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ABSTRACT
We revisit batch signatures (previously considered in a draft RFC,
and used in multiple recent works), where a single, potentially ex-
pensive, “inner” digital signature authenticates a Merkle tree con-
structed from many messages. We formalise a construction and
prove its unforgeability and privacy properties.

We also show that batch signing allows us to scale slow signing
algorithms, such as those recently selected for standardisation as
part of NIST’s post-quantum project, to high throughput, with a
mild increase in latency. We demonstrate the practical efficiency
of batch signing in the context of TLS. For the example of Falcon-
512 in TLS, we can increase the amount of connections per second
by a factor 3.2x, at the cost of an increase in the signature size by
∼ 14% and the median latency by ∼ 25%, where both are ran on
the same 30 core server.

We also discuss applications where batch signatures allow us
to increase throughput and to save bandwidth. For example, again
for Falcon-512, once one batch signature is available, the additional
bandwidth for each of the remaining 𝑁 − 1 is only 82 bytes.

1 INTRODUCTION
Unkeyed and symmetric cryptography is known to be significantly
cheaper than asymmetric cryptography from a computational per-
spective. Indeed, hash functions, stream or block ciphers typically
require between a few cycles [1] to a few hundred cycles [12],
whereas key establishment and digital signature primitives require
between tens of thousands to hundreds of millions of cycles [6]. In
situations where a substantial volume of signatures must be han-
dled – e.g. a Hardware Security Module (HSM) renewing a large
set of short-lived certificates or a load balancer terminating a large
number of TLS connections per second – this may pose serious
limitations on scaling these and related scenarios.

These challenges are amplified by upcoming public-key cryp-
tography standards: In July 2022, the US National Institute of Stan-
dards and Technology (NIST) announced four algorithms for post-
quantum cryptography (PQC) standardisation. In particular, three
digital signature algorithms, namely Dilithium [16], Falcon [21],
and SPHINCS+ [14], were selected, and migration from current
standards to these new algorithms is already underway [27]. One
of the key issues when considering migrating to PQC is that the
computational costs of the new digital signature algorithms are

significantly higher than those of ECDSA; the fastest currently-
deployed primitive for signing. This severely impacts the ability
of systems to scale and inhibits their migration to PQC, especially
in higher-throughput settings.

For instance, at a 128-bit security level, using the standard SU-
PERCOPplatform benchmarks on aCore i7 Tigerlake processor [6],
ECDSA over an Edwards curve requires 85K cycles for signing.
The equivalent Dilithium, Falcon and SPHINCS+ signatures need
272K, 570K and 25M cycles, respectively (considering the fastest
alternative among existing variants for each).1 The performance
gap between ECDSA and the three PQC alternatives is vast. Fur-
thermore, there are good reasons to choose Falcon or SPHINCS+
over Dilithium for certain scenarios, which increases the gap fur-
ther: Falcon provides smaller signatures and verification key sizes
which makes it a strong contender in networking applications and
SPHINCS+ relies on conservative security assumptions which are
appropriate for long-term security.

In 2020 an RFC draft [2] proposed Batch Signing for TLS to solve
existing scalability challenges of classical digital signature stan-
dards in a high-throughput TLS setting. In this approach, one ex-
pensive “inner” signing operation signs the root of a Merkle tree
constructed from a batch of messages. Then, the final signature for
each message contains the sibling nodes of a message to recover
the Merkle tree’s root and the original “inner” signature. This rep-
resents a logarithmic increase in the signature size but asymptoti-
cally reduces the amortised cost to a few hash computations. The
draft was not finalised, and thus has now become a deprecated TLS
working group document [3]. While the proposal was motivated
by classical signature standards and TLS, the approach can be gen-
eralised and used with any signature scheme, e.g. with one of the
PQC schemes, and in a myriad of additional settings.

Other recent works have considered using Merkle trees to re-
duce (amortised) signature size in certificates by signing them in
batches and using the fact that they all share the same “inner”
signature. A recent work [9] focuses on stateful signatures tar-
geting such signature size reduction. Stateful signature schemes
are capable of producing small signatures, which are ideal for use
cases such as certificate authorities, but at the expense of a more
involved design, with the critical need for state management. A
stateless approach, in contrast, generalises more easily and allows

1See also the discussion of Falcon’s performance in Section 2.3.
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for a more flexible design applicable to a plethora of use cases
for increasing the throughput of signature schemes. A recent RFC
draft [4] proposes a stateless system to reduce certificate sizes by
defining CAs that only sign certificates in batches and rely on a
Certificate Transparency channel to deliver the large “inner” sig-
natures.

Theseworks highlight the increasing community interest in batch
signatures.

1.1 Contributions
In this work, we study batch signatures and provide (i) a refine-
ment of the construction from [2] to reduce the size by removing
the collision-resistance property from the requirements of the hash
function used to build theMerkle tree, (ii) a formal treatment of the
unforgeability and privacy of batch signatures, (iii) a description of
several settings in which batch signatures can have a positive im-
pact in terms of either throughput increase or bandwidth reduction
and (iv) an empirical study into batch signatures for both classi-
cal and PQC schemes in the context of TLS and certificate signing.
Overall, our performance study indicates that, while the approach
introduces a logarithmic overhead in signature sizes (cf. Table 1)
and signing latency, it significantly reduces the CPU burden (cf. Ta-
ble 2) allowing us to scale to a larger number of signatures per sec-
ond compared with the plain approach using the same number of
cores. Moreover, our benchmarks also indicate that in some appli-
cations batch signatures result in significant bandwidth savings.

Inmore detail, after some preliminaries in Section 2, we formally
define batch signing and its security properties in Section 3. In par-
ticular, in addition to the usual unforgeability property, we also
define batch privacy notions that essentially control the leakage
of information due to signing in batches. We define two variants
of batch privacy, with our construction achieving the weaker one.
We then specify our batch signing scheme in Section 4, which is es-
sentially a refined version of that in [2]. The main difference is that
we do not need to rely on collision resistance but instead on target
collision resistance [5], allowing us to pick smaller parameters and
thus reduce the signature size. We prove the security properties of
our construction in Section 5. We describe some real-world appli-
cations where batch signatures can provide significant improve-
ments in Section 6 and finally describe our implementation for the
TLS scenario in Section 7.

2 PRELIMINARIES
We write 𝑥 ← 𝑦 for assigning 𝑦 to 𝑥 and 𝑥 ←$ D for sampling
𝑥 from some distribution D. If D is a finite set, we assume the
uniform distribution over this set. We write PPT for probabilistic
polynomial time and BQP for bounded-error quantum polynomial
time.

