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Abstract. Side-channel resistance is one of the primary criteria identified by NIST for use in evaluating candidates
in the Lightweight Cryptography (LWC) Standardization process. In Rounds 1 and 2 of this process, when
the number of candidates was still substantial (56 and 32, respectively), evaluating this feature was close to
impossible. With ten finalists remaining, side-channel resistance and its effect on the performance and cost of
practical implementations became of utmost importance. In this paper, we describe a general framework for
evaluating the side-channel resistance of LWC candidates using resources, experience, and general practices of
the cryptographic engineering community developed over the last two decades. The primary features of our
approach are a) self-identification and self-characterization of side-channel security evaluation labs, b) distributed
development of protected hardware and software implementations, matching certain high-level requirements and
deliverable formats, and c) dynamic and transparent matching of evaluators with implementers in order to achieve
the most meaningful and fair evaluation report. After the classes of hardware implementations with similar
resistance to side-channel attacks are established, these implementations are comprehensively benchmarked using
Xilinx Artix-7 FPGAs. All implementations belonging to the same class are then ranked according to several
performance and cost metrics. Four candidates – Ascon, Xoodyak, TinyJAMBU, and ISAP – are selected as
offering unique advantages over other finalists in terms of the throughput, area, throughput-to-area ratio, or
randomness requirements of their protected hardware implementations.
Keywords: lightweight cryptography · side-channel analysis · authenticated ciphers · hash functions · hardware
· software · benchmarking

1 Introduction
NIST has specified resistance to Side-Channel Analysis (SCA) as one of the primary criteria for evaluating candidates
in the Lightweight Cryptography (LWC) Standardization Process [1]. To assist NIST in evaluating finalists in this
process, we have developed the following three calls:

1. Call for Side-Channel Security Validation Labs

2. Call for Protected Hardware Implementations, targeting low-cost modern FPGAs

3. Call for Protected Software Implementations, targeting low-cost modern embedded processors.

The general idea was that no single group was likely to have resources and expertise to develop and evaluate
SCA-protected implementations of all 10 finalists. Additionally, self-evaluation by developers might have been
insufficient and/or error-prone. Therefore, it has been the collective responsibility of the cryptographic engineering
community to contribute to the evaluation process and make it as transparent and fair as possible. Contributions by
multiple groups have made:
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• each group’s workload more manageable;

• coverage of implementation platforms more complete;

• results more credible.

These contributions were strongly encouraged and justified by at least the following factors:

• The new LWC standard is likely to be used for decades. Choosing the right algorithm had a potential to save
the community countless man-hours necessary to secure implementations of a hard-to-protect standard or start
a new standardization process from scratch.

• It was a joint project that multiple experts in the field could focus on in the limited amount of time devoted to
analysis. Most implementations have been, by nature, open-source. Most evaluations were transparent and
reproducible. This process has revealed and highlighted some implementation and evaluation methods that
rarely got fully disclosed and published in the past.

• Automated insertion of countermeasures was highly desirable (especially considering the very short period
reserved for developing protected implementations). Insights gained through these developments may lead to
tremendous progress in the field of Computer-Aided Design (CAD) tools for SCA.

• The developed protected implementations can become benchmarks for new attacks and leakage assessment
methods that can be discovered and published in years to come.

• Research on NIST standards is highly visible. Participants have been rewarded with recognition by the
cryptographic community that may translate to new collaboration, funding, and publication opportunities.

The results of this effort were presented to NIST on October 27, 2022. The corresponding slides were published
on the George Mason University website titled "Lightweight Cryptography in Hardware and Embedded Systems"1

under "Evaluation of Finalists in the NIST LWC Process" shortly after and announced on lwc-forum on November 1,
2022. Minor modifications and extensions were made on November 25, 2022. This report is a written record of these
earlier presentations, providing additional details, numerical results, and additional commentary. It is published for
archival purposes and to support NIST efforts on providing full justification and explanation regarding the choice of
Ascon as a future federal lightweight cryptography standard.

2 Side-Channel Security Evaluation Labs
2.1 General Idea
We called for groups capable and willing to serve as side-channel security evaluation labs to identify their capabilities
and contribute to the evaluation process. Our draft call was sent for comments to lwc-forum in December 2021.
The final version of this call was published on January 18, 2022. The deadline for submitting lab specifications was
initially set to February 28, 2022, and then extended to March 15, 2022, for groups that expressed initial interest.

The assumption was that submitters should have access to the equipment used for side-channel leakage assessment
and/or attacks, experience, and human resources necessary to perform security analysis. Suggested devices used for
evaluating hardware implementations were low-cost modern FPGAs, such as Artix-7 and Spartan-7 from Xilinx,
Cyclone 10 LP from Intel, and ECP5 from Lattice Semiconductor. Suggested embedded processors used for evaluating
software implementations were ARM Cortex-M4F, RISC-V (e.g., RV32IMAC), Microchip 8-bit AVR, and TI MSP430.
A particular lab could specialize in evaluating only hardware implementations, only software implementations, or
both.

1https://cryptography.gmu.edu/athena/index.php?id=LWC

https://cryptography.gmu.edu/athena/index.php?id=LWC
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Table 1: Side-Channel Security Evaluation Labs that Reported Experiments Targeting Hardware Implementations

No. Team Evaluation
Platform

Target
FPGA
Family

Target
Boards

Leakage
Assessment
Methods

Attacks

1 IAIK, TU Graz,
Austria

NewAE ChipWhisperer Artix-7 NewAE CW305 t-test

2
CCSL,
Shanghai Jiao Tong
University, China

Riscure Inspector,
NewAE ChipWhisperer,
SAKURA

Kintex-7,
Spartan-6

SAKURA-G,
SAKURA-X

t-test, χ2-test, DL-LA CPA, TA, MIA,
DL-based methods

3
HSCP Lab,
Tsinghua University,
Beijing, China

SAKURA Kintex-7,
Spartan-6

SAKURA-G,
SAKURA-X

NICV, t-test, χ2-test SPA, DPA, CPA,
MIA, TA, LRA,

4 Secure-IC, France Secure-IC Analyzr,
SAKURA

Spartan-6 SAKURA-G Tests specified in
ISO/IEC 17825:2016

5
CERG,
George Mason University,
USA

FOBOS3 Artix-7 NewAE CW305 t-test

6 Ruhr-Universitat Bochum,
Germany

PROLEAD and other
simulation-based
probing security
leakage-detection tools

simulation-based
probing security
evaluation
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Table 2: Side-Channel Security Evaluation Labs that Reported Experiments Targeting Software Implementations

No. Team Evaluation
Platform

Target
Processors

Leakage
Assessment
Methods

Attacks

1

CCSL,
Shanghai Jiao
Tong University,
China

Riscure Inspector,
NewAE
ChipWhisperer

ARM Cortex-M4F,
ATxmega128D4,
ATmega128A

t-test, χ2-test, DL-LA CPA, TA, MIA,
DL-based methods

2
HSCP Lab,
Tsinghua University,
Beijing, China

ARM Cortex-M4F,
ARM Cortex-M3

NICV, t-test, χ2-test SPA, DPA, CPA,
MIA, TA, LRA

3
CESCA Lab,
Radboud University,
the Netherlands

Riscure Inspector,
NewAE
ChipWhisperer,
Jupyter notebook
scripts

ARM Cortex-M4F,
ATxmega128D4

t-test, χ2-test, DL-LA
SPA, DPA, CPA
TA; DEMA;
DFA, FI attacks
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Figure 1: A simulation-based evaluation of protected hardware designs using PROLEAD

2.2 Lab Specifications
The specifications of labs that reported results of experiments targeting protected hardware and software implemen-
tations are summarized in Tables 1 and 2. These tables describe

• 2 labs that supported both software and hardware implementations,

• 4 labs that supported only hardware implementations, and

• 1 lab that supported only software implementations.

The detailed specifications are posted on our ATHENa Lightweight Cryptography web page at https://crypto
graphy.gmu.edu/athena/index.php?id=LWC.

In Table 1, we summarize the major capabilities of the labs targeting hardware implementations in terms of the
Evaluation Platform, Target FPGA Family, Target Board, Leakage Assessment Methods, and Key Recovery Attacks.

The most popular Evaluation Platforms were NewAE ChipWhisper and SAKURA, declared by 4 out of 6
labs. Riscure Inspector, Secure-IC Analyzr, and FOBOS3 were used by one lab each. PROLEAD [2], which is a
leakage-detection tool based on simulation and probing security model, was used by one lab.

Four labs supported Xilinx 7 Series FPGA families, such as Artix-7 and Kintex-7, based on six-input Look-Up
Tables (LUTs). Three labs supported Spartan-6 based on four-input Look-Up Tables (LUTs). Among the Target
Boards, the most popular were SAKURA boards and NewAE CW305.

The most widely supported Leakage Assessment Method was Welch’s t-test a.k.a. TVLA (Test Vector Leakage
Assessment) [3]–[8]. Two labs supported a newer and supplementary Pearson’s χ2-test introduced in [9]. The team
representing Secure-IC used tests specified in ISO/IEC 17825:2016 [10]. These tests were described and critically
analyzed in [11]. A revised version of this standard is currently at the DIS (Draft International Standard) stage. The
constructive use of this standard was discussed in [12]. One lab declared support for NICV: Normalized Inter-Class
Variance for Detection of Side-Channel Leakage [13], [14]. One lab listed among their methods DL-LA: Deep
Learning Leakage Assessment, defined in [15].

The team from Ruhr-Universitat Bochum relied on the simulation-based tool called PROLEAD [2]. The procedure
for leakage assessment with PROLEAD is depicted in Fig. 1. After the full design is synthesized, the netlist is
provided to the tool, along with a description of gates (PROLEAD library) and a configuration file with details
about the design operation (e.g., random and fixed inputs for the simulation step) and tool settings (e.g., number of
simulations). For a d order evaluation, PROLEAD analyzes the circuit graph, generates all possible sets of d glitch-
and transition- extended probes [16], simulates the design using the configured fixed and random inputs, and then
analyzes the observed value on the probes using statistical G-test. By using the extended robust probing model,
PROLEAD can narrow down the choice of probing sets to only primary outputs and register inputs of the design
while being able to detect implementation flaws, including those arising from physical defaults such as glitches and
transitions.

https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/index.php?id=LWC
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Two labs supported attacks, such as Simple Power Analysis (SPA), Differential Power Analysis (DPA), Correlation
Power Analysis (CPA), Template Attacks (TA), Mutual Information Analysis (MIA), and Deep Learning (DL)-based
methods [17].

In Table 2, we summarize major capabilities of the labs targeting software implementations in terms of the
Evaluation Platform, Target Processors, Leakage Assessment Methods, and Key Recovery Attacks. The most
supported target processor was ARM Cortex-M4F, listed by all three labs. Two labs supported ATxmega128D4.
ATmega128A and ARM Cortex-M3 were supported by one lab each. In terms of the Leakage Assessment Methods,
all labs supported the t-test and χ2-test. The third most popular test was the Deep Learning Leakage Assessment
(DL-LA), supported by two out of three labs. The most supported attacks were Correlation Power Analysis (CPA)
and Template Attacks (TA).

3 Protected Hardware Implementations

3.1 Introduction
We submitted a draft version of the Call for Protected Hardware Implementations to lwc-forum on December 13,
2021. After analyzing all received comments and incorporating the best-received suggestions, we posted a final version
of this call on the GMU Lightweight Cryptography website on January 18, 2022. According to the call, the submitted
designs were expected to demonstrate strong resistance against side-channel attacks when implemented on low-cost
modern FPGAs, such as Artix-7 and Spartan-7 from Xilinx, Cyclone 10 LP from Intel, and ECP5 from Lattice
Semiconductor. A potential for porting the designs to ASIC (Application-Specific Integrated Circuit) technology
and demonstrating their resistance in this environment was highly desirable. All submitted implementations were
planned to be investigated by one or more Side-Channel Security Evaluation Labs.

3.2 Requirements
Protected hardware implementations were required to follow the LWC Hardware API v1.2.0 or later. In this extended
API, we assumed that inputs and outputs are split into shares, as shown in Fig. 2. Input that is not shared (e.g., an
instruction or a segment header) is put into share 1, with the remaining shares being set to zeros. The updated
interface is shown in Fig. 3. In unprotected implementations, the public data input PDI accepts data of size w. For
protected implementations, we modified this input to accept pn shares of size w in parallel. The same holds for the
data output DO, which now provides pn shares of size w. The number of shares on the secret data input SDI is
denoted as sn, as it can differ from the number of shares on PDI.

A majority of common side-channel countermeasures require the consumption of randomness during cipher
operations. Any randomness an LWC implementation needs can be provided by the random data input RDI, which
is of size rw. This port, just like all the others, follows a simple FIFO protocol. Each read will provide rw bits. The
value of rw can be arbitrary up to 2048 bits. Note that independent of how many random bits are actually used, our
testbench assumes that all rw bits are used with each read.

