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Abstract

Using the representation of bent functions by bent rectangles, that is, special matrices

with restrictions on columns and rows, we obtain an upper bound on the number of bent

functions that improves previously known bounds in a practical range of dimensions.

The core of our method is the following fact based on the recent observation by Potapov

(arXiv:2107.14583): a 2-row bent rectangle is completely determined by one of its rows

and the remaining values in slightly more than half of the columns.
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1 Results

Let F2 be the field of 2 elements (0 and 1) and Fn
2 be the n-dimensional vector space over F2.

A Boolean function f in n variables, that is, a function from Fn
2 to F2, is called bent if

|
∧
f(u)| = 2n/2 for all u ∈ Fn

2 . Here
∧
f is the Walsh–Hadamard spectrum of f :

∧
f(u) =

∑
x∈Fn

2

χ(f(x) + x · u), u ∈ Fn
2 .

The symbol χ under the sum sign is the non-trivial additive character of F2: χ(a) = (−1)a, the

dot denotes the inner product of vectors. Let Bn be the set of bent functions in n variables.

Obviously, Bn is non-empty only if n is even.

Bent functions are ideal objects in several contexts of coding theory, cryptography and

combinatorics. Despite intensive research, bent functions remain difficult to study, there are

many open problems related to them. One of these problems is to estimate |Bn| both from

below and from above (see discussion in [4, 8, 12]). In this paper we are interested in upper

bounds.

Denote B(n, d) = 2
∑d

i=0 (
n
i) and recall that a Boolean function f is uniquely represented

by a polynomial of the factor ring F2[x1, . . . , xn]/(x
2
1 − x1, . . . , x

2
n − xn). This polynomial is

called the algebraic normal form of f . Let deg f be the degree of the polynomial.

The naive upper bound (as it is called in [5]) on |Bn| is based on the following fact stated

in [11]: if n ≥ 4 and f ∈ Bn, then deg f ≤ n/2. The bound is as follows:

|Bn| ≤ B(n, n/2) = 22
n−1+ 1

2(
n

n/2).
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It can be slightly improved by using the restriction 2 ≤ deg f and subtracting 2n+1, the

number of affine functions, from the right side.

In [5] a more significant improvement is found:

|Bn| ≤
B(n, n/2)

22n/2−n/2−1
(1 + εn) +B(n, n/2− 1), εn =

1

2(
n−1

n/2−1)−2
, n ≥ 6.

This is achieved by taking into account not only the upper bound on deg f but also the

spectral structure of the bent functions.

In [2] to estimate the number of bent functions, it is proposed to use their representation by

bent rectangles, that is, special matrices with restrictions on rows and columns [3]. According

to [2], the number of bent functions in a particular number of variables equals the number

of the corresponding 2-row bent rectangles and, therefore, does not exceed the product of

(a) the number of ways to choose a row of a rectangle and (b) the maximum number of ways

to define the remaining elements of a rectangle with a fixed row. The bound obtained in [2]

is not much better than that of [5].

In the recent paper [9], V. Potapov shows that |Bn| is asymptotically upper bounded by

23·2
n−3(1+o(1)), n → ∞. (1)

Actually, V. Potapov obtains the even more precise bound

2α2
n−3(1+o(1)), α = 2 +

3

8
log2 6 ≈ 2.96, (2)

and simplifies it at the very end of his paper. Potapov’s bound is asymptotically much better

than the previous ones which have the form 22
n−1(1+o(1)).

In this paper we improve the method of [2] by using an idea from [9]: it turns out that

at stage (b) it is enough to define the remaining elements of a rectangle in only slightly more

than half of its columns.

We obtain the following result.

Theorem. For even n ≥ 6, it holds that

|Bn| ≤
√
B(n− 1, n/2)

(
B(n− 1, n/2)−B(n− 1, n/2− 1)

22n/2−1−n/2+1
+B(n− 1, n/2− 1)

)
.

