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Abstract

Quantum key distribution (QKD) allows Alice and Bob to agree on a shared secret key,
while communicating over a public (untrusted) quantum channel. Compared to classical key
exchange, it has two main advantages: (i) The key is unconditionally hidden to the eyes of
any attacker, and (ii) its security assumes only the existence of authenticated classical channels
which, in practice, can be realized using Minicrypt assumptions, such as the existence of digital
signatures. On the flip side, QKD protocols typically require multiple rounds of interactions,
whereas classical key exchange can be realized with the minimal amount of two messages using
public-key encryption. A long-standing open question is whether QKD requires more rounds of
interaction than classical key exchange.

In this work, we propose a two-message QKD protocol that satisfies everlasting security,
assuming only the existence of quantum-secure one-way functions. That is, the shared key is
unconditionally hidden, provided computational assumptions hold during the protocol execution.
Our result follows from a new construction of quantum public-key encryption (QPKE) whose
security, much like its classical counterpart, only relies on authenticated classical channels.

1 Introduction

Quantum key distribution (QKD) [4] enables Alice and Bob to exchange a secret key over a public
(untrusted) quantum channel. Compared to classical key exchange, it offers two main advantages:
(i) It hides the key unconditionally or information-theoretically to the eyes of any (possibly unbounded
and quantum) attacker, and (ii) it relies only on the existence of authenticated classical channels,
which in practice can be instantiated using Minicrypt [12] computational assumptions. The former
is plainly impossible to achieve without quantum information, and we also have strong evidence [13]
that classical key exchange requires more structured (Cryptomania) computational assumptions.

Over the past decades, QKD has inspired a staggering amount of research, ranging from profound
theoretical works [19, 17, 18, 22] all the way to large-scale experiments [14, 16, 25]. As such, QKD
is one of the most studied topics in the theory quantum information. Despite the vast literature
on the topic, QKD protocols still do not outperform classical key exchange in all aspects: Whereas
classical key exchange can be realized using two messages [5], which is optimal, to the best of our
knowledge all known QKD protocols require more than two rounds of interaction.
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This raises the question of whether more rounds of interaction are really necessary for QKD.
Apart from its theoretical importance, there are also practical reasons for addressing this question.
Indeed, two-message protocols are particularly desirable for practical scenarios where parties may
drop offline during the protocol execution, may want to send their message at a later point in
time, or do not want to keep a state across rounds. Arguably, this minimal interaction pattern is
the property makes traditional cryptographic primitives, such as public-key encryption, so useful.
However, despite this strong motivation and almost fifty years of intense research, the optimal round
complexity of QKD is still an open problem.

1.1 Our Results

In this work we show that two messages are sufficient to build a QKD protocol with everlasting
security. Specifically, we prove the following statement:

If quantum-secure one-way functions exist, then there exists two-message QKD.

Since two messages are clearly necessary for QKD, our protocol achieves the optimal round complexity.
Furthermore, only the first message (from Alice to Bob) is quantum, whereas Bob’s response is
entirely classical. The protocol satisfies the strong notion of everlasting security : As long as the
attacker runs in quantum polynomial time during the execution of the protocol, the shared key is
hidden in an information-theoretic sense.

We view our approach as a big departure from the traditional design of QKD protocols [4, 8],
and it is inspired instead by recent works on cryptography with certified deletion [3] and quantum
public-key encryption [2]. Both our protocol and its analysis are entirely elementary and they are
simple enough to be fully described in an undergraduate class. For comparison, it took more than
ten years for researchers to establish a formal proof of the first QKD protocol [4].

Our main technical ingredient is a new framework for building quantum public-key encryption
(QPKE), a cryptographic primitive that allows Alice to sample a public key consisting of a quantum
state ρ and a classical string pk. The scheme is robust, in the sense that security is guaranteed to
hold even if the distinguisher is given pk, and it is allowed to tamper arbitrarily with the quantum
state ρ. We present two instances of QPKE:

• (Everlasting Security) In our first scheme, the message m remains information-theoretically
hidden, provided that the distinguisher was computationally bounded during the execution of
the protocol. This property holds if the distinguisher is given a single copy of the public key,
which is sufficient to build QKD.

• (Computational Security) In our second scheme, the message m is computationally hidden,
i.e., we only require security against a computationally bounded distinguisher. While this
is a weaker security notion, the advantage of the scheme is that security holds even if the
distinguisher is given arbitrarily many copies of the public key.

The fact that the first construction is only secure in a model where we give access to a single copy
of the public key is not a coincidence. It is shown [2] that given enough (but polynomially-many)
copies of the public key, an unbounded adversary can launch a key-recovery attack. This means
that there does not exist any QPKE with everlasting security against a distinguisher that sees
arbitrarily-many copies of the public key, and it justifies the need for a weaker security notion
(computational security).

2



Everlasting Security. We point out a subtle difference between the attacker model that we
consider in this work, compared to the standard attacker model for QKD. The latter, considered for
instance in [23, 24], models the attacker as a computationally unbounded quantum channel, that is
however not allowed to tamper with the information sent over the classical channels. That is, it
only assumes the existence of authenticated classical channels, but otherwise does not impose any
restriction on the runtime of the distinguisher. On the other hand, in this work we consider – in
addition to the existence of authenticated classical channels – an attacker that runs in quantum
polynomial time during the protocol execution, but it is allowed to be unbounded once the protocol
terminates. That is, we prove everlasting security in the sense of [20].

While technically different, we argue that for most practical scenarios the two models are in fact
equivalent. The assumption of an authenticated classical channel is most often justified by having
each party sign their own messages with a digital signature, which would require computational
assumptions to hold (at the very least) during the execution of the protocol. In this sense, the
mere existence of authenticated classical channels already restricts the attacker to run in quantum
polynomial time during the protocol execution (as otherwise it could just break the security of the
digital signature).

Finally, it is not hard to show that everlasting security is the best possible security notion for
QPKE, i.e., there exists a generic attack against any QPKE scheme, if the distinguisher is allowed to
run in unbounded time during the execution of the protocol. The attack works even in the presence
of authenticated classical channels and succeeds with certainty. For completeness, we report the
proof of this fact in Appendix A.

1.2 Concurrent Work

A concurrent work [15] obtains similar results on robust QPKE, where security holds only against
a distinguisher that is allowed to tamper arbitrarily with the quantum portion of the public key.
Compared to our work, they only consider the setting of computational security, whereas we view
the scheme with everlasting security as the main contribution of our work, which is the one that
enables our two-message QKD protocol. Even focusing on the computational settings, our schemes
share many similarities but, interestingly, they are not identical. At a technical level, their approach
is based on one-time signatures for Wiesner states, whereas our approach can (in retrospect) be
thought of as one-time signing the |+⟩ state. On the other hand, [15] presents a scheme where the
public key is a pure state and furthermore their schemes achieve the stronger notion of CCA-security,
which we do not consider in this work.

