṽ𝑖).

To deal with the edge case 𝑖 = 1, set a dummy vector ũ0
= 0. Finally, simulate the input-

wire label L̃𝑖𝑛 and the garbled table t̃b
′
by running the simulator sim′, guaranteed by the

security of the imperfect truncation scheme. Output L̃𝑖𝑛, t̃b = (t̃b′, 𝐶𝑟
sub).

�̃�← [0, 𝐵smdg], L̃𝑖𝑛
, t̃b
′← TC′.Sim(1_, pp, {L̃𝑖}𝑖∈[𝑑] , 𝑑′, �̃�).

We now argue that BD.Sim described above satisfies the security requirement. Let ℓ ′ = ℓ ′(_) be
any polynomial, consider any sequences {{z𝑖1,_, z

𝑖
2,_}𝑖∈[𝑑]}_ where z

𝑖
1,_, z

𝑖
2_ ∈ L

ℓ ′, and {𝑥_}_ where
𝑥_ ∈ ℤ≤𝐵. We define six hybrids, Hyb1, . . . ,Hyb6, where the first hybrid is exactly the real-world
distribution, and the last hybrid is exactly the simulated distribution using BD.Sim, and show
their indistinguishability. (In the following, we surpress the subscript _).

• Hyb1: This hybrid generates pp, L𝑖𝑛, tb = (tb′, 𝐶𝑟
sub) honestly using the algorithms Setup,

and BD.Garble. More concretely, the variables are sampled as follows:

– Generate pp← Setup(1_).
– Compute a random integer 𝑟 = 𝐵+𝑟′, where 𝑟′← [0, 𝐵smdg]. The smudging magnitude

𝐵smdg = _𝜔 (1)𝐵 is set to the same value as in BD.Garble.

– Generate the Boolean garbled circuit and Boolean evaluation keys 𝐶𝑟
sub, {k

𝑖
0,k

𝑖
1}𝑖∈[𝑑′]

← BG.Garble(1_, 𝐶𝑟
sub), where the Boolean circuit 𝐶

𝑟
sub is defined as in Eq. (19).

– Compute output-wire keys {z̄′,𝑖1 , z̄′,𝑖2 }𝑖∈[𝑑′] as

z̄′,𝑖1 = (z̄𝑖−1
1 , z̄𝑖1), z̄′,𝑖2 = (r𝑖−1, 2r𝑖 + z̄𝑖2) mod 𝑝,

where r𝑖 ← ℤ
ℓ𝑘
𝑝 , and the vectors z̄𝑖1, z̄

𝑖
1 are computed from encodings of the evaluation

keys k̄𝑖

0, k̄
𝑖

1 as in Eq. (12).

– Compute the input-wire keys and the garbled table

z𝑖𝑛1 , z𝑖𝑛2 , tb′← TC′.Garblepp(1_, {z̄′,𝑖1 , z̄′,𝑖2 }𝑖∈[𝑑′] , 𝑑
′, 𝑟),

and define the input label for 𝑥 as L𝑖𝑛 = 𝑥z𝑖𝑛1 + z
𝑖𝑛
2 mod 𝑝.
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• Hyb2: This hybrid proceeds identically as Hyb1, except that the input-wire keys and the
garbled table z̃𝑖𝑛1 , z̃𝑖𝑛2 , t̃b

′
are generated by the simulator sim′.

z̃𝑖𝑛1 , z̃𝑖𝑛2 , t̃b
′← TC′.Sim(1_, pp, {L̄𝑖}𝑖∈[𝑑] , 𝑑′, 𝑦),

where the output-wire labels L̄𝑖 are computed as by

𝑦 = 𝑥 + 𝑟, 𝑦𝑖−1 = ⌊𝑦⌋2𝑖−1 (over ℤ), L̄𝑖
= 𝑦𝑖−1z̄′,𝑖1 + z̄

′,𝑖
2 mod 𝑝.

Directly by the security of the truncation scheme TC′ (Lemma 6), Hyb1 and Hyb2 are com-
putationally indistinguishable.

• Hyb3: This hybrid hybrid proceeds identically as Hyb2, except that the input-wire labels
{L̄𝑖}𝑖 are computed using intermediate vectors {u𝑖, v𝑖}𝑖 as follows:

u𝑖 = 𝑦𝑖z̄𝑖1 + r
𝑖, v𝑖 = 2u𝑖 + z̄𝑖𝑟𝑒𝑠 mod 𝑝, L̄𝑖

= (u𝑖−1, v𝑖),

where z̄𝑖𝑟𝑒𝑠 ∈ ℤ
ℓ𝑘
𝑝 is the encoding of the evaluation key k𝑖

bits(𝑦)𝑖 . As shown in Eq. (21),22, this
change is purely syntactic. Hence Hyb2 and Hyb3 are identical.

• Hyb4: This hybrid hybrid proceeds identically as Hyb3, except that the intermediate vectors
{ũ𝑖}𝑖∈[𝑑] are sampled at random. ũ𝑖 ← ℤ

ℓ𝑘
𝑝 . Note that in Hyb3, the intermediate vector

u𝑖 = 𝑦𝑖z̄𝑖1 + r𝑖 (mod 𝑝) was perfectly hidden by the random vector r𝑖 as a one-time pad.
Therefore we conclude that Hyb3 and Hyb4 are identical.

• Hyb5: This hybrid hybrid proceeds identically as Hyb4, except that it uses the simulator
BG.Sim to compute the garbled circuit and evaluation keys.

{k̃
𝑖

bits(𝑦)𝑖}𝑖∈[𝑑′] , 𝐶
𝑟
sub ← BG.Sim(1_, {L𝑖}𝑖∈[𝑑] , ΦTopo(𝐶𝑟

sub)),

where the topology ΦTopo(𝐶𝑟
sub) of the circuit 𝐶

𝑟
sub can be computed without knowing the

hardcoded values in it. Directly by the security of the scheme BG, Hyb5 and Hyb4 are
computationally indistinguishable.

• Hyb6: This hybrid proceeds identically as Hyb4, except that instead of computing comput-
ing 𝑟′ ← [0, 𝐵smdg], 𝑦 = 𝑥 + 𝐵 + 𝑟′, it directly samples �̃� ← [0, 𝐵smdg]. The distributions
of 𝑦 in Hyb5 and �̃� in Hyb6 are statistically close. This is becase 𝑥 + 𝐵 is a value between
[0, 2𝐵 + 1] while the range of 𝑟′, 𝐵smdg = _𝜔 (1)𝐵 is superpolynomially larger than that of
𝑥 + 𝐵. Hence 𝑟′ statistically hides 𝑥 + 𝐵. Therefore, Hyb6 and Hyb5 are statistically close.

By a hybrid argument, we have that Hyb1 and Hyb6 are computationally indistinguishable. Since
Hyb1 samples (pp, L𝑖𝑛, tb) exactly as in the real-world, and Hyb6 samples (p̃p, L̃

𝑖𝑛
, t̃b) as the sim-

ulator BD.Sim does, we conclude that the simulated distribution is indistinguishable to the real
distribution, and Construction 8 is a secure bit decomposition gadget. □

7 Construction of Garbling Schemes

In this section, we first give the overall garbling scheme for bounded integer and modular arith-
metic computation in Section 7.1, and next note the differences for the mixed bounded integer
and Boolean computation in Section 7.2. We include an asymptotic efficiency analysis in this
section. See Section 8 for a comparison of our concrete efficiency with prior works.
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7.1 Bounded Integer and Modular Arithmetic Computation

In this section, we present our arithmetic garbling schemes for bounded integer computation
CBI
ℤ≤𝐵

and for modulo-𝑝 computation CArith
ℤ𝑝

.

