
Unbounded Predicate Inner Product Functional
Encryption from Pairings?

Uddipana Dowerah1, Subhranil Dutta2, Aikaterini Mitrokotsa3, Sayantan Mukherjee3,
Tapas Pal4

1Chalmers University of Technology, Sweden uddipana@chalmers.se
2Indian Institute of Technology Kharagpur, India subhranildutta@iitkgp.ac.in

3University of St Gallen, Switzerland katerina.mitrokotsa@unisg.ch
3University of St Gallen, Switzerland csayantan.mukherjee@gmail.com

4NTT Social Informatics Laboratories, Japan tapas.pal.wh@hco.ntt.co.jp

Abstract.

Predicate inner product functional encryption (P-IPFE) is essentially attribute-based IPFE (AB-IPFE)
which additionally hides attributes associated to ciphertexts. In a P-IPFE, a message x is encrypted under
an attribute w and a secret key is generated for a pair (y,v) such that recovery of 〈x,y〉 requires the vectors
w,v to satisfy a linear relation. We call a P-IPFE unbounded if it can encrypt unbounded length attributes
and message vectors.
• zero predicate IPFE. We construct the first unbounded zero predicate IPFE (UZP-IPFE) which recovers
〈x,y〉 if 〈w,v〉 = 0. This construction is inspired by the unbounded IPFE of Tomida and Takashima
(ASIACRYPT 2018) and the unbounded zero inner product encryption of Okamoto and Takashima
(ASIACRYPT 2012). The UZP-IPFE stands secure against general attackers capable of decrypting the
challenge ciphertext. Concretely, it provides full attribute-hiding security in the indistinguishability-based
semi-adaptive model under the standard symmetric external Diffie-Hellman assumption.

• non-zero predicate IPFE. We present the first unbounded non-zero predicate IPFE (UNP-IPFE) that
successfully recovers 〈x,y〉 if 〈w,v〉 6= 0. We generically transform an unbounded quadratic FE (UQFE)
scheme to weak attribute-hiding UNP-IPFE in both public and secret key settings. Interestingly, our
secret key simulation secure UNP-IPFE has succinct secret keys and is constructed from a novel succinct
UQFE that we build in the random oracle model. We leave the problem of constructing a succinct public
key UNP-IPFE or UQFE in the standard model as an important open problem.

? This paper will appear in the Topical Collection on Computing on Encrypted Data of the Journal of Cryptology.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Related work . 9

2 Technical Overview . 10
2.1 Public Key UP-IPFE: UZP-IPFE . 11
2.2 Secret Key UP-IPFE: UNP-IPFE . 14

3 Preliminaries . 17
3.1 Bilinear Groups . 18
3.2 Complexity Assumptions . 18
3.3 Dual Pairing Vector Space . 19
3.4 Pseudorandom Function . 19
3.5 Unbounded Predicate Inner Product Functional Encryption 20

4 Our Full Attribute-hiding UZP-IPFE 22
4.1 Construction . 22
4.2 Security Analysis . 24

5 Our Succinct UQFE . 51
5.1 Construction . 52
5.2 Simulator . 55
5.3 Security Analysis . 55

6 Our Weak Attribute-Hiding UNP-IPFE 63
6.1 Construction . 63
6.2 Simulator . 65
6.3 Security Analysis . 65
6.4 Instantiations . 67

A Appendix . 71
A.1 IND-based Security Analysis of UNP-IPFE of Section 6 72

1 Introduction

Functional encryption (FE) is an advanced cryptographic primitive that enables elegant
access control over encrypted data. The motivation behind introducing FE is to deviate from
the classical “all-or-nothing” type encryption schemes that entirely unveil the plaintext to
the secret key owner. On the contrary, specific functions are embedded into the secret keys of
an FE scheme which reveal no information about the plaintext but only its functional values.
More formally, an FE scheme that supports a function class F , allows the authority to issue
secret keys SKf corresponding to any function f ∈ F . Using the public parameters of the
scheme, a message m is encrypted to the ciphertext CTm which reveals f(m) on decrypting
it with the secret key SKf . The security of an FE scheme ensures that no information about
the message m can be extracted from the pair (SKf ,CTm) apart from the functional value
f(m).

A significant amount of effort [GKP+13, GVW15] has been put forth in realizing FE
schemes supporting the class of all polynomial-size functions. Although such powerful FE
schemes are being developed through a long sequence of works [JLS21, BV18, APM20]
based on standard assumptions, these are relatively complex to understand and far away
from practical deployment. On the positive side, FE schemes for specific function classes,
e.g., linear or quadratic functions [ABCP15, BJK15, ABDCP16, ALS16, DDM16, AGRW17,
BBL17, BCFG17, ACF+18, CLT18, DOT18, ABKW19, LT19, ACGU20, Wee20, Gay20,
AGT21b, AGT21a], can be constructed with much more efficient parameters. This work is
devoted to realizing practical FE schemes primarily for linear functions in a setting suitable
for various applications that deal with variable lengthed data.
FE for Attribute-Based Linear Functions. Inner Product Functional Encryption
(IPFE) refers to a practical class of FE, introduced by Abdalla et al. [ABCP15], that sup-
ports inner product functionality. The secret keys and ciphertexts are computed for vectors
y, x ∈ Znp respectively and the decryption obtains an inner product value 〈x,y〉. Due to its
simple and linear functionality, IPFE possesses an inherent security issue. More precisely,
releasing a set of n secret keys corresponding to a basis of Znp entirely breaks the security of
the IPFE system. This necessitates the key generation algorithm of stateful IPFE to prevent
the risk of releasing n secret keys of particular nature. To make the IPFE system resilient
from such information leakage even when many secret keys are issued, the scheme must allow
to embed access policies, while also being able to compute the weighted sums on the data.
This can be achieved for instance by combining attribute-based encryption (ABE) [GPSW06]
with IPFE. Abdalla et al. [ACGU20] addressed this problem by proposing a primitive called
attribute-based IPFE (AB-IPFE) that provides the access control functionality of ABE along
with the inner product functionality of IPFE. More precisely, the secret keys of IPFE are
now additionally associated with some policies P and message vectors are encrypted under
some attributes att. At the time of the decryption, computing the inner product value 〈x,y〉
requires the secret key to satisfy an extra condition P (att) = 1, i.e., the attribute att must
satisfy the policy P .

Various constructions of AB-IPFE were proposed in previous works [ACGU20, PD21,
LLW21] depending on group-based and lattice-based assumptions. These AB-IPFEs focus

3

on hiding the message vectors, not the associated attributes. However, hiding attributes
in ABE [OT12b, OT12a, OT15] has its own popularity in applications where attributes
contain user-specific sensitive information. Another drawback is that existing AB-IPFEs
can only process attributes or messages of bounded length. As a result, the size of system
parameters depends on the upper bounds set for the lengths of attributes/messages at the
beginning. Furthermore, the ciphertexts always scale with the upper bounds even when
the original lengths of the corresponding attributes and messages are much shorter. In the
literature, the primitives ABE [LW11, OT12b, BV16, Att19, AMY19, DPD21] and IPFE
[TT18, DSP19] are individually constructed to handle unbounded length attributes and
messages respectively. However, no AB-IPFE scheme is designed to process data of arbitrary
length. Additionally, these salient features, namely attribute-hiding and unboundedness of
an AB-IPFE scheme, make the parameters cost-effective and amplify the importance and
wide applicability of AB-IPFE. Specific application scenarios include weighted sum of body
temperature or blood pressure of patients in a hospital, average salary of a minority group in a
private/government office or even counting votes of political leaders in a presidential election.
In all these examples, the size of the data set may vary from time-to-time, for instance,
the number of patients in the hospital or employees in the minority group. Concurrently,
the associated attributes contain sensitive information such as the patients’ social security
numbers or the employee codes of the minority group members. This motivates us to ask the
following question:

Is it possible to design an AB-IPFE scheme that can embed unbounded size (policy, key
vector) to a secret key and unbounded length (attribute, message vector) to a ciphertext,
so that only authorized persons can recover the inner product between the key and message
vectors, without revealing any information about the attributes apart from whether they are
satisfied or not by the embedded policy?

1.1 Our Contributions

This work proposes a solution to the above open problem for inner-product. We define the no-
tion of attribute-hiding unbounded AB-IPFE where access to the inner product values is con-
trolled via linear predicates. More fundamentally, we explore the primitive AB-IPFE from the
lens of FE. This means the entities associated with a ciphertext CT of AB-IPFE, i.e., the at-
tribute att and the message vector x are both hidden during the decryption. A secret key asso-
ciated with a tuple (P,y) reveals at most the information about P (att) and the inner product
〈x,y〉 from CT. We propose the name predicate inner-product functional encryption (P-IPFE)
to separate this primitive from usual AB-IPFE of [ACGU20, AGT21b, PD21, LLW21] and
predicated inner product functional encryption of [AGT21a]. Before we note down the differ-
ence between predicated inner product functional encryption of [AGT21a] and our primitive,
we state that the name is inspired by the attribute-hiding feature that differentiates predicate
encryption [KSW08] from the attribute-based encryption [GPSW06]. The definition of pred-
icated inner product functional encryption of [AGT21a], although captured inner-product
computation conditioned on a linear predicate, did not capture the essence of predicate en-
cryption [KSW08] thoroughly. Indeed, the partially function-hiding security in [AGT21a] did

4

not consider the attribute-hiding feature. On the other hand, our definition captures both
the message vector hiding and the full attribute-hiding [OT12b]. Therefore, we propose a
new name for the primitive we consider.

We further enhance the primitive P-IPFE by adding the property of unboundedness that
makes it more efficient in terms of system keys and ciphertext sizes. This means the master
keys of the P-IPFE only depend on the security parameter and hence there is no bound
on the sizes of P, att,x and y. This work deals with unbounded inner product predicates
[OT12b, DPD21] where P = v is a linear function of att = w having unbounded lengths. In
particular, we construct unbounded inner product predicate IPFE (UP-IPFE) schemes which
recover 〈x,y〉 if a linear relation R(w,v) holds. We emphasize that our UP-IPFE is the first
primitive to simultaneously capture unbounded inner product predicate encryption scheme
[OT12b] and unbounded inner product functional encryption schemes [TT18, DSP19].
UP-IPFE with zero relation. First, we consider UP-IPFE with zero relation (UZP-IPFE)
meaning that the decryption recovers 〈x,y〉 if the inner product between the predicate and
attribute vectors is zero. We present a construction of semi-adaptively secure UZP-IPFE in
the standard model under the symmetric external Diffie-Hellman (SXDH) assumption in an
asymmetric pairing group, where the unbounded length vectors (both x,y and w,v) satisfy
a permissive relation. A pair of unbounded length vectors is said to satisfy the permissive
relation if the index set of one is contained in the index set of the other [TT18, DSP19]. The
ciphertexts and secret keys of our UZP-IPFE grow linearly with the lengths of the associated
vectors.