1.3 Open Problems

Our work leaves open a series of questions, that we hope will inspire further research in this area.
For starters, our protocols are described in the presence of perfect (noiseless) quantum channels.
Any practical protocol would need to withstand the presence of noise. While theoretically one could
simply encode all states using a quantum error correcting code, this may lead to poor concrete
efficiency. We leave open the question of investigating variants our non-interactive QKD protocol
that are efficient in the presence of noise.

A compelling aspect of standard QKD protocols such as [4] is that all quantum states consists of
tensor products of single qubits, whereas our protocols require coherent superpositions of many-qubit
states. The former property is desirable, since it allows the experimental realization of the protocol
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on present-day quantum hardware. We view the problem of constructing a non-interactive QKD
protocol in this qubit-by-qubit model as fascinating research direction, and believe that it might
require substantially different techniques from the present approach.

1.4 Overview of the Solution

Our main technical contribution is a new recipe to construct QPKE, whose definition we recall
next. The syntax of QPKE consists of three algorithms: key generation, encryption, and decryption.
The key generation algorithm produces a classical key pair (sk, pk), along with a quantum state ρ.
The pair (pk, ρ) makes up the public key. Given this public key, anyone can compute a classical
ciphertext ct encrypting a given message m, which can only be decrypted by the owner of the secret
key. In terms of security, we require that the message m should be information-theoretically hidden,
even if an efficient attacker is allowed to tamper arbitrarily with the quantum state associated with
the public key.

Constructing QPKE. Our construction of QPKE relies on a conceptually different approach
than traditional QKD protocols. To gain some intuition about our framework it is useful to consider
a quantum state and measurement

|0, B0⟩+ |1, B1⟩√
2

and {Π, Id−Π},

where |B0⟩ and |B1⟩ are two unforgeable basis states sampled by the key generation algorithm,
and {Π, Id− Π} is an efficiently-implementable projective measurement that verifies that the second
register is in the subspace of all such basis states (without knowing the particular ones used). It
turns out that one can use this to transmit information secretly: The decrypter keeps the the first
qubit and measures it in the Hadamard basis, which has the effect of introducing a random relative
phase across the two unforgable basis states (this can already done at key generation time). The
encrypter measures the second register in the Hadamard basis to obtain correlated randomness, that
they can use to securely mask a message with a (classical) one-time pad.

To gain an intuition on why this scheme is secure, observe that handing the second register to
the adversary is information-theoretically indistinguishable from handing them a random one of
the two basis state |B0⟩ and |B1⟩. Because those states are assumed to be hard to forge, all the
adversary can do is to pass them on (unless they want to make the verification projection fail), and
now a Hadamard measurement yields an information-theoretically uniformly random outcome.

Our actual scheme realizes the above abstract template using one-time signatures: The hidden
basis are simply valid message-signature pairs, whereas the projection Π can be efficiently implemented
by running the verification algorithm coherently and measuring the resulting output bit. For more
details we refer the reader to the technical sections.

From QPKE to QKD. Once we built QPKE it appears to be an easy exercise to construct a
two-message QKD protocol: Alice can sample a public and send it to Bob, who replies with an
encryption of a randomly sampled key k ∈ {0, 1}λ. However, there is a subtle aspect in the analysis
of this protocol, which relates to the fact that secrecy does not necessarily imply security. In fact an
attacker may be able to cause Alice and Bob to agree on different keys without violating the security
of QPKE. We once again rely on one-time signature to (provably) prevent this class of attacks.
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1.5 Organization of this Paper

In Section 2, we discuss preliminaries in quantum information and cryptography and we prove
some useful technical statements. In Section 3, we define the notion of QPKE, and we present two
constructions (with different tradeoffs) whose security can be reduced to the one-wayness of any
post-quantum one-way function. In Section 4 we present the formal description and the analysis of
our two-message QKD protocol.

2 Preliminaries

Throughout this work, we denote the security parameter by λ. We denote by 1λ the all-ones string
of length λ. We say that a function negl is negligible in the security parameter λ if negl(λ) = λω(1).
For a finite set S, we write x← S to denote that x is sampled uniformly at random from S. We
write Tr for the trace of a matrix or operator.

2.1 Quantum Information

In this section, we provide some preliminary background on quantum information. For a more
in-depth introduction, we refer the reader to [21]. A register x consisting of n qubits is given by
a Hilbert space (C2)⊗n with name or label x. Given two registers x and y, we write x⊗ y for the
composite register, with Hilbert space the tensor product of the individual registers’ Hilbert spaces. A
pure quantum state on register x is a unit vector |Ψ⟩x ∈ (C2)⊗n. A mixed quantum state on register x
is represented by a density operator ρx on (C2)⊗n, which is a positive semi-definite Hermitian matrix
with trace 1. Any pure state |Ψ⟩x can also be regarded as a mixed state ρx = |Ψ⟩x ⟨Ψ|x, but there
are mixed states that are not pure. In the above, we use subscripts to denote registers, but we often
omit these when clear from context. We adopt the convention that

{|0⟩ , |1⟩} and
{
|0⟩+ |1⟩√

2
,
|0⟩ − |1⟩√

2

}
denote the computational and the Hadamard basis states, respectively.

A quantum channel F is a completely-positive trace-preserving (CPTP) map from a register x to
a register y. That is, on input any density matrix ρx, the operation F produces F (ρx) = τy, another
state on register y, and the same is true when we apply F to the x register of a quantum state ρxz.
For any unitary operator U , meaning U †U = UU † = Id, one obtains a quantum channel that maps
input states ρ to output states τ := UρU †. The Pauli operators X,Y,Z are 2× 2 matrices that are
unitary and Hermitian. More specifically:

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

A projector Π is a Hermitian operator such that Π2 = Π. A projective measurement is given by
a collection of projectors {Πj}j such that

∑
j Πj = Id. Given a state ρ, the measurement yields

outcome j with probability pj = Tr(Πjρ), upon which the state changes to ΠjρΠj/pj (this can be
modeled by a quantum channel, but we will not need this). For any two registers x and y, the partial
trace Try is the unique channel from x⊗ y to x such that Try(ρx ⊗ τy) = Try(τy)ρx for all ρx and τy.
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The trace distance between two states ρ and τ , denoted by Td(ρ, τ) is defined as

Td(ρ, τ) =
1

2
∥ρ− τ∥1 =

1

2
Tr

(√
(ρ− τ)†(ρ− τ)

)
.

