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Abstract. We propose a variant of the original Boneh, Drijvers, and
Neven (Asiacrypt’18) BLS multi-signature aggregation scheme, which
is best suited to applications where the full set of potential signers is
fixed and known and any subset I of this group can create a multi-
signature over a message m. This setup is very common in proof-of-
stake blockchains where if you assume a total of 3f validators, a 2f + 1
majority can sign transactions and/or blocks and is secure against rogue-
key attacks without requiring a proof of key possession mechanism.
In our scheme, instead of randomizing the aggregated signatures, we have
a one-time randomization phase of the public keys: each public key is re-
placed by a sticky randomized version (for which each participant can
still compute the derived private key). The main benefit compared to the
original Boneh et al. approach is that since our randomization process
happens only once and not per signature we can have significant savings
during aggregation and verification without requiring a proof of posses-
sion. Specifically, for a subset I of t signers, we save t exponentiations
in G2 at aggregation and t exponentiations in G1 at verification or vice
versa, depending on which BLS mode we prefer: minPK (public keys in
G1) or minSig (signatures in G1).
Interestingly, our security proof requires a significant departure from
the co-CDH based proof of Boneh et al. When n (size of the universal
set of signers) is small, we prove our protocol secure in the Algebraic
Group and Random Oracle models based on the hardness of the Discrete
Log problem. For larger n, our proof also requires the Random Modular
Subset Sum (RMSS) problem.
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1 Introduction

A multi-signature scheme [26] allows a set of n signers to generate a short sig-
nature σ, on the same message m (where the size of the signature should be
independent of the number of signers). To verify the multi-signature one needs
all the signers’ public keys, m and σ. A useful property of many multi-signature
schemes, is that they additionally support public-key aggregation; thus the ver-
ifier only needs a short aggregated public key instead of an explicit list of all n
public keys1.

Multi-signatures have attracted considerable attention in recent years due to
their applications in the blockchain setting. The initial application under con-
sideration was the creation of multi-user wallets where multiple users share own-
ership of funds and can utilize multi-signatures to collectively sign transactions
for spending these funds. Notably, multi-signatures with public key aggregation
play a fundamental role in the scalability of blockchain systems since they allow
the compression of posted signatures and verification keys up to a factor of n.
Of particular interest are multi-signature schemes the verification algorithm of
which, is fully compatible with algorithms supported by blockchain systems such
as Schnorr [39] or BLS [9].

When designing multi-signature schemes, a significant challenge is to avoid
the so-called rogue-key attacks: a forgery attack caused in schemes where the
adversaries are allowed to choose their public keys arbitrarily. In a typical multi-
signature rogue key attack, the adversary would attempt to create a public
key that is a function of an honest user’s key allowing possible forgeries. An
easy defense against such attacks is to require the parties to present a proof-of-
possession (PoP), i.e., a proof of knowledge of their secret keys. However this
complicates implementations and is not compatible with existing infrastructures.
In particular, in order to avoid long-range attacks [14] in proof of stake protocols,
a commonly used approach is to enforce the validators to rotate their keys in
each epoch. Key rotation creates the need to post a PoP proof for each validator
in each epoch which in turn might end up in more costly protocols than those
without PoP. The current widely adopted model for multi-signatures is known
as the plain public key model, which was introduced by Bellare and Neven [2].
In this model, each signer independently generates their own key pair, and no
proofs of possession are required. Our focus in this paper is specifically on the
plain public key model and in particular on the BLS multi-signature scheme
given its wide adoption in the blockchain space.

The BLS multi-signature [8]. Boneh–Lynn–Shacham (BLS) proposed an ef-
ficient signature scheme in [9] that uses pairing friendly elliptic curves. BLS sig-
natures are important in various blockchain related projects including the Chia

1 We note that aggregate signatures are a more general primitive, which as opposed
to multi-signatures, allow the aggregation of n signatures of different messages in a
short single signature.

2



network2, the Plumo ultralight client [42], and Dfinity’s random beacon [24]. A
standardization attempt for BLS with IETF is ongoing since 2019.3

Technically, BLS supports multi-signing with signature/public-key aggrega-
tion [8] in a non-interactive, deterministic and non-malleable manner. More
specifically, the scheme proposed in [8] has signature sizes of size O(λ), where λ
is the security parameter and its security is proven in the random oracle (RO)
model under a generalization of the Computational Diffie-Hellman (CDH) as-
sumption, called co-CDH [9]. Although ECDSA signatures can be verified much
faster individually, BLS signatures on the same message can be verified much
faster in the aggregated form, therefore making it more practical for multiple
validators attesting the same block or transaction. In particular, n aggregated
signatures on the same message can be performed with just 2 pairings instead
of n + 1 [8]. Notably, the most recent Ethereum Consensus client deployed on
the mainnet has adopted BLS signatures for validators to attest block propos-
als [19,17] addressing the verification bottleneck [15].

The BLS multi-signature [8] avoids the need for proofs of possession by fol-
lowing the paradigm of [2] which allows the public keys to be aggregated without
the need to check their validity through a series of signature and public key ran-
domizations. Given an efficiently computable bilinear pairing e : G1×G2 → GT

over groups G1,G2,GT of same prime order q (cf. Appendix B.1). Let g1, g2 be
generators of G1,G2, respectively, along with hash functions H0 : {0, 1}∗ → G1

and H1 : {0, 1}∗ → Zq, the BLS multi-signature of [8] works as follows:

– Key Generation: A secret/public key pair is denoted by (pk, sk) where
sk

$←− Z∗
q and pk = gsk2 ∈ G2. Let PK be the set of public keys of n signers.

– Signing: To compute a multi-signature over PK, each party computes σi =
H0(m)aiski , where ai = H1(pki∥PK) and a designated combiner computes the
final aggregated signature to be σ =

∏n
i=1 σi.

– Verification: The aggregated signature can be verified by checking
e(σ, g2) = e(H0(m), apkPK), where the aggregated public key across the n

signers is obtained via apkPK =
∏n

i=1 pk
H1(pki∥PK)
i .

Our Results. The BLS multi-signature of [8] requires a total of n exponentia-
tions in G1 during the aggregation of signature shares and n exponentiations in
G2 during the computation of apk for signature verification in order to random-
ize the signature and keys. While this cost is needed if the set of the n signers
is dynamic and constantly updated, our results are inspired by the observation
that it is not necessary in all settings. For example, in proof-of-stake settings
it is common to have a static set of n signers per epoch during which multiple
subsets of the n signers would be required to engage in multi-signing.

Our protocol takes advantage of that setting and moves the need of signature
and apk randomization to a one-time public key randomization process which
happens once the set of n signers is fixed. Thus, instead of randomizing every
2 https://github.com/Chia-Network/bls-signatures
3 https://www.ietf.org/id/draft-irtf-cfrg-bls-signature-05.html.
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single multi-signature and the corresponding aggregated public key, we random-
ize each signer’s public key once at the beginning of the protocol (or at the
beginning of each epoch for the consensus setting4), and then for every signing
subset I we simply aggregate signatures and the randomized public keys together
via a cheap multiplication and without the need for any exponentiations. The
advantage is that now the cost of a multi-signature is the same as a regular BLS
signature. We first provide a new set of definitions that allow for subset multi-
signing with key randomization in Section 3, and then present our construction
in Section 4. However, a natural question arises:

How can we prove that a subset multi-signature scheme, which allows
the adversary to adaptively sample any subset of a fixed universe set of

signers, is secure against a rogue-key attack?

Security. The security analysis of our scheme is technically interesting as it has to
significantly depart from the analysis of the standard BLS multi-signature [8].
In particular, the rewinding approach of [8] would fail in our case unless the
adversary was forced to declare the signer subset for which it would output its
forgery (to explain the technicality of our proof we give a security proof for this
weaker adversary in Appendix C.1). To overcome this limitation, we leverage
the algebraic group model (AGM) [21] and we prove our scheme secure under
the discrete logarithm assumption in the combined AGM + ROM.

The Necessity of RMSS assumption. Our proof incurs a security loss
of 2n assuming Discrete Log (DL) hardness in AGM, thus failing to provide
any guarantee when n is large. This is not just a proof artifact: we show a
concrete attack if the adversary can solve Random Modular Subset Sum (RMSS)
problems. The subset sum problem is a fundamental NP-complete problem. It
involves a set S = {s1, s2, . . . , sn} of integers and an integer target t. The task is
to determine if there exists a subset I ⊆ S that sums to the target t. The Modular
Subset Sum (MSS) problem, is a variant that assumes elements and operations in
the finite cyclic group Zq, instead of integers. The RMSS assumption conjectures
that the MSS problem is hard on average, that is, when all the input elements are
chosen randomly. There is a long line of work analyzing the complexity of RMSS
problems [10,27,20,11,30] for different parameters. Impagliazzo and Naor [25]
constructed pseudo-random generators and one-way hash functions based on
the hardness of RMSS.

