
On the Security of Blind Signatures in the
Multi-Signer Setting

Samuel Bedassa Alemu and Julia Kastner

Department of Computer Science
ETH Zurich, Switzerland

samuelbe@student.ethz.ch, julia.kastner@inf.ethz.ch

Abstract. Blind signatures were originally introduced by Chaum
(CRYPTO ’82) in the context of privacy-preserving electronic payment
systems. Nowadays, the cryptographic primitive has also found applica-
tions in anonymous credentials and voting systems.
However, many practical blind signature schemes have only been ana-
lysed in the game-based setting where a single signer is present. This is
somewhat unsatisfactory as blind signatures are intended to be deployed
in a setting with many signers.
We address this in the following ways:
– We formalise two variants of one-more-unforgeability of blind signa-

tures in the Multi-Signer Setting.
– We show that one-more-unforgeability in the Single-Signer Setting

translates straightforwardly to the Multi-Signer Setting with a re-
duction loss proportional to the number of signers.

– We identify a class of blind signature schemes which we call Key-
Convertible where this reduction loss can be traded for an increased
number of signing sessions in the Single-Signer Setting and show
that many practical blind signature schemes such as blind BLS,
blind Schnorr, blind Okamoto-Schnorr as well as two pairing-free,
ROS immune schemes by Tessaro and Zhu (Eurocrypt’22) fulfil this
property.

– We further describe how the notion of Key Substitution attacks (Me-
nezes and Smart, DCC’04) can be translated to blind signatures and
provide a generic transformation of how they can be avoided.

1 Introduction

Blind Signature Schemes. In his seminal work titled “Blind Signature for Un-
traceable Payments” [10], David Chaum introduced the concept of blind signa-
ture and gave a general description regarding the defining characteristics of the
scheme. He based his work on his concern about how payments were processed
in the digital world. Chaum felt that electronic banking services had significant
privacy implications. He argued that in traditional electronic payments, a third
party keeps a record of the payee and the amount and the time of payment for
each transaction, thus revealing a lot about the individual. Such payment sys-
tems contrast with anonymous payment systems such as banknotes and coins,

2 Samuel Bedassa Alemu and Julia Kastner

which lack control and security and could potentially be used for illicit purposes.
He proposed a new type of cryptography that allows payments to be made with
more privacy whilst maintaining the same functionality of banknotes or elec-
tronic payments. In a later work [11], Chaum presented the first actual realisa-
tion of blind signatures, called Chaum’s blind RSA scheme, a transformation of
the classic RSA signature scheme [22].

Since then, (partially) blind signature schemes based on various assumptions
have been presented, such as discrete logarithms [1, 2, 20, 24], pairings [7, 15],
RSA [11], lattices [3, 17, 23]. Additionally, there are also generic constructions
like [12] from other cryptographic building blocks.

Notably, apart from [12], most schemes have only been analysed in the game-
based setting with a single signer.

The Multi-Instance Setting. Most game based cryptographic security definitions
only take into account one game with a single challenger. As cryptographic prim-
itives are deployed in the real world with many instances (e.g. many participants
that each generate their own public key), considering only a single instance in
security proofs may not be realistic. Hofheinz & Nguyen [18] define the Multi-
Instance Setting generically for cryptographic primitives. Their interest is in the
tightness of security proofs, i.e., the loss of advantage/increase in runtime that
a reduction has compared to the adversary. They provide two variants of the
Multi-Instance Setting. In both, the adversary is given access to n copies of the
security game. In one setting, which we call the existential setting, the adversary
then wins if it wins one of the copies, in the other, it wins if it wins all of the
copies.

It is easy to see that a loose reduction can be given for the existential setting,
as the reduction can merely guess which of the copies the adversary is going to
win. The reduction loss is proportional to the number of copies of the game. We
give the corresponding security definition for one-more unforgeability and the
reduction in sections 3.2 and 4.2.

Multi-Instance Settings have been investigated for various cryptographic
primitives such as public key encryption [4], digital signature schemes [18, 19],
lossy trapdoor functions [18].

Our Contribution. In this work, we extend the notion of One-More Unforge-
ability of blind signatures to the Multi-Instance-Setting, which we call the Multi-
Signer-Setting (MSS), as the adversary gets to interact with many signers. We
give two definitions; one is strong Multi-Signer OM-UF where an adversary is
required to provide a one-more forgery in one of the instances but has no require-
ment on the other instances (i.e., there may be instances where the adversary
generates fewer signatures than completed signing sessions). For this security
notion, we show that a straightforward reduction can be applied to show that
security in the single-instance setting implies security in the Multi-Instance Set-
ting. This reduction has a loss factor proportional to the number of signers, i.e.,
it is not tight.

On the Security of Blind Signatures in the Multi-Signer Setting 3

The other setting we consider is weak Multi-Signer OMUF in which the
adversary needs to output a forgery with respect to one of the instances but also
is required to output as many signatures as completed signing sessions for all
other instances. We identify a class of blind signature schemes that we call key
convertible and show that security in the Single-Instance Setting tightly implies
security in the weak Multi-Instance Setting for these schemes. The number of
signing sessions needed in the single-instance setting is the sum of the number
of signing sessions of all instances in the Multi-Instance Setting. We show that
various existing blind signature schemes are key convertible.

Lastly, we consider a variant of the Key Substitution attack [19] for blind
signatures. Informally speaking, in a Key Substitution attack, an adversary can
come up with a new public key pk for a message-signature pair (m,σ) that is
valid with respect to pk, so that (m,σ) is also valid with respect to pk. Menezes &
Smart [19] analysed this type of attack for (non-blind) digital signature schemes.
This type of attack can be used in the digital signature setting to impersonate
participants during an authenticated key exchange[6]. We give a definition of
Key Substitution attacks for blind signatures and propose some transformations
to prevent Key Substitution attacks.

2 Preliminaries

Notation. We denote by s $← S the uniform sampling of a value s from the
finite set S, and by y $← A(x1, . . . , xn) that y is the output of a probabilistic
algorithm A on inputs x1, . . . , xn.

We denote by Zp the ring of integers modulo p ∈ Z, where usually p will be
a prime.

We denote an interactive execution between algorithms X, and Y by (a, b)←
⟨X(x), Y (y)⟩, where x is the private input of X and y is the private input of
Y . The private output of X is a, and the private output of Y is b. We write
Y ⟨X(x),·⟩∞ if Y can invoke an unbounded number of executions of the interactive
protocol withX in arbitrary interleaved order. Accordingly,X⟨·,Y (y0)⟩1,⟨·,Y (y1)⟩1(x)
can invoke arbitrarily ordered executions with Y (y0) and Y (y0) but interacts
with each algorithm only once.

2.1 Groups

Definition 1 (Group Schemes). A group scheme consists of the following
algorithms:

Setup() : outputs group parameters ppG for a group G of prime order p. The
group parameters contain a generator g, a neutral element, as well as the
group order p.

Mult(ppG, g1, g2) : takes as input two group elements and outputs g1 · g2 (we will
often write the latter to denote group multiplication)

We require that the group axioms hold in G with respect to Mult.

4 Samuel Bedassa Alemu and Julia Kastner

Definition 2 (Discrete Logarithm Problem (DL)). For a group scheme
(Setup,Mult), we say that the discrete logarithm problem is (t, ε)-hard if for all
probabilistic adversaries A that run in time at most t it holds that

AdvDLOG
A = Pr

x = x′ :

ppG
$← Setup()

x $← Zp

y := gx

x′ $← A(y)

 ≤ ε

Definition 3 (Computational Diffie-Hellman Problem (CDH)). For a
group scheme (Setup,Mult), we say that the Computational Diffie-Hellman Prob-
lem is (t, ε)-hard if for all probabilistic adversaries A that run in time at most t
it holds that

AdvCDH
A = Pr

z = gxy :
ppG

$← Setup()
x, y $← Zp

z $← A(g, gx, gy)

 ≤ ε

Definition 4 (Decisional Diffie-Hellman Problem (DDH)). For a group
scheme (Setup,Mult), we say that the Decisional Diffie-Hellman Problem is (t, ε)-
hard if for all probabilistic adversaries A that run in time at most t it holds that

AdvDDH
A = 2

∣∣∣∣∣∣Pr
b = b′ :

ppG
$← Setup()

x, y, z $← Zp

b′ $← A(g, gx, gy, gxy+bz)

− 1

2

∣∣∣∣∣∣ ≤ ε

Definition 5 (Gap Diffie-Hellman Groups). A prime order group G is a
Gap Diffie-Hellman (GDH) group if there exists an efficient algorithm VDDH

which solves the DDH problem in G and there is no polynomial-time algorithm
which solves the CDH problem.

2.2 Multi-Instance Settings

Definition 6 (Security Games [5]). A security game consists of the following
algorithms: Initialize, Finalize and oracles O1, . . . Om. For a game Game and an
adversary A, we denote by GameA the output of the game depicted in the left
part of fig. 1.

Remark 1. We will often denote the Initialize and Finalize algorithms as one al-
gorithm Game which first runs Initialize, then the adversary A, and then Finalize
to determine its output.

Definition 7 (Multi-Instance Settings [18]). Let Game be a security game
with a set of oracles O. We define the existential multi-instance setting of Game
as described in the right side of fig. 1.

On the Security of Blind Signatures in the Multi-Signer Setting 5

GameA

1 : (C, state) $← Initialize

2 : S $← AO1,··· ,Om(C)

3 : return Finalize(C, state, S)

∃-n-GameA

1 : foreach i ∈ [n]

2 : (Ci, statei)
$← Initialize

3 : foreach i ∈ [n]

4 : (i, S) $← AO1,...,On(C1, . . . , Cn)

5 : return Finalize(Ci, statei, S)

Fig. 1. Left: A single instance of a game. Right: A game in the multi-instance setting
whereby Oi we denote a copy of the oracle set for the i-th game, that is, the adversary
runs on all challenges and has access to the oracles of all games at the same time.