The operational meaning of the trace distance is that 1
2(1+Td(ρ, τ)) is the maximal probability that

two states ρ and τ can be distinguishdd by any (possibly unbounded) quantum channel or algorithm.
If τ = |Φ⟩⟨Φ| is a pure state, we have the following version of the Fuchs-van de Graaf inequalities:

1− ⟨Φ|ρ|Φ⟩ ≤ Td(ρ, τ) ≤
√
1− ⟨Φ|ρ|Φ⟩. (2.1)

Quantum Algorithms. A non-uniform quantum polynomial-time (QPT) machine {Aλ}λ∈N is a
family of polynomial-size quantum machines Aλ, where each is initialized with a polynomial-size
advice state |αλ⟩. Each Aλ can be described by a CPTP map. A quantum interactive machine is
simply a sequence of quantum channels, with designated input, output, and work registers. We say
that two probability distributions X and Y are computationally indistinguishable if there exists a
negligible function negl such that for all QPT algorithms Aλ it holds that∣∣Pr [1← Aλ(x) : x← X ]− Pr [1← Aλ(y) : y ← Y]

∣∣ = negl(λ).

We say that they are statistically indistinguishable if the same holds for all (possibly unbounded)
algorithms.

Distinguishing Implies Swapping. We recall the formal statement of the equivalence between
distinguishing states and swapping on the conjugate basis. This was proven in [1] and below we
show a rephrased version borrowed from [11]. We actually only state one direction of the implication
(the converse is also shown to be true in [1]), since it is the one needed for our purposes.

Theorem 2.1 (Distinguishing Implies Swapping [1]). Let |Ψ⟩ and |Φ⟩ be orthogonal n-qubit states,
and suppose that a QPT distinguisher Aλ distinguishes |Ψ⟩ and |Φ⟩ with advantage δ without using
any ancilla qubits. Then, there exists a polynomial-time computable unitary U over n-qubit states
such that

|⟨y|U |x⟩+ ⟨x|U |y⟩|
2

= δ where |x⟩ = |Ψ⟩+ |Φ⟩√
2

and |y⟩ = |Ψ⟩ − |Φ⟩√
2

.

Moreover, if Aλ does not act on some qubits, then U also does not act on those qubits.

2.2 Information Theory

Recall the definition of the min-entropy of a random variable X as

H∞(X) = − log (maxx Pr[X = x]) .

We recall the definition of average conditional min-entropy in the following.

Definition 2.2 (Average Conditional Min-Entropy). Let X be a random-variable supported on a
finite set X and let Z be a (possibly correlated) random variable supported on a finite set Z. The
average-conditional min-entropy H̃∞(X|Z) is defined as

H̃∞(X|Z) = − log (Ez [maxx∈X Pr[X = x|Z = z]]) .
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It is shown in [7, 6] that the average conditional min-entropy satisfies a chain rule, that is

H̃∞(X|Z) ≥ H∞(X)−H0(Z) (2.2)

where H0(Z) denotes the logarithm of the size of the support of Z. Next, we recall the definition of
a seeded randomness extractor.

Definition 2.3 (Extractor). A function Ext : {0, 1}d × X → {0, 1}ℓ is called a seeded strong
average-case (k, ε)-extractor, if it holds for all random variables X with support X and Z defined on
some finite support that if H̃∞(X|Z) ≥ k, then it holds that the statistical distance of the following
distributions is a most ε

(seed,Ext(seed, X), Z) ≈ε (seed, U, Z)

where seed← {0, 1}d and U ← {0, 1}ℓ.

Recall that a hash function Hash : X → Y is a universal hash if for all x ̸= x′ ∈ X it holds that

Pr[Hash(x) = Hash(x′)] ≤ 1

|Y|

where the probability is taken over the choice of the hash function. It is shown [7, 6] that any
universal hash function is an average-case randomness extractor.

Lemma 2.4 (Leftover Hash Lemma). Let X be a random-variable supported on a finite set X and
let Z be a (possibly correlated) random variable supported on a finite set Z such that H̃∞(X|Z) ≥ k.
Let Hash : X → {0, 1}ℓ, where ℓ ≤ k − 2 log

(
1
ε

)
, be a family of universal functions. Then Hash is a

seeded strong average-case (k, ε)-extractor.

2.3 Pseudorandom Functions

We recall the notion of a pseudorandom function [10]. A pseudorandom function (PRF) is a keyed
function

PRF : {0, 1}λ × {0, 1}λ → {0, 1}λ

that is computationally indistinguishable from a truly random function. More precisely, we require
that there exists a negligible function negl such that for all QPT {Aλ}, for all λ ∈ N, it holds that
the following distributions are computationally indistinguishable

Aλ(1
λ)PRF(k,·) ≈ Aλ(1

λ)f(·)

where k ← {0, 1}λ and f is a uniformly-sampled function. It is well-known that quantum-secure
PRFs can be built from any one-way function [10].

2.4 One-Time Signatures

We recall the notion of a one-time signature scheme [9].

Definition 2.5 (One-Time Signature). A one-time signature (OTS) scheme is defined as a tuple of
algorithms (SGen, Sign,Ver) such that:

• (vk, sk)← SGen(1λ): A polynomial-time algorithm which, on input the security parameter 1λ,
outputs two bit strings vk and sk.
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• σ ← Sign(sk,m): A polynomial-time algorithm which, on input the signing key sk and a
message m, outputs signature σ.

• {0, 1} ← Ver(vk,m, σ): A polynomial-time algorithm which, on input the verification key vk, a
message m, and a signature σ, returns a bit denoting accept or reject.

The OTS scheme is correct if for all λ ∈ N and all messages m it holds that

Pr
[
1 = Ver(vk,m,Sign(sk,m)) : (vk, sk)← SGen(1λ)

]
= 1.

Next we define the notion of strong existential unforgeability for OTS, which states that one should
not be able to produce a different signature (even if on the same message) than the one provided by
the signing oracle. It is well-known that strongly unforgeable signatures can be constructed from
any one-way function (OWF) [9]. For convenience we define a slightly weaker notion, where the
message to be signed is fixed in advance – this notion is clearly implied by the standard one, where
the attacker can query the signing oracle adaptively.

Definition 2.6 (Strong Existential Unforgeability). We say that an OTS scheme (SGen,Sign,Ver)
satisfies (quantum-secure) strong existential unforgeability if there exists a negligible function negl
such that for all QPT {Aλ}, for all λ ∈ N, and for all messages m, it holds that

Pr

1 = Ver(vk,m∗, σ∗) and (m∗, σ∗) ̸= (m,σ) :
(vk, sk)← SGen(1λ);
σ ← Sign(sk,m);
(m∗, σ∗)← Aλ(vk,m, σ)

 = negl(λ).

Indistinguishability of Signature States. We provide a formal statement and a proof of the
indistinguishability of our signature states and the corresponding classical mixture. This proof is
inspired by, and closely follows, the work of [11].

Lemma 2.7. Let (SGen,Sign,Ver) be an OTS scheme that satisfies strong existential unforgeability.
Then the following distribution ensambles are computationally indistinguishable{

|0, σ0⟩+ |1, σ1⟩√
2

⟨0, σ0|+ ⟨1, σ1|√
2

, (vk0, vk1)

}
≈

{
|0, σ0⟩⟨0, σ0|+ |1, σ1⟩⟨1, σ1|

2
, (vk0, vk1)

}
where (vkb, skb)← SGen(1λ) and σb ← Sign(skb, b), for b ∈ {0, 1}.