In Section 5, we formally prove the security of our proposed construction
under both DL and RMSS assumptions. An important note for practical appli-
cations is that when the number of possible subsets is negligibly smaller than
the size of the output space of the hash function H1, then the probability of ex-
istence of a subset sum solution is negligible. In this case, no subset attacks are

4 This is much preferable to the PoP approach as it avoids the need for zero-knowledge
proofs (which includes prover/verifier costs as well as support for ZK from the un-
derlying blockchain.
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possible and just the Discrete Log assumption is enough. We provide a concrete
analysis for specific cases in Section 5.

Implementation. Finally, in Section 6, we provide an implementation of our
construction and a baseline comparison with [8]. Notably, for n = 500 signers
our signature aggregation saves between 150 ms - 180 ms; and our signature
verification saves between 40 ms - 75 ms (depending on whether signatures are
in G2 and keys in G1 or vice versa). Our performance benefit increases linearly
with the number of signers.

1.1 Related Work

Numerous proposals for multi-signatures have been developed, each rely-
ing on distinct assumptions and analyzed under various security models. In
terms of assumptions, we have schemes based on RSA [26,35], Discrete Log-
arithm, DDH and/or Schnorr signatures [34,2,1,33,32,13,28,41,36], bilinear pair-
ings [5,29,38,6,8,12] and more recently lattice based assumptions [18,22]. Pairing
based schemes can lead to protocols that are non-interactive [5,38,8] while most
of the DL based protocols require two or three rounds of interaction and often re-
quire non-interactive assumptions. Recent works focus on removing the need for
interactive assumptions [41,36] and/or achieving tighter security reductions [36].

Accountable-Subgroup Multi-signatures. A relevant notion is that of
accountable-subgroup multi-signatures (ASM) introduced by Micali et al. [31].
At a high level, ASM are defined to allow any subset I of the n signers in PK
to jointly sign a message m, in a way that the subgroup I is accountable for
signing (i.e. the verifier can derive the signing subset). The main difference from
our notion of subgroup optimized signatures, is that ASM requires an interactive
group setup phase in order for users to create their “membership key” for the
group. More concretely, for the case of BLS, their AMS construction [8] requires
an interactive group setup phase with n2 communication costs, where all the n
signers compute multi-signatures on the aggregate public key and the index of
every signer (i.e. the i-th signer of the set PK obtains a “membership key” which
is a multi-signature on (apkPK, i)). Additionally, the AMS scheme of [8] requires
an additional pairing during signature verification. An important note is that
the interactive group setup of AMS is not compatible with our main application
scenario of PoS committee signing: if the PoS committee is formed and all PKs
are public (thus apk is fixed), if one committee member does not participate
in the setup phase then the scheme fails. This is not a problem in our scheme,
where members create their keys independently.

2 Preliminaries

Basic Notations. Throughout, we denote the security parameter by λ and its
unary representation by 1λ. A function negl(λ) is called negligible if for every
positive polynomial p(λ), there exists λ0 s.t. for all λ > λ0 : negl(λ) < 1/p(λ).
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The set {1, . . . , n} is denoted as [1, n] for a positive integer n > 1. To check if
two elements are equal, we use the symbol “=”. To assign a value to a variable
we use “:=”, however randomized assignment is denoted with a

$←− A, where A
is a randomized algorithm.

Computational Assumptions. For our security proofs of BLS subset multi-
signatures, we recall the assumptions of Discrete Log (DL), a generalization of
the Computational Diffie-Hellman (CDH) assumption, called co-CDH [9], and
the Random Modular Subset Sum (RMSS) assumption [25,30].

Definition 1 (Discrete Logarithm Problem). For a group G = ⟨g⟩ of
prime order q, we define the advantage AdvDL

G (A) of an adversary A as Pr [z′ =

z : z
$←− Zq, Z ← gz, z′ ← A(g, Z)], where the probability is taken over the

random choices of the adversary A and the random selection of z. DL is (τ, ϵ)-
hard if there is no adversary A that can break the DL problem in time τ and
with advantage AdvDL

G (A) > ϵ.

Following [21], we show that our construction is secure in AGM assuming the
hardness of Discrete Log problem.

Definition 2 (Computational co-Diffie-Hellman Problem). For groups
G1 = ⟨g1⟩, G2 = ⟨g2⟩ of prime order q, we define the advantage Advco-DH

G1,G2
(A) of

an adversary A as Pr [y = gαβ1 : (α, β)
$←− Z2

q, y ← A(gα1 , g
β
1 , g

β
2 )], where the

probability is taken over the random choices of the adversary A and the random
selection of (α, β). co-CDH is (τ, ϵ)-hard if there is no adversary A that can
break the co-CDH problem in time τ and with advantage Advco-DH

G1,G2
(A) > ϵ.

For symmetric pairing groups, co-CDH reduces to standard CDH.

Definition 3 (Random Modular Subset Sum (RMSS) Problem). For
a prime number q, we define the advantage AdvRMSS

n,q (A) of an adversary A
as Pr

[∑
i∈I si = t : S = {si}ni=1

$←− Zn
q , t← Zq, S ⊇ I ← A(S, t)

]
, where the

probability is taken over the random choices of the adversary A and the random
selection of (S, t). RMSS is (τ, ϵ)-hard if there is no adversary that can break the
RMSS problem in time τ and with advantage AdvRMSS

n,q (A) > ϵ.

Impagliazzo and Naor [25] argued that the hardest instances of RMSS are
characterized by n = c log(q), where c is a constant factor. Although RMSS
is poly-time solvable [27,20] through a reduction to lattice SVP problems for
n = O(

√
log(q)), this is of lesser consequence to us, as the probability of the

existence of a solution is low.

Algebraic Group Model. The algebraic group model (AGM) introduced
in [21], is a model for security proofs that lies between the generic group model
(GGM) and the standard model. In AGM the adversary is considered algebraic:
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whenever it outputs a group element, it also outputs a representation of that
group element relative to all of the other input group elements the algorithm
has received up to that point.

Definition 4 (Algebraic Algorithm [21]). Over a group G, an algorithm
A is called algebraic, if for all A’s group elements outputs ζ ∈ G, A addi-
tionally provides a representation vector, z = (z0, . . . , zm) of integers such that
ζ =

∏
i g

zi
i , where (g0, . . . , gm) is the list of group elements A has seen thus far

(w.l.o.g. g0 = g).

The AGM model was used before to tighten the security reduction of the
standard BLS signature scheme [21]. While previous reductions non-tightly re-
duced from the CDH problem with a tightness loss linear in the number of
signing queries, [21] provided a tight reduction in the AGM+ROM under the
hardness of discrete logarithm assumption.

3 SMSKR: Syntax and Security Properties

Informally, a multi-signature (MS) allows multiple signers with public keys PK =
{pk1, . . . , pkn} to sign the same message with a signature size independent to
the number of signers. The set of signers’ public keys over the public key set
PK is aggregated into a single key apkPK. The formal definition can be found
in Appendix B.4.

Next, we formally define the Subset Multi-Signatures with Key Randomiza-
tion (SMSKR) as an extension to the original multi-signatures. Compared to
MS, the main difference in our scheme is that we assume a fixed set of signers
with public keys PK = {pk1, . . . , pkn} and we allow different subsets I of them
to compute signatures. However, during signing phase, the signer does not have
to be aware of who are the rest of the subset members as long as it knows PK.
We separate the signing process from the signature aggregation and divide the
signing algorithm into two: key randomization and signing algorithms. The sepa-
ration of key randomization and signing, is the key point of our construction that
allows for efficient implementations in the blockchain setting. Assuming a known
set of eligible signers PK = {pk1, . . . , pkn} at the beginning of a blockchain epoch,
all entities can appropriately randomize their keys once at the beginning of the
epoch and then participate in multiple BLS multi-signatures for any subset of
[1, n]. The advantage is that now the cost of a multi-signature is the same as a
regular BLS signature (plus the cost of a one-time key randomization), while the
users do need to know who participates in the multi-signing amongst the eligible
signers. This is different than the original BLS multi-signature [8], where the
secret keys of each user were repeatedly randomized during each signing session
for the specific set of signers that participated in each multi-signature.

Definition 5 (Subset-Optimised Multi-Signature with Key Random-
ization). Over a message space M, a subset-optimised multi-signature with
Key Randomization (SMSKR) consists of the following PPT algorithms:
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– pp← SMSKR.Setup(1λ): Take the security parameter λ in its unary repre-
sentation, and output the public parameters pp.

– (pk, sk) ← SMSKR.KeyGen(pp): Take the public parameters pp, and output
a pair of public/secret keys (pk, sk).

– (sk⋆i , pk
⋆
i ) ← SMSKR.KeyRand(pp, ski,PK): Take secret key ski and set of

public keys PK as inputs, generate randomized secret/public5 keys (sk⋆i , pk
⋆
i )

for user i and for the set of signers captured in PK.
– σi ← SMSKR.Sign(pp, sk⋆i ,m): Take rerandomized secret signing key, sk⋆i ,

and a message m ∈M, and output the signature share σi.
– σI ← SMSKR.SigAggr(pp, {σi}i∈I ,m): Take |I| signature shares on message

m, i.e. σi for all i ∈ I, and output an aggregated signature σI for the subset
I. (It could potentially also take PK as input.)

– apk∗I ← SMSKR.SubsetKeyAggr(pp, {pk⋆i }i∈I): Take the set of rerandomized
public keys, pk⋆i for all i ∈ I as input, and output a subset aggregated key
apk∗I .