The following table illustrates the theorem for small n. The exact values of |B6| and |B8|
presented in the table are found in [10] and [6] respectively.

n |Bn|
Upper bounds on |Bn|

naive [5] this paper

2 8

4 896 2016

6 5425430528 ≈ 232.3 242 238 237

8 99270589265934370305785861242880 ≈ 2106.3 2163 2152 2143.5

10 unknown 2638 2612 2561

12 unknown 22510 22453 22202

The bound of the theorem has the form (1) and thus is asymptotically weaker than

Potapov’s bound (2). However, an additional analysis not presented in this paper shows that

the asymptotic advantage of Potapov’s bound begins to affect only when n is impractically

large (at least greater than 5000).

The rest of the paper is organized as follows. In Section 2 we provide necessary facts about

bent rectangles. Section 3 contains the proof of the theorem.
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2 Bent rectangles

Let n be an even number written as n = m + k, where m and k are non-negative integers.

Let f be a Boolean function in n variables. Let us divide the variables into two parts: u ∈ Fm
2

and y ∈ Fk
2. Consider the restrictions of f to the second part of variables: fu(y) = f(u,y).

Let us determine their Walsh–Hadamard spectra and then construct the function

□

f(u,v) =
∧
fu(v), v ∈ Fk

2.

It is called a rectangle of f . A restriction of
□

f(u,v) to v is called a row and a restriction to u

(at v = b) is called a column (with number b). It is convenient to identify rows and columns

with vectors of their values and interpret the entire rectangle
□

f as a matrix.

By construction, the rows of
□

f are spectra of Boolean functions in k variables. If addi-

tionally the columns of
□

f(u,v) multiplied by 2(m−k)/2 are spectra of Boolean functions in m

variables, then
□

f is called bent. In [3] it is proven that f is bent if and only if
□

f is bent.

Let
□

Bm,k be the set of all m × k bent rectangles. For a vector v, denote by wt(v) its

Hamming weight, that is, the number of non-zero coordinates.

Lemma 1. A bent rectangle of
□

Bm,k is completely determined by its columns with numbers

from the set {v ∈ Fk
2 : wt(v) ≤ n/2}.

Proof. Let
□

f ∈
□

Bm,k and columns of
□

f with the indicated numbers be given. We have to

prove that all other values of
□

f can be restored by these columns.

Let us resize
□

f to get the rectangle
□

f ′ ∈
□

B0,n. The rules of resizing are presented in [1].

According to them, the indicated columns of
□

f uniquely determine columns of
□

f ′ with numbers

v′ ∈ Fn
2 such that wt(v′) ≤ n/2.

The rectangle
□

f ′ is the spectrum of
∧
f . It takes values from the set {±2n/2}. Let g be the

bent function dual to f : χ(g(x)) = 2−n/2
∧
f(x), x ∈ Fn

2 . By construction, the values g(x) are

known for all x such that wt(x) ≤ n/2. It remains to prove that g is completely determined

by these values. To do this, we repeat the reasoning of [9].

For binary vectors x = (x1, . . . , xn) and u = (u1, . . . , un), denote by xu the product
∏

i x
ui
i

in which 00 = 11 = 10 = 1, 01 = 0. The notation x ≤ u means that xi ≤ ui for all i = 1, . . . , n.

The algebraic normal form of g is as follows:

g(x) =
∑
u∈Fn

2

ANF[g](u)xu.

Here ANF[g] is the coefficient function. Since deg f ≤ n/2, ANF[g](u) = 0 for all u such that

wt(u) > n/2. The remaining coefficients are determined by g using the Möbius transform:

ANF[g](u) =
∑
x≤u

g(x), wt(u) ≤ n/2.