Proof. By convexity, it suffices to show that no QPT adversary acting on registers v and x can
distinguish between the states |Ψ0⟩ and |Ψ1⟩ with non-negligible probability, where

|Ψb⟩ =
∑

(vk,sk)

√
D(vk, sk) |vk, sk⟩s |vk⟩v ⊗

|0, σ0⟩x + (−1)b |1, σ1⟩x√
2

and we adopt the following convention for the notation:

sk = {sk0, sk1} ; vk = {vk0, vk1} ; σb = Sign(skb, b) and D(vk, sk) = Pr[(vk, sk) = SGen(1λ)].
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Assume towards contradiction that there exists a QPT distinguisher acting on registers v, x, as well
as an auxiliary register |αλ⟩a that succeeds with probability δ. Then, by Theorem 2.1 there exists a
polynomial-time computable unitary U such that

1

2

∣∣∣∣ ⟨Ψ′
1|s,v,x ⟨αλ|a (Uv,x,a ⊗ Ids) |Ψ′

0⟩s,v,x |αλ⟩a
+ ⟨Ψ′

0|s,v,x ⟨αλ|a (Uv,x,a ⊗ Ids) |Ψ′
1⟩s,v,x |αλ⟩a

∣∣∣∣ = δ

where ∣∣Ψ′
b

〉
=
|Ψ0⟩+ (−1)b |Ψ1⟩√

2
=

∑
(vk,sk)

√
D(vk, sk) |vk, sk⟩s |vk⟩v ⊗ |b, σb⟩x .

Consequently, it must be the case that either

• ⟨Ψ′
1|s,v,x ⟨αλ|a (Uv,x,a ⊗ Ids) |Ψ′

0⟩s,v,x |αλ⟩a ≥ δ, or

• ⟨Ψ′
0|s,v,x ⟨αλ|a (Uv,x,a ⊗ Ids) |Ψ′

1⟩s,v,x |αλ⟩a ≥ δ.

Without loss of generality we assume that the former holds, but the argument works symmetrically
also for the latter case. We will show that this leads to a contradiction with a reduction against
the one-time unforgeability of OTS. In fact we will consider an even weaker definition where the
adversary receives no signature.

On input a verification key vk1 and an advice |αλ⟩a the reduction samples a uniform (vk0, sk0)←
SGen(1λ), and sets vk = {vk0, vk1}. Then it computes σ0 ← Sign(sk0, 0) and

Uv,x,a |vk⟩v |0, σ0⟩x |αλ⟩a

and returns the result of a measurement of the x register in the computational basis.
We now analyze the success probability of the reduction in producing a valid signature, for a

fixed key pair (vk1, sk1). Let us denote by Σ1 the set of all valid signatures on 1 under vk1, and by
σ1 = Sign(sk1, 1). Then we have that the success probability of the reduction equals∑

σ′
1∈Σ1

|Σ1| ·
∥∥〈1, σ′

1

∣∣
x
Uv,x,a |vk⟩v |0, σ0⟩x |αλ⟩a

∥∥2
≥ ∥⟨1, σ1|x Uv,x,a |vk⟩v |0, σ0⟩x |αλ⟩a∥

2

≥ |⟨vk|v ⟨1, σ1|x ⟨αλ|a Uv,x,a |vk⟩v |0, σ0⟩x |αλ⟩a|
2

= |⟨vk, sk|s ⟨vk|v ⟨1, σ1|x ⟨αλ|a (Uv,x,a |vk⟩v ⊗ Ids) |vk, sk⟩s |0, σ0⟩x |αλ⟩a|
2

where the second inequality follows from the fact that inserting ⟨vk|v and ⟨αλ|a can only decrease
the norm. Now, over the random choice of (vk, sk) the success probability of the reduction can be
lower bounded by

E(vk,sk)

[
|⟨vk, sk|s ⟨vk|v ⟨1, σ1|x ⟨αλ|a (Uv,x,a |vk⟩v ⊗ Ids) |vk, sk⟩s |0, σ0⟩x |αλ⟩a|

2
]

≥
∣∣E(vk,sk) [⟨vk, sk|s ⟨vk|v ⟨1, σ1|x ⟨αλ|a (Uv,x,a |vk⟩v ⊗ Ids) |vk, sk⟩s |0, σ0⟩x |αλ⟩a]

∣∣2
≥ δ

where the first inequality follows from Jensen’s inequality. This contradicts the unforgeability of
OTS and concludes our proof.
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3 Quantum Public-Key Encryption

In the following we define and construct the central cryptographic primitive of this work, which we
refer to as quantum-public-key encryption.

3.1 Definitions

The syntax for this primitive is taken almost in verbatim from [2], although in this work we consider
a stronger notion of security. For notational convenience, we define the primitive for encrypting
one-bit messages, but it is easy to generalize the notion and the corresponding construction to
multiple bits, via the standard bit-by-bit encryption. Security of the multi-bit construction follows
by a standard hybrid argument.

Definition 3.1 (QPKE). A quantum-public-key encryption (PKE) scheme is defined as a tuple of
algorithms (SKGen,PKGen,Enc,Dec) such that:

• sk← SKGen(1λ): A PPT algorithm which, on input the security parameter 1λ outputs a secret
bit string sk.

• (ρ, pk)← PKGen(sk): A QPT algorithm which, on input the secret key sk, outputs a (possibly
mixed) quantum state ρ and a bit strings pk.

• ct← Enc(ρ, pk,m): A QPT algorithm which, on input the public key (ρ, pk) and a message m ∈
{0, 1}, outputs a ciphertext ct.

• m← Dec(sk, ct): A QPT algorithm which, on input the secret key sk and the ciphertext ct,
outputs a message m ∈ {0, 1}.

A QPKE scheme (SKGen,PKGen,Enc,Dec) satisfies correctness if for all λ ∈ N and all m ∈ {0, 1}
it holds that:

Pr
[
m = Dec(sk, ct) : sk← SKGen(1λ); (ρ, pk)← PKGen(sk); ct← Enc(ρ, pk,m)

]
= 1.

Everlasting Security. Next, we define the security notion of everlasting security for QPKE.
Informally, we require that the message is unconditionally hidden from the eyes of an attacker, even
if a QPT attacker is allowed to tamper with the public key arbitrarily. However, the attacker is
supplied a single copy of the public key.

Definition 3.2 (Everlasting Security). For a family of QPT algorithms {Aλ}λ∈N, we define the
experiment ExpAλ(1λ,m) as follows:

1. Sample sk ← SKGen(1λ) and (ρ, pk) ← PKGen(sk) and send the corresponding public key
(ρ, pk) to Aλ.

2. Aλ returns two quantum registers. The first register is parsed as the modified public-key register,
whereas the second register is arbitrary and will be referred to as the adversary’s internal register.

