On the Security of Blind Signatures in the Multi-Signer Setting

Samuel Bedassa Alemu and Julia Kastner
Department of Computer Science
ETH Zurich, Switzerland
samuelbe@student.ethz.ch, julia.kastner@inf.ethz.ch

Abstract. Blind signatures were originally introduced by Chaum (CRYPTO '82) in the context of privacy-preserving electronic payment systems. Nowadays, the cryptographic primitive has also found applications in anonymous credentials and voting systems. However, many practical blind signature schemes have only been analysed in the game-based setting where a single signer is present. This is somewhat unsatisfactory as blind signatures are intended to be deployed in a setting with many signers.

We address this in the following ways:

– We formalise two variants of one-more-unforgeability of blind signatures in the Multi-Signer Setting.
– We show that one-more-unforgeability in the Single-Signer Setting translates straightforwardly to the Multi-Signer Setting with a reduction loss proportional to the number of signers.
– We identify a class of blind signature schemes which we call Key-Convertible where this reduction loss can be traded for an increased number of signing sessions in the Single-Signer Setting and show that many practical blind signature schemes such as blind BLS, blind Schnorr, blind Okamoto-Schnorr as well as two pairing-free, ROS immune schemes by Tessaro and Zhu (Eurocrypt'22) fulfil this property.
– We further describe how the notion of Key Substitution attacks (Menezes and Smart, DCC'04) can be translated to blind signatures and provide a generic transformation of how they can be avoided.

1 Introduction

Blind Signature Schemes. In his seminal work titled “Blind Signature for Untraceable Payments” [10], David Chaum introduced the concept of blind signature and gave a general description regarding the defining characteristics of the scheme. He based his work on his concern about how payments were processed in the digital world. Chaum felt that electronic banking services had significant privacy implications. He argued that in traditional electronic payments, a third party keeps a record of the payee and the amount and the time of payment for each transaction, thus revealing a lot about the individual. Such payment systems contrast with anonymous payment systems such as banknotes and coins,
which lack control and security and could potentially be used for illicit purposes. He proposed a new type of cryptography that allows payments to be made with more privacy whilst maintaining the same functionality of banknotes or electronic payments. In a later work [11], Chaum presented the first actual realisation of blind signatures, called Chaum’s blind RSA scheme, a transformation of the classic RSA signature scheme [22].

Since then, (partially) blind signature schemes based on various assumptions have been presented, such as discrete logarithms [1, 2, 20, 24], pairings [7, 15], RSA [11], lattices [3, 17, 23]. Additionally, there are also generic constructions like [12] from other cryptographic building blocks.

Notably, apart from [12], most schemes have only been analysed in the game-based setting with a single signer.

The Multi-Instance Setting. Most game based cryptographic security definitions only take into account one game with a single challenger. As cryptographic primitives are deployed in the real world with many instances (e.g. many participants that each generate their own public key), considering only a single instance in security proofs may not be realistic. Hofheinz & Nguyen [18] define the Multi-Instance Setting generically for cryptographic primitives. Their interest is in the tightness of security proofs, i.e., the loss of advantage/increase in runtime that a reduction has compared to the adversary. They provide two variants of the Multi-Instance Setting. In both, the adversary is given access to n copies of the security game. In one setting, which we call the existential setting, the adversary then wins if it wins one of the copies, in the other, it wins if it wins all of the copies.

It is easy to see that a loose reduction can be given for the existential setting, as the reduction can merely guess which of the copies the adversary is going to win. The reduction loss is proportional to the number of copies of the game. We give the corresponding security definition for one-more unforgeability and the reduction in sections 3.2 and 4.2.

Multi-Instance Settings have been investigated for various cryptographic primitives such as public key encryption [4], digital signature schemes [18, 19], lossy trapdoor functions [18].

Our Contribution. In this work, we extend the notion of One-More Unforgeability of blind signatures to the Multi-Instance-Setting, which we call the Multi-Signer-Setting (MSS), as the adversary gets to interact with many signers. We give two definitions; one is strong Multi-Signer OM-UF where an adversary is required to provide a one-more forgery in one of the instances but has no requirement on the other instances (i.e., there may be instances where the adversary generates fewer signatures than completed signing sessions). For this security notion, we show that a straightforward reduction can be applied to show that security in the single-instance setting implies security in the Multi-Instance Setting. This reduction has a loss factor proportional to the number of signers, i.e., it is not tight.
The other setting we consider is weak Multi-Signer OMUF in which the adversary needs to output a forgery with respect to one of the instances but also is required to output as many signatures as completed signing sessions for all other instances. We identify a class of blind signature schemes that we call key convertible and show that security in the Single-Instance Setting tightly implies security in the weak Multi-Instance Setting for these schemes. The number of signing sessions needed in the single-instance setting is the sum of the number of signing sessions of all instances in the Multi-Instance Setting. We show that various existing blind signature schemes are key convertible.

Lastly, we consider a variant of the Key Substitution attack [19] for blind signatures. Informally speaking, in a Key Substitution attack, an adversary can come up with a new public key pk for a message-signature pair (m, σ) that is valid with respect to pk, so that (m, σ) is also valid with respect to \overline{pk}. Menezes & Smart [19] analysed this type of attack for (non-blind) digital signature schemes. This type of attack can be used in the digital signature setting to impersonate participants during an authenticated key exchange[6]. We give a definition of Key Substitution attacks for blind signatures and propose some transformations to prevent Key Substitution attacks.

2 Preliminaries

Notation. We denote by $s \leftarrow S$ the uniform sampling of a value s from the finite set S, and by $y \leftarrow A(x_1, \ldots, x_n)$ that y is the output of a probabilistic algorithm A on inputs x_1, \ldots, x_n.

We denote by \mathbb{Z}_p the ring of integers modulo $p \in \mathbb{Z}$, where usually p will be a prime.

We denote an interactive execution between algorithms X, and Y by $(a, b) \leftarrow \langle X(x), Y(y) \rangle$, where x is the private input of X and y is the private input of Y. The private output of X is a, and the private output of Y is b. We write $Y^{X(x), \cdot} \infty$ if Y can invoke an unbounded number of executions of the interactive protocol with X in arbitrary interleaved order. Accordingly, $X^{\cdot, Y(y_0), \cdot} X^{\cdot, Y(y_1), \cdot}(x)$ can invoke arbitrarily ordered executions with $Y(y_0)$ and $Y(y_0)$ but interacts with each algorithm only once.

2.1 Groups

Definition 1 (Group Schemes). A group scheme consists of the following algorithms:

\begin{itemize}
 \item \textbf{Setup}() : outputs group parameters pp_G for a group G of prime order p. The group parameters contain a generator g, a neutral element, as well as the group order p.
 \item \textbf{Mult}(pp_G, g_1, g_2) : takes as input two group elements and outputs $g_1 \cdot g_2$ (we will often write the latter to denote group multiplication)
\end{itemize}

We require that the group axioms hold in G with respect to \textbf{Mult}.
Definition 2 (Discrete Logarithm Problem (DL)). For a group scheme $(\text{Setup}, \text{Mult})$, we say that the discrete logarithm problem is (t, ε)-hard if for all probabilistic adversaries A that run in time at most t it holds that

$$\text{Adv}_{A}^{\text{DLOG}} = \Pr \left[x = x' : \begin{array}{c} \text{pp}\ G \xleftarrow{} \text{Setup}() \\ x, y \xleftarrow{} \mathbb{Z}_p \\ y := g^x \\ x' \xleftarrow{} A(y) \end{array} \right] \leq \varepsilon$$

Definition 3 (Computational Diffie-Hellman Problem (CDH)). For a group scheme $(\text{Setup}, \text{Mult})$, we say that the Computational Diffie-Hellman Problem is (t, ε)-hard if for all probabilistic adversaries A that run in time at most t it holds that

$$\text{Adv}_{A}^{\text{CDH}} = \Pr \left[z = g^{xy} : \begin{array}{c} \text{pp}\ G \xleftarrow{} \text{Setup}() \\ x, y \xleftarrow{} \mathbb{Z}_p \\ z \xleftarrow{} A(g, g^x, g^y) \end{array} \right] \leq \varepsilon$$

Definition 4 (Decisional Diffie-Hellman Problem (DDH)). For a group scheme $(\text{Setup}, \text{Mult})$, we say that the Decisional Diffie-Hellman Problem is (t, ε)-hard if for all probabilistic adversaries A that run in time at most t it holds that

$$\text{Adv}_{A}^{\text{DDH}} = 2 \Pr \left[b = b' : \begin{array}{c} \text{pp}\ G \xleftarrow{} \text{Setup}() \\ x, y, z \xleftarrow{} \mathbb{Z}_p \\ b' \xleftarrow{} A(g, g^x, g^y, g^{x+y+z}) \end{array} \right] - \frac{1}{2} \leq \varepsilon$$

Definition 5 (Gap Diffie-Hellman Groups). A prime order group G is a Gap Diffie-Hellman (GDH) group if there exists an efficient algorithm V_{DDH} which solves the DDH problem in G and there is no polynomial-time algorithm which solves the CDH problem.

2.2 Multi-Instance Settings

Definition 6 (Security Games [5]). A security game consists of the following algorithms: Initialize, Finalize and oracles O_1, \ldots, O_m. For a game Game and an adversary A, we denote by Game^A the output of the game depicted in the left part of fig. 1.

Remark 1. We will often denote the Initialize and Finalize algorithms as one algorithm Game which first runs Initialize, then the adversary A, and then Finalize to determine its output.

Definition 7 (Multi-Instance Settings [18]). Let Game be a security game with a set of oracles O. We define the existential multi-instance setting of Game as described in the right side of fig. 1.
2.3 Blind Signatures

In the following, we introduce Blind Signatures schemes by extending the description by Fischlin & Schröder [13]. We do so by making use of the notation introduced earlier for interactive executions between two algorithms.

We introduce the syntax and security definitions of blind signature schemes and partially blind signature schemes. A fully blind signature scheme is a special case of a partially blind signature scheme where there is only one tag info, the empty string. We will refer to schemes where the tag is always the empty string as blind signature schemes.