– 0/1 ← SMSKR.Verify(pp, apk∗I , σI ,m): Output 1 if the signature σI verifies
for message m under the aggregated public key apk∗I , and 0 otherwise.

Similar to digital signatures, discussed in Appendix B.3, an SMSKR scheme
has two main security properties: correctness and unforgeability.

Definition 6 (Correctness). An SMSKR scheme satisfies correctness, if for
every n > 1, m ∈M, and subset I ⊆ [1, n] of signers, we have:

Pr


pp← Setup(1λ), {(ski, pki)← KeyGen(pp)}ni=1,

{(sk⋆i , pk
⋆
i )← KeyRand(pp, ski,PK)}ni=1,

apk∗I ← SubsetKeyAggr(pp, {pk⋆i }i∈I),

Verify (pp, apk∗I , SigAggr(pp, {Sign(pp, sk⋆i ,m)}i∈I ,m),m) = 1

 ≥ 1−negl(λ) .

Informally, an SMSKR is unforgeable if an adversary cannot forge a signature
that verifies under apk⋆I for a set of signers where at least one signer is honest. In
other words, assuming n signers, even if an adversary has corrupted all but one
signer with public key pk0, the user should still not be able to forge a signature
that verifies under apk⋆I that includes pk0. Formally:

Definition 7 (Unforgeability). An SMSKR scheme over message space M
is called unforgeable against chosen message attacks if for all PPT adversaries
A playing game SMSKR-UF-CMAA, as described in Figure 1, there exists a neg-
ligible function negl(λ) s.t. we have:

AdvSMSKR-UF-CMA
A (λ) = Pr

[
GSMSKR-UF-CMA

A (1λ) = 1
]
≤ negl(λ) .

An SMSKR is called weakly unforgeable, i.e. W-SMSKR-UF-CMA secure, de-
scribed in Figure 1 if the adversary forces to declare the target subset I before
getting access to the oracles. Note that in this case, the adversary might be
granted more oracle accesses based on the publicly available functions in any
given scheme.
5 In most cases, computing pk⋆i does not need any secret, thus, this algorithm could

be defined separately for sk and pk.
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Game W- SMSKR-UF-CMAA(λ)

Initialize QS = ∅
pp← Setup(1λ)
(pk0, sk0)← KeyGen(pp)

(PKA , I∗0 ) ← A(pp, pk0)
PK← PKA ∪ {pk0}
(sk⋆0, pk

⋆
0)← KeyRand(pp, sk0,PK)

(I∗,m∗, σ∗)← AOSign(·)(pp, pk0)

return
(
m∗ ̸∈ QS ∧ I∗0 = I∗ ∧

Verify(pp, apk⋆I∗∪{0},m
∗, σ∗)

)

Oracle OSign(m):
Assert

(
m ∈M

)
σ

$←− Sign(pp, sk⋆0,m)

QS ← QS ∪ {m}
return (σ)

Fig. 1: Games defining the SMSKR-UF-CMA unforgeability of multi signatures
and weakly notion as W-SMSKR-UF-CMA .

4 Our SMSKR Construction

In this section, we propose an efficient subset-optimized multi-signature with
key randomization scheme. Towards describing our SMSKR scheme, we start
by recalling the standard BLS signature scheme [9]. Let e : G1 × G2 → GT be
a bilinear pairing as defined in Definition 8. Let g1, g2 be generators of G1,G2

respectively and let H0 : M → G1 be a hash-to-curve function. BLS can be
instantiated either as minSig where signatures are in G1 and public keys in G2,
or as minPK where signatures are in G2 and keys are in G1. Below we take
the minSig approach. Given the formal definition of digital signatures in Ap-
pendix B.3, the BLS signature over an arbitrary messape space M := {0, 1}∗
consists of the following algorithms:

– BLS.Setup(1λ): Output a bilinear group pp = (q,G1,G2,GT , e, g1, g2).
– BLS.KeyGen(pp): Given the parameters pp, output a pair of public/secret

keys (pk, sk), where sk
$←− Z∗

q and pk = gsk2 ∈ G2.
– BLS.Sign(pp, sk,m): Given a secret key sk and a message m ∈ M, output a

signature σ = H0(m)sk ∈ G1.
– BLS.Verify(pp, pk, σ,m): Given a public key pk ∈ G2, a signature σ ∈ G1

and a message m ∈M, output 1 if e(σ, g2) = e(H0(m), pk), and 0 otherwise.

BLS signatures can support multi-signing with public-key aggregation. Given
the formal definition of MS schemes in Appendix B.4, we recall the Boneh et
al.’s MS scheme [8]. We note that there exist two descriptions of the scheme:
one in the full and proceedings version of the paper [8], and a slightly modified
version of the scheme described by the authors in a blog-post [7]. We first recall
the scheme from the full/proceedings version [8] and then discuss the differences
with the blog-post version [7].

Given the same setup as in BLS signatures and an additional hash function
H1 : {0, 1}∗ → Zq, Boneh et al.’s MS scheme works as follows:

9



– MS.Setup(1λ): Run BLS.Setup(1λ) and output pp.
– MS.KeyGen(pp): Run BLS.KeyGen(pp) and output (ski, pki) for all i ∈ [1, n].
– MS.Sign(pp,PK, {ski}i∈[1,n],m): On input the set of public keys PK, a secret

signing key ski and a message m, compute σi = H0(m)aiski , where ai =
H1(pki∥PK). Send the signature to a designated combiner who computes the
final signature to be σPK =

∏n
i=1 σi. (The designated combiner can be one

of the signers or an external party.)
– MS.KeyAggr(pp,PK): Given PK = {pk1, . . . , pkn}, then output apkPK =∏n

i=1 pk
H1(pki∥PK)
i .

– MS.Verify(pp, apkPK, σPK,m): Output BLS.Verify(pp, apkPK, σPK,m).

The main difference between the scheme above and its blog-post version [7], is
that the latter scheme makes the signature aggregation process distinct while at
the same time includes all the randomizations. Users compute their signatures
as regular, individual BLS signatures on message m, completely oblivious of who
else is signing the message. Then, an aggregator, given the set of public keys for
the signers PK, and all individual signatures σi, computes the aggregated multi-
sig. As the scheme is described in the blog-post, the aggregator has to pay the
cost of n exponentiations in G1, instead of amortizing this cost across signers.

Next, we propose our SMSKR, which is essentially a variant of the original
Boneh et al.’s BLS multi-signature scheme [8] enabling adaptive subset sign-
ing and key aggregation. Per our definition, we divide the signing algorithm,
MS.Sign(pp,PK, ski,m), into two modules that allow for key randomization. We
assume access to the functions from MS scheme (as described above) over the
same groups using H0 : M → G1 and H1 : {0, 1}∗ → Z∗

q hash functions and
define our SMSKR construction as follows6:

– SMSKR.Setup(1λ): Run MS.Setup(1λ) and output public parameters, pp.
– SMSKR.KeyGen(pp): Run MS.KeyGen(pp) and output the key-pair (ski, pki)

for all i ∈ [1, n].
– SMSKR.KeyRand(pp, ski,PK): Given a set of public keys PK = {pk1, . . . ,

pkn}, output the randomized public/secret keys pk⋆i = pk
H1(pki∥PK)
i and sk⋆i =

ski · H1(pki ∥ PK), respectively.7

– SMSKR.Sign(pp, sk⋆i ,m): On input a randomized secret signing key sk⋆i and
a message m, output σi = H0(m)sk

⋆
i .8

– SMSKR.SigAggr(pp, {σj}j∈I ,m): Given a set of signatures from the corre-
sponding parties in subset I and message m, and output the aggregated
multi-signature σI =

∏
j∈I σj .

– SMSKR.SubsetKeyAggr(pp, {pk⋆j}j∈I): Given a subset of the parties denoted
by their indices I ⊆ [1, n] and their randomized public keys, output apk⋆I =∏

j∈I pk
⋆
j .

6 We proposed SMSKR in the minSig mode, it can easily be extended to minPK.
7 The randomization of pk can happen by any third party – no secret required.
8 Note that the sign algorithm uses an already randomized secret key (and thus there

is no need to parse PK again.)
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– SMSKR.Verify(pp, apk⋆I , σI ,m): Given an aggregated public key apk⋆I ∈ G2,
an aggregated signature σI ∈ G1 and a message m ∈ M, and output
MS.Verify(pp, apk⋆I , σI ,m).

Remark 1. In certain blockchain applications, a party i might not have direct
access to the private key ski, but only to a BLS signing oracle over the original
private key. Thus, it could request a signature over m, receive σi = H0(m)ski and
then randomize the signature by computing σ∗

i = σ
H1(pki∥PK)
i . This approach is

more expensive because signature randomization requires an operation in G1,
while SMSKR’s default approach randomizes the private key, which is a field
operation and faster.

Remark 2. In blockchain settings, it is very reasonable to assume that appli-
cations already have access to full set of randomized public keys PK⋆ and they
only require a bitmap that defines the indices of the subset of entities that signed
the message in SubsetKeyAggr algorithm. To optimize even further, applications
could cache common subsets of I and their corresponding aggregated keys.