2.3 Blind Signatures

In the following, we introduce Blind Signatures schemes by extending the de-
scription by Fischlin & Schröder [13]. We do so by making use of the notation
introduced earlier for interactive executions between two algorithms.

We introduce the syntax and security definitions of blind signature schemes
and partially blind signature schemes. A fully blind signature scheme is a special
case of a partially blind signature scheme where there is only one tag info, the
empty string. We will refer to schemes where the tag is always the empty string
as blind signature schemes.

Definition 8 (Partially Blind Signature Scheme). A µ-move partially
blind signature scheme Σ consists of a tuple of efficient algorithms (KGen, ⟨Sign,
User⟩,Vf) with the following behaviour. We denote by µs := ⌈µ/2⌉ the number
of messages sent by the signer, and by µu := ⌊µ/2⌋ the number of messages sent
by the user.1

– KGen: the randomised key generation algorithm takes as input parameters
pp, and outputs a public key pk and a secret key sk.

– ⟨Sign,User⟩: the joint execution of algorithms Sign and User .
• Sign: the randomised algorithm takes as input a secret key sk and a tag
info. For i ∈ [µs], it executes

(stSi ,msgi)
$← Signi(sk, info, st

S
i−1, chli−µs+µu

)

and returns the state stSi and the output msgi. For µs = µu+1, and i = 1
we define chliµs+µu

= chl0 to be the empty string. We further define stS0
to be the empty string.

• User: the randomised algorithm takes as input a public key pk, a message
m, a tag info. i ∈ [µu + 1], it executes

(stUi , chli)
$← Useri(pk, info,m, stUi−1,msgi+µs−(µu+1))

1 W.l.o.g. we only consider schemes where the last message is sent by the signer, as
the user can generate a signature as soon as he has received the last message from
the signer.

6 Samuel Bedassa Alemu and Julia Kastner

and returns the state stUi and the output chli, where for Userµu+1, the
output is a signature σ or ⊥ which are not sent to the signer. We further
define msg0 in the case that it occurs to be the empty string. We further
define stU0 to be the empty string.

• The joint execution generates the final output ⊥ or a signature σ for
User and some possibly empty final output λ for Sign.

(λ, σ ∨ ⊥) $← ⟨Sign(sk, info),User(pk, info,m)⟩

– Vf: the deterministic algorithm takes as input a public key pk, a signature σ,
and a message m and a tag info. The algorithm outputs either 1 indicating
valid or 0 indicating not valid.

Definition 9 (Correctness). We say that a partially blind signature scheme
Σ = (KGen, ⟨Sign,User⟩,Vf) is correct if for all pp, for all (sk, pk) $← KGen(pp),
for all messages m, all tags info and all signatures σ outputted by User in the joint
execution of Sign(sk, info) and User(pk, info,m) we have Vf(pk, σ,m, info) = 1.

We consider the following notion of unforgeability for (partially) blind signa-
ture schemes:

Definition 10 (One-More-Unforgeability (OM-UF)). For a blind signa-
ture scheme Σ and an adversary A we define the One-More-Unforgeability ex-
periment as shown in fig. 2.

OM-UFΣ
A,ℓ(pp)

1 : (sk, pk)← KGen(pp)

2 : ((m1, σ1), . . . , (mℓ+1, σℓ+1))
$← A⟨Sign(sk),·⟩∞(pk)

3 : return 1 if

4 : mi ̸= mj for 1 ≤ i < j ≤ ℓ+ 1 and

5 : Vf(pk,mi, σi) = 1 foreach i ∈ {1, · · · , ℓ+ 1} and
6 : Sign has completed at most ℓ executions sessions

Fig. 2. One-More-Unforgeability game for an adversary A on a blind signature scheme
Σ.

We denote the advantage of A in the OM-UF game by

AdvOM-UF
Σ,A,ℓ = Pr

[
OM-UFΣ

A,ℓ = 1
]

and we say that Σ is (t, ε)-ℓ-one-more-unforgeable if for any adversary A that
runs in time at most t, AdvOM-UF

Σ,A,ℓ ≤ ε.

Another security property of (partially) blind signature schemes is (partial)
blindness. As the focus of this work is unforgeability, we give the definition of
(partial) blindness in appendix A.

On the Security of Blind Signatures in the Multi-Signer Setting 7

3 Blind Signatures in the Multi-Signer Setting (MSS)

In this section, we will discuss the two definitions for the security of Blind Sig-
natures in the Multi-Signer Setting as well as the translation of the notion of
Key Substitution attacks [19].

3.1 Blind Signatures Key Substitution

Key Substitution entails appropriating a signature σ for a message m generated
by a legitimate entity with the corresponding public key pk and making it appear
to be the signature of another entity with the public key pk. An adversary could
claim to be an entity with the public key pk and pass off the signature σ as its
own. We refer to such an attack as Blind Signature Key Substitution Attack, or
simply Key Substitution when the context is implied. We adopt the definition of
a similar attack against digital signatures from [19] as follows.

Definition 11 (Key Substitution Attacks for Blind Signatures). For a
Blind Signature Scheme Σ we define the game KeySub as described in fig. 3. We

KeySubΣA(pp, n)

1 : foreach i ∈ [n]

2 : (ski, pki)← KGen(pp)

3 : (pk∗, pk,m, σ)← A⟨Sign(ski,i∈[n]),·⟩
∞
(pki,i∈[n])

4 : return (pk∗ = pki for some i ∈ [n] ∧ pk∗ ̸= pk ∧ Vf(pk∗,m, σ) ∧ Vf(pk,m, σ))

Fig. 3. Key Substitution game for an adversary A and a blind signature scheme Σ.

denote the advantage of an adversary A as

AdvKeySubΣ,A,pp,n = Pr
[
KeySubΣA(pp, n) = 1

]
and say that Σ is (t, ε)-secure against Key Substitution Attacks if for all adver-

saries A that run in time at most t, AdvKeySubΣ,A ≤ ε.

Remark 2 (On the Notion of Key Substitution Attacks). We choose this notion
as it is the strongest one in the sense that it makes the least restrictions on
the adversary. Weaker notions include those where the adversary is required
to output a secret key matching its chosen public key pk, bounds on the set
of permitted public keys pk (e.g. only accepting public keys in the support of
KGen), or bounds on the number of signing sessions permitted.

8 Samuel Bedassa Alemu and Julia Kastner

3.2 One-More Unforgeability in MSS

We introduce an extension of One-More Unforgeablity (definition 10), a well-
accepted notion for blind signatures, for the Multi-Signer Setting. This is neces-
sary to adequately account for the capabilities of an adversary in the real world.
Indeed, doing so is critical as attacks on applications of blind signature schemes
involving multiple entities can have damaging consequences.

Definition 12 (Strong-Multi-Signer-One-More-Unforgeability (sMSS-
OM-UF)). For a blind signature scheme Σ and an adversary A, we define the
Strong-Multi-Signer-One-More-Unforgeability game as

sMSS-OM-UFΣ
A,n,ℓ = ∃-n-OM-UFΣ

A,ℓ

(see definitions 7 and 10) and say that Σ is (t, ε)-secure against sMSS-OM-UF
if for all adversaries that run in time t, it holds that the advantage

AdvsMSS-OM-UF
Σ,A,n,ℓ ≤ ε.

For completeness, we provide pseudocode of the sMSS-OM-UF game in fig. 4

sMSS-OM-UFΣ
A(pp, n)

1 : foreach i ∈ [n]

2 : (ski, pki)← KGen(pp)

3 : (i∗, (mj , σj)j∈[ℓ+1]))← A⟨Sign(ski,i∈[n]),·⟩
∞
(pki,i∈[n])

4 : return 1 if

5 : mj ̸= mj′ foreach j, j′ ∈ [ℓ+ 1]

6 : and Vf(pki∗ ,mj , σi,j) = 1 j ∈ [ℓ+ 1]and

7 : Sign(ski∗) has completed at most ℓ execution sessions

Fig. 4. Pseudocode for strong multi-signer one-more-unforgeability game.

We further define a weaker version of the above security notion that allows
a tight security reduction for specific blind signature schemes.

Definition 13 (Weak-Multi-Signer-One-More-Unforgeability (wMSS-
OM-UF)). For a blind signature scheme Σ, and any adversary A, we define the
weak-multi-signer one-more-unforgeability game in fig. 5. whereby δi,i∗ denotes
1 in the case that i = i∗ and 0 otherwise.

We denote by

AdvwMSS-OM-UF
Σ,A,n := Pr[wMSS-OM-UFΣ

A(pp, n) = 1]

On the Security of Blind Signatures in the Multi-Signer Setting 9

wMSS-OM-UFΣ
A(pp, n)

1 : foreach i ∈ [n]

2 : (ski, pki)← KGen(pp)

3 :
(
(mi∗,j , σi∗,j)j∈[ℓi∗+1]), (mi,j , σi,j)i∈[n]\i∗,j∈[ℓi])

)
← A⟨Sign(ski,i∈[n]),·⟩

∞
(pki,i∈[n])

4 : return 1 if

5 : mi,j ̸= mi′,j′ foreach i, i′ ∈ [n], j ∈ [ℓi + δi,i∗], j
′ ∈ [ℓi′ + δi,i∗], (i, j) ̸= (i′, j′)

6 : and Vf(pki,mi,j , σi,j) = 1 foreach i ∈ [n], j ∈ [ℓi + δi,i∗]and

7 : Sign(ski)foreach i ∈ [n] has completed at most ℓi execution sessions

Fig. 5. Pseudocode for weak multi-signer one-more-unforgeability game.

and we say that Σ is (t, ε)-secure against One-More-Unforgeability in the weak
Multi-Signer-Setting if for all adversaries A that run in time at most t it holds
that

AdvwMSS-OM-UF
Σ,A,n ≤ ε.