Share 2 Share 1

Share 2 Share 1

Share 2 Share 1Share pn

Share pn

Share pn

LSBMSB

Shares of word m−1

Shares of word 1

Shares of word 0

pn*w−bit

Figure 2: Pre-Shared Data

We also assume that a deterministic random bit generator (DRBG) used as a source of fresh randomness is
located outside of the protected LWC core. The important advantages of this approach include:

• ability to share DBRG with other units (e.g., for the generation of nonces, protection of other units, e.g., those
implementing public-key cryptography, etc.)
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Figure 3: LWC API extended with Random Data Input (RDI)

• ease of replacing the type of DBRG (e.g., due to compliance with other standards, validation requirements,
evolving understanding of how cryptographically strong the DBRG used for refreshing randomness must be,
etc.)

• we are interested in evaluating/benchmarking LWC candidates and not DBRGs. The final NIST LWC selection
itself could become the basis of future lightweight DBRGs.

• Concurrent operation of the DBRG circuit could introduce additional noise in the measurements and make
leakage detection more difficult. There is no guarantee that this type of noise by itself could hinder an actual
attack scenario, but it is likely to make the leakage evaluation more difficult (more traces, more computations,
or more expensive measurement equipment).

Our testbench counted how many random bits were consumed by the protected implementation during its
operation and used this information, together with the width of the rdi_data bus, to differentiate between various
protected designs. Specifically, the total number of consumed fresh random bits was one of the major items on the
list of reported evaluation metrics.

We proposed the following constraints on a first-order protected implementation of an LWC candidate: 8000
LUTs, 0 Block RAMs, and 0 DSP units of Artix-7 FPGAs. The number of LUTs corresponded to the smallest device
of the Artix-7 family of FPGAs. This number is also consistent with the Round 2 limit on the number of LUTs,
set to 2000 LUTs, and the observation that the first-order protected hardware implementations typically took 3-4x
more hardware resources than the corresponding unprotected implementations. For the implementations of two-pass
algorithms, the memory (FIFO) required for the second-pass processing is instantiated as Block RAM, but stays
outside of the LWC boundary and is not accounted for in the reported resource utilization of these implementations.

Table 3: Proposed constraints on resource utilization

Type of Implementation #LUTs #BRAMs #DSP units
Unprotected ≤ 2000 0 0
1st Order Protected ≤ 8000 0 0

3.3 Submissions
In response to our call for protected implementations, 42 protected hardware designs were received from 4 groups,
covering 9 out of 10 LWC finalist schemes (all except Grain-128AEAD). These implementations are summarized in
Table 4.
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ISAP [18] provides mode-level robustness against a large class of implementation attacks (such as Differential
Power Analysis (DPA) and fault attacks) through the usage of leakage-resilient re-keying and a two-pass construction.
All other protected implementations use masking as a countermeasure against power and electromagnetic (EM)
side-channel attacks. ISAP specification recommends two underlying cryptographic permutations: Ascon-p (same as
Ascon-128a) for the primary variant ISAP-A-128a, and Keccak-p[400] for the secondary variant ISAP-K-128a. ISAP
team’s hardware submission 2 included 5 variants of ISAP-A-128a (32, 16, 8-bit interface, 2x unrolled, and StP-based
tag verification) and 1 variant of ISAP-K-128a (only with 16-bit interface). Due to hardware similarities, only
ISAP-A-128a with the 32-bit interface (ISAP-A_Graz_dn) and ISAP-K-128a (ISAP-K_Graz_dn16) were benchmarked.
Masked implementations of ISAP provide side-channel resistance in hashing mode, as well as improved resistance
against simple power analysis and template attacks.

All masked implementations are based on previously released unprotected hardware designs as listed in Table 5.
Among the masked designs, 6 designs are manually protected. Three of them were developed for Xoodyak, two for
Ascon, and one for TinyJAMBU.

Thirty masked implementations have been generated by utilizing AGEMA [19], a tool for the semi-automated
generation of masked hardware. These implementations were generated by Ruhr-University Bochum. The flow for
generating masked implementations using AGEMA is depicted in Fig. 4. AGEMA operates on a synthesized netlist,
identifies the wires and gates that need to be secured, and replaces them with their masked versions. To ensure
secure masking, AGEMA relies on the concept of Probe-Isolating Non-Interference (PINI) and composable gadgets.
Due to the insertion of extra gadget registers, the control logic of the design needs to be modified accordingly,
but AGEMA is not able to detect or make the necessary adjustments to the control logic. Additionally, portions
of the design which handle protocol-level and handshaking details need to be manually modified. As a result,
only the combinational cryptographic permutations were processed by AGEMA and were subsequently integrated
into the designs through manual modification and the use of the updated LWC package with support for masked
implementations. Out of the 30 AGEMA designs made available for benchmarking, three either failed verification or
synthesis, mapping, placing, and routing.

The manually protected designs use Domain Oriented Masking (DOM) [20] (Ascon-128_Graz_d{1,2}, Tiny-
JAMBU_GMU_d1, Xoodyak_GMU_d1, and Xoodyak_Tsinghua_d1DOM) and Threshold Implementation (TI) [21]
(Xoodyak_Tsinghua_d1TI) masking schemes. The semi-automatically protected designs utilize HPC2 [22] composable
gadgets. For security order d, TI-based implementations require t · d + 1 shares, where t ≥ 2 is the multiplicative
complexity of the non-linear portion of the design (t=2 in case of Xoodyak_Tsinghua_d1TI). The DOM and HPC2
schemes require d + 1 shares.

A total of 63 designs, including 35 protected and 28 unprotected implementations, were benchmarked for
performance and FPGA resource utilization (area).

2https://github.com/isap-lwc/isap-hardware-package

https://github.com/isap-lwc/isap-hardware-package
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Table 4: Summary of protected and unprotected hardware designs used in this study (M: manually protected, A:
protected using AGEMA)

Finalist Unprotected Order 1 Order 2 Order 3

Ascon Graz
GMU (2)

M: Graz
A: Bochum (2)

M: Graz
A: Bochum (2)

A: Bochum (2)

Elephant GMU A: Bochum A: Bochum A: Bochum
Grain-128AEAD GMU

GIFT-COFB VT
GMU

A: Bochum A: Bochum A: Bochum

ISAP (Masked) Graz A: Bochum A: Bochum A: Bochum
ISAP Graz (mode-level protection) (6)
PHOTON-Beetle GMU A: Bochum A: Bochum A: Bochum
Romulus NTU A: Bochum A: Bochum A: Bochum

SPARKLE VT
GMU

A: Bochum A: Bochum A: Bochum

TinyJAMBU GMU
TJ Team

M: GMU
A: Bochum

A: Bochum A: Bochum

Xoodyak XT Team
GMU (2)

M: Tsinghua (2)
M: GMU
A: Bochum

A: Bochum A: Bochum

Unprotected 
Implementation

S-Box, 
permutation, 

transform, etc

Verilog 
Netlist

Std. Cell 
Library 

Synthesis Tool

Manual Modification 
of data-path and control logic

AGEMA 
Library 

Masked
Verilog 
Netlist

GMU 
Protected 

LWC 
Package 
(VHDL)

HDL

Protected 
Implementation

Verilog
+ 

VHDL 

AGEMA

AGEMA 
Gadgets

Figure 4: Development of protected hardware designs using AGEMA
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Table 5: Protected implementations and the corresponding unprotected designs they are based on. Fastest and
Smallest columns specify whether the unprotected base has the highest encryption (PT) throughput and/or lowest
area (number of LUTs) respectively among the benchmarked unprotected implementations of the same scheme. "OA"
signifies that the unprotected base was the only implementation available and "OO" means that the unprotected
base was the only implementation which the source code was publicly available.

Implementation Unprotected Base Fastest Smallest

Ascon-128_Bochum_d{1,2,3} Ascon-128_Graz-x1 ✗ ✗

Ascon-128_Graz_d{1,2} Ascon-128_Graz-x1 ✗ ✗

Ascon-128a_Bochum_d{1,2,3} Ascon-128a_Graz-x1 ✗ ✓

Elephant_Bochum_d{1,2,3} Elephant_GMU OA OA

GIFT-COFB_Bochum_d{1,2,3} GIFT-COFB_VT ✗ ✗

ISAP-A_Bochum_d{1,2,3} ISAP-A_Graz_dn OA OA

PHOTON-Beetle_Bochum_d{1,2,3} PHOTON-Beetle_GMU OA OA

Romulus-N_Bochum_d{1,2,3} Romulus-N_RT-x1 OA OA

SPARKLE_Bochum_d{1,2,3} SPARKLE_VT ✗ ✗

TinyJAMBU_Bochum_d{1,2,3} TinyJAMBU_GMU OO OO

TinyJAMBU_GMU_d1 TinyJAMBU_GMU OO OO

Xoodyak_Bochum_d{1,2,3} Xoodyak_XT-x1 ✗ ✓

Xoodyak_GMU_d1 Xoodyak_GMU-x1 ✗ ✗

Xoodyak_Tsinghua_d1{DOM,TI} Xoodyak_XT-x1 ✗ ✓
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Table 6: Protected Hardware Implementations of LWC Finalists

Candidates Protection
Order

Protection
Method

HDL Variants Initial
Evaluation

Primary
Hardware
Designers

Academic Advisors /
Program Managers

ISAP3 N/A Mode-level
robustness

VHDL 6 Analytical Robert Primas Stefan Mangard

Ascon
Elephant
GIFT-COFB
ISAP
PHOTON-Beetle
Romulus
SPARKLE
TinyJAMBU
Xoodyak

4 1, 2, 3 HPC2
Verilog

+
VHDL

Ascon:6
Others: 3

PROLEAD
[2]

Amir Moradi

TinyJAMBU5

Xoodyak6 1 DOM VHDL 1 t-test

TinyJAMBU:
Sammy Lin,
Abubakr Abdulgadir

Xoodyak:
Abubakr Abdulgadir,
Richard Haeussler

Jens-Peter Kaps,
Kris Gaj

Ascon7 1, 2 DOM VHDL 1 CocoAlma
[23]

Robert Primas,
Rishub Nagpal

Stefan Mangard

Xoodyak8 1 DOM, TI
Verilog

+
VHDL

2 t-test
Shuohang Peng,
Shuying Yin,
Cankun Zhao

Leibo Liu,
Bohan Yang,
Wenping Zhu

3https://github.com/isap-lwc/isap-hardware-package
4https://github.com/Chair-for-Security-Engineering/LWC-Masking
5https://github.com/GMUCERG/TinyJAMBU-SCA
6https://github.com/GMUCERG/Xoodyak-SCA
7https://github.com/ascon/ascon-hardware
8https://github.com/ybhphoenix/THU_HWSec_LWC

https://github.com/isap-lwc/isap-hardware-package
https://github.com/Chair-for-Security-Engineering/LWC-Masking
https://github.com/ChairImpSec/PROLEAD
https://github.com/GMUCERG/TinyJAMBU-SCA
https://github.com/GMUCERG/Xoodyak-SCA
https://github.com/ascon/ascon-hardware
https://github.com/IAIK/coco-alma
https://github.com/ybhphoenix/THU_HWSec_LWC
https://github.com/isap-lwc/isap-hardware-package
https://github.com/Chair-for-Security-Engineering/LWC-Masking
https://github.com/GMUCERG/TinyJAMBU-SCA
https://github.com/GMUCERG/Xoodyak-SCA
https://github.com/ascon/ascon-hardware
https://github.com/ybhphoenix/THU_HWSec_LWC
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4 Protected Software Implementations
We called for software implementations of finalists resistant against side-channel attacks such as power and
electromagnetic analysis, using the same timeline as in the case of hardware implementations. The focus of our
call was on the use of platform-independent algorithmic countermeasures. The submitted code was expected to
demonstrate strong resistance against side-channel attacks when executed on low-cost modern embedded processors,
such as ARM Cortex M4F, RISC-V (e.g., RV32IMAC), Microchip 8-bit AVR, and TI MSP430. This code could
contain assembly language instructions specific to a given Instruction Set Architecture (ISA).

Protected software implementations were expected to use the standard NIST API defined in Submission
Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process, published in
August 20189. Protected implementations were not allowed to use nsec, beyond specifying it as an argument of
crypto_aead_encrypt() and crypto_aead_decrypt() set to NULL.

5 GMU Team role
Our team was in communication with the evaluation labs and the implementation submitters aiming at the best
match between both groups. The final matches are summarized at the GMU Lightweight Cryptography in Hardware
and Embedded Systems web page10.

Our team also performed a t-test on the protected implementations of Ascon, Elephant, PHOTON-Beetle,
TinyJAMBU, and Xoodyak developed using AGEMA at the Ruhr University of Bochum.

Additionally, the GMU team benchmarked and ranked implementations with a comparable security level in terms
of Throughput, Area, Throughput/Area, and the number of random bits per each byte of plaintext and associated
data (AD). The benchmarking was performed using the Xilinx Artix-7 family of FPGA devices.

Our team has published the record of evaluations in progress and reports from the completed evaluations on the
mentioned above website.

6 Side-channel Evaluation Results
The parameters of security validation experiments and the corresponding results are shown in Tables 7 and 8 for
hardware implementations and Tables 9 and 10 for software implementations. The tables capture the significant
parameters of each experiment and results, and interested readers are referred to the detailed reports available on
the ATHENa Lightweight Cryptography web page11,12. The goal of these tests was to provide confidence in the
effectiveness of the countermeasures to achieve the stated security level. Additionally, feedback from evaluations was
helpful for implementation teams to refine their implementations and fix bugs so that benchmarked designs were as
close as possible to achieving the claimed side-channel resistance.