Definition 8 (Partially Blind Signature Scheme). A μ-move partially blind signature scheme Σ consists of a tuple of efficient algorithms $(KGen, \langle \text{Sign}, \text{User} \rangle, \text{Vf})$ with the following behaviour. We denote by $\mu_s := \lceil \mu/2 \rceil$ the number of messages sent by the signer, and by $\mu_u := \lfloor \mu/2 \rfloor$ the number of messages sent by the user.\footnote{W.l.o.g. we only consider schemes where the last message is sent by the signer, as the user can generate a signature as soon as he has received the last message from the signer.}

- $KGen$: the randomised key generation algorithm takes as input parameters pp, and outputs a public key pk and a secret key sk.
- $\langle \text{Sign}, \text{User} \rangle$: the joint execution of algorithms Sign and User.
 - Sign: the randomised algorithm takes as input a secret key sk and a tag info. For $i \in [\mu_s]$, it executes
 \[(\text{st}_i^S, \text{msg}_i) \leftarrow \text{Sign}_i(\text{sk}, \text{info}, \text{st}_{i-1}^S, \text{ch}_i^{\mu_s+\mu_u})\]
 and returns the state st_i^S and the output msg_i. For $\mu_s = \mu_u + 1$, and $i = 1$ we define $\text{ch}_{\mu_s+\mu_u} = \text{ch}_0$ to be the empty string. We further define st_0^S to be the empty string.
 - User: the randomised algorithm takes as input a public key pk, a message m, a tag info. $i \in [\mu_u + 1]$, it executes
 \[(\text{st}_i^U, \text{ch}_i) \leftarrow \text{User}_i(\text{pk}, \text{info}, m, \text{st}_{i-1}^U, \text{msg}_i^{\mu_u+\mu_u-(\mu_u+1)})\]
and returns the state st_U^0 and the output chl_i, where for $User_{m+1}$, the output is a signature σ or \perp which are not sent to the signer. We further define msg_0 in the case that it occurs to be the empty string. We further define st_U^0 to be the empty string.

- The joint execution generates the final output \perp or a signature σ for $User$ and some possibly empty final output λ for $Sign$.

$$(\lambda, \sigma \lor \perp) \leftarrow \langle Sign(sk, info), User(pk, info, m) \rangle$$

- Vf: the deterministic algorithm takes as input a public key pk, a signature σ, and a message m and a tag $info$. The algorithm outputs either 1 indicating valid or 0 indicating not valid.

Definition 9 (Correctness). We say that a partially blind signature scheme $\Sigma = (KGen, \langle Sign, User \rangle, Vf)$ is correct if for all pp, for all $(sk, pk) \leftarrow KGen(pp)$, for all messages m, all tags $info$ and all signatures σ outputted by $User$ in the joint execution of $Sign(sk, info)$ and $User(pk, info, m)$ we have $Vf(pk, \sigma, m, info) = 1$.

We consider the following notion of unforgeability for (partially) blind signature schemes:

Definition 10 (One-More-Unforgeability (OM-UF)). For a blind signature scheme Σ and an adversary A we define the One-More-Unforgeability experiment as shown in fig. 2.

We denote the advantage of A in the OM-UF game by

$$Adv_{\Sigma, A, \ell}^{OM-UF} = \Pr[OM-UF_{\Sigma, A, \ell} = 1]$$

and we say that Σ is (t, ε)-ℓ-one-more-unforgeable if for any adversary A that runs in time at most t, $Adv_{\Sigma, A, \ell}^{OM-UF} \leq \varepsilon$.

Another security property of (partially) blind signature schemes is (partial) blindness. As the focus of this work is unforgeability, we give the definition of (partial) blindness in appendix A.
3 Blind Signatures in the Multi-Signer Setting (MSS)

In this section, we will discuss the two definitions for the security of Blind Signatures in the Multi-Signer Setting as well as the translation of the notion of Key Substitution attacks [19].

3.1 Blind Signatures Key Substitution

Key Substitution entails appropriating a signature σ for a message m generated by a legitimate entity with the corresponding public key pk and making it appear to be the signature of another entity with the public key \overline{pk}. An adversary could claim to be an entity with the public key \overline{pk} and pass off the signature σ as its own. We refer to such an attack as Blind Signature Key Substitution Attack, or simply Key Substitution when the context is implied. We adopt the definition of a similar attack against digital signatures from [19] as follows.

Definition 11 (Key Substitution Attacks for Blind Signatures). For a Blind Signature Scheme Σ we define the game KeySub_Σ as described in fig. 3. We denote the advantage of an adversary A as

$$\text{Adv}_{\text{KeySub}_\Sigma} = \Pr[\text{KeySub}_\Sigma = 1]$$

and say that Σ is (t, ε)-secure against Key Substitution Attacks if for all adversaries A that run in time at most t, $\text{Adv}_{\text{KeySub}_\Sigma} \leq \varepsilon$.

Remark 2 (On the Notion of Key Substitution Attacks). We choose this notion as it is the strongest one in the sense that it makes the least restrictions on the adversary. Weaker notions include those where the adversary is required to output a secret key matching its chosen public key \overline{pk}, bounds on the set of permitted public keys \overline{pk} (e.g. only accepting public keys in the support of KGen), or bounds on the number of signing sessions permitted.
3.2 One-More Unforgeability in MSS

We introduce an extension of One-More Unforgeability (definition 10), a well-accepted notion for blind signatures, for the Multi-Signer Setting. This is necessary to adequately account for the capabilities of an adversary in the real world. Indeed, doing so is critical as attacks on applications of blind signature schemes involving multiple entities can have damaging consequences.

Definition 12 (Strong-Multi-Signer-One-More-Unforgeability (sMSS-OM-UF)). For a blind signature scheme \(\Sigma\) and an adversary \(A\), we define the Strong-Multi-Signer-One-More-Unforgeability game as

\[
s_{\text{MSS-OM-UF}}^{\Sigma,A,n,\ell} = \exists_{\text{-OM-UF}}^{\Sigma,A,n,\ell}
\]

(see definitions 7 and 10) and say that \(\Sigma\) is \((t, \varepsilon)\)-secure against \(s_{\text{MSS-OM-UF}}^{\Sigma,A,n,\ell}\) if for all adversaries that run in time \(t\), it holds that the advantage

\[
\text{Adv}^{s_{\text{MSS-OM-UF}}}_{\Sigma,A,n,\ell} \leq \varepsilon.
\]

For completeness, we provide pseudocode of the \(s_{\text{MSS-OM-UF}}\) game in fig. 4

Fig. 4. Pseudocode for strong multi-signer one-more-unforgeability game.

We further define a weaker version of the above security notion that allows a tight security reduction for specific blind signature schemes.

Definition 13 (Weak-Multi-Signer-One-More-Unforgeability (wMSS-OM-UF)). For a blind signature scheme \(\Sigma\) and any adversary \(A\), we define the weak-multi-signer one-more-unforgeability game in fig. 5. whereby \(\delta_{i,i^*}\) denotes 1 in the case that \(i = i^*\) and 0 otherwise.

We denote by

\[
\text{Adv}^{\text{wMSS-OM-UF}}_{\Sigma,A,n} := \Pr[\text{wMSS-OM-UF}_{\Sigma}^{A,n}(pp, n) = 1]
\]
On the Security of Blind Signatures in the Multi-Signer Setting

and we say that Σ is (t, ε)-secure against One-More-Unforgeability in the weak Multi-Signer-Setting if for all adversaries A that run in time at most t it holds that

$$\text{Adv}_{\Sigma, A, n}^{\text{wMSS-OM-UF}} \leq \varepsilon.$$

Remark 3 (On the weak vs. strong notion). Unlike some other security games, the OM-UF game can be “lost” in two different, not trivially equivalent ways. This is because an adversary may be able to still output as many signatures as it requested when it fails, or it may fail and not even be able to output as many signatures as requested. This is reflected in our two different notions of MSS-OM-UF, as in both cases, the adversary only needs to “win” one game. However, in the strong setting, it can lose all other games completely and output no signatures, whereas, in the weak setting, it still needs to output “enough” signatures in each game.

4 Generic Analysis of Blind Signatures in the Multi-Signer-Setting

In the following, we describe how Blind Signature schemes can be generically proven secure against the attack scenarios from the previous section.

4.1 Modifications against Key Substitution

We present two different modifications for blind signature schemes that aim to negate the probability of an attacker carrying out a Key Substitution attack in the presence of multiple signers. The main intuition behind both modifications is to make the signer’s public key part of the message for which a signature is obtained so that a signature with respect to one public key is not a valid signature with respect to another public key.
Modified Verification Algorithm In [19], Menezes and Smart proposed a
generic modification of digital signature schemes to counter the Key Substitution
attack by prepending messages with the signer’s public key before signing. In
the case of blind signatures, a signer has no control over the messages he signs;
 hence, no way to prepend messages with his public key. Nevertheless, we adopt
this modification for blind signatures by letting the user do the prepending and
modifying the verification algorithm to check the format of the message.

Let \(\Sigma = (\text{KGen}, (\text{Sign}, \text{User}), \text{Vf}) \) be a blind signature scheme. We define a
blind signature scheme \(\Sigma_1 = (\text{KGen}_1, (\text{Sign}_1, \text{User}_1), \text{Vf}_1) \).

- \(\text{KGen}_1(\text{pp}) := \text{KGen}(\text{pp}) \)
- \((\text{Sign}_1(\text{sk}), \text{User}_1(\text{pk}, m)) := (\text{Sign}(\text{sk}), \text{User}(\text{pk}, \text{pk} | m)) \)
- \(\text{Vf}_1(\text{pk}, m, \sigma) := \text{Vf}(\text{pk}, \text{pk} | m, \sigma) \)

Theorem 1. If a blind signature scheme \(\Sigma = (\text{KGen}, (\text{Sign}, \text{User}), \text{Vf}) \) is secure against
a one-more-forgery adversary in the Single-Signer Setting, then \(\Sigma_1 = (\text{KGen}_1, (\text{Sign}_1, \text{User}_1), \text{Vf}_1) \) is secure against a Key Substitution adversary in the
Multi-Signer Setting.

Proof. Let \(\Sigma = (\text{KGen}, (\text{Sign}, \text{User}), \text{Vf}) \) be a one-more-forgery secure blind sig-
nature scheme in the Single-Signer Setting. \(\Sigma_1 \) is secure against Key Substitution
attacks since none of the message-signature pairs that are valid with respect to a
public key \(\text{pk} \) can be valid with respect to another public key \(\overline{\text{pk}} \). This is because
the public key \(\text{pk} \neq \overline{\text{pk}} \) is part of the message and is checked by the verification
algorithm. We remind that a Key Substitution attacker of a blind signature
scheme can only succeed if a message-signature pair is valid with respect to two
different public keys. \(\square \)

The properties of our generically modified scheme are similar to those of
restrictive blind signature schemes. Restrictive blind signatures, introduced by
Brands [9], allow a recipient to obtain a blind signature on a message that is
unknown to the signer, but the choice of message is restricted and must conform
to certain rules.