Remark 3 (On the weak vs. strong notion). Unlike some other security games,
the OM-UF game can be “lost” in two different, not trivially equivalent ways.
This is because an adversary may be able to still output as many signatures
as it requested when it fails, or it may fail and not even be able to output
as many signatures as requested. This is reflected in our two different notions
of MSS-OM-UF, as in both cases, the adversary only needs to “win” one game.
However, in the strong setting, it can lose all other games completely and output
no signatures, whereas, in the weak setting, it still needs to output “enough”
signatures in each game.

4 Generic Analysis of Blind Signatures in the
Multi-Signer-Setting

In the following, we describe how Blind Signature schemes can be generically
proven secure against the attack scenarios from the previous section.

4.1 Modifications against Key Substitution

We present two different modifications for blind signature schemes that aim to
negate the probability of an attacker carrying out a Key Substitution attack in
the presence of multiple signers. The main intuition behind both modifications
is to make the signer’s public key part of the message for which a signature
is obtained so that a signature with respect to one public key is not a valid
signature with respect to another public key.

10 Samuel Bedassa Alemu and Julia Kastner

Modified Verification Algorithm In [19], Menezes and Smart proposed a
generic modification of digital signature schemes to counter the Key Substitution
attack by prepending messages with the signer’s public key before signing. In
the case of blind signatures, a signer has no control over the messages he signs;
hence, no way to prepend messages with his public key. Nevertheless, we adopt
this modification for blind signatures by letting the user do the prepending and
modifying the verification algorithm to check the format of the message.

Let Σ = (KGen, ⟨Sign,User⟩,Vf) be a blind signature scheme. We define a
blind signature scheme Σ1 = (KGen1, ⟨Sign1,User1⟩,Vf1).

– KGen1(pp) := KGen(pp)
– ⟨Sign1(sk),User1(pk,m)⟩ := ⟨Sign(sk),User(pk, pk||m)⟩
– Vf1(pk,m, σ) := Vf(pk, pk||m,σ)

Theorem 1. If a blind signature scheme Σ = (KGen, ⟨Sign,User⟩,Vf) is secure
against a one-more-forgery adversary in the Single-Signer Setting, then Σ1 =
(KGen1, ⟨Sign1,User1⟩,Vf1) is secure against a Key Substitution adversary in
the Multi-Signer Setting.

Proof. Let Σ = (KGen, ⟨Sign,User⟩,Vf) be a one-more-forgery secure blind sig-
nature scheme in the Single-Signer Setting. Σ1 is secure against Key Substitution
attacks since none of the message-signature pairs that are valid with respect to a
public key pk can be valid with respect to another public key pk. This is because
the public key pk ̸= pk is part of the message and is checked by the verifica-
tion algorithm. We remind that a Key Substitution attacker of a blind signature
scheme can only succeed if a message-signature pair is valid with respect to two
different public keys. ⊓⊔

The properties of our generically modified scheme are similar to those of
restrictive blind signature schemes. Restrictive blind signatures, introduced by
Brands [9], allow a recipient to obtain a blind signature on a message that is
unknown to the signer, but the choice of message is restricted and must conform
to certain rules.

For Partially Blind Schemes A partially blind signature scheme Σ = (KGen,
⟨Sign,User⟩,Vf) can be modified to Σ2 = (KGen2, ⟨Sign2,User2⟩,Vf2) to become
secure against Key Substitution attacks by simply making the signer’s public key
part of the tag. The signing algorithm Sign2 is identical to Sign, except that it
checks that the tag contains the correct public key before signing and aborts if
it does not. This is possible because the tag is not blinded.

– KGen2(pp) := KGen(pp)
– ⟨Sign2(sk, info),User2(pk, info,m)⟩ := ⟨Sign(sk, pk||info),User(pk, pk||info,m)⟩
– Vf2(pk,m, σ, info) := Vf(pk,m, σ, pk||info)

Theorem 2. If a partially blind signature scheme Σ = (KGen, ⟨Sign,User⟩,Vf)
is secure against a one-more forgery adversary in the Single-Signer Setting, then
Σ2 = (KGen2, ⟨Sign2,User2⟩,Vf2) is secure against a Key Substitution adversary
in the Multi-Signer Setting.

On the Security of Blind Signatures in the Multi-Signer Setting 11

Proof. Let Σ = (KGen, ⟨Sign,User⟩,Vf) be a one-more-forgery secure partially
blind signature scheme in the Single-Signer Setting. Σ2 is secure against Key
Substitution attacks since none of the (message, signature, tag) triples that are
valid with respect to a public key pk can be valid with respect to another public
key pk. This is because the public key pk ̸= pk is part of the tag and is checked
by the verification algorithm. The signer only creates signatures that are valid
with respect to tags containing the public key pk. ⊓⊔

4.2 Lossy Reduction for One-More Unforgeability

In the following, we compare the advantage of a one-more forgery adversary in
Single-Signer Setting to that of a one-more forgery adversary in the Multi-Signer
Setting.

For any blind signature scheme, the following theorem states that the advan-
tage of a one-more-forgery adversary in the Multi-Signer Setting can be upper
bounded by a function of the advantage of a one-more forgery adversary with
comparable resources in the Single-Signer Setting. The factor in the upper bound
is polynomial in the number of signers in the setting and is parameterised by
the maximum number of completed signing sessions that may be executed with
each of the signing oracles. This is similar to existential unforgeability generic
reductions for digital signatures in [16], and [14].

Theorem 3. Let n, ℓ be integers and Σ a blind signature scheme. It holds that

AdvsMSS-OM-UF
Σ,A,n,ℓ ≤ n · AdvOM-UF

Σ,A,ℓ

where AdvsMSS-OM-UF
Σ,A,n,ℓ is defined in definition 12 and AdvOM-UF

Σ,A,ℓ is defined in defi-
nition 10.

Proof. In the following, we prove the theorem from above. We assume that we
have an algorithm A capable of generating One-More Forgery with probability
ϵn in Multi-Signer Setting consisting of n signers.

We now describe an algorithm BA for solving the Single-Signer case by using
the algorithm A as a subroutine. The input to BA is a public key pk. Further,
access to the corresponding signing oracle Sign(sk) is given. Basically, B can
simulate a game for A in the Multi-Signer Setting by generating multiple signing
key pairs itself. A pseudo-code of BA is given in fig. 6.

We describe how BA answers the signing queries A. If i = i∗, i.e. ski∗ = sk,
then BA can use the signing oracle Sign(sk). For i ̸= i∗, i.e. ski ̸= sk, BA can
answer the signing queries by using the secret key ski. This works because all
secret keys ski, i ̸= i∗ are known to BA, so BA can perfectly simulate all signing
oracles.

The algorithm BA will output one-more forgery with a probability ofϵn/n
because there is a 1/n chance that pki∗ = pk. Since ϵ1 ≥ ϵn/n we get ϵn ≤ n · ϵ1.

This proves the theorem above about a generic reduction from the Multi-
Signer to the Single-Signer Setting.

⊓⊔

12 Samuel Bedassa Alemu and Julia Kastner

BA(pk)

1 : i∗ $← [1, n]

2 : pki∗ ← pk

3 : foreach i ∈ [1, n]\[i∗]
4 : (ski, pki)

$← KGen(pp)

5 : (pk∗,mt, σt)t∈[1,l+1]
$← A⟨Sign(ski,i∈[1,n]),·⟩

∞
(pki,i∈[1,n])

6 : return (pk∗,mt, σt)t∈[1,ℓ+1] if

7 : pk∗ = pki∗ and

8 : mt ̸= mt′ for t, t′ ∈ [1, ℓ+ 1], t ̸= t′ and

9 : Vf(pk∗,mt, σt) = 1 foreach t ∈ [1, ℓ+ 1] and

10 : Sign(ski∗) has completed at most ℓ execution sessions

11 : return fail

Fig. 6. Lossy generic reduction for s-MSS-OM-UF.

The following corollary allows us to conclude that, under certain assump-
tions, a blind signature scheme can be proven secure against a one-more forgery
adversary in the Multi-Signer Setting. Since the relation between the advantages
of BA and A is polynomial, we have the following:

Corollary 1. Let Σ = (KGen, ⟨Sign,User⟩,Vf) be a blind signature scheme that
is polynomially secure against a one-more forgery adversary in the Single-Signer
Setting. Then, Σ is also polynomially secure against a one-more forgery adver-
sary in the Multi-Signer Setting.

4.3 Trading the Reduction Loss for more Signing Sessions through
Key Convertibility

We note that the reduction in section 4.2 loses a factor n where n is the number of
instances/signers. When choosing parameters, e.g. for group sizes, for deploying
blind signatures in the real world, a larger loss would mean that larger group
parameters need to be chosen to achieve the same security guarantees.

Therefore, we are interested in a reduction that does not incur this loss. In
the following, we present a way this reduction loss can be traded for an increased
number of signing sessions in the Single-Signer Setting, as well as slightly weaker
security guarantees in the Multi-Signer Setting.

This is possible when the schemes have certain properties. We call this gen-
eral class of schemes key convertible blind signature schemes, similar to key
convertible signature schemes introduced in [16].

We give our definition of a key converter for blind signature schemes below:

Definition 14 (Key Converter). A key converter C for a blind signature
scheme Σ = (KGen, ⟨Sign,User⟩,Vf) is given by the following algorithms:

On the Security of Blind Signatures in the Multi-Signer Setting 13

– C.Key(pp, pk): on input, a public key pk returns a public key pk′ and a con-
version key ckpk→pk′ .