Arithmetic Computation Gadgets From [AIK11]. Sec. 4 (resp. Sec. 5) has prepared all the essen-
tial gadgets needed for garbling bounded integer computation (resp. modulo-𝑝 computation).
For completeness, below we also include a description of the arithmetic computation gadgets
taken from [AIK11]

Construction 9 (addition modulo 𝑝 gadget). We describe the “addition modulo 𝑝” gadget, with
the label space L = ℤ𝑝. This construction does not need access to the public parameters pp
generated by Setup.

• ACmp.Garble(1_, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ) samples a vector r← ℤℓ ′
𝑝 of the same dimension ℓ ′ as the output-

wire keys z𝑜𝑢𝑡
𝑖
. It sets

z𝑥1 = z𝑦1 = z𝑜𝑢𝑡1 , z𝑥2 = r, z𝑦2 = z𝑜𝑢𝑡2 − r mod 𝑝,

and outputs z𝑥1 , z
𝑥
2, z

𝑦

1 , z
𝑦

2, and tb = ∅.

• ACmp.Dec(L𝑥, L𝑦, tb) simply outputs L𝑜𝑢𝑡 = L𝑥 + L𝑦 mod 𝑝.

Correctness. For all 𝑥, 𝑦 ∈ I = ℤ𝑝, we have

L𝑥 + L𝑦 = (𝑥z𝑜𝑢𝑡1 + r) + (𝑦z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 − r) = (𝑥 + 𝑦)z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 mod 𝑝.

Construction 10 (multiplication modulo 𝑝 gadget). We describe the “multiplication modulo 𝑝”
gadget, with L = ℤ𝑝.

• ACmp.Garble(1_, z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 ) The output-wire keys z
𝑜𝑢𝑡
1 , z𝑜𝑢𝑡2 are dimension ℓ ′ vectors over ℤ𝑝.

Generate the input-wire keys as:

z𝑥1 = (z𝑜𝑢𝑡1 , 𝑟3z𝑜𝑢𝑡1 ) z𝑥2 = (r1, 𝑟3r1 − r2 − z𝑜𝑢𝑡2 ) (mod 𝑝)
z𝑦1 = (1, r1) z𝑦2 = (𝑟3, r2) (mod 𝑝) .

where r1, r2, 𝑟3 have uniformly random elements from ℤ𝑝. Output (z𝑥1 , z
𝑥
2), (z

𝑦

1 , z
𝑦

2) and tb =

∅.

Note: Note that the length of the keys for the first input wire 𝑥 have doubled, and the length of
the keys for second input wire 𝑦 has increased by 1, compared with the length of the output-wire
keys.

• ACmp.Dec(L𝑥, L𝑦, tb) parses L𝑥 = (L𝑥
1 , L

𝑥
2), and L

𝑦 = (𝐿𝑦

1 , L
𝑦

2), where L
𝑥
1 , L

𝑥
2, L

𝑦

2 ∈ ℤ
ℓ ′
𝑝 , 𝐿

𝑦

1 ∈ ℤ𝑝.
It outputs

L𝑜𝑢𝑡 = 𝐿
𝑦

1L
𝑥
1 − L

𝑥
2 − L

𝑦

2 mod 𝑝 . (23)

Correctness. Given correctly generated input-wire labels for 𝑥 and 𝑦,

L𝑥 = 𝑥z𝑥1 + z
𝑥
2 = (𝑥z𝑜𝑢𝑡1 + r1︸     ︷︷     ︸

L𝑥1

, 𝑥𝑟3z𝑜𝑢𝑡1 + 𝑟3r1 − r2 − z𝑜𝑢𝑡2︸                           ︷︷                           ︸
L𝑥2

) mod 𝑝,

L𝑦 = 𝑦z𝑦1 + z
𝑦

2 = (𝑦 + 𝑟3︸︷︷︸
𝐿
𝑦

1

, 𝑦r1 + r2︸   ︷︷   ︸
L𝑦

2

), mod 𝑝.
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the decryption procedure (Equation (23)) should compute the correct output label L𝑜𝑢𝑡 = z𝑜𝑢𝑡1 (𝑥+
𝑦) + z𝑜𝑢𝑡2 . This is indeed the case as shown below.

L𝑜𝑢𝑡 = (𝑦 + 𝑟3)
(
𝑥z𝑜𝑢𝑡1 + r1

)
− (𝑥𝑟3z𝑜𝑢𝑡1 + 𝑟3r1 − r2 − z𝑜𝑢𝑡2 ) − (𝑦r1 + r2)

= 𝑥𝑦z𝑜𝑢𝑡1 + z𝑜𝑢𝑡2 mod 𝑝.

Lemma 8. Construction 9, and Construction 10, are secure per Definition 3.

Proof (Lemma 8).Proof (Lemma 8). We describe two simulators ACmp+.Sim and ACmp×.Sim for Construction 9 and
Construction 10 respectively.

ACmp+.Sim(1_, pp, L𝑜𝑢𝑡) samples L̃𝑥 ← ℤℓ ′
𝑝 of the same dimension ℓ ′ as L𝑜𝑢𝑡, and computes

L̃𝑦
= L𝑜𝑢𝑡 − L̃𝑥 mod 𝑝. It outputs L̃𝑥

, L̃𝑦 and t̃b = ∅.
ACmp×.Sim(1_, pp, L𝑜𝑢𝑡) samples L̃𝑥

1 , L̃
𝑦

1 ← ℤℓ ′
𝑝 , and �̃�

𝑦

1 ← ℤ𝑝. It computes

L̃𝑥

2 = �̃�
𝑦

1 L̃
𝑥

1 − L̃
𝑦

2 − L𝑜𝑢𝑡 mod 𝑝,

and outputs L̃𝑥
= (L̃𝑥

1 , L̃
𝑥

2), L̃
𝑦
= ( �̃�𝑦

1 , L̃
𝑦

2), and t̃b = ∅. □

The Overall Garbling Scheme. We next assembles the gadgets following the AIK paradigm. As
in the AIK paradigm, every wire is assigned with a pair of keys (z1, z2), such that the label of
this wire is L = 𝑥z1 + z2 if 𝑥 is the value of this wire.

• For each output wire, the assigned pair of keys is z1 = 1, z2 = 0, so that the output can be
read from the label.

• For each gate, the keys of its input wires is generated by the corresponding computation
gadget based on the pair of keys of its output wire. We also use the key-extension gadget
to keep the key size small.

We formalized the AIK paradigm in Construction 11, which is garbling scheme for garbling
bounded integer computation (resp. modulo-𝑝 computation) if all the gadgets are instantiated
by the ones constructed in Sec. 4 (resp. Sec. 5).

A circuit is formalize as a DAG.

• Each node represents a gate. For notation simplicity, we define input gates and output gates.
Let 𝑚 be the number of gates. The gates are labeled by [𝑚].
For each 𝑖 ∈ [𝑚], the 𝑖-th node belongs to one of the following types

Input Gate An input gate has no fan-in. The value of the gate equals to the corresponding input
of the circuit.

Computation Gate A computation has an additional attribute specifying its operation. The value
of the gate equals the outcome of the operation on the values of its preceding nodes.

Output Gate An output gate has no fan-out and has fan-in 1. The value of the gate equals the
value of its preceding node.

• Wires are presented by directed edges. The value of a wire equals the value of its starting node.
W.l.o.g. the nodes are sorted by topological order, so that for every wire, its starting node has a
smaller index than its ending node.

Figure 7: Formalization of arithmetic circuits
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Construction 11 (Garbling). The garbling schemes make almost black-box use the gadgets de-
fined in previous sections.

Setup The setup algorithm Setup is constructed in Figure 4 (resp. Figure 5) for garbling bounded
integer computation (resp. modulo-𝑝 computation). The setup algorithm outputs the pub-
lic parameter pp, which specifies the message modulus 𝑝. The message modulus 𝑝 equals
the computation modulus when garbling modulo-𝑝 computation. When garbling bounded
integer computation, the message modulus 𝑝 is a sufficiently large integer.