6.1 Hardware Implementations Result Summary
Table 7 shows that most of the tests are leakage assessment tests. Specifically, the Test Vector Leakage Assessment [3],
[5] and χ2-test [9] have been used. The attack performed was Correlation Power Analysis (CPA). In one instance, a
template attack (TA) was attempted.

The most used targets (Evaluation Platforms) were NewAE ChipWhisperer CW305, SASEBO-GIII, and SAKURA
boards using Xilinx Artix-7 and Kintex-7 FPGAs. These targets were clocked at 1-100 MHz, and side-channel
information was measured using both shunt resistors and electromagnetic emanation (EM).

A wide range of oscilloscope settings has been used. The sampling rate varied from 22 MHz to 6.25 GHz, and the
resolution from 8 to 12 bits. Most of the experiments used sampling clocks that were not synchronized to the target
clock. The experiments performed by CERG use the FOBOS control board, which contains a version of OpenADC,
as the oscilloscope.

9https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-a
ugust2018.pdf

10https://cryptography.gmu.edu/athena/index.php?id=LWC
11https://cryptography.gmu.edu/athena/LWC/Lab_Implementation_Matching_HW.html
12https://cryptography.gmu.edu/athena/LWC/Lab_Implementation_Matching_SW.html

https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/LWC/Lab_Implementation_Matching_HW.html
https://cryptography.gmu.edu/athena/LWC/Lab_Implementation_Matching_SW.html
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Table 7: Results of Side-channel Evaluation of Protected Hardware Implementations

Implementation Lab Target Oscilloscope Freq.
[MHz]

Sampl.
Freq.
[MS/s]

Reso-
lution
[bits]

Meas.
Type

Test

Ascon_Bochum_d1 CERG CW305 FOBOS3 ADC 16 80 10 power TVLA
Ascon_Bochum_d1 IAIK CW305 PicoScope 6404C 1 22 8 power TVLA
Ascon_Bochum_d1 CCSL SAKURA-X LeCroy 610Zi 1000 8 EM TVLA
Ascon_Bochum_d1 CCSL SAKURA-X LeCroy 610Zi 1000 8 EM χ2-test
Ascon_Bochum_d1 CCSL SAKURA-X LeCroy 610Zi 1000 8 EM CPA
Ascon_v1_Graz_d1 HSCP SAKURA-G WaveRunner 8404M 4 100 8 power TVLA
Elephant_Bochum_d1 CERG CW305 FOBOS3 ADC 10 50 10 power TVLA
Elephant_Bochum_d1 IAIK CW305 PicoScope 6404C 1 22 8 power TVLA
GIFT_COFB_Bochum_d1 IAIK CW305 PicoScope 6404C 1 22 8 power TVLA
GIFT_COFB_Bochum_d1 CCSL SASEBO-GIII 500 8 EM TVLA
GIFT_COFB_Bochum_d1 CCSL SASEBO-GIII 500 8 EM χ2-test
GIFT_COFB_Bochum_d1 CCSL SASEBO-GIII 500 8 EM χ2-test
GIFT_COFB_Bochum_d1 CCSL SASEBO-GIII 500 8 EM CPA
ISAP_Bochum_d1 CCSL Kintex 7 LeCroy 610Zi EM CPA
ISAP_Bochum_d1 CCSL Kintex 7 LeCroy 610Zi EM TVLA
ISAP_Bochum_d1 CCSL Kintex 7 LeCroy 610Zi EM χ2-test
ISAP_Graz CCSL Kintex 7 LeCroy 610Zi EM CPA
Photon Beetle_Bochum_d1 CERG CW305 FOBOS3 ADC 16 80 10 power TVLA
Romulus_Bochum_d1 IAIK CW305 PicoScope 6404C 1 22 8 power TVLA
Romulus_Bochum_d1 CCSL SASEBO-GIII 500 8 EM TVLA
Romulus_Bochum_d1 CCSL SASEBO-GIII 500 8 EM TVLA
Romulus_Bochum_d1 CCSL SASEBO-GIII 500 8 EM χ2-test
Romulus_Bochum_d1 CCSL SASEBO-GIII 500 8 EM χ2-test
Romulus_Bochum_d1 CCSL SASEBO-GIII 500 8 EM CPA
Romulus_Bochum_d1 CCSL SASEBO-GIII 500 8 EM TA
TinyJAMBU_Bochum_d1 CERG CW305 FOBOS3 ADC 10 50 10 power TVLA
TinyJAMBU_GMU_d1 HSCP SAKURA-G WaveRunner 8404M 4 100 8 power TVLA
Xoodyak_Bochum_d1 IAIK CW305 PicoScope 6404C 1 22 8 power TVLA
Xoodyak_GMU_d1 Secure-IC Arty A7 Tektronix MSO64 100 6250 12 EM TVLA
Xoodyak_Bochum_d1 CERG CW305 FOBOS3 ADC 10 50 10 power TVLA
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Table 8: Results of Side-channel Evaluation of Protected Hardware Implementations

Implementation Lab Test
Num. of

Traces
[×106]

Thresh.
Exc.

Notes

Ascon_Bochum_d1 CERG TVLA 10 Y(1.5M) 6 out of 1000+ samples exceed the threshold
Ascon_Bochum_d1 IAIK TVLA 10 N
Ascon_Bochum_d1 CCSL TVLA 1 N
Ascon_Bochum_d1 CCSL χ2-test 1 N
Ascon_Bochum_d1 CCSL CPA 11 – No bytes revealed
Ascon_v1_Graz_d1 HSCP TVLA 10 N
Elephant_Bochum_d1 CERG TVLA 7 Y(2.7M) 3 out of 12,000+ samples exceed the threshold
Elephant_Bochum_d1 IAIK TVLA 10 N
GIFT_COFB_Bochum_d1 IAIK TVLA 10 N

GIFT_COFB_Bochum_d1 CCSL TVLA 1 N Classification based on a nonce bit. A similar test was
also based on a bit in an intermediate value.

GIFT_COFB_Bochum_d1 CCSL χ2-test 1 Y Classification based on a nonce bit: threshold
exceeded

GIFT_COFB_Bochum_d1 CCSL χ2-test 1 N Classification based on a bit in an intermediate value
GIFT_COFB_Bochum_d1 CCSL CPA 1 – Key not revealed
ISAP_Bochum_d1 CCSL CPA – Key not revealed
ISAP_Bochum_d1 CCSL TVLA Y Some samples exceeding the threshold observed
ISAP_Bochum_d1 CCSL χ2-test Y Some samples exceeding the threshold observed
ISAP_Graz CCSL CPA – Key not revealed

PHOTON-Beetle_Bochum_d1 CERG TVLA 10 N t-values crossed threshold briefly before returning
below threshold

Romulus_Bochum_d1 IAIK TVLA 10 N

Romulus_Bochum_d1 CCSL TVLA 10 Y Case A: Few samples exceed the threshold at
1 M traces. Classification based on a nonce bit.

Romulus_Bochum_d1 CCSL TVLA 1 N
Case B: No samples exceed the threshold
at 1 M traces. Classification based on an
intermediate bit.

Romulus_Bochum_d1 CCSL χ2-test 1 Y Case A: Few samples exceed the threshold at
1 M traces. Classification based on a nonce bit.
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Romulus_Bochum_d1 CCSL χ2-test 1 N
Case B: No samples exceed the threshold
at 1 M traces. Classification based on an
intermediate bit.

Romulus_Bochum_d1 CCSL CPA 1 – Key not revealed
Romulus_Bochum_d1 CCSL TA 1 – Key not revealed

TinyJAMBU_Bochum_d1 CERG TVLA 10 N

One sample exceeded the threshold so the test
repeated again. Another sample exceeded the
threshold but at another location indicating a false
positive.

TinyJAMBU_GMU_d1 HSCP TVLA 10 N
Xoodyak_Bochum_d1 IAIK TVLA 10 N
Xoodyak_GMU_d1 Secure-IC TVLA 0.1 N Classification based on an input plaintext bit
Xoodyak_Bochum_d1 CERG TVLA 10 Y(3.2M) 10 out of 900 samples exceed the threshold
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Table 9: Results of Side-channel Evaluation of Protected Software Implementations

Implementation Lab Target Oscilloscope Freq.
[MHz]

Sampl.
Freq.
[MS/s]

Resolution
[bits]

Meas.
Type

Test

Ascon_Graz_d1 CESCA STM32F407 Pico 3206D 168 100-1000 8 EM CPA
Ascon_Graz_d2 CCSL STM32F303 Pico 3203D 62.5 16 EM TVLA
Ascon_Graz_d2 CCSL STM32F303 Pico 3203D 62.5 16 EM X2-test
Ascon_Graz_d2 CCSL STM32F303 Pico 3203D 62.5 16 EM CPA
GIFT_COFB_Adomnicai CCSL STM32F303 125 16 EM TVLA
GIFT_COFB_Adomnicai CCSL STM32F303 125 16 EM X2-test
GIFT_COFB_Adomnicai CCSL STM32F303 125 16 EM CPA
GIFT-COFB_Adominicai HSCP STM32F303 8 25 8 power TVLA
ISAP_ISAP_Team CESCA STM32F407 100 100-1000 8 EM TVLA
ISAP_ISAP-team CCSL STM32F303 LeCroy 610Zi EM CPA
Romulus_Adominicai HSCP STM32F303 WaveRunner 8404M 8 25 8 power TVLA
Romulus_Adomnicai CCSL STM32F303 125 16 EM TVLA
Romulus_Adomnicai CCSL STM32F303 125 16 EM TVLA
Romulus_Adomnicai CCSL STM32F303 125 16 EM DL-LA
Romulus_Adomnicai CCSL STM32F303 125 16 EM DL-LA
Romulus_Adomnicai CCSL STM32F303 125 16 EM CPA
Romulus_Adomnicai CCSL STM32F303 125 16 EM TA
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Table 10: Results of Side-channel Evaluation of Protected Software Implementations

Implementation Lab Test
Num. of

Traces
[×106]

Thresh.
Exc.

Notes

Ascon_Graz_d1 CESCA CPA 15 – Second order CPA. No bytes revealed.
Ascon_Graz_d2 CCSL TVLA 0.06 N
Ascon_Graz_d2 CCSL χ2-test 0.06 N
Ascon_Graz_d2 CCSL CPA 0.06 – Key not revealed

GIFT_COFB_Adomnicai CCSL TVLA 0.02 N
Classification based on a nonce bit.
Another test was done with classification
based on an intermediate bit.

GIFT_COFB_Adomnicai CCSL χ2-test 0.02 N
Classification based on a nonce bit.
Another test was done with classification
based on an intermediate bit.

GIFT_COFB_Adomnicai CCSL CPA 0.02 – Key not revealed
GIFT-COFB_Adominicai HSCP TVLA 0.1 Y Threshold exceeded. Report mentions possible causes.
ISAP_ISAP_Team CESCA TVLA 0.1 N Fixed key vs random key test
ISAP_ISAP-team CCSL CPA – Key not revealed
Romulus_Adominicai HSCP TVLA 0.1 Y Threshold exceeded. Report mentions possible causes.

Romulus_Adomnicai CCSL TVLA 1 N Case A: No sample exceeded the threshold for 1 M traces.
Classification based on a nonce bit.

Romulus_Adomnicai CCSL TVLA 1 N Case B: No samples exceed the threshold for 1 M traces.
Classification based on an intermediate bit.

Romulus_Adomnicai CCSL DL-LA N Case A: No sample exceed the threshold for 1 M traces.
Classification based on a nonce bit.

Romulus_Adomnicai CCSL DL-LA – Case B: No samples exceed the threshold for 1 M traces.
Classification based on an intermediate bit.

Romulus_Adomnicai CCSL CPA – Key not revealed
Romulus_Adomnicai CCSL TA – Key not revealed
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Table 8 highlights the results of security evaluation experiments. In most leakage assessment tests, the predefined
threshold was not crossed for the given test parameters. In some cases, the threshold was exceeded. In such cases,
we report the number of traces at which the threshold was exceeded if mentioned in the report. Below, we provide
notes on the experiments that exceeded the pre-defined threshold. It is noteworthy that having a leakage assessment
test exceeding the threshold does not necessarily indicate an exploitable leakage, and there is a possibility of false
positives.

• The tests on Ascon_Bochum_d1, Elephant_Bochum_d1, and Xoodyak_Bochum_d1 by the CERG lab: In all of
these cases, the TVLA 4.5 threshold is exceeded at a few (3-10) samples. These tests use a sampling clock
that is synchronized with the target clock, which results in more precise measurements. For all of these tests,
t-values do not exceed the threshold until more than one million traces have been considered.

• The TVLA and χ2-tests on GIFT_COFB_Bochum_d1, ISAP_Bochum_d1, and Romulus_Bochum_d1 by the
CCSL lab: In these tests, the threshold has been exceeded. These test results were published in August
2022. Consequently, these implementations were updated in November 2022 when a bug related to providing
randomness to masked gadgets was fixed.