We achieve full attribute-hiding indistinguishability-based security with semi-adaptive
attributes. In our security model, only the challenge attributes are submitted before an
adversary asks for a secret key whereas the challenge message vectors are adaptively chosen
after observing a set of secret key queries. Note that the notion of full attribute-hiding
approves secret key queries capable of decrypting the challenge ciphertext. Hence, it provides
more power to the adversary than the usual payload hiding model where it is prohibited to
query a secret key that decodes the challenge ciphertext.

Technically, we combine the full attribute-hiding unbounded zero-predicate encryption
(UZIPE) of Okamoto and Takashima [OT12b] with the UIPFE of Tomida and Takashima
[TT18] to achieve our result. We show that it may not be possible to generically construct
UZP-IPFE from UZIPE and UIPFE with our desired security notion. The previous works
have also noted this [ACGU20, AGT21b, PD21, LLW21] in the context of AB-IPFE. Our
main technical insight is that it is possible to semi-generically combine the existing UZIPE
[OT12b] and UIPFE [TT18] by implicitly employing a joint secret sharing protocol. This
enables us to design a framework for UZP-IPFE which hides the arbitrary length attributes
into the ciphertexts. We believe our technique could be useful to combine primitives such as
ABE/PE with linear/quadratic FE in a semi-generic manner for achieving more expressive
classes of functional encryption.
UP-IPFE with non-zero relation. Next, we consider UP-IPFE with non-zero relation
(UNP-IPFE) meaning that the decryption recovers 〈x,y〉 if the inner product between
the predicate and attribute vectors is non-zero. We present a generic construction of weak

5

Table 1: Summary of our results
Scheme |MPK| |CT| |SK| Assumption

UZP-IPFE 56 |G1| 7(m1 +m2) |G1| 7(n1 + n2) |G2| SXDH
UNP-IPFE 10 |G1| (2m1 + 4m2 + 6) |G1|+ 2m2 |G2| 4 |G2| bi-2-Lin

– m1,m2: the lengths of the vectors associated with the ciphertext.
– n1, n2: the lengths of the vectors associated with the secret key.
– |MPK|: the size of the master public key.
– |CT| , |SK|: the size of the ciphertext and the secret key, respectively.
– SXDH, bi-k-Lin: symmetric external Diffie-Hellman (or 1-Lin), bilateral k-Lin.

The computations for UNP-IPFE are for the specific case of (k′ = 1)-Lin (SXDH) and k = 2 (bi-2-Lin).

attribute-hiding UNP-IPFE where the unbounded length vectors (both x,y and w,v) satisfy
either the permissive relation or a strict relation. We say a pair of unbounded length vectors
satisfies the strict relation if the index sets of the vectors are identical. We instantiate our
generic construction in the public key setting with permissive relation and in the secret key
setting with strict relation, enjoying variable efficiency parameters and security levels.

• The public key UNP-IPFE achieves the permissive relation for vectors and is
indistinguishability-based secure in the standard model. The sizes of secret keys and ci-
phertexts scale linearly with the associated vectors. We obtain the public key UNP-IPFE
by plugging in the existing unbounded linear and quadratic FE schemes [TT18, Tom22]
to our generic construction.
• The secret key UNP-IPFE is instantiated with strict relation for vectors and it is

simulation-secure in the random oracle model (ROM). The ciphertext size is linear in
the length of associated vectors as in the case of our UZP-IPFE and public key UNP-
IPFE. Moreover, the secret key achieves succinctness, meaning that the secret keys’ size
are independent of the length of the predicate and key vectors. To instantiate the secret
key UNP-IPFE, we construct a succinct secret key unbounded quadratic FE (UQFE)
scheme, which is simulation secure under the bilateral k-Lin assumption in the ROM. In
literature, such a succinct UQFE scheme does not exist to the best of our knowledge.
The only existing (public key) UQFE scheme by Tomida [Tom22] is semi-adaptively
indistinguishability-based secure in the ROM. It generates secret keys that grow lin-
early with the size of key vectors; hence they are not succinct. As illustrated in Table 1,
our secret key UNP-IPFE delivers significant efficiency improvements in all departments
compared to the other UP-IPFE schemes.

Lastly, both of these UNP-IPFEs are semi-adaptively secure with respect to the attribute and
message vectors. The adversary submits challenge attributes and message vectors before it
receives any secret key. In Table 2, we provide a comparison of existing (partially/weak/full)
attribute-hiding FE schemes with our proposed UP-IPFEs with respect to the functionality
and security model.

Application Scenarios: Similar to IPFE, the primitive AB-IPFE finds application on
various fronts. We believe AB-IPFE can be useful in Hamming distance-based biometric au-

6

Table 2: Comparison of our results with existing attribute-based FE schemes
Scheme Functionality (|att|, |msg|) Attribute-

hiding
Security Assumption

[TT18] φ
y∈Z|Iy|

p

: Z|Ix|
p → Zp, φy(x) =

x>y

(×, unbd) × AD-IND SXDH

[DSP19] φ
y∈Z|Iy|

p

: Z|Ix|
p → Zp, φy(x) =

x>y

(×, unbd) × Sel-IND DBDH

[ACGU20] φ(f∈(NC1)(n),y∈Zn′
p) : Zn

′
p ×Znp →

Zp, φf,y(x,w) = (f(w) ?=
0) · x>y

(bnd, bnd) × AD-IND SXDH

[AGW20] φ
f∈ABP(n′,n) : Zn

′
p × Znp →

Zp, φf (x,w) = f(w)>x
(bnd, bnd) partially SA-SIM k-Lin

[Wee20] φ
f∈ABP(n1′n2′,n) : Zn

′
1+n′2
p ×

Znp → Zp, φf ((x1,x2),w) =
(x1 ⊗ x2)f(w)>

(bnd, bnd) partially SA-SIM bi-k-Lin

[LLW21] φ(f∈(GC)(n),y∈Zn′
p) : Zn

′
p × Znp →

Zp, φf,y(x,w) = (f(w) ?=
0) · x>y

(bnd, bnd) × SA-IND LWE

[AGT21a] φ(y∈Zm1
p ,v∈Zm2

p) : Zm1
p × Zm2

p →

Zp, φ(y,v)(x,w) = (w>v ?=
0) · x>y

(bnd, bnd) × Sel-IND MDDH

[AGT21b] φ(f∈(NC1)n,y∈Zn′
p) : Zn

′
p × Znp →

Zp, φf,y(x,w) = (f(w) ?=
0) · x>y

(bnd, bnd) weak Sel-IND k-Lin

[DP21] φ
f∈ABP(n′,n) : Zn

′
p × Znp →

Zp, φf (x,w) = f(w)>x
(bnd, bnd) partially AD-SIM k-Lin

[Tom22] φ
f∈ABP(n′·n′,n) : Zn

′
p × Znp →

Zp, φf (x,w) = (x⊗ x)f(w)>
(bnd, unbd) partially SA-IND MDDH

This work φ
(y∈Z|Iy|

p ,v∈Z|Iv|
p)

: Z|Ix|
p ×

Z|Iw|
p → Zp, φ(y,v)(x,w) =

(w>v ?= 0) · x>y

(unbd, unbd) full SA-IND SXDH

This work φ
(y∈Z|Iy|

p ,v∈Z|Iv|
p)

: Z|Ix|
p ×

Z|Iw|
p → Zp, φ(y,v)(x,w) =

(w>v
?
6= 0) · x>y

(unbd, unbd) weak SA-SIM bi-k-Lin

– ABP,GC: arithmetic branching programs, general circuits respectively.
– AD, SA, Sel: adaptive, semi-adaptive and selective security respectively.
– IND, SIM: indistinguishability and simulation based security.
– |att|, |msg|: lengths of attribute and message respectively.
– |Ix|: size of the index set of x.
– bnd, unbd: bounded, unbounded respectively.
– DBDH, LWE,MDDH: decisional bilinear Diffie-Hellman, learning with errors, matrix decisional Diffie-

Hellman, respectively.

7

thentication [LKK+18], cloud-assisted computing etc. while providing strong privacy guar-
antees. Nevertheless, we discuss a concrete and simple application scenario relevant to the
modern-day use cases of cloud computing in medical science. In Fig. 1, we illustrate one
such application scenario that our UP-IPFE schemes can efficiently realize. The data owners
are hospitals that encrypt patients’ health records under their attributes and upload the
ciphertexts into a cloud server. At the same time, the data users are distinguished scientists
from various research centers who study health records. Suppose the Ministry of Healthcare
(MoH) department wants to perform statistical analysis over the encrypted data of patients
to determine the state of some emerging diseases such as lung infections, influenza, dengue
etc. in a certain region of the country so that necessary steps could be taken in advance
to prevent escalation of the diseases. The MoH provisions certain research centers for this
purpose and provides secret keys generated for specific policies and functions to the centers.
The secret keys enable a specific group of scientists in the research centers to compute pa-
tient data functions if they are authorized or satisfy the embedded policies. For example, the
hospitals are requested to encrypt the patients’ dataset x including body temperature, heart
rate, blood pressure etc. under attributes w including social security number (SSN), race,
age, sex, past significant diseases, radiological accession number and possible designations
of scientists that are allowed to study such data. The MoH employs an AB-IPFE scheme to
compute the average body temperature or blood pressure of the patients recently treated for
influenza. The MoH provides a secret key SKP,y to the research center, where P is the policy
defined by 5000 < SSN < 8000, a specified range of social security numbers (of patients) and
Infectious Disease Specialist (scientists), and y is a chosen weight vector.

In this example, data users search patients’ health records with respect to some specific
attributes and then perform statistical computations on the encrypted data. Since inner
product predicates enable evaluation of disjunctions, polynomials, and CNF/DNF formulae
[KSW08], we can consider any such predicates with IPFE for computing the average. There-
fore, P-IPFE, a particular case of AB-IPFE, serves the purpose of the MoH. However, if the
MoH employs an existing AB-IPFE [ACGU20, PD21, LLW21] that supports only bounded
size data/attribute sets, it faces two major problems. Firstly, it is almost impossible to guess
the size of data/attribute sets (or the number of patients/characteristics) at the time of
the system setup. Eventually, the MoH is forced to choose an upper bound on the size of
those sets; hence, the size of system parameters (especially the master public key) grows
with the upper bound. Moreover, the ciphertexts that are ever generated by the hospitals
scale with the upper bound although the associated message/attribute size is much smaller
than the bound. Secondly, existing AB-IPFEs [ACGU20, PD21, LLW21] completely disclose
the attributes associated with ciphertexts. This leads to the leakage of patients’ personal
information (age, social security number etc.) to the data users, which could be against the
privacy policy of the hospitals. On the other hand, if the MoH employs our attribute-hiding
UP-IPFE schemes, then it circumvents these two essential drawbacks. More specifically, the
ciphertext hides the associated attributes and grows linearly with the data size and attribute
sets available at the time of the encryption.