Garbling Garblepp(1_, 1ℓ , 𝐶) takes as input the description of a circuit. Let the circuit be repre-
sented following the format in Figure 7.

The garbling algorithm enumerates all the gates in the inverse topological order (from
output gates to input gates). During the enumeration, the algorithm assigns a table and a
pair of keys to the gate, also assigns a pair of keys to the gate’s incoming wire(s).

For 𝑡 = 𝑚, . . . , 1, the garbling algorithm performs the following steps:

1. If the 𝑡-th gate is an output gate, set z𝑡1 = 1, z𝑡2 = 0 (of dimension 1) as the 𝑡-th gate’s
pair of key. Let (𝑖, 𝑡) be the only incoming wire to the 𝑡-th gate, set z𝑖,𝑡1 = 1, z𝑖,𝑡2 = 0 as
well. Set the table tb𝑡 = ∅ and skip the following steps.

2. Say the 𝑡-th gate has fan-out 𝑘. Wires (𝑡, 𝑗1), . . . , (𝑡, 𝑗𝑘) start from the 𝑡-th gate. The
algorithm concatenates all their pairs of keys into a pair of long keys

z𝑡,long1 = (z𝑡, 𝑗11 , . . . , z𝑡, 𝑗𝑘1 ), z𝑡,long2 = (z𝑡, 𝑗12 , . . . , z𝑡, 𝑗𝑘2 ).

runs KE.KeyGen to generate the pair of keys for this gate

z𝑡1, z
𝑡
1 ← KE.KeyGenpp(1_, 1ℓ ),

and then runs KE.Garble to generate the garbling table for this gate

tb𝑡 ← KE.Garblepp(z𝑡,long1 , z𝑡,long2 , z𝑡1, z
𝑡
2) .

3. If the 𝑡-th gate is a computation gate, it must have two incoming wires (𝑖1, 𝑡) and
(𝑖2, 𝑡). Use the appropriate arithmetic garbling scheme to generate the key pairs for
the two incoming wires

z𝑖1,𝑡1 , z𝑖1,𝑡2 , z𝑖2,𝑡1 , z𝑖2,𝑡2 ,← ACmp𝑔𝑡
.Garble(1_, z𝑡1, z

𝑡
2).

In the end, the garbling algorithm outputs 𝐶 = {tb𝑡}𝑡∈[𝑚] as the garbled circuit. W.l.o.g.,
we assume the 𝑡-th gate is the input gate corresponding to the 𝑡-th coordinate of the input,
for 𝑡 no greater than the input length. The algorithm also outputs z𝑡1, z

𝑡
1 as the key pairs for

the 𝑖-the coordinate of the input.

Decoding Decpp({L𝑖}𝑖∈[𝑛] , 𝐶) takes as input labels L1, . . . , L𝑛 and a garbled circuit 𝐶 = {tb𝑡}𝑡∈[𝑚].
The decoding algorithm enumerates all the gates in topological order, and computes the
label of each gate.

For 𝑡 = 1, . . . , 𝑚, the decoding algorithm performs the following steps:
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1. Compute the label of the 𝑡-th gate.
If the 𝑡-th gate is an input gate, the label L𝑖 is given.
If the 𝑡-th gate is a computation gate, let (𝑖1, 𝑡), (𝑖2, 𝑡) be its incoming wires. The label
of this gate can be recovered by

L𝑡 ← ACmp𝑔𝑡
.Decpp(L𝑖1,𝑡, L𝑖1,𝑡) .

If the 𝑡-th gate is an output gate, let (𝑖, 𝑡) be its only incoming wire, set L𝑡 = L𝑖,𝑡.
2. Compute the labels of the wires starts from the 𝑡-th gate.

If the 𝑡-th gate is an input gate or a computation gate, it has a table tb𝑡 that allows key
extension operation

L𝑡,long ← KE.Decpp(L𝑡, tb𝑡) .

Let (𝑡, 𝑗1), . . . , (𝑡, 𝑗𝑘) be the wires that starts from the 𝑡-th gate. The long label L𝑡,long

can be parsed as the concatenation of labels of the outgoing wires (L𝑡, 𝑗1 , . . . , L𝑡, 𝑗𝑘) =
L𝑡,long.

In the end, for each output gate, the decoding algorithm outputs L𝑡 (which has dimension
1) as the corresponding coordinate of the circuit output.

Note that the garbling algorithm in Construction 11 is highly parallelizable. The garbling
algorithm can 1) first generate all key pairs in parallel; 2) then generate all garbling tables in
parallel.

Correctness. The correctness follows almost directly from the correctness of key extension
gadget KE and arithmetic computation gadgets ACmp+, ACmp×. The invariant is that the evaluator
gets the label L = z1𝑥 + z2 for every gate and every wire.

• For each input gate, the label is given to the evaluator.

• For each wire, as long as the label of its starting gate is learnt by the evaluator, the cor-
rectness of the key extension gadget KE ensures the evaluator gets the label of the wire.

• For each arithmetic computation gate, as long as the label of its two incoming wires are
learnt by the evaluator, the correctness of the corresponding arithmetic computation gad-
gets ACmp ensures the evaluator gets the label of the gate.

• For each output gate, the label equals that of its incoming wire. The evaluator can decodes
the output from the label L𝑡 = z𝑡1𝑥 + z

𝑡
2, since z

𝑡
1 = 1, z𝑡2 = 0.

Privacy. In the real world, the evaluator gets the label L = z1𝑥 + z2 for every gate and every wire.
The evaluator’s view can be simulated in the ideal world, give only the output.

• For each output gate, its label and the label of its preceding wire, equal one coordinate of
the output.

• For each computation gate or input gate, given the label of its outgoing wires, KE.Sim sim-
ulates the label of the gate, together with the garbling table of the gate.

• For each computation gate, given the label of the gate, ACmp.Sim simulates the labels of
its preceding wires.
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The security of such simulation can be proved by a hybrid argument. Consider hybrid worlds
• Hyb𝑖: For 𝑡 ≥ 𝑖, the label and table of the 𝑖-th gate is generated in the real world. For 𝑡 ≥ 𝑖,
the label of any wire ( 𝑗, 𝑖) is generated in the real world. The rest of the view is simulated.

• Hyb′𝑖: For 𝑡 ≥ 𝑖, the label and table of the 𝑖-th gate is generated as the real world. For 𝑡 > 𝑖,
the label of any wire ( 𝑗, 𝑖) is generated in the real world. The rest of the view is simulated.

Hybrids Hyb𝑖+1,Hyb
′
𝑖 are indistinguishable, due to the security of KE.Sim. Hybrids Hyb

′
𝑖,Hyb𝑖 are

indistinguishable, due to the security of ACmp.Sim, if the 𝑖-th gate is a computation. Otherwise,
hybrids Hyb′𝑖,Hyb𝑖 are identical.

By definition, Hyb0 is the real world, and Hyb𝑚+1 is the ideal world. So the simulated view is
indistinguishable from the real view.
Efficiency Analysis. The bottleneck of the garbling scheme is the key extension gadget. The
input label is the key extension gadget input label, which is a dimension ℓ vector in ℤ𝑝. Every
gate has a garbling table, which is also generated by the key extension gadget. The size of the
table is proportional to the gate’s fan-out. Thus for efficiency analysis, it is fine to assume every
gate has constant fan-out.