5 Security Analysis

In this section, we formally prove the proposed SMS in Section 4 is secure.
To showcase the complication of the security analysis for our scheme, in Ap-
pendix C.1 we first discuss the security of our scheme for a weaker unforgeability
adversary which in the security game of Definition 7, declares a target subset I
for which it will output its forgery before starting its queries.

However, in the standard definition of unforgeability, in Definition 7, the
adversary can adaptively change the subset of target signers even after getting
access to the oracles. Therefore, we use a reduction strategy that works even if
the target subset changes after a rewind, relying on the Algebraic Group Model
(AGM) and Random Oracle Model (ROM). Although we still have a 2n security
loss in the reduction, we show that this loss is intrinsic and can only be avoided
by additionally assuming hardness of the RMSS problem, stated in Definition 3.

We follow the security proof of BLS signature in [21] up to a certain point
- in particular they provide reduction strategies to address 2 cases that may
arise. In addition to those 2 cases, we have an important 3rd case where our
analysis highlights a fundamental distinguishing characteristic of the SMSKR
construction. Specifically, there is a subset-sum attack possible in SMSKR which
can either have a negligibly low probability statistically, or be able to be argued
to be computationally hard based on the RMSS assumption. We describe the
proof in both scenarios and analyze how we can leverage both the DL and RMSS
assumptions depending on concrete subset and universal set sizes.

Theorem 1. The proposed SMSKR in Section 4 is SMSKR-UF-CMA secure, as
defined in Definition 7, under the hardness of the Discrete Logarithm problem,
as stated in Definition 1, in the AGM+ROM.
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The proof is presented in Appendix C.2. It has a 2n security loss which we argue
that is intrinsic, unless we resort to a hardness assumption related to random
modular subset sums (RMSS), such as Definition 3. We describe a concrete
attack9.
Attack. An adversary which can efficiently solve RMSS instances can break the
security of the system as we show here. Once this adversary A receives a target
pk0 = gx, it chooses {(ui, vi)}ni=1 randomly as Zq elements and sends PKA =
{pki = guipkvi0 }ni=1 to the challenger. Let hi = H1(pki||PK) for all i ∈ [0, n],
where PK = PKA ∪ {pk0}. The adversary solves the following RMSS instance:

– Target sum: −h0 mod q
– Set: {hi · vi}ni=1

If n = Ω(log q), w.h.p. there is a solution. Let’s say the solution is I ⊆
[1, n]. This means h0 +

∑
i∈I hivi = 0. An SMSKR signature on a message m∗

with subset I ∪ {0} is thus H0(m
∗)h0x+

∑
i∈I hi(ui+vix) = H0(m

∗)
∑

i∈I hiui . This
quantity can be readily computed by the adversary as it is independent of x.

.

Proof with RMSS assumption. The above attack highlights the need to
assume that random subset sum problems are hard to compute for an adversary.
In fact, we show that the RMSS (Definition 3) and discrete logarithm problems
together suffice to prove security of the scheme without an exponential loss in
reduction. The proof of the theorem bellow can be found in Appendix C.3.

Theorem 2. The proposed SMSKR in Section 4 is SMSKR-UF-CMA secure,
defined in Definition 7, under the hardness of Discrete Logarithm problem and
RMSS problem, as stated in Definition 1, in the AGM+ROM.

On the dependence of assumptions on subset size. Our scheme allows
any number of signers to form a subset of size k out of a universe of size n, to
aggregatively sign the message. Some applications do restrict k to be within some
limits, for example PoS blockchains that require 2/3 of the validators to sign.
Here we discuss how our security assumptions depend on the relation between
k, n, q and the security parameter λ. Let’s say we allow k to range between 1 and
an upper bound max_k. The case of the range [n−max_k, n] is symmetric.

– When the number of possible subsets is negligibly smaller than q, then the
probability of existence of a subset sum solution is negligible. In this case, no
subset attacks are possible and just the Discrete Log assumption is enough.
This case arises if

∑max_k
k=1

(
n
k

)
/q ≤ 2−λ.

– In all other cases, we have to additionally assume RMSS, albeit it will also
include the maximum subset size max_k as a parameter.

We do an analysis with some concrete numbers of practical relevance. We
pick the group size q to be a 256-bit prime, and security parameter λ = 128.
9 As we explain in Appendix C.2 the attack does not apply to [8].
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In Figure 2, we plot the upper bound on subset size where the number of possible
subsets is less than the tolerance level q/2λ ≈ 2128. To be precise, we plot the
value of max_k_aggregated_sum in the y-axis against n in the x-axis, such that:

max_k_aggregated_sum = max

max_k ∈ [1, n] :

max_k∑
k=1

(
n

k

)
≤ 2128


Observe that the plot climbs linearly till n = 128. This is expected as the size of
the full set of subsets keeps below the threshold up to that point. When n = 129,
the curve drops abruptly to k = 64. This is because, now the threshold is half
the size of the full set of subsets, which is 2129, and hence is realized at half the
subset size. After this drop, the curve gradually slides down, reaching subset size
≤ 11 for n = 10, 000. 10

Fig. 2: Plots of upper
bound on subset size
where the number of
possible subsets is less
than the tolerance level.
The main plot is for n
going up to 10, 000. The
inner plot is for n going
up to 300 signers.
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Concrete Attacks on RMSS We discuss the security of our scheme from
both asymptotic and concrete perspectives.

Asymptotically, we assume q = 2poly(λ), and the number of parties is poly-
nomial in the security parameter, that is, n = (log q)O(1).

– At ranges where there is negligible probability of existence of an RMSS
solution, the security of our scheme can solely depend on the DL assumption.
In particular, this is true for n < log q−λ, as there aren’t enough subsets to
assure the existence of an RMSS solution with non-negligible probability.

– For the range log q − λ < n = (log q)O(1), we don’t know of any poly-
time algorithms for RMSS. [43,30] provide some improvements, but still sub-
exponential. Hence our scheme does not admit any known PPT attack.

Concretely, although the [43] n-sum algorithms (and the [16] attacks) are sub-
exponential algorithms, their practical efficiency crucially affects the choice of
real world parameters. In particular, [16] utilizes n lists of size 2[log(q)/(1+log(n))]

each with an algorithm that takes n.2[log(q)/(1+log(n))] time.
10 https://github.com/MystenLabs/research/tree/main/cryptography/

bls_aggregation_combinatorics
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– Let’s say we concretely allow up to 2128 time attacks and make the multi-
sig verifier reject signature claims for more than n = 220 signers. In that
case, taking q to be 108 × 21 = 2268 bits is sufficient. For Proof of Stake
blockchains, like Ethereum, having a million signers is a reasonable assump-
tion.11

– On the other hand if we take q to be 256 bits, like BLS12-381, we can only
allow up to 128 signers. This is because the probability of existence of an
RMSS solution would be < 2−128 and hence depending on DL would be
enough. This parameter range is sufficient for Aptos, Sui, Supra and so on,
which use < 120 signers/validators.

– For larger n, where RMSS solutions exist with non-negligible probability then
they can be found with the [43] protocol with time < 239. For instance, with
n = 200, an RMSS solution exists with probability 2−56 and if one exists
then can be found using [43] with time < 238 and non-negligible probability.

Conclusion. The flexibility in choosing subsets, after committing to a superset
of public keys, prevented us from using the Boneh et al. [8] template for security
proof. This prompted us to explore the AGM model, led us to discover the
subset-sum attack, and mitigate that using the RMSS assumption.

6 Implementation and Evaluation

Implementation Details. We implement the scheme presented in Section 4 in
Rust on top of the curve bls12-381. We provide two production-ready imple-
mentations12, one where the signature is a group element of G1 and the public
key is a group elements of G2 (noted as minSig), and a second where the sig-
nature is a group element of G2 and the public key is group elements of G1

(noted as minPk). Our implementations are built on top of the library blst [40]
that provides base group operations over the curve bls12-381. We implement
the randomization components of the scheme as a self-contained Randomize trait
allowing to augment existing BLS implementations to support SMSKR with min-
imal modifications. As a result, supporting SMSKR only requires the addition of
50 LOC to define the Randomize trait and and extra 150 LOC to implement it.

Evaluation Results. We evaluate the performance of our production-ready
SMSKR implementations described above. We perform our benchmarks on both
a cheap Amazon Web Services (AWS) instance and a Macbook Pro equipped
with an M1 processor. Our AWS experiments illustrate the performance of SM-
SKR on low-end devices. We select a t3.medium instance that comes with 2
virtual CPUs (1 physical core) on a 2.5 GHz Intel Xeon Platinum 8259 and 4GB
of RAM. Our experiments on the Macbook Pro (presented in Appendix D) illus-
trate the performance of our scheme on high-end devices with powerful CPUs.
11 current number of validators is 800000 https://beaconscan.com/statistics.
12 https://github.com/MystenLabs/fastcrypto,

(6eb758ba78612e5e22a2748dd7a4b2c8b3724377)
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We select a Macbook Pro equipped with an M1 Pro and 16 GB of RAM. All our
evaluations use Rust 1.65 and run with cargo criterion [4]. We open-source
our benchmarking scripts to enable reproducible results. 13

Our experiments aim to demonstrate the following claims. (C1) All functions
of SMSKR are lightweight and performant even on low-end devices, (C2) SMSKR
scales well when the number of signers increases, and (C3) SMSKR strictly
outperforms the baseline scheme multi-signature of Boneh et al. [8] (and the
performance benefit increases with the number of signers).