– C.Conv(ckpk→pk′): on input, a conversion key ckpk→pk′ with access to a sign-
ing oracle ⟨Sign(sk), ·⟩1 corresponding to the public key pk executes jointly
with User to generate a signature for User and some possibly empty output
λ′ for C.Conv.

(λ′, σ′∨ ⊥) $← ⟨C.Conv⟨Sign(sk),·⟩
1

(ckpk→pk′),User(pk
′,m)⟩

C.Conv executes in the role of a user when interacting with Sign and in the
role of a signer when interacting with User. Crucially, C.Conv only needs
one completed joint execution session with Sign in order to generate a valid
signature with respect to pk′ for User.

– C.Rec(ckpk→pk′ , σ
′,m): on input, a conversion key ckpk→pk′ and a signature-

message pair (σ′,m) valid in respect to pk′ return a signature-message pair
(σ,m) valid with respect to pk.

The functionality of a key converter for a µ-move blind signature scheme is
defined via the following requirements.

1. Distribution of public keys: for all pp, pk′′, {(pk′′, sk′′) $← KGen(pp)}, all
n ∈ N the distributions

{(pki, ski) $← KGen(pp), i ∈ [n] : pk1, . . . , pkn}

and
{(pk′i, ckpk′′→pk′i

) $← C.Key(pp, pk′′), i ∈ [n] : pk′1, . . . , pkn}
must be identical.

2. Distribution of interaction during signing session: for all pp, pk with
(pk, sk) $← KGen(pp), (pk′, ckpk→pk′)

$← C.Key(pp, pk) signing key sk′ corre-

sponding to pk′, the following distributions of C.Conv’s outputs in the role of
a signer msgi∈[µs] throughout the interaction with a user, for any challenge
chli∈[µu] of the user’s choice, defined as

{(stsi ,msgi)
$← Signi(sk

′, stsi−1, chli) : msgi∈[µs]}

and

{(stci ,msg′i)
$← C.Conv

⟨Sign(sk),·⟩1
i (ckpk→pk′ , st

c
i−1, chli) : msg′i∈[µs]

}

must be identical.
3. Distribution of generated signatures: for all public parameters pp, all

pk s.t. (pk, sk) $← KGen(pp), (pk′, ckpk→pk′)
$← C.Key(pp, pk) signing key sk′

corresponding to pk′, and message m, the distributions

{(λ, σ) $← ⟨Sign(sk′),User(pk′,m)⟩ : σ}

and
{(λ′, σ′) $← ⟨C.Conv⟨Sign(sk),·⟩

1

(ckpk→pk′),User(pk
′,m)⟩ : σ′}

must be identical.

14 Samuel Bedassa Alemu and Julia Kastner

4. Recoverability of signatures: for all parameters pp, public keys pk such
that (pk, sk) $← KGen(pp), (pk′, ckpk→pk′)

$← C.Key(pp, pk) messages m, sig-

nature σ′ such that Vf(pk′,m, σ′) = 1 and σ ← C.Rec(ckpk→pk′ , σ
′,m) it

must hold that Vf(pk,m, σ) = 1

With the above definition of a key converter for blind signature schemes, we
are now ready to define a key convertible blind signature scheme.

Definition 15. A blind signature scheme Σ = (KGen, ⟨Sign,User⟩,Vf) is said
to be key convertible if an efficient probabilistic polynomial time key converter
C = (C.Key, C.Conv, C.Rec) for Σ exists.

The following theorem shows that a tight reduction from Multi-Signer to
the Single-Signer Setting can be obtained for a key convertible blind signature
scheme.

Theorem 4 (The Knifing Lemma). Let Σ = (KGen, ⟨Sign,User⟩,Vf) be a
blind signature scheme that is key convertible. For any adversary A that runs
in time at most t in the wMSS-OM-UF setting and makes ℓi signing queries for
the i-th signer, i ∈ [n], there exists an adversary B that also runs in time t such
that:

AdvwMSS-OM-UF
Σ,A,n = AdvOM-UF

Σ,B,
∑n

i=1 ℓi

The following proof combines the technique used in [14] to prove a tight re-
duction for “Schnorr-like” digital signatures with the notion of key convertibility
in [16].

Proof. Suppose we have an algorithm A which is able to win the wMSS-OM-UF
security experiment with respect to Σ with a probability of ε. We construct BA,
which wins the OM-UF security experiment with respect to the same scheme,
using A as a subroutine. The corresponding pseudo-code is provided in fig. 7.

Correctness of Simulated Public Keys. We show that the reduction B perfectly
simulates the wMSS-OM-UF game to the adversary. We first show that the n
public keys generated by BA are indeed identical to those generated by an hon-
est wMSS-OM-UF challenger. This follows by using the first property of key
convertible blind signature schemes n times.

Correctness of Signing Oracle Simulation. Algorithm A requires access to sign-
ing oracles for all public keys pki, i ∈ [1, n]. We show how BA simulates the
signing oracle Sign(ski) corresponding to public key pki.

The reduction BA uses C.Conv(cki) to simultaneously initiate a session with
the signing oracle Sign(sk) in the role of a user and a session in the role of a signer
with A, which is running User(pki,m), to generate a signature valid with respect
to pki for A. Using the fact that (pki, cki)

$← C.Key(pp, pk), by second property
of key convertible blind signature schemes, it must hold that the distributions

{(stsi ,msgi)
$← Signi(sk

′, stsi−1, chli) : msgi∈[ι]}

On the Security of Blind Signatures in the Multi-Signer Setting 15

BA(pp, pk)

1 : foreach i ∈ [n]

2 : (pki, cki)← C.Key(pp, pk)

3 : (mi∗,j , σi∗,j)j∈[ℓi∗+δi,i∗]
$← A⟨C.Conv⟨Sign(sk),·⟩

∞
(cki,i∈[n]),·⟩

∞
(pki,i∈[n])

4 : return fail if not

5 : mi,j ̸= mi′,j′ foreach i, i′ ∈ [n], j ∈ [ℓi + δi,i∗], j
′ ∈ [ℓi′ + δi′,i∗], (i, j) ̸= (i′, j′)

6 : and Vf(pki,mi,j , σi,j) = 1 foreach i ∈ [n], j ∈ [ℓi + δi,i∗]

7 : and Sign(ski) foreach i ∈ [n] has completed at most ℓi execution sessions

8 : else return (mi,j ,C.Rec(cki, σi,j))i∈[n],j∈[ℓi+δi,i∗]

Fig. 7. Reduction for weak multi-signer security of a key-convertible scheme. Here
δi,i∗ = 1 if i = i∗ and 0 otherwise.

and
{(stci ,msg′i)

$← C.Conv
⟨Sign(sk),·⟩1
i (ckpk→pk′ , st

c
i−1, chli) : msg′i∈[ι]}

must be identical. By using this property n times, it follows that A can not
distinguish between outputs of signing oracles simulated by BA and outputs of
signing oracles provided by an honest wMSS-OM-UF challenger.

Further, we show that all C.Conv(cki) generate a valid signature with respect
to pki for A. By using the third property of key convertible blind signature
schemes n times, it must hold that the distributions

{(λ′, σ′) $← ⟨C.Conv⟨Sign(sk),·⟩
1

(cki),User(pki,m)⟩ : σ′}

and
{(λ, σ) $← ⟨Sign(ski),User(pki,m)⟩ : σ}

are identical.
Hence, the above simulation of signing oracles is perfect.

Correctness of Output. We now show that BA outputs one more message-
signature pair than the number of completed execution sessions with Sign(sk).
Since at most ℓi sessions were completed for public key pki, i ∈ [1, n], as checked
in line 7, and exactly one completed session with Sign(sk) is required to simulate
one completed session with Sign(ski) forA, it follows that only at most

∑n
i=1 ℓi =

ℓ sessions are completed with Sign(sk) to simulate all signing oracles. Since A
outputs ℓi∗ +1 valid triples for one public key pki∗ and ℓi for i ̸= i∗, BA outputs
1+

∑n
i=1 ℓi = ℓ+1 valid message-signature pairs with respect to pk by recovering

signatures using C.Rec. Furthermore, as we required in wMSS-OM-UF (and in
line 5) that all messages output are pairwise distinct (even across public keys),
all ℓ+1 messages output by BA are pairwise distinct as well. This is indeed one
more than the ℓ completed execution session with Sign(sk).

Clearly, the message-signature pairs in the list are valid with respect to pk
(line 8) since the algorithm already checks in line 6 whether all triples outputted

16 Samuel Bedassa Alemu and Julia Kastner

by A are valid. Due to the third property of key convertible blind signature
schemes, it must hold that for σ′

jt ← C.Rec(cki, σjt), Vf(pk,mjt, σ
′
jt) = 1. Thus,

all message-signature pairs outputted by the algorithm BA are valid with respect
to pk.

Hence, BA produces one-more-forgery in the single-signer-setting.
⊓⊔

5 Security of known Blind Signature Schemes in MSS

5.1 Blind BLS

bBLS is a secure blind signature scheme in the random oracle model given G is
a GDH group [7]. It is based on the BLS digital signature scheme [8]. We recall
bBLS = (KGen,Sign,Vf) as follows: Let G be a GDH group. Let H : [{0, 1}∗ → G]
be a hash function which maps arbitrary long strings to G. Let pp = (p, g,H) be
the public parameter containing the generator g, the prime group order p and
the hash function H.

– KGen : On input pp = (p, g,H), KGen samples x $← Zp and computes y ← gx.
It sets pk← y, sk← x and returns (sk, pk).

– Sign: On input a secret key sk, challenge m, Sign computes σ ← (m)x and
returns the response σ.

– User1: On input a public key pk, a message m ∈ {0, 1}∗, User1 samples
r $← Zp and computes m ← H(m).gr. It returns the challenge m, and the
state stu ← r.

– User2: On input a public key pk, a state stu = r and a response σ, User2
computes σ ← σ · y−r and and returns σ.