2.1 Hash Functions
In thisworkwe consider tweakable hash functions. These are keyed
hash functions that take an additional input which can be thought
of as a domain separator (while the key or public parameter serves
as a separator between users). When used right, tweakable hash
functions allow to tightly achieve target collision resistance even

Table 1: Batch signature sizes for a targeted security level 𝜆.

Scheme 𝜆 |vk| |𝜎 | 𝑁 |sig| |sig𝑐 |
ECDSA P256 128 64 64 32 162 98
Dilithium2 128 1312 2420 32 2518 98
Dilithium5 256 2592 4595 32 4693 98
Falcon-512 128 897 666 16 748 82
Falcon-1024 256 1793 1280 32 1378 98
Falcon-512-fpemu 128 897 666 16 758 82
Falcon-1024-fpemu 256 1793 1280 16 1362 82

All sizes are in bytes. Batch signature size is given in the column |sig | , verification
key size in |vk | , “inner” signature size in |𝜎 | ; all for a batch of size 𝑁 . The
compressed batch signature size, assuming the inner signature for multiple batch
signatures is cached, is given in column |sig𝑐 | . We assume two bytes are used to
encode 𝑁 in sig.

Signature sizes (or certificates) grow by fewer than one hundred bytes. This
represents, for the algorithms considered (except ECDSA), at most ten percent when
considering signatures and at most five percent when considering certificates
(signatures + verification keys).

Table 2: Handshakes per second and latency for different
percentiles in TLS using different signing algorithms.

Scheme and Handshakes Latency (ms) Signing
Instantiation Per Second med p90 p99 Cores

ECDSA P256 Plain 39,000 1.2 1.3 1.5 1.2
MT N=32 49,000 1.3 1.7 2.7 1.0

Dilithium2 Plain 29,000 1.6 1.8 2.1 2.9
MT N=32 50,000 1.8 2.2 2.7 1.0

Dilithium5 Plain 25,000 1.9 2.2 2.4 4.4
MT N=32 43,000 2.2 2.6 3.2 1.0

Falcon-512 Plain 28,000 1.1 1.3 1.5 7.8
MT N=16 43,000 1.5 1.8 2.5 2.0

Falcon-1024 Plain 24,000 2.0 2.1 2.3 13.1
MT N=32 43,000 2.2 2.5 3.3 2.0

Falcon-512 Plain 5,000 5.1 5.2 6.0 20.0
(fpemu) MT N=16 16,000 6.4 7.6 8.4 8.0

Falcon-1024 Plain 2,600 9.9 10.0 11.0 22.5
(fpemu) MT N=16 8,200 12.0 15.0 17.0 8.0

All experiments are run on a 30 core machine with HyperThreading disabled. The
results are presented for a ‘plain’ multi-threaded implementation (pool of as many
threads as CPU cores, with select/poll handling), and for the Merkle Tree (MT)
approach with a limit 𝑁 to the maximum size of a tree. The amount of cores used
for signatures is estimated for the plain approach, out of the computational cost of
one signature, and fixed (by reserving cores explicitly) for the Merkle Tree approach.

The number of handshakes per second is roughly doubled for fast algorithms, and
multiplied by a factor between three and four for slow algorithms. Latency (99th
percentile) is increased by roughly fifty percent (one millisecond for fast algorithms
and up to six milliseconds for the slower ones).

in multi-target settings where an adversary wins when they man-
age to attack one out of many targets.

Definition 2.1 (Tweakable Hash Function [5]). Let 𝑛,𝑚 ∈ N, let P
be the public parameters space andT the tweak space. A tweakable
hash function is a tuple of algorithm H = (KeyGen,Eval) such
that:
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SM-TCRAH (𝑘, 𝜆)
𝑃 ← KeyGen(1𝜆 )

𝑆 ← AH(𝑃,·,·)
0 (1𝜆 )

// Q = { (𝑡0, 𝜇0 ), . . . , (𝑡𝑘−1, 𝜇𝑘−1 ) } queries submitted to H(𝑃, ·, · )

for 𝑖, ℓ ∈ {0, . . . , 𝑘 − 1}, 𝑖 ≠ ℓ do

if 𝑡𝑖 = 𝑡ℓ : return ⊥
( 𝑗, 𝜇 ) ← A1 (1𝜆, 𝑆, 𝑃, Q)
return 0 ≤ 𝑗 < 𝑘 ∧ 𝜇 ≠ 𝜇 𝑗 ∧H(𝑃, 𝑡 𝑗 , 𝜇 𝑗 ) = H(𝑃, 𝑡 𝑗 , 𝜇 )

Figure 1: Single-function, Multi-Target Collision Resistance
for distinct tweaks (SM-TCR).

Commit
𝑏 ←$ {0, 1}

𝑏′ ← ARoR( ·) ()
return 𝑏 = 𝑏′

RoR(𝑥)
𝑘 ←$ {0, 1}𝜆

𝑦0 ← F(𝑘, 𝑥 )
𝑦1 ←$ {0, 1}𝑛

return 𝑦𝑏

Figure 2: One-time Pseudorandom Function (OT-PRF)

KeyGen the setup function takes the security parameter 1𝜆 and
outputs a (possibly empty) public parameter 𝑝 . We write
𝑝 ← KeyGen(1𝜆).

Eval the evaluation function takes public parameters 𝑝 , a tweak
𝑡 , an input 𝑥 ∈ {0, 1}𝑚 and returns a hash value ℎ. We
write ℎ ← Eval(𝑝, 𝑡, 𝑥) or simply ℎ ← H(𝑝, 𝑡, 𝑥). This is
a deterministic function.

In what follows, we will avoid relying on plain collision resis-
tance but target collision resistance of tweakable hash functions.

Definition 2.2 (Target Collision Resistant Hash Function [5]). An
efficient tweakable hash function H = (KeyGen,Eval) is called
single-function multiple-targets target-collision resistant for dis-
tinct tweaks (SM-TCR) if the advantageAdvsm-tcr

A,H (𝑘, 𝜆) of any (PPT/
BQP) algorithms A = (A0,A1) that define up to 𝑘 targets in the
SM-TCR experiment defined in Figure 1 is negligible with

Advsm-tcr
A,H (𝑘, 𝜆) B Pr [SM-TCRAH (𝑘, 𝜆) ⇒ 1] .

We will also rely on one-time pseudrandomness to argue pri-
vacy.

Definition 2.3 (OT-PRF). Let 𝑛,𝑚 ∈ N, F : {0, 1}𝜆 × {0, 1}𝑚 →
{0, 1}𝑛 be a keyed function. We define

Advot-prfA,F (𝜆) B Pr[OT-PRFAF (𝜆) ⇒ 1]

forOT-PRFAF (𝜆) as in Figure 2 and sayF is anOT-PRF if no PPT/BQP

adversary A has non-negligible advantage Advot-prfA,F (𝜆).