The implementations from Bochum were generated using the AGEMA tool, which is used to convert the datapath
to a masked design. The control logic, however, needs manual modification to provide the needed randomness to
the masked gadgets in the proper cycles. In the first round of evaluations, leakage in the Bochum submissions was
attributed to the fact that random data was not fed correctly to the masked gadgets. In other words, required fresh
randomness was not provided in some clock cycles. The submitter corrected this issue by minor changes in the
control logic that had a negligible effect on area and throughput. This negligible effect was confirmed for the cases
of the TinyJAMBU_Bochum_d1 and Ascon_Bochum_d1 implementations, analyzed by CERG.

None of the reported CPA or template attacks attempted on the protected designs resulted in the reliable recovery
of any key fragment. CPA attacks, as expected, attempted key recovery at the initialization phase when the nonce
and the key are used to initialize the state and before intermediate values become a function of too many secret key
bits.

All the tested hardware implementations use first-order masking except ISAP_Graz, which depends on mode-level
protection. For mode-level resistance attack-based evaluation is more meaningful than leakage assessment which can
show unexploitable leakage. As shown in Table 8, the CPA attack on the ISAP_Graz did not reveal the key.

We conclude that although some implementations show some leakage in the leakage assessment tests, these
leakages are most likely fixable without significant changes in cost and performance. In many tests, we observed
that leakage is significantly reduced by minor fixes in the control logic responsible for feeding randomness to the
masked gadgets with no change to the datapath, which uses the majority of resources.

6.2 Software Implementations Result Summary
Tables 9 and 10 summarize the parameters and the results of the experiments performed on the protected software
implementations. Similar to the case of hardware implementations, most of the experiments are leakage assessment
tests in the form of TVLA, χ2-test, and DL-LA. Correlation Power Analysis and template attacks (TA) were also
attempted. All experiments used ARM Cortex-M4 as a target, and side-channel information was measured using
shunt resistors and electromagnetic emanation (EM). None of the experiments reported the usage of sampling clocks
that were synchronized to the target clock.

None of the reported CPA or template attacks attempted on the protected software designs resulted in the
recovery of any part of the key. A second-order CPA attack by the CESCA lab could not reveal the key for
Ascon_Graz_d1 using 15 million traces. In comparison, their CPA attack on the unprotected Ascon implementation
can reliably reveal the key using 500 thousand traces.

The security analysis on ISAP by the CESCA lab concluded that DPA attacks were not an option except for the
tag generation operation.

In most leakage assessment tests, the predefined threshold has not been crossed for the given test parameters.
In some cases, the threshold has been exceeded. Below, we provide notes on the experiments that exceeded the
predefined threshold.
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• GIFT-COFB_Adominicai TVLA test by the HSCP lab: TVLA threshold has been exceeded in this test, and
the submitted report attributes this to the unmasking of the state when performing encryption and decryption.
The report shows no leakage in the key scheduling part of the algorithm.

• Romulus_Adominicai TVLA test by the HSCP lab: TVLA threshold has been exceeded. The evaluation report
points out that this leakage is partially due to the associated data not being masked.

As noted in the reports by the HSCP team, these implementations could be leveled implementations where some
part of the algorithm is protected against DPA while other parts are protected against SPA. In this case, direct
application of leakage assessment tests will show a leakage.

In conclusion, in the outcomes of the tests on the protected software implementations, no leakage has been
detected except in the two cases listed above. For these cases, further analysis is needed to see if the leakage is
exploitable.

6.3 Target and Sampling Clock Synchronization
The effect of synchronizing the sampling and the target clocks on the number of traces needed for key recovery has
been observed and discussed in the literature [24]. In this section, we show that performing sampling for leakage
assessment using a synchronized clock is significantly more effective in leakage detection. In other words, using
synchronized sampling and target clocks, one can detect leakage using significantly fewer traces than in setups using
asynchronous clocks.

In the following tests, we use a masked implementation of the NIST LWC finalist Xoodyak_Bochum_d1. While
the datapath of the design is masked, the control logic has an issue with providing random bits at some clock cycles,
causing leakage.

We performed TVLA tests on the masked implementation of Xoodyak using an external oscilloscope at a sampling
rate of 1 GS/s and 125 MS/s using 8-bit and 15-bit resolution, respectively. We repeated the same experiment,
but this time, we used FOBOS 3 to capture traces at 50 MS/s with 10-bit resolution. In the FOBOS 3 case, the
ADC clock is synchronized with the target clock, while the external oscilloscope sampling clock is not. Table 11
shows the details of each experiment and the corresponding results. In all cases, we used exactly the same Xoodyak
implementation, which was instantiated in the NewAE C305 board and ran at 10 MHz, and we used the same
fixed-vs-random test vectors.

Figure 5 shows the maximum t value in each experiment as a function of the number of traces processed. The
red line marks the 4.5 threshold with t values exceeding this threshold, indicating leakage detection. The figure
shows that in test C, which uses the synchronous clock, the t values exceed the threshold after processing 1.3 million
traces. For experiment A, the test detects leakage after processing 1.6 million traces, while in experiment B, the
leakage is detected after 8.7 million traces are processed.

When comparing experiment C, which uses synchronous clocks v.s, experiment B, we observe that although
both sampling rate and resolution are higher in experiment B, the experiment with synchronized clocks detects the
leakage using significantly fewer traces.

Table 11: TVLA results for the masked Xoodyak implementation depending on the measurement setup; all run for
10 Million traces

Oscilloscope DUT Reso-
lution Sync. Sample

Rate
DUT
Freq.

Fails at
Traces Label

PicoScope 5244D CW305 8 bit No 1 GS/s 10 MHz 1.6 M A
PicoScope 5244D CW305 15 bit No 125 MS/s 10 MHz 8.7 M B
FOBOS 3 CW305 10 bit Yes 50 MS/s 10 MHz 1.3 M C

6.4 Qualitative Evaluation
In addition to quantitative evaluations, such as those summarized in this report, theoretical analysis of leakage
properties and countermeasures are of extreme importance. An insightful analysis of the side-channel security of
NIST LWC finalists was carried out by Verhamme et al. in [25]. Additionally, the authors investigated "leveled"
implementations for Ascon, ISAP, Romulus-T, and Romulus-N, where only parts of the implementation require
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Figure 5: Maximum t value vs. the number of processed traces. Vertical lines indicate the point at which the t value
exceeds the threshold in each experiment

masking (or higher order masking), reducing the performance and/or area overhead while maintaining the desired
level of side-channel security. We believe that both qualitative and quantitative approaches have their merits and
limitations and provide complementary information for evaluating cryptographic schemes and their implementations.
Unfortunately, no implementations incorporating the "leveled" protection approach were available to us while
conducting the evaluation, and therefore, they are not being represented in our results.

7 Benchmarking of Hardware Implementations
In this section, we compare the performance and area results for the protected hardware implementations. As a
reference point, we also provide benchmarking results for the unprotected designs that were used as a starting point for
the protected designs as well as the unprotected design with the highest throughput over area ratio for each algorithm.
The results are generated for the Xilinx Artix-7 FPGA family. The target FPGA device is XC7A100T-2FTG256L, the
main component of the NewAE CW305 board, which was used by many groups for the side-channel evaluation.

All evaluated designs are compatible with the GMU LWC API. The latency of major operations, expressed
in clock cycles, is determined using simulation. The cycle count is determined for various lengths of plaintext,
associated data, and hash input so that implementations can be compared for both short and long inputs. The area
and maximum frequency were calculated using Xeda [26], a tool that automates simulation and synthesis for various
FPGA and ASIC toolchains. Xeda can search for the maximum frequency for a specific target by sweeping through
target frequency (through a heuristic variant of binary search) as well as different synthesis/implementation options
and strategies (through evolutionary optimization). The maximum frequency is combined with the latency and
input size to calculate the throughput of each design.

7.1 Protected vs. Unprotected Hardware Designs
A typical dependence between the throughput vs. area characteristics of unprotected and protected designs of
various orders is shown in Fig. 6. Three protected implementations of orders 1, 2, and 3, respectively, are generated
with the help of AGEMA. They are all based on a single unprotected implementation, Elephant_GMU. All protected
designs operate with a very similar plaintext throughput. In the case of Elephant, this throughput is about 5 times
smaller than in the case of an unprotected design. Additionally, the SCA countermeasures introduce area overhead
(for area expressed in LUTs), which is dependent on the protection order. For Elephant, this overhead is about 3.6
for order 1, 7.2 for order 2, and 12.9 for order 3. Thus, the area of protected designs is almost exactly proportional
to the protection order.

The same designs offer similar dependencies when used for processing ADs, as shown in Fig. 7. The only major
difference is a significantly higher throughput for processing of AD vs. plaintext. The areas of all designs are exactly
the same as in Fig. 7, as each design is capable of processing both plaintext and AD.
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Figure 6: Elephant: Plaintext Throughput vs. Area for Unprotected and Protected Designs

2 3 4 5 6 7 8 9
10k

2

100

150

200

250

300

350

400

450

Elephant_GMU
Elephant_Bochum_d1
Elephant_Bochum_d2
Elephant_Bochum_d3

Area [LUTs]

A
D

 T
hr

ou
gh

pu
t 

[M
bp

s]

Figure 7: Elephant: AD Throughput vs. Area for Unprotected and Protected Designs
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Figure 8: GIFT-COFB: Plaintext Throughput vs. Area for Unprotected and Protected Designs
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Figure 9: TinyJAMBU: Plaintext Throughput vs. Area for Unprotected and Protected Designs
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Figure 10: TinyJAMBU: AD Throughput vs. Area for Unprotected and Protected Designs

The case of GIFT-COFB is illustrated in Fig. 8. The primary difference as compared to Elephant is that there are
now four unprotected implementations, GIFT-COFB_VT13 from Virginia Tech, and GIFT-COFB_GMU2-x{1,2,4}14

from GMU, where GIFT-COFB_GMU2-x2 and GIFT-COFB_GMU2-x4 are respectively 2x and 4x unrolled versions
of GIFT-COFB_GMU2-x1. One interesting observation is that the maximum frequency of the 2x unrolled design
GIFT-COFB_GMU2-x2 is not lower than GIFT-COFB_GMU2-x1, and unrolling results in substantially improved
performance while incurring only a moderate overhead in the area. The protected designs are based on the GIFT-
COFB_VT, which is neither the fastest nor the smallest design. The primary reason for choosing a sub-optimal
design as a starting point for protected designs was most likely that GIFT-COFB_VT was written in VHDL, while
GIFT-COFB_GMU2-x{1,2,4} designs are modeled in Bluespec SystemVerilog. The choice of the underlying design
was made by the Bochum group. Consequently, it is fair to compare only the overheads of designs derived from
GIFT-COFB_VT while keeping in mind that a more optimal starting point might have led to more efficient protected
designs as well. The overhead in terms of throughput varies from 5.15 for order 2 to 5.65 for order 3. The small
differences in throughputs of protected implementations are the result of the different clock frequencies, while the
number of clock cycles remains the same. The overheads in terms of area are 2.6, 5.1, and 8.6, respectively. Similarly
to the case of Elephant, the area of the protected implementation of order 2 is approximately twice as large as
compared to the protected implementation of order 1. Protection order 3 leads to the increase in area by a factor
larger than 3 as compared to the implementation of order 1.

The case of TinyJAMBU is somewhat similar to the case of GIFT-COFB. The protected designs are based on
the less efficient of the two unprotected implementations, TinyJAMBU_GMU. The primary difference compared
to the case of GIFT-COFB is the existence of the manually developed 1st-order protected implementation, Tiny-
JAMBU_GMU_d1. As expected, the 1st-order manually protected design, TinyJAMBU_GMU_d1, is faster than the
automatically generated design of the same order, TinyJAMBU_Bochum_d1. The throughput ratio is about 1.40.
However, contrary to expectations, the manually developed design has a larger area. The area ratio is about 1.13.
Thus, overall, the manual implementation is still more efficient in terms of the throughput-to-area ratio.

The case of Xoodyak, shown in Fig. 11 is exceptional, as this candidate has three manually developed protected
implementations of order 1:

1. Xoodyak_Tsinghua_d1DOM – developed by the group from Tsinghua University using the Domain Oriented
Masking (DOM) method

13https://github.com/vtsal/gift_cofb_lwc_v2
14https://github.com/kammoh/bluelight

https://github.com/vtsal/gift_cofb_lwc_v2
https://github.com/kammoh/bluelight
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Figure 11: Xoodyak: Plaintext Throughput vs. Area for Unprotected and Protected Designs
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Figure 12: Xoodyak: Hashing Throughput vs. Area for Unprotected and Protected Designs
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2. Xoodyak_Tsinghua_d1TI – developed by the group from Tsinghua University using the Threshold Implementa-
tion (TI) method, and

3. Xoodyak_GMU_d1 – developed by the group from George Mason University using the Domain Oriented
Masking method.

All of these implementations offer only first-order protection. Additionally, there exist semi-automatically generated
implementations of orders 1, 2, and 3, respectively, developed by the group from Ruhr University Bochum. The
protected designs developed by Tsinghua University and Ruhr University Bochum used as a starting point the
unprotected implementation developed by the Xoodyak Team, Xoodyak_XT-x1, based on the basic iterative
architecture (a.k.a. the architecture with the unrolling factor x1). The protected design developed by George Mason
University, used as a starting point a folded design, Xoodyak_GMU-x1, developed by the same team.