8

Data Owner
(Hospital)

Data Users
(Infectious disease

Specialists at
RC ,…, RC)1 n

Central
authority

(MoH)

Cloud Server

PP SKP,y

 = {Temp, BP,
Heart rate,…}
x

P : (5000 < SSN < 8000) ∧ (Infectious Disease Specialists)

 = {SSN,Race,
 Scientist ID,
 Age, Sex,…}

w

RC1

RCn

RC : Research centre i i

Embedded Policy

y : Chosen weight vector

⋮

Fig. 1: An application scenario of UP-IPFE

1.2 Related work

The first unbounded IPFE schemes were concurrently and independently proposed by To-
mida and Takashima [TT18] and Dufour-Sans and Pointcheval [DSP19]. In [TT18], Tomida
and Takashima presented two constructions for unbounded IPFE (UIPFE): a private key
UIPFE with full function-hiding and a public key UIPFE with adaptive indistinguishability
security based on the standard SXDH assumption. Concurrently, in [DSP19], Dufour-Sans
and Pointcheval presented public key UIPFE constructions with succinct public key, master
secret key as well as succinct functional decryption keys. They also considered identity-based
access control in their constructions. However, their constructions achieve only selective se-
curity in the random oracle model. Abdalla et al. combined the access control properties of
ABE with IPFE in [ACGU20] and presented the first constructions of attribute-based IPFE
(AB-IPFE) using state-of-the-art ABE schemes from prime order pairing groups. Agrawal et
al. extended the construction of [ACGU20] to the multi-authority setting in [AGT21b]. How-
ever, the constructions of [ACGU20] do not achieve the attribute-hiding property, whereas
the multi-authority construction in [AGT21b] only achieves weak attribute-hiding prop-
erty. Further, in [AGW20], Abdalla et. al proposed an FE scheme for a new functionality
called attribute-weighted sums with semi-adaptive security and subsequently, Datta and Pal
[DP21] presented the first adaptively secure FE schemes for attribute-weighted sums. How-
ever, these constructions are only partially attribute-hiding and not to mention that all of
these attribute-based FE schemes [ACGU20, AGT21b, AGW20, DP21] are in the bounded
setting. Recently, the first unbounded FE scheme for quadratic functions has been proposed

9

by Tomida in [Tom22]. The scheme achieves semi-adaptive indistinguishability-based secu-
rity under the MDDH assumption in the random oracle model. The same work provides
attribute-based access control over the UQFE via arithmetic branching programs (ABP)
[AGW20]. Since ABPs are a type of a non-uniform model of computation, the length of at-
tributes in [Tom22] is essentially bounded. Nevertheless, the attributes associated with the
ABPs are public, yielding a partially attribute-hiding FE scheme.

Organization of the paper: In Section 2, we briefly overview our techniques. In Section 3,
we define some standard notations and recall the definition of bilinear groups, our complexity
assumptions, DPVS and the syntax with the security definitions of UP-IPFE scheme. In
Section 4, we propose the construction of UZP-IPFE along with a security proof. Section
5 presents the definition of UQFE and a candidate construction along with simulation-
based security proof. Section 6 describes our generic construction of UNP-IPFE along with
simulation-based security analysis. Further, we give instantiations of our UNP-IPFE scheme
in both public key and private key settings. Finally, in Appendix A, we provide the IND-based
security analysis of our proposed UNP-IPFE construction.

2 Technical Overview

This section gives an overview of how to achieve UP-IPFE schemes with semi-generic and
generic approaches. Before going into the technical details, we discuss the notion of UP-IPFE
in a bit more detail.
UP-IPFE and its Variants. The setup algorithm generates a pair of master public-private
keys. A secret key SKy,v is generated using the master secret key where y = (yi)i∈Iy ,v =
(vj)j∈Iv are denoted as key and predicate vectors respectively. A ciphertext CTx,w is computed
using the master public key where x = (xi)i∈[m1] and w = (wj)j∈[m2] represents the message
and attribute vectors respectively. The decryption recovers 〈x,y〉 depending upon the value
of R(w,v) and a relation between the index sets. Note that, the inner product computation
is defined based on the relation between the index sets of the vectors involved:

– permissive relation Rp: (a = (ai)i∈Ia ,b = (bj)j∈Ib) ∈ Rp if and only if Ib ⊆ Ia. In this
case, we define 〈a,b〉 = ∑

i∈Ib aibi.
– strict relation Rs: (a = (ai)i∈Ia ,b = (bj)j∈Ib) ∈ Rs if and only if Ia = Ib = I. In this

case, we define 〈a,b〉 = ∑
i∈I aibi.

An UP-IPFE scheme is permissive if (x,y), (w,v) ∈ Rp. On the other hand, if (x,y), (w,v) ∈
Rs then the UP-IPFE is said to be strict. Next, the permissive/strict UP-IPFE is further
classified according to R(w,v):

– zero predicate or UZP-IPFE: R(w,v) = 1 if and only if 〈w,v〉 = 0.
– non-zero predicate or UNP-IPFE: R(w,v) = 1 if and only if 〈w,v〉 6= 0.

We call a secret key accepting (resp. non-accepting) if it can decrypt (resp. fails to decrypt)
a given ciphertext. The goal of full attribute-hiding security is to restrict any adversary
from extracting information other than 〈x,y〉 when R(w,v) = 1 even given many accepting

10

and non-accepting secret keys with respect to the challenge ciphertext. In contrast, the weak
attribute-hiding notion allows an adversary to query any polynomial number of non-accepting
and accepting keys with certain restriction on the predicate vectors associated with the
accepting keys. The adversary is allowed to learn a set of the inner product values between
the predicate and attribute vectors, so it is impossible to recover the challenge attribute
vector from the set. Such restriction on the predicate vectors has also been considered in the
weak attribute-hiding (bounded) P-IPFE of Agrawal et al. [AGT21b].

Our first construction is a permissive UZP-IPFE scheme that achieves semi-adaptive
full attribute-hiding indistinguishability-based (SA-FAH-IND) security in the standard model
under the SXDH assumption. Our second contribution is a strict UNP-IPFE scheme in the
secret key setting, i.e., the encryption is performed in the presence of the master secret
key. The strict UNP-IPFE achieves semi-adaptive weak attribute-hiding simulation-based
(SA-WAH-SIM) security under the standard bilateral k-Lin assumption. Our UZP-IPFE is
more technical and semi-generic, whereas the UNP-IPFE is simple and generic, as discussed
next.

2.1 Public Key UP-IPFE: UZP-IPFE

Our first contribution is a full attribute-hiding UZP-IPFE that on a high level utilizes pairing-
based dual system encryption techniques [Wat09]. The starting point of the construction
is the public key UIPFE scheme of Tomida and Takashima [TT18], hereafter denoted by
TT18. Since UZP-IPFE is a particular class of AB-IPFE in the sense that one gets the inner
product value if the attribute is satisfying, while the adversary is allowed to query both
accepting and non-accepting keys. Consequently, such an adversary is more powerful than
the UIPFE [TT18, DSP19] or UZIPE [OT12b, DPD21] adversary. Existing works [ACGU20,
AGT21b, PD21, LLW21] already have noted this fact with a conclusion that it is highly
unlikely to obtain AB-IPFE, even in the bounded setting, by combining an IPFE with an
ABE generically. Therefore, the possible path of building the full attribute-hiding UZP-IPFE
from TT18 and the UZIPE of Okamoto and Takashima [OT12b] is uncertain and might be
unrealizable.

To achieve the unbounded property with permissive relation, TT18 indeed employed the
index encoding technique of Okamoto and Takashima [OT12b]. The purpose of encoding
indices into the secret keys and ciphertexts is to generate additional entropy which prevents
an adversary to learn extra information about the message vector via a key vector that does
not belong to the permissive relation. In this work, we extend such an encoding technique
in the context of UZP-IPFE and devise a novel procedure to combine TT18 and [OT12b] in
a semi-generic way to achieve our goal.
Main Intuition. We start by discussing our core idea for the construction of UZP-IPFE.
Recall that, a ciphertext CTx,w encodes two vectors x = (xi)i∈[m1],w = (wi)i∈[m2] and a
secret key SKy,v encodes two vectors y = (yi)i∈Iy ,v = (vi)i∈Iv such that the scheme outputs
〈x,y〉 if (x,y), (w,v) ∈ Rp and R(w,v) = 1, i.e., 〈w,v〉 = 0. As a starting point, we set
concatenated vectors (x,w) and (y,v) as the message and key vector into the UIPFE of
TT18. Observe that, this naturally satisfy the required functionality, i.e., by the correctness

11

of UIPFE one obtains 〈w,v〉+ 〈x,y〉. Thus, the sum leads to 〈x,y〉 if 〈w,v〉 = 0. However,
in the case of 〈w,v〉 6= 0, the sum is easily distinguishable to an adversary from a random
entity. In the next step, we avoid such a trivial attack by randomizing the predicate and
attribute vectors. In particular, w and v are replaced with δw and ωv respectively for
uniformly random δ, ω. Now, the sum becomes δω〈w,v〉+ 〈x,y〉 and we might hope to hide
〈x,y〉 whenever 〈w,v〉 6= 0. Our construction is based on this basic intuition, although many
challenges await to be overcome.

At a first glance, the basic scheme described above follows the correctness of a UZP-IPFE.
However, it is easy to see that the scheme already fails to satisfy the desired permissiveness
since Iy ∪ Iv ⊆ [m1 + m2] does not guarantee that Iy ⊆ [m1] and Iv ⊆ [m2]. Another
concern arises regarding the full attribute-hiding security. In particular, the SA-FAH-IND
security enables an adversary to make both accepting and non-accepting queries, meaning
that for the challenge message pair (w(0),x(0)), (w(1),x(1)), the adversary can query secret
keys with (v,y, Iv, Iy) where either 〈w(0),v〉 6= 0, 〈w(1),v〉 6= 0 or 〈w(0),v〉 = 〈w(1),v〉 = 0
and 〈x(0),y〉 = 〈x(1),y〉. Simply applying the proof technique of TT18 does not work for us
in simulating the non-accepting keys as the equality δω〈w(0),v〉 + 〈x(0),y〉 = δω〈w(1),v〉 +
〈x(1),y〉 would not hold for such keys with high probability. Hence, encrypting the vectors
x,w together using TT18 seems problematic in realizing UZP-IPFE.