First look at the length doubling key extension gadgets in Construction 4, Construction 6,
that only hanle output-wire keys z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 of fixed dimension ℓ ′ = 2ℓ . They both generate a
garbled table consisting of constant number of (concretly, 2 and 4) LHE ciphertexts. In our
construction (Construction 1), each LHE ciphertext encrypting an ℓ ′ dimension vector consists
of ℓ ′ elements in ℤ𝑃, where 𝑃 is the message modulus of the underlying LHE instantiation lhe.
Therefore, the length doubling key extension gadgets for both bounded integer and modular
computation generate garbled tables with 𝑂(ℓ ′) elements in ℤ𝑃.

Next consider the arbitrary expansion key extension gadgets, obtained through Transforma-
tion. 1. To hanle output-wire keys z𝑜𝑢𝑡1 , z𝑜𝑢𝑡2 of arbitrary dimension ℓ ′, the transformation divides
them into chunks of fixed dimension 2ℓ , and calls the length doubling gadgets recursively in a
tree-fashion. Note that at each level of the tree, the total dimension of the output-wire chunks
is reduced by half. Therefore, the total size of a garbled table generated by the transformed
gadgets is still 𝑂(ℓ ′) elements in ℤ𝑃.

Finally, in our garbling scheme, assuming each gate has constant fan-out, we have ℓ ′ = 𝑂(ℓ ),
where ℓ is the input-wire label dimension. In Construction 1, we set the 𝑃 ≥ 2𝑝 ·max(𝐵max, 𝐵𝑒),
where 𝐵𝑒 is a fixed bound on LHE decryption error associated with the scheme lhe, and 𝑝, 𝐵max
are parameters introduced in the Setup algorithms in Figure 4 and Figure 5 respectively for
bounded integer and modular computation. In both cases, we have

log 𝑃 = 𝑂(𝜔(log_) + log 𝑝 + log 𝐵𝑒). (24)

Concretely, we have:
• Garbling 𝐵-bounded integer computation. As specified in Figure 4, the label space L = ℤ𝑝 has
bit length log 𝑝 = 𝜔(log_) + log 𝐵+ log 𝐵𝑠, where 𝐵𝑠 is a fixed bound on LHE key magnitude
associated with the scheme lhe and lhe. The input-wire label dimension is ℓ = ℓ𝑠+1 = 𝑂(ℓ𝑠),
where ℓ𝑠 is the LHE key dimension of lhe and lhe.
Under the DCR instantiation, we have ℓ𝑠 = 1, log 𝐵𝑠 = 𝑂(_), and log 𝐵𝑒 = 0. Therefore, the
total bit length of 𝐶 is

|𝐶 | = 𝑂( |𝐶 |ℓ ′ log 𝑃)
= 𝑂( |𝐶 |ℓ𝑠(𝜔(log_) + log 𝐵 + log 𝐵𝑠 + log 𝐵𝑒))
= 𝑂( |𝐶 | (log 𝐵 + _)).
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And the bit length of input labels is 𝑂(𝑛ℓ log 𝑝) = 𝑂(𝑛(log 𝐵 + _)).
Under the LWE instantiation, we have ℓ𝑠 = 𝑘, where 𝑘 is the LWE dimension, and log 𝐵𝑠 =

log 𝐵𝑒 = 𝜔(log_) = 𝑂(1). Therefore, the total bit length of 𝐶 is

|𝐶 | = 𝑂( |𝐶 |ℓ𝑠(𝜔(log_) + log 𝐵 + log 𝐵𝑠 + log 𝐵𝑒))
= |𝐶 | · 𝑂(𝑘) · log 𝐵.

And the bit length of input labels is 𝑂(𝑛ℓ log 𝑝) = 𝑛 · 𝑂(𝑘) · log 𝐵.

• Garbling modulo-𝑝 computation. As specified in Figure 5, the input-wire label dimension is
ℓ = 𝑂(ℓ𝑠ℓsmdg), where ℓ𝑠 is the LHE key dimension of lhe and lhe, and ℓsmdg is the smudging
source length set to ℓsmdg = 𝑂(log 𝐵𝑠 + 𝜔(log_)) as specified in Section 5.1.
Under the DCR instantiation, we have ℓ𝑠 = 1, log 𝐵𝑠 = 𝑂(_), and log 𝐵𝑒 = 0. Therefore, we
have ℓsmdg = 𝑂(_), and the total bit length of 𝐶 is

|𝐶 | = 𝑂( |𝐶 |ℓ ′ log 𝑃)
= 𝑂( |𝐶 |ℓ𝑠ℓsmdg(𝜔(log_) + log 𝑝 + log 𝐵𝑒)
= 𝑂( |𝐶 |_(𝜔(log_) + log 𝑝).

And the bit length of input labels is 𝑂(𝑛ℓ log 𝑝) = 𝑂(𝑛_ log 𝑝).
Under the LWE instantiation, we have ℓ𝑠 = 𝑘, where 𝑘 is the LWE dimension, and log 𝐵𝑠 =

log 𝐵𝑒 = 𝜔(log_). Therefore, we have ℓsmdg = 𝜔(log_) = 𝑂(1), and the total bit length of 𝐶
is

|𝐶 | = 𝑂( |𝐶 |ℓ𝑠ℓsmdg(𝜔(log_) + log 𝑝 + log 𝐵𝑒)
= |𝐶 | · 𝑂(𝑘) · log 𝑝.

And the bit length of input labels is 𝑂(𝑛ℓ log 𝑝) = 𝑛 · 𝑂(𝑘) · log 𝑝.

7.2 Mixed Bounded Integer and Boolean computation

The garbling scheme for the mixed bounded integer and Boolean computation model follow
the same steps as Construction 11 in Section 7.1 for the other two simpler computation mod-
els. The only difference is that it has three types of gates to handle (instead of just arithmetic
computation gates):

• Arithmetic computation gates are handled using the scheme ACmp from Construction 9 in
the same way as Construction 11.

• Bit decomposition gates are handled using the scheme BD from Construction 8.

• To handle a Boolean computation gate, 𝑔𝐵 : {0, 1}𝑑1 → {0, 1}𝑑2 , we need to compute 𝑑1
input-wire keys {z𝑖𝑛,𝑖1 , z𝑖𝑛,𝑖2 }𝑖∈[𝑑1 ], where z

𝑖𝑛,𝑖

1 , z𝑖𝑛,𝑖2 ∈ ℤℓ
𝑝 given 𝑑2 output-wire keys {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖∈[𝑑1 ],

where z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 ∈ ℤℓ ′
𝑝 . We use a Boolean garbling scheme (e.g. Yao’s garbling) BG. First,

we define a circuit 𝐶 (with {z𝑜𝑢𝑡,𝑖1 , z𝑜𝑢𝑡,𝑖2 }𝑖 hardcoded) that on input x ∈ {0, 1}𝑑1 computes:

𝐶(x) = {L𝑜𝑢𝑡,𝑖}𝑖∈[𝑑2 ] .

����� y = (𝑦1, . . . , 𝑦𝑑2) = 𝑔𝐵(x)
L𝑜𝑢𝑡,𝑖 = 𝑦𝑖z𝑜𝑢𝑡,𝑖1 + z𝑜𝑢𝑡,𝑖2 mod 𝑝
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We then compute a garbled circuit and 𝑑1 pair of evaluation keys 𝐶, {k𝑖
0,k

𝑖
1}𝑖∈[𝑑1 ] ← BG.Garble(1_, 𝐶).

The input-wire keys are defined as

z𝑖𝑛,𝑖1 = k̄𝑖

1 − k̄
𝑖

0 mod 𝑝, z𝑖𝑛,𝑖2 = k̄𝑖

0,

where k̄𝑖

𝑏 is a ℤ𝑝 vector encoding the Boolean evaluation key k𝑖
𝑏. It’s easy to verify that an

evaluator with input-wire labels L𝑖𝑛,𝑖 = z𝑖𝑛,𝑖1 𝑥𝑖 + z𝑖𝑛,𝑖2 = k̄𝑖

𝑥𝑖
(mod 𝑝) can evaluate the garbled

circuit 𝐶 to obtain the output-wire labels {L𝑜𝑢𝑡,𝑖}𝑖.
Note that The above description gives a Boolean computation gadget.