Apart from the mentioned above implementations, Fig. 11 also shows results for two fastest unprotected
implementations: Xoodyak_GMU2-x1 developed using Bluespec SystemVerilog, and Xoodyak_XT-x2 – a two times
unrolled variant of Xoodyak_XT-x1.

Both manually developed protected implementations, generated using DOM, produced a relatively small through-
put overhead. The slowdown for the design from Tsinghua University, Xoodyak_Tsinghua_d1DOM was about
15% as compared to the corresponding unprotected design. The slowdown for the design from George Ma-
son University, Xoodyak_GMU_d1, was only about 5%. The threshold implementation from Tsinghua Uni-
versity, Xoodyak_Tsinghua_d1TI, was both slower and larger than the corresponding DOM implementation,
Xoodyak_Tsinghua_d1DOM.

Overall, Xoodyak_Tsinghua_d1DOM is the best-protected implementation of Xoodyak, both in terms of speed
and area. It outperforms the semi-automatically created design from Bochum, Xoodyak_Bochum_d1, by a factor of
about 3.3 in terms of throughput. It is also about 12% smaller in terms of the number of LUTs. The first-order
protected implementations use between 3.7 and 4.35 more LUTs than the corresponding unprotected designs. The
second-order implementation has an area overhead of about 9.7, and the third order 17.3.

The performance for hashing, illustrated in Fig. 12, is almost the same. The primary differences include smaller
absolute values of throughput and no support for hashing in Xoodyak_GMU_d1. On the other hand, all areas are
identical, as the designs supporting hashing use the same circuits for processing Plaintext, AD, and Hash Messages.

The case of Ascon, illustrated in Figs. 13 and 14 is, no doubt, the most complicated of all candidates. First,
Ascon has two variants for authenticated encryption – Ascon-128 and Ascon-128a. They differ in terms of the data
block size (64 bits for Ascon-128 and 128 bits for Ascon-128a). They also have a different number of rounds in the
permutation used to process AD, plaintext, and ciphertext. This number of rounds is 6 for Ascon-128 and 8 for
Ascon-128a. Ascon also has two different variants of a hash function: Ascon-Hash and Ascon-Hasha. They both use
the same message block size of 64 bits. They differ in terms of the number of permutation rounds in the Absorb
Message and Squeeze Hash phases. Ascon-Hash has 12 rounds, and Ascon-Hasha 8 rounds. In hardware, where the
entire block is typically processed in parallel, and the rounds are executed sequentially, Ascon-128a and Ascon-Hasha
are typically faster. Ascon-128 and Ascon-Hash are more conservative designs and are the primary recommendations
of Ascon’s authors.

Ascon has the following protected implementations:

1. Ascon-128_Graz_d1 and Ascon-128_Graz_d2 – two implementations of Ascon-128, of order 1 and 2, respectively,
developed by the Ascon Team manually, using the Domain Oriented Masking (DOM) method. The starting
point was the unprotected implementation from the same team – Ascon-128_Graz-x1.

2. Ascon-128_Bochum_d{1,2,3} – implementations of Ascon-128 of orders 1, 2, and 3, generated semi-automatically
with the help of AGEMA, using Ascon-128_Graz-x1 as an underlying unprotected implementation, and

3. Ascon-128a_Bochum_d{1,2,3} – implementations of Ascon-128a of orders 1, 2, and 3, generated semi-
automatically with the help of AGEMA, using Ascon-128a_Graz-x1 as an underlying unprotected imple-
mentation.

Each unprotected implementation from Graz University has a corresponding two-times unrolled implementation from
the same group, with the name ending with x2. The two-times unrolled architectures are faster but bigger than the
basic architectures. Because of the increased area, they were not used as a basis for any protected implementations.
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The two fastest unprotected designs were developed by the GMU group. Ascon-128a_GMU15 implements
Ascon-128a. Ascon-128_GMU2-x116 and Ascon-128_GMU2-x216 implement Ascon-128 using the basic iterative and
2x unrolled architectures, respectively. All of them were modeled using Bluespec SystemVerilog.

Corresponding implementations of Ascon-128 and Ascon-128a developed by the Graz Team17 (Ascon-128_Graz-x1
and Ascon-128a_Graz-x1) and generated semi-automatically by the Bochum Team (e.g., Ascon-128_Bochum_d1 and
Ascon-128a_Bochum_d1) have the same areas. Within each pair, the implementation of Ascon-128a is approximately
x1.3 faster than the implementation of Ascon-128 for unprotected designs and between 1.45 and 1.50 for protected
designs.

The manually developed first-order protected implementation of Ascon-128 is 43% faster and 34% smaller than the
corresponding semi-automatically generated design. The manually developed second-order protected implementation
of Ascon-128 is about 9% faster and 25% smaller than the corresponding semi-automatically generated design.

The results for hashing, illustrated in Fig. 14 are similar. The primary differences are as follows:

• Unprotected GMU design, Ascon-128a_GMU is missing, as it does not support combining Ascon-128a with
Ascon-Hasha

• Protected Bochum designs, Ascon-128a_Bochum_d{1,2,3} are missing, as they do not support combining
Ascon-128a with Ascon-Hasha

• Manually developed protected implementations do not support hashing.
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Figure 13: Ascon: Plaintext Throughput vs. Area for Unprotected and Protected Designs

In Fig. 15, we show the ratios between the numbers of LUTs (treated as units of area) for the available first-order
protected and the corresponding unprotected implementations of 9 finalists (all except Grain-128AEAD). The
candidates are ranked based on the smallest ratio among all protected implementations of a given candidate. The
small ratio is desired as it indicates the smallest area overhead of adding masking to the unprotected implementation.
The finalists with ratios below 2 include TinyJAMBU and Ascon. GIFT-COFB, Romulus, and ISAP have ratios
between 2 and 3. Elephant, Xoodyak, and PHOTON-Beetle have ratios between 3 and 4. SPARKLE has the highest
ratio, which exceeds a factor of 5.

15https://github.com/GMUCERG/Ascon
16https://github.com/kammoh/bluelight
17https://github.com/ascon/ascon-hardware

https://github.com/GMUCERG/Ascon
https://github.com/kammoh/bluelight
https://github.com/ascon/ascon-hardware
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Figure 14: Ascon: Hashing Throughput vs. Area for Unprotected and Protected Designs

In Fig. 16, the same ratio is reported for the second-order protected implementations. The absolute values of
ratios increase. The ranking of candidates remains mostly the same. TinyJAMBU has by far the smallest ratio.
Ascon is second best. Xoodyak has the highest ratio that exceeds that of PHOTON-Beetle. The second-order
protected implementation of SPARKLE is missing due to failing functional verification.

In Fig. 17, the same ratio is reported for the third-order protected implementations. The results for SPARKLE
are missing due to the functional verification failure. The results for PHOTON-Beetle are not included due to the
excessively long time required for synthesis, mapping, placing, and routing. The primary difference compared to the
results for order 2 is that Romulus and GIFT-COFB have slightly smaller area overhead ratios than Ascon.

Fig. 18 illustrates the ratios of the throughputs of unprotected implementations to the throughputs of the
corresponding protected designs. Small ratios are desirable as they indicate the small timing overhead of protected
implementations. Xoodyak is the only candidate with a ratio close to 1. However, it should be stressed that this
ratio is obtained for only one specific architecture and is accomplished at the cost of a substantial area overhead.
Ascon and TinyJAMBU are the only candidates with ratios close to 2. The ratio is the highest for Romulus, for
which it exceeds 8.

In Fig. 19, the same ratios are reported for the second-order protected implementations. Ascon, masked ISAP,
and TinyJAMBU achieve timing overhead ratios smaller than 3. They are followed by Xoodyak, Elephant, and
GIFT-COFB, with ratios between 4 and 5. The ratios for Romulus and PHOTON-Beetle exceed 8.

In Fig. 20, the same ratio is reported for the third-order protected implementations. The ratio for Ascon is the
smallest, followed closely by the ratios for TinyJAMBU and the masked version of ISAP. All three mentioned above
candidates have ratios close to 3. They are followed by Elephant, Xoodyak, and GIFT-COFB, with ratios between 5
and 6. The ratio for Romulus exceeds 9.
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Figure 15: 1st order protected area over unprotected base area
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Figure 16: 2nd order protected area over unprotected base area
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Figure 17: 3rd order protected area over unprotected base area
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Figure 18: Long-message encryption throughput of unprotected base design over 1st order protected implementation



30 SCA Evaluation and Benchmarking of LWC Finalists

Ascon-128a_Bochum_d2

Ascon-128_Graz_d2

Ascon-128_Bochum_d2

ISAP-A_Bochum_d2

TinyJAMBU_Bochum_d2

Xoodyak_Bochum_d2

Elephant_Bochum_d2

GIFT-COFB_Bochum_d2

Romulus-N_Bochum_d2

PHOTON-Beetle_Bochum_d2

0

2

4

6

8

10

Implementation

U
np

ro
te

ct
ed

 T
hr

ou
gh

pu
t/

Pr
ot

ec
te

d 
Th

ro
ug

hp
ut

Figure 19: Long-message encryption throughput of unprotected base design over 2nd order protected implementation
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Figure 20: Long-message encryption throughput of unprotected base design over 3rd order protected implementation
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Figure 21: Encryption throughput vs LUTs for long messages (Unprotected)
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Figure 22: Encryption throughput over area for long messages (Unprotected)
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Table 12: Unprotected implementations: Encryption throughput in Mbit/s for Long, 1536 Byte, 64 Byte and 16
Byte messages, along with throughput ratios of different message types and sizes.
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Ascon-128a_GMU2-x2 5421 5004 1807 602 92.3 33.3 11.1 1.0 602 1084
Xoodyak_GMU2-x1 4643 4385 1829 649 94.4 39.4 14.0 1.8 649 1298
Ascon-128_GMU2-x2 3516 3367 1705 670 95.8 48.5 19.0 1.0 639 1082
SPARKLE_GMU2 3427 3141 1075 319 91.6 31.4 9.3 1.0 319 499
SPARKLE_GMU 3216 2919 936 274 90.8 29.1 8.5 1.0 274 436
Ascon-128a_Graz-x2 2932 2790 1321 499 95.2 45.1 17.0 1.0 460 795
GIFT-COFB_GMU2-x4 2764 2647 1345 529 95.8 48.6 19.1 1.0 622 1058
Xoodyak_XT-x2 2539 2439 1240 489 96.1 48.8 19.3 1.3 500 917
AESGCM_GMU-v1 2364 2202 1048 403 93.1 44.3 17.1 1.2 508 833
Ascon-128_GMU2-x1 2316 2239 1271 540 96.7 54.9 23.3 1.0 499 821
Xoodyak_XT-x1 2293 2209 1150 461 96.4 50.2 20.1 1.5 468 880
Ascon-128a_Graz-x1 2124 2036 1040 411 95.8 49.0 19.4 1.0 364 622
Ascon-128_Graz-x2 2080 1989 994 387 95.6 47.8 18.6 1.0 370 628
Grain-128AEAD_GMU 1906 1789 739 261 93.8 38.8 13.7 1.0 250 442
Xoodyak_GMU-x1 1657 1582 749 284 95.5 45.2 17.1 1.5 284 545
Ascon-128_Graz-x1 1640 1588 913 392 96.8 55.7 23.9 1.0 360 590
GIFT-COFB_GMU2-x2 1450 1406 828 362 97.0 57.1 25.0 1.0 468 725
Romulus-N_RT-x4 1120 1091 689 320 97.5 61.5 28.6 1.6 320 640
Romulus-N_RT-x2 1095 1074 746 381 98.1 68.1 34.8 1.7 381 762
TinyJAMBU_TJT 893 880 661 371 98.6 74.0 41.6 2.7 511 650
AESGCM_GMU-v2 778 753 483 229 96.9 62.1 29.5 1.0 260 389
GIFT-COFB_VT 758 741 485 233 97.7 63.9 30.7 1.0 324 454
PHOTON-Beetle_GMU 725 714 532 295 98.5 73.3 40.7 1.2 307 431
GIFT-COFB_GMU2-x1 721 702 443 205 97.4 61.4 28.5 1.0 281 410
SPARKLE_VT 679 654 355 124 96.3 52.2 18.2 1.2 129 174
ISAP-K_Graz_dn16 608 543 168 54 89.3 27.6 8.9 1.7 87 106
Romulus-N_RT-x1 600 591 438 242 98.5 73.0 40.4 1.8 242 484
ISAP-A_Graz_dn 536 492 171 56 91.8 31.9 10.4 1.6 93 105
TinyJAMBU_GMU 234 230 186 117 98.3 79.7 50.0 2.4 169 194
Elephant_GMU 208 204 131 80 98.3 63.2 38.5 1.9 64 130

Minimum 208 204 131 54 89.3 27.6 8.5 1.0 64 105
Average 1841 1747 849 341 95.7 52.0 23.2 1.3 360 606
Maximum 5421 5004 1829 670 98.6 79.7 50.0 2.7 649 1298
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Figure 23: Hashing throughput vs LUTs for long messages (Unprotected)

Table 13: Unprotected implementations: Hashing throughput in Mbit/s for Long, 1536 Byte, 64 Byte and 16 Byte
messages, along with throughput ratios of different message sizes.