– Vf: On input a public key pk, a message m and a signature σ, Vf checks

logg y
?
= logH(m) σ using the DDH solver. If so, it returns 1; otherwise, it

returns 0.

A graphic of the scheme can be found in fig. 13 in appendix B.

Theorem 5. Suppose bBLS is defined over a GDH group G with pp = (p, g,H)
as a public parameter. Then, in the random oracle model, bBLS is secure against
Key Substitution.

Proof. Assume that an adversary A successfully outputs a public key pk′ = y′

different from pk = y such that (m,σ) is a valid message-signature pair with
respect to both public keys. Since both signatures are valid, we have logg y =
logH(m) σ and logg y

′ = logH(m) σ. Since H is a random function, the probability
of obtaining a collision is negligible. It follows that logg y = logg y

′ and y = y′,
which is a contradiction. ⊓⊔

Lemma 1. The blind signature scheme bBLS is key convertible.

Proof. We provide a key converter for bBLS in fig. 8. We prove that it fulfils the
required properties below:

On the Security of Blind Signatures in the Multi-Signer Setting 17

C.Key(pp, pk)

1 : ck $← Zp

2 : pk′ ← pkck

3 : return (pk′, ck)

C.Rec(ck, σ′)

1 : α← (ck)−1

2 : σ ← σ′α

3 : return σ

C.Convu1(m)

1 : return m

C.Convs1(ck, σ)

1 : σ′ ← σck

2 : return σ′

Fig. 8. A Key Converter for the Blind BLS Scheme

Distribution of public keys: On input a public parameter pp = (p, g,H) and
a public key pk, C.Key implicitly sets the signing key sk′ corresponding to pk′

to sk′ = r · x, where x = logg(pk). Since ck is sampled uniformly at random
from Zp in each run of C.Conv, for any n, an n-tuple of public keys generated
by C.Conv, with the same public key pk as input, is identically distributed
to an n-tuple of public keys generated by KGen.

Distribution of interaction during signing session: Since σ = mx where
x = logg(y), we have that σ′ = mx·ck which is the unique valid response

with respect to sk′ = x · ck and m.
Distribution of generated signatures: Further, C.Conv generates the unique

valid signature with respect to pk′ = pkck for a message of the user’s choice,
as H(m)sk·ck = H(m)sk

′
.

Recoverability of signatures: Since σ = mx where x = log(pk), we have that

σ = mx·ck · g−x·ck·r = H(m)x·ck · gx·ck·r−x·ck·r = H(m)x·ck (1)

On input a conversion key ck and a valid signature σ′ for a message m with
respect to pk′, C.Rec computes α← (ck)−1 and returns σα.
We show that σ is a valid signature for message m with respect to pk. Since
σ′ = mx·ck, where x = log(y), σ = mx·ck·α = mx is the unique valid signature
for m with respect to pk.

⊓⊔

5.2 Blind Schnorr Scheme (BSS)

We recall Schnorr’s blind signature scheme BSS [24]: Let G be a group of order
p with generator g, H : {0, 1}∗ → G be a hash function and pp = (p, g,H) the
public parameter.

– KGen : On input pp = (p, g,H), KGen samples x $← Zp and computes y ← gx.
It then sets sk← x, pk← y and returns (sk, pk).

18 Samuel Bedassa Alemu and Julia Kastner

– Sign1: On input a secret key sk, Sign1 samples r $← Zp and computes R← gr.
It then returns the commitment R and the state stS = r.

– Sign2: On input a secret key sk, a state stS = r and a challenge c, Sign2
computes s← c · sk+ r and returns the response s.

– User1: On input a public key pk, a commitmentR, and a messagem ∈ {0, 1}∗,
User1 does the following: It first samples α, β $← Zp. Then, it computes

R′ ← R · gα · pkβ and c′ ← H(R′,m), c ← c′ + β. It returns the challenge c
and the state stU ← (R, c, α, β,m).

– User2: On input a public key pk, a state stU = (R, c, α, β,m), and a response

s, User2 first checks gs
?
= R · yc and returns ⊥ if not. Otherwise, it computes

R′ ← R · gα · pkβ and s′ ← s+ α and returns the signature (R′, s′).
– Vf On input a public key pk, a signature (R′, s′) and a message m, Vf com-

putes c′ ← H(R′,m) and checks gs
′ ?
= R′ · pkc

′
. If so, it returns 1; otherwise,

it returns 0.

A graphic of the scheme can be found in fig. 14 in appendix B.

Theorem 6. Suppose that BSS is defined over a group G with pp = (p, g,H) as
the public parameter. Then, in the random oracle model, BSS is secure against
Key Substitution.

Proof. Assume that an adversary A successfully outputs a public key pk = y
different from pk = y such that (m, (R′, s′)) is a valid message-signature pair with
respect to both public keys. Since both signatures are valid, we have gs

′
= R′ ·yc′ ,

and gs
′
= R′ · yc

′
, where c′ ← H(R′,m). Since H is a random function, the

probability of obtaining a collision is negligible. It follows that yc
′
= yc

′
and

y = y, which is a contradiction. ⊓⊔

Lemma 2. The blind signature scheme BSS is key convertible.

Proof. We provide a key converter for BSS in fig. 9. We prove that it fulfils the
required properties below:

Distribution of public keys: Since ck is sampled uniformly at random from
Zp in each run of C.Conv, for any n, an n-tuple of public keys generated by
C.Conv, with the same public key pk as input, is identically distributed to
an n-tuple of public keys generated by KGen.

Distribution of interaction during signing session: First, on input of the
signer’s commitment R, C.Conv forwards R to the user. Then, on input
user’s challenge c, it sets the state stC ← c and forwards the c to the signer.
Finally, on input a conversion key ck, a response s from the signer and a
state stC = c, it computes a new response s′′ and returns s′′ to the user.
Since R = gr where r is randomly sampled by Sign(sk), C.Conv’s first out-
put is uniformly distributed and, thus, identical to the distribution of a
commitment from Sign(sk′). We show that since r is randomly sampled by
Sign(sk), C.Conv’s second output s′′ is uniformly distributed and also the

On the Security of Blind Signatures in the Multi-Signer Setting 19

C.Key(pp, pk)

1 : ck $← Zp

2 : pk′ ← pk · gck

3 : return (pk′, ck)

C.Rec(ck,m, (R′, s′′′))

1 : c′ ← H(R′,m)

2 : s′ ← s′′′ − c′ · ck
3 : σ ← (R′, s′)

4 : return σ

C.Convs1(R)

1 : return R

C.Convu1(c)

1 : stC ← c

2 : return (stC , c)

C.Convs2(ck, st
C , s)

1 : c← stC

2 : s′′ ← s+ ck · c
3 : return s′′

Fig. 9. A Key Converter for the Blind Schnorr Scheme

unique response to the challenge c and C.Conv’s first output R = gr. Thus,
the distribution of both outputs by C.Conv is identical to that of Sign(sk′).
Since s = c · x+ r where x = logg(pk) and , we have that

s′′ = c · x+ r + c · ck = c · (x+ ck) + rs′′ = c · sk′ + r (2)

Distribution of generated signatures: Further, C.Conv produces a valid
signature (R′, S′) for message m with respect to pk′ of the user’s choice.

To see this, first, we show that the user’s check gs
′′ ?
= R · pk′c holds.

gc·sk
′+r = gr · gsk

′·c = gc·sk
′+r (3)

Then, we show that Vf(pk′, (R′, s′),m) returns 1, by showing that

gs
′
= R′ · pk′c

′
(4)

gs+ck·c+α = R · gα · pk′β · pk′c
′

(5)

g(c
′+β)·x+r+ck·(c′+β)+α = gr · gα · g(x+ck)·β · g(x+ck)·c′ (6)

g(c
′+β)·(x+ck)+r+α = g(c

′+β)·(x+ck)+r+α (7)

Recoverability of signatures: On input a conversion key ck, a messagem and
a valid signature (R′, s′′′) with respect to pk′, C.Rec computes and returns
(R′, s′′′).
We show that (R′, s′) is a valid signature for message m with respect to pk.
Since x = log(pk), s′′ = c · sk′ + r, c′ = H(R′,m) we have

s′ = s′′′ − c′ · ck = c · (x+ ck) + r + α− c′ · ck (8)

= (c′ + β) · x+ (c′ + β) · ck+ r + α− c′ · ck (9)

= c′ · x+ β · x+ β · ck+ r + α (10)

20 Samuel Bedassa Alemu and Julia Kastner

We show that gs
′ ?
= R′ · pkc

′
holds.

gs
′
= R · gα · g(x+ck)β · gx·c

′
(11)

gc
′·x+β·x+β·ck+r+α = gr+α+x·β+ck·β+x·c′ (12)

⊓⊔

5.3 Okamoto-Schnorr Scheme (OSS)

OSS [20] was proved to be a secure blind signature scheme by Pointcheval and
Stern in [21]. We recall OSS as as follows: OSS uses a group G of prime order p
and two generators g, h of G. It also uses hash function H : {0, 1}∗ → Zp. We let
the public parameter be pp = (p, g, h,H).

– KGen: On input pp = (p, g, h,H), KGen samples r $← Zp, s
$← Zp and com-

putes y ← g−rh−s. It sets sk← (r, s), pk← y and returns (sk, pk).
– Sign1: On input a secret key sk, Sign1 samples t $← Zp, u

$← Zpand returns
the commitment a← gthu and the state stS = (t, u).

– Sign2: On input a secret key sk a state stS = (t, u) and a challenge e, Sign2
computes R← t+ er and S ← u+ es, and returns the pair (R,S).

– User1: On input a public key pk, a commitment a, and a message m, User1
does the following: It first samples β, γ, δ $← Zp, and it then computes α ←
agβhγyδ, ε ← H(m,α) and e ← ε − δ . It returns the challenge e and the
state stU ← (a, e, β, γ, δ,m).