2.2 Digital Signatures
Definition 2.4 (Signature Scheme). A signature schemeS consists

of three PPT algorithms (KeyGen, Sign,Verify) such that:

EUF-CMAAS (𝜆) / BEUF-CMAAS (𝜆)
Q ← ∅;
vk, sk← KeyGen(1𝜆 ) ;
(𝜇★, 𝜎★) ← ASign (vk) ; // EUF-CMA

(𝜇★, 𝜎★) ← ABSign (vk) ; // BEUF-CMA

return (𝜇★, · ) ∉ Q ∧Verify(vk, 𝜎★, 𝜇★) = 1

Sign(𝜇)
𝜎 ← Sign(sk, 𝜇 )
Q ← Q ∪ { (𝜇, 𝜎 ) }
return 𝜎

BSign(M)
S ← Sign(sk,M)
for 0 ≤ 𝑗 < |M | do
𝑞 𝑗 ← (M[ 𝑗 ], S[ 𝑗 ] )
Q ← Q ∪ {𝑞 𝑗 }

return S

Figure 3: Existential Unforgeability under Chosen Message
Attacks for Signatures (EUF-CMA) and Batch Signatures
(BEUF-CMA).

KeyGen The key generation algorithm is a randomised algorithm
that takes as input a security parameter 1𝜆 and outputs a
pair (vk, sk), the verification key and signing key, respec-
tively. We write (vk, sk) ← KeyGen(1𝜆).

Sign The signing algorithm takes as input a signing key sk, a
message 𝜇 and outputs a signature 𝜎 . Wewrite this as 𝜎 ←
Sign(sk, 𝜇). The signing algorithm may be randomised or
deterministic. We may write 𝜎 ← Sign(sk, 𝜇; 𝑟 ) to un-
earth the used randomness explicitly.

Verify The verification algorithm takes as input a verification
key vk, a signature 𝜎 and a message 𝜇 and outputs a bit
𝑏, with 𝑏 = 1 meaning the signature is valid and 𝑏 = 0
meaning the signature is invalid. Verify is a deterministic
algorithm. We write 𝑏 ← Verify(vk, 𝜎, 𝜇).

We require that except with negligible probability over (vk, sk) ←
KeyGen(1𝜆), it holds that Verify(vk, Sign(sk, 𝜇), 𝜇) = 1 for all 𝜇.

We rely on the standard notion of existential unforgeability un-
der chosen message attacks:

Definition 2.5 (EUF-CMA). We define

Adveuf-cma
A,S (𝜆) B Pr[EUF-CMAAS (𝜆) ⇒ 1]

for EUF-CMAAS (𝜆) as in Figure 3 and say a signature scheme S is
EUF-CMA secure if no PPT/BQP adversary A has non-negligible
advantage Adveuf-cma

A,S (𝜆).

Remark. In our construction, the signature scheme takes as inputs
and outputs batches of messages and signatures, respectively. We for-
mally define batch signature schemes and their security (BEUF-CMA)
in Section 3.

2.3 Falcon Signature Scheme
Since our flagship demonstrator is the composition of our scheme
with Falcon [20] (based on the GPV paradigm [11]), we give a
stylised description in Figure 4, since this suffices for our purposes
here. Let (TrapGen, SampD, SampPre) be PPT algorithms with
the following syntax and properties [10, 11, 17]:
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• (𝑨, td) ← TrapGen(1𝜂 , 1ℓ , 𝑞,R, 𝛽) takes dimensions𝜂, ℓ ∈ N, a
modulus 𝑞 ∈ N, a ring R, and a norm bound 𝛽 ∈ R. It generates
a matrix 𝑨 ∈ R𝜂×ℓ𝑞 and a trapdoor td. For any 𝑛 ∈ poly(𝜆)
and ℓ ≥ lhl(R, 𝜂, 𝑞, 𝛽), the distribution of 𝑨 is within negl(𝜆)
statistical distance to the uniform distribution on R𝜂×ℓ𝑞 .

• 𝒖 ← SampD(1𝜂 , 1ℓ ,R, 𝛽′) with ℓ ≥ lhl(R, 𝜂, 𝑞, 𝛽) outputs an
element in 𝒖 ∈ Rℓ with norm bound 𝛽′ ≥ 𝛽 . We have that
𝒗 B 𝑨 · 𝒖 mod 𝑞 is within negl(𝜆) statistical distance to the
uniform distribution on R𝜂𝑞 .

• 𝒖 ← SampPre(td, 𝒗, 𝛽′) with ℓ ≥ lhl(R, 𝜂, 𝑞, 𝛽) takes a trap-
door td, a vector 𝒗 ∈ R𝜂𝑞 , and a norm bound 𝛽′ ≥ 𝛽 . It samples
𝒖 ∈ Rℓ satisfying𝑨 ·𝒖 ≡ 𝒗 mod 𝑞 and ∥𝒖∥ ≤ 𝛽′. Furthermore, 𝒖
is withinnegl(𝜆) statistical distance to 𝒖 ← SampD(1𝜂 , 1ℓ ,R, 𝛽′)
conditioned on 𝒗 ≡ 𝑨 · 𝒖 mod 𝑞.

KeyGen(1𝜆)
𝑨, td← TrapGen(11, 12, 𝑞, R, 𝛽 )
return vk𝑖 = 𝑨, sk𝑖 = td

Sign(𝜇 𝑗 , sk𝑖 ; 𝑟 )
𝒚 𝑗 ← SampPre(td, 𝐻 (𝜇 𝑗 , 𝑟 ), 𝛽 ′ )
return 𝒚

Verify(𝜎 𝑗 , 𝜇 𝑗 , vk𝑖 )
return

𝒚 𝑗

 ?
≤ 𝛽 ′ ∧𝐻 (𝜇 𝑗 )

?≡ 𝑨 · 𝒚 𝑗

Figure 4: Falcon signatures [11, 21]

Assumption 2.6. The Falcon signature scheme is EUF-CMA se-
cure. In particular, no (quantum) adversary exists to forge messages
with cost ≪ 2128 for Falcon-512 and no such adversary exists with
cost≪ 2256 for Falcon-1024.