Implementation T
hr

H
M

L
on

g

T
hr

H
M

15
36

T
hr

H
M

64

T
hr

H
M

16

T
hr

%
H

M
15

36
/L

on
g

T
hr

%
H

M
64

/L
on

g

T
hr

%
H

M
16

/L
on

g

Xoodyak_GMU2-x1 3095 3013 1872 856 97.3 60.5 27.7
Ascon-128_GMU2-x2 2009 1949 1160 511 97.0 57.7 25.5
Xoodyak_XT-x2 2000 1965 1397 733 98.2 69.8 36.7
Ascon-128a_Graz-x2 1955 1891 1078 460 96.7 55.2 23.5
Xoodyak_XT-x1 1708 1683 1249 692 98.5 73.1 40.5
SPARKLE_GMU 1608 1559 919 402 97.0 57.1 25.0
Ascon-128_Graz-x2 1387 1346 802 354 97.1 57.8 25.5
Ascon-128a_Graz-x1 1274 1235 718 311 96.9 56.3 24.4
Ascon-128_GMU2-x1 1247 1212 741 334 97.2 59.4 26.8
Xoodyak_GMU-x1 1234 1216 902 500 98.5 73.1 40.5
Ascon-128_Graz-x1 937 912 561 255 97.3 59.9 27.2
ISAP-A_Graz_dn 841 819 499 224 97.4 59.4 26.6
SPARKLE_VT 470 462 331 175 98.3 70.5 37.4
PHOTON-Beetle_GMU 239 240 261 357 100.3 109.0 149.3

Minimum 239 240 261 175 96.7 55.2 23.5
Average 1429 1393 892 440 97.7 65.6 38.3
Maximum 3095 3013 1872 856 100.3 109.0 149.3
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Figure 24: Hashing throughput over area for long messages (Unprotected)
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Table 14: Unprotected implementations: throughput-over-area (Kbit/s/#LUTs) for encryption of long messages,
resource utilization and maximum frequency.

Implementation T
hr

P
T

L
on

g
L

U
T

s

T
hr

A
D

L
on

g
L

U
T

s

LUTs FFs fmax

Xoodyak_GMU2-x1 3154 5783 1472 1251 314
Ascon-128a_GMU2-x2 2190 2190 2476 973 212
Ascon-128_GMU2-x1 1761 1761 1315 863 253
Xoodyak_XT-x1 1711 2484 1340 505 227
Ascon-128_GMU2-x2 1689 1689 2082 864 220
GIFT-COFB_GMU2-x4 1622 1622 1704 873 194
TinyJAMBU_TJT 1589 4235 562 429 223
Grain-128AEAD_GMU 1512 1512 1261 841 238
Xoodyak_XT-x2 1368 1811 1856 512 172
SPARKLE_GMU2 1331 1331 2575 1381 107
Ascon-128a_Graz-x2 1184 1184 2476 587 183
SPARKLE_GMU 1155 1155 2785 1215 100
GIFT-COFB_GMU2-x2 1029 1029 1409 875 238
Ascon-128a_Graz-x1 995 995 2135 586 199
Xoodyak_GMU-x1 916 1330 1808 942 164
Romulus-N_RT-x2 812 1393 1348 502 205
Ascon-128_Graz-x1 776 776 2113 582 205
AESGCM_GMU-v1 716 855 3303 1402 199
Ascon-128_Graz-x2 701 701 2967 588 130
GIFT-COFB_GMU2-x1 610 610 1182 876 231
Romulus-N_RT-x4 605 941 1851 502 122
GIFT-COFB_VT 527 506 1439 691 278
Romulus-N_RT-x1 511 936 1175 480 206
TinyJAMBU_GMU 397 962 590 428 248
AESGCM_GMU-v2 303 301 2565 1510 199
PHOTON-Beetle_GMU 297 350 2438 813 187
ISAP-A_Graz_dn 215 337 2499 1060 184
ISAP-K_Graz_dn16 211 355 2882 1226 176
SPARKLE_VT 179 222 3790 1549 125
Elephant_GMU 151 293 1375 912 222

Minimum 151 222 562 428 100
Average 1007 1322 1959 861 199
Maximum 3154 5783 3790 1549 314
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Table 15: Unprotected implementations: throughput-over-area (Kbit/s/#LUTs) for hashing of long and short
messages, resource utilization and maximum frequency.

Implementation T
hr

H
M

L
on

g
L

U
T

s

T
hr

H
M

16
L

U
T

s

LUTs FFs fmax

Xoodyak_GMU2-x1 2103 582 1472 1251 314
Xoodyak_XT-x1 1275 516 1340 505 227
Xoodyak_XT-x2 1078 395 1856 512 172
Ascon-128_GMU2-x2 965 246 2082 864 220
Ascon-128_GMU2-x1 948 254 1315 863 253
Ascon-128a_Graz-x2 789 186 2476 587 183
Xoodyak_GMU-x1 683 276 1808 942 164
Ascon-128a_Graz-x1 597 146 2135 586 199
SPARKLE_GMU 577 144 2785 1215 100
Ascon-128_Graz-x2 467 119 2967 588 130
Ascon-128_Graz-x1 444 121 2113 582 205
ISAP-A_Graz_dn 337 90 2499 1060 184
SPARKLE_VT 124 46 3790 1549 125
PHOTON-Beetle_GMU 98 146 2438 813 187

Minimum 98 46 1315 505 100
Average 749 233 2220 851 190
Maximum 2103 582 3790 1549 314
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7.2 Performance of Unprotected Hardware Designs
The throughput for long inputs (plaintexts, associated data, ciphertexts, and hash messages) was determined by
measuring the latency for two different-length inputs, calculating the difference, inverting it, and multiplying the
result by the difference in input lengths. The input sizes are selected as integer multiples of the algorithm’s block
size for the input type. Doing that gives the ideal performance, where initialization and finalization latencies are
assumed to be negligibly small. However, some applications may benefit from high performance for short inputs.

Thus, we also discuss the ranking of throughputs for 16-byte inputs. Additionally, results are reported for
medium-size inputs with 64 and 1536 bytes. However, for simplicity, our focus is on the results for very long and
very short inputs.

Table 12 shows throughputs for unprotected designs processing plaintexts of different sizes (long, 1536, 64, and 16
bytes). Table 13 presents the analogous throughputs for processing hash messages of different sizes. These two tables
show results for various input lengths and the corresponding ratios (expressed in percentages) of the throughputs for
medium and short inputs over throughputs for long inputs. The reported ratios provide insight into the overhead
cost of initialization and finalization as a function of an algorithm and input size.

For all investigated unprotected designs, the throughput for 1536-byte plaintexts is equal to at least 90% of the
throughput for long plaintexts. For 64-byte plaintexts, the ratio varies between 27.6% for ISAP-K_Graz_dn16 to
79.7% for TinyJAMBU_GMU. For 16-byte plaintexts, this ratio varies between 8.5% for SPARKLE_GMU18 and
50% for TinyJAMBU_GMU19.

The implementations of TinyJAMBU, Romulus, PHOTON-Beetle, and Elephant offer some of the smallest
overheads for processing short messages. For processing 16-byte plaintexts, all these algorithms have implementations
reaching at least 35% of the throughput for long messages. The smallest relative throughput, below 10%, is observed
for the implementations of SPARKLE and ISAP.

An additional column in Table 12 shows the ratio of the AD throughput to PT throughput. For designs where
the value is 1, the throughputs for AD and PT are the same. When the ratio is greater than 1 that means the design
has higher performance for AD than for PT. Among the investigated designs, the ratio varies between 1.00 (for
multiple designs) to 2.7 for TinyJAMBU_TJT.

The final two columns show throughput for inputs with 1) 16 bytes of AD and 2) 16 bytes of AD followed by 16
bytes of PT. In terms of absolute values of these throughputs, the highest values are obtained for Xoodyak, Ascon,
and GIFT-COFB. For the processing of 16-byte ADs, these are the only algorithms with a throughput exceeding 600
Mbits/s. For the processing of 16-byte ADs and 16-byte plaintexts, these are the only algorithms with a throughput
exceeding 1 Gbit/s.

Some algorithms require a permutation or other operation for the AD or PT stage even when no AD or PT is
being ingested. Thus the throughput is higher for AD+PT than AD or PT alone since the implementation must
perform some operations even if there is no AD or PT.

Overall, Ascon-128a, Xoodyak, Ascon, and SPARKLE are the only algorithms with throughput for long plaintexts
exceeding 3 Gbit/s. For short plaintexts of the size of 16 bytes, the following algorithms exceed 500 Mbits/s:
Ascon-128, Xoodyak, Ascon-128a, and GIFT-COFB.

The performance for hashing is summarized in Table 13. The ranking of algorithms (based on the throughput of
the most efficient unprotected designs processing long messages) is Xoodyak, Ascon-128 (Ascon-Hash), Ascon-128a
(Ascon-Hasha), SPARKLE, ISAP, and Photon-BEETLE. For short hash messages, Photon-BEETLE outperforms
ISAP.

One unusual result to note is that the throughput for PHOTON-Beatle_GMU has higher throughput for short
messages than long messages. This is a result of the way PHOTON-Beatle-Hash processes the message. In hash
mode, the first 128-bit block of a message is absorbed in one shot, and subsequently, the remainder of the message is
absorbed in chunks of r = 32 bits. Each absorption is followed by 12 rounds of the PHOTON permutation. As
the first 128 bits of the message are processed effectively 4 times faster, PHOTON-Beatle’s hashing throughput
decreases as the input message grows larger. This behavior is different from all other LWC finalists, in which both
AEAD and hashing throughputs generally increase with the size of the inputs.

The throughput vs. area graph for unprotected designs performing authenticated encryption for long plaintexts
is summarized graphically in Fig. 21. The ratio of throughput-over-area (with area expressed using LUTs) is
shown graphically in Fig. 22. The detailed results in terms of throughput-over-area (separately for plaintexts and

18https://github.com/kammoh/sparkle
19https://github.com/GMUCERG/TinyJAMBU

https://github.com/kammoh/sparkle
https://github.com/GMUCERG/TinyJAMBU
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ADs), number of LUTs, number of flip-flops (FFs), and maximum clock frequency are shown in Table 14. For
throughput-over-area, Xoodyak is the winner, with performance substantially higher than the next best algorithm,
which is Ascon-128a. The individual implementation does impact the overall ranking as the other implementations of
Xoodyak and Ascon rank substantially lower on the list. As shown in Fig. 21, the best implementation of Ascon-128a
has slightly higher throughput than that of Xoodyak, but Xoodyak has a substantially lower area which gives it the
best ratio of performance to the area. The best implementation of Xoodyak also has the highest hashing throughput
and hashing throughput over area ratio of all designs, as shown in Figs. 23 and 24. In terms of the throughput-to-area
ratios, Ascon-128a and Ascon-128 are the second and third for processing long plaintexts. For processing of hash
messages, they swap places. Out of the remaining algorithms, the following finalists have throughput over area ratio
exceeding 1000 kbps/#LUTs for processing of long plaintexts: GIFT-COFB, Tiny_JAMBU, Grain-128AEAD, and
SPARKLE. For hashing of long messages, the remaining three algorithms (other than Xoodyak, Ascon-128, and
Ascon-128a) in terms of the throughput over area ratio are ranked: SPARKLE, ISAP, and PHOTON-Beetle.

The smallest design supporting authenticated encryption and decryption is TinyJAMBU_TJT with an area
of only 562 LUTs and 429 flip-flops (FFs), as shown in Table 14. The smallest designs that support encryption,
decryption, and hashing are Ascon-128_GMU2-x120 , with 1315 LUTs and 505 FFs, and Xoodyak_XT-x120, with
1340 LUTs and 505 FFs.

7.3 Performance of First-Order Protected Hardware Designs
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Figure 25: Encryption throughput vs LUTs for long messages (1st order protected)

For the first order protected implementations, results are illustrated in Figs. 25, 26, and 27 for processing
plaintexts; in Figs. 28, 29, and 30 for processing ADs; and in Figs. 31, 32, and 33 for processing hash messages. For
each input type, the first graph presents results of the dependence throughput vs. area, the second illustrates ratios
of throughput over area, and the third shows the number of random bits per input byte.

The detailed numerical results are summarized in Tables 16 and 17, which show all throughput results, and
Tables 18 and 19, which show throughput over area ratios, number of LUTs, number of FFs, maximum clock
frequency, and the number of random bits required to process each byte of the plaintext and AD.

The first-order protected implementations include both manually and automatically protected designs. The
manually generated implementations typically achieve better performance and area results than the corresponding
designs generated automatically using AGEMA. The best design overall is Xoodyak_Tshinghua_d1DOM, which has

20https://github.com/kammoh/bluelight

https://github.com/kammoh/bluelight
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Figure 26: Encryption throughput over area for long messages (1st order protected)
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Figure 27: Random bits per plaintext byte (1st order protected)
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Figure 28: AD throughput vs LUTs for long messages (1st order protected)
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Figure 29: AD throughput over area for long messages (1st order protected)
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Figure 30: Random bits per AD byte (1st order protected)
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Figure 31: Hashing throughput vs LUTs for long messages (1st order protected)
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Figure 32: Hashing throughput over area for long messages (1st order protected)
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Figure 33: Random bits per HM byte (1st order protected)



44 SCA Evaluation and Benchmarking of LWC Finalists

Table 16: First-order protected implementations: Encryption throughput in Mbit/s for Long, 1536 Byte, 64 Byte
and 16 Byte messages, along with throughput ratios of different message types and sizes.