6.1 Microbenchmarks

Table 1 illustrates the performance of both our implementations (minSig and
minPk) on a single CPU core. The implementation of SMSKR.SubsetKeyAggr
is deeply embedded into the function SMSKR.Verify. We thus report the per-
formance of both functions together in the last row of the table. All functions
are evaluated for 100 signers, except SMSKR.Sign which is independent of the
number of signers. We compute the average time over 100 runs.

The table shows that key generation is cheap, taking respectively about 250
and 180 µs on our low-end AWS instance and on our high-end M1 Macbook Pro.
Signing is also cheap and can be performed in less than 500 µs even on our low-
end machine. Aggregating 100 signatures is the cheapest operation taking only a
few microseconds on any machine. Finally, verifying 100 signatures takes 1.39 ms
on our low-end machine and half that time (0.72 ms) on our high-end machine.
There is little difference between our minSig and minPk implementations when
operating with 100 signers. Section 6.2 illustrates that the performance difference
between these implementations increases rapidly with the number of signers.

The results of Table 1 illustrate that even the most expensive function: SM-
SKR.Verify, running on a low-end machine takes less than 2 ms. Thus, SMSKR
is lightweight and performant even on low-end devices validating our claim C1.

6.2 Scalability

Figure 3 illustrate the performance of SMSKR when the number of signers in-
creases. We omit SMSKR.KeyGen and SMSKR.Sign from our analysis since the
former function is only ran once at setup and the latter is independent of the
number of signers. Similarly to Section 6.1 the verification process (green lines)
includes both SMSKR.SubsetKeyAggr and SMSKR.Verify. The signature aggre-
gation process (blue lines) is simply a call to SMSKR.SigAggr.

Figure 3 shows the time required to aggregate and verify signatures on our
low-end machine. As expected, the time required for aggregation and verification
increases linearly with the number of public keys. The signature and key aggre-
gation processes require one EC addition for each signature (and public key) to
aggregate. This cost quickly dominates the cost of any other operation (including
13 https://github.com/MystenLabs/fastcrypto/blob/mskr-bench/fastcrypto/

src/mskr_bench.rs,(4d1bad60b6db5bfbb448d98d89a72cfaebab6e56)
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Function AWS M1
minSig (ms) minPk (ms) minSig (ms) minPk (ms)

KeyGen 0.25 0.25 0.18 0.18
Sign 0.44 0.44 0.31 0.31
SigAggr 0.06 0.17 0.05 0.11
Verify 1.39 1.46 0.72 0.75

Table 1: Micro-benchmark of the main SMSKR functions on a a low-end
t3.medium AWS instance and a high-end Macbook Pro with a M1 CPU. Each
data point represents the average time (over 100 runs) in milliseconds (ms) re-
quired to evaluate the function. All functions are evaluated for 100 public keys
(except SMSKR.Sign that is independent of the number of public keys).
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Fig. 3: Scalability of SMSKR on a low-end t3.medium AWS instance. Every data
point on the graph is the average of 100 runs.

the single pairing check required by the verification process) as the number of
signers increases. Both our minSig and minPk SMSKR implementations require
less than 200 µs to aggregate signatures in a setting with less than 100 signers.
SMSKR’s signature aggregation scales well: our minSig and minPk implementa-
tions respectively require 300 µs and 800 µs to aggregate 500 signatures, and only
0.6 ms and 1.6 ms (respectively) to aggregate 1,000 signatures. We observe that
our minSig signature aggregation implementation is faster than our minPk im-
plementation: our minSig (resp. minPk) implementation represents signatures
in G1 (resp. G2) and EC additions are faster in G1 than in G2. The SMSKR
verification process (SMSKR.SubsetKeyAggr and SMSKR.Verify) also scales well.
Both our minSig and minPk implementations take about 1.5ms to run with 100
signers and respectively require 3 ms and 2 ms to run the verification process
with 1,000 signers (validating our scalability claim C2). Contrarily to signature
aggregation, the verification process of our minPk implementation is faster than
minSig. This is expected as our minPk implementation represents public keys
in G1 (while minSig represents them in G2) where their aggregation is faster.
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Fig. 4: Comparative performance of SMSKR with the baseline scheme of Boneh et
al. [8] on a low-end t3.medium AWS instance. Every data point on the graph is
the average of 100 runs.

Figure 7 in Appendix D shows the time required to aggregate and verify
signatures on our high-end machine (thus better performance). In Appendix D
we also provide a “zoomed” view on SMSKR’s performance when the number of
signers ranges from 10 to 100.

6.3 Baseline Comparison

Figure 4 compares the performance of SMSKR with the baseline scheme of
Boneh et al. [8].14 The figure shows that signatures aggregation of our SMSKR
minSig and minPk implementations outperforms the baseline by two orders of
magnitude, regardless of the number of signers. Our SMSKR minSig and minPk
implementations respectively save 25 ms and 50 ms with respect to the baseline
when aggregating 100 signatures, and a staggering 250 ms and 300 ms when
aggregating 500 signatures. Similarly, the verification process of both SMSKR
minSig and minPk implementations outperforms the baseline by respectively
50x and 30x. The baseline scheme of Boneh et al. [8] randomizes each signature
before aggregation. Furthermore, it multiplies each signature and public key by
a random exponent before their aggregation, thus paying the cost of one EC
addition and one scalar multiplication for every signature and public key. This
accounts for the performance differences with SMSKR that randomizes secret
keys (upon setup) rather than individual signatures and entirely forgoes any
scalar multiplication during signature aggregation.

Figure 8 in Appendix D compares the time required to aggregate and verify
SMSKR signatures with the baseline on our high-end machine. The performance
benefits are similar to the experiments on our low-end machine as the more
powerful CPU scales performance roughly linearly. These figures validate our
14 Note that in both Figure 4 and Figure 8 the performance results for all SMSKR

operations collapse to a single line.
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final claim C3 by showing that SMSKR strictly outperforms the baseline and
that the performance benefit increases linearly with the number of signers.
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bespoke hash-to-curve function17 to allow for efficient verification of multiple
signatures. This benefited the Plumo ultralight client [42] to be more efficient
where the signers do not need to know in advance about the public keys of the
other signers.

Dfinity is designed based on a Random Beacon that acts as a verifiable ran-
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number that no party controls. Filecoin [3] uses BLS as one of the four signature
schemes admissible for the blockchain’s actors.

Although ECDSA signatures can be verified much faster individually, BLS
signatures on the same message can be verified much faster in the aggregated
form, therefore making it more practical for multiple validators attesting the
same block or transaction. In particular, n aggregated signatures on the same
message can be performed with just 2 pairings instead of n+1 [8]. Notably, the
most recent Ethereum Consensus client deployed on the mainnet has adopted
BLS signatures for validators to attest block proposals [19,17] addressing the
verification bottleneck [15].

B Omitted Definitions and Preliminaries

B.1 Bilinear Pairings

Definition 8 (Bilinear pairing). Given a security parameter λ, a bilinear
group generator BG(1λ) returns a tuple (G1,G2,GT , e, q, g1, g2), where G1,G2

are groups of the same prime order q with the generators g1, g2, respectively.
Also, let Zq be the field of order q.A bilinear pairing is an efficiently computable
map, e : G1 ×G2 → GT , satisfying the following properties:

– Bilinearity: ∀ P ∈ G1, Q ∈ G2, a, b ∈ Zq: e(P a, Qb) = e(P a, Q)b =
e(P,Qb)a = e(P,Q)ab.

– Non-degeneracy: e(g1, g2) ̸= 1GT
.

Bilinear pairings can be of a few types depending on whether there is an efficient
isomorphism from G1 to G2 in both directions (Type 1), only one direction (Type
2), or in neither direction (Type 3) [23]. Type 3 pairings are the most efficient
setting for a relevant security parameter and they are commonly deployed. In
general, BLS and derived protocols work for all three types - so we ignore the
distinctions in the following sections.

B.2 Forking Lemma

Pointcheval and Stern [37] first formalized the Forking Lemma which is used for
bounding the success probability of reductions employing rewinding and repro-
gramming random oracles. In our proofs, we will adopt the more general version
called General Forking Lemma, as described by Bellare and Neven [2].

Lemma 1 (General Forking Lemma [2]). Fix an integer q ≥ 1 and a set
H of size h ≥ 2. Let A be a randomized algorithm that on input x, h1, ..., hq

returns a pair (idx, σ), the first element of which is an integer in the range
[0, q] and the second element of which we refer to as a side output. Let IG be a
randomized algorithm that we call the input parameter. The accepting probability
of A, denoted acc, is defined as the probability that idx ≥ 1 in the experiment

x
$←− IG; h1, ..., hq

$←− H; (idx, σ)
$←− A(x, h1, ..., hq)
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Algorithm FA(x)

Pick coins ρ for A at random
h1, ..., hq

$←− H

(idx, σ)
$←− A(x, h1, ..., hq; ρ)

if (idx = 0):
return (0, ϵ, ϵ)

h′
I , ..., h

′
q

$←− H

(idx′, σ′)
$←− A(x, h1, ..., hidx−1, h

′
idx, ..., h

′
q; ρ)

if (idx = idx′ and hidx ̸= h′
idx):

return (1, σ, σ′)

else : return (0, ϵ, ϵ)

Fig. 5: Forking Algorithm.