3. Compute ct by applying the map defined by Enc(·, pk,m) to the public-key register returned
by the adversary in the previous round.

10



4. The output of the experiment is defined to be the joint state of ct and the internal register of
the adversary.

Then we say that a QPKE scheme (SKGen,PKGen,Enc,Dec) satisfies everlasting security if there
exists a negligible function negl such that for all λ ∈ N and all QPT Aλ it holds that

Td
(
ExpAλ(1λ, 0),ExpAλ(1λ, 1)

)
= negl(λ).

Let us comment on the definition as stated above. First, we remark that the definition can
be easily extended to the case of multi-bit messages, provided that the syntax of the encryption
scheme is extended accordingly. We also mention that an alternative definition might also allow
the adversary to do some arbitrary post-processing on the output of the experiment. However, our
definition is equivalent (and arguably simpler) by the monotonicity of the trace distance.

An important point of our definition (which distinguishes it from prior works) is that the attacker
is allowed to modify the quantum states arbitrarily, although it cannot tamper with the classical
information (such as pk or ct). This models the presence of authenticated classical channels, which
are assumed to deliver the classical information faithfully. Note that the same assumption is also
present (although somewhat more implicitly) for the standard notion of classical PKE, where the
encryption algorithm in the CPA/CCA-security experiment is always provided as input the correct
public key sampled by the challenger. This restriction is of course necessary, since if the attacker is
allowed to choose the public key arbitrarily, then the definition would be impossible to achieve.

Finally, we mention that a stronger definition would allow the adversary to see a polynomial
number of copies of the public key, instead of a single one. Unfortunately the work of [2] shows a key
recovery attack against any QPKE, if the attacker is given sufficiently many copies of the public key
and it is allowed to run in unbounded time. This immediately rules out any QPKE with everlasting
security in the presence of polynomial copies of the public key, since an unbounded distinguisher
can simply run such key recovery algorithm, and decrypt the challenge ciphertext using the honest
decryption algorithm. To overcome this limitation, we define the notion of computational security.

Computational Security. We define the weaker notion of computational security for QPKE,
where the message is only required to be kept hidden against computationally bounded adversary.
The upshot is that this can hold even if the adversary is given access to multiple copies of the public
key. We present a formal definition below.

Definition 3.3 (Computational Security). For a family of QPT algorithms {Aλ}λ∈N, we define the
experiment ExpAλ(1λ,m, n) as follows:

1. Sample sk← SKGen(1λ) and {(ρi, pki)← PKGen(sk)}i=1,...,n and send the corresponding public
keys (ρi, pki) to Aλ.

2. Aλ returns two quantum registers. The first register is parsed as the modified public-key register,
whereas the second register is arbitrary and will be referred to as the adversary’s internal register.

3. Compute ct by applying the map defined by Enc(·, pk1,m) to the public-key register returned
by the adversary in the previous round.

4. The output of the experiment is defined to be the joint state of ct and the internal register of
the adversary.

11



Then we say that a QPKE scheme (SKGen,PKGen,Enc,Dec) satisfies computational security if there
exists a negligible function negl such that for all λ ∈ N, all polynomials n = n(λ), and all QPT Aλ

it holds that the distributions

ExpAλ(1λ, 0, n) ≈ ExpAλ(1λ, 1, n)

are computationally indistinguishable.

3.2 Everlasting Secure QPKE

We describe our scheme below. As the only computational ingredient, we assume the existence of a
quantum-secure strongly existentially unforgeable one-time signature scheme (SGen,Sign,Ver), see
Section 2.4. As discussed, this can be constructed from any quantum-secure one-way function.

• SKGen(1λ):

– Sample two key pairs (sk0, vk0)← SGen(1λ) and (sk1, vk1)← SGen(1λ).

– Compute σ0 ← Sign(sk0, 0) and σ1 ← Sign(sk1, 1).

– Sample a bit d0 ← {0, 1}.
– Return sk = (vk0, vk1, σ0, σ1, d0).

• PKGen(sk):

– Define the state

|Ψ⟩ = |0, σ0⟩+ (−1)d0 |1, σ1⟩√
2

.

This state is efficiently computable by preparing an EPR pair and CNOT-ing the bits of
the signatures into an auxiliary register, controlled on the value of the first qubit. The
relative phase can be then added by a controlling the application of Z with d0.

– Set the quantum part of the public key ρ to be the state |Ψ⟩ and set the classical part of
the public key and the classical secret key to pk = (vk0, vk1).

• Enc(ρ, pk,m):

– Project ρ onto the subspace of valid signatures of 0 and 1, under vk0 and vk1, respectively.
More precisely, denote by Σ0 and Σ1 the set of accepting signatures on 0 and 1, under vk0
and vk1, respectively, and consider the projector

Π =
∑
σ∈Σ0

|0, σ⟩⟨0, σ|+
∑
σ∈Σ1

|1, σ⟩⟨1, σ| .

Apply the projective measurement {Π, Id − Π}, and abort the execution (return ⊥)
if the measurement returns the second outcome. Note that this measurement can be
implemented efficiently by running the verification algorithm coherently, CNOT-ing the
output bit on a separate register and measuring it.

– Measure the residual state in the Hadamard basis, to obtain a bit string (d1, d2), where
we denote by d1 ∈ {0, 1} the first bit of the measurement outcome and by d2 the rest.

12



– Return the following as the classical ciphertext:

ct = (m⊕ d1, d2). (3.1)

• Dec(sk, ct):

– Parse ct = (ct1, ct2), where ct1 ∈ {0, 1} is one bit, and return

m = d0 ⊕ ct1 ⊕ ct2 · (σ0⊕σ1). (3.2)

Analysis. We claim that the scheme satisfies correctness. First, observe that the state ρ taken as
input by the encryption algorithm in the image of the projector Π as defined above. Consequently,
applying the projective measurement {Π, Id − Π} returns the outcome associated with Π with
certainty and does not change the state. Applying the Hadamard transformation to the state |Ψ⟩
gives

H |Ψ⟩ ∝
∑
d1,d2

(−1)(d1,d2)·(0,σ0) |d1, d2⟩+ (−1)d0⊕(d1,d2)·(1,σ1) |d1, d2⟩ =
∑

d1,d2 : (d1,d2)·(1,σ0⊕σ1)=d0

|d1, d2⟩ ,

omitting overall normalization factors. Therefore, a measurement returns a uniformly random bit
string (d1, d2) satisfying

d1 ⊕ d2 · (σ0 ⊕ σ1) = d0.

Substituting Eq. (3.1) in Eq. (3.2) and using this relation, we obtain

d0 ⊕ ct1 ⊕ ct2 · (σ0 ⊕ σ1) = d0 ⊕ (m⊕ d1)⊕ d2 · (σ0 ⊕ σ1) = m,

as desired. Next, we show that the scheme satisfies everlasting security.