Efficiency Analysis. Similar to the cases of bounded integer and modular computation (analyzed
in the end of Section 7), the input label is the key extension gadget input label, which is a
dimension ℓ vector in ℤ𝑝, where the dimension ℓ and the modulus 𝑝 is specified in the Setup
algorithm in Figure 6. And the garbled table generated by the key extension gadget consists
of 𝑂(ℓ ′) elements in ℤ𝑃, where ℓ ′ is the output-wire label dimension, and 𝑃 is the message
modulus of the underlying LHE instantiation lhe. We have ℓ ′ = 𝑂(ℓ ), and log 𝑃 = 𝑂(𝜔(log_) +
log 𝑝 + log 𝐵𝑒).

Different from the cases of bounded integer and modular computation, the bit decomposi-
tion gadget and the Boolean computation gadget also generate garbled tables. In bit deomposi-
tion (Construction 8), a garbled table consists of two parts: a specific Yao’s garbled circuit and
2𝑑′ LHE ciphertexts, where 𝑑′ = 𝜔(log_) + log 𝐵, is the bit length of an integer 𝑦 that statistically
smudges any 𝐵-bounded value. Since the Yao’s garbled circuit is not the bottleneck, we ignore it
in this efficiency analysis. The 2𝑑′ LHE ciphertexts each encrypts an ℓ ′′ = 2ℓ𝑘+ℓ𝑠ℓsmdg dimension
vector, where ℓ𝑘 = 𝑂(_) is the bit length of an evaluation key for Yao’s garbled circuit. Therefore,
in total the garbled table consists of 𝑂(𝑑′ℓ ′′) elements in ℤ𝑃.

The Boolean computation gadget for a Boolean function 𝑔𝐵 basically outputs the Yao’s gar-
bled circuit for the circuit representation of 𝑔𝐵 as its garbled table. Therefore, we count the
total size of all garbled tables generated by Boolean computation gadgets as 𝑠𝑏_, where 𝑠𝑏 is the
total circuit size of all Boolean functions in the circuit.

Let𝑚𝑎 be the number of arithmetic computation gates, and𝑚𝑏, the number of bit-decomposition
gates. We can now calculate concretely:

• Garbling mixed 𝐵-bounded integer and Boolean computation. As specified in Figure 6, the
label space L = ℤ𝑝 has bit length log 𝑝 = 𝜔(log_) + log 𝐵 + log 𝐵𝑠, where 𝐵𝑠 is a fixed
bound on LHE key magnitude associated with the scheme lhe and lhe. The input-wire label
dimension is ℓ = 𝑂(ℓ𝑠), where ℓ𝑠 is the LHE key dimension of lhe and lhe. The smudging
source length ℓsmdg is set to ℓsmdg = 𝑂(log 𝐵𝑠 + 𝜔(log_)) as specified in Construction 7.
Under the DCR instantiation, we have ℓ𝑠 = 1, log 𝐵𝑠 = 𝑂(_), and log 𝐵𝑒 = 0. Therefore,
ℓ ′′ = 2ℓ𝑘 + ℓ𝑠ℓsmdg = 𝑂(_), and the total bit length of 𝐶, is

|𝐶 | = 𝑂((𝑚𝑎ℓ
′ + 𝑚𝑏2𝑑′ℓ ′′) log 𝑃 + 𝑠𝑏_)

= 𝑂((𝑚𝑎 + 𝑚𝑏(𝜔(log_) + log 𝐵︸                ︷︷                ︸
=𝑑′

) _︸︷︷︸
=ℓ ′′

) (_ + log 𝐵︸     ︷︷     ︸
=log 𝑃

) + 𝑠𝑏_)

= 𝑂(𝑠𝑏_ + 𝑚𝑎(_ + log 𝐵) + 𝑚𝑏(_ + log 𝐵)2_).

And the bit length of input labels is 𝑂(𝑛ℓ log 𝑝) = 𝑂(𝑛(_ + log 𝐵)).
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Under the LWE instantiation, we have ℓ𝑠 = 𝑘, where 𝑘 is the LWE dimension, and log 𝐵𝑠 =

log 𝐵𝑒 = 𝜔(log_) = 𝑂(1). Therefore, ℓ ′′ = 2ℓ𝑘 + ℓ𝑠ℓsmdg = 𝑂(𝑘 +_), and the total bit length of
𝐶 is

|𝐶 | = 𝑂((𝑚𝑎ℓ
′ + 𝑚𝑏2𝑑′ℓ ′′) log 𝑃 + 𝑠𝑏_)

=𝑠𝑏𝑂(_) + 𝑚𝑎 · log 𝐵 · 𝑂(𝑘) + 𝑚𝑏(log 𝐵)2𝑂(𝑘 + _).

And the bit length of input labels is 𝑂(𝑛ℓ log 𝑝) = 𝑂(𝑛𝑘 log 𝑝).

8 Potential for Concrete Efficiency Improvement

In this section, we compare the concrete efficiency of our garbling scheme based on the DCR as-
sumption against the scheme of [BMR16] (BMR), which garbles arithmetic circuits in the bounded
integer model with free addition and subtraction, and the baseline solution that first converts
arithmetic circuits into Boolean circuits and then runs the Boolean garbling scheme of [RR21]
(RR). Note that, the concrete efficiency of our construction is not optimized. The calculations
and comparisons in this section are only to demonstrate the potential towards more practical
garbling schemes for garbling arithmetic circuits with large domains.

In Section 4.2, we presented a length doubling key extension gadget. It is easy to see that
we can adapt the gadget to extend the key length arbitrarily, at the cost of increasing the length
of public parameters pp proportional to the length of the expanded key. This can be done in
practice when we know a bound on the maximal fan-out of the circuits. In Section 4.3, we
present another method for achieving “arbitrary expansion”, which however increases the size
of a garbled table tb by at most twice. Below, we analyze the more efficient variant, assuming
the maximal fan-out is known a-priori.

Concrete Setting for Comparison. Concretely, we consider the Paillier modulus 𝑁 to have 4096
bits. For 𝐵-bounded integer garbling, we set the bit length ℓ = log(𝐵) to be just slightly below
4096, specifically 3808 bits (the setting is described below), and for mod-𝑝 garbling, we similarly
consider bit length ℓ = log 𝑝 = 3808 bits. We set the statistical security parameter ^ = 80.

Under the concrete setting, the most efficient Boolean circuit implementation for integer
multiplication uses Karatsuba’s method. We conservatively count the number of AND gates (as
XOR gates in RR is free) in a multiplication circuit as ℓ 1.58, ignoring any hidden constants, and
an addition circuit as ℓ log ℓ . In mod-𝑝 garbling, we assume the baseline solution adds a mod-𝑝
reduction (also count as ℓ 1.58) after every integer multiplication or addition.

At a high level, the BMR scheme works by decomposing a large 𝐵-bounded integer into
its Chinese Remainder Theorem (CRT) representation using the smallest distinct primes (𝑝1 =

2, 𝑝2 = 3, . . . , 𝑝𝑘) whose product exceeds 𝐵. Under the concrete setting, the number of primes
is 𝑘 = 394.

To complement the following comparisons under our concrete setting, with ℓ = 3808 bits,
we also plot the garbling size comparisons for a larger range, from ℓ = 500 to 10, 000 bits, in
Figure 8a, 8b, and 8c. Details for the comparisons in bounded integer, mixed computation, and
modular arithmetic models are described below.