We therefore take a different route here. Our next approach is to encrypt w and x using
two encryption calls of TT18 and the secret key consists of two TT18 keys correspond-
ing to (v, Iv) and (y, Iy). This allows us to achieve the desired correctness property (i.e.,
permissiveness) and put security restrictions separately on (w, (v, Iv)) and (x, (y, Iy)). How-
ever, two independent TT18 keys in the modified construction actually opens door to a
mix-n-match attack. In particular, given secret keys SKv,y = (skv, sky) for (v, Iv), (y, Iy)
and SKv′,y′ = (skv′ , sky′) for (v′, Iv′), (y′, Iy′), one can create a new legitimate secret key
SKv,y′ = (skv, sky′) which may lead to an attack to the UZP-IPFE.

A Middle Route. From the above discussion, it is evident that neither the idea of encrypt-
ing the concatenated vector nor the independent encryption method serves our purpose.
Instead, we consider a middle route, a hybrid of these two ideas. The UZP-IPFE secret key
or ciphertext is computed using two parallel TT18 key generations or encryptions, but these
are not completely independent of each other. As per the construction of TT18, the secret
key and ciphertext for the vectors y,x are encoded by the components1

sky : [[ki = (ρi(−i, 1), yi, γi)B∗]]2 s.t. ∑
i γi = 0; ctx : [[ci = (πi(1, i), xi, z)B]]1

where the bases B,B∗ are sampled from GL4(Zp) according to a dual pairing vector space
(DPVS) structure [OT10] and [[·]]ι represents encoding vectors or matrices in the group Gι.
The first two entries of ki or ci encode the indices, the third entry encodes the vector and
the randomness placed in the last entry ensures that no partial information is leaked. While
calling the TT18 key generation or encryption twice for the UZP-IPFE, our idea is to jointly
sample the randomnesses residing in the last entry. More precisely, for the pair of vectors

1 We exclude the additional subspaces that are only necessary for security analysis.

12

(y,v), we employ a joint secret sharing protocol. A set S = {γi, γ̃j}i,j of joint secret shares of
zero binds the secret key parts sky and skv which prevents the aforementioned mix-n-match
attack. On the other hand, the ciphertext parts ctx and ctw share a common randomness z
to ensure that a secret key holder successfully combines the secret shares from S at the time
of the decryption. Applying these ideas we now present a simplified UZP-IPFE scheme as
follows.

SKy,v : [[ki = (ρi(−i, 1), yi, γi)B∗]]2
[[kj = (ρ̃j(−j, 1), ωvj, γ̃j)B∗]]2 s.t. ∑

i γi +∑
j γ̃j = 0;

CTx,w : [[ci = (πi(1, i), xi, z)B]]1
[[cj = (π̃j(1, j), δwj, z)B]]1.

The hybrid approach makes sure that the UZP-IPFE satisfies the desired permissive
property individually for the pair of vectors (x,y) and (w,v). At the same time, it restricts
an adversary to combine different secret keys and eventually mount an attack to the system.
However, the scheme allows an adversary to perform a different kind of mix-n-match
attack. Suppose the index sets corresponding to the vectors satisfy the condition Iy ⊆ Iw
and Iv ⊆ Ix then it is possible to pair ki with cj and kj with ci and obtain the sum
δ〈w,y〉+ω〈x,v〉. Now, if the vectors are chosen such that 〈w,y〉 = 0 and 〈x,v〉 comes from
a polynomial range then it is possible to extract unwanted information about the message
vector x. To prevent such an attack by cross pairing, we use different pair of bases (B,B∗)
for encoding x,y and (B̃, B̃∗) for encoding w,v. Next, we briefly describe the security of
our UZP-IPFE.

Remaining Challenges. It remains to discuss the full attribute-hiding security of the
scheme. Although our secret keys and ciphertexts are closely distributed to the TT18 frame-
work, several technical challenges remain to be addressed due to the strong security require-
ment. As discussed earlier, an adversary of UZP-IPFE is more powerful than the UIPFE or
TT18 in the sense that we need to additionally restrict the adversary to gain any information
about the message/attribute vector from a non-accepting key that satisfies the permissive
relation Rp, but the zero-predicate relation R does not hold. On the other hand, no security
can be guaranteed for the encrypted message if an adversary of UZIPE [OT12b] gets to
see an accepting key. In contrast, our UZP-IPFE must ensure security for the message and
attribute vectors against an adversary that holds the power of UIPFE and (full attribute-
hiding) UZIPE. We acquire such a strong notion of security by extending the framework of
TT18 from UIPFE to UZP-IPFE, i.e., from unbounded length message hiding to unbounded
length message-attribute hiding in the context of FE.

We now briefly discuss the IND security outline of the UZP-IPFE scheme. Suppose
(x(0),w(0)) and (x(1),w(1)) are the challenge message-attribute vector pairs. The adversary
can ask mainly the following three types of secret keys for the key-predicate pair (y,v):

1. (x(0),y) 6∈ Rp or (w(0),v) 6∈ Rp.
2. (x(0),y), (w(0),v) ∈ Rp, but R(w(0),v) 6= 1 and R(w(1),v) 6= 1.

13

3. (x(0),y), (w(0),v) ∈ Rp and R(w(0),v) = R(w(1),v) = 1 and 〈x(0),y〉 = 〈x(1),y〉.
To handle the secret key queries of type 1, we use techniques from previous works
[OT12b, TT18]. In particular, we add one additional subspace to the encoded secret key
vectors and fill it with one copy of S, say Scopy = {γcopy

i , γ̃copy
j }i,j and we use zcopy into the

corresponding entry of the encoded ciphertext vectors. Next, we replace Scopy with uniform
shares S rand = {γrand

i , γ̃rand
j }i,j using the amplified entropy generated from the encoded indices

for non-permissive keys. This prevents decryption by type 1 secret keys. We apply a similar
strategy for simulating the type 2 keys. However, we fail to replace Scopy by S rand using the
entropy amplification technique used by [TT18] as the vectors satisfy the permissive relation.
One hope is to procreate the required entropy using the condition that 〈w(b),v〉 6= 0, which is
exactly the direction we follow. To execute this step, the simulator requires the information
of R(w(b),v). Thus, the pair of attributes (w(0),w(1)) should be available while simulating
the type 2 secret keys. Hence, the simulator needs to know the challenge attributes before
replying to the adversary’s key queries. Finally, we are left with the accepting or type 3 key
queries. In this case, we utilize two linear transformations using the facts 〈w(0) −w(1),v〉 = 0
and 〈x(0) − x(1),y〉 = 0 to ensure that the adversary gains no information about the chal-
lenge bit b using the type 3 secret keys. Although the core technical idea discussed above
provides a very high level intuition on how we achieve the full attribute-hiding security of
UZP-IPFE, there are several subtle challenges faced while adapting the framework of TT18
into our setting. We present a complete and formal security analysis in Section 4.2.

2.2 Secret Key UP-IPFE: UNP-IPFE

We construct an UP-IPFE with non-zero inner product predicate having succinct secret
keys and compact ciphertexts. In particular, we provide a generic construction of a weak
attribute-hiding simulation secure UNP-IPFE. Although our UNP-IPFE is built in the secret
key setting, it has the nice advantage over the proposed UZP-IPFE of having constant
size secret keys, that is the secret key size does not depend on the (unbounded) length
of predicate or key vectors. The ciphertext must depend on the length of the message as
well as the attribute vectors since we aim to achieve attribute-hiding security. However, a
compact ciphertext should only grow linearly with those lengths. Recall that, the secret key
and ciphertext both grow linearly with the length of vectors in case of our IND-based secure
UZP-IPFE. Further, we provide security of UNP-IPFE in the SIM-based model which is
known to be stronger than the IND-based model [BSW11]. To the best of our knowledge, no
unbounded AB-IPFE features properties such as attribute-hiding in the simulation setting
and succinctness of secret keys.
Main Idea. The starting point is the generic transformation of a NIPE scheme from an
IPFE in the bounded-vector setting by [KY19, PD21]. The generic construction encrypts
two vectors independently: the attribute vector w and payload multiplied with the attribute
vector Mw using the IPFE scheme. If a IPFE secret key skv is given then we first recover
〈w,v〉, M〈w,v〉 and ultimately the payload M if 〈w,v〉 6= 0. We need to recover an inner
product value instead of a payload in our setting. Our idea is to replace the IPFE with an
existing UIPFE scheme and encrypt the vector (x ⊗ w). This yields a UNP-IPFE scheme

14

as follows. Suppose UIPFE = (iSetup, iKeyGen, iEnc, iDec) be a pairing-based UIPFE scheme
[DSP19, TT18].

SKy,v : isky⊗v ← iKeyGen(y⊗ v)
iskv ← iKeyGen(v) CTx,w : ictx⊗w ← iEnc(x⊗w)

ictw ← iEnc(w).

At the time of the decryption, we recover2 〈x,y〉 from the outcomes 〈x⊗w,y⊗ v〉 = 〈x,y〉·
〈w,v〉 and 〈w,v〉 of iDec, if 〈w,v〉 6= 0. We seem to be on the verge of the desired solution,
but the ciphertext size is unacceptable since it swallows a quadratic factor with the lengths of
x and w. Our next idea is to employ a UQFE scheme [Tom22] to compute the quadratic term
〈x⊗w,y⊗ v〉. A UQFE scheme generates secret keys for unbounded length vectors f and
encrypts two message vectors z1, z2 of arbitrary length such that the decryption only recovers
〈z1 ⊗ z2, f〉 if the index sets satisfy a given relation. We say that the UQFE has compact
ciphertexts if the size of the ciphertexts scales linearly with the lengths of z1 and z2. This
readily yields an UNP-IPFE that enjoys compact ciphertexts given that the UQFE has linear
size ciphertexts. More precisely, let us consider a UQFE = (qSetup, qKeyGen, qEnc, qDec)
scheme. Then, our UNP-IPFE works as follows.

SKy,v : qsky⊗v ← qKeyGen(y⊗ v)
iskv ← iKeyGen(v) CTx,w : qctx⊗w ← qEnc(x,w)

ictw ← iEnc(w).

Observe that the correctness follows similarly as discussed above. The succinctness of the
UNP-IPFE depends on the succinctness of the UQFE and UIPFE. It is not difficult to prove
the weak attribute-hiding (semi-adaptive) simulation security of the UNP-IPFE. In the ideal
world, the functional values of the challenge message vectors are used while generating secret
keys and the challenge ciphertext is computed using the simulated encryption algorithms of
UIPFE and UQFE.

The UIPFE of Dufour-Sans and Pointcheval [DSP19] has succinct keys, but it is
IND-based secure in the ROM. Moreover, no simulation secure succinct QFE/IPFE in
the unbounded setting exists. The only UQFE scheme, proposed very recently by Tomida
[Tom22], is secure in the IND-based model and both the secret key and ciphertext sizes
grow linearly with the vector lengths. Further, the UQFE has much larger ciphertext than
existing (bounded) QFE schemes [BCFG17, Wee20, Gay20, AGT21b]. Hence, our next
target is to design a simulation-secure UQFE scheme that has constant size secret keys and
compact ciphertexts.