From this, the values {g(x) : wt(x) ≤ n/2} completely determine the function ANF[g] which,

in turn, completely determines all g. This is what to be proven. □

Let G be the set of Boolean functions g in n− 1 variables such that
∧
g(v) ∈ {0,±2n/2} for

all v ∈ Fn−1
2 . These functions are called in [7] near-bent. In [13] it is proven (in the broader

context of plateaued functions) that if g ∈ G, then deg g ≤ n/2.
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For m = 1, a bent rectangle
□

f ∈
□

Bm,k =
□

B1,n−1 consists of 2 rows. If
∧
g is some of them,

then g ∈ G. Indeed,
□

f is bent and its columns (as vectors) can only take the following forms:

(0,±2n/2), (±2n/2, 0).

An upper bound on |G| is given by the following lemma.

Lemma 2. For n ≥ 6, a row of a rectangle of
□

B1,n−1 can be chosen in no more than

B(n/2, n− 1)−B(n/2− 1, n− 1)

22n/2−n/2+1
+B(n/2− 1, n− 1)

ways.

Proof. The result follows from Theorem 4.3 of [5]. The theorem is used to derive an upper

bound on the number of functions g in n− 1 variables such that deg g ≤ n/2 and all spectral

coefficients
∧
g(v) are divisible by 2n/2. All such functions are contained in G. □

3 Proof of the theorem

Let us divide G into 3 parts: G1, G2 and G3. The partitioning is performed depending on

the number of zeros among the values {∧
g(v) : v ∈ Fn−1

2 , wt(v) ≤ n/2}: g ∈ G1 if there

are less than half zero values, g ∈ G3 if more than half, and g ∈ G2 if exactly half. Let
∧
Gi = {∧

g : g ∈ Gi}.
Let us prove that |G1| = |G3|. Consider an arbitrary function g ∈ G1. Let b be the vector

of ones in Fn−1
2 and h(y) = g(y) + y ·b, y ∈ Fn−1

2 . Since
∧
h(v) =

∧
g(v+b), there are less than

half zeros among the values{∧
h(v) : wt(v) ≥ n/2− 1

}
=

{∧
g(v) : wt(v) ≤ n/2

}
.

Since
∧
h being the spectrum of a near-bent function takes zero values in exactly half of the

cases, there are more than half zeros among {
∧
h(v) : wt(v) ≤ n/2}. This means that h ∈ G3

and, therefore, the bijection G1 → G3 : g 7→ h is constructed. The existence of the bijection

yields |G1| = |G3|.
The number of rectangles

□

f ∈
□

B1,n−1 whose first row
∧
g lies in

∧
G1 does not exceed

|G1|
√
B(n− 1, n/2).

Here |G1| is the number of ways to choose
∧
g and

√
B(n− 1, n/2) is the upper bound on

the number of ways to arrange signs of non-zero elements of the second row after
∧
g is

chosen. By Lemma 1 it suffices to specify signs in the columns with numbers from the

set {v ∈ Fn−1
2 :

∧
g(v) = 0,wt(v) ≤ n/2}. Since

∧
g ∈

∧
G1, less than half of the numbers

{v ∈ Fn−1
2 : wt(v) ≤ n/2} are involved and there are less than

√
B(n− 1, n/2) ways of

arranging signs.

The number of rectangles
□

f ∈
□

B1,n−1 whose first row
∧
g lies in

∧
G3 also does not exceed the

specified bound. The same reasoning holds. The only difference is that
∧
g becomes the second

row and signs are arranged in the first row.

Repeating the reasoning once more, we find that the number of rectangles whose first row

lies in
∧
G2 does not exceed

|G2|
√

B(n− 1, n/2).
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Collecting estimates and using the equality |G1| = |G3|, we obtain

|Bn| = |
□

B1,n−1| ≤ (|G1|+ |G2|+ |G1|)
√
B(n− 1, n/2) =

= (|G1|+ |G2|+ |G3|)
√
B(n− 1, n/2) = |G|

√
B(n− 1, n/2).

The final result follows by applying the bound on |G| stated in Lemma 2.
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