Performance. Consider Falcon-512 which minimises the signature
size among the NIST selected post-quantum signature algorithms.
An optimised implementation beats RSA-2048 signing by roughly
a factor of five [6]. Critically, however, this optimised implementa-
tion relies on constant-time double-precision floating point arith-
metic. This is not completely out of reach, as demonstrated by
constant-time Falcon implementations [19] on several different CPUs,
working around several CPU instructions’ behaviours. However,
the long-term reliability of this approach is less certain than for
bit or integer operations. That is, future instructions or optimisa-
tions might prevent the desired constant-time behaviour. Further-
more, many CPUs to date simply lack fast constant-time double-
precision arithmetic [13].

On systems where no sufficiently constant-time floating point
unit is available or where floating-point arithmetic is avoided for
the reasons mentioned above, floating-point arithmetic can be em-
ulated (in constant time) at a hefty – approximately 20x – over-
head [19].

3 BATCH SIGNATURES
We formally define batch signatures.

Definition 3.1 (Batch Signature Scheme). Abatch signature scheme
S consists of three PPT algorithms (KeyGen,BSign,Verify) such
that:

KeyGen The key generation algorithm is a randomised algorithm
that takes as input a security parameter 1𝜆 and outputs a
pair (vk, sk), the verification key and signing key, respec-
tively. We write (vk, sk) ← KeyGen(1𝜆).

BSign The batch signing algorithm takes as input a signing key
sk, a list of messagesM = {𝜇𝑖 } and outputs a list of sig-
natures S = {sig𝑖 }. We write this as S ← BSign(sk,M).
The signing algorithm may be randomised or determinis-
tic. We may write S ← BSign(sk,M; 𝑟 ) to unearth the
used randomness explicitly.

Verify The verification algorithm takes as input a verification
key vk, a signature sig and a message 𝜇 and outputs a bit
𝑏, with 𝑏 = 1 meaning the signature is valid and 𝑏 = 0
meaning the signature is invalid. Verify is a deterministic
algorithm. We write 𝑏 ← Verify(vk, sig, 𝜇).

We require that except with negligible probability over (vk, sk) ←
KeyGen(1𝜆), for allM B {𝜇𝑖 } and S ← BSign(sk, {𝜇𝑖 }) it holds
that ∀ sig𝑖 ∈ S : Verify(vk, sig𝑖 , 𝜇𝑖 ) = 1.

Definition 3.2 (EUF-CMA for Batch Signature Schemes). We de-
fine

Adveuf-cma
A,S (𝜆) B Pr[BEUF-CMAAS (𝜆) ⇒ 1]

forBEUF-CMAAS (𝜆) as in Figure 3 and say a batch-signature scheme
S is EUF-CMA secure if no PPT/BQP adversaryA has non-negligible
advantage Adveuf-cma

A,S (𝜆).

The following proposition is immediate, by simply calling Sign
for all 𝜇𝑖 ∈ M. We call this the naïve construction.

Proposition 3.3. Every EUF-CMA secure signature scheme can
be turned into a EUF-CMA secure batch signature scheme.

We also define two privacy notions for batch signatures. These
assert that no efficient adversary can distinguish whether signa-
tures were signed in the same batch or not. A weak variant of
privacy only guarantees that signatures from the same batch do
not leak anything about a message for which no signature is made
available.

Definition 3.4 ((Weak) Batch Privacy). We define

Advbatch-privA,S (𝜆) B
�� Pr[BATCH-PRIVAS (𝜆) ⇒ 1] − 1/2

��
and

Advwbatch-privA,S (𝜆) B
�� Pr[wBATCH-PRIVAS (𝜆) ⇒ 1] − 1/2

��
for the games defined in Figure 5 and say a signature scheme S
has (weak) batch privacy if no PPT/BQP adversary A has non-
negligible advantage Adv(w)batch-privA,S (𝜆).

Our construction in Section 4 achieves wBATCH-PRIV but not
BATCH-PRIV and thus establishes that there are schemes achiev-
ing the former but not the latter. Next, we establish that an adver-
sary breaking wBATCH-PRIV can also break BATCH-PRIV.

Lemma 3.5. LetA be an adversary against wBATCH-PRIV with
Advwbatch-privA,S (𝜆). Then there is an adversaryB againstBATCH-PRIV
with advantage

Advbatch-privB,S (𝜆) ≥ 1/2 · Advwbatch-privA,S (𝜆)
4



BATCH-PRIVAS (𝜆)
𝑏 ←$ {0, 1};
𝑏★ ← ASign (vk) ;
return 𝑏★ = 𝑏

Sign(M)
if 𝑏 = 0 then

for 𝜇𝑖 ∈ M do

{sig𝑖 } ← BSign(sk, {𝜇𝑖 }) ;
S ← {sig𝑖 }0≤𝑖< |M|

else

S ← BSign(sk,M) ;
return S

wBATCH-PRIVAS (𝜆)
𝑏 ←$ {0, 1};
𝑏★ ← ASign (vk) ;
return 𝑏★ = 𝑏

Sign(M, 𝑖, {𝜇0, 𝜇1})
if 𝑖 ≥ |M| ∨ 𝑖 < 0 then return ⊥
M𝑖 ← 𝜇𝑏 // 𝑖-th message is 𝜇𝑏

S ← BSign(sk,M) ;
S𝑖 ← ⊥ // delete 𝑖-th signature

return S

Figure 5: (Weak) Batch Privacy.

Proof. To construct the adversaryB against BATCH-PRIV, we
use the BATCH-PRIV signing oracle to simulate the call to BSign.
For this, we sample a bit 𝑐 to decide what set M to submit to
BATCH-PRIV signing oracle. When the adversary outputs 𝑐★ = 𝑐
we output 𝑏★ = 1, otherwise we output 𝑏★ = 0.

To bound Advbatch-privB,S (𝜆) note that if 𝑏 = 0 the signatures re-
turned by the BATCH-PRIV signing oracle are independent of 𝜇0
and 𝜇1 by construction and thus the advantage ofA is zero. If 𝑏 =
1 then our signing oracle faithfully emulates the wBATCH-PRIV
signing oracle. Thus,

Advbatch-privB,S (𝜆) =
�� Pr[BATCH-PRIVBS (𝜆) ⇒ 1] − 1/2

��
= 1/2 ·

�� Pr[wBATCH-PRIVAS (𝜆) ⇒ 1 | 𝑏 = 0] − 1/2
��

+1/2 ·
�� Pr[wBATCH-PRIVAS (𝜆) ⇒ 1 | 𝑏 = 1] − 1/2

��
= 0 + 1/2 ·

�� Pr[wBATCH-PRIVAS (𝜆) ⇒ 1 | 𝑏 = 1] − 1/2
��

= 0 + 1/2 · Advwbatch-privA,S (𝜆)

□

Finally, we note that BATCH-PRIV is achievable:

Proposition 3.6. The naïve construction of batch signatures from
the Falcon signature scheme is batch private.