The forking algorithm FA associated to A, in Figure 5, is the randomized algo-
rithm that takes input x and proceeds as follows:
Let

frk = Pr[b = 1 : x
$←− IG; (b, σ, σ′)

$←− FA(x)] .

Then

frk ≥ acc ·
(
acc

q
− 1

h

)
.

Alternatively,
acc ≤ q

h
+
√
q · frk .

When we apply the forking lemma in our security proofs, we will assume an
adversary breaking the unforgeability property of our signature and build from
it an algorithm A that works under the assumptions of the forking lemma. The
intuition is that h1, ..., hq can be seen as the set of replies to the random oracle
queries made by the original adversary. The forking adversary implements the
rewinding and the two executions of A performed by FA use the same random
coins ρ.

B.3 Digital Signatures

Digital signatures are a widely used cryptographic primitive that serves as an
electronic equivalent of a written signature. They ensure communication privacy,
data integrity, message and sender authenticity, and sender non-repudiation.
Next we formally define digital signatures and their security requirements.

Definition 9 (Digital Signature). A digital signature scheme over message
space M is a tuple of the following polynomial-time algorithms:
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– pp← DS.Setup(1λ): Setup is a probabilistic algorithm which takes as input
the security parameter λ and outputs the set of public parameters pp.

– (sk, pk)← DS.KeyGen(pp): Key generation is a probabilistic algorithm which
takes as input pp and outputs a pair of signing/verification keys (sk, pk).

– σ ← DS.Sign(pp, sk,m): The signing algorithm takes as input pp, a secret
signing key sk, and a message m ∈M, and outputs a signature σ.

– 0/1 ← DS.Verify(pp, pk,m, σ): Verification is a deterministic algorithm
which takes as input pp, a public verification key pk, a message m ∈ M,
and a purported signature σ, and outputs either 0 (reject) or 1 (accept).

Definition 10 (Correctness). A digital signature is called correct, if we have:

Pr

[
∀ pp← Setup(1λ), (sk, pk)← KeyGen(pp),m ∈M :

Verify (pp, pk,m,Sign(pp, sk,m)) = 1

]
≥ 1− negl(λ) .

Definition 11 (Unforgeability under Chosen Message Attack (UF-
CMA)). A digital signature scheme over message spaceM is UF-CMA secure
if for all PPT adversaries A playing game UF-CMAA, as described in Figure 6,
there exists a negligible function negl(λ) s.t. we have:

AdvUF-CMA
A (λ) = Pr

[
GUF-CMA

A (1λ) = 1
]
≤ negl(λ) .

Game GUF-CMA
A (1λ)

pp← Setup(λ)

(sk, pk)← KeyGen(pp)
(m∗, σ∗)

$←− AOSign(.)(pp, pk)

return (m∗ ̸∈ Q ∧ Verify(pp, pk,m∗, σ∗))

Oracle OSign(m)

σ ← Sign (pp, sk,m)

Q ← Q∪ {m}
return σ

Fig. 6: The UF-CMA security game.

B.4 Multi-Signature Schemes

We recall the definitions for multi-signatures by roughly following Bellare and
Neven [2] and Drijvers et al. [16].

Definition 12 (Multi-Signature). For a given security parameter λ, a multi-
signature scheme with key aggregation consists of the following algorithms:

– pp ← MS.Setup(1λ): On input the security parameter λ in its unary repre-
sentation, it outputs the scheme’s parameters pp.

– (pk, sk)←MS.KeyGen(pp): Given the parameters pp, outputs a pair of pub-
lic/secret keys (pk, sk).
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– σPK ←MS.Sign(pp,PK, {ski}i∈[1,n],m): On input the set of public keys PK,
a signing secret key ski and a message m, the signer outputs the signature
σi. A designated combiner outputs the combined signature σPK. (Instead of
a designates combiner, this algorithm could be interactive.)

– apkPK ← MS.KeyAggr(pp,PK): Given the public parameters pp and set of
public keys PK as inputs. Output a single aggregated key apkPK for all the
input pubic keys PK = {pk1, . . . , pkn}.

– 0/1 ← MS.Verify(pp, apkPK, σPK,m): Output 1 if the signature σPK verifies
for message m under apkPK, and 0 otherwise.

C Omitted Proofs

C.1 Security Analysis (for a weaker Adversary)

We start by noting that our suggested protocol change is not a simple modifica-
tion of [8] as it requires a drastically different security proof. In [8] it is critical
that the key randomization process happens at the same time as key aggregation
as this allows the security reduction to handle all these hash queries as one which
in turn allows to fix a specific set of public keys for the adversary’s forgery even
after rewinding.

To showcase the complication of the security analysis for our scheme, we first
discuss the security of our scheme for a weaker unforgeability adversary which
in the security game of Definition 7, defines a target subset I for which it will
output its forgery before starting its queries. For this weaker case, our security
analysis follows [8].

Theorem 3. The proposed SMSKR is weakly unforgeable, i.e.
W-SMSKR-UF-CMA secure, as defined in Definition 7, under the hardness
of the computational co-Diffie-Hellman problem in the random-oracle model.

Proof. Following the proof of [8], let F be a (τ, qS , qH , ϵ) forger that breaks the
unforgeability of SMSKR as defined in Definition 7.

Let par denote the bilinear group parameters and assume it is given as input
everywhere below. Let IG be an algorithm that generates instances for the co-
CDH problem, i.e. it outputs (A,B1, B2) = (gα1 , g

β
1 , g

β
2 ) for α, β

$←− Zq.
We build an algorithm A that on input (A,B1, B2) proceeds as follows. A

picks an index k
$←− {1, . . . , qH} and runs the forger F on input the honest public

key pk0 ← B2 with random tape ρ. F defines PK and its target forgery subset
I.

H0 queries. When F makes an H0 query, A picks ri
$←− Zq and returns gri1 for

all i except the k’th query for which it returns A. We assume w.l.o.g. that F
makes no repeated H0 queries.

H1 queries. When F queries H1 on (pki,PK), A just returns a random value in
hi ∈ Zq.
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Signing queries. The aggregated subset key apk∗ is computed as in the actual
protocol. When F makes a signing query on message m, A looks up H0(m). If the
lookup returns the value A, then A aborts. Else, the value must be of the form
gr1, and A can simulate the honest signer by computing and returning σ∗

i = Br
1 .

When F fails to output a successful forgery, then A aborts. If F successfully
outputs a forgery for a message m for which H0(m) ̸= A then A also aborts.
Otherwise, F outputs a forgery (σ∗, m∗, I) such that:

e(σ∗, g2) = e(A,SMSKR.SubsetKeyAggr(pp, {pkj}j∈I∪{0}))

Let jf be the forgery index, i.e. the index for which F queried H1(pk0,PK) =
hjf . Let aj = H1(pkj ,PK) for PK = {pk0, pk1, . . . , pkn}.
Then A outputs (jf , {σ,PK, I, apkI , a1, . . . , an}). The success probability of A is
the probability that F succeeds and that A guessed the hash index of F forgery
correctly. This happens with probability at least 1/qH0 , making A’s overall suc-
cess probability ϵA = ϵ/qH0 .

To complete the proof, we construct an algorithm B that, on input a co-
CDH instance (A,B1, B2) ∈ G1 × G1 × G2 and a forger F , solves the co-
CDH problem in (G1,G2). B will invoke the generalized forking algorithm GFA

(as defined in Lemma 1) on input (A,B1, B2) with the algorithm A running
as described above. (Note that the co-CDH instance is distributed identically
to the output of the IG). If GFA aborts, then B outputs fail. If GFA out-
puts (jf , out

1, out2), then B proceeds as follows: B parses the two outputs as:
out1 = {σ1,PK1, I1, apk1I , a

1
1, . . . , a

1
n} and out2 = {σ2,PK2, I2, apk2I , a

2
1, . . . , a

2
n}.

By the forking lemma, we know that those two executions were identical up to
the jf ’th H1 query. In particular, this means that the arguments of the jf ’th
query are identical, i.e., PK1 = PK2, I1 = I2, and n1 = n2. Let hj1f

= a1i and
hj2f

= a2i , then a1i ̸= a2i . Given that the two subsets are the same, we have

apk1I/apk
2
I = pk0

a1
i−a2

i . Thus, (σ1/σ2)1/(a
1
i−a2

i ) is a solution to the co-CDH in-
stance. The probability of success can be bound with the forking lemma to be:

ϵ′ = qH0
/q +

√
q · ϵ/qH0

Security Analysis (a loose reduction) As noted above, the proof of Theo-
rem 3 would not go through if the adversary had not fixed the subset I for its
forgery ahead of time (and before forking). If the adversary was allowed to out-
put forgeries for different subsets before and after forking, then the security proof
would only go through in the case that the same subset was used after rewinding.
Given that the are 2n possible subsets, this would imply an additional 2n loss
to the security reduction above:

ϵ′ = 2n(qH0
/q +

√
q · ϵ/qH0

)

resulting in a loose reduction.
The above reduction could potentially use the double-forking technique of [32]

for a more tight proof but still with important security loss.
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C.2 Proof of Theorem 1

Proof. Let Aalg be an algebraic adversary for the multi-signature unforgeability
game defined in Definition 7. We build an adversary ADL, against the hardness
of DL problem which uses Aalg as a subroutine.