UQFE from Pairing. We start with the recent QFE scheme by Hoeteck Wee [Wee20].
The QFE utilizes the techniques of linear function evaluations [Gay20, Lin17] to compute
quadratic terms. An important property of the QFE is that the secret keys are succinct
which is what we require for our UNP-IPFE. We exploit properties of the tensor product to
transform the QFE of [Wee20] into UQFE that preserves the succinctness. We first revisit

2 The inner product values are first recovered in the exponent of the target group then we extract the value 〈x,y〉
which comes from a polynomial range, if 〈w,v〉 6= 0.

15

the QFE of [Wee20]. Let us consider the class of quadratic functions over Znp × Znp given by
(z1, z2) 7→ (z1 ⊗ z2)f> where f ∈ Zn2

p .

qSetup′ :
A1 ← Zk×np ,A2 ← Zk′×np

qpp′ =
(

[[A0,A0W,A1]]1,
[[A1,A2]]2

) A0 ← Zk′×(k′+1)
p ,

W← Z(k′+1)×(k+k′)n
p

qmsk′ = W

qsk′f : [[sk = Wf̃]]2, f̃ =
(

(A1 ⊗ In)f>
(In ⊗A2)f>

)

qct′z1,z2 : [[c0 = s0A0]]1, [[c1 = s1A1 + z1]]1,
[[c2 = s2A2 + z2]]2,

s1 ← Zkp, , s0, s2 ← Zk′p
[[c3 = s0A0W + (s1 ⊗ z2 ‖ c1 ⊗ s2)]]1.

The decryption algorithm extracts [[(z1⊗z2)f>]]T from the product [[(c1⊗c2)f>]]T by getting
rid of the extra term with the help of [[sk]]2, [[c0]]1 and [[c3]]1. To upgrade the scheme into
UQFE, we need to run the setup independent of the vector lengths. If we allow using hash
functions (to be modeled as ROM in the security proof), then one would have generated the
matrices A1 and A2 on the fly depending on the indices of the vectors. However, it is not so
trivial to compute W on the fly by hashing the indices directly. This is because W depends
on the indices of both z1 and z2 as well as it must scale with the row-numbers of A1 and
A2. Our idea is to split W using the properties of tensor product. In particular, we write it
as

W =
[

(W1 ⊗w1)︸ ︷︷ ︸
(k′+1)×kn

‖ (W2 ⊗w2)︸ ︷︷ ︸
(k′+1)×k′n

]

where W1 ∈ Z(k′+1)×k
p and W2 ∈ Z(k′+1)×k′

p are chosen at the system setup and the vectors
w1,w2 ∈ Znp are generated using a hash function. The reader might wonder whether we are
done with constructing UQFE (in the public key setting), but W is the master secret key and
hence the security of the system is at stake if we make some parts of W publicly computable.
We surpass the vulnerability by replacing the hash function with a pseudorandom function,
which eventually leads to a secret key UQFE with the desired properties. More precisely, our
UQFE works as follows:

qSetup :
K ← K

qpp =
(

[[A0W1,A0W2]]1,
[[A0]]1

) A0 ← Zk
′×(k′+1)
p ,

W1 ← Z(k′+1)×k′
p ,W2 ← Z(k′+1)×k

p

qmsk = W1,W2,K

qskf :
W̃1 = W1 ⊗ PRF(K, If1),H1(If1) = ([[A1]]1, [[A1]]2)
W̃2 = W2 ⊗ PRF(K, If2),H2(If2) = [[A2]]2
[[sk = Wf1,f2 f̃]]2

Wf1,f2 = (W̃1 ‖ W̃2)

f̃ =
(

(A1 ⊗ In)f>
(In ⊗A2)f>

)

qctz1,z2 : [[c0 = s0A0]]1, [[c1 = s1A1 + z1]]1,
[[c2 = s2A2 + z2]]2,

s1 ← Zkp, , s0, s2 ← Zk
′
p

[[c3 = s0A0Wz1,z2 + (s1 ⊗ z2 ‖ c1 ⊗ s2)]]1

16

where we assume that the secret key vector f is associated with the index set of the form
If = If1 ⊗ If2 such that If1 and If2 corresponds to the weights of z1 and z2 respectively.
Note that, the correctness of the scheme follows similarly as in the above QFE if Wz1,z2 =
Wf1,f2 = W, i.e., the decryption recovers (z1⊗z2)f> if (f1, z1), (f2, z2) ∈ Rs where f = f1⊗f2
(according to If1 , If2). Thus, we are able to upgrade Wee’s QFE to a strict UQFE scheme in
the secret key setting based on the ROM. On the positive side, our UQFE achieves efficiency
identical to [Wee20] regarding the secret key and ciphertext sizes, that is the UQFE preserves
succinctness of the secret keys and compactness of the ciphertexts. Although the UQFE of
Tomida [Tom22] is built in the public key setting and satisfy permissiveness based on the
ROM, the scheme does not satisfy succinctness and is proven secure in the IND-based model.
Moreover, our UQFE is simple to understand whereas the UQFE of [Tom22] is much more
complicated and requires a newly tailored building block, namely partially hiding unbounded
slot IPFE [Tom22]. Lastly, we note that UIPFE is a particular case of UQFE and hence
we achieve a strict (secret key) UNP-IPFE by plugging our strict UQFE into the generic
transformation described above. Moreover, a permissive (public key) UNP-IPFE scheme can
be obtained by plugging the permissive UQFE of [Tom22] and the UIPFE of [TT18] into
our generic UNP-IPFE construction that achieves IND-based security in the ROM.

3 Preliminaries

Notations. For a, b ∈ N where a < b, we denote by [a, b] the set {a, . . . , b} and [a] = [1, a] =
{1, . . . , a}. For some prime p, Zp denotes a finite field of order p. For some n ∈ N, GLn(Zp)
denotes the set of all n×n invertible matrices with entries from Zp. We indicate by a← S the
process of random sampling of an element a from the finite set S. For a distribution X , we
write x← X to denote that x is sampled at random according to distribution X . We consider
a bold uppercase letter to represent a matrix, e.g., A, a bold lowercase letter to indicate a
vector, e.g., x and Ix denotes the index set of the vector x. For example, if x = (x1, x3, x8)
then we write Ix = {1, 3, 8}. We denote by A⊗B the tensor product between the matrices A
and B. Consider gι is a generator of the cyclic group Gι. If x = (x1, x2, . . . , xn) is an n-tuple
vector then [[x]]ι = (gx1

ι , g
x2
ι , . . . , g

xn
ι). For a matrix A = (aij) ∈ GLn(Zp), we define [[A]]ι as

[[A]]ι =

ga11
ι ga12

ι · · · ga1n
ι

ga21
ι ga22

ι · · · ga2n
ι

...
gan1
ι gan2

ι · · · gannι

 .

Let In denote an n× n identity matrix and A> signifies the transpose of the matrix A. We
use ‘≈s’ to denote two distributions being statistically indistinguishable, ‘≈c’ to denote two
distributions being computationally indistinguishable, and ‘≡’ to denote two distributions
being identically distributed. Concatenation between two matrices or vectors is denoted by
the symbol ‘ ‖ ’. For R[0,1] = {x ∈ R : 0 ≤ x ≤ 1}, a function negl : N → R[0,1] is said to be
negligible if for every c ∈ N there exists a λc ∈ N such that negl(λ) ≤ 1

λc
for all λ > λc.

17

3.1 Bilinear Groups
A bilinear group G = (p,G1,G2,GT , g1, g2, e) consists of a prime p, two multiplicative source
groups G1,G2 and a target group GT with the order |G1| = |G2| = |GT | = p where g1, g2
are the generators of the group G1 and G2 respectively. Let us consider a bilinear map
e : G1 ×G2 → GT . It satisfies the following:
– bilinearity: e(ga1 , gb2) = e(g1, g2)ab for all g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp and
– non-degeneracy: e(g1, g2) is a generator of GT .

A bilinear group generator GBG.Gen(1λ) takes the security parameter λ and outputs a bilinear
group G = (p,G1,G2,GT , g1, g2, e) with a λ-bit prime integer p.

3.2 Complexity Assumptions
Assumption 1 (Symmetric External Diffie-Hellman (SXDH)). For ι ∈ {1, 2}, we de-
fine the distribution (D, [[tβ]]ι) on a bilinear group G = (p,G1,G2,GT , g1, g2, e)← GBG.Gen(1λ)
as

D = (G, [[a]]ι, [[u]]ι) for a, u← Zp
[[tβ]]ι = [[au+ βf]]ι for β ∈ {0, 1} and f ← Zp.

We say that the SXDH assumption holds in G if for all PPT adversaries A, if there exists a
negligible function negl(·) satisfying the following:

AdvSXDH
A (λ) := |Pr[A(D, [[t0]]ι) = 1]− Pr[A(D, [[t1]]ι) = 1]| ≤ negl(λ).

Assumption 2 (Matrix Decisional Diffie-Hellman (MDDHd
k,`)). Consider a bilinear

group G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ) with k, `, d ∈ N. We say that the MDDHd
k,`

assumption holds in G if for all PPT adversaries A, there exists a negligible function negl(·)
satisfying the following

AdvMDDHdk,`
A (λ) := |Pr[A(G, [[A]]1, [[AB]]1) = 1]− Pr[A(G, [[A]]1, [[R]]1) = 1]| ≤ negl(λ)

where A← Z`×kp ,B← Zk×dp with R ← Z`×dp .

Remark 1. The MDDH assumption on G2 can be defined in an analogous way. Escala et
al. [EHK+17] showed that

k-Lin =⇒ MDDH1
k,k+1 =⇒ MDDHd

k,` ∀k, d ≥ 1, ` > k

with a tight security reduction. For ` ≤ k, the MDDHd
k,` assumption also holds uncondition-

ally.
Assumption 3 (Bilateral Matrix Decisional Diffie-Hellman (bi-MDDHd

k,`)). Con-
sider a bilinear group G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ) with k, `, d ∈ N. We say
that the bi-MDDHd

k,` assumption holds in G if for all PPT adversaries A, there exists a
negligible function negl(·) satisfying the following

Adv
bi-MDDHd

k,`

A (λ) := |Pr[A(G, [[A]]1, [[A]]2, [[AB]]1, [[AB]]2) = 1]− Pr[A(G, [[A]]1, [[A]]2, [[R]]1, [[R]]2) = 1]| ≤ negl(λ)

where A← Z`×kp ,B← Zk×dp with R ← Z`×dp .