Theorem 3.4 (Everlasting security). If quantum-secure one-way functions exist, then the QPKE
(SKGen,PKGen,Enc,Dec) satisfies everlasting security.

Proof. We proceed by defining a series of hybrid experiments that we show to be indistinguishable
from the eyes of any (possibly unbounded) algorithm. For convenience, we define

Adv(i) = Td
(
HybAλ

i (1λ, 0),HybAλ
i (1λ, 1)

)
.

• HybAλ
0 (1λ, b): This is the original experiment ExpAλ(1λ, b), as defined in Definition 3.2.

• HybAλ
1 (1λ, b): In this experiment, we modify the PKGen algorithm to measure the state |Ψ⟩ in

the computational basis, before outputting ρ.

Since the result sk of the SKGen algorithm is not used in the experiment, we only need to argue
that the reduced states of (pk, ρ) are unchanged by this modification. This is indeed the case, since
adding a random phase is equivalent to measuring in the computational basis by a standard Pauli
Z-twirl argument. Thus the two experiments are identical from the perspective of the adversary and
therefore Adv(0) = Adv(1).
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• HybAλ
2 (1λ, b): In this experiment, we further modify the PKGen algorithm to sample the state ρ

as follows. Flip a random coin c ← {0, 1}. If c = 0 then return |0, σ0⟩⟨0, σ0|, and otherwise
return |1, σ1⟩⟨1, σ1|.

Observe that the state ρ returned by the modified PKGen algorithm is the classical mixture

ρ =
|0, σ0⟩⟨0, σ0|+ |1, σ1⟩⟨1, σ1|

2

which is identical to the state returned in the previous hybrid. Therefore Adv(1) = Adv(2). Next,
let us denote by ρ∗ the reduced density matrix of the modified public-key register returned by the
adversary in step 2 of the experiment. We will assume that the state ρ∗ returned by the adversary
is such that the encryption algorithm accepts (i.e., does not abort) with non-negligible probability
(for otherwise Adv(2) = negl(λ) and we are done). We can then establish that the state ρ∗, once
projected onto the image of Π, must be negligibly close in trace distance from the state produced by
the PKGen algorithm.

Claim 3.5. There exists a negligible function negl such that, for c ∈ {0, 1} the result of the coin
toss in the Gen algorithm,

Td

(
Πρ∗Π

Tr (Πρ∗)
, |c, σc⟩⟨c, σc|

)
= negl(λ).

Proof of Claim 3.5. The proof follows by a reduction to the unforgeability of the OTS. Indeed,
assume for sake of contradiction that the post-measurement state is non-negligibly far from |c, σc⟩ in
trace distance. By Eq. (2.1), the latter is equivalent to saying that if we measure in the computational
basis then the probability of obtaining outcome (c, σc) is non-negligibly smaller than 1. Since the
post-measurement state is supported on range of Π, it follows that if we measure in the computational
basis then we must with non-negligible probability obtain an outcome (z, σ) such that

(z, σ) ̸= (c, σc) and Ver(vkz, z, σ) = 1,

that is, (z, σ) ̸= (c, σc) is a valid message-signature pair. As the adversary along with the projective
measurement {Π, I −Π} and the standard basis measurement run in quantum polynomial time, and
the projective measurement returns Π with non-negligible probability, this contradicts the strong
existential unforgeability of the OTS scheme.

We conclude by establishing that the message m is statistically hidden in the last experiment.

Claim 3.6. There exists a negligible function negl such that Adv(2) = negl(λ).

Proof of Claim 3.6. By Claim 3.5, the post-measurement state is negligibly close to the state |c, σc⟩.
As the latter is a pure state and extensions of pure states are always in tensor product, by Uhlmann’s
theorem it follows that the post-measurement register is negligibly close to being in tensor product
with the internal register of the adversary. Thus it suffices to show that the output distribution
of the Enc algorithm does not depend on the message m when given as input |c, σc⟩. To see this,
observe that the rotated state in the Hadamard basis is up to overall normalization given by

H |c, σc⟩ ∝
∑
d′

(−1)d′·(c,σc)
∣∣d′〉 ,
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and therefore a measurement returns a uniformly random bit string d′ = (d1, d2). In particular,
ct = (m⊕ d1, d2) has the same distribution for m ∈ {0, 1}. As explained above, it is also negligibly
close to being independent from the internal register of the adversary, and thus the claim follows.

By Claim 3.6 we have that

Adv(0) = Adv(1) = Adv(2) = negl(λ),

and this concludes the proof of Theorem 3.4.

3.3 Computational Secure QPKE

Our scheme assumes the existence of a quantum-secure strongly existentially unforgeable one-time
signature scheme (SGen,Sign,Ver) and a quantum-secure pseudorandom function PRF. Both such
building blocks can be constructed assuming any quantum-secure one-way function.

• SKGen(1λ):

– Sample a key k ← {0, 1}λ and set sk = k.

• PKGen(sk):

– Sample two uniform (r0, r1)← {0, 1}λ and compute

(sk0, vk0)← SGen(1λ;PRF(k, r0)) and (sk1, vk1)← SGen(1λ;PRF(k, r1)).

– Compute σ0 ← Sign(sk0, 0) and σ1 ← Sign(sk1, 1).

– Define the state
|Ψ⟩ = |0, σ0⟩+ |1, σ1⟩√

2
.

This state is efficiently computable by preparing an EPR pair and CNOT-ing the bits of
the signatures into an auxiliary register, controlled on the value of the first qubit.

– Set the quantum part of the public key ρ to be the state |Ψ⟩ and set the classical part of
the public key and the classical secret key to pk = (vk0, vk1, r0, r1).

• Enc(ρ, pk,m):

– Project ρ onto the subspace of valid signatures of 0 and 1, under vk0 and vk1, respectively.
More precisely, denote by Σ0 and Σ1 the set of accepting signatures on 0 and 1, under vk0
and vk1, respectively, and consider the projector

Π =
∑
σ∈Σ0

|0, σ⟩⟨0, σ|+
∑
σ∈Σ1

|1, σ⟩⟨1, σ| .

Apply the projective measurement {Π, Id − Π}, and abort the execution (return ⊥)
if the measurement returns the second outcome. Note that this measurement can be
implemented efficiently by running the verification algorithm coherently, CNOT-ing the
output bit on a separate register and measuring it.

– Apply the Zm operator to the first qubit of ρ, classically controlled on the message m.
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– Set ct to be the residual state, along with (r0, r1).

• Dec(sk, ct):

– Use the secret key k to recompute

(sk0, vk0)← SGen(1λ;PRF(k, r0)) and (sk1, vk1)← SGen(1λ;PRF(k, r1)).

along with σ0 ← Sign(sk0, 0) and σ1 ← Sign(sk1, 1).

– Measure the quantum state of ct in the{
|0, σ0⟩+ |1, σ1⟩√

2
,
|0, σ0⟩ − |1, σ1⟩√

2

}
basis. And return the corresponding outcome.