For Partially Blind Schemes A partially blind signature scheme \(\Sigma = (\text{KGen},
(\text{Sign}, \text{User}), \text{Vf}) \) can be modified to \(\Sigma_2 = (\text{KGen}_2, (\text{Sign}_2, \text{User}_2), \text{Vf}_2) \) to become
secure against Key Substitution attacks by simply making the signer’s public key
part of the tag. The signing algorithm \(\text{Sign}_2 \) is identical to \(\text{Sign} \), except that it checks that the tag contains the correct public key before signing and aborts if
it does not. This is possible because the tag is not blinded.

- \(\text{KGen}_2(\text{pp}) := \text{KGen}(\text{pp}) \)
- \((\text{Sign}_2(\text{sk}, \text{info}), \text{User}_2(\text{pk}, \text{info}, m)) := (\text{Sign}(\text{sk}, \text{pk} | \text{info}), \text{User}(\text{pk}, \text{pk} | \text{info}, m)) \)
- \(\text{Vf}_2(\text{pk}, m, \sigma, \text{info}) := \text{Vf}(\text{pk}, \text{pk} | m, \sigma | \text{info}) \)

Theorem 2. If a partially blind signature scheme \(\Sigma = (\text{KGen}, (\text{Sign}, \text{User}), \text{Vf}) \)
is secure against a one-more forgery adversary in the Single-Signer Setting, then
\(\Sigma_2 = (\text{KGen}_2, (\text{Sign}_2, \text{User}_2), \text{Vf}_2) \) is secure against a Key Substitution adversary in the
Multi-Signer Setting.
Proof. Let $\Sigma = (KGen, (Sign, User), Vf)$ be a one-more-forgery secure partially blind signature scheme in the Single-Signer Setting. Σ_2 is secure against Key Substitution attacks since none of the (message, signature, tag) triples that are valid with respect to a public key pk can be valid with respect to another public key \overline{pk}. This is because the public key $pk \neq \overline{pk}$ is part of the tag and is checked by the verification algorithm. The signer only creates signatures that are valid with respect to tags containing the public key pk.

4.2 Lossy Reduction for One-More Unforgeability

In the following, we compare the advantage of a one-more forgery adversary in Single-Signer Setting to that of a one-more forgery adversary in the Multi-Signer Setting.

For any blind signature scheme, the following theorem states that the advantage of a one-more-forgery adversary in the Multi-Signer Setting can be upper bounded by a function of the advantage of a one-more forgery adversary with comparable resources in the Single-Signer Setting. The factor in the upper bound is polynomial in the number of signers in the setting and is parameterised by the maximum number of completed signing sessions that may be executed with each of the signing oracles. This is similar to existential unforgeability generic reductions for digital signatures in [16], and [14].

Theorem 3. Let n, ℓ be integers and Σ a blind signature scheme. It holds that

$$\text{Adv}_{\Sigma,A,n,\ell}^{\text{MSS-OM-UF}} \leq n \cdot \text{Adv}_{\Sigma,A,\ell}^{\text{OM-UF}}$$

where $\text{Adv}_{\Sigma,A,n,\ell}^{\text{MSS-OM-UF}}$ is defined in definition 12 and $\text{Adv}_{\Sigma,A,\ell}^{\text{OM-UF}}$ is defined in definition 10.

Proof. In the following, we prove the theorem from above. We assume that we have an algorithm A capable of generating One-More Forgery with probability ϵ_n in Multi-Signer Setting consisting of n signers.

We now describe an algorithm B_A for solving the Single-Signer case by using the algorithm A as a subroutine. The input to B_A is a public key pk. Further, access to the corresponding signing oracle $Sign(sk)$ is given. Basically, B can simulate a game for A in the Multi-Signer Setting by generating multiple signing key pairs itself. A pseudo-code of B_A is given in fig. 6.

We describe how B_A answers the signing queries A. If $i = i^*$, i.e. $sk_{i^*} = sk$, then B_A can use the signing oracle $Sign(sk)$. For $i \neq i^*$, i.e. $sk_i \neq sk$, B_A can answer the signing queries by using the secret key sk_i. This works because all secret keys sk_i, $i \neq i^*$ are known to B_A, so B_A can perfectly simulate all signing oracles.

The algorithm B_A will output one-more forgery with a probability of ϵ_n/n because there is a $1/n$ chance that $pk_{i^*} = \overline{pk}$. Since $\epsilon_1 \geq \epsilon_n/n$ we get $\epsilon_n \leq n \cdot \epsilon_1$.

This proves the theorem above about a generic reduction from the Multi-Signer to the Single-Signer Setting.

\square
Fig. 6. Lossy generic reduction for s-MSS-OM-UF.

The following corollary allows us to conclude that, under certain assumptions, a blind signature scheme can be proven secure against a one-more forgery adversary in the Multi-Signer Setting. Since the relation between the advantages of B_A and A is polynomial, we have the following:

Corollary 1. Let $\Sigma = (KGen, \langle Sign, User \rangle, Vf)$ be a blind signature scheme that is polynomially secure against a one-more forgery adversary in the Single-Signer Setting. Then, Σ is also polynomially secure against a one-more forgery adversary in the Multi-Signer Setting.

4.3 Trading the Reduction Loss for more Signing Sessions through Key Convertibility

We note that the reduction in section 4.2 loses a factor n where n is the number of instances/signers. When choosing parameters, e.g. for group sizes, for deploying blind signatures in the real world, a larger loss would mean that larger group parameters need to be chosen to achieve the same security guarantees.

Therefore, we are interested in a reduction that does not incur this loss. In the following, we present a way this reduction loss can be traded for an increased number of signing sessions in the Single-Signer Setting, as well as slightly weaker security guarantees in the Multi-Signer Setting.

This is possible when the schemes have certain properties. We call this general class of schemes **key convertible** blind signature schemes, similar to key convertible signature schemes introduced in [16].

We give our definition of a key converter for blind signature schemes below:

Definition 14 (Key Converter). A key converter C for a blind signature scheme $\Sigma = (KGen, \langle Sign, User \rangle, Vf)$ is given by the following algorithms:
- C.Key(pp, pk): on input, a public key pk returns a public key pk' and a conversion key ck_{pk \rightarrow pk'}.

- C.Conv(ck_{pk \rightarrow pk'}): on input, a conversion key ck_{pk \rightarrow pk'} with access to a signing oracle \langle \Sign(sk), \cdot \rangle^1 corresponding to the public key pk executes jointly with User to generate a signature for User and some possibly empty output \lambda' for C.Conv.

\text{C.Conv executes in the role of a user when interacting with Sign and in the role of a signer when interacting with User. Crucially, C.Conv only needs one completed joint execution session with Sign in order to generate a valid signature with respect to pk' for User.}

- C.Rec(ck_{pk \rightarrow pk'}, \sigma', m): on input, a conversion key ck_{pk \rightarrow pk'} and a signature-message pair \langle \sigma, m \rangle valid with respect to pk' return a signature-message pair \langle \sigma, m \rangle valid with respect to pk.

The functionality of a key converter for a \mu-move blind signature scheme is defined via the following requirements.

1. **Distribution of public keys:** for all pp, pk'', \{\langle pk'', sk'' \rangle \overset{\$}{\leftarrow} \Gen(pp)\}, all \n \in \mathbb{N} the distributions

 \{\langle pk_i, sk_i \rangle \overset{\$}{\leftarrow} \Gen(pp), i \in [n] : pk_1, \ldots, pk_n\}

 and

 \{\langle pk'_i, ck_{pk'' \rightarrow pk'} \rangle \overset{\$}{\leftarrow} \Key(pp, pk''), i \in [n] : pk'_1, \ldots, pk'_n\}

 must be identical.

2. **Distribution of interaction during signing session:** for all pp, pk with \langle pk, sk \rangle \overset{\$}{\leftarrow} \Gen(pp), \langle pk', ck_{pk \rightarrow pk'} \rangle \overset{\$}{\leftarrow} \Key(pp, pk) signing key sk' corresponding to pk', the following distributions of C.Conv's outputs in the role of a signer msg_{i \in [\mu_i]} throughout the interaction with a user, for any challenge chl_{i \in [\mu_i]} of the user's choice, defined as

 \{\langle st^*_i, msg_i \rangle \overset{\$}{\leftarrow} \Sign_i(sk', st^*_{i-1}, chl_i) : msg_{i \in [\mu_i]}\}

 and

 \{\langle st^*_i, msg'_i \rangle \overset{\$}{\leftarrow} \Conv_i^{\langle \Sign(sk), \cdot \rangle^1}(ck_{pk \rightarrow pk'}, st^*_{i-1}, chl_i) : msg'_{i \in [\mu_i]}\}

 must be identical.

3. **Distribution of generated signatures:** for all public parameters pp, all pk s.t. \langle pk, sk \rangle \overset{\$}{\leftarrow} \Gen(pp), \langle pk', ck_{pk \rightarrow pk'} \rangle \overset{\$}{\leftarrow} \Key(pp, pk) signing key sk' corresponding to pk', and message m, the distributions

 \{\langle \lambda, \sigma \rangle \overset{\$}{\leftarrow} \langle \Sign(sk'), User(pk', m) \rangle : \sigma \}

 and

 \{\langle \lambda', \sigma' \rangle \overset{\$}{\leftarrow} \langle \Conv_{i \in [\mu_i]}^{\langle \Sign(sk), \cdot \rangle^1}(ck_{pk \rightarrow pk'}, User(pk', m)) : \sigma' \}

 must be identical.
4. **Recoverability of signatures**: for all parameters \(pp \), public keys \(pk \) such that \((pk, sk) \) $\xrightarrow{\$} \text{KGen}(pp) \), \((pk', ck_{pk \rightarrow pk'}) \) $\xrightarrow{\$} \text{C.Key}(pp, pk)$ messages \(m \), signature \(\sigma' \) such that \(\text{Vf}(pk', m, \sigma') = 1 \) and \(\sigma \leftarrow \text{C.Rec}(ck_{pk \rightarrow pk'}, \sigma', m) \) it must hold that \(\text{Vf}(pk, m, \sigma) = 1 \)

With the above definition of a key converter for blind signature schemes, we are now ready to define a key convertible blind signature scheme.

Definition 15. A blind signature scheme \(\Sigma = (\text{KGen}, \langle \text{Sign}, \text{User} \rangle, \text{Vf}) \) is said to be key convertible if an efficient probabilistic polynomial time key converter \(\text{C} = (\text{C.Key}, \text{C.Conv}, \text{C.Rec}) \) for \(\Sigma \) exists.

The following theorem shows that a tight reduction from Multi-Signer to the Single-Signer Setting can be obtained for a key convertible blind signature scheme.

