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Abstract. Increasing deployment of advanced zero-knowledge proof systems, especially zkSNARKs,
has raised critical questions about their security against real-world attacks. Two classes of attacks
of concern in practice are adaptive soundness attacks, where an attacker can prove false statements
by choosing its public input after generating a proof, and malleability attacks, where an attacker
can use a valid proof to create another valid proof it could not have created itself. Prior work has
shown that simulation-extractability (SIM-EXT), a strong notion of security for proof systems, rules
out these attacks.
In this paper, we prove that two transparent, discrete-log-based zkSNARKs, Spartan and Bullet-
proofs, are simulation-extractable (SIM-EXT) in the random oracle model if the discrete logarithm
assumption holds in the underlying group. Since these assumptions are required to prove standard
security properties for Spartan and Bulletproofs, our results show that SIM-EXT is, surprisingly, “for
free” with these schemes. Our result is the first SIM-EXT proof for Spartan and encompasses both
linear- and sublinear-verifier variants. Our result for Bulletproofs encompasses both the aggregate
range proof and arithmetic circuit variants, and is the first to not rely on the algebraic group model
(AGM), resolving an open question posed by Ganesh et al. (EUROCRYPT ’22). As part of our
analysis, we develop a generalization of the tree-builder extraction theorem of Attema et al. (TCC
’22), which may be of independent interest.

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) allow a computationally-
bounded prover to produce a proof about a NP statement without revealing anything other than its
validity, and with proof size sublinear in the size of the witness [12,32,34]. An important line of recent
works [7,9,13,15,17,20,32,35,38,44,48,60,64] has produced concretely efficient constructions of zkSNARKs
for range proofs (e.g., Bulletproofs [16]) and general arithmetic circuit satisfiability (e.g., Spartan [55])
that have seen widespread deployment, especially in blockchains and cryptocurrencies [8,59,1,54,52,21,65],
along with potential deployment in other areas of interests [40].

As zkSNARKs are deployed in practice, it is important to understand whether they are actually secure
against the kinds of attacks they are likely to face in real systems. Two security properties in particular give
us pause: first, adaptive soundness, where a malicious prover must be unable to prove false statements
even if it chooses the input after generating a proof; a related notion, adaptive knowledge soundness,
guarantees extraction is possible against such an adaptive prover. The second property is non-malleability,
where an accepting proof cannot be modified into a different one without knowing the witness. Neither
property is implied by standard security definitions like non-adaptive (knowledge) soundness and zero
knowledge, and schemes lacking these properties have been attacked in practice. For example, the voting
system Helios was broken by an adaptive soundness attack on a zero-knowledge proof [11]; subsequent
work found similar issues with the SwissPost voting system [41] for government elections. Though not
against zero-knowledge proofs directly, malleability attacks are common in cryptocurrencies: for example,
a malleability attack was allegedly used3 to steal hundreds of millions of dollars from MtGox [47].

?? Part of the work was done while the first author was at the University of Michigan.
3 A later study [22] cast some doubt on these claims, but did find evidence that over three hundred thousand
Bitcoins had been involved in malleability attacks.
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Fortunately, a security property called simulation extractability (SIM-EXT) implies adaptive (knowl-
edge) soundness and non-malleability for zkSNARKs. Intuitively, SIM-EXT requires that the knowledge
extractor succeeds even when the malicious prover can request simulated proofs for arbitrary statements.
If we could prove zkSNARKs that are already used (or are likely to be used) in practice are SIM-EXT, we
could be more confident they would resist advanced attacks that use adaptivity or malleability. Ideally, we
could prove SIM-EXT in idealized models (e.g, the random oracle model, or ROM) and using assumptions
(e.g. discrete-log), which are sufficient to prove standard security guarantees for zkSNARKs; this would
indicate SIM-EXT comes (roughly) “for free”.

A pair [29,30] of beautiful recent works by Ganesh et al. on SIM-EXT for zkSNARKs lays a path
towards this goal. In [29], the authors give a general SIM-EXT theorem for zkSNARKs with updatable
SRS, and use it to show PlonK [28], Marlin [20], and Sonic [45] are all SIM-EXT. In [30], the authors
show SIM-EXT for Bulletproofs. Unfortunately, these works do not get us all the way towards our goal:
first, because their techniques do not extend to transparent zkSNARKs like Spartan, which use different
building blocks; second, because their results rely on the algebraic group model (AGM) [27] and are not
currently known to hold from discrete log in the ROM.

1.1 Our Results

In this paper we prove that Spartan and Bulletproofs, two state-of-the-art transparent zkSNARKs, satisfy
SIM-EXT in the ROM assuming only that the discrete log assumption holds. Our analyses required
developing some new technical tools which may be of independent interest. Since Spartan and Bulletproofs
were originally analyzed in the ROM and rely on the discrete log assumption, our results imply these
protocols are SIM-EXT “for free”—unmodified and without additional assumptions or stronger idealized
models. More precisely, we prove SIM-EXT for two variants of Spartan—Spartan-NIZK, which has linear
verifier time, and Spartan-SNARK, which has sublinear verifier time—instantiated with the default Hyrax-
based polynomial commitment scheme [60]. These are the first proofs of SIM-EXT for any Spartan variant;
we believe the Spartan-SNARK result is also the first proof of SIM-EXT for any transparent zkSNARK with
sublinear verifier time. Similarly, we prove SIM-EXT for two versions of Bulletproofs—the aggregate range
proof protocol BP-ARP used in several cryptocurrencies [36,46] and the arithmetic circuit satisfiability
proof BP-ACSPf. Our proofs for these protocols are the first that do not rely on the algebraic group
model.

Our results help to build confidence that state-of-the-art and deployed zkSNARKs resist the kinds of
attacks these protocols will face as they see wider deployment in the future. Of more theoretical interest,
they also imply the surprising fact that, in the ROM, a powerful primitive like a SIM-EXT zkSNARK can
be built from a very weak assumption like discrete log.

The proofs of these four theorems are nontrivial; to prove them we built several new technical tools
that may be of independent interest for future SIM-EXT analyses. We extended prior security notions for
SIM-EXT to the transparent NIZK setting. We also needed to develop a nontrivial generalization of the
tree extractor of Attema et al. [2].

Our analyses are also done with an emphasis on concrete security. Where possible we try to explicitly
measure adversarial runtime and success probability. We also evaluate our bounds to estimate bit security
for typical parameters for Spartan and Bulletproofs, and compare the bit security we obtain against
other analyses where possible. Our bounds inherit the non-tightness common to most rewinding-based
knowledge soundness analyses of NIZKs, and so the provable SIM-EXT security we get (in terms of bits) is
quite low. Nevertheless, we believe our results can be improved by future work, and hope they eventually
inform future parameter selection processes for zkSNARK standards [66].

1.2 Technical Overview

We follow the high-level approach to proving SIM-EXT developed by [24] and further generalized in [29,30]:
for a Fiat-Shamir-compiled argument ΠFS, SIM-EXT is implied by three other properties: (1) adaptive
knowledge soundness, (2) a form of zero knowledge, and (3) a unique-response property. Since the results
in [24] are specific to Σ-protocols and those in [30] are specific to the AGM, we take the SIM-EXT
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theorem of [29] as our starting point. After suitable adaptations to the transparent setting—we give these
in Section 3—this theorem says that ΠFS is SIM-EXT in the ROM if:

1. it is adaptively knowledge sound (hereafter we will omit “adaptive” if it is clear from context),
2. it is perfect k-ZK, meaning that there exists a simulator that perfectly simulates honest proofs, but

only programs the RO when generating the k-th challenge,
3. it is k-UR for the same round k, meaning no adversary can produce two accepting proofs that are

identical up to the k-th round, even if it can program that round’s challenge.

Proving these three properties is challenging, and required us to develop novel techniques which we
summarize below.

Knowledge Soundness. We prove knowledge soundness for non-interactive versions of Spartan and Bullet-
proofs using a standard chain of reductions: namely, we reduce to the special soundness of the underlying
interactive argument. Intuitively, special soundness of a proof system refers to the ability of an extractor
to extract a witness from a tree of accepting transcripts with suitable structure. For multi-round proto-
cols, special soundness is parameterized by a vector (n1, n2, . . . , nr) describing the needed structure: each
node at level one must have n1 outgoing edges, level two nodes have n2 edges, etc. Recently, Attema et
al. [2] proved that knowledge soundness of the Fiat-Shamir-compiled argument ΠFS follows from special
soundness of Π. We take it as our starting point; unfortunately, we cannot apply it directly to either Spar-
tan or Bulletproofs. There are two main reasons for this: first, Attema et al. only consider perfect special
soundness, but both Spartan and Bulletproofs only satisfy computational special soundness—roughly,
because an extractor could fail to extract a witness from a tree of transcripts if a malicious prover finds
a nontrivial discrete log relation.

The second reason is more subtle, and has to do with ensuring the tree has the right structure for
extraction to be possible. In Attema et al., each node of the transcript tree is a prover message whose
outgoing edges are labeled with distinct verifier challenges. For certain rounds in both Spartan and
Bulletproofs, these verifier challenges must satisfy an extra predicate (beyond distinctness) for extraction
to be possible. The tree-builder by Attema et al. does not support outputting such trees with extra
structure.

To address these limitations, in Section 4 we give a generalization of Attema et al.’s tree-builder
that has the desired properties. Our generalization captures other predicates on verifier challenges using
the notion of an efficiently-decidable partition of the space of challenges. Intuitively, we build a wrapper
algorithm that that sits between the prover and the Attema et al. tree-builder, and ensures the tree has
the right structure by enforcing a partition of the challenge space.

Armed with this generalization, we prove computational special soundness for all variants of Spartan
and Bulletproofs, which in turn implies knowledge soundness for their Fiat-Shamir-compiled versions. In
both cases, our generalized tree-builder is a crucial component: for example, special soundness of Bullet-
proofs requires verifier challenges to be distinct modulo ±1, and Spartan requires linear independence for
batching challenges sent during the sumcheck subprotocol.

Building k-ZK Simulators. For SIM-EXT, we must prove that Spartan and Bulletproofs are perfect k-ZK,
meaning their proofs can be simulated by a simulator that can only program the RO in a single round.
This is a departure from the typical way to build NIZK simulators, which typically reprogram the RO in
every round; in particular, doing this for Spartan and Bulletproofs requires giving entirely new simulators
for these constructions.

We build our k-ZK simulator for Bulletproofs using an approach similar to [29]. Our k-ZK simula-
tor construction for Spartan-NIZK uses a novel strategy that is worth highlighting here: it delays the
round at which the RO is reprogrammed as late as possible in the protocol (in fact, our simulator only
needs to reprogram the very last verifier challenge). Another interesting aspect of our k-ZK simulator for
Spartan is that the same simulator works for both Spartan-NIZK and Spartan-SNARK—though the two
protocols have major differences, we observe that the parts of Spartan-SNARK that work differently than
Spartan-NIZK consist entirely of evaluating (extensions of) public matrices at a public point, and so are
trivially simulatable.
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k-Unique Response. To finish, we need to show Spartan and Bulletproofs are k-UR for the same k as their
respective k-ZK simulators. For Spartan variants, this is straightforward—we need only reprogram the
RO during the final Σ-subprotocol, and it is well known [24] that Σ-protocols satisfy unique response.

For BP-ARP and BP-ACSPf, proving k-UR is more challenging. Indeed, prior work relied heavily on
the AGM for analyzing unique response—for example, [30] observe that proving their version of unique
response is the only part of their analysis that seems to actually rely on the AGM, and [29] need the
AGM to show that KZG polynomial commitments are unique response.

We prove k-UR for Bulletproofs using a new proof strategy that, intuitively, replaces the AGM with
extraction. In more detail, we extract witnesses from both proofs output by the k-UR adversary, then
argue that either the witnesses are the same or the adversary has found a discrete log relation. To finish,
we use the (novel) result that the Bulletproofs inner-product argument has unique proofs. Thus, if the
witnesses are the same, the proofs must be the same as well.

Limitations and open questions. Our results do have some important limitations. Notably, our emphasis
on removing the AGM means that the tightness of our Bulletproofs results is worse than the comparable
result of [30]. While this is inherent in some sense because our extractors use rewinding instead of straight-
line extraction, it means that the bit security of Bulletproofs and Spartan we could prove with typical
parameters would come out to be quite poor. We discuss this in Section 7.

An interesting open problem we leave to future work is generalizing our techniques to other transparent
zkSNARKs. In particular, there is a great deal of commonality between our proofs for Spartan and
Bulletproofs which could be abstracted out and proven more generally. As many later works [44,64,35,56]
have built on Spartan viewed as a polynomial IOP [17,20], it would be interesting to generalize our
analyses into a SIM-EXT framework for polynomial IOPs.

1.3 Related Work

Simulation-extractability (SIM-EXT) for NIZKs was first defined in [53] (using different terminology).
Thereafter, a long line of work refined and studied SIM-EXT [24,50], built SIM-EXT NIZKs [37], and
showed that SIM-EXT is sufficient for other primitives like signatures of knowledge [19]. Other concurrent
works attacked security of NIZKs in deployed systems, such as the voting system Helios, showing the
importance of adaptive soundness [11] which is implied by SIM-EXT. Other work has looked at UC
security for NIZKs [18] and given results on SIM-EXT in the QROM [23]. These works are not relevant to
our results, since SIM-EXT does not imply UC security in the ROM; further, we study zkSNARKs built
from discrete log, which is broken by quantum attacks.

The simulation-extractability of zkSNARKs is comparatively less well-studied. Two important prior
works [29,30] which rely on the algebraic group model [27] (AGM) are described above; [30] proves
SIM-EXT of Bulletproofs, and [29] proves SIM-EXT of Plonk [28], Marlin [20], and Sonic [45].

Other work has investigated generic transforms for achieving SIM-EXT from any zkSNARK [5], par-
ticularly focused on SIM-EXT transforms for the Groth16 zkSNARK [3,4]. Since Groth16 [38] is built
using a different approach than either Spartan or Bulletproofs, and relies on non-falsifiable knowledge
assumptions or the AGM, our results are incomparable to theirs.

Our paper analyzes SIM-EXT for Bulletproofs [16] and Spartan [55], two transparent zkSNARKs built
from discrete-log assumptions. There is a line of related work building similar SNARKs, such as Hyrax [60],
and extensions to recursive composition like Halo [15] and Nova [44]. We suspect our techniques would
extend to these constructions, and leave extending them to future work.

A key technical tool our results rely on is a “tree-builder” for proving knowledge soundness of NIZKs
built from multi-round interactive arguments. As described above, our approach is a generalization of a
beautiful recent work by Attema et al. [2]. This work develops a tree-builder for perfect special sound
protocols which are extractable given a tree of distinct verifier challenges; we generalize their result to
support computational special soundness and to allow different conditions on verifier challenges. Wik-
strom [63] gives an alternate construction and analysis of a tree-builder which could have served as a
starting point for us; however, their extractor has a worse concrete running time and tightness than
Attema et al. In a revision of [17], the authors generalize Attema et al.’s tree builder to handle general
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predicates on prover messages; since we need more general predicates on verifier challenges, their gen-
eralization is not directly useful to us. Other recent works [33,42] analyze the knowledge soundness of
Bulletproofs in the AGM/GGM without using an explicit tree-builder by, for example, going through the
notion of round-by-round soundness [10].

Concurrent work. After the acceptance of this paper, Ganesh et al. posted a full and revised version [31] of
their conference version [30]. Their revised version proves that Bulletproofs satisfy SIM-EXT in the ROM
only, removing the need for the AGM. We note that their technique is somewhat different from ours:
in particular, they prove that Bulletproofs satisfy a different notion of weak unique response (FS-WUR),
which turns out to be enough for their version of the SIM-EXT theorem (cf. our Theorem 3.4). Their
proof of FS-WUR shares some similarity with ours, however, namely in the use of rewinding to extract
witnesses from non-simulated proofs. Nevertheless, we note that our results additionally include proving
that Spartan satisfies SIM-EXT.

2 Preliminaries

We use F to denote a finite field with F∗ = F−{0}, and λ to denote the security parameter. For k, n ∈ N,
we denote [k, n] = {k, k+1, . . . , n}, and [n] = [1, n]. We denote uniform sampling from a set S by a $← S.
We denote vectors by boldface, e.g. g = (g1, . . . , gn), and write ga to mean ga11 · · · · · gann . We denote the
length of a vector a by |a|, the inner product between two vectors a,b by a · b or 〈a,b〉, the Hadamard
(entry-wise) product by a ◦ b, and the tensor product by a⊗ b = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm).

Our relations are of the form R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ and are efficiently decidable, e.g. there
exists a deterministic polynomial time algorithm that given (pp, x, w) outputs whether (pp, x, w) ∈ R.
We abbreviate PPT for probabilistic polynomial time, and EPT for expected (probabilistic) polynomial
time.

We use code-based games [6] to define many of our security notions. A game GA1,...,An
S denotes a run

of parties A1, . . . ,An on a pre-specified set of procedures given by S, returning a bit b ∈ {0, 1}. We denote
Pr[GA1,...,An

S ] the probability over the random coins used by S and all adversaries that the game’s output
is 1.

Lemma 2.1 (Schwartz-Zippel Lemma). Let F be a finite field and f ∈ F≤d[X1, . . . , Xn] be a non-zero
multivariate polynomial with total degree at most d. Let S be a subset of F. Then

Pr[f(x1, . . . , xn) = 0] ≤ d/|S|,

where the probability is taken over the choice of xi
$← S for all i = 1, . . . , n.

2.1 Assumptions

We assume the existence of a group generator generating global public parameters
ppG := (G,F) ← GroupGen(1λ), where G is a group of prime order, with F as the corresponding field.
These global parameters are used in the setup phase of every protocol we consider. We also assume a
generator sampling procedure g1, . . . , gn

$← GenSamp(G, n).
We define the following assumptions with respect to an adversary A running in expected polynomial

time.4

Definition 2.2 (Discrete Log [33]). We say that the discrete log (DL) assumption holds for the
tuple of algorithms (GroupGen,GenSamp) (see Section 2.1) if for all EPT adversaries A, the following
probability is negligible in λ:

AdvDL
GroupGen,GenSamp(A) := Pr

[
DLAG (λ)

]
.