Initialization. At the beginning, ADL receives a Discrete Log challenge (g, Z :=
gz), where z is the desired discrete logarithm output. The challenger ADL sam-
ples pk0 uniformly from G in a couple of different ways as we will outline below.
Briefly, we will describe two algorithms B and C that ADL will call with proba-
bility 1/2 each. Algorithm B will embed the challenge Z in the target public key
pk0, while algorithm C will embed Z in the hash H0(mi) query responses. After
sampling pk0 either way, ADL sends it to Aalg as the public key of the target
party. Regardless of which algorithm is executed, define x ∈ Zq implicitly such
that pk0 = gx.

Query phase. The challenger ADL simulates two main oracles, described as
follows:

– H0 and H1 queries : the random oracles H0 and H1. Let Hi = H0(mi) = gri

denote the responses to the qH hash H0 queries. These are also sampled uni-
formly from G in different ways by algorithms B and C: B samples ri directly,
while C embed Z in the responses. The random oracle H1 is simulated by
returning random elements from Zq.

– Signing oracle, OSign(·): The challenger ADL also simulates signature
queries in the following way. If the query is mj , it first simulates computa-
tions of H0(mj) and H1(pkj ||PK) and then simulates and returns signature
Σ†

j = H0(mj)
x·H1(pkj ||PK). The quantity Σj = (Σ†

j )
H1(pkj ||PK)

−1

= H0(mj)
x

can be publicly computed by querying H1. While x is explicitly known to al-
gorithm C, it can be implicitly simulated by algorithm B, as we will describe
below. W.l.o.g, we also assume that Aalg queries H0 with the target message
m∗.

At some point, Aalg returns a set of keys PKA = {pk1, ..., pkn}. Let
PK = PKA ∪ {pk0}. As it’s an algebraic adversary, it also returns represen-
tations {(ui, vi, w⃗i)}i such that pki = guipkvi0

∏qH
j=1 H

wij

j for all i ∈ {1, . . . , n}.
It’s possible that some of the H0 queries are sent after outputting PKA - for
those Aalg can set the wij exponents to 0.

Forgery phase. Finally, Aalg returns a forgery Σ∗ on a message m∗ /∈
Q and a set of indices I ⊆ [1, n] together with a representation a⃗ =
(â, a′, ā1, ..., āqH , ã1, ..., ãqS ), consisting of Zq elements, such that:

Σ∗ = H0(m
∗)x·H1(pk0||PK)+

∑
i∈I ski·H1(pki||PK) = gâpka

′

0

qH∏
i=1

H āi
i

qS∏
j=1

Σ
ãj

j

Here g is the generator of the group, pk0 is the public key of the target party,
Hi = H0(mi) = gri are the responses to the qH hash H0 queries and Σj =
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H0(mj)
x = gxrj are computed from the signatures Σ†

j = H0(mj)
x·H1(pkj ||PK)

returned by the signing oracle. Let H0(m
∗) = gr

∗
. Let hi = H1(pki||PK), for

i ∈ [0, n]. Implicitly, ski = ui +
∑qH

j=1 rjwij + vix, for all i ∈ [1, n]. This equation
is equivalent to:xh0 +

∑
i∈I

ui +

qH∑
j=1

rjwij + vix

hi

 r∗ = x

(
a′ +

qS∑
i=1

ãiri

)
+

(
â+

qH∑
i=1

āiri

)
.

Therefore,

x =
(â+

∑qH
i=1 āiri)−

∑
i∈I(ui +

∑qH
j=1 rjwij)hir

∗

(h0 +
∑

i∈I vihi)r∗ − (a′ +
∑qS

i=1 ãiri)
· (1)

Define H = h0+
∑

i∈I vihi. We define events E and F , which will let different
strategies succeed for the reduction. Let E be the event that H = 0, and let F
be the event that H · r∗ − (a′ +

∑qS
i=1 ãiri) = 0. The challenger ADL randomly

chooses one of two algorithms B or C (described below) with probability 1/2 and
executes the chosen one.

Algorithm B: The algorithm B sets pk0 = Z, the Discrete Log challenge. It
can simulate a signature on a message mi by setting Σ†

i = Zri·H1(pki||PK), such
that H0(mi) = gri . If event F occurs, then B aborts. If event ¬F occurs, then
it can compute z = x, by Equation (1), as the denominator is not 0. Therefore,
AdvDL(B) = AdvSMSKR(Aalg)Pr[¬F ].

Algorithm C: The algorithm C generates pk0 = gx by sampling x itself. It also
generates the H0 responses by sampling bi and r̂i and setting H0(mi) = gri =
Zbigr̂i . If event E ∨¬F occurs, then C aborts. Otherwise, assume event ¬E ∧F
occurs.
Given F , we get:

H · (zb∗ + r̂∗) = H · r∗ = a′ +

qS∑
i=1

ãiri = a′ +

qS∑
i=1

ãi(r̂i + zbi) .

Hence,

z =
(a′ +

∑qS
i=1 ãir̂i)−H · r̂∗

H · b∗ −
∑qS

i=1 ãibi
.

Note that the value of b∗ is information-theoretically hidden from Aalg and is
also absent from the sum

∑qS
i=1 ãibi, as the forgery message mustn’t have been

queried to the signing oracle. Although the bi’s are also hidden to Aalg, note
that it could set all the ãi’s to 0 and hence force the sum

∑qS
i=1 ãibi to be

0. Given ¬E, H is non-zero, thus the denominator is w.h.p. ̸= 0. Therefore,
AdvDL(C) = AdvSMSKR(Aalg) · Pr[¬E ∧ F ].

Event E: We show that the probability of this event is negligible given Dis-
crete Log hardness. Let AE be an adversary which wins if it makes event E
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happen. We construct a challenger AEDL which rewinds AE and applies Gen-
eral Forking Lemma (Lemma 1) to break Discrete Log hardness.

We now describe the algorithm AE . It runs like algorithm B as described
above in simulating the target public key, H0, H1, and signature queries, to
the adversary Aalg. Let Aalg return a set of public keys and representations
PKA, {(ui, vi, w⃗i)}ni=1 and produce a forgery (Σ∗,m∗, I, a⃗) as described before.
If event E didn’t happen, then AE returns (0, ϵ). Otherwise, let u be the index
of the first query of the form (pkiu ||PK) to H1, where PK = PKA ∪ {pk0} and
pkiu ∈ PK. Let hi = H1(pki||PK) for i ∈ [0, n], and ri be such that H0(mi) = gri

for i ∈ [1, qH ]. Then AE returns (u, (PK, {(ui, vi, w⃗i)}ni=1, {ri}
qH
i=1, {hi}ni=0, I)).

Based on this, the General Forking Lemma algorithm GFAE
returns:

(PK, {(ui, vi, w⃗i)}ni=1, {ri}
qH
i=1, {hi}ni=0, I),

(PK′, {(u′
i, v

′
i, w⃗

′
i)}ni=1, {r′i}

qH
i=1, {h

′
i}ni=0, I

′)

Since the u-th query is identical for the two executions, we must have PK =
PK′. Also, by construction the sets {hi}ni=0 and {h′

i}ni=0 in the two executions
are independently random.

We first show that the probability that the vectors (v1, ..., vn) and (v′1, ..., v
′
n)

are equal is negligible if n = O(log q).

Lemma 2. For a given vector v⃗ = (v1, ..., vn) ∈ Zn
q , the probability that for

some I ⊆ [1, n], h0 +
∑

i∈I hivi = 0 with h0, h1, ..., hn ← Zq, is < 2n/q.

Proof. Let EH denote the event that ∃ I ⊆ [1, n] : h0 +
∑

i∈I hivi = 0. For
any fixed I, the probability of EH is 1/q. Therefore, if we union bound the
probabilities over all possible I ⊆ [1, n], then the probability of EH is at most
2n/q.

Since (h′
0, ..., h

′
1) are chosen independent of (v1, . . . , vn), we must have that

with high probability (w.h.p.) (v1, . . . , vn) ̸= (v′1, ..., v
′
n), by the above lemma.

In that case there is an index k, such that v′k ̸= vk. The Discrete Log chal-
lenger AEDL then calculates the discrete log of pk0 as (uk +

∑qH
j=1 rjwkj − u′

k −∑qH
j=1 r

′
jw

′
kj)/(v

′
k − vk).