Theorem 4 (The Knifing Lemma). Let \(\Sigma = (\text{KGen}, \langle \text{Sign}, \text{User} \rangle, \text{Vf}) \) be a blind signature scheme that is key convertible. For any adversary \(A \) that runs in time at most \(t \) in the \(\text{wMSS-OM-UF} \) setting and makes \(\ell_i \) signing queries for the \(i \)-th signer, \(i \in [n] \), there exists an adversary \(B \) that also runs in time \(t \) such that:

\[
\text{Adv}_{\Sigma, A, n}^{\text{wMSS-OM-UF}} = \text{Adv}^{\text{OM-UF}}_{\Sigma, B, \sum_{i=1}^{n} \ell_i}
\]

The following proof combines the technique used in [14] to prove a tight reduction for “Schnorr-like” digital signatures with the notion of key convertibility in [16].

Proof. Suppose we have an algorithm \(A \) which is able to win the \(\text{wMSS-OM-UF} \) security experiment with respect to \(\Sigma \) with a probability of \(\varepsilon \). We construct \(B_A \), which wins the OM-UF security experiment with respect to the same scheme, using \(A \) as a subroutine. The corresponding pseudo-code is provided in fig. 7.

Correctness of Simulated Public Keys. We show that the reduction \(B \) perfectly simulates the \(\text{wMSS-OM-UF} \) game to the adversary. We first show that the \(n \) public keys generated by \(B_A \) are indeed identical to those generated by an honest \(\text{wMSS-OM-UF} \) challenger. This follows by using the first property of key convertible blind signature schemes \(n \) times.

Correctness of Signing Oracle Simulation. Algorithm \(A \) requires access to signing oracles for all public keys \(pk_i, i \in [1, n] \). We show how \(B_A \) simulates the signing oracle \(\text{Sign}(sk_i) \) corresponding to public key \(pk_i \).

The reduction \(B_A \) uses \(\text{C.Conv}(ck_i) \) to simultaneously initiate a session with the signing oracle \(\text{Sign}(sk) \) in the role of a user and a session in the role of a signer with \(A \), which is running \(\text{User}(pk, m) \), to generate a signature valid with respect to \(pk \) for \(A \). Using the fact that \((pk_i, ck_i) \) $\xrightarrow{\$} \text{C.Key}(pp, pk) \), by second property of key convertible blind signature schemes, it must hold that the distributions

\[
\{(st^*_i, msg_i) \leftarrow \text{Sign}(sk', st^*_{i-1}, chl_i) : msg_i \in [\iota]\}
\]
Fig. 7. Reduction for weak multi-signer security of a key-convertible scheme. Here $\delta_{i,i^*} = 1$ if $i = i^*$ and 0 otherwise.

and

$$\{(\lambda', \sigma') \leftarrow \text{C.Conv}(\text{Sign}(sk_i), \cdot)^3((\text{ck}^i_{pk \rightarrow pk'}, \text{st}^i_{j-1}, \text{chl}_i) : \text{msg}^i_{j\in[i]} \}$$

must be identical. By using this property n times, it follows that A can not distinguish between outputs of signing oracles simulated by B_A and outputs of signing oracles provided by an honest wMSS-OM-UF challenger.

Further, we show that all $\text{C.Conv}(\text{ck}_i)$ generate a valid signature with respect to pk_i for A. By using the third property of key-convertible blind signature schemes n times, it must hold that the distributions

$$\{(\lambda, \sigma) \leftarrow \text{C.Conv}(\text{Sign}(sk_i), \cdot)^3((\text{ck}_i, \text{User}(pk_i, m)) : \sigma')$$

and

$$\{(\lambda, \sigma) \leftarrow \text{Sign}(sk_i, \cdot)((\text{ck}_i, \text{User}(pk_i, m)) : \sigma)$$

are identical.

Hence, the above simulation of signing oracles is perfect.

Correctness of Output. We now show that B_A outputs one more message-signature pair than the number of completed execution sessions with $\text{Sign}(sk)$.

Since at most ℓ_i sessions were completed for public key $pk_i, i \in [1,n]$, as checked in line 7, and exactly one completed session with $\text{Sign}(sk)$ is required to simulate one completed session with $\text{Sign}(sk_i)$ for A, it follows that only at most $\sum_{i=1}^{n} \ell_i = \ell$ sessions are completed with $\text{Sign}(sk)$ to simulate all signing oracles. Since A outputs $\ell_i + 1$ valid triples for one public key pk_i, and ℓ_i for $i \neq i^*$, B_A outputs $1 + \sum_{i=1}^{n} \ell_i = \ell + 1$ valid message-signature pairs with respect to pk by recovering signatures using C.Rec. Furthermore, as we required in wMSS-OM-UF (and in line 5) that all messages output are pairwise distinct (even across public keys), all $\ell + 1$ messages output by B_A are pairwise distinct as well. This is indeed one more than the ℓ completed execution session with $\text{Sign}(sk)$.

Clearly, the message-signature pairs in the list are valid with respect to pk (line 8) since the algorithm already checks in line 6 whether all triples outputted
by \(A \) are valid. Due to the third property of key convertible blind signature schemes, it must hold that for \(\sigma'_{jt} \leftarrow \text{Rec}(ck_t, \sigma_{jt}) \), \(\text{Vf}(pk, m_{jt}, \sigma'_{jt}) = 1 \). Thus, all message-signature pairs outputted by the algorithm \(B_A \) are valid with respect to \(pk \).

Hence, \(B_A \) produces one-more-forgery in the single-signer-setting.

\[\square \]

5 Security of known Blind Signature Schemes in MSS

5.1 Blind BLS

\(bBLS \) is a secure blind signature scheme in the random oracle model given \(G \) is a GDH group \([7] \). It is based on the BLS digital signature scheme \([8] \). We recall \(bBLS = (\text{KGen}, \text{Sign}, \text{Vf}) \) as follows: Let \(G \) be a GDH group. Let \(H : \{0, 1\}^* \rightarrow G \) be a hash function which maps arbitrary long strings to \(G \). Let \(pp = (p, g, H) \) be the public parameter containing the generator \(g \), the prime group order \(p \) and the hash function \(H \).

- \(\text{KGen} \): On input \(pp = (p, g, H) \), \(\text{KGen} \) samples \(x \leftarrow \mathbb{Z}_p \) and computes \(y = g^x \). It sets \(pk = y \), \(sk = x \) and returns \((sk, pk) \).
- \(\text{Sign} \): On input a secret key \(sk \), challenge \(m \), \(\text{Sign} \) computes \(\sigma = (m)^x \) and returns the response \(\sigma \).
- \(\text{User}_1 \): On input a public key \(pk \), a message \(m \in \{0, 1\}^* \), \(\text{User}_1 \) samples \(r \leftarrow \mathbb{Z}_p \) and computes \(\overline{m} = H(m).g^r \). It returns the challenge \(\overline{m} \), and the state \(st_u = r \).
- \(\text{User}_2 \): On input a public key \(pk \), a state \(st_u = r \) and a response \(\sigma \), \(\text{User}_2 \) computes \(\sigma' = \sigma \cdot y^{-r} \) and returns \(\sigma' \).
- \(\text{Vf} \): On input a public key \(pk \), a message \(m \) and a signature \(\sigma \), \(\text{Vf} \) checks \(\log g y = 1 \) using the DDH solver. If so, it returns \(1 \); otherwise, it returns \(0 \).

A graphic of the scheme can be found in fig. 13 in appendix B.

Theorem 5. Suppose \(bBLS \) is defined over a GDH group \(G \) with \(pp = (p, g, H) \) as a public parameter. Then, in the random oracle model, \(bBLS \) is secure against Key Substitution.

Proof. Assume that an adversary \(A \) successfully outputs a public key \(pk' = y' \) different from \(pk = y \) such that \((m, \sigma) \) is a valid message-signature pair with respect to both public keys. Since both signatures are valid, we have \(\log g y = \log_{H(m)} \sigma \) and \(\log g y' = \log_{H(m)} \sigma \). Since \(H \) is a random function, the probability of obtaining a collision is negligible. It follows that \(\log g y = \log g y' \) and \(y = y' \), which is a contradiction.

Lemma 1. The blind signature scheme \(bBLS \) is key convertible.

Proof. We provide a key converter for \(bBLS \) in fig. 8. We prove that it fulfils the required properties below:
C.Key(pp, pk)
1: \(ck \leftarrow Z_p \)
2: \(pk' \leftarrow pk^{ck} \)
3: \text{return (pk', ck)}

C.Rec(ck', \sigma')
1: \(\alpha \leftarrow (ck)^{-1} \)
2: \(\sigma \leftarrow \sigma'^{\alpha} \)
3: \text{return } \sigma

C.Conv_k(\pi)
1: \text{return } \pi

C.Conv(\sigma, \pi)
1: \(\sigma' \leftarrow \sigma^{ck} \)
2: \text{return } \sigma'

Fig. 8. A Key Converter for the Blind BLS Scheme

Distribution of public keys: On input a public parameter \(pp = (p, g, H) \) and a public key \(pk \), C.Key implicitly sets the signing key \(sk' \) corresponding to \(pk' = r \cdot x \), where \(x = \log_y(pk) \). Since \(ck \) is sampled uniformly at random from \(Z_p \) in each run of C.Conv, for any \(n \), an \(n \)-tuple of public keys generated by C.Conv, with the same public key \(pk \) as input, is identically distributed to an \(n \)-tuple of public keys generated by KGen.

Distribution of interaction during signing session: Since \(\sigma = m^x \) where \(x = \log(g) \), we have that \(\sigma' = m^{x \cdot ck} \) which is the unique valid response with respect to \(sk' = x \cdot ck \) and \(m \).

Distribution of generated signatures: Further, C.Conv generates the unique valid signature with respect to \(pk' = pk^{ck} \) for a message of the user’s choice, as \(H(m)^{sk' \cdot ck} = H(m)^{sk} \).

Recoverability of signatures: Since \(\sigma = m^x \) where \(x = \log(pk) \), we have that

\[
\sigma = m^x \cdot g^{-x \cdot ck} = H(m)^{x \cdot ck} \cdot g^{x \cdot ck - x \cdot ck} = H(m)^{x \cdot ck} \tag{1}
\]

On input a conversion key \(ck \) and a valid signature \(\sigma' \) for a message \(m \) with respect to \(pk' \), C.Rec computes \(\alpha \leftarrow (ck)^{-1} \) and returns \(\sigma'^{\alpha} \).