4 This is because we can only reduce breaking the security of the protocols we consider to such adversaries
breaking DL or DL-REL.
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Game DLAGroupGen,GenSamp(λ)

(G,F)← GroupGen(1λ)

g, h
$← GenSamp(G, 2)

a← A(g, h)
return (ga = h)

Game DL-RELAGroupGen,GenSamp,n(λ)

(G,F)← GroupGen(1λ)

g1, . . . , gn
$← GenSamp(G, n)

(a1, . . . , an)← A(g1, . . . , gn)

return

(
n∏
i=1

gaii = 1

)
∧ ((a1, . . . , an) 6= 0n)

Fig. 1: Games for Discrete Log

Definition 2.3 (Discrete Log Relation [33]). We say that the discrete log relation (DL-REL) assump-
tion holds for (GroupGen,GenSamp) if for all EPT adversaries A and all n ∈ N, the following probability
is negligible in λ:

AdvDL-REL
GroupGen,GenSamp,n(A, λ) := Pr

[
DL-RELAGroupGen,GenSamp,n(λ)

]
.

The two discrete log assumptions are tightly related.

Lemma 2.4 (Lemma 1 [33]). For every EPT adversary A against DL-REL, there exists a EPT ad-
versary B against DL, nearly as efficient as A, such that

AdvDL-REL
GroupGen,GenSamp,n(A) ≤ AdvDL

GroupGen,GenSamp(B) +
1

|F|
.

By a slight abuse of notation, we will abbreviate G for (GroupGen,GenSamp) in the rest of the paper.

2.2 Interactive Arguments

We define an interactive argument for relation R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗.

Definition 2.5. An interactive argument for a relation R is a tuple of PPT algorithms Π = (Setup,P,V)
with the following syntax:
• Setup(ppG)→ pp : outputs public parameters pp given global parameters ppG,
• 〈P(w),V〉(pp, x)→ {0, 1} : an interactive protocol whereby the prover P, holding a witness w, interacts
with the verifier V on common input (pp, x) to convince V that (pp, x, w) ∈ R. At the end, V outputs
a bit for accept/reject.

We define the following properties for interactive arguments:

• Completeness. For any adversary A,

Pr

[
(pp, x, w) 6∈ R ∨
〈P(w),V〉(pp, x) = 1

:
pp← Setup(1λ, ppG)

(x,w)← A(pp)

]
= 1.

• Knowledge Soundness. There exists a expected polynomial time extractor E such that for any
stateful PPT adversary P∗,

Pr

b = 1 ∧ (pp, x, w) 6∈ R :

pp← Setup(1λ, ppG)

(x, stP∗)← P∗(pp)
b← 〈P∗(stP∗),V〉(pp, x)
w ← EP

∗
(pp, x)

 ≤ negl(λ).5

Here E gets black-box access to each of the next-message functions of P∗ in the interactive protocol,
and can rewind P∗ to any point in the interaction.

5 We do not define soundness, but this implies soundness with the same advantage.
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Definition 2.6 (Honest-Verifier Zero-Knowledge). A public-coin interactive argument
Π = (Setup,P,V) for a relation R is ε-honest-verifier zero-knowledge (ε-HVZK) if there exists a PPT
simulator S such that for all pp ← Setup(ppG) and (pp, x, w) ∈ R, the following distributions are ε-
statistically indistinguishable

{ViewV〈P(pp, x, w),V(pp, x)〉} ≈s {S(pp, x)}.

Here ViewV〈P(pp, x, w),V(pp, x)〉 denotes the view of the verifier, consisting of the transcript and its own
randomness. Π satisfies perfect HVZK if it is 0-HVZK.

Definition 2.7 (Public-Coin). An interactive argument Π = (Setup,P,V) is public-coin if in each
round i the verifier V samples its message uniformly at random from some challenge space Chi, and uses
no other randomness.

Any public-coin interactive argument has a general (2r + 2)-message, or equivalently, (r + 1)-round
format where the verifier sends the 0-th message, and the prover sends the last message. In particular, the
transcript is of the form tr = (c0, a1, c1, . . . , ar, cr, ar+1), where (a1, . . . , ar+1) are the prover’s messages
and (c0, . . . , cr) are the verifier’s messages. Additionally, we have c0 = ∅ in all protocols we consider, so
that we will only consider (2r+1)-message protocols (where the prover sends the first and last message).

2.3 Non-Interactive Arguments in the ROM

In practice, we often use the Fiat-Shamir transform (see Section 2.4) to compile public-coin interactive
arguments into their non-interactive versions, in a model where both parties have black-box access to a
random oracle, i.e. a uniformly sampled function H : {0, 1}∗ → {0, 1}λ. For public-coin (2r + 1)-message
interactive arguments with challenge spaces Ch1, . . . ,Chr, we will actually need r independent random
oracles Hi : {0, 1}∗ → Chi with i ∈ [1, r]. For simplicity, we will denote these by a single random oracle
H, and it will be clear from context which random oracle is being used in a given round.

Definition 2.8. A non-interactive argument (NARG) in the ROM for a relation R ⊆ {0, 1}∗×{0, 1}∗×
{0, 1}∗ is a tuple of algorithms Π = (Setup,P,V), with P,V having black-box access to a random oracle
H, with the following syntax:
• Setup(ppG)→ pp generates the public parameters,
• PH(pp, x, w)→ π generates a proof given pp and an input-witness pair (x,w),
• VH(pp, x, π)→ {0, 1} checks if proof π is valid for pp and input x.

We define the following properties of NARGs:

• Completeness. For every adversary A,

Pr

(pp, x, w) 6∈ R ∨
VH(pp, x, π) = 1

:

pp← Setup(ppG)

(x,w)← AH(pp)

π ← PH(pp, x, w)

 = 1.

• Knowledge Soundness. Π is (adaptively) knowledge sound (KS) if there exists an extractor E
running in expected polynomial time such that for every PPT adversary P∗, the following probability
is negligible in λ:

AdvKS
ΠFS,R(E ,P

∗) :=
∣∣∣Pr[KSP∗0,ΠFS

(λ)]− Pr[KSE,P
∗

1,ΠFS,R(λ)]
∣∣∣.

The knowledge soundness games are defined in Figure 2.

We define zero-knowledge in a model where the random oracle is explicitly-programmable [61] by the
simulator. Here, the simulator S can reprogram the random oracle H, and this modified oracle is provided
to the distinguisher.

Definition 2.9 (Zero-Knowledge). Π satisfies (statistical) unbounded non-interactive zero-knowledge
(NIZK) if there exists a PPT simulator S such that for pp← Setup(ppG) and any unbounded distinguisher
D, the following probability is negligible in λ:

AdvZK
ΠFS,R(S,D) :=

∣∣∣Pr [ZKD,P0,ΠFS,R(λ)
]
− Pr

[
ZKD,S1,ΠFS,R(λ)

]∣∣∣.
The zero-knowledge games are defined in Figure 3.
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Game KSP
∗

0,ΠFS
(λ)

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

b← VH
FS(pp, x, π)

return b

Game KSE,P
∗

1,ΠFS,R(λ)

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

b← VH
FS(pp, x, π)

w ← EP
∗
(pp, x, π)

return b ∧ (pp, x, w) ∈ R

Fig. 2: Knowledge soundness security games. Here the extractor E is given black-box access to P∗. In
particular, E implements H for P∗ and can rewind P∗ to any point.

Game ZKD,P0,ΠFS,R(λ)

pp← Setup(ppG)

b← DH(·),P′(pp,·,·)(1λ)

return b

P ′(pp, x, w)
if (pp, x, w) 6∈ R then return ⊥
else return P(pp, x, w)

Game ZKD,S1,ΠFS,R(λ)

pp← Setup(ppG)

b← DH(·),S′(pp,·,·)(1λ)

return b

S ′(pp, x, w)
if (pp, x, w) 6∈ R then return ⊥

else return SRePro(pp, x)

Fig. 3: Zero-knowledge security games. Here the simulator S gets access to a RePro oracle that on input
(a, b) reprograms H(a) := b.

2.4 The Fiat-Shamir Transformation

We define the Fiat-Shamir transform [25], which removes interaction from any public-coin interactive
argument.

Definition 2.10 (Fiat-Shamir Transformation). Let Π = (Setup,P,V) be a public-coin (2r + 1)-
message interactive argument of knowledge. Denote the transcript as tr = (a1, c1, . . . , ar, cr, ar+1). The
Fiat-Shamir transformation turns Π into a non-interactive protocol ΠFS in the ROM, where:

• SetupFS(ppG) is the same as Setup(ppG),
• the prover PFS, on input (pp, x, w), invokes P(x,w), and instead of asking the verifier for challenge
ci in round i, queries the random oracle to get

ci = H(pp, x, a1, . . . , ai) for all i = 1, . . . , r.

PFS then outputs a non-interactive proof π = (a1, . . . , ar, ar+1).
• the verifier VFS, on input (pp, x, π), derives challenges ci’s by querying the random oracle as PFS does,
then runs V(pp, x, (a1, c1, . . . , ar, cr, ar+1)) and outputs what V outputs.

For all protocols Π considered in this paper, it is clear that both Π and ΠFS satisfy (perfect) com-
pleteness. Furthermore, ΠFS satisfies knowledge soundness if Π is (computationally) special sound (see
Section 4). For zero-knowledge, we have a canonical simulator SFS for ΠFS based on any HVZK simulator
S for Π.

Definition 2.11 (Canonical Simulator). Let Π be a public-coin interactive argument with HVZK
simulator S. Define the canonical simulator SFS for ΠFS to be an algorithm that on input (pp, x) runs
S(pp, x) to get a transcript tr = (a1, c1, . . . , ar, cr, ar+1), then reprogram H(pp, x, a1, . . . , ai) := ci for all
i ∈ [r].
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Game SIM-EXTS,P
∗

0,ΠFS
(λ)

pp← Setup(ppG)

(x, π)← (P∗)H,S(pp)

b← VH′
FS (pp, x, π)

return b ∧ (x, π) 6∈ QSim

Game SIM-EXTE,S,P
∗

1,ΠFS,R(λ)

pp← Setup(ppG)

(x, π)← (P∗)H,S(pp)

b← VH′
FS (pp, x, π)

w ← EP
∗
(pp, x, π)

return b ∧ (x, π) 6∈ QSim ∧ (pp, x, w) ∈ R

Fig. 4: SIM-EXT security games. In both games, S returns a proof π upon an input x (and may reprogram
the random oracle), while QSim records all pairs (x, π) queried by P∗. H′ denotes the modified RO after
all proof simulation queries. E is given black-box access to P∗; in particular, it implements H and S for
P∗ and can rewind P∗ to any point in its execution (with same initial randomness).

Remark 2.12. It can be shown that SFS is a NIZK simulator for ΠFS if S is an HVZK simulator and the
fact that the first message a1 has sufficient min-entropy [24,30]. Looking ahead, given any simulator S for
ΠFS, to show that it is a NIZK simulator, it suffices to show that S produces indistinguishable transcripts
tr = (a1, c1, . . . , ar+1) from honestly generated transcripts, and that the first message a1 has sufficient
min-entropy.

3 Simulation Extractability

We define the central notion of our work, simulation extractability (SIM-EXT), which requires that ex-
tractability holds even when the malicious prover is given access to simulated proofs. SIM-EXT implies
adaptive (knowledge) soundness and non-malleability for the proof system [30,43,51], and allows building
secure signatures of knowledge via standard transforms [19,39].

Definition 3.1 (Simulation Extractability). Let Π = (Setup,P,V) be a public-coin zero-knowledge
interactive argument for relation R with associated NIZK ΠFS = (Setup,PFS,VFS). We say ΠFS satisfies
simulation extractability (SIM-EXT) with respect to a simulator S if there exists an efficient simulator-
extractor E such that for every PPT adversary P∗, the following probability is negligible in λ:

AdvSIM-EXT
ΠFS,R (S, E ,P∗, λ) :=

∣∣∣Pr[SIM-EXTS,P
∗

0,ΠFS
(λ)]− Pr[SIM-EXTE,S,P

∗

1,ΠFS,R(λ)]
∣∣∣.

Games SIM-EXT0 and SIM-EXT1 are defined in Figure 4.

We will state an adaptation of the results in [29], which establishes a general theorem about simulation
extractability. In particular, the authors of [29] define the notion of a k-zero-knowledge simulator that
only needs to reprogram the random oracle in round k. Similarly, they define a property of k-unique
response, which roughly states that the malicious prover’s responses are uniquely determined after round
k. Together, these two properties (for the same k) along with knowledge soundness will be enough to
show simulation extractability.

Definition 3.2 (k-Zero-Knowledge). Let Π = (Setup,P,V) be a (2r + 1)-message public-coin inter-
active argument with HVZK simulator S, and k ∈ [1, r]. Let ΠFS be its associated FS-transformed NIZK.
We say ΠFS satisfies (perfect) k-zero-knowledge (k-ZK) if there exists a zero-knowledge simulator SFS,k
that only needs to program the random oracle in round k, and whose output is identically distributed to
that of honestly generated proofs.

Definition 3.3 (k-Unique Response). Let Π = (Setup,P,V) be a (2r + 1)-message public-coin in-
teractive argument, with ΠFS its associated FS-transformed NARG and k ∈ [0, r]. We say ΠFS satisfies
k-unique response (k-UR) if for all PPT adversaries A, the following probability (defined with respect to
the game in Figure 5) is negligible in λ:
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Game k-URAΠFS
(λ)

pp← Setup(1λ, ppG)

(x, π, π′, c)← AH(pp)

b← VH[(pp,x,π|k) 7→c]
FS (pp, x, π) = 1

b′ ← VH[(pp,x,π′|k)7→c]
FS (pp, x, π′) = 1

return b ∧ b′ ∧ π 6= π′ ∧ π|k = π′|k

Fig. 5: Security game for k-unique response. Here H[(pp, x, π|k) 7→ c] denotes the random oracle where
the input (pp, x, π|k) is reprogrammed to output c.

Advk-URΠFS
(A) := Pr

[
k-URAΠFS

(λ)
]
.

When k = 0, we say that ΠFS has (computationally) unique proofs.

We now state a key theorem that relates SIM-EXT to these properties; it is similar to the SIM-EXT
theorem given in [29], with SRS update oracles removed.

Theorem 3.4. Let ΠFS be a Fiat-Shamir compiled non-interactive argument for relation R from a (2r+
1)-message public-coin interactive argument Π. Assume ΠFS satisfies KS, has a perfect k-ZK simulator
SFS,k for some k ∈ [1, r], and satisfies k-UR (for the same k). Then ΠFS satisfies SIM-EXT.

Concretely, let E be a KS extractor for ΠFS. There exists a SIM-EXT simulator-extractor ESE for
ΠFS such that, for every PPT prover P∗ against SIM-EXT of ΠFS that makes at most qH random oracle
queries and qSim simulation queries, there exists another PPT prover P∗KS against KS and PPT adversary
A against k-UR such that

AdvSIM-EXT
ΠFS,R (SFS,k, ESE,P∗) ≤ AdvKS

ΠFS,R(E ,P
∗
KS) +Advk-URΠFS

(A) .

Furthermore, both P∗KS and A make at most qH random oracle queries; their runtime is roughly equal to
P∗’s runtime plus qSim invocations of SFS,k. ESE invoked on P∗ is nearly as efficient as E invoked on P∗KS.

We first give the high-level intuition for our proof before presenting the formal details. Our proof
proceeds in a few steps (following the strategy of [29]): first, we show how to build a KS adversary P∗KS
from any SIM-EXT adversary P∗ using a “wrapper” that takes care of the proof simulation oracle and
the associated reprogramming of the random oracle. Then, we show how to build a SIM-EXT extractor
ESE from an arbitrary KS extractor E—this works by using the wrapper to turn the SIM-EXT adversary
P∗ into a KS adversary P∗KS, then running the KS extractor on this adversary. Finally, we relate the
advantages of P∗ and P∗KS. This steps turns out to be subtle because of how the wrapper emulates the
proof simulation oracle.

In more detail, the wrapper must allow the simulator to “reprogram” the random oracle. (Recall that
by assumption, our simulator only needs to reprogram in the kth round.) However, the wrapper has no
power to program its own random oracle—it can only keep a table of which points the simulator has
reprogrammed, and use this table to answer random oracle queries instead of querying its own random
oracle. Thus, there is some “bad” event where P∗’s output does not verify against the random oracle of
P∗KS. To finish the proof, we need to upper-bound the probability of this happening. We show that this
probability is upper-bounded by the k-UR advantage of an adversary built from P∗. Conditioned on this
bad event not happening, we show that the KS advantage of P∗KS against E is an upper bound on the SE
advantage of P∗ against ESE.

Proof. Below, we abbreviate SIM-EXTSFS,k,P
∗

0,ΠFS
as Hyb0 and SIM-EXTESE,SFS,k,P

∗

1,ΠFS,R as Hyb1. We start by
defining ESE. However, in order to define ESE, we first describe the following “adversary wrapper” W that
takes in an adversary P∗ against SIM-EXT and returns an adversary P∗KS against KS. This wrapper W
transforms P∗ into P∗KS as follows:
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• P∗KS gets pp← Setup(ppG) and runs P∗ on input pp.
• P∗KS keeps a local table T of programmed random oracle queries, and a local table QSim of simulated

proof queries.
• To answer P∗’s proof simulation queries, P∗KS internally runs SFS,k, adds any programmed oracle

queries to T , and returns the resulting simulated proof.
• To answer P∗’s random oracle queries, if the query is not in T , P∗KS passes to its own RO H and

relays back the result; if the query is in T , P∗KS answers with the programmed result in T .
• When P∗ outputs (x, π), P∗KS aborts if (pp, x, π|k) ∈ T , i.e. H′ has been programmed on the k-th

prefix of π, and otherwise outputs (x, π).

From the description of P∗KS, it is clear that it provides an identical view of the oracles H,SFS,k to P∗. In
particular, the output of P∗ when simulated by P∗KS is identically distributed to the case when P∗ is run
with actual oracles H,SFS,k. We now define the simulator-extractor ESE based on E and W as follows:

– Given an adversary P∗, ESE invokes the wrapper W to emulate an adversary P∗KS against KS from its
access to P∗.