Using Generalized Forking Lemma, we get:

Adv(AE) ≤ qH/q +
√

qH ·Adv(AEDL)/(1− 2n/q)

Since the sample space of AE matches that of ADL, therefore Pr[E] ≤ qH/q +√
qH ·Adv(AEDL)/(1− 2n/q)

Putting everything together, we get that

AdvDL(ADL) = 1/2(AdvDL(B) +AdvDL(C))

= 1/2AdvSMSKR(Aalg)(Pr[¬F ]+Pr[¬E∧F ]) = 1/2AdvSMSKR(Aalg)(1−Pr[E∧F ])
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≥ 1/2AdvSMSKR(Aalg)(1− Pr[E])

Therefore,

AdvSMSKR(Aalg) ≤ 2AdvDL(ADL)(1− Pr[E])−1 ≤ 2AdvDL(ADL)(1 + 2Pr[E])

≤ 2AdvDL(ADL)

(
1 +

2qH
q

+ 2

√
qH ·Adv(AEDL)

(1− 2n/q)

)

≤ 2AdvDL(ADL)

(
1 +

2qH
q

+ 2
√

qH ·Adv(AEDL)

(
1 +

2n

q

))
·

Remark 3. Similar to [21], we assume symmetric bilinear groups in the proof.
We note that the proof is extensible to asymmetric groups by assuming the
hardness of discrete logarithm in both groups. In the reduction the unforgeability
challenger can receive DL challenges in both groups and choose which challenge
to embed depending on the context.

Is the 2n security loss intrinsic? We argue that the 2n security loss incurred
in the above reduction is intrinsic, unless we resort to a hardness assumption re-
lated to random modular subset sums (RMSS), such as Definition 3. We describe
a concrete attack.
Attack. An adversary which can efficiently solve RMSS instances can break the
security of the system as we show here. Once this adversary A receives a target
pk0 = gx, it chooses {(ui, vi)}ni=1 randomly as Zq elements and sends PKA =
{pki = guipkvi0 }ni=1 to the challenger. Let hi = H1(pki||PK) for all i ∈ [0, n],
where PK = PKA ∪ {pk0}. The adversary solves the following RMSS instance:

– Target sum: −h0 mod q
– Set: {hi · vi}ni=1

If n = Ω(log q), w.h.p. there is a solution. Let’s say the solution is I ⊆ [1, n].
This means h0+

∑
i∈I hivi = 0. A SMSKR signature on a message m∗ with subset

I ∪ {0} is thus H0(m
∗)h0x+

∑
i∈I hi(ui+vix) = H0(m

∗)
∑

i∈I hiui . This quantity can
be readily computed by the adversary as it is independent of x.

Is the Boneh et al.’s multi-signature scheme immune from this attack?
In the multi-signature scheme of [8] the hash is computed on the exact subset
which is signing the multi-sig. Thus, the exact subset is committed in the random
oracle exponent multipliers. There is no room to apply it to different subsets as
is the case with SMSKR. Hence the above attack does not apply to [8].

C.3 Proof with RMSS assumption.

The above attack highlights the need to assume that random subset sum prob-
lems are hard to compute for an adversary. In fact, now we show that the RMSS
(Definition 3) and discrete logarithm problems together suffice to prove security
of the scheme without an exponential loss in reduction. We recall the Theorem
statement from the main body.
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Theorem 4. The proposed SMSKR in Section 4 is SMSKR-UF-CMA secure,
defined in Definition 7, under the hardness of Discrete Logarithm problem and
RMSS problem, as stated in Definition 1, in the AGM+ROM.

Proof. We only show that the probability of event E is bound by Discrete Log
and RMSS hardness. The rest of the proof is same as the last one.

Let AE be an adversary which wins if it makes event E happen. We construct
a challenger AEDL which selects randomly, with probability 1/2 each, from two
rewinding strategies GF eq

AE
and GF¬eq

AE
and applies forking to break the hardness

of the discrete logarithm problem.
We now describe the algorithm AE . It runs like algorithm B as described

above in simulating the target public key, H0, H1, and signature queries, to
the adversary Aalg. Let Aalg return a set of public keys and representations
PKA, {(ui, vi, w⃗i)}ni=1 and produce a forgery (Σ∗,m∗, I, a⃗) as described before.
If event E didn’t happen, then AE returns (0, ϵ). Otherwise, let u be the in-
dex of the first query of the form (pkiu ||PK) to H1, where PK = PKA ∪ {pk0}
and pkiu ∈ PK. Let hi = H1(pki||PK) for i ∈ [0, n]. Then AE returns
(u, (PK, {(ui, vi, w⃗ij)}ni=1, {ri}

qH
i=1, {hi}ni=0, I)). Based on this, the algorithm

GF¬eq
AE

returns:

1, (PK, {(ui, vi, w⃗i)}ni=1, {ri}
qH
i=1, {hi}ni=0, I),

(PK′, {(u′
i, v

′
i, w⃗

′
i)}ni=1, {r′i}

qH
i=1, {h

′
i}ni=0, I

′)

Since the u-th query is identical for the two executions, we must have PK =
PK′. Let Eeq denote the event ∀i ∈ [1, n] : vi = v′i. If Eeq occurs, then AEDL

aborts. Otherwise, there is an index k, such that v′k ̸= vk. The Discrete Log
challenger AEDL then calculates the discrete log of pk0 as (uk +

∑qH
j=1 rjwkj −

u′
k −

∑qH
j=1 r

′
jw

′
kj)/(v

′
k − vk).

Algorithm GF eq
AE

gets an RMSS challenge (S = {si}ni=1, t). It sends h0, h1, ...,
hn ← Zq as usual in the first execution and gets back (v1, ..., vn). In the rewinded
execution, it sends h′

0 = −t, h′
1 = siv

−1
i , . . . , h′

n = snv
−1
n . Observe that this

respects the distribution of the original game and is also independently random
from h0, h1, ..., hn. Now if event ¬Eeq occurs, then ADL aborts. Otherwise, we
have (v1, ..., vn) = (v′1, ..., v

′
n). Therefore, we have −t +

∑
i∈I′ visiv

−1
i = 0. In

other words, t =
∑

i∈I′ si, and hence I ′ is a valid solution to the RMSS problem.

Summing up, we have:

Pr[AE wins] = 1/2(Pr[AE wins DL] + Pr[AE wins RMSS])

= 1/2 (Pr[GF¬eq
AE

wins ] · Pr[¬Eeq] + Pr[GF eq
AE

] · Pr[Eeq])

Now, observe that,

Pr[GF eq
AE

wins ] = Pr[GF¬eq
AE

wins ] ≥ Pr[AE wins ] · (Pr[AE wins ]/qH − 1/q)
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Therefore,

2 Pr[AE wins ] ≥ Pr[GF eq
AE

] ≥ Pr[AE wins ] · (Pr[AE wins ]/qH − 1/q)

Therefore, following [2], we get:

Pr[AE wins ] ≤ qH/q +
√
qH · 2Pr[AE wins ]

= qH/q +
√
qH · (Pr[AE wins DL] + Pr[AE wins RMSS])

D Additional Benchmarks

Beyond our two production-ready implementations, we also provide an addi-
tional minimal prototype implementation19 for didactic proposes (and that we
do not benchmark). Its scope is to illustrate the implementation of our scheme
with clarity without the numerous performance optimizations of our production-
ready implementations. This minimal prototype is build on top of the library
bls12_381 [44] providing base group operations over the curve bls12-381.

Below we describe some additional benchmarks of our production-ready im-
plementations on a high-end device: a Macbook Pro equipped with an M1 Pro
and 16 GB of RAM.

D.1 High-end devices benchmarks

Figure 7 shows the time required to aggregate and verify signatures on our high-
end machine. The graphs are similar to Figure 3 but display better performance.
Signature aggregation (1,000 signatures) takes respectively 0.5 ms and 1.3 ms for
our minSig and minPk implementations. The verification process (1,000 signers)
takes respectively 1.7 ms and 1.3 ms for our minSig and minPk implementations.
Figure 3 and Figure 7 validate our scalability claim C2.

Figure 8 compares the time required to aggregate and verify SMSKR sig-
natures with the baseline on our high-end machine. The performance benefits
are similar to the experiments on our low-end machine as the more powerful
CPU scales performance roughly linearly. For 500 signers our SMSKR minSig
and minPk signature aggregation respectively save 150 ms and 180 ms; and our
SMSKR minSig and minPk signature verification implementations respectively
save around 75 ms and 40 ms with respect to the baseline.

D.2 Scalability

For completeness, Figure 9 and Figure 10 provide a “zoomed” view on SMSKR’s
performance when the number of signers ranges from 10 to 100. We observe that
signature aggregation is only affected by a few microseconds and the verification
time does not visibly change.
19 Upon request, we can provide the code.
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Fig. 7: Scalability of SMSKR on a high-end Macbook Pro equipped with a M1
processor. Every data point on the graph is the average of 100 runs.
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Fig. 8: Comparative performance of SMSKR with the baseline scheme of Boneh et
al. [8] on a high-end Macbook Pro with a M1 processor. Every data point on the
graph is the average of 100 runs.
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Fig. 9: Performance of SMSKR on a low-end t3.medium AWS instance. Every
data point on the graph is the average of 100 runs.
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Fig. 10: Performance of SMSKR on a high-end Macbook Pro equipped with a
M1 processor. Every data point on the graph is the average of 100 runs.
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