4 CONSTRUCTION
Our construction relies on a Merkle tree. When addressing nodes
in a Merkle tree of height ℎ with 𝑁 leaves, we may label nodes and
leaves in the tree by their position: 𝑛𝑖,𝑘 is the 𝑖-th node at height
𝑘 , counting from left to right and from bottom upwards (i.e. leaves
are on height 0 and the root is on height ℎ). We illustrate this in
Figure 6.

Let S = (KeyGen, Sign,Verify) be a digital signature scheme
as defined in Definition 2.4, let H be a tweakable hash function as
defined in Definition 2.1. We define our batch signature scheme

𝜌

𝑛3,0

𝑛2,0

𝑛1,0

𝜇0 𝜇1

𝑛1,1

𝜇2 𝜇3

𝑛2,1

𝑛1,2

𝜇4 𝜇5

𝑛1,3

𝜇6 𝜇7

Figure 6: A Merkle tree and addressing scheme.

Algorithm 1 BSign(sk, 𝑀 = [𝜇0, 𝜇1, . . . , 𝜇𝑁−1]) for 𝑁 = 2𝑛

1: 𝑇 ← [ ]
2: id←$ {0, 1}𝜆 ⊲ Tree identifier
3: for 0 ≤ 𝑖 < 𝑁 do ⊲ Generate 𝑁 leaves
4: 𝑟𝑖 ←$ {0, 1}𝜆
5: 𝑇 [0, 𝑖] ← H(id, 0 | 𝑖, 𝑟𝑖 | 𝜇𝑖 )
6: end for
7: ℎ ← log2 𝑁
8: for 0 ≤ 𝑘 < ℎ do
9: for 0 ≤ 𝑗 < 2ℎ−𝑘−1 do ⊲ Build tree
10: left, right← 𝑇 [𝑘, 2 𝑗], 𝑇 [𝑘, 2 𝑗 + 1]

⊲ 𝑖𝑑 is public parameter, (1 | (𝑘 + 1) | 𝑗) is tweak
11: 𝑇 [𝑘 + 1, 𝑗] ← H(id, 1 | (𝑘 + 1) | 𝑗, left | right)
12: end for
13: end for
14: root← 𝑇 [ℎ, 0]
15: 𝜎 ← S.Sign(sk, id | root | 𝑁 )
16: for 0 ≤ 𝑖 < 𝑁 do ⊲ Generate user signature
17: path𝑖 ← []
18: for 0 ≤ 𝑘 < log2 𝑁 do
19: 𝑗 ← ⌊𝑖/2𝑘 ⌋
20: if 𝑗 mod 2 = 0 then
21: path𝑖 [𝑘] = 𝑇 [𝑘, 𝑗 + 1]
22: else
23: path𝑖 [𝑘] = 𝑇 [𝑘, 𝑗 − 1]
24: end if
25: end for
26: sig𝑖 ← (id, 𝑁 , 𝜎, 𝑖, 𝑟𝑖 , path𝑖 )
27: end for
28: return {sig0, sig1, . . . , sig𝑁−1}

BaS = (KeyGen,BSign,Verify) with KeyGen B S.KeyGen
and BSign and Verify as in Algorithms 1 and 2 respectively.

Remark. For clarity we restrict our presentation to a fixed, power-
of-two batch size 𝑁 . To handle batches that do not satisfy this, we
break down too long lists of messages into several batches of size
at most 𝑁 . To handle batches of size less than 𝑁 we can either pad
the tree by repeating leaves or use incomplete trees (see e.g. “L-trees”
in [8]). Since this is standard in the literature, we omit the details
here.
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Algorithm 2 Verify(vk, 𝜇, sig = (id, 𝑁 , 𝜎, 𝑖, 𝑟, path))
1: ℎ ← H(id, 0 | 𝑖, 𝑟 | 𝜇)
2: 𝑘 ← 0;
3: for 1 ≤ 𝑘 < log2 𝑁 do ⊲ Construct root
4: 𝑗 ← ⌊𝑖/2𝑘 ⌋
5: if 𝑗 mod 2 = 0 then
6: ℎ ← H(id, 1 | 𝑘 | 𝑗, ℎ | path[𝑘])
7: else
8: ℎ ← H(id, 1 | 𝑘 | 𝑗, path[𝑘] | ℎ)
9: end if
10: end for
11: return S.Verify(vk, id | ℎ | 𝑁 )

5 SECURITY PROOF
Theorem 5.1. Let S = (KeyGen, Sign,Verify) be a digital sig-

nature scheme as in Definition 2.4,H be a tweakable hash function as
in Definition 2.1. Let BaS = (KeyGen,BSign,Verify) be the batch
signature scheme with BSign and Verify defined in Algorithms 1
and 2, respectively. If there exists a (classical or quantum) adversary
A that breaks BEUF-CMA ofBaS (see Definition 2.5) with𝑞𝑠 queries
to the signing oracles, then it holds that

AdvBEUF-CMA
BaS,A (𝜆) ≤ AdvEUF-CMA

S,B (𝜆) + 𝑞𝑠 · AdvSM-TCR
H,C (𝑁, 𝜆),

where B makes 𝑞𝑠 queries to its signing oracle.

The idea of the proof is as follows. Assume adversaryA forges a
signature of BaS on some message. By definition of unforgeability
this message has not been queried to the signing oracle. This en-
ables us to distinguish two cases. Either the root (that is included
in the signature) was part of a query response or not. If it has not
been part of a response, we can extract a forgery for S. In the other
case, there must be a collision somewhere in the hash tree which
we can use to solve SM-TCR.

Proof. LetA be an adversary againstBEUF-CMA ofBaS. More
concretely, assume that the adversary A gets the verification key
vk, has access to a signing oracle, and outputs a signature sig★ B
(id★, 𝑁★, 𝜎★, 𝑖★, 𝑟★, path★) for a message 𝜇★ that has not been
queried before, i.e. (𝜇★, ·) ∉ Q. We proceed via a series of game
hops. Throughout, we letAdv𝑖 denote the advantage ofA inGamei.
Also, we implicitly define root𝑖 (and root★) by sig𝑖 (and sig★) since
they can be computed deterministically: it is the value that comes
out of the authentication path evaluation inVerify, cf. up to Line 10
of Algorithm 2.

Game0: BEUF-CMA against BaS. So

Adv0 = AdvBEUF-CMA
BaS,A .