– ESE then runs E on P∗KS and outputs what E outputs.

We observe the following about the efficiency of P∗KS and ESE. Note that P∗KS makes at most the same
number of RO queries as P∗, and the runtime of P∗KS is roughly the runtime of P∗ plus the runtime of
qSim many invocations of the simulator SFS,k. The runtime of ESE is equal to the runtime of E on P∗KS.

Going back to the analysis, let P∗ be an arbitrary PPT adversary against SIM-EXT. We define P∗KS
to be the corresponding adversary against KS, constructed from P∗ via the wrapper W. We also define
bad to be the event, in either hybrids, that the malicious prover P∗ outputs (x, π) such that:

– H′ has been programmed on the k-th prefix of π, i.e. (pp, x, π|k) ∈ T ,
– VH′

FS(pp, x, π)→ 1 and (x, π) 6∈ QSim.

Note that the second condition is identical to the winning condition of Hyb0. We observe that bad is
well-defined since the two hybrids are identical up until running b ← VH′

FS(pp, x, π), which is what bad
depends on.

We claim that there exists an adversary A against k-UR, nearly as efficient as P∗KS, such that Pr[bad] ≤
Advk-URΠFS

(A). We construct A as follows.

• A gets pp← Setup(ppG) and runs P∗ on input pp.
• A emulates P∗KS in answering P∗’s queries. In particular, it keeps track of the table T for programmed

RO queries, and the table QSim for simulated proofs.
• When P∗ outputs (x, π), A searches through the simulation queries to find (x, π′) ∈ QSim that satisfies
π 6= π′ and π|k = π′|k, aborting if no such query exists; A then looks up the programmed challenge
H(pp, x, π|k) := c in T and returns (x, π, π′, c).

It is clear that A is nearly as efficient as P∗KS. It remains to argue the following points:

– First, we show that A does not abort if bad happens, i.e. we need to show that there exists (x, π′) ∈
QSim such that π 6= π′ and π|k = π′k. From the first condition of bad, it follows that there must be a
programmed oracle query for the k-th prefix π|k of π. Such RO reprogramming only happens during
proof simulation using SFS,k. Since SFS,k only programs the RO in the k-th round, there exists a
simulation query (x, π′) ∈ QSim such that π′|k = π|k. The second condition of bad then implies that
π 6= π′, since (x, π) 6∈ QSim.

– Next, we show that A wins the k-UR game, i.e. that VH?

FS (pp, x, π) = VH?

FS (pp, x, π
′) = 1, π 6= π′ and

π|k = π′|k, where H? = H[(pp, x, π′|k) 7→ c]. The last two conditions (π 6= π′ and π|k = π′|k) are
satisfied by the construction of A. Next, we note that relative to the modified random oracle H′, we
have VH′

FS(pp, x, π) → 1 by the second condition of bad, and VH′

FS(pp, x, π
′) → 1 by the guarantee of

the simulator SFS,k. We finish by noting that H′ and H∗ give identical answers for the prefixes of π
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and π′ queried by the verifier VFS, i.e. that VH∗

FS (pp, x, π)→ 1 and VH∗

FS (pp, x, π
′)→ 1 as well. This is

because the prefix for the k-th round (pp, x, π|k) = (pp, x, π′|k) is programmed to c in both H′ and
H∗, and neither H′ nor H∗ reprograms H on any other prefix.

We now show that conditioned on bad not happening, for the adversary P∗KS constructed above, we
have the following equalities:

Pr[Hyb0 ∧ ¬bad] = Pr[KS
P∗KS
0,ΠFS

(λ)] , Pr[Hyb1 ∧ ¬bad] = Pr[KS
E,P∗KS
1,ΠFS,R(λ)] .

For the first equality, note that Hyb0 ∧ ¬bad is equivalent to the following conditions:

– H′ is not programmed on the k-th prefix of π, i.e. (pp, x, π|k) 6∈ T ,
– VH′

FS(pp, x, π)→ 1 and (x, π) 6∈ QSim.

These conditions are also equivalent to KS
P∗KS
0,ΠFS

(λ), since it means that:

– P∗KS does not abort, which implies (pp, x, π|k) 6∈ T ,
– VH

FS(pp, x, π)→ 1, which by the previous fact, also implies VH′

FS(pp, x, π)→ 1 (since H and H′ give the
same answers to queries made by VFS). Furthermore, since (pp, x, π|k) is not programmed, π cannot
be a simulated proof, i.e. (x, π) 6∈ QSim.

A similar argument also establishes the second equality. Namely, Hyb1 ∧ ¬bad has the same conditions
as Hyb0 ∧ ¬bad, plus the condition that the witness w ← EP∗SE (pp, x, π) satisfies (pp, x, w) ∈ R. Similarly,
KS
E,P∗KS
1,ΠFS,R(λ) is the same as KSP

∗
KS

0,ΠFS
(λ) plus the condition that w ← EP∗KS(pp, x, π) satisfies (pp, x, w) ∈ R.

By the construction of ESE, we see that EP∗SE is identical to EP∗KS , which means the witness w produced is
the same.

Putting everything together, we get the desired bound:

AdvSIM-EXT
ΠFS,R (SFS, ESE,P∗) ≤ |Pr[Hyb0]− Pr[Hyb1]|

≤ |Pr[Hyb0 ∧ ¬bad]− Pr[Hyb1 ∧ ¬bad]|+ Pr[bad]

≤ AdvKS
ΠFS,R(E ,P

∗
KS) +Advk-URΠFS

(A).

ut

4 Tree of Transcripts and Special Soundness

In this section, we show how to establish knowledge soundness (KS) of a FS-transformed protocol ΠFS

based on the computational special soundness of the interactive protocol Π. The key is to construct an
efficient tree builder T B that, given oracle access to a malicious prover P∗ for ΠFS, outputs a suitable
tree of accepting transcripts, upon which a valid witness can be extracted.

Definition 4.1 (Tree of Transcripts). Let Π be a (2r+ 1)-message public-coin interactive argument
for a relation R, with challenge spaces Ch1, . . . ,Chr. Given n = (n1, . . . , nr) ∈ Nr and φ = (φ1, . . . , φr)
with φi : Chnii → {0, 1} for i ∈ [r], we say that T is a (φ,n)-tree of accepting transcripts for pp if:

1. T is a tree of depth r + 1,
2. For each i ∈ [r + 1], each vertex at depth i is labeled with a prover’s i-th message ai, and if i ≤ r,

has exactly ni outgoing edges to its children, with each edge labeled with a verifier’s i-th challenge
ci,1, . . . , ci,ni satisfying φi(ci,1, . . . , ci,ni) = 1. Additionally, the root’s label is prepended with x (so the
label becomes (x, a1)),

3. The labels on any root-to-leaf path form a valid input-transcript pair (x, tr).

We additionally define T to be accepting with respect to a input-transcript pair (x, tr) if (x, tr) corresponds
to the left-most path of T . We define a predicate IsAccepting((φ,n), pp, x, (π, )T ) to check whether T is
a (φ,n)-tree of accepting transcripts for pp and x, and optionally π.
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Game TreeBuildT B,P
∗

ΠFS,(φ,n)(λ)

pp← Setup(ppG)

(x, π)← (P∗)H(pp)

T ← T BP
∗
(pp, x, π)

return (VH(pp, x, π) = 1) ∧
IsAccepting((φ,n), pp, x, π,T )

Game SST E,AΠ,R,(φ,n)(λ)

pp← Setup(ppG)

(x,T )← A(pp)
w ← T E(pp, x,T )

return (pp, x, w) 6∈ R ∧
IsAccepting((φ,n), pp, x,T )

Fig. 6: Games for tree-building and special soundness. Here the tree-builder T B is given black-box access to P∗.
In particular, T B implements H for P∗ and can rewind P∗ to any point in its execution.

The usual definition of a tree of accepting transcripts [2,14] has φi be the predicate that the i-th
challenges ci,1, . . . , ci,ni , coming from a vertex at depth i, are distinct (we call this the distinctness
predicate). In that case, we will also abbreviate T as a n-tree of accepting transcripts. However, we will
need to consider more general partition predicates in our proofs of knowledge soundness for Spartan and
Bulletproofs.

Definition 4.2 (Partition Predicate). Let Ch = Ch(1)tCh(2) · · ·tCh(C) be a partition P of a set Ch
into C blocks. We assume the partition is efficient, i.e. given an index i ∈ [C], we can enumerate the set
Ch(i) in polynomial time. For n ∈ N, we define the corresponding partition predicate φP,n : Chn → {0, 1}
to be φP,n(c1, . . . , cn) = 1 if and only if c1, . . . , cn belong in distinct blocks of Ch.

Remark 4.3. Looking ahead, we will consider the following partition predicates:

• When Ch = F∗ is partitioned into {x,−x} for all x. We abbreviate this predicate into the number n
of challenges as n±.

• When Ch = F2 is partitioned into {c · x | c ∈ F∗} for all x ∈ {(0, 0), (0, 1)} ∪ {(1, a) | a ∈ F} (this
implies linear independence between two vectors). We abbreviate this predicate into the number n of
challenges as nli.

We now state a theorem asserting the existence of an efficient tree-builder that can generate (φ,n)-
trees of accepting transcripts, where φ consists of partition predicates as defined above. We give the proof
in Section 4.1; our proof relies on the tree-builder constructed in the work of Attema et al. [2]. We give
a comparison of our tree-builder with that of Wikström in Appendix A.

Theorem 4.4 (Efficient Tree Builder). Let Π be a (2r+1)-message public-coin interactive argument
with challenge spaces Ch1, . . . ,Chr. Consider any efficiently decidable partition Chi = tCij=1Chi,j with
minimum partition size C = mini Ci, and let φ = (φ1, . . . , φr) be the corresponding partition predicate.
Consider any n = (n1, . . . , nr) ∈ Nr with N =

∏r
i=1 ni.

There exists a probabilistic algorithm T B for ΠFS with the following guarantees: given oracle access
to a malicious prover P∗ for ΠFS with success probability ε(P∗) := Pr[KSP

∗

0,ΠFS
], T B wins the tree-building

game TreeBuildT B,P
∗

ΠFS,(φ,n)
(shown in Figure 6) with probability at least

Pr
[
TreeBuildT B,P

∗

ΠFS,(φ,n)

]
≥ ε(P∗)−

Q(Q− 1)/2 + (Q+ 1) (
∑r
i=1 ni − r)

C
.

Furthermore, T B makes in expectation at most (Q+ 1)(N − 1) + 1 rewinding calls to P∗, where Q is an
upper bound on the number of RO queries of P∗.

Remark 4.5. We note the quadratic dependence on the number of queries Q in our bound. This seems to
be an inherent limitation of our proof technique, which stems from a birthday bound (see Section 4.1),
and we leave achieving a tighter bound to future work.
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We now define computational special soundness, which stipulates the existence of a tree-extraction
procedure T E that, given an appropriate tree of accepting transcripts produced by an efficient adversary,
outputs a witness with high probability.

Definition 4.6 (Special Soundness). Let Π be a (2r+1)-message public-coin interactive argument for
a relation R with challenge spaces Ch1, . . . ,Chr. For any n = (n1, . . . , nr) ∈ Nr and φ = (φ1, . . . , φr) with
φi : Ch

ni
i → {0, 1}, we say Π is (φ,n)-computational special sound if there exists a PPT tree-extraction

algorithm T E such that for all EPT adversary A, the following probability is negligible in λ:

AdvSS
Π,R,(φ,n)(T E ,A) := Pr

[
SST E,AΠ,R,(φ,n)(λ)

]
.

The special soundness game is shown in Figure 6. We say Π is computational special sound (SS) if it is
(φ,n)-computational special sound for some φ and n.

Using Theorem 4.4 and Definition 4.6, we get the following consequence that computational special
soundness for an interactive protocol implies knowledge soundness for its non-interactive version.

Lemma 4.7. Let Π be a (2r+ 1)-message public-coin interactive argument that is (φ,n)-computational
special sound with tree extractor T E, where n = (n1, . . . , nr) ∈ Nr and φ is a partition predicate with
minimum partition size C. Then ΠFS satisfies knowledge soundness. Concretely, there exists an EPT
extractor E such that for every PPT adversary P∗ against KS making at most Q random oracle calls,
there exists an EPT adversary A against SS such that

AdvKS
ΠFS,R(E ,P

∗) ≤
Q(Q− 1)/2 + (Q+ 1) (

∑r
i=1 ni − r)

C
+AdvSS

Π,(φ,n)(T E ,A).

Both E and A runs in expected time that is at most O(Q ·N) the runtime of P∗.

Proof. Our proof goes through a sequence of hybrids. Hyb0 is the game KSP
∗

0,ΠFS
. Hyb1 is the same as Hyb0,

except we also run T BP
∗
(pp, x, π) → T and output 0 if T is not a (φ,n)-tree of accepting transcripts

with respect to (pp, x, π). Note that Hyb1 is the same as the game TreeBuildT B,P
∗

ΠFS,(φ,n)
. Using Theorem 4.4,

we get
|Pr[Hyb0]− Pr[Hyb1]| ≤

Q(Q− 1)/2 + (Q+ 1) (
∑r
i=1 ni − r)

C
.

We define Hyb2 to be the same as Hyb1, except we also run T E(pp, x,T )→ w and output 0 if (pp, x, w) 6∈
R. We define the extractor E to be as follows: run T BP

∗
(pp, x, π) → T to obtain a tree of accepting

transcripts, then run T E(pp, x,T )→ w to obtain a witness. By definition of E , we can see that Hyb2 is
the same as the game KSE,P

∗

1,ΠFS,R.
We now claim that there exists an adversary A against SS such that

|Pr[Hyb1]− Pr[Hyb2]| ≤ AdvSS
Π,(φ,n)(T E ,A).

We define A to be as follows: given oracle access to P∗, A runs (P∗)H(pp) → (x, π) by simulating H for
P∗, then runs T BP

∗
(pp, x, π) → T , and outputs (x,T ). It is then straightforward to argue that Hyb2

returns 0 while Hyb1 returns 1 precisely when A wins in SS. ut

4.1 Proof of Theorem 4.4

We first introduce the notions of an abstract adversary and an abstract tree of transcripts, which can be
defined independently of any interactive argument Π. Such notions were also considered in [2] in terms
of abstract sampling games, and we will state the tree-builder T BAFK of [2] in these terms.

Definition 4.8 (Abstract Adversary). Let S1, . . . , Sr be finite sets. Denote by H = (H1, . . . ,Hr) be a
collection of random oracles Hi : {0, 1}∗ → Si. A r-round, Q-query random oracle adversary A against
S1, . . . , Sr is a deterministic adversary having oracle access to H1, . . . ,Hr, making at most Q total accesses
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to these random oracles, and returning ((a1, . . . , ar+1), v) where ai’s are strings and v ∈ {0, 1}. The
success probability of A is defined to be

ε(A) := Pr[v = 1 | AH → ((a1, . . . , ar+1), v)],

where the probability is defined over the randomness of choosing H.

Definition 4.9 (Abstract Tree of Transcripts). Let S1, . . . , Sr be any finite sets, A be any abstract
adversary against S1, . . . , Sr, and n = (n1, . . . , nr) ∈ Nr. A n-abstract tree of transcripts T for A and
H = (H1, . . . ,Hr) is a labeled n-tree where:

– Each vertex at depth i ∈ [r + 1] is labeled with a message ai,
– Each of the ni edges coming from a vertex at depth i ∈ [r] is labeled with a different element s ∈ Si,
– For any root-to-leaf path, if the edges are labeled (s1, . . . , sr) and the vertices are labeled (a1, . . . , ar+1),

then AH′ → ((a1, . . . , ar+1), 1) where H′ = (H1[a1 7→ s1], . . . ,Hr[(a1, . . . , ar) 7→ sr]).

Remark 4.10. LetΠ be a (2r+1)-message public-coin interactive argument with challenge sets Ch1, . . . ,Chr.
From any deterministic adversary P∗ against KS of ΠFS, we can build an abstract adversary A against
the set Ch1, . . . ,Chr by running (x, π = (a1, . . . , ar+1)) ← (P∗)H(pp) (with pp hard-coded) and also
v ← VH

FS(pp, x, π);A then outputs (((x, a1), a2, . . . , ar+1), v). A n-tree of accepting transcripts for (pp, x, π)
can be seen as a n-abstract tree of transcripts for A.

We now state the guarantees of the tree-builder T BAFK in [2].

Theorem 4.11 ([2], adapted). Consider any sets S1, . . . , Sr and any n = (n1, . . . , nr) ∈ Nr with
N =

∏r
i=1 ni. There exists a probabilistic algorithm T BAFK with the following guarantees: given oracle

access to any Q-query abstract adversary A against S1, . . . , Sr with success probability ε(A), T BAFK
outputs a n-abstract tree of transcript T with probability at least

ε(A)− (Q+ 1)κ

1− κ
, where κ = 1−

r∏
i=1

(
1− ni − 1

|Si|

)
.

Furthermore, T BAFK makes in expectation at most (Q+ 1)(N − 1) + 1 oracle calls to A.

Remark 4.12. We simplify the bounds of Theorem 4.11 in two ways: first, we have

κ ≤ κ′ :=
r∑
i=1

ni − 1

Ci
≤
∑r
i=1 ni − r
C

, where C = min
i=1,...,r

Ci,

and secondly, we simplify the success probability of T B to be at least

ε(A)− (Q+ 1)κ

1− κ
≥ ε(A)− (Q+ 1)κ′ = ε(A)−

(Q+ 1)(
∑r
i=1 ni − r)
C

.

This leads to a cleaner expression while not sacrificing any tightness, as both κ and κ′ will be negligible
for our abstract adversaries.

We now give a proof of Theorem 4.4, using the tree-builder T BAFK in Theorem 4.11 as a black box.