18

3.3 Dual Pairing Vector Space

Let G = (p,G1,G2,GT , g1, g2, e) ← GBG.Gen(1λ). For a natural number n ∈ N, we
generate a random dual orthonormal bases (B,B∗) ← GOB.Gen(Znp) and a dual pairing
vector space (DPVS) [OT12b] as paramsV = (p, V, V ∗,GT , A1, A2, E) ← GDPVS.Gen(n,G)
where B ← GLn(Zp) and B∗ = (B−1)> are dual orthonormal bases of the vector spaces
V = Gn

1 and V ∗ = Gn
2 respectively. Let Aκ = (ge1

κ , g
e2
κ . . . , gen

κ) for κ = 1, 2 where

ei = (
i−1︷ ︸︸ ︷

0, ..., 0, 1,
n−i︷ ︸︸ ︷

0, ..., 0). Then A1 and A2 are the canonical basis of V and V ∗ respectively.
Let us extend the bilinear pairing e : G1 × G2 → GT to a mapping E : V × V ∗ → GT

as E([[xB]]1, [[yB∗]]2) = e(g1, g2)〈x,y〉 for any two vectors x,y ∈ Znp . Then for arbitrary
vectors x1,x2, . . . ,xk,y1,y2, . . . ,y` ∈ Znp , and any matrix M ∈ GLn(Zp), the distributions(
{xiB}i∈[k], {yiB∗}i∈[`]

)
and

(
{xiMB}i∈[k], {yiM∗B∗}i∈[`]

)
are identically distributed where

M∗ = (M−1)> is the orthonormal dual corresponding to the matrix M. More generally,
for any set S ⊆ [n] such that ∀i ∈ S,di = M−1bi, the distributions ({bi}i∈S, {xibi}i∈[k],
{yib∗i }i∈[`]) and ({di}i∈S, {xiMdi}i∈[k], {yiM∗d∗i }i∈[`]) are also identical. Therefore, (D,D∗)
= (M−1B,MTB∗) are also random dual orthonormal bases such that

({bi}i∈S, {xiB}i∈[k], {yiB∗}i∈[`]) ≡ ({di}i∈S, {xiMD}i∈[k], {yiM∗D∗}i∈[`]).

In Fig. 2, we describe a random dual orthonormal basis generator GOB.Gen(Znp) for some
prime p and positive integer n.

GOB.Gen(Znp): This algorithm performs the following operations:

– Chooses B← GLn(Zp).
– Computes B∗ = (B−1)>. Let bi and b∗i represent the i-th row of B and B∗ respectively.
– Sets B = (b1,b2, . . . ,bn) and B∗ = (b∗1,b∗2, . . . ,b∗n). Note that, (B,B∗) are dual orthonormal bases

satisfying for i, i′ = 1, 2, . . . , n

〈bi,b∗i′〉 =
{

1 if i = i′

0 elsewhere.
– Returns (B,B∗).

Fig. 2: Dual orthonormal basis generator GOB.Gen(Znp)

3.4 Pseudorandom Function

Definition 1. A pseudo-random function (PRF) family F = {FK}K∈Kλ with a keyspace Kλ,
a domain Xλ and a range Yλ is a function family that consists of functions FK : Xλ → Yλ.
Let Randλ be the set of random functions with domain Xλ and co-domain Yλ. Then for all
PPT adversaries A, the following holds:

AdvPRF
A (1λ) :=

∣∣∣Pr[AFK(·)(λ) = 1]− Pr[ARand(·)(λ) = 1]
∣∣∣ ≤ negl(λ)

with K ← Kλ and Rand(·)← Randλ.

19

3.5 Unbounded Predicate Inner Product Functional Encryption

In the following, we define the notion of unbounded predicate inner product functional en-
cryption (UP-IPFE) for the message space {Xλ}λ, an attribute space {Wλ}λ, a predicate
class {Pλ}λ and a key space {Yλ}λ for any λ ∈ N where λ denotes the security parameter.
For any two vectors a = (ai)i∈Ia ,b = (bi)i∈Ib associated with the index sets Ia and Ib, we
define a permissive relation Rp such that (a,b) ∈ Rp if and only if Ib ⊆ Ia and the inner
product is defined as 〈a,b〉 = ∑

i∈Ib aibi. Similarly, a strict relation Rs between the vectors
a, b is defined as (a,b) ∈ Rs if and only if Ib = Ia = I(say) and the inner product is given by
〈a,b〉 = ∑

i∈I aibi. It can be observed that if (a,b) ∈ Rp then (a,b) ∈ Rs. Now, we describe
the UP-IPFE scheme with the permissive relation. Our UP-IPFE = (Setup,Enc,KeyGen,Dec)
for a predicate relation R : Pλ×Wλ → {0, 1} consists of four PPT algorithms satisfying the
following requirements.

Setup(1λ) → (MPK,MSK): The setup algorithm takes as input the security parameter
1λ, and outputs a master public key and master secret key pair (MPK,MSK).

Enc(MPK, x,w)→ CTx,w: The encryption algorithm takes as input the master public key
MPK, a message vector x ∈ Xλ and an attribute w ∈ Wλ with the associated index sets Ix,
Iw respectively, and outputs a ciphertext CTx,w.

KeyGen(MPK,MSK, y, v) → SKy,v: The key generation algorithm takes as input the
master public key MPK, the master secret key MSK, a key vector y ∈ Yλ and a predicate
vector v ∈ Vλ with the associated index sets Iy and Iv respectively, and outputs a secret key
SKy,v.

Dec(MPK, SKy,v,CTx,w) → d/ ⊥: The decryption algorithm takes as input the master
public key MPK, the ciphertext CTx,w, the secret key SKy,v, and outputs either a decrypted
value d or the special symbol ⊥ indicating failure.

Correctness: For any λ ∈ N, any pair of message-attribute vectors (x,w) with associated
index sets Ix, Iw, any pair of key-predicate vectors (y,v) with associated index sets Iy, Iv, if
(x,y), (w,v) ∈ Rp with R(v,w) = 1 holds, then we have

Pr

Dec(MPK, SKy,v,CTx,w) = 〈x,y〉 :
(MPK,MSK)← Setup(1λ)
CTx,w ← Enc(MPK,x,w)
SKy,v ← KeyGen(MSK,y,v)

 = 1.

Depending on the inner product value 〈w,v〉, we classify UP-IPFE as follows:

– unbounded zero predicate IPFE (UZP-IPFE): decryption recovers 〈x,y〉 whenever
(x,y), (w,v) ∈ Rp (or Rs) and R(w,v) = 1 holds if and only if 〈w,v〉 = 0.

– unbounded non-zero predicate IPFE (UNP-IPFE): decryption recovers 〈x,y〉 whenever
(x,y), (w,v) ∈ Rp (or Rs) and R(w,v) = 1 holds if and only if 〈w,v〉 6= 0.

20

Definition 2 (Semi-Adaptive Full Attribute-Hiding Indistinguishability). The
UP-IPFE = (Setup,Enc,KeyGen,Dec) is said to be semi-adaptive full attribute-hiding in-
distinguishability (SA-FAH-IND) secure if for any security parameter λ, any PPT adversary
A, there exists a negligible function negl such that the following holds

AdvUP-IPFE
A,SA-FAH-IND(λ) :=

∣∣∣∣Pr
[
ExptUP-IPFE

0,A,SA-FAH-IND(λ) = 1
]
− Pr

[
ExptUP-IPFE

1,A,SA-FAH-IND(λ) = 1
]∣∣∣∣ ≤ negl(λ)

where the experiment ExptUP-IPFE
β,A,SA-FAH-IND(λ) is defined for β ∈ {0, 1} as follows:

ExptUP-IPFE
β,A,SA-FAH-IND(λ)

1: (MPK,MSK)← Setup(1λ).
2: (w(0),w(1))← A(1λ,MPK) where |Iw(0) | = |Iw(1) |.
3: (x(0),x(1))← AKeyGen(MPK,MSK,·,·)(MPK) where |Ix(0) | = |Ix(1) |.
4: CT(β)

x,w ← Enc(MPK,x(β),w(β)).
5: β′ ← AKeyGen(MPK,MSK,·,·)(MPK,CT(β)

x,w).
6: Outputs: β′.

In this experiment, KeyGen(MPK,MSK, ·, ·) is an oracle that takes as input the key-
predicate vector pair (y,v) associated with the index sets Iy, Iv and outputs the secret key
SKy,v ← KeyGen(MPK,MSK,y,v). If (x(b),y), (w(b),v) ∈ Rp for all b ∈ {0, 1} then either
R(w(0),v) = R(w(1),v) = 0, or R(w(0),v) = R(w(1),v) = 1 and 〈x(0),y〉 = 〈x(1),y〉.

In this work, we consider a weaker security notion for UP-IPFE in the simulation-based
model with strict relation between the unbounded length vectors. We emphasize that our
weak attribute-hiding security notion also allows the adversary to query secret keys that
are capable of decrypting the challenge ciphertext, however, there is a restriction on such
queries.

Definition 3 (Semi-Adaptive Weak Attribute-Hiding Simulation security). The
UP-IPFE = (Setup,Enc,KeyGen,Dec) is said to be semi-adaptive weak attribute-hiding sim-
ulation (SA-WAH-SIM) secure if for any security parameter λ, any PPT adversary A, there
exists a PPT simulator S := (Setup∗,Enc∗,KeyGen∗) such that the following holds

AdvUP-IPFE
A,SA-WAH-SIM(λ) :=

∣∣∣Pr[ExpReal
UP-IPFE,A(λ) = 1]− Pr[ExpIdeal

UP-IPFE,A,S(λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExpReal
UP-IPFE,A(λ) and ExpIdeal

UP-IPFE,A,S(λ) are defined as follows:

ExpReal
UP-IPFE,A(λ)

1: (MPK,MSK)← Setup(1λ)
2: (x∗,w∗)← A(MPK)
3: CT∗ ← Enc(MPK,x∗,w∗)
4: b← AKeyGen(MPK,MSK,·,·)(CT∗)

ExpIdeal
UP-IPFE,A,S(λ)

1: (MPK∗,MSK∗)← Setup∗(1λ)
2: (x∗,w∗)← A(MPK∗)
3: CT∗ ← Enc∗(MPK∗, Ix∗ , Iw∗)
4: b← AKeyGen∗(MPK∗,MSK∗,·,·,·)(CT∗)

21

In the Real security experiment, KeyGen(MPK,MSK, ·, ·) is an oracle that takes input the
key-predicate vector pair (y, v) with associated index sets Iy, Iv and outputs SKy,v ←
KeyGen(MPK,MSK,y,v). In the Ideal security experiment, KeyGen∗(MPK∗,MSK∗, ·, ·, ·) ora-
cle returns the simulated secret key SK∗y,v on input a pair of key-predicate vectors y,v with
the associated index sets Iy, Iv and a pair of values (σ, µ) where

(σ, µ) =

(〈w∗,v〉, 〈x∗,y〉), if (x∗,y), (w∗,v) ∈ Rs, R(w∗,v) = 1
(⊥,⊥), elsewhere.