Size of Bounded Integer Garbling. Under standard DCR, our bounded integer garbling signifi-
cantly improves the garbling size of both addition (∼100×) and multiplication (∼600×) gates over
the Boolean baseline using RR, as shown in Table 3. BMR supports free addition, but multipli-
cation is more expensive than RR.
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(a) Sizes of bounded integer
garbling.

(b) Sizes of mixed computation
garbling.

(c) Sizes of modular arithmetic
garbling.

Figure 8: Garbling size comparisons in bounded integer, mixed, and modular arithmetic
models. Our scheme assumes the “small exponent” assumption in the first model,
and “strong DCR” in the last two.

Scheme Garbled Table Size

Ours (per Mult Gate) 12 · 3 · log 𝑁 18.0 KB
[RR21] (per Mult Gate) 1.5 · 128 · ℓ 1.58 10.4 MB
[BMR16] (per Mult Gate) 2 · 128 ·∑𝑘

𝑖=1 (𝑝𝑖 − 1) 15.0 MB
Ours (per +/− Gate) 6 · 3 · log 𝑁 9.0 KB
[RR21] (per +/− Gate) 1.5 · 128 · ℓ log ℓ 1.0 MB
[BMR16] (per +/− Gate) Free 0 b

Ours, Improved (per Mult Gate) 12 · 2 · log 𝑁 12.0 KB
Ours, Improved (per +/− Gate) 6 · 2 · log 𝑁 6.0 KB

Table 3: Comparison of garbled circuit size for bounded integer computation. The last two lines
assume the stronger small exponent assumption.

The formula for our scheme is derived as follows. In our garbling scheme, the garbled ta-
ble for each multiplication gate consists of 12 ring elements in ℤ𝑃: according to Figure 1, the
two input wires each have a pair of keys of dimension 4 and 2 (as the label 𝑥 𝑗2 + 𝑠 is available
before key extension and does not need to be regenerated). In the DCR instantiation, we set
𝑃 = 𝑁3. Because when ℓ = log 𝐵 = 3808, it holds that 𝑁2 ≥ 𝑁22^𝐵, which is how large the
values encrypted in Paillier encryption are. Note that this is different from how Setup algorithm
(Figure 4) specifies the modulus 𝑃, because Setup is designed to fit both the DCR and the LWE
instantiations. The size of garbling an addition gate is calculated the same way as multiplication,
except with key dimensions 2 and 1 for the input wires.

Size of Mixed Computation Garbling. The BMR scheme has a gadget for converting a 𝐵-bounded
integer into a representation where each “digit” is relative to a distinct prime base (2, 3, 5, . . . , 𝑝𝑘).
This representation has similar advantages as the Boolean representation, such as cheap com-
parisons.9

9A followup work [BCM+19] considered optimizations to related gadgets, e.g. for comparison, using
computational search and relaxations that only guaranteed approximate correctness. We do not compare
to this later work. Note that the naive implementations of their search problem is infeasible for the
parameter setting we are considering in this section.
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Under a strengthened DCR assumption, (we call it “strong DCR”,) our bit-decomposition gad-
get gives a 3× improvement over the similar decomposition gadget in BMR, as shown in Table 4.
The comparison for addition and multiplication gates remains the same as in the bounded in-
teger model (Table 3).

We next explain the formula for our scheme, and the motivation for the “strong DCR” as-
sumption. Our bit decomposition gadget requires the input wire to have a much longer key
dimension, 𝑂(log 𝑁 + ^), than addition or multiplication, due to the use of the seeded smudger.
The hidden constant is also large. As a preliminary attempt at optimizing the key dimension,
we strengthen the DCR assumption in two steps.

1. We adopt the “small exponent assumption” from [ADOS22]. At a high level, the DCR assump-
tion says ℎ𝑥 is indistinguishable from a random group element, where ℎ is a generator of the
hard group and 𝑥 is sampled from [𝑁] at random. The small exponent assumption says the
indistinguishability holds even if the exponent 𝑥 is sampled from a small range, 0, . . . , 2lsk,
independent of the Paillier modulus 𝑁. For concrete number we set lsk = 128. The key
dimension becomes 𝑂(lsk + ^) under the small exponent assumption.
We note that, the small exponent assumption also slightly reduces our garbling sizes for
bounded integer garbling, as we can now set the modulus 𝑃 = 𝑁2 ≥ 𝑁2lsk22^𝐵, as shown
in the last two lines of Table 3.

2. We further strength the assumption to get rid of the seeded smudger. At a high level, smudger
linearly combines entropic bits (each with 1/2 bit of entropy) into a secure Paillier secret
exponent. Instead, we simply concatenate the entropic bits as 𝑥 =

∑
𝑖∈[2lsk] 𝑥𝑖2𝑖, which gives

an exponent 𝑥 with lsk bits of entropy. We strengthen DCR to “strong DCR”, which assumes
that the indistinguishability holds even if 𝑥 is sampled as above. The key dimension becomes
2 · lsk under the new assumption.

The bit decomposition gadget itself generates a garbled table tbBD with 4 · lsk · (ℓ + ^) ring
elements in ℤ𝑃. Additionally, the garbled table tb encrypting one such key pair consists of
4 · lsk ring elements in ℤ𝑃, which is negligible compared to the above table tbBD. In the DCR
instantiation, we set 𝑃 = 𝑁2 ≥ 𝑁2lsk22^𝐵.

Scheme Garbled Table Size

Our Bit-Decomp 4 · lsk · (ℓ + ^) · 2 · log 𝑁 1.9 GB
[BMR16] Decomp 128 · 2(𝑘 − 1)∑𝑘

𝑖=1 (𝑝𝑖 − 1) + 128 · 4
(
𝑘
2
)

5.8 GB

Table 4: Comparison of garbled circuit size supporting bit decomposition. Our scheme assumes the
“strong DCR” assumption.

Size of Modular Arithmetic Garbling. Again, under “strong DCR”, our garbling has comparable
sizes to the Boolean baseline using RR for both addition and multiplication, as shown in Table 5.
Note that BMR doesn’t support mod-𝑝 garbling for an arbitrary modulus 𝑝, hence is not included
for comparison.

The formula for our scheme is derived as follows. In the modular arithmetic model, the key
dimension of an input wire to a multiplication gate is calculated similarly to the above for a bit
decomposition gate. The difference is that the use of secret sharing in the key extension gadget
(Construction 6) doubles the key dimension to 4 · lsk. The two input wires to a Mult gate each
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have a pair of keys of dimension 8 · lsk and 4 · lsk, as shown in Figure 1. The garbled table tb
encrypting two such key pairs consists of 2· (8·2+4·2) ·lsk = 48·lsk ring elements in ℤ𝑃, where the
additional factor of 2 comes again from the use of secret sharing in the key extension gadget. In
the DCR instantiation, we set 𝑃 = 𝑁4 ≥ 𝑝32^𝑁. (Recall in the concrete setting ℓ = log(𝑝) = 3808
bits.)

Scheme Garbled Table Size

Ours (per Mult Gate) 48 · lsk · 4 · log 𝑁 12 MB
[RR21] (per Mult Gate) 2 · 1.5 · 128 · ℓ 1.58 20.8 MB
Ours (per +/− Gate) 32 · lsk · 4 · log 𝑁 8 MB
[RR21] (per +/− Gate) 1.5 · 128 · (ℓ 1.58 + ℓ log ℓ ) 11.4 MB

Table 5: Comparison of arithmetic garbling for modular arithmetic computation. Our scheme assumes
the “strong DCR” assumption.

Computation Efficiency. We briefly analyze the main computation costs of our scheme, and
compare with the scheme of BMR and RR, focusing on bounded integer garbling under our
concrete setting.