Implementation T
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T
hr

A
D

+
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T
16

Xoodyak_Tsinghua_d1DOM 1943 1871 968 387 96.3 49.8 19.9 1.5 392 740
Xoodyak_GMU_d1 1573 1532 714 268 97.4 45.4 17.0 1.5 268 515
Xoodyak_Tsinghua_d1TI 1193 1142 605 245 95.8 50.7 20.6 1.6 247 476
Ascon-128a_Bochum_d1 809 780 431 179 96.4 53.3 22.1 1.0 151 254
Ascon-128_Graz_d1 798 777 478 217 97.4 59.9 27.1 1.0 194 313
ISAP-K_Graz_dn16 608 543 168 54 89.3 27.6 8.9 1.7 87 106
Xoodyak_Bochum_d1 581 562 301 123 96.7 51.9 21.2 1.7 124 242
Ascon-128_Bochum_d1 559 545 348 163 97.5 62.2 29.2 1.0 144 229
ISAP-A_Graz_dn 536 492 171 56 91.8 31.9 10.4 1.6 93 105
ISAP-A_Bochum_d1 215 196 65 21 91.2 30.1 9.7 1.5 36 39
GIFT-COFB_Bochum_d1 146 143 96 48 97.9 66.0 32.7 1.0 70 95
PHOTON-Beetle_Bochum_d1 122 120 96 58 98.9 78.6 47.8 1.0 59 79
SPARKLE_Bochum_d1 114 109 56 18 95.8 48.8 16.2 1.0 19 25
TinyJAMBU_GMU_d1 108 107 88 56 99.0 81.0 51.7 2.5 82 93
TinyJAMBU_Bochum_d1 77 76 62 40 99.1 81.3 52.1 2.6 59 66
Romulus-N_Bochum_d1 70 70 56 34 98.9 79.1 48.6 2.0 34 68
Elephant_Bochum_d1 42 41 27 17 98.4 63.8 39.7 2.0 13 26

Minimum 42 41 27 17 89.3 27.6 8.9 1.0 13 25
Average 558 536 278 117 96.3 56.5 27.9 1.5 122 204
Maximum 1943 1871 968 387 99.1 81.3 52.1 2.6 392 740
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Table 17: First-order protected implementations: Hashing throughput in Mbit/s for Long, 1536 Byte, 64 Byte and
16 Byte messages, along with throughput ratios of different message sizes.

Implementation T
hr

H
M
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on

g

T
hr

H
M

15
36

T
hr

H
M

64

T
hr

H
M

16

T
hr

%
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M
15

36
/L
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g

T
hr

%
H
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64
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g

T
hr

%
H

M
16

/L
on

g

Xoodyak_Tsinghua_d1DOM 1439 1417 1046 576 98.5 72.7 40.0
Xoodyak_Tsinghua_d1TI 841 830 635 366 98.7 75.5 43.5
Xoodyak_Bochum_d1 401 397 310 184 98.8 77.1 45.8
ISAP-A_Bochum_d1 329 320 200 92 97.4 60.7 27.8
Ascon-128_Bochum_d1 301 293 183 84 97.4 60.8 28.0
SPARKLE_Bochum_d1 59 58 42 23 98.4 71.6 38.7
PHOTON-Beetle_Bochum_d1 32 32 36 60 100.5 113.4 189.9

Minimum 32 32 36 23 97.4 60.7 27.8
Average 486 478 350 198 98.5 76.0 59.1
Maximum 1439 1417 1046 576 100.5 113.4 189.9

the highest throughput and throughput over area ratio for PT, AD, and HM as well as one of the lowest costs in
terms of randomness. The next best three algorithms are Ascon-128a, Ascon-128, and ISAP. Their exact ranking
varies depending on the performance metrics. For example, for encryption throughput, the ranking is Ascon-128a,
Ascon-128, and ISAP. However, already for encryption throughput-over-area, the order is reversed and becomes
ISAP, Ascon-128, and Ascon-128a. For AD throughput, the order is still different: ISAP, Ascon-128a, and Ascon.
For AD throughput-over-area, ISAP is ahead and separated from both variants of Ascon by TinyJAMBU.

It should be stressed that ISAP has mode-level protection in place of traditional countermeasures, such
as masking. Consequently, ISAP does not require any randomness for authenticated encryption and decryption
(including the processing of AD). However, the mode-level protection does not apply to hash functions. Hence, only
the masked implementation of ISAP, ISAP-A_Bochum_d1, can be counted in this case.

Thus, for processing of plaintext and AD, ISAP has zero randomness requirements. In terms of the number of
random bits per plaintext byte, ISAP (with 0) is followed by Xoodyak, Ascon-128, and TinyJAMBU. In terms of
the number of random bits per AD byte, ISAP (with 0) is followed by TinyJAMBU, Xoodyak, and Ascon-128. In
terms of the number of random bits per hash message byte, Xoodyak is the best, followed by ISAP and Ascon-128,
which are in a virtual tie with one another.

Most algorithms only have designs generated automatically using AGEMA. For these designs, developed at
Bochum, the ranking by throughput over area ratio for PT is Ascon-128a, Xoodyak, Ascon-128, TinyJAMBU,
GIFT-COFB, ISAP-A, Romulus-N, PHOTON-Beetle, Elephant, and then SPARKLE. These designs typically have a
higher cost in terms of area and randomness, as well as lower throughput than the corresponding manually protected
designs.

Similarly to the unprotected implementations, the smallest design is a semi-automatically generated implementa-
tion of TinyJAMBU, TinyJAMBU_Bochum_d1, with an area of 1090 LUTs and 1157 FFs. The manually protected
implementation of TinyJAMBU, TinyJAMBU_GMU_d1, has more LUTs but fewer FFs.
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Table 18: First-order protected implementations: throughput-over-area (Kbit/s/#LUTs) for encryption of long
messages, resource utilization, maximum frequency and the number of required fresh random bits for encrypting 1
Byte of message.

Implementation T
hr

P
T

L
on

g
L

U
T

s

T
hr

A
D

L
on

g
L

U
T

s
LUTs FFs fmax R

nd
P

T
L

on
g

R
nd

A
D

L
on

g

Xoodyak_Tsinghua_d1DOM 393 577 4939 2582 202 192 105
Xoodyak_GMU_d1 215 313 7324 3379 159 214 117
ISAP-A_Graz_dn 215 337 2499 1060 184
ISAP-K_Graz_dn16 211 355 2882 1226 176
Xoodyak_Tsinghua_d1TI 205 322 5829 3379 197 380 209
Ascon-128_Graz_d1 195 195 4083 2185 175 240 240
Ascon-128a_Bochum_d1 131 131 6185 5746 183 500 500
Xoodyak_Bochum_d1 104 175 5596 6193 169 896 532
Ascon-128_Bochum_d1 89 89 6292 5752 183 840 840
TinyJAMBU_GMU_d1 88 222 1236 946 223 256 96
TinyJAMBU_Bochum_d1 70 181 1090 1157 234 784 304
GIFT-COFB_Bochum_d1 39 38 3776 3702 240 2532 2556
ISAP-A_Bochum_d1 29 44 7466 6477 195 2320 1520
Romulus-N_Bochum_d1 22 43 3242 2940 200 2912 1472
PHOTON-Beetle_Bochum_d1 13 13 9505 12118 168 12390 12040
Elephant_Bochum_d1 8 17 4977 5488 211 11354 5712
SPARKLE_Bochum_d1 5 5 21783 24030 146 14832 14832

Minimum 5 5 1090 946 146 192 96
Average 119 180 5806 5198 191 3376 2738
Maximum 393 577 21783 24030 240 14832 14832
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Table 19: First-order protected implementations: throughput-over-area (Kbit/s/#LUTs) for hashing of long and
short messages, resource utilization, maximum frequency and the number of required fresh random bits for hashing 1
Byte of message.

Implementation T
hr

H
M

L
on

g
L

U
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s

T
hr
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M

16
L
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s

LUTs FFs fmax R
nd

H
M

L
on

g

Xoodyak_Tsinghua_d1DOM 291 117 4939 2582 202 288
Xoodyak_Tsinghua_d1TI 144 63 5829 3379 197 576
Xoodyak_Bochum_d1 72 33 5596 6193 169 1296
Ascon-128_Bochum_d1 48 13 6292 5752 183 1560
ISAP-A_Bochum_d1 44 12 7466 6477 195 1520
PHOTON-Beetle_Bochum_d1 3 6 9505 12118 168 47320
SPARKLE_Bochum_d1 3 1 21783 24030 146 29664

Minimum 3 1 4939 2582 146 288
Average 86 35 8773 8647 180 11746
Maximum 291 117 21783 24030 202 47320

7.4 Performance of Second-Order Protected Hardware Designs
The second-order designs were primarily generated using AGEMA with the exception of Ascon-128_Graz_d2, which
was implemented manually.

Results are illustrated in Figs. 34, 35, and 36 for processing plaintexts; in Figs. 37, 38, and 39 for processing
ADs; and in Figs. 40, 41, and 42 for processing hash messages.

The detailed numerical results are summarized in Tables 20, 21, 22 and 23.
The protected designs maintain the same cycle latency for all levels of protection but increase in area and have

slightly different maximum frequencies. Thus the throughput for a higher-order protected design may be slightly
higher than the corresponding implementation for a lower-order of protection, but the area will increase.

The automatically protected Ascon-128a has the best throughput for processing long plaintexts, followed by
the manually implemented implementation of Ascon-128. Mode-protected ISAP has the highest throughput for
processing AD and the highest throughput-over-area ratio for processing both plaintexts and ADs. The overall
ranking in terms of PT throughput-over-area is ISAP, Ascon-128a, Ascon-128, TinyJAMBU, Xoodyak, GIFT-COFB,
Romulus-N, Elephant, and PHOTON-Beetle.

In terms of randomness requirements, they are none for the mode-protected implementations of ISAP. Among
the masked implementations, they are by far the lowest in the manual design of Ascon-128 (Ascon-128_Graz_d2).
Among automatically protected designs, the smallest number of random bits per plaintext byte is required for
Ascon-128a, Ascon-128, TinyJAMBU, and Xoodyak. In terms of the number of random bits per AD byte, the order
changes to ISAP (mode-protected), Ascon-128, TinyJAMBU, Ascon-128a, and Xoodyak.

TinyJAMBU achieves the lowest area and fourth-best throughput over area ratio for processing plaintexts (after
ISAP, Ascon-128a, and Ascon-128).
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Figure 34: Encryption throughput vs LUTs for long messages (2nd order protected)
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Figure 35: Encryption throughput over area for long messages (2nd order protected)
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Figure 36: Random bits per plaintext byte (2nd order protected)
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Figure 37: AD throughput vs LUTs for long messages (2nd order protected)
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Figure 38: AD throughput over area for long messages (2nd order protected)
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Figure 39: Random bits per AD byte (2nd order protected)
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Figure 40: Hashing throughput vs LUTs for long messages (2nd order protected)
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Figure 41: Hashing throughput over area for long messages (2nd order protected)
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Figure 42: Random bits per HM byte (2nd order protected)

Table 20: Second-order protected implementations: Encryption throughput in Mbit/s for Long, 1536 Byte, 64 Byte
and 16 Byte messages, along with throughput ratios of different message types and sizes.

Implementation T
hr

P
T

L
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g
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hr
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T

15
36
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hr

P
T
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16
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T
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T
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T
hr

A
D

16

T
hr

A
D

+
P

T
16

Ascon-128a_Bochum_d2 882 850 470 195 96.4 53.3 22.1 1.0 165 276
Ascon-128_Graz_d2 652 635 390 177 97.4 59.9 27.1 1.0 159 256
ISAP-K_Graz_dn16 608 543 168 54 89.3 27.6 8.9 1.7 87 106
Ascon-128_Bochum_d2 598 583 372 174 97.5 62.2 29.2 1.0 154 245
ISAP-A_Graz_dn 536 492 171 56 91.8 31.9 10.4 1.6 93 105
Xoodyak_Bochum_d2 517 500 268 110 96.7 51.9 21.2 1.7 110 216
ISAP-A_Bochum_d2 188 171 56 18 91.2 30.1 9.7 1.5 31 34
GIFT-COFB_Bochum_d2 147 144 97 48 97.8 65.9 32.6 1.0 71 95
TinyJAMBU_Bochum_d2 76 75 61 39 99.1 81.3 52.1 2.6 58 66
PHOTON-Beetle_Bochum_d2 75 74 59 36 98.9 78.6 47.8 1.0 36 49
Romulus-N_Bochum_d2 69 68 54 33 98.9 79.1 48.6 2.0 33 67
Elephant_Bochum_d2 42 41 27 17 98.4 63.8 39.7 2.0 13 26

Minimum 42 41 27 17 89.3 27.6 8.9 1.0 13 26
Average 366 348 183 80 96.1 57.1 29.1 1.5 84 128
Maximum 882 850 470 195 99.1 81.3 52.1 2.6 165 276
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Table 21: Second-order protected implementations: Hashing throughput in Mbit/s for Long, 1536 Byte, 64 Byte and
16 Byte messages, along with throughput ratios of different message sizes.