Analysis. To see why the scheme satisfies correctness, first observe that the state |Ψ⟩ as defined
in the PKGen algorithm lies in the image of the projector Π. Therefore the projective measurement
{Π, Id − Π} acts as the identity on |Ψ⟩. Then, the state output by the encryption algorithm
corresponds to

(Zm ⊗ Id)
|0, σ0⟩+ |1, σ1⟩√

2
=
|0, σ0⟩+ (−1)m |1, σ1⟩√

2
.

Therefore, the output of the decryption algorithm equals m with certainty. Next, we show that the
scheme is computationally secure.

Theorem 3.7 (Computational security). If quantum-secure one-way functions exist, then the QPKE
(SKGen,PKGen,Enc,Dec) satisfies computational security.

Proof. We proceed by defining a series of hybrid experiments that we show to be indistinguishable
from the eyes of any QPT algorithm.

• HybAλ
0 (1λ, b): This is the original experiment ExpAλ(1λ, b, n), as defined in Definition 3.3.

• HybAλ
1 (1λ, b): In this experiment, we simulate the output of the PRF by lazy sampling, i.e.,

every time that the PKGen algorithm is invoked, the experiment sample a uniform tuple
(r0, r1, r̃0, r̃1) and uses the latter pair as the randomness for the OTS scheme. To keep things
consistent, the experiment maintains a list of all such tuples.

Note that the only difference between these two hybrids is in the way the random coins of the OTS
are sampled. Therefore, by the pseudorandomness of PRF, the two hybrids are computationally
indistinguishable. Note that, in the second hybrid, different copies of the public key are now
independent from each other.

• HybAλ
2 (1λ, b): In this experiment, we further modify the first invocation of the PKGen algorithm

to sample the state ρ as follows. Flip a random coin c← {0, 1}. If c = 0 then return |0, σ0⟩⟨0, σ0|,
and otherwise return |1, σ1⟩⟨1, σ1|.
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Observe that the state ρ returned by the modified PKGen algorithm is the classical mixture

ρ =
|0, σ0⟩⟨0, σ0|+ |1, σ1⟩⟨1, σ1|

2
.

By a direct application of Lemma 2.7, we can conclude that the two hybrids are computationally
indistinguishable. At this point, we can appeal to Claim 3.5 (in the proof of Theorem 3.4) to
establish that the state ρ∗, as returned by the adversary in the security experiment, must be within
negligible trace distance from a basis state. The proof is concluded by noting that the distributions
of an encryption of 0 and an encryption of 1 are identical, up to a global phase, if the algorithm is
called on input any basis state.

4 Two-Message Quantum Key Distribution

In the following we outline how to use a QPKE scheme (SKGen,PKGen,Enc,Dec) to construct a
QKD protocol with a minimal number of two rounds of interaction, as announced in the introduction.

4.1 Definitions

We give a formal definition of quantum key distribution in the everlasting settings, i.e., where
an attacker is required to be computationally bounded only during the execution of the protocol.
For convenience, we adopt a syntax specific for two-message protocols, but the definitions can be
extended to the more general interactive settings canonically.

Definition 4.1 (Two-Message QKD). A quantum key distribution (QKD) scheme is defined as a
tuple of algorithms (QKDFirst,QKDSecond,QKDDecode) such that:

• (msg, µ, st) ← QKDFirst(1λ): A QPT algorithm which, on input the security parameter 1λ

outputs a message, consisting of a classical component msg and a (possibly mixed) quantum
state µ, and an internal state st.

• {(resp, η, k),⊥} ← QKDSecond(msg, µ): A QPT algorithm which, on input the first message
(msg, µ), outputs a response, consisting of a classical component resp and a (possibly mixed)
quantum state η, along with a key k ∈ {0, 1}λ, or a distinguished symbol ⊥, denoting rejection.

• {k,⊥} ← QKDDecode(st, resp, η): A QPT algorithm which, on input the internal state st,
and the response (resp, η), returns a key k ∈ {0, 1}λ or a distinguished symbol ⊥, denoting
rejection.

We say that a QKD scheme (QKDFirst,QKDSecond,QKDDecode) satisfies correctness if for all
λ ∈ N it holds that:

Pr
[
⊥ = QKDSecond(msg, µ) : (msg, µ, st)← QKDFirst(1λ)

]
= 0

and

Pr

[
k = QKDDecode(st, resp, η) :

(msg, µ, st)← QKDFirst(1λ);
(resp, η, k)← QKDSecond(msg, µ)

]
= 1.
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Everlasting Security. Next, we define the security notion of everlasting security for QKD, which
consists of two properties. Privacy requires that the key k should be hidden unconditionally in the
presence of an adversary that is computationally bounded during the execution of the protocol. In
addition, as standard for QKD, we assume the existence of an authenticated classical channel, which
is modeled by not allowing the adversary to tamper with the classical messages. On the other hand,
verifiability requires that no computationally bounded adversary should be able to cause Alice and
Bob to disagree on the key, without any of them noticing.

Definition 4.2 (Everlasting Security). For a family of QPT algorithms {Aλ}λ∈N, we define the
experiment QKDSecAλ(1λ) as follows:

1. Sample (msg, µ, st)← QKDFirst(1λ) and send the corresponding first message (msg, µ) to Aλ.

2. Aλ returns two quantum registers. The first register is parsed as the modified first message,
whereas the second register is arbitrary and will be referred to as the adversary’s internal register.

3. Compute {(resp, η, k0),⊥} by applying the map defined by QKDSecond(msg, ·) to the modified
first message register returned by the adversary in the previous round.

(a) If the above message is ⊥, set (k0, k1) = (⊥,⊥) and conclude the experiment.
(b) Otherwise, return (resp, η) to the adversary, along with its internal state.

4. Aλ returns once again two quantum registers. The first register is parsed as the modified
response, whereas the second register is the adversary’s internal register.

5. Compute {k1,⊥} by applying the map defined by QKDDecode(st, resp, ·) to the modified
response register returned by the adversary in the previous round. If the result is ⊥, then set
k1 = ⊥.

6. The output of the experiment is defined to be the internal register of the adversary.

Then we say that a QKD scheme (QKDFirst,QKDSecond,QKDDecode) satisfies everlasting security
if the following properties hold.

• (Privacy) There exists a negligible function negl such that for all λ ∈ N and all QPT Aλ it
holds that

Td
({

QKDSecAλ(1λ), k0, k1

}
,
{
QKDSecAλ(1λ), k̃0, k̃1

})
= negl(λ)

where the variables k0 and k1 are defined in the experiment, whereas k̃b, for b ∈ {0, 1}, is
defined as {

k̃b = ⊥ if kb = ⊥
k̃b ← {0, 1}λ otherwise.

• (Verifiability) There exists a negligible function negl such that for all λ ∈ N and all QPT Aλ it
holds that

Pr[k0 ̸= k1 and k1 ̸= ⊥] = negl(λ)

where k0 and k1 are defined in the experiment.