Game1: Excluding S-forgeries. Game1 is identical to Game0
except that it aborts if (·, (id★, root★, 𝑁★, · · · )) ∉ Q. Here, we use
that sig★ and sig𝑖 implicitly define root★ and root𝑖 . In this case,
((id★, root★, 𝑁★), 𝜎★) is an EUF-CMA forgery for S found by A.
In particular, we have that

S.Verify(vk, 𝜎★, (id★, root★, 𝑁★)) = 1

if Verify(vk, 𝜇★, sig★) = 1.

To bound the distance between both games, we construct an
algorithm B that breaks EUF-CMA of S using A. Given vk, B
runs A(vk). It implements the signing oracle for A following Al-
gorithm 1with the only difference that it asks its own S-signing or-
acle to sign (id, root, 𝑁 ) in line 15. Hence, B makes the same num-
ber of signing queries A makes. Consider the event that Game1
aborts but Game0 does not. We can bound this probability by B’s
advantage AdvEUF-CMA

S,B with 𝑞𝑠 many queries. So

Adv0 −Adv1 ≤ AdvEUF-CMA
S,B .

Bounding Adv1: Forgery in the tree. We now bound the proba-
bility that an adversary succeeds in Game1. Note that if we did
not abort in Game1, we have that the id and root of the forgery
(id★, root★, 𝑁★) are identical to those of a tree that has been cre-
ated during a signing query. Let this query be the 𝑗-th queryM 𝑗 =
{𝜇0, . . . , 𝜇𝑁★−1}with responseS𝑗 . Hence (id★, root★, 𝑁★) = (id𝑘 ,
root𝑘 , 𝑁𝑘 )∀ sig𝑘 ∈ S𝑗 . Here, again, we implicitly define root★
and root𝑘 by sig★ and sig𝑘 . Also, given the fact that 𝜇★, sig★ =
(id★, 𝜎★, 𝑁★, 𝑖★, 𝑟★𝑖 , path★𝑖 ) is a forgery, by definition ofBEUF-CMA,
we must have that 𝜇★ ≠ 𝜇𝑖★ . Running Verify(vk, 𝜇★, sig★) and
Verify(vk, 𝜇𝑖★, sig𝑖★) we note that this computes the same branch
in two hash trees of same height and with identical roots but differ-
ing starting values. By the pigeonhole principle, this implies that
there must be a collision in these paths which can be extracted.

We use the above observation to construct an adversaryC against
the SM-TCR-security ofH. At the beginning of the game,C guesses
which signing query 𝑗 the collision will occur in. To answer the 𝑗-
th signing query, instead of sampling id (Line 2), C builds the tree
using calls to its H(𝑃, ·, ·) oracle (where 𝑃 is chosen by the SM-TCR
challenger, see Figure 1). After finishing the tree, C requests 𝑃 from
the challenger before Line 15 and finishes Algorithm 1. Later, when
the adversaryA outputs a forgery sig★ on 𝜇★, C extracts the colli-
sion usingVerify as outlined above. The algorithm submits the col-
liding value from the forgery as the solution in the SM-TCRAH (𝜆)
game.

We can bound the probability thatA succeeds inGame1 by C’s
advantage AdvSM-TCR

H,C (𝑁, 𝜆) and the probability of C guessing the
right query 𝑗 . So

Adv1 ≤ 𝑞𝑠 · AdvSM-TCR
H,C (𝑁, 𝜆).

Combining both bounds confirms the claimed statement. □

Remark. We note that our proof is not tight due to the factor 𝑞𝑠
incurred from guessing the right query to play the SM-TCR game
with. It is plausible that this factor of 𝑞𝑠 can be removed by a more
careful analysis of the required SM-TCR property. More precisely, we
use a different public parameter id for each tree. For a good tweakable
hash function, a query under public parameter id should not leak any
information about the outcome using a different parameter id′ ≠ id.
Hence, an adversary should intuitively not gain any advantage from
targeting multiple instances of H at the same time, as long as they
use different public parameters as we do. We leave an analysis of this
property for follow-up work.

Theorem 5.2. Let S = (KeyGen, Sign,Verify) be a digital sig-
nature scheme as in Definition 2.4,H be a tweakable hash function as
in Definition 2.1. Let BaS = (KeyGen,BSign,Verify) be the batch
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signature scheme with BSign and Verify defined in Algorithms 1
and 2, respectively. If there exists a (classical or quantum) adversary
A that breaks wBATCH-PRIV of BaS (see Definition 3.4), then it
holds that

AdvwBATCH-PRIVBaS,A ≤ 2 · AdvOT-PRFF,B ,

for F(𝑘, (id, 𝑖, 𝑥)) B H(id, 0 | 𝑖, 𝑘 | 𝑥).

Proof. On receipt ofM, we run the signing oracle as usual but
call our RoR oracle with input (id, 𝑖, 𝜇𝑏 ) in Line 5 of Algorithm 1.
If the oracle returns random outputs (which happens with proba-
bility 1/2), the advantage ofA is zero. Otherwise, ifA returns the
correct answer, this allows to distinguish F from random, which is
bounded by AdvOT-PRFF,B . □

6 APPLICATIONS
Batch signatures reduce the computational cost of signing by re-
placing one signature per message with fewer than two hashes
per message and one signature per batch. They can thus be used to
increase the throughput attainable at a given amount of computa-
tional power. In some applications, the amount of data that needs
to be sent can be reduced in addition; namely, if a given entity (is
aware that it) receives multiple signatures from the same batch. In
this case, sending the signed root multiple times is redundant and
we can asymptotically reduce the amount of received information
to a few hashes per message.

In the following, we describe how to use batch signatures to
reduce computational costs and communication costs in two oper-
ations: certificate generation (typically in an HSM) and transcript
signature (typically in TLS).We then discuss two scenarios inwhich
this can be particularly beneficial.

6.1 Computational Costs
As noted, we will consider two scenarios: HSMs that generate a
large set of short-lived certificates, and server-side signing for TLS.

6.1.1 Hardware SecurityModules. Generating a large set of certifi-
cates, for example when they are renewed for a group of entities,
implies in general computing a signature per certificate, and thus
can represent a significant computational burden. Moreover, those
signatures are in general computed on HSMs, which are signifi-
cantly slower than traditional CPUs. For example, where a mod-
ern commodity CPU can sign tens of thousands of messages per
second with ECDSA [6], some widely used enterprise-grade cloud
HSMs can just sign a few hundred messages per second [7]. Thus,
short-lived certificates [26], for example, can put significant stress
on HSMs, especially when certificate renewal concerns a large set
of devices or containers (e.g. an Envoy mesh network with 10K to
100K containers [15]).