Proof (Proof of Theorem 4.4). Without loss of generality, we assume that P∗ is deterministic; this is
because if we can prove the theorem for every choice of P∗’s randomness, then by averaging we also prove
the theorem for arbitrary P∗. Thus, the only source of randomness in the game KSP

∗

0,ΠFS
, and hence of the

success probability ε(P∗) := Pr[KSP
∗

0,ΠFS
], is the choice of the random oracle H.

For i ∈ [r], define H?i : {0, 1}∗ → [Ci], where we recall that Chi = tCij=1Chi,j . We will construct an
abstract adversary A against the sets [C1], . . . , [Cr], having access to random oracles H? = (H?1, . . . ,H

?
r)

and to the malicious prover P∗. It does the following:
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– Get pp← Setup(ppG) and run P∗ on pp.
– Initialize an empty table T of triples ((i, a, (c, j)), where c ∈ Chi,j , denoting the result Hi(a) = c.
– When P∗ makes an oracle query to Hi on input a, search through T for an entry (i, a, (c, ·)), and

return c. If no such entry exists, query H?i (a)→ j, then sample c $← Chi,j uniformly at random, add
(i, a, (c, j)) to T , and return c as the answer to P∗.

– When P∗ outputs (x, π = (a1, . . . , ar+1)), run v ← VH(pp, x, π) (where H is determined by T ), and
output (((x, a1), a2, . . . , ar+1), v).

We now define our tree-builder T B. Given oracle access to P∗, it emulates the abstract adversary A,
then run the tree-builder T BAFK on A. If T BAFK returns a n-abstract tree of transcripts Tabs, then T B
returns a (φ,n)-tree of accepting transcripts T for ΠFS as follows:
– For each vertex at depth i ∈ [r+ 1] of Tabs with label ai, the same vertex for T has label ai as well,
– For each edge labeled j going from a vertex labeled a at depth i ∈ [r], the same edge for T has label
c, where c is the unique challenge such that (i, a, (c, j)) ∈ T .

We argue that T is indeed a (φ,n)-tree of accepting transcripts. It is clear that T is of the right arity.
For any vertex v at depth i ∈ [r], we know that the edges coming from v are labeled with different
(ji,1, . . . , ji,ni) in Tabs. This implies that for T , the edges coming from the corresponding vertex v has
challenges (ci,1, . . . , ci,ni) satisfying ci,k ∈ Chi,ji,k for all k ∈ [ni]. Hence T satisfies the partition predicate
φ.

It remains to analyze the success probability and expected running time of our tree-builder. The
expected running time is easier to analyze. First, the abstract adversary A is nearly as efficient as P∗, as
it runs P∗ once, and does some other tasks in comparable time (managing table T , running Setup and
VFS). Our tree-builder T B then invokes T BAFK once on A, hence inheriting the expected running time of
T BAFK. Concretely, the expected running time of T B is at most (Q− 1) · (N + 1) + 1 times the running
time of P∗.

Next, we analyze the success probability of the abstract adversary A. If A can perfectly simulate the
random oracles H = (H1, . . . ,Hr) for P∗, then it is clear that its winning probability is the same as P∗,
i.e. we would have ε(A) = ε(P∗).

Our central observation is that perfect simulation occurs when no two queries to H?i , for any i ∈ [r],
result in the same index j where the block Chi,j has size > 1. We call this event bad. When bad happens,
simulation would not be perfect as we would return the same challenge c ∈ Chi,j to two different queries
made by P∗, whereas a truly random oracle would return independent random challenges c, c′ ∈ Chi,j .

We can analyze the probability that bad happens using a standard analysis of the birthday attack.
Assume P∗ makes Qi queries to Hi for i ∈ [r], so that Q = Q1 + · · · + Qr. The probability that bad
happens for a given round i can be bounded by at most 1

Ci

(
Qi
2

)
. By an union bound, we have

ε(P∗)− ε(A) ≤ Pr[bad] ≤
r∑
i=1

1

Ci

(
Qi
2

)
≤ 1

C

(
Q

2

)
,

where C = mini∈[r] Ci. We now apply the guarantee on the success probability of T BAFK (see Remark 4.12)
to conclude that

Pr[T B succeeds] ≥ ε(A)−
(Q+ 1)(

∑r
i=1 ni − r)
C

≥ ε(P∗)−
Q(Q− 1)/2 + (Q+ 1)(

∑r
i=1 ni − r)

C
.

ut

5 Simulation Extractability of Spartan

In this section, we use our general theorems to prove SIM-EXT of Spartan [55], a transparent zkSNARKs
with security based on the discrete log assumption. [55] presents two version of Spartan, one with a
linear verifier (called Spartan-NIZK) and one with a sublinear verifier (called Spartan-SNARK) achieved
via encoding the R1CS matrices with a sparse multilinear polynomial commitment.
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5.1 Spartan Preliminaries

Multilinear Polynomials. Let F be a finite field and µ ∈ N. A multivariate polynomial p(X1, . . . , Xµ) ∈
F[X1, . . . , Xµ] is multilinear if its individual degree in each variable Xi is at most 1. Equivalently, it is a
linear combination of 2µ monomials of the form {Xδ1

1 . . . X
δµ
µ }δ1,...,δµ∈{0,1}.

Evaluations on Boolean Hypercube. We can also represent a multilinear polynomial p(X1, . . . , Xµ) by
its evaluations on the Boolean hypercube {p(x)}x∈{0,1}µ . These evaluations determine the polynomial
uniquely via the following interpolation formula:

p(X1, . . . , Xµ) =
∑

y∈{0,1}µ
p(y) · ẽq(X, y),

where
ẽq(X, y) =

µ∏
i=1

ẽq(Xi, yi), ẽq(Xi, yi) = Xi · yi + (1−Xi) · (1− yi).

Note that for x, y ∈ {0, 1}µ, we have ẽq(x, y) = 0 if x 6= y, and ẽq(x, x) = 1.
Multilinear Extension. Given g : {0, 1}µ → F, we define its multilinear extension g̃(X1, . . . , Xµ) ∈

F[X1, . . . , Xµ] to be the unique multilinear polynomial with evaluation g̃(x) = g(x) for all x ∈ {0, 1}µ.
Dense Representation of Sparse Matrices. Let M ∈ Fm×m be a matrix with n = O(m) non-zero

entries. We can pick some canonical ordering of these non-zero entries, and represent M as three vectors
(row, col, val) ∈ (Fn)3 such thatM(rowi, coli) = vali is the i-th non-zero entry ofM . We can also compute
the multilinear extension M̃ by the following formula:

M̃(X,Y ) =

n∑
j=1

valj · ẽq(rowj , X) · ẽq(colj , Y ). (1)

Multilinear PCS. A multilinear polynomial commitment schemePC is a tuple of PPT algorithms
(Setup,Commit) along with an interactive protocol Open, where:
• Setup(µ, ppG) → pp : on input number of variables µ and global parameters ppG , outputs public

parameters pp.
• Commit(pp, p;ω)→ C : on input public parameters pp and a multilinear polynomial p ∈ F[X1, . . . , Xµ],

samples randomness ω and outputs a commitment C.
• Open〈P,V〉 → {0, 1} : a public-coin interactive argument for the relation

RPC.Open =

{
(pp, (C, x, v), (p, ω)) :

C = PC.Commit(pp, p;ω) ∧ p is multilinear ∧ p(x) = v

}
.

We say that PC satisfies X ∈ {completeness, knowledge soundness, computational special soundness,
honest-verifier zero-knowledge} if and only if PC.Open satisfies X.

We also define a multilinear PCS for random openings by changing the syntax of Open to require
evaluations only on random points x sent as challenge by the verifier. This allows for the extractor to
rewind the evaluation point as well as the other parts of the transcript. Looking ahead, this notion is
useful as one of our subprotocols, PCMulti, is only a multilinear PCS in this weak sense.

5.2 Spartan Protocols

We first describe the two variants of Spartan. Note that in a slight abuse of terminology, we will
use Spartan-NIZK and Spartan-SNARK to refer to the interactive versions of their respective protocols.
When we wish to refer specifically to the non-interactive versions, we will write Spartan-NIZKFS and
Spartan-SNARKFS.

Definition 5.1 (R1CS). A R1CS instance is a tuple (F, A,B,C,m, n, io) where A,B,C ∈ Fm×m each
with at most n = Ω(m) non-zero entries, and m ≥ |io| + 1. A R1CS witness is a vector w ∈ Fm−|io|−1
such that if Z = (io, 1, w), then (A · Z) ◦ (B · Z) = C · Z.

Spartan makes further assumptions on the R1CS instances, namely that m = 2µ, n = 2ν are powers of
two, and |io|+ 1 = |w| = m/2.
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Key ideas. Both the NIZK and SNARK variants of Spartan prove satisfiability of R1CS instances using
roughly the same ideas we now outline. See Figure 7 for a protocol description. It uses the following
sub-protocols (q.v. Appendix B.1):

1. The Pedersen commitment scheme ga · hω ← Commit((n,g, h),a;ω).
2. Four Σ-protocols sharing the same setup:

(a) OpenPf to prove knowledge of a commitment C = gx · hω,
(b) EqPf to prove equality of two commitments C1 = gx · hω1 , C2 = gx · hω2 ,
(c) ProdPf to prove that three commitments Cv1 , Cv2 , Cv3 satisfy v1 · v2 = v3,
(d) DotProdPf to prove that a multi-commitment Cx and a commitment Cy satisfy y = 〈x,a〉 for a

public vector a,
3. A (µ + 1)-round public-coin interactive protocol PCMulti.Open for proving polynomial evaluations of

any multilinear polynomial p(X1, . . . , Xµ).
4. Additionally, in the case of Spartan-SNARK, we also need PCSparseMulti.Open for proving evaluations

of sparse multilinear polynomials Ã, B̃, C̃.

At a high level, the main idea of Spartan is to reduce the satisfiability of the given R1CS instance to
a claim that can be verified via sumcheck. To do this, the matrices A,B,C are interpreted as functions
{0, 1}µ×{0, 1}µ → F, and similarly Z : {0, 1}µ → F, by writing the indices as their binary representations.
We then take the multilinear extension Ã, B̃, C̃, Z̃ of these functions, and define the polynomial

F̃io(X) =

 ∑
y←{0,1}µ

Ã(X, y) · Z̃(y)

 ·
 ∑
y←{0,1}µ

B̃(X, y) · Z̃(y)

−
 ∑
y←{0,1}µ

C̃(X, y) · Z̃(y)

 .

Note that F̃io(X) vanishes on {0, 1}µ if and only if the R1CS constraint is satisfied. Finally, we turn
this vanishing condition into a sumcheck instance by defining Gio,τ (X) = F̃io(X) · ẽq(X, τ) for a random
τ ∈ Fµ, supplied by the verifier. The goal is then to prove that

∑
y∈{0,1}µ Gio,τ (y) = 0. The prover and

verifier engage in sumcheck for this claim. The final step of sumcheck requires the verifier to evaluate
Gio,τ at a random point rx, but the verifier cannot do this itself; thus, the prover and verifier engage in
another run of sumcheck (more precisely, three runs batched together with verifier randomness) to reduce
the task of evaluating Gio,τ (rx) to evaluating Ã, B̃, C̃ all at (rx, ry), and Z̃ at ry. In both Spartan-NIZK
and Spartan-SNARK, the verifier gets a commitment to the evaluation of the witness, and is convinced
the committed evaluation is correct via PCMulti.Open. (Our analyses below assume PCMulti is instantiated
with HyraxPC [60].) In Spartan-NIZK, the verifier evaluates Ã, B̃, C̃ itself; in Spartan-SNARK, the prover
sends the verifier the evaluations and uses PCSparseMulti.Open, a secondary proof protocol, to convince the
verifier of their correctness.

For completeness, we list the full content of a Spartan-NIZK transcript in Appendix B.1. We can
compute the number of rounds of Spartan-NIZK to be r = 7µ + 11. For Spartan-SNARK, the transcript
is the same except for the verifier sending its commitments to Ã, B̃, C̃ to the prover, the evaluations
v1, v2, v3, and the O(µ)-round transcript of PCSparseMulti.Open. Thus, the transcript of Spartan-SNARK has
O(µ) more rounds for evaluating Ã(rx, ry), B̃(rx, ry), C̃(rx, ry).

5.3 SIM-EXT Analysis of Spartan-NIZK

Following Theorem 3.4, to prove that Spartan-NIZKFS satisfies SIM-EXT, we will need to show that
it satisfies knowledge soundness (KS) along with k-ZK and k-UR for the same round k. By Lemma 4.7,
knowledge soundness in turn depends on computational special soundness (SS) of the interactive protocol
Spartan-NIZK. Our first set of results will be to establish SS of Spartan-NIZK through the following steps:
(1) We first analyze the information-theoretic core of Spartan-NIZK, which is obtained from the protocol
by sending all polynomials and evaluations in the clear, and checking the equalities directly. We call this
variant Spartan-Core. (2) We then analyze how to extract from the various commitments and subprotocols
in Spartan-NIZK to recover Spartan-Core.

The soundness of Spartan-Core has been analyzed in [55].
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R1CS Relation.

RR1CS =

{
((F,m, n,A,B,C), io, w) :

(A · Z) ◦ (B · Z) = (C · Z), where Z = (io, 1, w)

}
.

Setup Phase. Let µ = logm. Run ppG = (G,F)← GroupGen(1λ), ppMulti ← PCMulti.Setup(µ, ppG) and
ppΣ ← Σ.Setup(ppG). Run ppSparse ← PCMulti.Setup(µ, n, ppG). Return pp = (ppMulti, ppΣ , ppSparse ).

Interaction Phase.

0. V computes CX̃ ← PCSparseMulti.Commit(pp, X̃) for X ∈ {A,B,C}.

V then sends the coins used in this step to P.
1. P computes Cw̃ ← PCMulti.Commit(ppPC, w̃) and sends Cw̃ to V.

2. V responds with challenge τ $← Fµ.

3. P,V engage in sumcheck for
∑
x∈{0,1}µ Gio,τ (x)

?
= 0.a

At the end, P sends Cex ← Commit(pp, ex) supposedly containing ex = Gio,τ (rx) for rx
$← Fµ sent by

V.
4. P computes vM =

∑
y∈{0,1}µ M̃(rx, y) · Z̃(y) for M ∈ {A,B,C}. P then computes

CvM ← Commit(pp, vM ) for M ∈ {A,B,C} and CvAB ← Commit(pp, vA · vB).
P sends CvA , CvB , CvC , CvAB to V.
5. P,V engage in ProdPf to show that vAB = vA · vB .
6. P,V engage in OpenPf to show that CvC is indeed a commitment to vC .
7. P,V engage in EqPf to show that ex = (vAB − vC) · ẽq(rx, τ).

8. V responds with challenges rA, rB , rC
$← F.

9. Let Hrx(Y ) =
∑
M∈{A,B,C} rM · M̃(rx, Y ) · Z̃(Y ) and T =

∑
M∈{A,B,C} rM · vM .

P,V engage in sumcheck for
∑
y∈{0,1}µ Hrx(y) = T .

At the end, P sends a commitment Cey supposedly containing ey = Hrx(ry) for ry
$← Fµ sent by V.

10. P,V engage in PCMulti.Open for w̃((ry)[1:])→ vw. At the end, both parties get Cvw and compute

CvZ = C1−(ry)0
vw · C(ry)0

vio ,

where vio ← (̃io, 1)((ry)[1:]) and Cvio ← Commit(pp, vio; 0).

11. V computes v1 = Ã(rx, ry), v2 = B̃(rx, ry), v3 = C̃(rx, ry).
Instead V receives v1, v2, v3 from P.
Then P,V engage in PCMulti.Open to check that v1, v2, v3 are correct.

12. P,V engage in EqPf to check that ey = (rA · v1 + rB · v2 + rC · v3) · vZ .
a The sumcheck subroutine is described in Figure 8.

Fig. 7: Spartan-NIZK, with modifications for Spartan-SNARK in red .
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Sumcheck Sub-Protocol. The sumcheck relation is
∑
x∈{0,1}µ p(x) = T , where p is a multivariate

polynomial of individual degree at most d. V is given a commitment Cp and a commitment CT . The

sumcheck subprotocol reduces this claim to the claim that p(rx)
?
= ex for a random rx

$← Fµ sampled
randomly by V, and some claimed value ex ∈ F available as a commitment Cex to V.
Let e0 = T . For i = 1, . . . , µ:
1. P computes the polynomial pi(X) =

∑
x∈{0,1}µ−i P (r1, . . . , ri−1, X, x), parse it as a vector of coeffi-

cients, then sends Cpi ← Commit(pp, pi;ωpi) to V.

2. V responds with challenge ri
$← F.

3. P computes ei = pi(ri), then sends Cei ← Commit(pp, ei;ωei) to V.

4. V responds with challenges wi,1, wi,2
$← F.

5. P,V compute a = wi,1 · (0k + 1k) + wi,2 · rik and Cyi = C
wi,1
ei−1 · C

wi,2
ei . In addition, P computes

yi = wi,1 · ei−1 + wi,2 · ei and ωyi = wi,1 · ωei−1
+ wi,2 · ωei .

6. P,V engage in DotProdPf(pp, (Cpi , Cyi ,a), (pi, ωpi , yi, ωyi)).

Fig. 8: Sumcheck Sub-Protocol

Lemma 5.2 ([55]). Spartan-Core has soundness error 6µ+1
|F| .

Special soundness for Σ-protocols was analyzed in another previous work [60].

Lemma 5.3 ([60]). Let Π ∈ {OpenPf, EqPf, ProdPf, DotProdPf}. Then Π is 2-perfect special sound.
Concretely, there exists a tree-extraction algorithm T EΠ that can extract a valid witness for Π given any
2-tree of accepting transcripts.

We also need to analyze special soundness of PCMulti.Open. Note that while [60] introduced this
protocol, they did not provide a concrete soundness result for it. The proof of the lemma below is in
Appendix B.2.

Lemma 5.4. PCMulti.Open is n = (
√
m, 4±, . . . , 4±︸ ︷︷ ︸

µ/2

, 2)-computational special sound. Concretely, there

exists a tree-extraction algorithm T EPCMulti
such that for any EPT adversary A against SS of PCMulti.Open,

there exists an EPT adversary B against DL-REL, as efficient as A and T EPCMulti
combined, such that

AdvSS
Π,n(T EPCMulti

,A) ≤ AdvDL-REL
G,
√
m+2(B).