– User2: On input a public key, a state stU = (a, e, β, γ, δ,m) and a response

(R,S), User2 first checks a
?
= gR · hS · ye and returns ⊥ if not. Otherwise, it

computes ρ← R+ β and σ ← S + γ and returns the signature (α, ρ, σ).
– Vf: On input a public key pk, a signature (α, ρ, σ) and a message m, Vf

computes ε← H(m,α) and checks α
?
= gρhσyε.

A graphic of the scheme can be found in fig. 15 in appendix B.

Theorem 7. Suppose that OSS is defined with pp = (p, g, h,H) as the public
parameter. Then, in the random oracle model, OSS is secure against Key Sub-
stitution.

Proof. Assume that an adversary A successfully outputs a public key pk = y
different from pk = y such that (m, (α, ρ, σ)) is a valid message-signature pair
with respect to both public keys. Since both signatures are valid, we have α =
gρ ·hσ · yε and α = gρ ·hσ · yε where ε← H(m,α). Since H is a random function,
the probability of obtaining a collision is negligible. It follows that yε = yε and
y = y, which is a contradiction. ⊓⊔

Lemma 3. The blind signature scheme OSS is key convertible.

Proof. We provide a key converter for OSS in fig. 10. We prove that it fulfils the
required properties below:

On the Security of Blind Signatures in the Multi-Signer Setting 21

C.Key(pp, pk)

1 : ckr
$← Zp

2 : cks
$← Zp

3 : pk′ ← pk · g−ckr · h−cks

4 : return (pk′, (ckr, cks))

C.Rec((ckr, cks),m, (α′, ρ′, σ′))

1 : ε← H(m,α′)

2 : α← α′

3 : ρ← ρ′ − ε · ckr
4 : σ ← σ′ − ε · cks
5 : return (α, ρ, σ)

C.Convs1(a)

1 : return a

C.Convu1(e)

1 : stC ← e

2 : return (stC , e)

C.Convs2((ckr, cks), st
C , (R,S))

1 : e← stC

2 : R′ ← R+ ckr · e
3 : S′ ← S + cks · e
4 : return (R′, S′)

Fig. 10. A Key Converter for the Okamoto-Schnorr Scheme

Distribution of public keys: On input a public parameter pp = (p, g, h,H)
and a public key pk, C.Key implicitly sets the signing key sk′ = (r′, s′)
corresponding to pk′ to r′ = r + ckr, sk

′
s = s + cks, where pk = g−r · h−s.

Since ckr and cks are sampled uniformly at random from Zp in each run of
C.Conv, for any n, an n-tuple of public keys generated by C.Conv, with the
same public key pk as input, is identically distributed to an n-tuple of public
keys generated by KGen.

Distribution of interaction during the signing sessions: First, the algo-
rithm forwards the signer’s commitment a to the user. Then, it forwards the
user’s challenge e to the signer and sets the state stC ← e. Finally, on input
a conversion key (ckr, cks), a response (R,S) from the signer and a state
stC = e, it computes and returns a new response (R′, S′) to the user.
Since a = gt · hu where t and u are randomly sampled by Sign(sk), C.Conv’s
first output is uniformly distributed and, thus, identical to the distribution
of a commitment from Sign(sk′). We show that since t and u are randomly
sampled by Sign(sk), C.Conv’s second output (R′, S′) is uniformly distributed
and also the unique response to the challenge e and C.Conv’s first output
a. Thus, the distribution of both outputs by C.Conv is identical to that of
Sign(sk′).

Distribution of generated signatures: Since R = t+ e · r where pk = g−r ·
h−s, we have that

R′ = t+ e · r + e · ckr = t+ e · r′ (13)

Since S = u+ e · s where pk = g−r · h−s, we have that

S′ = u+ e · s+ e · cks = u+ e · s′ (14)

22 Samuel Bedassa Alemu and Julia Kastner

Distribution of generated signatures: Furthermore, C.Conv produces a
valid signature with respect to pk′ for message m of the user’s choice. First,

we show that the user’s check on R′ and S′, a
?
= gR

′ · hS′ · ye holds.

gt · hu = gt+e·r′ · hu+e·s′ · (g−r′ · h−s′)e (15)

= gt · hu · ge·r
′−e·r′ · he·s′−e·s′ = gt · hu (16)

We show that Vf(pk′, (α, ρ, σ),m) returns 1 by showing that

α = gρ · hσ · pk′ε (17)

a · gβ · hγ · pk′δ = gR
′+β · hS′+γ · pk′(e+δ) (18)

= a · gβ · hγ · pk′δ (19)

Recoverability of Signatures: On input a conversion key (ckr, cks), a mes-
sage m and a valid signature (α′, ρ′, σ′) with respect to pk′, the algorithm
produces valid signature (α, ρ, σ) with respect to pk and m.

Since pk = y = g−r · h−s, s′′ = c · sk′ + r, c′ = H(R′,m), we have

ρ = ρ′ − ε · ckr = R′ + β − ε · ckr = t+ e · r′ + β − ε · ckr (20)

= t+ e · (r + ckr) + β − ε · ckr (21)

= t+ (ε− δ) · r + (ε− δ) · ckr + β − ε · ckr = (t− δ · ckr) + e · r + β
(22)

σ = σ′ − ε · cks = S′ + γ − ε · cks (23)

= u+ e · s′ + γ − ε · cks = u+ e · (s+ cks) + γ − ε · cks (24)

= u+ (ε− δ) · s+ (ε− δ) · cks + γ − ε · cks (25)

= u+ ε · s− δ · s+ ε · cks − δ · cks + γ − ε · cks (26)

= (u− δ · cks) + e · s+ γ (27)

We show that (α, ρ, σ) is a valid signature with respect to pk and m by
showing that α = gρ · hσ · pkε.

α = a · gβ · hγ · pk′δ = gt+β+(−r−ckr)·δ · hu+γ+(−s−cks)·δ (28)

gρ · hσ · pkε = g(ρ
′−ε·ckr) · h(σ′−ε·cks) · pk(δ+e) (29)

= g(t−δ·ckr)+e·r+β · h(u−δ·cks)+e·s+γ · (g−r · h−s)(δ+e) (30)

= gt+β+(−r−ckr)·δ · hu+γ+(−s−cks)·δ (31)

⊓⊔

On the Security of Blind Signatures in the Multi-Signer Setting 23

5.4 Tessaro-Zhu-GGM (TZG)

We recall the generically secure blind signature scheme from [25], which we
denote by TZG: Let G be a prime-order cyclic group of order p with generator
g, H : {0, 1}∗ → G be a hash function and pp = (p, g,H) the public parameter.

– KGen : On input pp = (p, g,H), KGen samples x $← Zp and computesX ← gx.
It sets sk← x, pk← X and returns (sk, pk).

– Sign1: On input a secret key sk, Sign1 samples a $← Zp, y
$← Z∗

p, computes

A← ga,Y ← Xy and returns the state stS ← (a, y, x) and the commitment
(A,Y).

– Sign2: On input a secret key sk, a state stS = (a, y, x) and a challenge c,
Sign2 computes s← a+ c · y · sk and returns the response (s, y).

– User1: On input a public key pk, a commitment (A,Y), and a message m ∈
{0, 1}∗, User1 does the following: It first samples r1, r2

$← Zp, γ
$← Z∗

p. Then,
it computes Y′ ← Yγ , A′ ← gr1 ·Aγ ·Y′r2 , c′ ← H(A′||Y′||m), and c← c′+r2.
It returns state stU ← (c, c′, r1, γ, pk,Y, A) and challenge c.

– User2: On input a public key pk, a state stU = (c, c′, r1, γ, pk,Y, A), and a

response (s, y), User2 first checks whether y
?

̸= 0 and Y
?
= pky and gs

?
= A·Yc.

It returns ⊥ if not. Otherwise, it computes s′ ← γ · s+ r1 and y′ ← γ · y and
returns the signature (c′, s′, y′).

– Vf: On input a public key pk, a signature (c′, s′, y′) and a message m, Vf

computes Y ← pky, A ← gs
′ · Y−c′ and checks whether c′

?
= H(A||Y||m). If

so, it returns 1; otherwise, it returns 0.

A graphic of the scheme can be found in fig. 16 in appendix B.

Theorem 8. Suppose that TZG is defined over a group G with pp = (p, g,H) as
the public parameters. Then, in the random oracle model, TZG is secure against
Key Substitution.

Proof. Assume that an adversary A successfully outputs a public key pk = X
different from pk = X such that (m, (c′, s′, y′)) is a valid message-signature
pair with respect to both public keys. Since both signatures are valid, we have

c′ = H(gs
′ · (pky

′
)−c′ , pky

′
,m) and c′ = H(gs

′ · (pky
′

)−c′ , pk
y′

,m). Since H is a
random function, the probability of obtaining a collision is negligible. It follows

that pky
′
= pk

y′

and pk = pk, which is a contradiction. ⊓⊔

Lemma 4. The blind signature scheme TZG is key convertible.

Proof. We provide a key converter for TZG in fig. 11. We prove that it fulfils the
required properties below:

Distribution of public keys: For any n, an n-tuple of keys generated through
key conversion is identically distributed to a fresh key as in a prime order
group, exponentiation with a random value from Zp yields a uniformly ran-
dom group element. Thus, an n-tuple of converted public keys is a tuple of
uniformly random group elements, just like an n-tuple of freshly generated
public keys.