We show that \(\sigma \) is a valid signature for message \(m \) with respect to \(pk \). Since \(\sigma' = m^{x \cdot ck} \), where \(x = \log(y), \sigma = m^{x \cdot ck \cdot \alpha} = m^x \) is the unique valid signature for \(m \) with respect to \(pk \).

\(\square \)

5.2 Blind Schnorr Scheme (BSS)

We recall Schnorr’s blind signature scheme BSS [24]: Let \(\mathbb{G} \) be a group of order \(p \) with generator \(g \), \(H : \{0,1\}^* \rightarrow \mathbb{G} \) be a hash function and \(pp = (p, g, H) \) the public parameter.

- \(\text{KGen : On input } pp = (p, g, H), \text{KGen samples } x \leftarrow \mathbb{Z}_p \text{ and computes } y \leftarrow g^x. \)
 It then sets \(sk \leftarrow x, pk \leftarrow y \) and returns \((sk, pk) \).
Theorem 6. Suppose that BSS is defined over a group G with $pp = (p, g, H)$ as the public parameter. Then, in the random oracle model, BSS is secure against Key Substitution.

Proof. Assume that an adversary A successfully outputs a public key $\overline{pk} = \overline{y}$ different from $pk = y$ such that $(m, (R', s'))$ is a valid message-signature pair with respect to both public keys. Since both signatures are valid, we have $g^{s'} = R' \cdot y^{c'}$, and $g^{s} = R' \cdot \overline{y}^{c'}$, where $c' \leftarrow H(R', m)$. Since H is a random function, the probability of obtaining a collision is negligible. It follows that $y^{c'} = \overline{y}^{c'}$ and $y = \overline{y}$, which is a contradiction.

Lemma 2. The blind signature scheme BSS is key convertible.

Proof. We provide a key converter for BSS in fig. 9. We prove that it fulfills the required properties below:

Distribution of public keys: Since ck is sampled uniformly at random from Z_p in each run of $C.Conv$, for any n, an n-tuple of public keys generated by $C.Conv$, with the same public key pk as input, is identically distributed to an n-tuple of public keys generated by $KGen$.

Distribution of interaction during signing session: First, on input of the signer’s commitment R, $C.Conv$ forwards R to the user. Then, on input user’s challenge c, it sets the state $st^C \leftarrow c$ and forwards the c to the signer. Finally, on input a conversion key ck, a response s from the signer and a state $st^C = c$, it computes a new response s'' and returns s'' to the user.

Since $R = g^r$ where r is randomly sampled by $\text{Sign}(sk)$, $C.Conv$’s first output is uniformly distributed and, thus, identical to the distribution of a commitment from $\text{Sign}(sk')$. We show that since r is randomly sampled by $\text{Sign}(sk)$, $C.Conv$’s second output s'' is uniformly distributed and also the
Recoverability of signatures: On input a conversion key.

Distribution of generated signatures: Further, we show that (x, s) since a valid signature (R, c), unique response to the challenge c and $CConv$'s first output $R = g^c$. Thus, the distribution of both outputs by $CConv$ is identical to that of $Sign(sk)$. Since $s = c \cdot x + r$ where $x = \log_g(pk)$ and, we have that

$$s'' = c \cdot x + r + c \cdot ck = c \cdot (x + ck) + rs'' = c \cdot sk + r$$ \hspace{1cm} (2)

Distribution of generated signatures: Further, $CConv$ produces a valid signature (R', S') for message m with respect to pk'. We have

To see this, first, we show that the user’s check $g^{s''} = R \cdot pk^{c'}$ holds.

$$g^{c \cdot sk + r} = g^c \cdot g^{sk + r} = g^{c \cdot sk + r}$$ \hspace{1cm} (3)

Then, we show that $Vf(pk', (R', s'), m)$ returns 1, by showing that

$$g'^{c + ck + \alpha} = R \cdot g^\alpha \cdot pk^{c'} \cdot pk^{c'}$$ \hspace{1cm} (4)

$$g'^{c + ck + \alpha} = R \cdot g^\alpha \cdot g(x + ck)^{c'}$$ \hspace{1cm} (5)

$$g'(c' + \beta) \cdot (x + ck) + r + \alpha = g'^{c + \beta} \cdot (x + ck) + r + \alpha$$ \hspace{1cm} (6)

Recoverability of signatures: On input a conversion key ck, a message m and a valid signature (R', s''') with respect to pk', $CRec$ computes and returns (R', s'''').

We show that (R', s') is a valid signature for message m with respect to pk.

Since $x = \log(pk)$, $s'' = c \cdot sk + r$, $e' = H(R', m)$ we have

$$s' = s''' - c' \cdot sk = c \cdot (x + ck) + r + \alpha - c' \cdot sk$$ \hspace{1cm} (8)

$$= (c' + \beta) \cdot x + (e' + \beta) \cdot ck + r + \alpha - c' \cdot sk$$ \hspace{1cm} (9)

$$= c' \cdot x + \beta \cdot x + \beta \cdot ck + r + \alpha$$ \hspace{1cm} (10)
We show that $g^{c'} = R' \cdot pk^{c'}$ holds.

\[g^{c'} = R \cdot g^\alpha \cdot g^{(x+c)\beta} \cdot g^{x \cdot c'} \quad (11) \]

\[g^{c' + x + \beta + x' \cdot c + x' \cdot c'} = g^{r + a + x + \beta + c + x' c'} \quad (12) \]

\[\square \]

5.3 Okamoto-Schnorr Scheme (OSS)

OSS [20] was proved to be a secure blind signature scheme by Pointcheval and Stern in [21]. We recall OSS as follows: OSS uses a group G of prime order p and two generators g, h of G. It also uses hash function $H : \{0, 1\}^* \rightarrow \mathbb{Z}_p$. We let the public parameter be $\text{pp} = (p, g, h, H)$.

- **KGen**: On input $\text{pp} = (p, g, h, H)$, KGen samples $r \leftarrow \mathbb{Z}_p$, $s \leftarrow \mathbb{Z}_p$ and computes $y \leftarrow g^{-r} h^{-s}$. It sets $sk \leftarrow (r, s)$, $pk \leftarrow y$ and returns (sk, pk).
- **Sign$_1$**: On input a secret key sk, Sign$_1$ samples $t \leftarrow \mathbb{Z}_p$, $u \leftarrow \mathbb{Z}_p$, and returns the commitment $c \leftarrow g^t h^u$, and the state $st = (t, u)$.
- **Sign$_2$**: On input a secret key sk a state $st = (t, u)$, and a challenge e, Sign$_2$ computes $R \leftarrow t + er$ and $S \leftarrow u + es$, and returns the pair (R, S).
- **User$_1$**: On input a public key pk, a commitment c, and a message m, User$_1$ does the following: It first samples $\beta, \gamma, \delta \leftarrow \mathbb{Z}_p$, and it then computes $\alpha = ag^3 h^\gamma g^\delta$, $e = H(m, \alpha)$ and $e = e - \delta$. It returns the challenge e and the state $st_U = (a, c, \beta, \gamma, \delta, m)$.
- **User$_2$**: On input a public key, a state $st_U = (a, c, \beta, \gamma, \delta, m)$ and a response (R, S), User$_2$ first checks $a' = g^R \cdot h^\delta \cdot g^\gamma$ and returns \perp if not. Otherwise, it computes $\rho \leftarrow R + \beta$ and $\sigma \leftarrow S + \gamma$ and returns the signature (α, ρ, σ).
- **Vf**: On input a public key pk, a signature (α, ρ, σ) and a message m, Vf computes $e = H(m, \alpha)$ and checks $a' = g^\rho h^\sigma g^e$. A graphic of the scheme can be found in fig. 15 in appendix B.

Theorem 7. Suppose that OSS is defined with $\text{pp} = (p, g, h, H)$ as the public parameter. Then, in the random oracle model, OSS is secure against Key Substitution.

Proof. Assume that an adversary A successfully outputs a public key $\overline{pk} = \overline{\gamma}$ different from $pk = y$ such that $(m, (\alpha, \rho, \sigma))$ is a valid message-signature pair with respect to both public keys. Since both signatures are valid, we have $\alpha = g^\rho \cdot h^\sigma \cdot \gamma^e$ and $\alpha = g^\rho \cdot h^\sigma \cdot y^e$ where $e = H(m, \alpha)$. Since H is a random function, the probability of obtaining a collision is negligible. It follows that $\overline{\gamma} = y^e$ and $\overline{\gamma} = y$, which is a contradiction. \square

Lemma 3. The blind signature scheme OSS is key convertible.

Proof. We provide a key converter for OSS in fig. 10. We prove that it fulfills the required properties below:
First, the algorithm forwards the signer’s commitment a to the user. Then, it forwards the user’s challenge e to the signer and sets the state $st^C \leftarrow e$. Finally, on input a conversion key (ck_r, ck_s), a response (R, S) from the signer and a state $st^C = e$, it computes and returns a new response (R', S') to the user.

Since $a = g^t \cdot h^u$ where t and u are randomly sampled by $\text{Sign}(sk)$, Conv's first output is uniformly distributed and, thus, identical to the distribution of a commitment from $\text{Sign}(sk')$. We show that since t and u are randomly sampled by $\text{Sign}(sk)$, Conv's second output (R', S') is uniformly distributed and also the unique response to the challenge e and Conv's first output a. Thus, the distribution of both outputs by Conv is identical to that of $\text{Sign}(sk')$.