Our next step is to analyze the computational special soundness of the sumcheck subprotocol in
Figure 8. Since it is not strictly an interactive argument, we explicitly state the guarantees of the tree
extractor.

Lemma 5.5. There exists a tree extractor T ESC such that given a (1, 2li, 2)
µ-tree of accepting transcripts,

produced by an adversary A, for the sumcheck subprotocol, either outputs polynomials p1(X), . . . , pµ(X)
that satisfy the information-theoretic sumcheck protocol, or we can build an adversary B, as efficient as
T ESC and A combined, against DL-REL.

Proof. We will analyze a single iteration i ∈ [µ] of the sumcheck subprotocol; all other iterations will
follow the same reasoning. We construct a tree extractor T ESC that does the following for each iteration
i ∈ [µ]: given a (1, 2li, 2)-tree of transcripts,

1. Run T EDotProdPf on each (1, 1, 2)-subtree to extract (pi, ωpi , yi, ωyi), where

Cpi = PC.Commit(pp, pi;ωpi), Cyi = Commit(pp, yi;ωyi), 〈pi,ai〉 = yi,

and yi is supposedly equal to wi,1 · ei−1 + wi,2 · ei.
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2. Given two pairs of linearly independent challenges (wi,1, wi,2), (w
′
i,1, w

′
i,2), with extracted witnesses

(pi, ωpi , yi, ωyi), (p
′
i, ω
′
pi , y

′
i, ω
′
yi) from the previous step, we first assert that (pi, ωpi) = (p′i, ω

′
pi). If this

assertion fails, then we have an adversary B against DL-REL since Cpi = gpi · hωpi = gp
′
i · hω

′
pi . Next,

we can solve for ei−1, ei, ωei−1 , ωei from the linear equations{
yi = wi,1 · ei−1 + wi,2 · ei
y′i = w′i,1 · ei−1 + w′i,2 · ei

and

{
ωyi = wi,1 · ωei−1

+ wi,2 · ωei
ω′yi = w′i,1 · ωei−1

+ w′i,2 · ωei
.

Recall that we also have 〈pi,ai〉 = yi and 〈pi,a′i〉 = y′i; taking the same linear combination used to
solve the equations above would give us pi(0)+ pi(1) = ei−1 and pi(ri) = ei. Thus, we have extracted
valid polynomials for the information-theoretic sumcheck protocol.

ut

Putting together the above special soundness results for the subprotocols, we obtain special soundness
for Spartan-NIZK.

Lemma 5.6. Spartan-NIZK satisfies n-computational special soundness, where

n = (1, (1, 2li, 2)
µ, 2, 2, 2, 1, (2, 2li, 2)

µ, (4±, . . . , 4±︸ ︷︷ ︸
µ/2

, 2), 2).

Concretely, there exists a PPT tree extractor T ESpartan-NIZK such that for every EPT adversary A against
SS of Spartan-NIZK, there exists an EPT adversary B against DL-REL, as efficient as A and T ESpartan-NIZK
combined, such that

AdvSS
Spartan-NIZK,n(T ESpartan-NIZK,A) ≤ AdvDL-REL

G,
√
m+2(B) +

6µ+ 1

|F|
.

Proof. We describe the tree extractor T ESpartan-NIZK. Given a n-tree of accepting transcripts, it runs the
following sub-extractors for the corresponding sub-trees:

1. Run T ESC for the first sumcheck subprotocol on each (1, 2li, 2)
µ sub-tree to extract polynomials pi(X)

for i ∈ [µ] that satisfy the information-theoretic sumcheck protocol.
2. Run T EProdPf , T EOpenPf , T EEqPf on each corresponding 2-subtree to extract claims vA, vB , vC such

that ex = (vA · vB − vC) · ẽq(rx, τ).
3. Run T ESC for the second sumcheck subprotocol on each (1, 2li, 2)

µ sub-tree to extract polynomials
pi(X) for i ∈ [µ] that satisfy the information-theoretic sumcheck protocol.

4. Run T EPCMulti
for the opening argument PCMulti.Open on the (4±, . . . , 4±︸ ︷︷ ︸

µ/2

, 2) sub-tree, and on 2µ/2 =

√
m different challenges ry provided by the (2, 2li, 2)

µ sub-tree, to extract a multilinear polynomial
w̃(X) along with a correct evaluation w̃(ry) = vw.

5. Run T EEqPf for the final equality proof to verify the equality ey = (rA · vA + rB · vB + rC · vC) · vZ .
6. Output the R1CS witness w.

Note that the (2, 2li, 2)
µ sub-tree in the second sumcheck subprotocol is necessary for extracting both

from sumcheck, as well as from PCMulti.Open. We now consider the following hybrids. Hyb0 corresponds
to the game SS for Spartan-NIZK with the tree extractor constructed above. Hyb1 is the same as Hyb0,
but we additionally reject if the extracted R1CS witness is not satisfying. Conditioned on the event that
none of the sub-extractor fails (and when that happens we get a DL-REL adversary B), Hyb1 differs from
Hyb0 exactly when the soundness of Spartan-Core is violated, which happens with probability at most
6µ+1
|F| . ut

Using Lemma 4.7 with Lemma 5.6, we conclude that Spartan-NIZKFS satisfies knowledge soundness.
Note that the minimum partition size in the n-tree of transcripts is C = |F|−1

2 .
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Theorem 5.7. Spartan-NIZKFS satisfies knowledge soundness. In particular, there exists an extractor
ESpartan-NIZKFS

such that for every PPT prover P∗ against KS of Spartan-NIZK making at most Q random
oracle queries, there exists an EPT adversary B against DL-REL such that

AdvKS
Spartan-NIZKFS

(ESpartan-NIZKFS
,P∗) ≤ Q(Q− 1) + (Q+ 1)(13µ+ 10) + 2(6µ+ 1)

|F| − 1
+AdvDL-REL

G,
√
m+2(B).

Here µ = logm. Both B and the extractor ESpartan-NIZKFS
runs in expected time that is at most O(Q ·m6)

the running time of P∗.

Our next task is to exhibit a k-ZK simulator for Spartan-NIZKFS. The high-level idea is to let the
simulator execute all subprotocols except the last with valid witnesses, then only invoke the simulator
for the final EqPf.

Theorem 5.8. Spartan-NIZKFS satisfies (r − 1)-ZK, where r = 7µ + 11 is the number of rounds of
Spartan-NIZK.

Proof. See Figure 9 for a pseudocode description of our simulators. Using the sumcheck sub-simulator
SSCFS

in the top of the figure, we build the full simulator SFS,r−1 for Spartan-NIZKFS. From the construction
of SFS,r−1, it is clear that the proofs produced are accepting; this is because all the verifier’s checks are
done by checking the various proofs, which are either honestly generated, in which case validity follows
from completeness, or by invoking the simulator, in which case validity follows from NIZK guarantee.
Furthermore, SSpartan-NIZKFS,r−1 only makes a single RO reprogramming, which when the simulator SEqPfFS
is invoked.

It remains to show that the output is indistinguishable from that of real transcripts. For the sub-
protocols, namely the Σ-protocols along with PCMulti.OpenFS, that we generate transcripts by generating
honest proofs, we argue that they are indistinguishable. Firstly, the inputs to the arguments are the
same (being perfectly blinded commitment). Secondly, the sub-protocols themselves are zero-knowledge,
which implies witness indistinguishability. This further implies that the honestly generated proofs made
by our simulator are identically distributed as proofs in real transcripts. In the last sub-protocol EqPfFS
for which we use the simulator, we argue indistinguishability using the guarantee of the simulator SEqPfFS .
This concludes the proof of k-ZK. ut

Lemma 5.9. Spartan-NIZKFS satisfies perfect (r − 1)-UR.

Proof. The last two rounds of Spartan-NIZKFS consists of an instance of the Σ-protocol EqPfFS, which
itself satisfies perfect 1-UR. In more detail, the last message in EqPfFS must be the unique scalar z that
satisfies hz = (C1/C2)

c · α, where C1, C2, α are group elements determined by the previous messages.
Hence Spartan-NIZKFS satisfies perfect (r − 1)-UR. ut

Combining our results above, we obtain SIM-EXT for Spartan-NIZKFS.

Theorem 5.10. Spartan-NIZKFS is simulation-extractable. Concretely, there exists a simulator-extractor
ESpartan-NIZKFS

such that for every PPT adversary P∗ against SIM-EXT, there exists an EPT adversary B
against DL-REL such that

AdvSIM-EXT
Spartan-NIZKFS,RR1CS

(SSpartan-NIZKFS,k, ESpartan-NIZKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(13µ+ 10) + 2(6µ+ 1)

|F| − 1
+AdvDL-REL

G,
√
m+2(B).

Both B and ESpartan-NIZKFS
runs in expected time at most O(Q ·m6) that of P∗.
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Sub-simulator SSCFS
.

Input. Public parameters pp, a commitment Ce to some value e allegedly equal to
∑
x∈{0,1}µ p(x),

with p a multivariate polynomial of individual degree at most d, and previous transcript tr (including
pp, R1CS input (A,B,C, io), and all prover’s messages so far).
Set e0 = e. For i = 1, . . . , µ:

1. Sample pi(X)
$← F≤d[X] randomly conditioned on pi(0) + pi(1) = ei−1. Compute a commitment

Cpi ← Commit(pp, pi;ωpi) and append Cpi to tr.
2. Obtain challenge ri ← H(tr).
3. Let ei = pi(ri), compute a commitment Cei ← Commit(pp, ei;ωei), and append Cei to tr.
4. Obtain challenges wi,1, wi,2 ← H(tr).
5. Compute a, Cyi , yi, ωyi as specified in the sumcheck subprotocol. Generate an honest proof
πi ← PDotProdPfFS(pp, (Cpi , Cyi ,ai), (pi, ωpi , yi, ωyi)). Append πi to tr.

After µ rounds, return Ceµ .

Simulator SFS,r−1(pp, (F, A,B,C, io)):
Initialize tr = (pp, A,B,C, io).
1. Sample a random multilinear polynomial w̃ $← F[X1, . . . , Xµ].
Compute Cw̃ ← PCMulti.Commit(pp, w̃;ωw̃), and append Cw̃ to tr.
2. Obtain challenge τ ← H(tr).
3. Run SSCFS

on (pp, Ce) with current transcript tr, and get output Cex ← Commit(pp, ex;ωex) for some
scalar ex ∈ F.

4. Sample vA, vB , vC
$← F at random conditioned on (vA ·vB−vC)·ẽq(rx, τ) = ex, and set vAB = vA ·vB .

Compute CvM ← Commit(pp, vM ;ωM ) for M ∈ {A,B,C} along with CvAB ← Commit(pp, vAB ;ωAB),
and append them to tr.
5. Generate an honest proof

πProdPf ← PProdPfFS(pp, (CvA , CvB , CvAB ), (vA, vB , ωvA , ωvB , ωvAB )),

and append it to tr.
6. Generate an honest proof πOpenPf ← POpenPfFS(pp, (CvC ), (vC , ωvC )), and append it to tr.
7. Generate an honest proof πEqPf,1 ← PEqPfFS(pp, (Cex , Cv′), (ωex − ωv′)), where v′ = (vA · vB − vC) ·
ẽq(rx, τ) and Cv′ = (CvAB/CvC )

ẽq(rx,τ); then append it to tr.
8. Obtain challenges rA, rB , rC ← H(tr).
9. Compute CT = rA · CvA + rB · CvB + rC · CvC . Run SSCFS

on (pp, CT , tr), obtaining output
Cey ← Commit(pp, ey;ωey ).
10. Generate opening proof πPCMulti.Open ← PPCMulti.OpenFS(pp, (Cw̃, ry), (w̃, ωw̃)); at the end, get
Cvw = Commit(pp, vw;ωvw), where vw ← w̃(ry[1 . . . ]), and append it to tr.

11. Compute vZ = (1− ry[0]) · vw + ry[0] · (̃io, 1)(ry[1 . . . ]) and CvZ = C
1−(ry)0
vw · C(ry)0

vio .

12. Compute v1 = Ã(rx, ry), v2 = B̃(rx, ry), v3 = C̃(rx, ry). Generate a simulated proof
πEqPf,2 ← SEqPfFS for the equality ey = (rA · v1 + rB · v2 + rC · v3) · vZ . Append the proof to tr.

Return tr.

Fig. 9: Simulators for proof of k-ZK for Spartan.
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5.4 SIM-EXT of Spartan-SNARK

For Spartan-SNARK, the proof of SIM-EXT is similar to that of Spartan-NIZK. In particular, the proofs of
k-ZK and k-UR carries over, and we only need to modify the proof of special soundness to accommodate
for the more complex sparse multilinear polynomial commitment scheme. In what follows, we let r′ =
7µ+ 11 +O(µ) be the round complexity of Spartan-SNARK.

Lemma 5.11. Spartan-SNARKFS satisfies k-ZK, where k = r′ − 1.

Proof. Wemodify the k-ZK simulator of Spartan-NIZKFS to also output opening proofs PCSparseMulti.OpenFS
for M̃(rx, ry) withM ∈ {A,B,C}. Since A,B,C are part of the public input, the simulator has full access
to the matrices, and hence can produce the proofs honestly. ut
Lemma 5.12. Spartan-SNARKFS satisfies perfect k-UR, where k = r′ − 1.

Proof. Since Spartan-SNARKFS ends with the same invocation of the equality proof EqPfFS, we obtain
the same result as Lemma 5.9. ut

The proof of knowledge soundness for Spartan-SNARKFS is similar to that of Spartan-NIZKFS, except
we further need to extract the polynomials involved in PCSparseMulti.Open. We give a full proof of the
lemma below in Appendix B.2.

Lemma 5.13. Spartan-SNARKFS satisfies knowledge soundness. Concretely, there exists an extractor
ESpartan-SNARKFS

such that for every PPT prover P∗ against KS of Spartan-SNARK making at most Q
random oracle queries, there exists an EPT adversary B against DL-REL such that

AdvKS
Spartan-SNARKFS

(ESpartan-SNARKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(25µ+ 9ν + 16) + 6(m+ n) +O(µ+ ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

Here µ = logm, ν = log n. Both B and the extractor ESpartan-SNARKFS
runs in expected time that is at most

O(Q ·m7.5 · (m+ n)3) the running time of P∗.
Combining the results above, we obtain SIM-EXT for Spartan-SNARKFS.

Theorem 5.14. Spartan-SNARKFS satisfies SIM-EXT. Concretely, there exists a simulator-extractor
ESpartan-SNARKFS

such that for every PPT adversary P∗ against SIM-EXT of Spartan-SNARKFS, there exists
an EPT adversary B against DL-REL with

AdvSIM-EXT
Spartan-SNARKFS,RR1CS

(SSpartan-SNARKFS,k, ESpartan-SNARKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(25µ+ 9ν + 16) + 6(m+ n) +O(µ+ ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

B and ESpartan-SNARKFS
run in expected time O(Q ·m7.5 · (m+ n)3) that of P∗.

6 Simulation Extractability of Bulletproofs

In this section, we show that the Bulletproofs protocols in [16] satisfy SIM-EXT, without relying on the
AGM. The authors of [16] introduced two protocols, an aggregate range proof BP-ARP and an arithmetic
circuit satisfiability proof BP-ACSPf6, with both building on an inner product argument BP-IPA.

6.1 Inner Product Argument

We describe the Bulletproofs inner product protocol BP-IPA in Figure 10, which is parametrized by a
number n ∈ N that is assumed to be a power of 2. In the protocol, the public input consists of a group
element P , and the prover wants to prove knowledge of vectors a,b ∈ Fn such that P = ga · hb · u〈a,b〉.
The protocol follows a “split-and-fold” approach, where in each round the inner product statement is
reduced to a related one of half the dimension. We will show that BP-IPAFS is knowledge sound and
satisfies 0-UR, meaning its proofs are computationally unique.
6 To keep the naming consistent with [16], we refer to them as proofs even though they are actually arguments.
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Inner Product Relation. Given n = 2k and g,h ∈ Gn,

RBP-IPA =
{
((n,g,h, u), P, (a,b)) | P = gahbu〈a,b〉

}
.

Interaction Phase.
Set n0 ← n,g(0) ← g,h(0) ← h, P (0) ← P,a(0) ← a,b(0) ← b.
For i = 1, . . . , k:

1. P computes ni = ni−1/2, cL = 〈a(i−1)[:ni]
,b

(i−1)
[ni:]
〉, cR = 〈a(i−1)[ni:]

,b
(i−1)
[:ni]
〉, and

Li =
(
g
(i−1)
[ni:]

)a(i−1)

[:ni] ·
(
h
(i−1)
[:ni]

)b(i−1)

[ni:] · ucL , Ri =
(
g
(i−1)
[:ni]

)a(i−1)

[ni:] ·
(
h
(i−1)
[ni:]

)b(i−1)

[:ni] · ucR .

P sends Li, Ri to V.
2. V sends challenge xi

$← F∗.
3. P, V both compute P (i) = L

x2
i
i · P (i−1) ·Rx

−2
i
i , and

g(i) =
(
g
(i−1)
[:ni]

)x−1
i ◦

(
g
(i−1)
[ni:]

)xi
, h(i) =

(
h
(i−1)
[:ni]

)xi
◦
(
h
(i−1)
[ni:]

)x−1
i

.

4. P computes a(i) = a
(i−1)
[:ni]

· x−1i + a
(i−1)
[ni:]

· xi, b(i) = b
(i−1)
[:ni]

· xi + b
(i−1)
[ni:]

· x−1i .

After k rounds, P sends a(k),b(k) to V.

Verification. V checks whether P (k) ?
=
(
g(k)

)a(k)

·
(
h(k)

)b(k)

· ua
(k)·b(k)

.

Fig. 10: Bulletproofs’ Inner Product Argument BP-IPA

Lemma 6.1. BP-IPAFS satisfies knowledge soundness. Concretely, there exists an extractor EBP-IPAFS
such

that for every PPT adversary P∗ against KS making at most Q random oracle queries, there exists an
adversary B against DL-REL with

AdvKS
BP-IPAFS

(EBP-IPAFS
,P∗) ≤ Q(Q− 1) + 6(Q+ 1) log n

|F| − 1
+AdvDL-REL

G,2n+1(B).