In such a setting, deploying a batch signing approach is quite
straightforward. Interfacing with the HSM, an agent waits for a
signal from the HSM indicating that it is ready to start a new sig-
nature. While waiting, the agent gathers incoming certificate re-
quests that are hashed and a fixed size (e.g. of 32 leaves) Merkle
tree is built. When the HSM signals “ready”, the agent completes
the Merkle tree with the appropriate number of zeroed leaves and
sends it for signing to the HSM. In the opposite case, when the tree

is full before the HSM is ready, the agent starts a new tree resulting
in a queue of trees to be signed.

When the signature of the Merkle tree root is returned by the
HSM, it is added to each certificate together with the sibling path
associated to that request (see Line 26, Algorithm 1), resulting in
the final certificate. Of course, this assumes that the certificate re-
quester is able to verify batch signatures. Moreover, the CA gen-
erating the certificates using batch signatures needs to be updated
accordingly. Naturally this increases the throughput at which cer-
tificates can be signed by roughly a factor equal to the batch size,
as we need only one signature per 32 certificates. For example, in
the cloud HSM setting we would pass for ECDSA from hundreds
to hundreds of thousands of signatures per second.

We expect that this effect will be more pronounced in a post-
quantum setting where signing operations are much more expen-
sive (as mentioned above). However, hard performance figures for
post-quantum signatures on HSMs are not yet available, so we can-
not estimate the likely throughput.

6.1.2 Transport Layer Security. TLS, being one of the most pop-
ular and commonly used cryptographic protocols today, will also
suffer substantial impact from the transition to post-quantum cryp-
tography. Indeed, many of the recent benchmarks (e.g. [23]) show
a significant performance penalty, especially on the computational
and communication costs associated to signatures (in general done
server-side), and the gap becomes much more apparent when con-
sidering packet loss [18]. This performance degradation in PQ TLS
is incurred due to larger signature sizes and slower signing speeds.
KEM sizes and performances while also worse are much closer to
ECC in comparison. As a result, to circumvent the use of (PQ) signa-
tures for authentication in TLS KEMTLS [22] was proposed which
replaces static server authenticationwith a static KEM, so that only
the involved KEM public keys need to be signed rather than the
transcript. The results reported in [22] show a reduction in the
bandwidth required for the client and server communications, as
well as reducing the computational costs on the server’s CPU.

However, despite the performance virtues of KEMTLS, it requires
a number of significant infrastructure changes in order for it to
fully reach fruition. Specifically, in order for KEMTLS to be used
in practice, it will rely on changes to (i) include KEM public keys
into a public-key infrastructure (PKI) and (ii) TLS implementations
to operate with different state machines on both client and server
sides. These points inhibit the design of a KEMTLS standard and its
uptake compared with “plain” PQ TLS. We illustrate the messages
exchanged in TLS 1.3 and in KEMTLS in Figures 7a and 7b.

A less invasive proposal would be to use batch signing for server-
side computations. This approach goes back to [2] and is explored
in this work. As in Algorithm 1, a server can amortise its signa-
ture computation costs by adding each incoming client to a Merkle
tree, building the tree, and returning the signed root to each client,
in addition to some auxiliary information. This then reduces the
number of “inner” signature computations required (by a factor
equal to the batch size), which is the major contributing factor for
the high-throughput improvements shown in Table 2. This signif-
icantly improves the performance of PQ TLS without any major
changes to the PKI.
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(a) High-level overview of TLS 1.3 1-RTThandshake. Cer-
tificate Verify contains the signature.
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(b) High-level overview of KEMTLS handshake.

Figure 7: TLS 1.3 and KEMTLS.

These improvements come at a few extra minor costs in TLS;
these being a slight increase in the overall batch signature sizes
(adding between 82 and 98 bytes, as shown in Table 1) compared
to the non-batch version of the signature aswell as a slight increase
in latency (shown in Table 2) and computation for the client, which
is due to the hash function calls when building the Merkle tree.

6.2 Bandwidth Reduction
As noted previously, in [4] a reduction in certificate sizes is pro-
posed by a new type of CA which would exclusively sign a new
type of batch oriented certificates. Such a CA would only be used
together with a Certificate Transparency authority which changes
the usual required flows for authentication. The benefits obtained
in certificate size and verification/signature costs are significant.
It also implies that the main criterion for being on a same batch
are: being signed by the same CA, and being signed roughly at the
same time.

In this section we consider what benefits we can obtain in a
simpler setting, supposing just that a usual CA and its users can use
multiple signing algorithms, one of them being a batch signature.
In this case multiple certificates will be in the same batch when a
user considers this beneficial. In this section we show how this can
be beneficial (besides reducing the load of the CA). There are two
flows in which we can expect bandwidth reduction for the entities
with certificates belonging to a same signed batch.

6.2.1 First Flow: HSMs. The first flow is from the signing author-
ity (again, typically, an HSM) to the entities corresponding to a
same batch of signed certificates. Indeed, all the issued certificates
have a signature that contains the same Merkle tree root signature
but a different sibling path. Depending on the exact situation, it is
then possible for the HSM to broadcast the root signature or the en-
tire Merkle Tree and remove any information from the certificates
that are sent back that can be reconstructed from the broadcasts.

6.2.2 Second Flow: TLS. The second flow is from the entities hold-
ing the certificates signed on the same batch to the entities receiv-
ing that certificate. This typically happens in TLS when the server

sends their certificate to the client. In that setting, if the client is
going to interact over the lifetime of the certificates with multiple
servers from the same batch group, it can inform that the tree root
signature is already known (for example in TLS with a variation
to the TLS Cached Information Extension that allows to notify a
server that some information is already known). The certificate can
just contain the sibling path as the signature, leading to a band-
width usage reduction (between 1KB and 3KB if using Falcon or
Dilithium, and up to 30 KB if using SPHINCS+).

6.3 Use-Cases
Weconsider here twomore fleshed-out examples of situationswhere
forming batches is natural and can produce significant gains.

6.3.1 Fleet of Load Balancers. To reduce downtime (e.g. because
of a Denial-of-Service attack, server maintenance, etc.) and to im-
prove scalability (e.g. to efficiently (geographic) distribute requests
under heavy network traffic) load balancers are essential for most
of today’s web applications. At the same time, they often act as
a TLS termination proxy, and as such decrypt, encrypt, and sign
the incoming and outgoing HTTPS traffic to offload cryptographic
computations from back-end server(s), see Figure 8. As a conse-
quence, when cryptographic computations becomemore costly due
to the transition to PQC, load balancers themselves may become a
throughput bottle-neck. Implementing batch signatures could sig-
nificantly increase their workload capacity.