Additionally, the secret key queries must satisfy the condition that dim{v : (w∗,v) ∈ Rs} ≤
|Iw∗ | − 1.

4 Our Full Attribute-hiding UZP-IPFE

In this section, we construct a public key UZP-IPFE scheme in the permissive setting. Our
scheme is based on the DPVS framework introduced by Okamoto and Takashima in [OT10].

4.1 Construction

Our UZP-IPFE = (Setup,Enc,KeyGen,Dec) scheme can be described in terms of the following
algorithms. As all pairing based IPFE in the literature, our required inner product values
come from a polynomial range so that at the end of the decryption phase, we can efficiently
perform an exhaustive search to obtain the value.

Setup(1λ)→ (MPK,MSK): The setup algorithm takes as input the security parameter λ
and executes the following steps:
1. Sample a bilinear group G = (p,G1,G2,GT , g1, g2, e)← GBG.Gen(1λ).
2. Set gT = e(g1, g2).
3. Generate a DPVS as paramsV = (p, V, V ∗,GT , A1, A1, E)← GDPVS.Gen(7,G).
4. Sample B, B̃← GL7(Zp).
5. Set PP = (p, g1, g2, gT , V, V

∗, E).
6. Output MPK =

(
PP, {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}

)
,MSK = ({b∗i , b̃

∗
i }i∈{1,2,...,4}).

Enc(MPK, x,w)→ CTx,w: The encryption algorithm takes as input the master public key
MPK, a message vector x = (xi)i∈[m1] ∈ Zm1 , an attribute vector w = (wi)i∈[m2] ∈ Zm2 and
executes the following steps:
1. Parse MPK =

(
PP, {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}

)
where PP = (p, g1, g2, gT , V, V

∗, E).
2. Sample δ, α← Zp and πi, π̃j ← Zp for all i ∈ [m1], j ∈ [m2].
3. Compute

[[c1
i]]1 = [[(πi(1, i), xi, α, 0, 0, 0)B]]1 ∀i ∈ [m1].

[[c2
j]]1 = [[(π̃j(1, j), δwj, α, 0, 0, 0)B̃]]1 ∀j ∈ [m2].

4. Output CTx,w = ({[[c1
i]]1}i∈[m1], {[[c2

j]]1}j∈[m2]).

22

KeyGen(MPK,MSK, y, v) → SKy,v: The key generation algorithm takes as input the
master public key MPK, the master secret key MSK, the key vector y = (yi)i∈Iy ∈ Z|Iy| and
the predicate vector v = (vi)i∈Iv ∈ Z|Iv| associated with the index sets Iy, Iv respectively. It
performs the following steps:
1. Parse MPK =

(
PP, {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}

)
where PP = (p, g1, g2, gT , V, V

∗, E).
2. Parse MSK = ({b∗i , b̃

∗
i }i∈{1,2,...,4}).

3. Sample ω ← Zp, ρi, ρ̃j ← Zp and γi, γ̃j ← Zp for all i ∈ Iy, j ∈ Iv such that ∑i∈Iy γi +∑
j∈Iv γ̃j = 0.

4. Compute

k1
i = (ρi(−i, 1), yi, γi, 0, 0, 0)B∗ ∈ Z7

p ∀i ∈ Iy.

k2
j = (ρ̃j(−j, 1), ωvj, γ̃j, 0, 0, 0)B̃∗ ∈ Z7

p ∀j ∈ Iv.

5. Output SKy,v = ({[[k1
i]]2}i∈Iy , {[[k2

j]]2}j∈Iv , Iy, Iv).

Dec(MPK, SKy,v,CTx,w) → d/ ⊥: The decryptor takes as input the master public key
MPK, a ciphertext CTx,w associated with the message, an attribute vector pair x,w of length
m1, m2 respectively and a secret key SKy,v corresponding to the key, predicate vector pair
y,v with the index sets Iy, Iv. Then, the decryption algorithm works as follows:

1. Parse MPK =
(
PP, {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}

)
where PP = (p, g1, g2, gT , V, V

∗, E).
2. Parse SKy,v = ({[[k1

i]]2}i∈Iy , {[[k2
j]]2}j∈Iv , Iy, Iv) and CTx,w = ({[[c1

i]]1}i∈[m1], {[[c2
j]]1}j∈[m2])

3. If (x,y) /∈ Rp or (w,v) /∈ Rp, output ⊥ .
4. Else, compute

h =
∏
i∈Iy

∏
j∈Iv

E
(

[[c1
i]]1, [[k1

i]]2
)
· E
(

[[c2
j]]1, [[k2

j]]2
)
.

5. Output loggT h.

Correctness: For our above UZP-IPFE = (Setup,Enc,KeyGen,Dec) scheme, let the master
public key, and the master secret key pair be (MPK,MSK) ← UZP-IPFE.Setup(1λ), the
ciphertext be CTx,w = ({[[c1

i]]1}i∈[m1], {[[c2
j]]1}j∈[m2]) ← UZP-IPFE.Enc(MPK,x,w) for a pair

of vectors x = (xi)i∈[m1] ∈ Zm1 ,w = (wj)j∈[m2] ∈ Zm2 and the secret key be SKy,v =
({[[k1

i]]2}i∈Iy , {[[k2
j]]2}j∈Iv , Iy, Iv) ← UZP-IPFE.KeyGen(MPK,MSK,y, v) corresponding to a

pair of vectors y = (yi)i∈Iy ∈ Z|Iy|,v = (vj)j∈Iv ∈ Z|Iv|. Since ∑i∈Iy γi + ∑
j∈Iv γ̃j = 0, the

decryption succeeds if (x,y), (w,v) ∈ Rp and 〈w,v〉 = 0 as shown below

A =
∏
i∈Iy

E
(

[[c1
i]]1, [[k1

i]]2
)

= e(g1, g2)
∑

i∈Iy
xiyi+α

∑
i∈Iy

γi = [[〈x,y〉+ α
∑
i∈Iy

γi]]T .

B =
∏
j∈Iv

E
(

[[c2
j]]1, [[k2

j]]2
)

= e(g1, g2)
∑

j∈Iv
ωδvjwj+α

∑
j∈Iv

γ̃j = [[ωδ(〈w,v〉) + α
∑
j∈Iv

γ̃j]]T .

h = A ·B = [[〈x,y〉+ ωδ〈w,v〉+ α(
∑
i∈Iy

γi +
∑
j∈Iv

γ̃j)]]T = [[〈x,y〉+ ωδ〈w,v〉]]T . (1)

Using 〈w,v〉 = 0, it can be seen that the correctness follows from Eq. (1).

23

4.2 Security Analysis

Theorem 1. Assuming the SXDH assumption holds in the pairing groups, our UZP-IPFE =
(Setup,Enc,KeyGen,Dec) scheme is SA-FAH-IND secure as per the security model described
in Def. 2. More precisely, if there exists a PPT adversary A that breaks the SA-FAH-IND
security of our UZP-IPFE scheme then we can construct a PPT machine B against the
SXDH assumption such that for any security parameter λ, the advantage

AdvUZP-IPFE
A,SA-FAH-IND(λ) ≤ m1,max[16(m1,max +m2,max)+

8m2,max(tmax − 1) + 8(smax − 1) + 5]AdvSXDH
B (λ) + 2−Ω(λ)

where m1,max,m2,max be the maximum length of the challenge message and attribute vectors
(i.e., x and w) respectively and smax, tmax be the maximum indices of key and predicate vectors
(i.e., y and v) respectively with which A queries the key generation oracle.

Proof. To prove the above Theorem 1, we use the following lemmas.

Lemma 1. [TT18] Let m = m(λ), n = n(λ) be two integers. The problem 1-SXDH
(P1-SXDH) is to guess the bit β, given the following distributions:

G← GBG.Gen(1λ), paramsV ← GDPVS.Gen(7,G),B← GL7(Zp).
ui = (π′i(1, i), 0, 0, 0, α′, 0, 0)B ∀i ∈ [m] with α′, {π′i}i∈[m] ← Zp.
D = (G, paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗1]]2, [[b∗2]]2, . . . , [[b∗5]]2, {[[ui]]1}i∈[m]).
Choose ρ′m+1, ρ

′
m+2, . . . , ρ

′
n, r
′
m+1, r

′
m+2, . . . , r

′
n ← Zp.

u∗i,β = (ρ′i(−i, 1), 0, 0, βr′i, 0, 0)B∗ ∀i ∈ [m+ 1, n].
Uβ = {[[û∗i,β]]2}i∈[m+1,n].

For any PPT adversary A, ∃ a PPT adversary B1 for the SXDH assumption such that

AdvP1-SXDH
A (λ) = |Pr[A(D,U0)→ 1]− Pr[A(D,U1)→ 1]|

≤ 4(n−m)AdvSXDH
B1 (λ) + 2−Ω(λ).

We refer to [TT18, Section 4] for a detailed proof of Lemma 1.

Lemma 2. [TT18] Let m = m(λ), n = n(λ) be two integers. Problem 2-SXDH (P2-SXDH)
is to guess the bit β, given the following distributions:

G← GBG.Gen(1λ), paramsV ← GDPVS.Gen(7,G),B← GL7(Zp).
v∗i = (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m+ 1, n] with {ρ′i}i∈[m+1,n] ← Zp.
D = (G, paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗1]]2, [[b∗2]]2, [[b4]]∗2, [[b∗5]]2, {[[v∗i]]2}i∈[m+1,n]).
Choose {π′i, ξi, ρ′i}i∈[m] ← Zp.
ui,β = (π′i(1, i), βξi, 0, 1, 0, 0)B ∀i ∈ [m].
u∗i,β = (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ ∀i ∈ [m].
U = {[[ui,β]]1, [[u∗i,β]]2}i∈[m].

24

For any PPT adversary A, ∃ a PPT adversary B3 for the SXDH assumption such that

AdvP2-SXDH
A (λ) = |Pr[A(D,U0)→ 1]− Pr[A(D,U1)→ 1]| ≤ 8mAdvSXDH

B3 (λ) + 2−Ω(λ).

We refer to [TT18, Section 4] for a detailed proof of Lemma 2.

Lemma 3. Let m1 = m1(λ),m2 = m2(λ), n = n(λ) be three integers. Problem 3-SXDH
(P3-SXDH) is to guess the bit β, given the following distributions:

G← GBG.Gen(1λ), paramsV ← GDPVS.Gen(7,G),B, B̃← GL7(Zp).
D = (G, paramsV ,DB,DB̃)
where DB = ([[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗1]]2, [[b∗2]]2, [[b4]]∗2, [[b∗5]]2, {[[v∗i]]2}i∈[m1+1,n]).
v∗i = (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1 + 1, n] with {ρ′i}i∈[m1+1,n] ← Zp
and DB̃ = ([[b̃1]]1, [[b̃2]]1, . . . , [[b̃4]]1, [[b̃

∗
1]]2, [[b̃

∗
2]]2, [[b̃

∗
4]]2, [[b̃

∗
5]]2, {[[ṽ∗i]]2}i∈[m2+1,n]).