In both BMR and RR, the main costs are computing garbled table entries, which are 128-bit
AES ciphertexts. Concretely: BMR computes 2 ·∑𝑘

𝑖=1(𝑝𝑖 − 1) ≈ 106 AES ciphertexts for each Mult
gate, and has free addition. The Boolean baseline using RR computes 1.5 · ℓ 1.58 ≈ 6.8 × 105 and
1.5 · ℓ log ℓ ≈ 6.8 × 104 AES ciphertexts for each Mult and Add gate respectively. In our scheme,
a garbled table for Mult consists of 12 ring elements in ℤ𝑃, each a Paillier ciphertext of the
form ℎ𝑥 (1 + 𝑁)𝑚, for some hard group element ℎ, secret exponent 𝑥, and message 𝑚. Thanks
to algebraic properties of Pailler, (1 + 𝑁)𝑚 can be computed cheaply without exponentiation.
The main cost comes from raising ℎ to the exponent 𝑥. Let lsk be the bit length of 𝑥. The DCR
assumption assumes that lsk = log 𝑁 = 4096. However, under the “small exponent” assumption
as introduced in [ADOS22], we can set lsk = 128, which significantly improves computational
efficiency. Concretely, our scheme computes 12·lsk ≈ 1.5×103 and 6·lsk ≈ 7.7×102 multiplications
mod 𝑃 for each Mult and Add gate respectively. A comparison is in Table 6.

9 Linear Seeded Smudger Over the Integers

The linear seeded smudger that will be defined in this section is essentially a (linear) random-
ness extractor. It is well-known how to construct exactor that is linear over a finite field. Our
challenge is that we require smudger to be linear over the integer ring ℤ. Therefore, we define
smudger so that

• The extracted randomness does not need to be close to uniform. (There does not exist an
uniform distribution of ℤ in the first place.) We only require that the extracted randomness
can “smudge” a given distribution with high probability.
For a distribution X over {0, 1}ℓ and an extractor 𝐸 : {0, 1}ℓ → ℤ, let 𝐸(X ) denote the
distribution of the extracted randomness. We say 𝐸(X ) smudges a distribution D, if the
two distributions

𝐸(X ) and 𝐸(X ) +D

are statistically close.

68



Scheme Garbling Computation Cost

Ours (per Mult Gate) 12 · lsk ≈ 1.5 × 103 Mult mod𝑃

[RR21] (per Mult Gate) 1.5 · ℓ 1.58 ≈ 6.8 × 105 AES calls
[BMR16] (per Mult Gate) 2 ·∑𝑘

𝑖=1 (𝑝𝑖 − 1) ≈ 106 AES calls
Ours (per +/− Gate) 6 · lsk ≈ 7.7 × 102 Mult mod𝑃

[RR21] (per +/− Gate) 1.5 · ℓ log ℓ ≈ 6.8 × 104 AES calls
[BMR16] (per +/− Gate) Free Free

Table 6: Comparison of computation costs for bounded integer garbling.

• Instead of considering any high-entropy source, we only require the smudger to work with
the so-call bix-fixing source.
For ℓ ∈ ℤ and 𝑝 ∈ (0, 1], a distribution X over {0, 1}ℓ is a (ℓ , 𝑝)-bix-fixing source, if 𝑝ℓ bits
of it are i.i.d. uniform, and the remaining (1− 𝑝)ℓ bits are fixed. Note that (ℓ , 𝑝)-bix-fixing
sources make up a family of distributions.

We introduce the notion of linear seeded (ℓ , 𝑝,_1,_2)-smudgers. We say an seeded extractor is
an (ℓ , 𝑝,_1,_2)-smudger, if for every (ℓ , 𝑝)-bit-fixing source, the extracted randomness smudges
any distribution over {0, . . . , 2_1} with an 𝑂(2−_2) statistical error. We say an seeded extractor is
an (ℓ , 𝑝,_)-smudger, if it is an (ℓ , 𝑝,_,_)-smudger.

Definition 13 (linear seeded smudger). A linear seeded smugder consists of two efficient algorithms:

• Smdg.Gen(1ℓ , 𝑝) → s. Here (ℓ , 𝑝) is the parameter of bit-fixing source, Smdg.Gen samples the
seed s. As we are considering linear smudger, we assume w.l.o.g. that the seed s ∈ ℤℓ .

• Smdg.Smudge(x; s) → ⟨s, x⟩.

Smdg is a (ℓ , 𝑝,_1,_2)-smudger, if for any (ℓ , 𝑝)-bit-fixing source X and for any distribution D
over {0, 1, . . . , 2_1}, with probability at least 1−2−_2 over the randomness of sampling s← Smdg.Gen(1ℓ , 𝑝),
the following two distribution (conditioning on s)

Smdg.Smudge(x; s) and Smdg.Smudge(x; s) + Y

have statistical distance at most 2−_2 , where x, Y are sampled from X ,D respectively.
Smdg is an (ℓ , 𝑝,_)-smudger is it is an (ℓ , 𝑝,_1,_2)-smudger.

Theorem 4. For any 𝑝,_, there exists ℓ = 𝑂(_/𝑝) such that there exists linear seeded (ℓ , 𝑝,_)-
smudger. Moreover, the coefficients of the smudger is bounded by 𝑂(_ · 22_).

Proof.Proof. Let 𝑋1, . . . , 𝑋ℓ ∈ {0, 1} be i.i.d. uniform. Let s = (𝑠1, . . . , 𝑠ℓ ) be sampled from Smdg.Gen(1_, 1ℓ , 𝑝).
The theorem says, for any 𝐽 ⊆ {1, . . . , ℓ } of size 𝑝ℓ , with probability at least 1−2−_ over the ran-
domness of sampling s, (∑︁

𝐽

𝑠 𝑗𝑋 𝑗

)
≈2−_

(
D +

∑︁
𝐽

𝑠 𝑗𝑋 𝑗

)
.

We let 𝑠1, . . . , 𝑠ℓ be independently sampled from the uniform distribution of {1, . . . , 𝐵}, where
𝐵 will be chosen later. Since 𝑠1, . . . , 𝑠ℓ are i.i.d., we can get rid of 𝐽, and it suffices to prove that( 𝑝ℓ∑︁

𝑗=1
𝑠 𝑗𝑋 𝑗

)
≈2−_

(
D +

𝑝ℓ∑︁
𝑗=1

𝑠 𝑗𝑋 𝑗

)
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with probability at least 1 − 2−_ over the randomness of sampling s. Concretely, we let each 𝑠 𝑗

to be independently sampled from {1, . . . , 𝐵}.
Since the support of D is bounded by 2_, it suffices to prove( 𝑝ℓ∑︁

𝑗=1
𝑠 𝑗𝑋 𝑗

)
≈2−2_

(
1 +

𝑝ℓ∑︁
𝑗=1

𝑠 𝑗𝑋 𝑗

)
with probability at least 1 − 2−_ over the randomness of sampling s.

Define

𝑢𝑠(𝑥) =
{

1, if 𝑥 = 𝑠

0, otherwise.
𝑔𝑠 =

1
2
(𝑢0 + 𝑢𝑠) ℎ =

1
2
(𝑢0 − 𝑢1)

Then 𝑔𝑠 𝑗 is the probability mass function of 𝑠 𝑗𝑋 𝑗. Let ◦ denote the convolution product that
( 𝑓 ◦ 𝑔) (𝑥) = ∑

𝑦 𝑓 (𝑦)𝑔(𝑥 − 𝑦). Then 𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠𝑝ℓ , 𝑢1 ◦ 𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠𝑝ℓ are the probability mass
functions of ∑𝑝ℓ

𝑗=1 𝑠 𝑗𝑋 𝑗, 1 + ∑𝑝ℓ

𝑗=1 𝑠 𝑗𝑋 𝑗 respectively. The statistical distance between them can be
written as

∆SD

( 𝑝ℓ∑︁
𝑗=1

𝑠 𝑗𝑋 𝑗 , 1 +
𝑝ℓ∑︁
𝑗=1

𝑠 𝑗𝑋 𝑗

)
=

1
2

𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠𝑝ℓ − 𝑢1 ◦ 𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠𝑝ℓ


1
=

ℎ ◦ 𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠𝑝ℓ


1
.