In this use-case, we consider a fleet of load balancers belonging
to a large cloud provider that renew their certificates periodically
(say weekly). They form a natural group on the certificate renewal
process and making a batch certificate signature request can signif-
icantly reduce the computational load on the associated HSMs, as
described in Section 6.1.1, and the communications, as described at
the beginning of this section. Most importantly, in such a setting,
the fleet of load balancers would send full certificates only once per
week and per user, and in all remaining connections load balancers
will reduce the size of the certificates by 1 to 30KB. From a user per-
spective, if major cloud providers use this system, a user will only
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Figure 8: Client–Load Balancer–Backend server connection
with nested batch signatures.

have to download full sized certificates a few times per week (for
connections served through cloud provider load balancers).

Instead of considering the bandwidth reduction, this can be seen
as a usability question for schemes with large signatures such as
SPHINCS+. This algorithm relies on mild assumptions, and thus
is a good candidate for CAs. Unfortunately, increasing certificate
sizes to tens of kilobytes can be considered too steep of a require-
ment. Batch signing can solve this in the load balancer setting (and
similar situations) as full certificates are only sent exceptionally.

6.3.2 mTLS Mesh. The second scenario is a large-scale container
mesh network that renews themutual TLS (mTLS) certificates in its
Envoy instances. In this scenario, by considering all the Envoy in-
stances as a single batch, there is no need to ever transmit the root
signature between peers, as every peer has the root signature in its
own certificate (see Figure 9). Of course, during the generation of
the certificates we also benefit from the already described compu-
tational and communication reduction for the HSM which can be
quite significant for mesh networks with thousands or tens of thou-
sands of containers. The storage requirements for the whole set of
mesh certificates (in cached key servers that are used throughout
mesh networks) is also greatly reduced, e.g. for a ten thousand con-
tainer mesh using SPHINCS+ signatures it would be reduced from
hundreds of megabytes to hundreds of kilobytes.

7 IMPLEMENTATION & BENCHMARK SETUP
As a demonstrator for batch signatures we implement them for one
of the most important use cases, TLS, and set up a load balancer
benchmark. Here we provide details on our implementation and
on the benchmark setup.

7.1 Implementation details
There are a number of components that make up the overall im-
plementation for our proof-of-concept batch signing experiments
in TLS. These allow us to estimate realistic conditions for secure
network communications and thus accurately learn how effective
our construction is under such conditions. These components are:

• bsign_engine: the Rust implementation of batch signing, which
includes Merkle tree building and batch signing functionalities.
We also have a benchmarking wrapper to produce results.

Figure 9:Mesh networkwith envoys using nested signatures
within mTLS

• openssl: includes a fork of OpenSSL 1.1.1, using support from
the liboqs library [25] and batchtls_engine.

• tcpserver: a TCP server, using openssl and bsign_engine.
The bsign_engine is the core component of our implementa-

tion. It is responsible for asynchronously gathering client requests
intoMerkle trees and signing the associated rootswith a fixed num-
ber of signing threads.

We introduce two implementation-specific parameters, described
below, which are used to tweak the performance of our implemen-
tation. This fine-tuning allows us to increase performance based on
a number of factors, most importantly what signature algorithm is
used, the server specifications, and the resulting latency.

Merkle Tree Size: This quantifies the amount of messages han-
dled per batch signing transaction, which thus affects the latency
and throughput of the server. Having a larger number of clients
(messages as tree leaves) will reduce the average computation time
per client, but at the same time will increase the size of the final
signature (due to the longer path) and increase median and worst-
case latency. We provide batch signature sizes in Table 1.

We parameterise the Merkle tree using the number of leaves in
the tree and commonly fix this to a power-of-two for efficiency
reasons, e.g. MT_size = 25 which produces a (balanced) tree of
height 5. However, this parameter may need to be adapted to fit
other hardware or performance constraints.

Signing Threads: These are responsible for taking the ownership
of a Merkle tree and for signing its root. When a signing thread
is currently signing a Merkle tree root, it cannot handle the next
tree. Thus, if the bsign_engine has a single signing thread, the
worst observed latency will correspond to twice the time needed
for a signature. By adding additional signing threads, the latency
will get closer to the time needed for a signature. However, having
too many signing threads may saturate the scheduling and may
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slow down the engine, or become sub-optimal at the very least.
Inversely, if we reduce the number of signing threads we also limit
the number of cores used for signatures. In Table 2, we choose
the number of signing threads/cores as the smallest number that
allows to increase the number of handshakes significantly (with
respect to the plain implementation) with a low latency increase.

We use the open-source Rust library, ring [24], for our ECDSA
implementation and the open-source C library, liboqs [25], for
our implementations of post-quantum signatures. One reason for
using this library in particular is because it has integration into
OpenSSL 1.1.12 which we patch for our experiments to work with
the bsign_engine. The patchmodifies the statemachine of OpenSSL
to inject batch signing under certain conditions, but in such a way
that it remains functional with classic TLS when these conditions
are not met. More specifically, our patch adds a new structure –
BATCHTLS_CTX – to the OpenSSL context – SSL_CTX – to track the
context of the engine.We use environment variables for setting the
parameters in bsign_engine for simplicity, as opposed to adding
new APIs on top of SSL_CTX.

These aforementioned components are the ingredients thatmake
up our overall implementation for batch signing in TLS, once com-
bined with a TCP server. Implementing it this way gives us a real-
istic environment in order to run our experiments; providing con-
ditions that we would expect to see in the real world.

7.2 Benchmark Setup
We demonstrate the application of batch signatures for the TLS
use case with the results for these shown in Table 2. For this setup
we took between one and four client machines and a single server
machine. Each of them uses a Google Cloud C2 instance which has
an Intel 3.9 GHzCascade Lake processor. The specific instance type
we used was the c2-standard-30, which offers 30 (virtual) CPU
threads, 120 GBmemory, and a (max) egress bandwidth of 32 Gbps.
We disable hyper-threading in order to have more stable tests.

The results in Table 2 labelled as ‘plain’ are taken from a multi-
threaded implementation (with a pool of as many threads as com-
puter cores and with select/poll handling). For the batch signing
results, we use a limit on the maximum size of the Merkle tree.
The amount of cores used for signatures is estimated for the plain
approach out of the computational cost of one signature, and fixed
(by reserving cores explicitly) for the batch signing approach.

The results in Table 2 provide both handshakes per second (es-
sentially, throughput) and latency (for various percentiles).We kept
Merkle tree sizes to either 16 or 32, since larger sizes incurredmuch
higher latency costs. Indeed, for large trees the latency added is un-
realistic, despite throughput being increased.

The performance results are presented in Table 2 and discussed
on the associated caption. Results for SPHINCS+ and a second bench-
mark in the HSM setting will be presented in a full version of this
paper.
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