Both B and the extractor EBP-IPAFS
run in expected time that is at most O(Q · n2) times the runtime of

P∗.

Proof. Using Lemma 4.7, it suffices to show that BP-IPA satisfies computational special soundness. The
tree of accepting transcripts is of the form n = (4±, . . . , 4±︸ ︷︷ ︸

logn

), and the corresponding tree extractor T EBP-IPA

is given in [16]. The guarantee of the tree extractor is that, given the appropriate tree of transcripts, it
will either output a witness, or we can use it to build an adversary B against DL-REL. ut

Lemma 6.2. BP-IPAFS satisfies 0-UR. Concretely, for every adversary A against 0-UR that makes at
most Q random oracle queries, there exists an adversary B against DL-REL such that

Adv0-UR
BP-IPAFS

(A) ≤ 2 · Q(Q− 1) + 6(Q+ 1) log n

|F| − 1
+ 3 ·AdvDL-REL

G,2n+1(B).

B runs in expected time that is at most O(Q · n2) times the running time of A.

Proof. We define the following sequence of hybrids. Hyb0 is the game 0-URABP-IPAFS
. Recall that A wins in

Hyb0 by producing (P, π, π′) such that π 6= π′ are valid proofs for P . We then define Hyb1 to be the same
as Hyb0, except we additionally run EBP-IPAFS

on modified adversaries A1 and A2 respectively, producing
witnesses w = (a,b) and w′ = (a′,b′) for π and π′. Here A1,A2 are wrappers around A; both run A
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once to get an output (x, π, π′), then A1 returns (x, π) and A2 returns (x, π′). Hyb1 then outputs 0 if
(pp, x, w) 6∈ R or (pp, x, w′) 6∈ R. Using Lemma 6.1, we can construct EPT adversaries B1,B2 such that

|Pr[Hyb0]− Pr[Hyb1]| ≤ 2 · Q(Q− 1) + 6(Q+ 1) log n

|F| − 1
+ 2 ·AdvDL-REL

G,2n+1(B).

This bound follows from invoking the extractor EBP-IPAFS
two times on adversaries A1 and A2 respectively.

Next, we consider Hyb2 which is the same as Hyb1, except we also output 0 if w 6= w′. We claim that
there exists an adversary B3 such that

|Pr[Hyb1]− Pr[Hyb2]| ≤ AdvDL-REL
G,2n+1(B3).

This is because if extraction succeeds, then w1 = (a,b) and w2 = (a′,b′) are witnesses for the same input
P . In particular, this implies the equality

ga · hb · u〈a,b〉 = P = ga′ · hb′ · u〈a
′,b′〉.

Thus if w 6= w′, then we can build a DL-REL adversary B3.
Finally, we argue that Pr[Hyb2] = 0. This follows by a closer inspection of the tree-extractor T EBP-IPA

given in [16]. In the course of extraction, the tree-extractor T EBP-IPA actually recovers the representation
of all group elements L1, R1, . . . , Llogn, Rlogn sent in the proof, and these representations are according
to how the honest prover would compute them from the witness w = w′ = (a,b) in Figure 10. Thus we
can show by induction that π|i = π′|i for all i ∈ [log n], and hence π = π′, contradicting the assumption
that π 6= π′. ut

6.2 Aggregate Range Proof

We give a full description of the aggregate range proof BP-ARP in Figure 11. The value m is the number
of committed values vi, and n is the bit length of the upper bound (i.e., we prove vi ∈ [0, 2n − 1] for all
i ∈ [m]). Following the same approach as in Section 5 for Spartan, we need to establish three properties
of BP-ARPFS: (1) knowledge soundness, (2) the existence of a k-ZK simulator, and (3) k-UR for the same
round k. We begin with the proof of knowledge soundness, which is essentially a restatement of the
original result from [16].

Lemma 6.3. BP-ARPFS satisfies (m · n,m + 2, 3, 2, 4±, . . . , 4±︸ ︷︷ ︸
log(m·n)

)-computational special soundness, and

hence knowledge soundness. Concretely, there exists an extractor EBP-ARPFS
such that for every PPT

adversary P∗ against KS making at most Q random oracle queries, there exists an adversary A against
DL-REL with

AdvKS
BP-ARPFS

(EBP-ARPFS
,P∗) ≤ AdvDL-REL

G,2mn+3(A) +
Q(Q− 1) + 2(Q+ 1) (m(n+ 1) + 3 log(m · n) + 3)

|F| − 1
.

Both A and the extractor EBP-ARPFS
run in expected time that is at most O(Q ·m4 · n3) times the runtime

of P∗.

Proof. The description of a tree extractor T EBP-ARP, which either outputs a valid witness or a discrete log
relation, can be found in [16]. This concludes the proof of computational special soundness. Combining
Theorem 4.4 with Lemma 4.7, we conclude knowledge soundness for BP-ARPFS. The expected runtime of
the extractor EBP-ARPFS

, as well as the adversary A, is at most O(Q·(mn)·(m+2)·6·(mn)2) = O(Q·m4 ·n3)
times the runtime of P∗, by Theorem 4.4. ut

Lemma 6.4. BP-ARPFS satisfies perfect 2-ZK.
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Aggregate Range Proof Relation.

RBP-ARP =

{
((m,n,g,h, g, h, u),V, (v,γ)) :

Vj = gvjhγj ∧ vj ∈ [0, 2n − 1] ∀j ∈ [1,m]

}
.

Interaction Phase. Denote ym·n = (1, y, . . . , ym·n−1) ∈ Fm·n.

1. P samples α, ρ $← F, sL, sR
$← Fm·n and computes

aL ∈ {0, 1}m·n such that 〈(aL)[(j−1)n,jn−1],2n〉 = vj ∀j ∈ [1,m],

aR = aL − 1m·n,

A = hαgaLhaR , S = hρgsLhsR .

P sends A,S to V.

2. V sends challenges y, z $← F∗.

3. P samples β1, β2
$← F and computes

`(X) = (aL − z · 1m·n) + sL ·X,

r(X) = ym·n ◦ (aR + z · 1m·n + sR ·X) +

m∑
j=1

zj+1 ·
(
0(j−1)n‖2n‖0(m−j)n

)
,

t(X) = 〈`(X), r(X)〉 = t0 + t1 ·X + t2 ·X2, T1 = gt1hβ1 , T2 = gt2hβ2 .

P sends T1, T2 to V.

4. V sends challenge x $← F∗.
5. P computes

l = `(x), r = r(x), t̂ = 〈l, r〉, µ = α+ ρ · x,

βx = β2 · x2 + β1 · x+

m∑
j=1

zj+1 · γj .

P sends t̂, βx, µ to V.

6. V sends challenge w $← F∗.
7. P,V both compute

h′ = hy−m·n , u′ = uw,

P ′ = h−µ ·A · Sx · g−z·1
m·n
· (h′)z·y

m·n
·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · (u
′)t̂.

8. P,V engage in BP-IPA for the triple ((m · n,g,h′, u′), P ′, (l, r)).

Verification.
1. V rejects if BP-IPA fails.

2. V computes R = Vz2·zm · g(z−z
2)·〈1m·n,ym·n〉−

∑m
j=1 z

j+2·〈1n,2n〉 · T x1 · T x
2

2 .

3. V checks whether gt̂hβx ?
= R.

Fig. 11: Bulletproofs’ Aggregate Range Proof BP-ARP
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Simulator SBP-ARPFS,x(pp = (m,n,g,h, g, h, u),V):
1. Initialize tr = (pp,V). Sample α, ρ $← F, aL,aR, sL, sR

$← Fm·n and compute A = hαgaLhaR ,
S = hρgsLhsR . Append A,S to tr.
2. Obtain challenges y, z ← H(tr).

3. Sample x $← F∗ and compute

µ = α+ ρ · x,
l = (aL − z · 1m·n) + sL · x,

r = ym·n ◦ (aR + z · 1m·n + sR · x) +
m∑
j=1

zj+1 ·
(
0(j−1)n‖2n‖0(m−j)n

)
,

t̂ = 〈l, r〉.

4. Sample βx
$← F, T1

$← G, and compute T2 =
(
gt̂−δ(y,z) · hβx ·V−z2·zm · T−x1

)x−2

, where

δ(y, z) = (z − z2) · 〈1m·n,ym·n〉 −
∑m
j=1 z

j+2 · 〈1n,2n〉. Append T1, T2 to tr.

5. Reprogram H(tr) := x, then append t̂, βx, µ to tr.
6. Obtain challenge w ← H(tr).

7. Compute h′ = hy−m·n , u′ = uw, and

P ′ = h−µ ·A · Sx · g−z·1
m·n
· (h′)z·y

m·n
·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · (u
′)t̂.

8. Generate an honest proof πBP-IPAFS
← PBP-IPAFS

((m · n,g,h′, u′), P ′, (l, r)).
9. Output πBP-ARPFS

= (A,S, T1, T2, t̂, βx, µ, πBP-IPAFS
).

Fig. 12: BP-ARPFS k-ZK simulator

Proof. We present the 2-ZK simulator SBP-ARPFS,x in Figure 12, and argue that its output is identically
distributed to the output of an honest prover. All the challenges are chosen randomly as with real proofs.
Next, in both real and simulated proofs, the proof elements A, T1, βx, µ and the underlying vectors l, r
are distributed uniformly among their respective domains. The proof elements S, T2 are then uniquely
determined from the previous ones from the verification equations that they must satisfy. Finally, both
the scalar t̂ and the inner product argument πBP-IPA is generated deterministically from l, r; this implies
identical distributions for those proof elements as well. ut

Finally, we show the 2-UR property of BP-ARP. This result relies on the fact that BP-IPAFS has
computationally unique proofs, given in Lemma 6.2.

Lemma 6.5. BP-ARPFS satisfies 2-UR. In particular, for any adversary A against 2-UR of BP-ARPFS,
there exists an adversary B against DL-REL such that

Adv2-UR
BP-ARPFS

(A) ≤ 2 · Q(Q− 1) + 6(Q+ 1) logmn

|F| − 1
+ 3 ·AdvDL-REL

G,2mn+3(B) .

B runs in expected time at most O(Q ·m2 · n2) that of A’s runtime.

Proof. We proceed through a sequence of hybrids. The high-level idea is to analyze different cases for
where the two proofs π, π′ first differ after the x challenge, and reduce each case to breaking DL-REL or
the unique proof property of BP-IPA (which in turn reduces to breaking DL-REL).
– Hyb0 is the game 2-URABP-ARPFS

. Recall that in this game, an adversary A outputs an input V,
a challenge x ∈ F∗, and two proofs π, π′ that agrees up to the x challenge, i.e. we have π =
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(A,S, T1, T2, t̂, βx, µ, πBP-IPAFS
) and π′ = (A,S, T1, T2, t̂

′, β′x, µ
′, π′BP-IPAFS

). A wins if π 6= π′ and both
proofs are accepting with respect to the x challenge that it chose.

– Hyb1 is the same as Hyb0, except that we also run EBP-IPAFS
on the proofs πBP-IPAFS

, π′BP-IPAFS
to extract

witnesses (l, r) and (l′, r′). Hyb1 returns 0 if the extractor aborts on either proofs, or t̂ 6= 〈l, r〉 or
t̂′ 6= 〈l′, r′〉.

We can see that Hyb1 is identical to Hyb0, except when the extractor EBP-IPAFS
fails in extracting from

either proofs πBP-IPAFS
, π′BP-IPAFS

. The probability that this happens is precisely bounded by twice the KS
advantage of BP-IPAFS. Concretely, by Lemma 6.1 there exists an adversary B against DL-REL, running
in expected time at most O(Q ·m2 · n2) that of A’s runtime, such that

|Pr[Hyb0]− Pr[Hyb1]| ≤ 2
Q(Q− 1) + 6(Q+ 1) log(m · n)

|F| − 1
+ 2AdvDL-REL

G,2mn+3(B) .

It remains to show that if Hyb1 returns 1, then there exists an adversary B′ that returns a non-trivial
discrete log relation. Adversary B′ is as follows:

• If t̂ 6= t̂′ or βx 6= β′x: since both proofs are accepting and are the same up to the x challenge, we have

gt̂ · hβx = V z
2

· gδ(y,z) · T x1 · T x
2

2 = gt̂
′
· hβ

′
x .

• If (t̂, βx) = (t̂′, β′x) but µ 6= µ′: since both proofs πBP-IPAFS
, π′BP-IPAFS

are accepting, we have

gl · h(y−m·n◦r) · hµ = A · Sx · g−z·1
m·n
· (h′)z·y

m·n
·
m∏
j=1

(h′)z
j+1·2n

[(j−1)n,jn−1] · u
w·t̂

= gl′ · h(y−m·n◦r′) · hµ
′
.

• If (t̂, βx, µ) = (t̂′, β′x, µ
′) but πBP-IPAFS

6= π′BP-IPAFS
: here, we know that both BP-IPAFS proofs are

for the same statement P ′, with extracted witnesses (l, r), (l′, r′). By Lemma 6.2, we can build an
adversary B′ against DL-REL given distinct BP-IPAFS proofs.

Note that the first two cases above give discrete log relations, and if Hyb1 returns 1, then π 6= π′, hence at
least one of the above cases happens. Putting everything together and unifying B,B′ we get the desired
bound. ut

We finally obtain SIM-EXT from the previous results and Theorem 3.4.
Theorem 6.6. BP-ARPFS satisfies SIM-EXT. In particular, there exists a simulator-extractor EBP-ARPFS

such that for any adversary P∗ against SIM-EXT of BP-ARPFS, there exists an adversary B against
DL-REL such that

AdvSIM-EXT
BP-ARPFS

(EBP-ARPFS
,P∗) ≤ 4 ·AdvDL-REL

G,2mn+3(B) +
3Q(Q− 1) + 2(Q+ 1) (m(n+ 1) + 6 log(mn) + 3)

|F| − 1
.

B runs in expected time at most O(Q ·m4 · n3) the runtime of P∗.

6.3 Arithmetic Circuit Satisfiability Proof

We describe BP-ACSPf and prove the following theorem in Appendix C.

Theorem 6.7. BP-ACSPfFS satisfies SIM-EXT. Concretely, there exists a simulator-extractor EBP-ACSPfFS
such that for any adversary P∗ against SIM-EXT of BP-ACSPfFS, there exists an adversary B against
DL-REL such that

AdvSIM-EXT
BP-ACSPfFS(EBP-ACSPfFS ,P∗) ≤ 4 ·AdvDL-REL

G,2n+1(B) +
3Q(Q− 1) + 2(Q+ 1)(n+ q + 9 log n+ 6)

|F| − 1
.

Here n is the number of multiplication gates, and q is the number of committed inputs. B runs in expected
time at most O(Q · q · n3) the runtime of P∗.
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Lemma 6.3 (m = 1) [33, Theorem 4]

Asymptotic
O
(
Q2+Qn
|F|

)
+AdvDL-REL

G,2n+3(A) O
(
Qn
|F|

)
+AdvDL-REL

G,2n+3(A′)

where E[t(A)] = O(Q · n3 · t(P∗)) where t(A′) = O(Q · n)
Concrete ≈ 22 bits of security ≈ 164 bits of security

Fig. 13: Comparison of KS advantages, obtained by rewinding (ours) versus AGM [33], for Bulletproofs’
single range proof, e.g. BP-ARP with m = 1. Here t(·) denotes the running time. For concrete advantage,
we take |F| ≈ 2256, n = 64, t(P∗) = 248, Q = 240.

7 Quantitative discussion of our SIM-EXT bounds

In this section, we show how to interpret the tightness of our KS bounds for Bulletproofs and Spartan,
and compare them with the previous analyses of [30,33] using the Algebraic Group Model (AGM).

For BP-ARP with m = 1 (range proof of a single value), we compare our KS bound with the AGM-
based bound of [33] in Figure 13. Our approach gives a non-tight bound due to two factors: first, we
lose a factor of Q due to rewinding (shown to be somewhat inherent for the similar case of Schnorr
signatures [57,26]), and second, our DL-REL adversary is expected time, which leads to another “square-
root” loss in security [42] (for generic attacks, this means AdvDL-REL

G,2n+3(A) ≤
√
t(A)2/|F| for an expected

poly-time adversary A, compared to AdvDL-REL
G,2n+3(A′) ≤ t(A′)2/|F| for a strict poly time adversary A′).

Our concrete KS advantages for Spartan are even lower, due to the bigger tree sizes of Spartan. We leave
achieving tighter rewinding-based bounds to future work.

Remark 7.1. We note that Theorem 3.4, which gives SIM-EXT from KS, k-ZK and k-UR, do not rely
on the specific method for which these smaller properties are achieved. In particular, plugging in the
tight AGM-based analysis [33], our results also imply a tight SIM-EXT bound for Bulletproofs—this gives
a comparable result to that of Ganesh et al. [30]. For Spartan, a similar tight AGM-based analysis of
knowledge soundness (which we leave to future work) would also give a tight SIM-EXT bound.
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A Comparison with Wikström’s Tree-Builder

In this section, we give comparisons between our tree-builder with the one by Wikström in [63]. We begin
by stating the definition of a matroid and its associated matroid predicate.

Definition A.1 (Matroid). A matroid is a pair (S, I) of a ground set S and a set I ⊂ 2S of inde-
pendent sets such that:

1. I is non-empty,
2. If A ∈ I and B ⊂ A, then B ∈ I,
3. If A,B ∈ I and |A| > |B|, then there exists an element a ∈ A \B such that {a} ∪B ∈ I.

A basis of M is a set B ∈ I such that B ∪ {x} 6∈ I for every x ∈ S \ B. The rank of M is the unique
cardinality of each basis in I.

Definition A.2. Given a matroid M = (S, I) and a subset A ⊂ S, the submatroid induced by A is the
pair (A, I ∩ 2A), and its rank rank(A) is the rank of the submatroid induced by A. The span of A is
defined by Span(A) = {x ∈ S | rank(A ∪ {x}) = rank(A)}.