Distribution of generated signatures: Since $R = t + e \cdot r$ where $pk = g^{-r} \cdot h^{-s}$, we have that

$$R' = t + e \cdot r + e \cdot ck_r = t + e \cdot r'$$

(13)

Since $S = u + e \cdot s$ where $pk = g^{-r} \cdot h^{-s}$, we have that

$$S' = u + e \cdot s + e \cdot ck_s = u + e \cdot s'$$

(14)
Recoverability of Signatures: Furthermore, Conv produces a valid signature with respect to pk' for message m of the user’s choice. First, we show that the user’s check on R' and S', $a \equiv g^{R'} \cdot h^{S'} \cdot y' \mod e$ holds.

\[
g^t \cdot h^u = g^{t+e' \cdot e \cdot s'} \cdot (g^{-e' \cdot e} \cdot h^{-s'})^c
\]
\[
= g^t \cdot h^u \cdot g^{e' \cdot e \cdot s'} \cdot h^{e \cdot s' - e \cdot s'} = g^t \cdot h^u
\]

We show that $Vf(pk', (\alpha, \rho, \sigma), m)$ returns 1 by showing that

\[
\alpha \equiv g^a \cdot h^\gamma \cdot pk^\varepsilon
\]
\[
a \cdot g^\beta \cdot h^\gamma \cdot pk^\delta = g^{R' + \beta} \cdot h^{S' + \gamma} \cdot pk^{(\varepsilon + \delta)}
\]
\[
= a \cdot g^\beta \cdot h^\gamma \cdot pk^\delta
\]

Distribution of generated signatures: Furthermore, Conv produces a valid signature with respect to pk' for message m of the user’s choice. First, we show that the user’s check on R' and S', $a \equiv g^{R'} \cdot h^{S'} \cdot y' \mod e$ holds.

\[
g^t \cdot h^u = g^{t+e' \cdot e \cdot s'} \cdot (g^{-e' \cdot e} \cdot h^{-s'})^c
\]
\[
= g^t \cdot h^u \cdot g^{e' \cdot e \cdot s'} \cdot h^{e \cdot s' - e \cdot s'} = g^t \cdot h^u
\]

We show that $Vf(pk', (\alpha, \rho, \sigma), m)$ returns 1 by showing that

\[
\alpha \equiv g^a \cdot h^\gamma \cdot pk^\varepsilon
\]
\[
a \cdot g^\beta \cdot h^\gamma \cdot pk^\delta = g^{R' + \beta} \cdot h^{S' + \gamma} \cdot pk^{(\varepsilon + \delta)}
\]
\[
= a \cdot g^\beta \cdot h^\gamma \cdot pk^\delta
\]

Recoverability of Signatures: On input a conversion key (ck_s, ck_a), a message m and a valid signature $(\alpha', \rho', \sigma')$ with respect to pk, the algorithm produces a valid signature (α, ρ, σ) with respect to pk and m. Since $pk = y = g^{-r} \cdot h^{-s}, s'' = e \cdot sk^\delta + r, c' = H(R', m)$, we have

\[
\rho = \rho' - \varepsilon \cdot ck_r = R' + \beta - \varepsilon \cdot ck_r = t + e \cdot r' + \beta - \varepsilon \cdot ck_r \tag{20}
\]
\[
= t + e \cdot (r + ck_r) + \beta - \varepsilon \cdot ck_r \tag{21}
\]
\[
= t + (\varepsilon - \delta) \cdot r + (\varepsilon - \delta) \cdot ck_r + \beta - \varepsilon \cdot ck_r = (t - \delta \cdot ck_r) + e \cdot r + \beta \tag{22}
\]

\[
\sigma = \sigma' - \varepsilon \cdot ck_a = S' + \gamma - \varepsilon \cdot ck_a \tag{23}
\]
\[
= u + e \cdot s' + \gamma - \varepsilon \cdot ck_a = u + e \cdot (s + ck_a) + \gamma - \varepsilon \cdot ck_a \tag{24}
\]
\[
= u + (\varepsilon - \delta) \cdot s + (\varepsilon - \delta) \cdot ck_a + \gamma - \varepsilon \cdot ck_a \tag{25}
\]
\[
= u + e \cdot s - \delta \cdot s + \varepsilon \cdot ck_a - \delta \cdot ck_a + \gamma - \varepsilon \cdot ck_a \tag{26}
\]
\[
= (u - \delta \cdot ck_a) + e \cdot s + \gamma \tag{27}
\]

We show that (α, ρ, σ) is a valid signature with respect to pk and m by showing that $\alpha \equiv g^a \cdot h^\gamma \cdot pk^\varepsilon$.

\[
\alpha = a \cdot g^\beta \cdot h^\gamma \cdot pk^\delta = g^{t+\beta+(r-ck_r) \cdot \delta} \cdot h^{u+\gamma+(s-ck_a) \cdot \delta} \tag{28}
\]

\[
g^a \cdot h^\gamma \cdot pk^\varepsilon = g^{(a'-e \cdot ck_a) \cdot h^{(\sigma'-e \cdot ck_a) \cdot pk^{(\varepsilon+e)}}}
\]
\[
= g^{(t-\delta \cdot ck_a) + e \cdot r + \beta} \cdot h^{(u-\delta \cdot ck_a) + e \cdot s + \gamma} \cdot (g^{-r} \cdot h^{-s})^{(\delta+e)}
\]
\[
= g^{t+\beta+(r-ck_r) \cdot \delta} \cdot h^{u+\gamma+(s-ck_a) \cdot \delta} \tag{31}
\]
5.4 Tessaro-Zhu-GGM (TZG)

We recall the generically secure blind signature scheme from [25], which we denote by TZG: Let \(G \) be a prime-order cyclic group of order p with generator \(g, H : \{0, 1\}^* \rightarrow G \) be a hash function and \(pp = (p, g, H) \) the public parameter.

- **KGen**: On input \(pp = (p, g, H) \), \(KGen \) samples \(x \leftarrow Z_p \) and computes \(X \leftarrow g^x \).
 It sets \(sk \leftarrow x, pk \leftarrow X \) and returns \((sk, pk)\).
- **Sign_1**: On input a secret key \(sk \), \(Sign_1 \) samples \(a \leftarrow Z_p, y \leftarrow Z_p^* \), computes \(A \leftarrow g^a, Y \leftarrow X^y \) and returns the state \(st^g \leftarrow (a, y, x) \) and the commitment \((A, Y)\).
- **Sign_2**: On input a secret key \(sk \), a state \(st^g \leftarrow (a, y, x) \) and a challenge \(c \), \(Sign_2 \) computes \(s \leftarrow a + c \cdot y \cdot sk \) and returns the response \((s, y)\).
- **User_1**: On input a public key \(pk \), a commitment \((A, Y)\), and a message \(m \in \{0, 1\}^* \), \(User_1 \) does the following: It first samples \(r_1, r_2 \leftarrow Z_p, \gamma \leftarrow Z_p^* \). Then, it computes \(Y' \leftarrow Y^\gamma, A' \leftarrow g^{r_1} \cdot A^\gamma, Y'' \leftarrow H(A'|| Y'|| m) \), and \(c \leftarrow c' + r_2 \). It returns state \(st^U \leftarrow (c, c', r_1, \gamma, pk, Y, A) \) and challenge \(c \).
- **User_2**: On input a public key \(pk \), a state \(st^U \leftarrow (c, c', r_1, \gamma, pk, Y, A) \), and a response \((s, y)\), \(User_2 \) first checks whether \(y \neq 0 \) and \(Y \leftarrow pk^y \) and \(g^s \leftarrow A \cdot Y^c \). It returns \(1 \) if not. Otherwise, it computes \(s' \leftarrow \gamma \cdot s + r_1 \) and \(y' \leftarrow \gamma \cdot y \) and returns the signature \((c', s', y')\).
- **Vf**: On input a public key \(pk \), a signature \((c', s', y')\) and a message \(m \), \(Vf \) computes \(Y \leftarrow pk^y, A \leftarrow g^{s'} \cdot Y^{-c'} \) and checks whether \(c' \leftarrow H(A|| Y|| m) \). If so, it returns 1; otherwise, it returns 0.

A graphic of the scheme can be found in fig. 16 in appendix B.

Theorem 8. Suppose that TZG is defined over a group \(G \) with \(pp = (p, g, H) \) as the public parameters. Then, in the random oracle model, TZG is secure against Key Substitution.

Proof. Assume that an adversary \(A \) successfully outputs a public key \(\overline{pk} = X \) different from \(pk = X \) such that \((m, (c', s', y'))\) is a valid message-signature pair with respect to both public keys. Since both signatures are valid, we have \(c' = H(g^{s'} \cdot (pk'^y)^{-c'} \cdot \overline{pk}^y, m) \) and \(c' = H(g^{s'} \cdot (pk'^y)^{-c'} \cdot \overline{pk}^y, m) \). Since \(H \) is a random function, the probability of obtaining a collision is negligible. It follows that \(pk'^y = \overline{pk}^y \) and \(pk = \overline{pk} \), which is a contradiction. \(\square \)

Lemma 4. The blind signature scheme TZG is key convertible.

Proof. We provide a key converter for TZG in fig. 11. We prove that it fulfils the required properties below:

Distribution of public keys: For any \(n \), an \(n \)-tuple of keys generated through key conversion is identically distributed to a fresh key as in a prime order group, exponentiation with a random value from \(Z_p \) yields a uniformly random group element. Thus, an \(n \)-tuple of converted public keys is a tuple of uniformly random group elements, just like an \(n \)-tuple of freshly generated public keys.
Distribution of interactions during the signing sessions:

First, on input a conversion key ck and a signer’s commitment (A, Y), C\text{Conv}$ computes $Y'' \leftarrow Y^{ck}$ and returns a new commitment (A, Y'') to the user. Then, on input ck and a user’s challenge c, it computes $c'' \leftarrow ck \cdot c$ and returns a new challenge c'' to the signer. Finally, it forwards the signer’s response (s, y) to the user.

Since the commitment $(A = g^a, Y = pk^y)$ by $\text{Sign}(sk)$ is uniformly distributed, where a and y are randomly sampled, C\text{Conv}$’s first output ($g^a, pk^y \cdot ck = pk'^y$) is also uniformly distributed and, thus, identical to the distribution of a commitment from $\text{Sign}(sk')$. We show that C\text{Conv}$’s second output (s, y) is uniformly distributed as well as the unique response to a challenge c and C\text{Conv}$’s first output, and also identical to the distribution of a response from $\text{Sign}(sk')$. Thus, the distribution of both outputs by C\text{Conv}$ is identical to that of $\text{Sign}(sk')$.