Note that the above definition of verifiability is tight for two message protocols: An adversary
can easily cause a disagreement between the keys by doing nothing on the first round, and blocking
the second message. In this case k0 would be a valid key (by correctness), whereas k1 would be set
to ⊥, since the second message was never delivered.
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4.2 Two-Message QKD from QPKE

We are now ready to describe our QKD protocol. Our ingredients are a QPKE scheme (SKGen,
PKGen,Enc,Dec) and a OTS scheme (SGen,Sign,Ver), which can be both constructed from one-way
functions. Additionally, we will use a universal hash function family

Hash : {0, 1}4λ → {0, 1}λ

which exist unconditionally. For convenience, we denote by s(λ) the size of a signature for a message
of size λ. We present the protocol below.

• QKDFirst(1λ):

– For all i = 1, . . . , 4λ+ s(4λ) sample a QPK key pair

ski ← SKGen(1λ) and (ρi, pki)← PKGen(ski).

– Set the first message to msg = (pk1, . . . , pk4λ+s(4λ)) and µ = ρ1 ⊗ · · · ⊗ ρ4λ+s(4λ).

• QKDSecond(msg, µ):

– Sample a OTS key pair (vk, zk) ← SGen(1λ), a key k ← {0, 1}4λ, and a universal hash
function Hash.

– Compute σ ← Sign(zk, k).

– For all i = 1, . . . , 4λ+ s(4λ) compute

{cti ← Enc(ρi, pki, ki)}i≤4λ and {cti ← Enc(ρi, pki, σi)}i>4λ

where k = (k1, . . . , k4λ) and σ = (σ1, . . . , σs(4λ)).

– If any of the encryption procedures fails, return ⊥.

– Else, set the response as resp = (Hash, vk, ct1, . . . , ct4λ+s(4λ)), no quantum state is present.

– Set the key to K = Hash(k).

• QKDDecode(st, resp):

– For all i = 1, . . . , 4λ+ s(4λ) compute

{ki ← Dec(ski, cti)}i≤4λ and {σi ← Dec(skλ+i, ctλ+i)}i>4λ .

– If Ver(vk, k, σ) ̸= 1 return ⊥.

– Else, return K = Hash(k).

Correctness follows immediately from the correctness of the underlying building blocks. Next we
prove that the scheme is private and verifiable.

Theorem 4.3. If quantum-secure one-way functions exist, then the QKD (QKDFirst,QKDSecond,
QKDDecode) satisfies everlasting security (privacy and verifiability).
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Proof. We first show that the scheme satisfies privacy. Let us change the syntax of the experiment
to explicitly include the view of the adversary the flag abort ∈ {0, 1} that denotes whether the
experiment aborted or not in step 5. Then, it suffices to show that the distribution of the keys K0

(as defined step 3 of the experiment) and K1 (as defined in step 5 of the experiment) are statistically
close to uniform, conditioned on the variables{

QKDSecAλ(1λ), abort
}
.

As a first step, we claim that the min-entropy of k is H∞(k) ≥ 3λ in the above view. To show this,
we will first consider a modified distribution, where the distinguisher is not provided the variable
abort. We then define HybAλ

0 (1λ) to be the output of the original experiment QKDSecAλ(1λ) as
defined in Definition 4.2. Then for i = 1, . . . , 4λ+ s(4λ) we define the hybrid HybAλ

i (1λ) as follows.

• HybAλ
i (1λ): This is defined as the previous hybrid, except that the i-th ciphertext cti is

computed as
cti ← Enc(ρi, pki, 0).

The statistical indistinguishability of neighbouring outputs follows immediately from the everlasting
security of the QPKE scheme, i.e.,

Td
(
HybAλ

i−1(1
λ),HybAλ

i (1λ)
)
= negl(λ) for all i = 1, . . . , 4λ+ s(4λ).

Note that in the last hybrid HybAλ

4λ+s(4λ)(1
λ) the view of the adversary is formally independent from

the key k and therefore k has exactly 4λ bits of entropy. An application of Lemma 2.4 already shows
that K0 is statistically close to uniform, since its distribution is independent of the event abort.

This is however not the case for K1, since whether or not K1 = ⊥ depends on the event abort.
Applying the same argument backwards, we lose only a negligible summand in the entropy of k, and
so we can conclude that H∞(k) ≥ 4λ− 1 in the original experiment. By Eq. (2.2) (chain rule for
average-case min entropy), we have that, conditioned on the event abort, it holds that

H̃∞(k|abort) ≥ H∞(k)− 2 > 3λ

since abort ∈ {0, 1}. By Lemma 2.4, the statistical distance of K1 from uniform is bounded from
above by ε = 2−λ since

H̃∞(k|abort)− 2 log

(
1

ε

)
≥ 3λ− 2λ = λ = ℓ.

This shows that both K0 and K1 are statistically close to uniform, and concludes the proof of
everlasting security.

As for verifiability, let us assume towards contradiction that there exists a QPT adversary that
causes a key mismatch k0 ̸= k1 while not causing the decoding algorithm to reject, i.e., k1 ̸= ⊥. Then
it must be the case that the adversary is able to produce a valid message-signature pair (k1, σ∗) under
vk, for a message k1 ̸= k0. Since the adversary runs in quantum polynomial time, this contradicts
the unforgeability of the OTS scheme and concludes our proof.
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A Impossibility of Unconditionally Secure QPKE

In the following we describe a simple argument that rules out the existence of unconditionally secure
QPKE, even if the adversary is given access to a single copy of the public key. In more details, we
show an adversary that can break the security of any QPKE if it is allowed to be unbounded also
during the protocol execution. The following proof was suggested by Takashi Yamakawa, who should
be credited for the argument.

Theorem A.1 (Unconditional Security). There does not exists an unconditionally secure QPKE.

Proof. We provide a description of our generic attacker that, running in unbounded time, wins the
experiment defined in Definition 3.2 with certainty. The attacker proceeds as follows.

• On input a state ρ and a bitstring pk, enter the following loop:

– Sample a secret key sk∗ ← SKGen(1λ) uniformly.

– Run (ρ∗, pk∗)← PKGen(sk).

– If pk∗ = pk exit the loop and return (ρ∗, pk∗, sk∗).

– Else, start over.

• Let (ρ∗, pk∗, sk∗) be the tuple output by the above loop. Return ρ∗ to the challenger.

• Upon receiving ct, use sk∗ to decrypt the message.

To show that the attack always succeeds, it suffices to observe that the internal loop eventually
returns a tuple (ρ∗, pk∗, sk∗) such that

pk∗ = pk and (ρ∗, pk∗︸︷︷︸
=pk

) = PKGen(sk∗)

In particular, this means that the algorithm Enc run by the challenger is run on a valid pair
(ρ∗, pk). Therefore, by the correctness of QPKE, the secret key sk∗ recovers the correct message with
certainty.
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