A subset A ⊂ S is a flat of M if Span(A) = A. It is a hyperplane if it is a flat of rank rank(M)− 1.
The subdensity of a matroid M is defined to be ωM = maxA

|A|
|S| , where A ranges over all hyperplanes of

M.

Definition A.3 (Matroid Predicate). Let M = (Ch, I) be a matroid of rank n with underlying set
Ch. We define the corresponding matroid predicate φM : Chn → {0, 1} to be φM(c1, . . . , cn) = 1 if and
only if {c1, . . . , cn} is a basis of M.

When M is the uniform matroid, with the independent sets being all subsets of size at most n, we
recover the usual predicate of distinct elements, and the corresponding subdensity is ωM = n−1

|Ch| . The
partition predicates φP,n we consider in this work correspond to partition matroids [49], with subdensity

ωM =
|Ch(1)|+···+|Ch(n−1)|

|Ch| , where without loss of generality we assume Ch(1), . . . ,Ch(n−1) are the blocks of
the largest sizes.

Theorem A.4 ([63], adapted). Let Π be a (2r + 1)-message public-coin interactive argument with
challenge spaces Ch1, . . . ,Chr. Consider matroids M1 = (Ch1, I1), . . . , Mr = (Chr, Ir) of rank n =
(n1, . . . , nr), respectively. Denote by φM the corresponding matroid predicate.

For any ν1 ≥ · · · ≥ νr−1 > 1, there exists a probabilistic algorithm T BWik for ΠFS such that, given
oracle access to a malicious prover P∗ for ΠFS making at most Q RO queries with success probability
ε(P∗) := Pr[KSP

∗

0,ΠFS
], has the following characteristics:

– success probability: Pr
[
TreeBuildT BWik,P∗

ΠFS,(φM,n)

]
≥ ε(P∗)−Q

∑r
i=1 ωMi

∏i−1
j=1 νj,
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– expected number of queries: at most Q ·
∏r
j=1 nj · c0.

Here c0 is a constant equal to

c0 = 3r+1 ·
ν2r−1

(νr−1 − 1)2
·
r−1∏
i=1

ν2i
νi − 1

· min
ki∈(0,1)

ki
hCGni (ki)

,

where hCGni (ki) is the head bound of the compounded geometric (CG) distribution,7 i.e. PrX∼CG(n,∆)[X <
k · E[CG(n,∆)]] ≥ hCGn (k) for every ∆ ∈ [0, 1].

Comparison with Attema et al’s tree-builder T BAFK.Note that in order to match the success probability
of T BAFK, we need to set ν1, . . . , νr−1 → 1, which would make the expected number of queries goes to
infinity. For values of νi that are bounded from 1, say ν1 = · · · = νr−1 = 2 as suggested in [63], and for
logarithmic-round protocols such as Spartan and Bulletproofs, the success probability is worse by a factor
of 2O(r) = nO(1), where n is the size of the instance. Accordingly, the expected number of queries is also
worse by a factor of O(3r · 4r) = nO(1) as well.

Comparison with our tree builder T B. Since we build on T BAFK, we do not suffer from large constants
as mentioned above. However, our tree builder suffers from a quadratic dependence on Q, which for
large values of Q would become worse than the bound for T BWik. Nevertheless, our tree builder has the
same expected running time as T BAFK, which is faster than that of T BWik. Finally, our tree builder can
only handle partition predicates, and some relevant matroid predicates do not lie in this class, i.e. linear
independence of more than 2 challenges.

B Omitted details for Spartan

B.1 Descriptions of Subprotocols

Transcript contents. A transcript for Spartan-NIZK (respectively Spartan-SNARK) consists of the following:

– a commitment Cw̃ to the multilinear extension of the witness,
– the verifier randomness τ ∈ Fµ,
– µ sumcheck rounds, each consisting of two commitments, two verifier challenges, and a transcript of

DotProdPf (for a total of 3 inner rounds),
– a commitment Cex to the claimed evaluation of Gio,τ
– four commitments, one to each of the evaluations vA, vB , vC and one to the product vA · vB ,
– a transcript of ProdPf, to verify the product commitment
– a transcript of EqPf and OpenPf to verify the claimed relationship (line 6 of Figure 7) holds in the

exponent,
– three verifier challenges rA, rB , rC ∈ F,
– µ sumcheck rounds to verify Hrx(Y ) has the claimed sum over the hypercube,
– a commitment Cey to the evaluation Hrx(ry),
– a commitment Cvw to the evaluation of w̃ at (ry)[1:],
– a transcript of PCMulti.Open showing that the commitment Cvw contains the correct evaluation,
– for Spartan-SNARK only, a transcript of PCSparseMulti.Open proving correct evaluations of Ã(rx, ry) =
v1, B̃(rx, ry) = v2, C̃(rx, ry) = v3,

– a transcript of EqPf showing that the required relationship (line 11) holds in the exponent of the two
commitments.

Using the listing above, we can compute the number of rounds of Spartan-NIZK to be r = 1 + 3µ+ (2 +
2 + 2) + 1 + 3µ+ (µ+ 1) + 2 = 7µ+ 11.

Description of Σ-protocols. We present the Σ-protocols used by Spartan in Figure 14. We note that
the equality proof EqPf only proves that the two commitments are to the same equal value, but we cannot
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Opening Relation.

ROpen =

{
((g, h), C, (x, r)) :

C = gx · hr

}

P → V : α← gt1 · ht2 , with t1, t2
$← F.

V → P : c
$← F∗.

P → V : z1 ← xc+ t1, z2 ← rc+ t2.
V : checks that gz1 · hz2 ?

= Cc · α.

(a) Proof of Opening OpenPf

Equality Relation.

REq =

{
((g, h), (C1, C2), (r)) :

C1 = C2 · hr

}
P → V : α← ht, where t $← F.
V → P : c

$← F∗.
P → V : z ← c · (r1 − r2) + t.
V : checks that hz ?

= (C1/C2)
c · α.

(b) Proof of Equality EqPf

Product Relation.

RProd =

{
((g, h), (X,Y, Z), (x, y, rx, ry, rz)) :

X = gx · hrx , Y = gy · hry , Z = gx·y · hrz

}

P → V : α← gb1 · hb2 , β ← gb3 · hb4 , γ ← Xb3 · hb5 , where b1, . . . , b5
$← F.

V → P : c
$← F∗.

P → V :

{
z1 ← b1 + c · x, z2 ← b2 + c · rx,
z3 ← b3 + c · y, z4 ← b4 + c · ry, z5 = b5 + c · (rz − rxy).

V : checks that α ·Xc ?
= gz1 · hz2 , β · Y c ?

= gz3 · hz4 , δ · Zc ?
= Xz3 · hz5 .

(c) Proof of Product ProdPf

Dot Product Relation.

RDotProd =

{
((n, g,g, h), (X,Y,a), (x, y, rx, ry)) :

X = gx · hrx , Y = gy · hry , y = 〈x,a〉

}

P → V : β ← gb · hrβ , δ ← g〈a,b〉 · hrδ , where b
$← Fn and rβ , rδ

$← F.
V → P : c

$← F∗.
P → V : z← c · x+ b, zβ ← c · rx + rβ , zδ ← c · ry + rδ.
V : checks that Xc · β ?

= gz · hzβ and Y c · δ ?
= g〈a,z〉 · hzδ .

(d) Proof of Dot Product DotProdPf

Fig. 14: Σ-protocols used in Spartan. In Spartan, the same group elements g, h are used across these
protocols.
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extract the value. Therefore, it is necessary for us to invoke OpenPf in line 6 of Figure 7 to extract the
underlying value vC from its commitment CvC .

Description of PCMulti. We give some intuition on the multilinear polynomial commitment PCMulti

(see Figure 15) used in Spartan, which was first introduced in [60]. Recall that to evaluate a multilinear
polynomial p(X1, . . . , Xµ) given in its evaluation form (p(0), . . . , p(2µ − 1)) at a point x = (x1, . . . , xµ),
we use the following formula:

p(x) =
∑

k∈{0,1}µ
p(k) ·

µ∏
i=1

ẽq(xi, ki)

=
∑

k∈{0,1}µ/2

∑
`∈{0,1}µ/2

µ/2∏
i=1

ẽq(xi, ki) · p(k + 2µ/2 · `) ·
µ/2∏
i=1

ẽq(xµ/2+i, `i).

If we denote

L =

µ/2∏
i=1

ẽq(xi, ki)


k∈{0,1}µ/2

, R =

µ/2∏
i=1

ẽq(xµ/2+i, `i)


`∈{0,1}µ/2

, T =
(
p(k + 2µ/2`)

)
k,`∈{0,1}µ/2

,

then we have p(x) = L · T · RT . In the commitment phase of PCMulti, the prover P commit to each row
of T , giving a commitment CT = (C0, . . . , C2µ/2−1). In the opening phase, the verifier V can compute a

commitment to L ·T as CL·T =
∏2µ/2−1
k=0 CLkk . We now reduce to proving an inner product argument that

(L ·T ) ·RT = p(x), with L ·T given by a commitment, and R is public. This is handled by a logarithmic-
sized dot product proof LogDotProdPf, which shares many similarities with the inner product argument
BP-IPA of Bulletproofs, but differs in the fact that it is zero-knowledge (while BP-IPA is not).

Description of PCSparseMulti. We give the description of the sparse multilinear polynomial commitment
scheme PCSparseMulti in Figure 16, and provide the high-level intuition here. Recall that from Equation 1,
given a matrix M ∈ Fm×m with n non-zero entries, we can calculate the value of M̃(rrow, rcol) for any
rrow, rcol ∈ Fµ in O(n) operations:

M̃(X,Y ) =

n∑
j=1

vali · ẽq(rowj , X) · ẽq(colj , Y ).

To achieve a sublinear verifier, the prover in Spartan-SNARK will use a secondary proof system
Π for circuit satisfiability, then compute a proof of correct evaluation for M̃(rrow, rcol). The circuit
CircuitSparseEval for correct evaluation is described in Figure 17, and utilizes an auxiliary memory-
checking procedure MemoryInTheHead to guarantee soundness.

In the commitment phase for PCSparseMulti, we will commit to the dense representation (row, col, val) of
M , along with the auxiliary time-stamp sequences read-tsX ,write-tsX , audit-tsX for X ∈ {row, col}. These
sequences help ensure the correct evaluation of M according to Equation 1. In the evaluation phase, the
prover P will commit to vectors of evaluations

erow = (ẽq(row0, rrow), . . . , ẽq(rown−1, rrow)),

and similarly for ecol. We can then re-write the evaluation formula as M̃(rrow, rcol) =
∑n
j=1 valj · (erow)j ·

(ecol)j . The evaluation circuit CircuitSparseEval would then compute M̃(rrow, rcol) according to this for-
mula, and additionally prove that erow is consistent with row (similarly ecol is consistent with col) via
asserting the equality of two multi-sets

ISetrow tWSetrow = RSetrow t ASetrow,

7 We refer to [62] for more details on the distribution.

36



Description of PCMulti:

• Setup(µ, ppG): abort if µ is odd. Parse ppG as a group description (G,F). Sample g1, . . . , gµ/2, h
$← G

and output pp = (F,G, g, g1, . . . , gµ/2, h).

• Commit(pp, p(X1, . . . , Xµ);ω): parse the evaluations {p(0), . . . , p(2µ − 1)} as a 2µ/2 × 2µ/2 matrix

T in column-major order, i.e. Ti,j = p(i + 2µ/2j). For each i ∈ [2µ/2], sample ωi
$← F and compute

Ci =
∏2µ/2

j=1 g
Ti,j
j hωi . Let ω = (ωi)i∈[2µ/2].

Output C = (C1, . . . , C2µ/2).

• Open〈P(p,ω, v, ωv),V〉(pp,C, x, Cv): given a commitment Cv as public input, with a random eval-
uation point x $← Fµ sent as challenge by V in previous rounds,
1. Let ẽqL(Y ) =

∏µ/2
i=1 ẽq(xi, Yi) and ẽqR(Y ) =

∏µ
i=µ/2+1 ẽq(xi, Yi).

2. P,V both compute P = Cv ·
∏
k∈{0,1}µ/2 C

ẽqL(k)
k and r = (ẽqR(k))k∈{0,1}µ/2 .

3. P also computes

l =
(∑

k∈{0,1}µ/2 Tk,j · ẽqL(k)
)
j∈{0,1}µ/2

, ωP = ωv +
∑
k∈{0,1}µ/2 ωk · ẽqL(k).

4. P,V engage in LogDotProdPf((2µ/2, g,g, h), (P, r), (l, v, ωP ).

Logarithmic Dot Product Proof. For n = 2k,

RLogDotProd =
{
((n, g,g, h), (P,a), (x, y, rP ) : P = gy · gx · hrP , y = 〈x,a〉

}
.

1. Set n0 ← n,g(0) ← g, P (0) ← P,a(0) ← a,x(0) ← x, y(0) ← y, r
(0)
P ← rP .

For i = 1, . . . , k:
(a) P computes y(i)L ←

〈
x
(i−1)
[:ni]

,a
(i−1)
[ni:]

〉
, y(i)R ←

〈
x
(i−1)
[ni:]

,a
(i−1)
[:ni]

〉
, then samples r(i)L , r

(i)
R

$← F and sends

Li ← gy
(i)
L ·

(
g(i−1)

)x(i−1)

[:ni] · hr
(i)
L , Ri ← gy

(i)
R ·

(
g(i−1)

)x(i−1)

[ni:] · hr
(i)
R .

(b) V sends challenge ci
$← F.

(c) P and V both compute P (i) ← L
c2i
i · P (i−1) ·Rc

−2
i
i and

a(i) ← c−1i · a
(i−1)
[:ni]

+ ci · a(i−1)[ni:]
, g(i) ←

(
g
(i−1)
[:ni]

)c−1
i ◦

(
g
(i−1)
[ni:]

)ci
.

(d) P computes x(i) ← ci · x(i−1)
[:ni]

+ c−1i · x
(i−1)
[ni:]

and

y(i) ← c2i · y
(i)
L + y(i−1) + c−2i · y

(i)
R , r

(i)
P ← c2i · r

(i)
L + r

(i−1)
P + c−2i · r

(i)
R .

2. Set ĝ ← g(k), P̂ ← P (k), â← a(k), x̂← x(k), ŷ ← y(k), r̂P ← r
(k)
P .

P samples d, rβ , rδ
$← F and sends β ← gd · hrβ , δ ← ĝd · hrδ .

3. V sends challenge c $← F.
4. P sends z1 ← d+ c · ŷ and z2 ← â · (c · r̂P + rβ) + rδ.

5. V checks that
(
P̂ c · β

)â
· δ ?

=
(
ĝ · gâ

)z1 · hz2 .
Fig. 15: Multilinear Polynomial Commitment Scheme PCMulti
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where

ISetrow = {(i, (memrow)i, 0)}i∈[0,m−1],
RSetrow = {(rowi, (erow)i, (read-tsrow)i)}i∈[0,n−1],
WSetrow = {(rowi, (erow)i, (write-tsrow)i)}i∈[0,n−1],
ASetrow = {(i, (memrow)i, (audit-tsrow)i)}i∈[0,m−1].

We can verify this equivalence by showing that their hashes are the same; in particular, [55] proposes to
use the following algebraic hash functions (defined for any γ1, γ2 ∈ F and ` ∈ N):

1. hγ1 : F3 → F defined by hγ1(a, v, t) = a · γ2 + v · γ + t.
2. Hγ1,γ2 : (F`)3 → F defined by Hγ1,γ2(A, V, T ) =

∏`
i=1(hγ1(Ai, Vi, Ti)− γ2).

The soundness loss for these hash functions, as they are used in CircuitSparseEval, are summarized in
Lemma B.2.

Optimizations for PCSparseMulti. In the reference implementation [58], the proof system Π used to
prove CircuitSparseEval is a non-zero-knowledge variant of Hyrax [60], with optimizations for batching
three evaluation checks for Ã, B̃, C̃ into one. Due to these optimizations, the commitment and opening
procedure of PCSparseMulti are changed to accomodate three matrices A,B,C at once. In particular, in the
commitment phase, we concatenate the vectors

opsbatch = (row, read-tsrow,write-tsrow, col, read-tscol,write-tscol)

for three matrices A,B,C, and produce a single polynomial commitment Cõps for them. We also produce
a single polynomial commitment to the vectors (audit-tsrow, audit-tscol) for all three of A,B,C as Cm̃em.
In the opening phase, a transcript for PCSparseMulti.Open consists of the following:

1. A single polynomial commitment Cẽbatch to the vectors (erow, ecol) for all three of A,B,C.
2. Challenges γ1, γ2 ∈ F∗.
3. A proof that step 1 in CircuitSparseEval is computed correctly for M ∈ {A,B,C}. We can use a

sumcheck protocol (with all polynomials sent in the clear, since we do not need zero-knowledge) to
verify this part of the circuit.

4. A proof that step 2 in CircuitSparseEval is computed correctly for M ∈ {A,B,C}. We arrange the
product circuit in a binary tree and invoke O(log(m + n)) sumcheck protocols to check this part of
the circuit.

5. At the end of the sumchecks, we need to do three opening arguments for the polynomials we com-
mitted.

We refer to the implementation [58] for full details regarding these optimizations. The crucial point is
that in the proof of knowledge soundness (see Lemma B.3), the extractor only needs to extract from these
three opening proofs, then we reduce to the soundness of the underlying information-theoretic protocol.

B.2 Omitted Proofs

We first prove Lemma 5.4, restated below.

Lemma B.1 (Restatement of Lemma 5.4). PCMulti.Open is n-computational special sound, where
n = (

√
m, 4±, . . . , 4±︸ ︷︷ ︸

µ/2

, 2). Concretely, there exists a tree-extraction algorithm T EPCMulti
such that for any

PPT adversary A against SS of PCMulti.Open, there exists an EPT adversary B against DL-REL such that

AdvSS
Π,n(T EPCMulti

,A) ≤ AdvDL-REL
G,
√
m+2(B).
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Requirements for PCSparseMulti. A polynomial commitment scheme PC and an interactive argument
Π for circuit satisfiability.
• Setup(µ, n, ppG): run pp1 ← PC.Setup(µ, ppG) and pp2 ← PC.Setup(log n, ppG). Output
pp = (pp1, pp2).