24 Samuel Bedassa Alemu and Julia Kastner

C.Key(pp, pk)

1 : ck $← Zp

2 : pk′ ← pkck

3 : return (pk′, ck)

C.Rec(ck,m, (c′, s′, y′))

1 : c∗ ← c′

2 : s∗ ← s′

3 : y∗ ← y′ · ck
4 : return (c∗, s∗, y∗)

C.Convs1(ck, (A,Y))

1 : Y′′ ← Yck

2 : return (A,Y′′)

C.Convu1(ck, c)

1 : c′′ ← c · ck
2 : return c′′

C.Convs2((s, y))

1 : return (s, y)

Fig. 11. A Key Converter for Tessaro-Zhu-GGM scheme

Distribution of interactions during the signing sessions: First, on input
a conversion key ck and a signer’s commitment (A,Y), C.Conv computes
Y′′ ← Yck and returns a new commitment (A,Y′′) to the user. Then, on
input ck and a user’s challenge c, it computes c′′ ← ck · c and returns a new
challenge c′′ to the signer. Finally, it forwards the signer’s response (s, y) to
the user.
Since the commitment (A = ga,Y = pky) by Sign(sk) is uniformly dis-
tributed, where a and y are randomly sampled, C.Conv’s first output (ga, pky·ck =
pk′y) is also uniformly distributed and, thus, identical to the distribution of
a commitment from Sign(sk′). We show that C.Conv’s second output (s, y)
is uniformly distributed as well as the unique response to a challenge c and
C.Conv’s first output, and also identical to the distribution of a response
from Sign(sk′). Thus, the distribution of both outputs by C.Conv is identical
to that of Sign(sk′).
Since a and y are randomly sampled by Sign(sk) and s = a+ c′′ · y · x where
x = logg(pk), we have that

s = a+ c′′ · y · x = a+ c · ck · y · x = a+ c · y · sk′ (32)

Distribution of generated signatures: Moreover, C.Conv produces a valid
signature with respect to pk′ for message m of the user’s choice. First, we
show that the user’s checks on a signer’s response

y
?

̸= 0,Y′′ ?
= pk′y, gs

?
= A ·Y′′c

hold. Since Sign(sk) samples y form Z∗
p, it follows that y ̸= 0. Since Y′′ =

pky·ck, x = log(pk) and s = a+ c′′ · y · x

Y′′ = pkck·y = pk′y (33)

On the Security of Blind Signatures in the Multi-Signer Setting 25

gs = A ·Y′′c (34)

ga+c′′·y·x = ga · gx·y·ck (35)

ga+c·y·sk′ = ga+c·y·sk′ (36)

We now show that Vf(pk′, (c′, s′, y′),m) returns 1 by showing that

Y′ = pk′y
′
, A′ = gs

′
· (pk′y

′
)−c′

thus

c′
?
= H(gs

′
· (pk′y

′
)−c′ , pk′y

′
,m)

holds. Since x = log(pk),Y′′ = pk′y = gx·y·ck, we have that

Y′ = pk′y
′

(37)

Y′′γ = pk′γ·y (38)

gx·y·ck·γ = gx·y·ck·γ (39)

and since s = a+ c′′ · y · sk = a+ c · y · sk′, we have that

A′ = gs
′
· (pk′y)−c′ (40)

gr1 ·Aγ ·Y′r2 = gγ·s+r1 · g−sk′·y·c′ (41)

gr1 · ga·γ ·Y′′γ·r2 = gγ·(a+c′·y·sk′)+r1 · g−sk·y·c′ (42)

gr1 · ga·γ · gsk·y·ck·γ·r2 = gγ·(a+·(c′+r2)·y·sk′)+r1 · g−sk′·γ·y·c′ (43)

gr1+a·γ+sk′·y·γ·r2 = gr1+a·γ+sk′·y·γ·r2 (44)

Recoverability of signatures: On input a conversion key ck, a message m
and a valid signature (c′, s′, y′) with respect to pk′ and m, the algorithm
produces a valid signature (c∗, s∗, y∗) with respect to pk and m.

We show that (c∗, s∗, y∗) is a valid signature with respect to pk, and m by
showing that

c∗ = H(gs
∗
· (pky

∗
)−c∗ ||pky

∗
||m)

Since c∗ = c′ where c′ = H(A′||Y′||m), we proceed by showing that Y′ = pky∗

and A′ = gs
∗ · (pky

∗
)−c∗ to conclude that the following holds.

H(A′||Y′||m) = H(gs∗ ·Y−c∗ ||pky∗||m)

Since x = log(pk), sk′ = x · ck, s = a+ c · y · sk′, we have

Y′ = pky
∗

(45)

pk′y·γ = pky·γ·ck (46)

gx·ck·γ·y = gx·ck·γ·y (47)

26 Samuel Bedassa Alemu and Julia Kastner

A′ = gs
∗
· (pky∗)−c∗ (48)

gr1 ·Aγ ·Y′r2 = gs
′
· g−x·ck·γ·y·c′ (49)

gr1 · ga·γ ·Yγ·r2 = gγ·s+r1 · g−x·ck·γ·y·c′ (50)

gr1 · ga·γ · pk′y·γ·r2 = gγ·(a+c·y·x·ck)+r1 · g−x·ck·γ·y·c′ (51)

gr1 · ga·γ · gsk
′·y·γ·r2 = gγ·(a+(c′+r2)·y·x·ck)+r1 · g−x·ck·γ·y·c′ (52)

gr1+a·γ+x·ck·y·γ·r2 = gr1+a·γ+x·ck·y·γ·r2 (53)

⊓⊔

5.5 Tessaro-Zhu-AGM (TZA)

We recall the algebraically secure blind signature scheme from [25]: Let G be a
prime-order cyclic group of order p with generator g, H : {0, 1}∗ → G be a hash
function and pp = (p, g,H) the public parameter.

– KGen : On input pp = (p,G, g,H), KGen samples x $← Zp, Z ← G and
computes X ← gx. It sets sk← x, pk← (X,Z) and returns (sk, pk).

– Sign1: On input a secret key sk, Sign1 samples a, t $← Zp, y
$← Z∗

p, com-

putes A ← ga, C ← gtZy and returns the state stS ← (a, y, t, x) and the
commitment (A,C).

– Sign2: On input a secret key sk, a state stS = (a, y, x) and a challenge c,
Sign2 computes s← a+ c · y · sk and returns the response (s, y, t).

– User1: On input a public key (pkx, pkz), a commitment (A,C), and a message
m ∈ {0, 1}∗, User1 does the following: It first samples r1, r2

$← Zp, γ1, γ2
$←

Z∗
p. Then, it computes C ′ ← Cγ

1 · gr2 , A′ ← gr1 · Aγ1/γ2 , c′ ← H(A′||C ′||m),

and c← c′ · γ2. It returns state stU ← (c, c′, r1, r2, γ1, γ2, pkx, pkz, A,C) and
challenge c.

– User2: On input a public key (pkx, pkz), a state stU ← (c, c′, r1, r2, γ1, γ2,

pkx, pkz, A,C), and a response (s, y, t), User2 first checks whether y
?

̸= 0 and

C
?
= gt · pkyz and gs

?
= A · pkc·yx . It returns ⊥ if not. Otherwise, it computes

s′ ← (γ1/γ2) · s + r1, y
′ ← γ1 · y, t′ ← γ1 · t + r2 and returns the signature

(c′, s′, y′, t′).

– Vf: On input a public key (pkx, pkz), a signature (c′, s′, y′, t′) and a message

m, Vf checks whether c′
?
= H(gs

′ · pk−c′·y′

x ||gt′ · pky
′

z ||m). If so, it returns 1;
otherwise, it returns 0.

A graphic of the scheme can be found in fig. 17 in appendix B.

Theorem 9. Suppose that TZA is defined over a group G with pp = (p,G, g,H)
as the public parameters. Then, in the random oracle model, TZA is secure
against Key Substitution.

On the Security of Blind Signatures in the Multi-Signer Setting 27

Proof. Assume that an adversary A successfully outputs a public key pk =
(X,Z) different from pk = (X,Z) such that (m, (c′, s′, y′, t′)) is a valid message-
signature pair with respect to both public keys. Since both signatures are valid,

we have c′ = H(gs
′ ·X−c′·y′ ||gt′ ·Zy′ ||m) and c′ = H(gs

′ ·X−c′·y′

||gt′ ·Zy′

||m) It

follows that gt
′ · Zy′

= gt
′ · Zy′

and Z = Z. Since H is a random function, the
probability of obtaining a collision is negligible. It follows that gs

′ · X−c′·y′
=

H(gs
′ ·X−c′·y′

and X = X. From both follows pk = pk, which is a contradiction.
⊓⊔

Lemma 5. The blind signature scheme TZA is key convertible.

Proof. We provide a key converter for TZA in fig. 12. We prove that it fulfils the
required properties below:

C.Key(pp, (pkx, pkz))

1 : ckz, ckx
$← Zp

2 : pk′z ← pkz · g
ckz

3 : pk′x ← pkx · g
ckx

4 : return ((ckz, ckx), (pk
′
x, pk

′
z))

C.Rec((ckx, ckz),m, (c′, s′, y′, t′))

1 : c∗ ← c′

2 : s∗ ← s′ − ckx · c
′ · y′

3 : y∗ ← y′

4 : t∗ ← t′ + ckz · y
′

5 : return (c∗, s∗, y∗)

C.Convs1((ckx, ckz),msg1)

1 : return msg1

C.Convu1((ckx, ckz), c)

1 : return c

C.Convs2((ckx, ckz),msg2, c)

1 : (s, y, t)← msg2

2 : t′′ ← t− ckz · y
3 : s′′ ← s− ckx · c · y
4 : return (s′′, y, t′′)

Fig. 12. A Key Converter for the Tessaro-Zhu-AGM scheme

Distribution of public keys: For any n, an n-tuple of converted public keys
is identically distributed to an n-tuple of freshly generated keys as we re-
randomize both components of the public key using uniform values from
Zp.