Since a and y are randomly sampled by $\text{Sign}(sk)$ and $s = a + c'' \cdot y \cdot x$ where $x = \log_g(pk)$, we have that

$$s = a + c'' \cdot y \cdot x = a + c \cdot ck \cdot y \cdot x = a + c \cdot y \cdot sk'$$

(32)

Distribution of generated signatures:

Moreover, C\text{Conv}$ produces a valid signature with respect to pk'^y for message m of the user’s choice. First, we show that the user’s checks on a signer’s response

$$y \neq 0, Y'' = pk'^y, g^a = A \cdot Y'''$$

hold. Since $\text{Sign}(sk)$ samples y form \mathbb{Z}_p^*, it follows that $y \neq 0$. Since $Y'' = pk^y ck \cdot x = \log(pk)$ and $s = a + c'' \cdot y \cdot x$

$$Y'' = pk^y ck \cdot y = pk'^y$$

(33)
Recoverability of signatures: showing that

\[g^c = A \cdot Y^x \]
\[g^{a+c^c} \cdot y \cdot x = g^a \cdot g^y \cdot c^c \]
\[g^{a+c^c} \cdot y \cdot s^c = g^{a+c^c} \cdot y \cdot s^c \]

We now show that \(\text{Vf}(\text{pk}', (c', s', y'), m) \) returns 1 by showing that

\[Y' = \text{pk}'^{y'} \cdot A' = g^{s'} \cdot (\text{pk}'^{y'})^{-c'} \]

thus

\[c' = \text{H}(g^{s'} \cdot (\text{pk}'^{y'})^{-c'} , \text{pk}'^{y'}, m) \]

holds. Since \(x = \log(\text{pk}) \), \(Y'' = \text{pk}'^{y} = g^{x^c \cdot y} \), we have that

\[Y' = \text{pk}'^{y'} \]
\[Y''^{y'} = \text{pk}'^{y \cdot y} \]
\[g^{x \cdot y \cdot c^c} = g^{x \cdot y \cdot c^c} \]

and since \(s = a + c'' \cdot y \cdot s^c = a + c \cdot y \cdot s^c \), we have that

\[A' = g^{s'} \cdot (\text{pk}'^{y'})^{-c'} \]
\[g^{r_1} \cdot A' \cdot Y''^{r_2} = g^y \cdot s_1 \cdot g^{-s^c \cdot y \cdot c'} \]
\[g^{r_1} \cdot g^{a \cdot c'} \cdot Y''^{r_2} = g^y \cdot a \cdot c' \cdot y \cdot s^c \cdot y \cdot c' \]
\[g^{r_1} \cdot g^{a \cdot y \cdot c^c} \cdot Y''^{r_2} = g^y \cdot a \cdot y \cdot c^c \cdot y \cdot s^c \cdot y \cdot c' \]
\[g^{r_1 + a \cdot c' \cdot y \cdot s^c \cdot y \cdot c'} = g^{r_1 + a \cdot c' \cdot y \cdot s^c \cdot y \cdot c'} \]

Recoverability of signatures: On input a conversion key \(c^c \), a message \(m \) and a valid signature \((c', s', y')\) with respect to \(\text{pk}' \) and \(m \), the algorithm produces a valid signature \((c^*, s^*, y^*)\) with respect to \(\text{pk} \) and \(m \).

We show that \((c^*, s^*, y^*)\) is a valid signature with respect to \(\text{pk} \) and \(m \) by showing that

\[c^* = \text{H}(g^{s^*} \cdot (\text{pk}'^{y^*})^{-c'} || |\text{pk}'^{y^*}|| m) \]

Since \(c^* = c' \) where \(c' = \text{H}(A' || Y'' || m) \), we proceed by showing that \(Y' = \text{pk}'^{y^*} \) and \(A' = g^{s^*} \cdot (\text{pk}'^{y^*})^{-c^*} \) to conclude that the following holds.

\[\text{H}(A' || Y'' || m) = \text{H}(g^{s^*} \cdot Y''^{-c^*} || |\text{pk}'^{y^*}|| m) \]

Since \(x = \log(\text{pk}) \), \(sk' = x \cdot c^c \), \(s = a + c \cdot y \cdot s^c \), we have

\[Y' = \text{pk}'^{y^*} \]
\[\text{pk}'^{y^*} = \text{pk}'^{y^* \cdot c^c} \]
\[g^{x \cdot c^c} \cdot y = g^{x \cdot c^c} \cdot y \]
\[A' = g^{x_r} \cdot (pk_y)^{-c'} \]
\[g^{r_1} \cdot A' \cdot Y^{r_2} = g^r \cdot g^{-x \cdot c \cdot y \cdot c'} \]
\[g^{r_1} \cdot g^{a \cdot \gamma} \cdot Y^{r_2} = g^{\gamma \cdot s + r_1} \cdot g^{-x \cdot c \cdot \gamma \cdot y \cdot c'} \]
\[g^{r_1} \cdot g^{a \cdot \gamma} \cdot pk_y^{y \cdot r_2} = g^{\gamma \cdot (a + c \cdot y \cdot x \cdot c) + r_1} \cdot g^{-x \cdot c \cdot \gamma \cdot y \cdot c'} \]
\[g^{r_1} \cdot g^{a \cdot \gamma} \cdot g^{sk'y \cdot r_2} = g^{\gamma \cdot (a + c' + r_2) \cdot y \cdot x \cdot c} + r_1 \cdot g^{-x \cdot c \cdot \gamma \cdot y \cdot c'} \]
\[g^{r_1+a \cdot \gamma + x \cdot c \cdot \gamma \cdot r_2} = g^{r_1+a \cdot \gamma + x \cdot c \cdot \gamma \cdot r_2} \]

5.5 Tessaro-Zhu-AGM (TZA)

We recall the algebraically secure blind signature scheme from [25]: Let \(G \) be a prime-order cyclic group of order \(p \) with generator \(g \), \(H : \{0,1\}^* \rightarrow G \) be a hash function and \(pp = (p, g, H) \) the public parameter.

- **KGen**: On input \(pp = (p, G, g, H) \), **KGen** samples \(x \leftarrow Z_p, Z \leftarrow G \) and computes \(X \leftarrow g^x \). It sets \(sk \leftarrow x, pk \leftarrow (X, Z) \) and returns \((sk, pk)\).

- **Sign1**: On input a secret key \(sk \), **Sign1** samples \(a, t \leftarrow Z_p, y \leftarrow Z_p \) computes \(A \leftarrow g^a, C \leftarrow g^YZ \) and returns the state \(st^S \leftarrow (a, y, t, x) \) and the commitment \((A, C)\).

- **Sign2**: On input a secret key \(sk \), a state \(st^S \leftarrow (a, y, x) \) and a challenge \(c \), **Sign2** computes \(s \leftarrow a + c \cdot y \cdot sk \) and returns the response \((s, y, t)\).

- **User1**: On input a public key \((pk_x, pk_z) \), a commitment \((A, C)\), and a message \(m \in \{0,1\}^* \), **User1** does the following: It first samples \(r_1, r_2 \leftarrow Z_p, \gamma_1, \gamma_2 \leftarrow Z_p^\ast \). Then, it computes \(C' \leftarrow C_1^r \cdot g^{r_2} \cdot A' \leftarrow g^{r_1} \cdot A^{\gamma_1 / \gamma_2} \cdot c' \leftarrow H(A'[C'[m]]) \), and \(c \leftarrow c' \cdot \gamma_2 \). It returns state \(st^U \leftarrow (c, c', r_1, r_2, \gamma_1, \gamma_2, pk_x, pk_z, A, C) \) and challenge \(c \).

- **User2**: On input a public key \((pk_x, pk_z) \), a state \(st^U \leftarrow (c, c', r_1, r_2, \gamma_1, \gamma_2, pk_x, pk_z, A, C) \), and a response \((s, y, t)\), **User2** first checks whether \(y \neq 0 \) and \(C = g^r \cdot pk_z^y \) and \(g^s = A \cdot pk_x^y \). It returns \(\bot \) if not. Otherwise, it computes \(s' \leftarrow \gamma_1 / \gamma_2 \cdot s + r_1, y' \leftarrow \gamma_1 \cdot y, t' \leftarrow \gamma_1 \cdot t + r_2 \) and returns the signature \((c', s', y', t')\).

- **Vf**: On input a public key \((pk_x, pk_z) \), a signature \((c', s', y', t')\) and a message \(m \), **Vf** checks whether \(c' \leftarrow H(g^{s'} \cdot pk_z^{-y'} || g^{t'} \cdot pk_y^y || m) \). If so, it returns 1; otherwise, it returns 0.

A graphic of the scheme can be found in fig. 17 in appendix B.

Theorem 9. Suppose that TZA is defined over a group \(G \) with \(pp = (p, g, g, H) \) as the public parameters. Then, in the random oracle model, TZA is secure against Key Substitution.
Proof. Assume that an adversary \(\mathcal{A} \) successfully outputs a public key \(\overline{\text{pk}} = (\overline{X}, \overline{Z}) \) different from \(\text{pk} = (X, Z) \) such that \((m, (c', s', y', t'))\) is a valid message-signature pair with respect to both public keys. Since both signatures are valid, we have \(c' = H(g^{s'} \cdot X - c' \cdot y' || g^{t'} \cdot \overline{Z} || m) \) and \(c' = H(g^{s'} \cdot \overline{X} - c' \cdot \overline{Z} || g^{t'} || m) \). It follows that \(g^{t'} \cdot \overline{Z} = g^{t'} \cdot Z \) and \(Z = \overline{Z} \). Since \(H \) is a random function, the probability of obtaining a collision is negligible. It follows that \(g^{s'} \cdot X - c' \cdot y' = H(g^{s'} \cdot X - c' \cdot y' \) and \(X = \overline{X} \). From both follows \(\text{pk} = \overline{\text{pk}} \), which is a contradiction.

\(\square \)

Lemma 5. The blind signature scheme \(\text{TZA} \) is key convertible.

Proof. We provide a key converter for \(\text{TZA} \) in fig. 12. We prove that it fulfills the required properties below:

<table>
<thead>
<tr>
<th>C.Key(pp, (pk_x, pk_z))</th>
<th>C.Rec((ck_x, ck_z), m, (c', s', y', t'))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: ck_x, ck_z (\ell \in Z_p)</td>
<td>1: (c' \leftarrow c')</td>
</tr>
<tr>
<td>2: (pk'_x \leftarrow pk_x \cdot g^{ck_x})</td>
<td>2: (s' \leftarrow s' - ck_x \cdot c' \cdot y')</td>
</tr>
<tr>
<td>3: (pk'_z \leftarrow pk_z \cdot g^{ck_z})</td>
<td>3: (y' \leftarrow y')</td>
</tr>
<tr>
<td>4: return ((ck_x, ck_z), (pk'_x, pk'_z))</td>
<td>4: (t' \leftarrow t' + ck_z \cdot y')</td>
</tr>
<tr>
<td>5: return (c', s', y')</td>
<td>5: return (c', s', y')</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C.Conv_{1}((ck_x, ck_z), msg_1)</th>
<th>C.Conv_{1}((ck_x, ck_z), c)</th>
<th>C.Conv_{2}((ck_x, ck_z), msg_2, c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: return msg_1</td>
<td>1: return c</td>
<td>1: ((s, y, t) \leftarrow \text{msg}_2)</td>
</tr>
<tr>
<td>2: (t'' \leftarrow t - ck_x \cdot y)</td>
<td>2: (t'' \leftarrow t - ck_x \cdot y)</td>
<td></td>
</tr>
<tr>
<td>3: (s'' \leftarrow s - ck_x \cdot c \cdot y)</td>
<td>3: (s'' \leftarrow s - ck_x \cdot c \cdot y)</td>
<td></td>
</tr>
<tr>
<td>4: return (s'', y, t'')</td>
<td>4: return (s'', y, t'')</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 12. A Key Converter for the Tessaro-Zhu-AGM scheme

Distribution of public keys: For any \(n \), an \(n \)-tuple of converted public keys is identically distributed to an \(n \)-tuple of freshly generated keys as we re-randomize both components of the public key using uniform values from \(Z_p \).