• Commit(pp, M̃):
1. Let (row, col, val) be the dense representation of M̃ .
Compute CX ← PC.Commit(pp, X̃) for X ∈ {row, col, val}.
2. Let (read-tsrow,write-tsrow, audit-tsrow)← MemoryInTheHead(2µ/2, n, row).
Compute CXrow ← PC.Commit(pp, X̃row) for X ∈ {read-ts,write-ts, audit-ts}.
3. Let (read-tscol,write-tscol, audit-tscol)← MemoryInTheHead(2µ/2, n, col).
Compute CXcol

← PC.Commit(pp, X̃col) for X ∈ {read-ts,write-ts, audit-ts}.
4. Output

C = (Crow, Ccol, Cval, Cread-tsrow , Cwrite-tsrow , Caudit-tsrow , Cread-tscol , Cwrite-tscol , Cwrite-tsval).

• Open〈P(M̃, ω),V〉(pp, C, (rrow, rcol), v):
1. P computes eX = (ẽq(X0, rX), . . . , ẽq(Xn−1, rX)) for X ∈ {row, col}, then sends
CeX ← PC.Commit(pp, ẽX) for X ∈ {row, col}.

2. V sends challenges γ1, γ2
$← F∗.

3. P,V engage in Π to verify that M̃(rrow, rcol) = v, computed using CircuitSparseEval.

Memory checking procedure MemoryInTheHead(m,n, addr ∈ Fm):
1. Initialize empty read-tsaddr,write-tsaddr ∈ Fn, audit-tsaddr ∈ Fm. For i = 1, . . . ,m:

(a) a← addri,
(b) ts← (audit-tsaddr)a,

(c) read-tsi ← ts,
(d) ts← ts+ 1,

(e) write-tsi ← ts,
(f) (audit-tsaddr)a ← ts.

2. Output (read-tsaddr,write-tsaddr, audit-tsaddr).

Fig. 16: Sparse Multilinear Polynomial Commitment Scheme PCSparseMulti

Proof. Note that the first layer in the tree of transcripts consists of
√
m distinct verifier’s challenges

x1, . . . , x√m ∈ Fµ that serve as evaluation points; the rest of the tree then corresponds to an instance of
LogDotProdPf described in Figure 15. Our tree extractor T EPCMulti

consists of two steps. First, we run the
tree extractor T ELogDotProdPf on each (4

µ/2
± , 2) subtree to recover the underlying linear combinations

l =

 ∑
k∈{0,1}µ/2

p(k + 2µ/2j) · ẽq(x[:µ/2], k)


j∈{0,1}µ/2

Here, the tree extractor T ELogDotProdPf is similar to that of BP-IPA, and so we refer to the proof of
Lemma 6.1. Note that T ELogDotProdPf will either succeed, or we can build an adversary B against DL-REL.
Next, for each j ∈ {0, 1}µ/2, we then use the corresponding entry in l with

√
m different challenges

x1, . . . , x√m to solve for p(k+2µ/2j) for all k ∈ {0, 1}µ/2. This is possible since the Lagrange polynomials
{ẽq(x[:µ/2], k)}k∈{0,1}µ/2 are independent for 2µ/2 different values of x[:µ/2]. ut

Our next lemma summarizes the information-theoretic soundness of the hash functions used in
CircuitSparseEval.
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Public Input. Dense representation (row, col, val) of M , and evaluation point r = (rrow, rcol) ∈ F2µ,
where µ = logm.

Witness.

{
read-tsrow, read-tscol,write-tsrow,write-tscol ∈ Fn,
audit-tsrow, audit-tscol ∈ Fm, erow, ecol ∈ Fn, γ1, γ2 ∈ F.

1. Compute M̃(r) =
∑n−1
i=0 vali · (erow)i · (ecol)i and return M̃(r).

2. For X ∈ {row, col}, do the following:
(a) Compute

memX ← [ẽq(0, rX), . . . , ẽq(m− 1, rX)] ∈ Fm,
ISetX = {(i, (memX)i, 0)}i∈[0,m−1],
RSetX = {(Xi, (eX)i, (read-tsX)i)}i∈[0,n−1],
WSetX = {(Xi, (eX)i, (write-tsX)i)}i∈[0,n−1],
ASetX = {(i, (memX)i, (audit-tsX)i)}i∈[0,m−1].

(b) Compute h1,X = Hγ1,γ2(ISetX t WSetX), h2,X = Hγ1,γ2(RSetX t ASetX), and assert that
h1,X = h2,X .

Fig. 17: CircuitSparseEval to evaluate a sparse multilinear polynomial M̃

Lemma B.2. In CircuitSparseEval, we have the following:

Pr[h1,X = h2,X | ISetX tWSetX 6= RSetX t ASetX ] ≤ 2(m+ n)

|F|
.

Proof. Note that Hγ1,γ2(A, V, T ) for A, V, T ∈ Fm+n is a polynomial of total degree 2(m + n) in γ1 and
γ2. Applying Schwartz-Zippel gives us the desired bound. ut

We now establish the special soundness of PCSparseMulti, following the discussion about optimizations
above.

Lemma B.3. PCSparseMulti satisfies ((2)µ/2, 4±, . . . , 4±︸ ︷︷ ︸
(µ+ν)/2

, 2)3-computational special soundness. Concretely,

there exists a tree-extraction algorithm T EPCSparseMulti
such that for any PPT adversary A against SS of

PCSparseMulti.Open, there exists an EPT adversary B against DL-REL such that

AdvSS
Π,n(T EPCMulti

,A) ≤ AdvDL-REL
G,
√
m+n+2(B) +

6(m+ n) +O(µ+ ν)

|F|
.

Proof. The tree-extractor T EPCSparseMulti
simply invokes T EPCMulti

three times for the three polynomial open-
ings (listed in the optimizations). Once we get all polynomials in the clear, it remains to argue the
soundness of the underlying information-theoretic protocol. This soundness error consists of two kinds:
(1) the error in the sumcheck invocations, which are O(µ + ν)/|F|, and (2) the error in the hashes for
CircuitSparseEval, which when invoked for three matrices A,B,C is at most 6(m+n)/|F|. This establishes
the desired bound. ut

Combining Lemma B.3 with Lemma 4.7, we obtain Lemma 5.13, restated below.

Lemma B.4. Spartan-SNARKFS satisfies knowledge soundness. Concretely, there exists an extractor
ESpartan-SNARKFS

such that for every PPT prover P∗ against KS of Spartan-SNARK making at most Q
random oracle queries, there exists an EPT adversary B against DL-REL such that
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AdvKS
Spartan-SNARKFS

(ESpartan-SNARKFS
,P∗)

≤ Q(Q− 1) + (Q+ 1)(25µ+ 9ν + 16) + 6(m+ n) +O(µ+ ν)

|F| − 1
+AdvDL-REL

G,
√
m+n+2(B).

Both B and the extractor ESpartan-SNARKFS
runs in expected time that is at most O(Q ·m7.5 · (m+n)3) the

running time of P∗.

Proof. We first show that Spartan-SNARKFS is n′-computational special sound, where

n′ = (1, (1, 2li, 2)
µ, 2, 2, 2, 1, (2, 2li, 2)

µ, (4±, . . . , 4±︸ ︷︷ ︸
µ/2

, 2), ((2)µ/2, 4±, . . . , 4±︸ ︷︷ ︸
(µ+ν)/2

, 2)3, 2).

This follows from combining the tree-extractor for T ESpartan-NIZKFS
constructed in Lemma 5.6 with the tree-

extractor T EPCSparseMulti
constructed in Lemma B.3. We then conclude the bound above using Lemma 4.7.

ut

C Omitted details for Bulletproofs

We describe the protocol BP-ACSPf in Figure 18. Note that n is the number of multiplication gates,
m is the number of committed inputs, and q is the number of equations involving Ws. Our proof of
Theorem 6.7 follows from Theorem 3.4 combined with the results proved in this section.

Lemma C.1. BP-ACSPfFS satisfies knowledge soundness. Let n be the number of multiplication gates and
q the number of equations involving committed inputs. Concretely, there exists an extractor EBP-ACSPfFS
such that for every PPT adversary P∗ against KS making at most Q random oracle queries, there exists
an adversary A against DL-REL with

AdvKS
BP-ACSPfFS(EBP-ACSPfFS ,P∗) ≤ AdvDL-REL

G,2n+1(A) +
Q(Q− 1) + 2(Q+ 1)(n+ q + 3 log n+ 6)

|F| − 1
.

Both A and the extractor EBP-ACSPfFS run in expected time that is at most O(Q·q ·n3) that of P∗’s runtime.

Proof. By the result of [16], given an n-tree of accepting transcripts where n = (n, q+1, 7, 2, 4±,
logn. . . , 4±),

we can extract. Applying our special soundness result yields the bound.

The expected runtime of the extractor EBP-ACSPfFS , as well as the adversary A, is at most O(Q ·n · (q+
1) · 12 · n2) = O(Q · q · n3). ut

Lemma C.2. BP-ACSPfFS satisfies perfect 2-ZK.

Proof. We present the 2-ZK simulator SBP-ACSPfFS,x, and argue that its output is identically distributed
to that of honestly generated proofs.
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Arithmetic Circuit Satisfiability Relation.

RBP-ACSPf =



(m,n, q,g,h, g, h, u),

(WL,WR,WO,WV ,V, c),

(aL,aR,aO,v, γ)

 :

Vi = gvihγi ∀j ∈ [1,m] ∧ aL ◦ aR = aO ∧
WL · aL +WR · aR +WO · aO = WV · v + c


Interaction Phase.

1. P samples α, β, ρ $← F, sL, sR
$← Fn and computes

AI = hαgaLhaR , AO = hβgaO , S = hρgsLhsR .

P sends AI , AO, S to V.

2. V sends challenges y, z $← F∗.
3. Denote yn = (1, y, . . . , yn−1) ∈ Fn and zq+1

[1:] = (z, z2, . . . , zq) ∈ Fq.

P samples βi
$← F for all i ∈ {1, 3, 4, 5, 6} and computes

`(X) = aL ·X + aO ·X2 + y−n ◦ (zq+1
[1:] ·WR) ·X + sL ·X3,

r(X) = (yn ◦ aR) ·X − yn + zq+1
[1:] · (WL ·X +WO) + (yn ◦ sR) ·X3,

t(X) = 〈`(X), r(X)〉 =
6∑
i=1

tiX
i,

Ti = gtihβi ∀ i ∈ {1, 3, 4, 5, 6}.

P sends T1, T3, T4, T5, T6 to V.

4. V sends challenge x $← F∗.
5. P computes

l = `(x), r = r(x), t̂ = 〈l, r〉, µ = α · x+ β · x2 + ρ · x3,

βx = β1 · x+ 〈zq+1
[1:] ,WV · γ〉 · x2 +

6∑
i=3

βi · xi.

P sends t̂, βx, µ to V.

6. V sends challenge w $← F∗.
7. P,V both compute

h′ = hy−n , u′ = uw,

WL = (h′)
zq+1
[1:]
·WL , WR = g

y−n◦(zq+1
[1:]
·WR)

, WO = (h′)
zq+1
[1:]
·WO ,

P ′ = h−µ ·AxI ·Ax
2

O · Sx
3

· (h′)−y
n

·W x
L ·W x

R ·WO · (u′)t̂.

8. P,V engage in BP-IPA for the triple ((n,g,h′, u′), P ′, (l, r)).

Fig. 18: Bulletproofs’ Arithmetic Circuit Satisfiability BP-ACSPf
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Verification.
1. V rejects if BP-IPA fails.
2. V computes

δ(y, z) = 〈y−n ◦ (zq+1
[1:] ·WR), z

q+1
[1:] ·WL〉,

R = g
x2·
(
δ(y,z)+〈zq+1

[1:]
,c〉
)
·Vx2·

(
zq+1
[1:]
·WV

)
· T x1 ·

6∏
i=3

T x
i

i .

3. V checks whether gt̂hβx ?
= R.

Fig. 18: Bulletproofs’ Arithmetic Circuit Satisfiability BP-ACSPf (cont.)

Simulator SBP-ACSPfFS,x(pp,x):

1. Sample α, β, ρ $← F and aL,aR,aO, sL, sR
$← Fn and compute

AI = hαgaLhaR , AO = hβgaO , S = hρgsLhsR .

2. Query random oracle for challenges y, z ← H(pp, x, AI , AO, S).
3. Sample x $← F∗.
4. Compute 

l = aL · x+ aO · x2 + y−n ◦ (zQ+1
[1:] ·WR) · x+ sL · x3,

r = yn ◦ aR · x− yn + zQ+1
[1:] · (WL · x+WO) + yn ◦ sR · x3,

t̂ = 〈l, r〉.
5. Sample βx

$← F, T3, T4, T5, T6
$← G and compute

T1 =

(
g
x2·(δ(y,z)+〈zq+1

[1:]
,c〉)−t̂ · h−βx ·V−x

2·zq+1
[1:]
·WV ·

6∏
i=3

T x
i

i

)−x−1

.

6. Program H(pp, V, A, S, T1, T2) := x.
7. Query random oracle for challenge w ← H(pp, V, A, S, T1, T2, t̂, βx, µ).
8. Compute


h′ = hy−n ,

u′ = uw,

P ′ = h−µ ·AxI ·Ax
2

O · Sx
3 · (h′)−yn ·W x

L ·W x
R ·WO · (u′)t̂.

9. Generate honest proof πBP-IPAFS
for the triple ((n,g,h′, u′), P ′, (l, r)).

10. Output πBP-ACSPfFS = (AI , AO, S, T1, T3, T4, T5, T6, t̂, βx, µ, πBP-IPAFS
).

The indistinguishability argument between the outputs of SBP-ACSPfFS, and honestly generated proofs
goes as follows. In both cases, the proof elements A, T3, T4, T5, T6, βx, µ and the underlying vectors l, r
are distributed uniformly among their respective domains. The remaining proof elements S, T1, t̂, πBP-IPAFS

are then uniquely determined from the previous ones, and thus are identically distributed as well. This
establishes the 2-ZK property of BP-ACSPfFS. ut

Finally, we show the unique response property of BP-ACSPf, starting from after the x challenge.

Lemma C.3. BP-ACSPfFS satisfies 2-UR. In particular, for any adversary A against 2-UR of BP-ACSPfFS,
there exists an adversary B against DL-REL such that

Adv2-UR
BP-ACSPfFS(A) ≤ 3 ·AdvDL-REL

G,2n+1(B) +
2Q(Q− 1) + 12(Q+ 1) log n

|F| − 1
.

B runs in expected time at most O(Q · n2) that of A’s runtime.
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Proof. We proceed through a sequence of hybrids. The high-level idea is to analyze different cases for
where the two proofs π, π′ first differ after the x challenge, and reduce each case to breaking DL-REL or
the knowledge soundness KS of BP-IPA (which in turn reduces to breaking DL-REL).

– Hyb0 is the game 2-URABP-ACSPfFS . Recall that in this game, an adversary A outputs an input V, a
challenge x ∈ F∗, and two proofs π, π′ that agrees up to the x challenge, i.e. we have

π = (AI , AO, S, T1, T3, T4, T5, T6, t̂, βx, µ, πBP-IPAFS
),

π′ = (AI , AO, S, T1, T3, T4, T5, T6, t̂
′, β′x, µ

′, π′BP-IPAFS
).

A wins if π 6= π′ and both proofs are accepting with respect to the x challenge that it chose.
– Hyb1 is the same as Hyb0, except that we also run EBP-IPAFS

on the proofs πBP-IPAFS
, π′BP-IPAFS

to extract
witnesses (l, r) and (l′, r′). Hyb1 returns 0 if the extractor aborts on either proofs, or the witnesses
are not satisfying, i.e. that t̂ 6= 〈l, r〉 or t̂′ 6= 〈l′, r′〉.

We can see that Hyb1 is identical to Hyb0, except when the extractor EBP-IPAFS
fails in extracting from

either proofs πBP-IPAFS
, π′BP-IPAFS

. The probability that this happens is precisely bounded by (twice) the KS
advantage of BP-IPAFS. Concretely, by Theorem 6.1 there exists an adversary B against DL-REL, running
in expected time at most O(Q ·m2 · n2) that of A’s runtime, such that

|Pr[Hyb0]− Pr[Hyb1]| ≤ 2
Q(Q− 1) + 6(Q+ 1) log n

|F| − 1
+ 2AdvDL-REL

G,2n+1(B) .

It remains to show that if Hyb1 returns 1, then there exists an adversary B′ that returns a non-trivial
discrete log relation. The adversary B′ works as follows:

• If t̂ 6= t̂′ or βx 6= β′x: since both proofs are accepting and are the same up to the x challenge, we have

gt̂ · hβx = g
x2·
(
δ(y,z)+〈zq+1

[1:]
,c〉
)
·Vx2·

(
zq+1
[1:]
·WV

)
· T x1 ·

6∏
i=3

T x
i

i

= gt̂
′
· hβ

′
x .

This gives a non-trivial discrete-log relation for B′ to output.
• If (t̂, βx) = (t̂′, β′x) but µ 6= µ′: since both proofs πBP-IPAFS

, π′BP-IPAFS
are accepting, we have

gl · h(y−m·n◦r) · hµ = AxI ·Ax
2

O · Sx
3

· (h′)−y
n

·W x
L ·W x

R ·WO · uw·t̂

= gl′ · h(y−m·n◦r′) · hµ
′
.

B′ then outputs this non-trivial discrete-log relation.
• If (t̂, βx, µ) = (t̂′, β′x, µ

′) but πBP-IPAFS
6= π′BP-IPAFS

: we consider the same equation as in the previous
case. Here, by the same reasoning as in Theorem 6.2, it must be that (l, r) 6= (l′, r′), or otherwise the
two inner product arguments are the same. B′ thus outputs the same non-trivial discrete-log relation.

Note that if Hyb1 returns 1, then π 6= π′, hence at least one of the above cases must happen. Putting
everything together (and in particular unifying adversaries B,B′), we get the desired bound. ut
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