Distribution of interaction during the signing sessions: The first message
(A,C) sent by the signer is identically distributed to that of a real signer
as the values are forwarded and the original commitments are uniformly
random group elements.
The second message output by the converter is identically distributed to
that of a real signer. This is because c, y, the converted public key pk′, as

28 Samuel Bedassa Alemu and Julia Kastner

well as the first message (A,C), the values s′′, t′′ are uniquely determined.
The value y is chosen by the real signer and thus uniformly random, and
the value c comes from the user. We show that the conversion algorithm
outputs the uniquely determined values for s′′, t′′, that is A = gs

′′ ·pk′c·yx and
C = gt

′′ · pk′yz .
This is easy to see in the following:

A =gs · pkc·yx (54)

=gs · (pk′x · g−ckx)c·y (55)

=gs−ckx·c·y · pk′c·yx (56)

=gs
′′
· pk′c·yx (57)

and

C =gt · pkyz = gt · (pk′z · g−ckz)y = gt · pk′yz · g−ckz·y (58)

=gt−ckz·y · pk′yz = gt
′′
· pk′yz (59)

Thus, the interactions during the signing sessions are identically distributed
to those of a reals signer.

Distribution of generated signatures: To see that the signatures generated
by the interaction of the user with the converter are valid signatures, we
invoke the previous property as well as the correctness of the original scheme.

Recoverability of signatures: To see that the recovery of signatures works,
we need to show that the recovered signature is valid with respect to the pub-

lic key pk. We show that H(gs
∗ ·pk−c∗·y∗

x ∥gt∗ ·pky
∗

z ∥m) = H(gs
′ ·pk−′c′·y′

x ∥gt′ ·
pk′y

′

z ∥m) by showing that

gs
∗
· pkc

∗·y∗

x = gs
′
· pk′−c′·y′

x

and
gt

∗
· pky

∗

z = gt
′
· pk′y

′

z .

We prove the first statement as follows

gs
∗
· pkc

∗·y∗

x =gs
′−ckx·c·y · pkc

′·y′

x (60)

=gs
′
· (pkx · gckx)−c′·y′

(61)

=gs
′
· pk′−c′·y′

x (62)

and the second statement as follows:

gt
∗
· pky

∗

z =gt
′+ckz·y · pky

′

z (63)

=gt
′
· (pkz · gckz)y

′
(64)

=gt
′
· pk′y

′

z (65)

⊓⊔

On the Security of Blind Signatures in the Multi-Signer Setting 29

References

1. Abe, M. A Secure Three-Move Blind Signature Scheme for Polynomially Many
Signatures in EUROCRYPT 2001 (2001).

2. Abe, M. & Okamoto, T. Provably Secure Partially Blind Signatures in CRYPTO 2000
(2000).

3. Alkeilani Alkadri, N., El Bansarkhani, R. & Buchmann, J. BLAZE: Practical
Lattice-Based Blind Signatures for Privacy-Preserving Applications in FC 2020
(2020).

4. Bellare, M., Boldyreva, A. & Micali, S. Public-Key Encryption in a Multi-user
Setting: Security Proofs and Improvements in EUROCRYPT 2000 (2000).

5. Bellare, M. & Rogaway, P. The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs in EUROCRYPT 2006 (2006).

6. Blake-Wilson, S. & Menezes, A. Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol in PKC’99 (1999).

7. Boldyreva, A. Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme in PKC 2003 (2003).

8. Boneh, D., Lynn, B. & Shacham, H. Short Signatures from the Weil Pairing in
ASIACRYPT 2001 (2001).

9. Brands, S. Restrictive Blinding of Secret-Key Certificates in EUROCRYPT’95
(1995).

10. Chaum, D. Blind Signatures for Untraceable Payments in CRYPTO’82 (1982).
11. Chaum, D. Security Without Identification: Transaction Systems to Make Big

Brother Obsolete. Commun. ACM (1985).
12. Fischlin, M. Round-Optimal Composable Blind Signatures in the Common Refer-

ence String Model in CRYPTO 2006 (2006).
13. Fischlin, M. & Schröder, D. Security of Blind Signatures under Aborts in PKC 2009

(2009).
14. Galbraith, S. D., Malone-Lee, J. & Smart, N. P. Public key signatures in the

multi-user setting. Inf. Process. Lett. (2002).
15. Gjøsteen, K. & Kr̊akmo, L. Round-Optimal Blind Signatures from Waters Signa-

tures in ProvSec 2008 (2008).
16. Hanaoka, G. & Schuldt, J. C. N. On signatures with tight security in the multi-

user setting in 2016 International Symposium on Information Theory and Its
Applications, ISITA 2016, Monterey, CA, USA, October 30 - November 2, 2016
(2016).

17. Hauck, E., Kiltz, E., Loss, J. & Nguyen, N. K. Lattice-Based Blind Signatures,
Revisited in CRYPTO 2020, Part II (2020).

18. Hofheinz, D. & Nguyen, N. K. On Tightly Secure Primitives in the Multi-instance
Setting in PKC 2019, Part I (2019).

19. Menezes, A. & Smart, N. P. Security of Signature Schemes in a Multi-User Setting.
Des. Codes Cryptogr. (2004).

20. Okamoto, T. Provably Secure and Practical Identification Schemes and Corre-
sponding Signature Schemes in CRYPTO’92 (1993).

21. Pointcheval, D. & Stern, J. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology (2000).

22. Rivest, R. L., Shamir, A. & Adleman, L. M. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM (1978).

23. Rückert, M. Lattice-Based Blind Signatures in ASIACRYPT 2010 (2010).

30 Samuel Bedassa Alemu and Julia Kastner

24. Schnorr, C.-P. Security of Blind Discrete Log Signatures against Interactive At-
tacks in ICICS 01 (2001).

25. Tessaro, S. & Zhu, C. Short Pairing-Free Blind Signatures with Exponential Se-
curity in EUROCRYPT 2022, Part II (2022).

Supplementary Material

A Additional Preliminaries

Definition 16 (Partial Blindness). For a partially blind signature scheme Σ
and an adversary A we define the blindness game as follows:

PartiallyBlindAΣ

1 : (pkBS ,m0,m1, info, statefind)
$← A(find)

2 : b $← {0, 1}

3 : stateissue
$← A⟨·,User(pkBS ,mb,info)⟩1,⟨·,User(pkBS ,m1−b,info)⟩1(issue, statefind)

4 : let σb the final output of User(pkBS ,mb, info),

5 : σ1−b the final output of User(pkBS ,m1−b, info).

6 : if (σ0 =⊥ ∨σ1 =⊥)
7 : (σ0, σ1) = (⊥,⊥)
8 : b∗ ← A(guess, (m0, σ0, info), (m1, σ1, info))

9 : return b = b∗.

We define the advantage

AdvPartiallyBlind
Σ,A := 2 ·

∣∣∣∣12 − Pr
[
PartiallyBlindAΣ = 1

]∣∣∣∣
and we say that the scheme Σ is (t, ε)-partially-blind if for all adversaries A that

run in time at most t it holds that AdvPartiallyBlind
Σ,A ≤ ε.

B Figures of Signing Interactions of Blind Signature
Schemes

32 Samuel Bedassa Alemu and Julia Kastner

Signer User

sk = x pk = y

m

r $← Zp

m m← H(m) · gr

σ ← (m)x σ

σ ← σ · y−r

⇓
(m,σ)

Fig. 13. The Blind BLS Signature Scheme

Signer User

sk = x pk = y = gx

m

r $← Zp

R← gr R

α, β $← Zp

R′ ← R · gα · yβ

c′ ← H(R′,m)

c c← c′ + β

s← c · x+ r s

gs
?
= R · yc

s′ ← s+ α

⇓
(m, (R′, s′))

Fig. 14. Schnorr’s Blind Signature Scheme

On the Security of Blind Signatures in the Multi-Signer Setting 33

Signer User

sk = (r, s) pk = y = g−r · h−s

m

t, u $← Zp

a← gt · hu a

β, γ, δ $← Zp

α← a · gβ · hγ · yδ

ε← H(m,α)

e e← ε− δ

R← t+ e · r

S ← u+ e · s R, S

a
?
= gR · hS · ye

ρ← R+ β

σ ← S + γ

⇓
(m, (α, ρ, σ))

Fig. 15. The Okamoto-Schnorr Blind Signature Scheme

34 Samuel Bedassa Alemu and Julia Kastner

Signer User

sk = x pk = X = gx

m

a $← Zp r1, r2
$← Zp

y $← Z∗
p γ $← Z∗

p

A← ga (A,Y) Y′ ← Yγ

Y ← Xy A′ ← gr1 ·Aγ ·Y′r2

c′ ← H(A′||Y′||m)

c c← c′ + r2

s← a+ c · y · x (s, y) y
?

̸= 0,Y
?
= Xy

gs
?
= A ·Yc

s′ ← γ · s+ r1

y′ ← γ · y
⇓
(m, (c′, s′, y′))

Fig. 16. Tessaro-Zhu GGM Blind Signature scheme where pp= (p,g,H)

On the Security of Blind Signatures in the Multi-Signer Setting 35

Signer User

sk = x pk = (X = gx, Z)

m

a, t $← Zp r1, r2
$← Zp

y $← Z∗
p γ1, γ2

$← Z∗
p

A← ga (A,C) C′ ← Cγ1 · gr2

C ← gt · Zy A′ ← gr1 ·Aγ1/γ2

c′ ← H(A′||C′||m)

c c← c′ · γ2

c
?

̸= 0

s← a+ c · y · x (s, y, t) y
?

̸= 0, C
?
= gt · Zy

gs
?
= A ·Xc·y

s′ ← (γ1/γ2) · s+ r1

y′ ← γ1 · y
t′ ← γ1 · t+ r2

⇓
(m, (c′, s′, y′, t′))

Fig. 17. Tessaro-Zhu AGM Blind Signature scheme where pp= (p, G,g,H)