We use Fourier analysis to bound the above L1 distance. Let 𝑁 be a sufficiently large number
such that 𝑁 > 1 + 𝑝ℓ 𝐵. Thus ℎ, 𝑔𝑠1 , . . . , 𝑔𝑠ℓ can be viewed as functions from [𝑁] to ℝ, and their
convolution product ℎ ◦ 𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠ℓ over ℤ is the same their convolution product modulo 𝑁.

For any 𝑓 : [𝑁] → ℂ, its Fourier transform 𝑓 : [𝑁] → ℂ is defined as

𝑓 (𝑘) =
∑︁

𝑦∈[𝑁 ]
𝑓 (𝑦)𝑒−𝑖 𝑘

𝑁
2𝜋𝑦.

And it is easy to verify that 𝑓 (𝑥) = 1
𝑁

∑
𝑘 𝑓 (𝑘) · 𝑒𝑖

𝑘
𝑁

2𝜋𝑥.
We abuse the notation and let 𝑓 = ℎ ◦ 𝑔𝑠1 ◦ · · · ◦ 𝑔𝑠ℓ , then

∥ 𝑓 ∥1 ≤
1
𝑁

∑︁
𝑘

| 𝑓 (𝑘) | · ∥𝑥 ↦→ 𝑒𝑖
𝑘
𝑁

2𝜋𝑥∥1 =
∑︁
𝑘

| 𝑓 (𝑘) | =
∑︁
𝑘

|ℎ̂(𝑘) | · | �̂�𝑠1 (𝑘) | · . . . · | �̂�𝑠ℓ (𝑘) |.

The right-hand side of the inequality can be bounded by considering “small” 𝑘’s and “large” 𝑘’s
separately.

To bound | 𝑓 (𝑘) | for “small” 𝑘 (i.e. 𝑘 ≤ 2𝑁
𝐵
or 𝑘 ≥ 𝑁 − 2𝑁

𝐵
). It suffices to bound |ℎ̂(𝑘) |,

| 𝑓 (𝑘) | ≤ |ℎ̂(𝑘) | = sin( 𝑘
𝑁
𝜋) ≤ min(𝑘, 𝑁 − 𝑘)

𝑁
· 𝜋 ≤ 𝜋

𝐵
.

We choose 𝐵 such that 4𝑁
𝐵
· 𝜋
𝐵
≤ 1

22_+1 . Then∑︁
“small”𝑘

| 𝑓 (𝑘) | ≤
∑︁

“small”𝑘
|ℎ̂(𝑘) | ≤ 4𝑁

𝐵
· 𝜋
𝐵
≤ 1

22_+1 . (25)
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To bound | 𝑓 (𝑘) | for “large” 𝑘 (i.e. 2𝑁
𝐵

< 𝑘 < 𝑁 − 2𝑁
𝐵
). We have

�̂�𝑠(𝑘) =
1 + 𝑒−𝑖 𝑘

𝑁
2𝜋𝑠

2

=⇒ | �̂�𝑠(𝑘) |2 =
1 + 𝑒−𝑖 𝑘

𝑁
2𝜋𝑠

2
1 + 𝑒𝑖 𝑘

𝑁
2𝜋𝑠

2
=

𝑒𝑖
𝑘
𝑁

2𝜋𝑠 + 2 + 𝑒−𝑖 𝑘
𝑁

2𝜋𝑠

4
.

As 𝑠 is sampled uniformly from {1, . . . , 𝐵},

𝔼
𝑠←{1,...,𝐵}

[
| �̂�𝑠(𝑘) |2

]
=

1
𝐵

𝐵∑︁
𝑠=1
| �̂�𝑠(𝑘) |2

=

1
𝐵

𝑒
𝑖 𝑘
𝑁

2𝜋𝐵−1
1−𝑒−𝑖

𝑘
𝑁

2𝜋
+ 2 + 1

𝐵
𝑒
−𝑖 𝑘

𝑁
2𝜋𝐵−1

1−𝑒𝑖
𝑘
𝑁

2𝜋

4

≤

1
𝐵

2
|1−𝑒−𝑖

𝑘
𝑁

2𝜋 |
+ 2 + 1

𝐵
2

|1−𝑒𝑖
𝑘
𝑁

2𝜋 |
4

=
1
2
+ 1

𝐵

1
|1 − 𝑒−𝑖

𝑘
𝑁

2𝜋 |

=
1
2
+ 1

𝐵 · | sin( 𝑘
𝑁
𝜋) |

≤ 1
2
+ 1

𝐵 · | sin( 2
𝐵
𝜋) |

.

As long as 𝐵 ≥ 4, we have 𝐵 · | sin( 2
𝐵
𝜋) | ≥ 4, thus

𝔼
𝑠←{1,...,𝐵}

[
| �̂�𝑠(𝑘) |2

]
≤ 3

4
.

By Chernoff bound,

Pr
s

[ 1
𝑝ℓ

𝑝ℓ∑︁
𝑗=1
| �̂�𝑠(𝑘) |2 ≤

3
4
+ 𝛿

]
≤ 𝑒−𝑑KL (

3
4+𝛿 ∥

3
4 ) ·𝑝ℓ . (26)

Let 𝛿 ∈ (0, 1/4) be the solution of − 1
4 log( 3

4 + 𝛿) = 𝑑KL( 3
4 + 𝛿∥

3
4 ) = 𝐶, where 𝐶 > 0 is a constant.

Let 𝑝ℓ = 1
𝐶

log(2𝑁2_), then (26) says

1
𝑝ℓ

𝑝ℓ∑︁
𝑗=1
| �̂�𝑠(𝑘) |2 ≤

3
4
+ 𝛿 (27)

with probability at least 1− 1
2𝑁2_ . By the union bound, with probability at least 1− 1

2_+1 , (27) holds
for all “large” 𝑘.

By the inequality of arithmetic and geometric means, (27) implies
𝑝ℓ∏
𝑗=1
| �̂�𝑠(𝑘) |2 ≤

(3
4
+ 𝛿

) 𝑝ℓ
=

( 1
2𝑁2_

)4
.

Therefore, with probability at least 1 − 1
2_+1 ,∑︁

“large”𝑘
| 𝑓 (𝑘) | ≤

∑︁
“large”𝑘

𝑝ℓ∏
𝑗=1
| �̂�𝑠(𝑘) | ≤

∑︁
“large”𝑘

( 1
2𝑁2_

)2
≤ 1

22_+1 . (28)
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Finally, by combining (25) and (28) using the union bound, with probability at least 1 − 1
2_ ,

∆SD

( 𝑝ℓ∑︁
𝑗=1

𝑠 𝑗𝑋 𝑗 , 1 +
𝑝ℓ∑︁
𝑗=1

𝑠 𝑗𝑋 𝑗

)
≤
∑︁
𝑘

| 𝑓 (𝑘) | =
∑︁

“small”𝑘
| 𝑓 (𝑘) | +

∑︁
“large”𝑘

| 𝑓 (𝑘) | ≤ 2−2_ .

As for the parameters, we require

𝑁 > 1 + 𝑝ℓ 𝐵,
4𝑁
𝐵
· 𝜋
𝐵
≤ 1

22_+1 , 𝐵 ≥ 4, 𝑝ℓ =
1
𝐶

log(2𝑁2_).

So it suffices to let 𝑝ℓ = 𝑂(_), 𝐵 = 𝑂(_ · 22_) and 𝑁 = 𝑂(_2 · 22_).
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