Distribution of interaction during the signing sessions: The first message \((A, C)\) sent by the signer is identically distributed to that of a real signer as the values are forwarded and the original commitments are uniformly random group elements.

The second message output by the converter is identically distributed to that of a real signer. This is because \(c, y \), the converted public key \(\text{pk}' \), as
well as the first message \((A, C)\), the values \(s'', t''\) are uniquely determined. The value \(y\) is chosen by the real signer and thus uniformly random, and the value \(c\) comes from the user. We show that the conversion algorithm outputs the uniquely determined values for \(s'', t''\), that is \(A = g^{s'} \cdot pk_{x}^{c \cdot y}\) and \(C = g^{t'} \cdot pk_{z}^{y}\).

This is easy to see in the following:

\[
A = g^s \cdot pk_x^{c \cdot y} \\
= g^s \cdot (pk_x^{c} \cdot g^{-ck_x})^y \\
= g^{s-ck_x \cdot c \cdot y} \cdot pk_x^{c \cdot y} \\
= g^{s''} \cdot pk_x^{c \cdot y}
\]

and

\[
C = g^t \cdot pk_z^{y} = g^t \cdot (pk_z^{y} \cdot g^{-ck_z})_x = g^t \cdot pk_z^{y} \cdot g^{-ck_z \cdot y} \\
= g^{t-ck_z \cdot y} \cdot pk_z^{y} = g^{t''} \cdot pk_z^{y}
\]

Thus, the interactions during the signing sessions are identically distributed to those of a real signer.

Distribution of generated signatures: To see that the signatures generated by the interaction of the user with the converter are valid signatures, we invoke the previous property as well as the correctness of the original scheme.

Recoverability of signatures: To see that the recovery of signatures works, we need to show that the recovered signature is valid with respect to the public key \(pk\). We show that \(H(g^{s'} \cdot pk_{x}^{c \cdot y} \| g^{t'} \cdot pk_{z}^{y} \| m) = H(g^{s'} \cdot pk_{x}^{c \cdot y} \| g^{t'} \cdot pk_{z}^{y} \| m)\) by showing that

\[
g^{s''} \cdot pk_x^{c \cdot y} = g^{t''} \cdot pk_x^{c \cdot y'}
\]

and

\[
g^{t''} \cdot pk_z^{y} = g^{t'} \cdot pk_z^{y'}.\]

We prove the first statement as follows

\[
g^{s''} \cdot pk_{x}^{c \cdot y} = g^{s''} \cdot pk_{x}^{c \cdot y'} = g^{t''} \cdot pk_{x}^{c \cdot y'} = g^{t'} \cdot pk_{x}^{c \cdot y'} \\
= g^{t'} \cdot pk_{x}^{c \cdot y'}
\]

and the second statement as follows:

\[
g^{t''} \cdot pk_{z}^{y} = g^{t''} \cdot pk_{z}^{y'} = g^{t'} \cdot pk_{z}^{y'} = g^{t'} \cdot pk_{z}^{y'}
\]
References

A Additional Preliminaries

Definition 16 (Partial Blindness). For a partially blind signature scheme Σ and an adversary A we define the blindness game as follows:

\[
\begin{align*}
&\text{PartiallyBlind}^{A}_{\Sigma} \\
&1: \quad (pk_{BS}, m_0, m_1, \text{info}, \text{state}_{\text{find}}) \xleftarrow{\$} A(\text{find}) \\
&2: \quad b \xleftarrow{\$} \{0, 1\} \\
&3: \quad \text{state}_{\text{issue}} \xleftarrow{\$} A^{\langle \cdot, \text{User}(pk_{BS}, m_b, \text{info}) \rangle^{1}}(\langle \cdot, \text{User}(pk_{BS}, m_{1-b}, \text{info}) \rangle^{1} \langle \text{issue}, \text{state}_{\text{find}} \rangle) \\
&4: \quad \text{let } \sigma_b \text{ the final output of User}(pk_{BS}, m_b, \text{info}), \\
&5: \quad \sigma_{1-b} \text{ the final output of User}(pk_{BS}, m_{1-b}, \text{info}). \\
&6: \quad \text{if } (\sigma_0 = \bot \lor \sigma_1 = \bot) \\
&7: \quad (\sigma_0, \sigma_1) = (\bot, \bot) \\
&8: \quad b^* \leftarrow A(\text{guess}, (m_0, \sigma_0, \text{info}), (m_1, \sigma_1, \text{info})) \\
&9: \quad \text{return } b = b^*.
\end{align*}
\]

We define the advantage

\[
\text{Adv}^{\text{PartiallyBlind}}_{\Sigma, A} := 2 \cdot \left| \frac{1}{2} - \Pr \left[\text{PartiallyBlind}^{A}_{\Sigma} = 1 \right] \right|
\]

and we say that the scheme Σ is (t, ε)-partially-blind if for all adversaries A that run in time at most t it holds that $\text{Adv}^{\text{PartiallyBlind}}_{\Sigma, A} \leq \varepsilon$.

B Figures of Signing Interactions of Blind Signature Schemes
Fig. 13. The Blind BLS Signature Scheme

<table>
<thead>
<tr>
<th>Signer</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sk = x$</td>
<td>$pk = y$</td>
</tr>
<tr>
<td>m</td>
<td>$r \in \mathbb{Z}_p$</td>
</tr>
<tr>
<td>$m \leftarrow H(m) \cdot g^r$</td>
<td></td>
</tr>
<tr>
<td>$\sigma \leftarrow (m, \sigma)$</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 14. Schnorr’s Blind Signature Scheme

<table>
<thead>
<tr>
<th>Signer</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sk = x$</td>
<td>$pk = y = g^x$</td>
</tr>
<tr>
<td>m</td>
<td>$r \in \mathbb{Z}_p$</td>
</tr>
<tr>
<td>$R \leftarrow g^r$</td>
<td>$\alpha, \beta \in \mathbb{Z}_p$</td>
</tr>
<tr>
<td>$R' \leftarrow R \cdot g^\alpha \cdot y^\beta$</td>
<td>$c' \leftarrow H(R', m)$</td>
</tr>
<tr>
<td>$c \leftarrow c' + \beta$</td>
<td></td>
</tr>
<tr>
<td>$s \leftarrow c \cdot x + r$</td>
<td>$g^s \leftarrow R \cdot y^c$</td>
</tr>
<tr>
<td>$s' \leftarrow s + \alpha$</td>
<td>\downarrow</td>
</tr>
<tr>
<td>$(m, (R', s'))$</td>
<td></td>
</tr>
</tbody>
</table>
On the Security of Blind Signatures in the Multi-Signer Setting

Fig. 15. The Okamoto-Schnorr Blind Signature Scheme
Tessaro-Zhu GGM Blind Signature Scheme

<table>
<thead>
<tr>
<th>Signer</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>sk = x</td>
<td>pk = X = g^x</td>
</tr>
<tr>
<td></td>
<td>m</td>
</tr>
<tr>
<td>a \text{ \xleftarrow{} } Z_p</td>
<td>r_1, r_2 \text{ \xleftarrow{} } Z_p</td>
</tr>
<tr>
<td>y \text{ \xleftarrow{} } Z_p^*</td>
<td>\gamma \text{ \xleftarrow{} } Z_p^*</td>
</tr>
<tr>
<td>A \leftarrow g^a</td>
<td>(A, Y)</td>
</tr>
<tr>
<td>Y \leftarrow X^y</td>
<td>Y' \leftarrow Y^\gamma</td>
</tr>
<tr>
<td></td>
<td>A' \leftarrow g^{r_1} \cdot A^\gamma \cdot Y'^{r_2}</td>
</tr>
<tr>
<td></td>
<td>c' \leftarrow H(A'</td>
</tr>
<tr>
<td>c \leftarrow c' + r_2</td>
<td></td>
</tr>
</tbody>
</table>

\[s \leftarrow a + c \cdot y \cdot x \leftarrow (s, y) \]

\[y \neq 0, Y \triangledown X^y \]

\[y^\gamma \equiv A \cdot Y^c \]

\[s' \leftarrow \gamma \cdot s + r_1 \]

\[y' \leftarrow \gamma \cdot y \]

\[(m, (c', s', y')) \]

\[\downarrow \]

\textit{Fig. 16.} Tessaro-Zhu GGM Blind Signature scheme where \(\text{pp} = (p, g, H) \)
Tessaro-Zhu AGM Blind Signature scheme

<table>
<thead>
<tr>
<th>Signer</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sk = x$</td>
<td>$pk = (X = g^x, Z)$</td>
</tr>
<tr>
<td>$a, t \in \mathbb{Z}_p$</td>
<td>$r_1, r_2 \in \mathbb{Z}_p$</td>
</tr>
<tr>
<td>$y \in \mathbb{Z}_p^*$</td>
<td>$\gamma_1, \gamma_2 \in \mathbb{Z}_p^*$</td>
</tr>
<tr>
<td>$A \leftarrow g^a$</td>
<td>(A, C)</td>
</tr>
<tr>
<td>$C \leftarrow g^t \cdot Z^y$</td>
<td>$C' \leftarrow C^{\gamma_1} \cdot g^{r_2}$</td>
</tr>
<tr>
<td>c</td>
<td>$A' \leftarrow g^{r_1} \cdot A^{\gamma_1 / \gamma_2}$</td>
</tr>
<tr>
<td>$c' \leftarrow H(A'</td>
<td></td>
</tr>
<tr>
<td>$s \leftarrow a + c \cdot y \cdot x$</td>
<td>(s, y, t)</td>
</tr>
<tr>
<td>$y \neq 0, C = g^t \cdot Z^y$</td>
<td>$g^s = A \cdot X^{c \cdot y}$</td>
</tr>
<tr>
<td>$s' \leftarrow (\gamma_1 / \gamma_2) \cdot s + r_1$</td>
<td>$g' = \gamma_1 \cdot y$</td>
</tr>
<tr>
<td>$t' \leftarrow \gamma_1 \cdot t + r_2$</td>
<td>$(m, (c', s', g', t'))$</td>
</tr>
</tbody>
</table>

Fig. 17. Tessaro-Zhu AGM Blind Signature scheme where $pp = (p, \mathbb{G}, g, H)$