Implementation T
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Xoodyak_Bochum_d2 357 353 276 163 98.8 77.1 45.8
Ascon-128_Bochum_d2 322 314 196 90 97.4 60.8 28.0
PHOTON-Beetle_Bochum_d2 20 20 22 37 100.5 113.4 189.9

Minimum 20 20 22 37 97.4 60.8 28.0
Average 233 229 165 97 98.9 83.8 87.9
Maximum 357 353 276 163 100.5 113.4 189.9

Table 22: Second-order protected implementations: throughput-over-area (Kbit/s/#LUTs) for encryption of long
messages, resource utilization, maximum frequency and the number of required fresh random bits for encrypting 1
Byte of message.

Implementation T
hr

P
T
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on
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L
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s
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hr
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ISAP-A_Graz_dn 215 337 2499 1060 184
ISAP-K_Graz_dn16 211 355 2882 1226 176
Ascon-128a_Bochum_d2 71 71 12441 12374 200 1500 1500
Ascon-128_Graz_d2 70 70 9341 4061 143 720 720
TinyJAMBU_Bochum_d2 52 134 1456 2019 231 2352 912
Ascon-128_Bochum_d2 48 48 12486 12381 196 2520 2520
Xoodyak_Bochum_d2 40 67 12991 14046 151 2688 1597
GIFT-COFB_Bochum_d2 20 20 7323 8068 242 7587 7668
ISAP-A_Bochum_d2 13 19 14926 13314 170 6960 4560
Romulus-N_Bochum_d2 12 23 5938 6224 196 8736 4416
Elephant_Bochum_d2 4 8 9885 11898 211 34062 17136
PHOTON-Beetle_Bochum_d2 4 4 20803 30544 104 37170 36120

Minimum 4 4 1456 1060 104 720 720
Average 63 96 9414 9768 184 10430 7715
Maximum 215 355 20803 30544 242 37170 36120
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Table 23: Second-order protected implementations: throughput-over-area (Kbit/s/#LUTs) for hashing of long and
short messages, resource utilization, maximum frequency and the number of required fresh random bits for hashing 1
Byte of message.

Implementation T
hr
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LUTs FFs fmax R
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Xoodyak_Bochum_d2 28 13 12991 14046 151 3888
Ascon-128_Bochum_d2 26 7 12486 12381 196 4680
PHOTON-Beetle_Bochum_d2 1 2 20803 30544 104 141960

Minimum 1 2 12486 12381 104 3888
Average 18 7 15427 18990 150 50176
Maximum 28 13 20803 30544 196 141960

7.5 Performance of Third-Order Protected Hardware Designs
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Figure 43: Encryption throughput vs LUTs for long messages (3rd order protected)

We see the same trend in the third-order protected designs which were all generated using AGEMA. These results
are shown in Tables 24, 25, 26, and 27. Ascon-128a has the highest throughput for processing plaintexts. However,
it is outperformed by a mode-protected ISAP in terms of the throughput for ADs. Ascon-128 and Xoodyak are close
third and fourth in terms of the throughput for processing plaintexts. They swap places for the processing of ADs.

In terms of the throughput-to-area ratios, unmasked, mode-level protected ISAP is unbeatable due to its small
area. For processing plaintext, it is followed by Ascon-128a, TinyJAMBU, Ascon-128, and Xoodyak. For the
processing of AD, ISAP is followed by TinyJAMBU, Ascon-128a, Xoodyak, and Ascon-128.

Only three 3rd-order protected designs support hashing. Out of them, Xoodyak is the fastest, followed by a
masked ISAP and Ascon-128. For the throughput vs. area ratio, Ascon-128 (Ascon-Hash) and Xoodyak are in a
virtual tie, followed relatively closely by the masked ISAP.
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Figure 44: Encryption throughput over area for long messages (3rd order protected)
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Figure 45: Random bits per Plaintext byte (3rd order protected)
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Figure 46: AD throughput vs LUTs for long messages (3rd order protected)
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Figure 47: AD throughput over area for long messages (3rd order protected)
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Figure 48: Random bits per AD byte (3rd order protected)
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Figure 49: Hashing throughput vs LUTs for long messages (3rd order protected)
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Figure 50: Hashing throughput over area for long messages (3rd order protected)

Table 24: Third-order protected implementations: Encryption throughput in Mbit/s for Long, 1536 Byte, 64 Byte
and 16 Byte messages, along with throughput ratios of different message types and sizes.
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hr
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Ascon-128a_Bochum_d3 754 727 401 167 96.5 53.2 22.1 1.0 140 236
ISAP-K_Graz_dn16 608 543 168 54 89.3 27.6 8.9 1.7 87 106
ISAP-A_Graz_dn 536 492 171 56 91.8 31.9 10.4 1.6 93 105
Ascon-128_Bochum_d3 502 489 312 146 97.5 62.2 29.2 1.0 129 206
Xoodyak_Bochum_d3 442 427 229 94 96.7 51.9 21.2 1.7 94 184
ISAP-A_Bochum_d3 182 166 55 18 91.2 30.1 9.7 1.5 30 33
GIFT-COFB_Bochum_d3 134 131 88 44 97.8 65.9 32.6 1.0 64 87
TinyJAMBU_Bochum_d3 81 80 66 42 99.1 81.3 52.1 2.6 62 70
Romulus-N_Bochum_d3 65 65 52 32 98.9 79.1 48.6 2.0 32 64
Elephant_Bochum_d3 41 41 26 16 98.4 63.8 39.7 2.0 13 26

Minimum 41 41 26 16 89.3 27.6 8.9 1.0 13 26
Average 335 316 157 67 95.7 54.7 27.5 1.6 75 112
Maximum 754 727 401 167 99.1 81.3 52.1 2.6 140 236
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Table 25: Third-order protected implementations: Hashing throughput in Mbit/s for Long, 1536 Byte, 64 Byte and
16 Byte messages, along with throughput ratios of different message sizes.
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Xoodyak_Bochum_d3 305 302 236 140 98.8 77.1 45.8
ISAP-A_Bochum_d3 278 271 169 77 97.4 60.7 27.8
Ascon-128_Bochum_d3 270 263 164 76 97.4 60.8 28.0

Minimum 270 263 164 76 97.4 60.7 27.8
Average 285 279 190 98 97.8 66.2 33.9
Maximum 305 302 236 140 98.8 77.1 45.8

Table 26: Third-order protected implementations: throughput-over-area (Kbit/s/#LUTs) for encryption of long
messages, resource utilization, maximum frequency and the number of required fresh random bits for encrypting 1
Byte of message.
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ISAP-A_Graz_dn 215 337 2499 1060 184
ISAP-K_Graz_dn16 211 355 2882 1226 176
Ascon-128a_Bochum_d3 37 37 20263 21565 171 3480 3480
TinyJAMBU_Bochum_d3 35 91 2301 3184 248 4704 1824
Ascon-128_Bochum_d3 24 24 20547 21567 165 5040 5040
Xoodyak_Bochum_d3 19 32 23244 24836 129 5376 3142
GIFT-COFB_Bochum_d3 11 11 12390 13801 221 14760 14760
ISAP-A_Bochum_d3 8 12 23861 23013 165 13920 9120
Romulus-N_Bochum_d3 7 13 9995 10236 186 17472 8832
Elephant_Bochum_d3 2 5 17727 20395 210 68124 34272

Minimum 2 5 2301 1060 129 3480 1824
Average 57 92 13571 14088 185 16610 10059
Maximum 215 355 23861 24836 248 68124 34272
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Table 27: Third-order protected implementations: throughput-over-area (Kbit/s/#LUTs) for hashing of long and
short messages, resource utilization, maximum frequency and the number of required fresh random bits for hashing 1
Byte of message.
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Ascon-128_Bochum_d3 13 4 20547 21567 165 9360
Xoodyak_Bochum_d3 13 6 23244 24836 129 7776
ISAP-A_Bochum_d3 12 3 23861 23013 165 9120

Minimum 12 3 20547 21567 129 7776
Average 13 4 22551 23139 153 8752
Maximum 13 6 23861 24836 165 9360

8 General Conclusions
The cryptographic community developed SCA-protected hardware implementations of 9 out of 10 finalists in the
NIST Lightweight Cryptography standardization process. Most of these designs were generated semi-automatically
using a novel software tool developed at Ruhr University Bochum, called AGEMA. Typically, one design was
developed for each protection order between 1 and 3. In the case of Ascon, separate designs were developed for
two distinct variants, Ascon-128 and Ason-128a. Six out of 42 protected designs were developed manually. They
covered only 3 out of 10 candidates (Xoodyak, Ascon, and TinyJAMBU). As expected, they were typically better
than automatically protected designs, at least in terms of the throughput-to-area ratio. One algorithm, ISAP, was
claimed to provide mode-level protection, offering resistance against Differential Power Analysis of arbitrary order
when used for authenticated encryption/decryption with associated data. This protection did not extend to the
keyed hash modes, such as that used in HMAC.

Selected protected hardware designs were evaluated by six Side-Channel Security Evaluation Labs. These
evaluations led to the detection of some minor implementation errors. Most of these errors were fixed during or
shortly after the time devoted to the evaluation of hardware implementations. Consequently, it was determined that
all of these implementations could be fairly benchmarked and compared with one another, assuming the protection
levels claimed by their authors. The assumption was made that any potential SCA security fixes, even if performed
after the benchmarking process, would have a negligible effect on the absolute values of performance metrics (such
as the throughput in Mbits/s and area in LUTs), not the mention the ranking of candidates.

Hardware benchmarking was performed by the GMU Team using a popular FPGA family, Xilinx Artix-7. The
following major conclusions were reached. Overall, Xoodyak and Ascon performed the best for the majority of
implementation categories (such as unprotected, 1st-order protected, 2nd-order protected, and 3rd-order protected
designs) and the majority of possible input types (plaintext, associated data, hash message). These candidates offer
high-speed, high throughput-to-area ratio, moderate randomness requirements for protected designs, and support
for hashing. Ascon offers the added flexibility of choosing between two closely-related variants, Ascon-128 and
Ascon-128a, and related hash functions Ascon-Hash and Ascon-Hasha.

Among the manually protected 1st-order designs available for Xoodyak (3), Ascon (1), and TinyJAMBU (1), the
DOM implementation of Xoodyak was the best in terms of all performance metrics. However, there was no manually
protected implementation of Ascon-128a, and among the automatically protected designs, Ascon-128a had the best
throughput and throughput-to-area ratio for the processing of plaintext. TinyJAMBU was another candidate that
clearly distinguished itself from other candidates. Most TinyJAMBU implementations were substantially smaller
than those of other candidates for the same protection order. TinyJAMBU excelled in the throughput-to-area ratio,
especially for the processing of AD and for processing of both plaintext and AD at the higher protection orders.
The area of its implementations increased the least as a function of the protection order. For example, its 1st-order
protected implementation is only about two times larger than the corresponding unprotected implementation. For
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the 3rd protection order, this ratio does not exceed 4. Additionally, TinyJAMBU was typically among the best
candidates in terms of the moderate randomness requirements of its masked implementations. Drawbacks include no
support for hashing and a relatively small throughput for processing long plaintext (as compared to Xoodyak and
Ascon).

ISAP is unique with its two-pass design and mode-level, arbitrary-order protection against DPA. Assuming that
this algorithm design provides the same (or higher) level of protection as the masked implementations of other
candidates, ISAP ranks particularly high for the 2nd and 3rd protection order. For these orders, it ranks number 1
for the throughput-to-area ratio for plaintext and throughput and throughput-to-area ratio for AD. However, the
mode-level algorithm design does not fully protect against simple power analysis. It also does not provide protection
in the keyed hash mode, such as that used in HMAC.

When masking is applied, ISAP is typically outperformed by both Xoodyak and Ascon. Additionally, a two-pass
authenticated encryption creates its own implementation challenges, such as the need for additional storage or at
least sharing storage between the intermediate and final results. This sharing may potentially introduce additional
security vulnerabilities.

The limitations of this study included a relatively small number of protected software implementations. The
submitted software implementations covered only 5 out of 10 candidates. Additionally, the implementations of two
candidates failed a basic leakage assessment test, and the mode-level protection of the third candidate (ISAP) could
not be verified experimentally. Consequently, robust software implementations were developed only for Ascon and
Xoodyak, confirming the large community interest in these candidates. The developers of the Ascon implementation
(Ascon Team) claimed the second protection order. They also developed 6 variants of the implementation. The
authors of the Xoodyak implementation (Hardware Security and Cryptographic Processor Lab at Tsinghua University)
claimed the first protection order. Their submission included a single variant. The implementations of Ascon were
evaluated by two independent labs and passed all leakage assessment tests and attack attempts. The protected
software implementation of Xoodyak was not evaluated by any independent lab. None of the labs volunteered to
perform independent benchmarking of protected software implementations. Thus, the study of protected software
implementations primarily confirmed the community trust in Ascon and the difficulty of developing and evaluating
SCA-protected implementations for other candidates developed later than Ascon.

In terms of the qualitative analysis reported in [25] and earlier publications from the same group, we believe
that this evaluation is extremely valuable, especially for higher protection orders that cannot be practically assessed
experimentally. The qualitative and quantitative analyses complement each other and should be both carefully
considered when choosing new cryptographic standards and developing their SCA-secure implementations.
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