ṽ∗j = (ρ̃′j(−j, 1), 1, 0, 0, 0, 0)B̃∗ ∀j ∈ [m2 + 1, n] with {ρ̃′j}j∈[m2+1,n] ← Zp.
ui,β = (π′i(1, i), βξi, 0, 1, 0, 0)B ∀i ∈ [m1] with {π′i, ξi}i∈[m1] ← Zp.
ũj,β = (π̃′j(1, j), βξ̃j, 0, 1, 0, 0)B̃ ∀j ∈ [m2] with {π̃′j, ξ̃j}j∈[m2] ← Zp.
u∗i,β = (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ ∀i ∈ [m1] with {ξi, ρ′i}i∈[m1] ← Zp.
ũ∗j,β = (ρ̃′j(−j, 1), 1, 0,−βξ̃j, 0, 0)B̃∗ ∀j ∈ [m∗2] with {ξ̃j, ρ̃′j}j∈[m2] ← Zp.
Uβ = {[[ui,β]]1, [[u∗i,β]]2}i∈[m1].

Vβ = {[[ũj,β]]1, [[ũ∗j,β]]2}j∈[m2].

Wβ = {Uβ,Vβ}.

For any PPT adversary A, ∃ a PPT adversary B4 for the SXDH assumption such that

AdvP3-SXDH
A (λ) = |Pr[A(D,W0)→ 1]− Pr[A(D,W1)→ 1]| ≤ 8(m1 +m2)AdvSXDH

B3 (λ) + 2−Ω(λ).

Proof of Lemma 3. Let us consider the following Games to prove Lemma 3. For each game
transition, we show that the difference of probabilities that A outputs 1 in both games is
negligible.

Game 0: This game is the same as for the case β = 0 i.e., A is given an instance (D,W0).

v∗i = (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1 + 1, n]
ui,0 = (π′i(1, i), 0, 0, 1, 0, 0)B ∀i ∈ [m1]
u∗i,0 = (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1]
ṽ∗j = (ρ̃′j(−j, 1), 1, 0, 0, 0, 0)B̃∗ ∀j ∈ [m2 + 1, n]
ũj,0 = (π̃′j(1, j), 0, 0, 1, 0, 0)B̃ ∀j ∈ [m2]
ũ∗j,0 = (ρ̃′j(−j, 1), 1, 0, 0, 0, 0)B̃∗ ∀j ∈ [m2]

25

where π′i, ξi ← Zp for all i ∈ [m1]; π̃′j, ξ̃j ← Zp for all j ∈ [m2] and ρ′i, ρ̃′j ← Zp for all i, j ∈ [n].

Game 1: This game is the same as Game 0 except of the following changes:

v∗i = (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m1 + 1, n]
ui,1 = (π′i(1, i), ξi, 0, 1, 0, 0)B ∀i ∈ [m1]
u∗i,1 = (ρ′i(−i, 1), 1, 0,−ξi, 0, 0)B∗ ∀i ∈ [m1]

where ξi ← Zp for all i ∈ [m1].

Game 2: This game is the same as Game 1 except of the following changes:

ṽ∗j = (ρ̃′j(−j, 1), 1, 0, 0, 0, 0)B̃∗ ∀j ∈ [m2 + 1, n]
ũj,1 = (π̃′j(1, j), ξ̃j, 0, 1, 0, 0)B̃ ∀j ∈ [m2]
ũ′j,1 = (ρ̃′j(−j, 1), 1, 0,−ξ̃j, 0, 0)B̃∗ ∀j ∈ [m2]

where ξ̃j ← Zp for all j ∈ [m2]. Observe that Game 2 is the same as the case of β = 1, i.e.,
A is given an instance (D,W1). In the following, we denote the event that A outputs 1 in
Game ι by E′ι.

Claim 1. |Pr(E′0)− Pr(E′1)| ≤ 8m1 · AdvSXDH
B (λ) + 2−Ω(λ).

Proof. Let us consider a PPT adversary A against the P3-SXDH assumption. We use A
as a subroutine to construct an adversary B against the underlying P2-SXDH scheme. In
particular, we show that if A can break the P3-SXDH assumption, then there exists a PPT
adversary B that can break the P2-SXDH assumption. The adversary B(1λ) simulates A as
follows.

Let B gets the challenge instances (G, paramsV ,DB,Uβ) from A. Then, B chooses a matrix
B̃← GL7(Zp). Using the matrix B̃, B samples

ṽ∗i = (ρ̃′i(−i, 1), 1, 0, 0, 0, 0)B̃∗ ∀i ∈ [m2 + 1, n]

where ρ̃′j ← Zp. Now B samples π′j ← Zp for j ∈ [m2] as

ũj,0 = (π̃′j(1, j), 0, 0, 1, 0, 0)B̃ ∀j ∈ [m2],
ũ∗j,0 = (ρ̃′j(−j, 1), 1, 0, 0, 0, 0)B̃∗ ∀j ∈ [m2].

Therefore, B generates the instances (DB̃,V0 = {[[ũj,0]]1, [[ũ∗j,0]]2}j∈[m2]) using the basis B̃
where DB̃ = (G, paramsV , {[[b̃i]]1}4

i=1, {[[b̃
∗
i]]2}5

i=1, {[[ṽj]]2}m2
j=1). According to P2-SXDH, B can

interpolate between Game 1 and Game 0 with the advantage 8m1 · AdvSXDH
B′ (λ). Therefore,

A’s view is the same as Game 0 for β = 0 and for β = 1 the adversarial view is identical
with Game 1.
Claim 2. |Pr(E′1)− Pr(E′2)| ≤ 8m2 · AdvSXDH

B (λ) + 2−Ω(λ).

26

Proof. Let us consider a PPT adversary A against the P3-SXDH assumption. We use A
as a subroutine to construct an adversary B against the underlying P2-SXDH scheme. In
particular, we show that if A can break the P3-SXDH assumption, then there is a PPT
adversary B which breaks the P2-SXDH assumption. The adversary B(1λ) simulates A as
follows.

Let B gets the challenge instances (G, paramsV ,DB̃,Vβ) from A. Then B chooses a matrix
B← GL7(Zp). Using the matrix B, B samples

v∗i = (ρ′i(−i, 1), 1, 0, 0, 0, 0) B∗ ∀i ∈ [m1 + 1, n]

where ρ′i ← Zp. Now B samples π′i, ξi ← Zp for i ∈ [m1] as

ui,1 = (π′i(1, i), ξi, 0, 1, 0, 0)B ∀i ∈ [m1],
u∗i,1 = (ρ′i(−i, 1), 1, 0, ξi, 0, 0)B∗ ∀i ∈ [m1].

Therefore, B generates the instances (DB,U1 = {[[ũj,1]]1, [[ũ∗j,1]]2}j∈[m1]) using the basis B
where DB = (G, paramsV , {[[bi]]1}4

i=1, {[[b∗i]]2}5
i=1, {[[vj]]2}m1

j=1). According the P2-SXDH, B can
interpolate between Game 1 and Game 2 with the advantage 8m2 · AdvSXDH

B′ (λ). Therefore,
A’s view is the same as Game 1 for β = 0 and for β = 1 the adversarial view is identical
with Game 2.

Proof of Theorem 1. Suppose A be a PPT adversary against the semi-adaptive full
attribute-hiding indistinguishability (SA-FAH-IND) security of our UZP-IPFE scheme. We
construct an algorithm B for breaking the SXDH assumption that uses A as a subroutine.
We prove Theorem 1 by a series of games. For each game transition, we calculate the
difference of probabilities that A outputs 1 in the corresponding games. In every game, the
challenger chooses a random element m′1 ← [m1,max], as a guess of m∗1 at the beginning of
the games. As we consider the semi-adaptive model here, we set m∗2 = m2,max. We represent
Eι as the event that A outputs 1 in Game ι.

Game 0: This game is the same as the real security game where the challenge cipher-
text is the encryption of x(0) as described in Def. 2 i.e., the challenge ciphertext CT(0)

x,w =
({[[c1

i]]1}i∈[m∗1], {[[c2
j]]1}j∈[m∗2]) for a pair of vectors (x(0),x(1)), (w(0),w(1)) is replied as

[[c1
i]]1 = [[

(
πi(1, i), x(0)

i , α, 0, 0, 0
)
B]]1 ∀i ∈ [m∗1]

[[c2
j]]1 = [[

(
π̃j(1, j), δw(0)

j , α, 0, 0, 0
)
B̃]]1 ∀j ∈ [m∗2]

with πi, π̃j ← Zp for all i ∈ [m∗1], j ∈ [m∗2] and δ, α ← Zp. Here B, B̃ ←
GL7(Zp) and bi, b̃i are their i-th row respectively. The `-th secret keys SKy(`),v(`) =
({[[k1

i]]2}i∈Iy(`) , {[[k
2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) for the vectors y(`),v(`) are replied as

k1
i = (ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , 0, 0, 0)B∗ ∈ Z7

p ∀i ∈ Iy(`)

k2
j = (ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , 0, 0, 0)B̃∗ ∈ Z7

p ∀j ∈ Iv(`)

27

with ρ
(`)
i , ρ̃

(`)
j , γ

(`)
i , γ̃

(`)
j , ω(`) ← Zp such that ∑i∈Iy(`)

γ
(`)
i +∑

j∈Iv(`)
γ̃

(`)
j = 0.

Game 1: This game is similar to Game 0 except that [[c1
i]]1 in the challenge ciphertext set

by B is CT(0)
x,w = ({[[c1

i]]1}i∈[m∗1], {[[c2
j]]1}j∈[m∗2]) where

[[c1
i]]1 = [[

(
πi(1, i), x(0)

i , α, σ , 0, 0
)
B]]1 ∀i ∈ [m∗1]

[[c2
j]]1 = [[

(
π̃j(1, j), δw(0)

j , α, σ , 0, 0
)
B̃]]1 ∀j ∈ [m∗2]

where σ ← Zp. Others variables πi, α and π̃j, δ are generated similarly by B as in Game 0.

Game 2: For ` ∈ [QSK], Game 2 is equivalent to Game 1 except that the reply to B for the
`-th secret key query for associated pair of vectors y(`) = (y(`)

i)i∈Iy(`) ,v(`) = (v(`)
j)j∈Iv(`) is

SKy(`),v(`) = ({[[k1
i]]2}i∈Iy(`) , {[[k

2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) where

k1
i = (ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i , 0, 0)B∗ ∀i ∈ Iy(`)

k2
j = (ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗ ∀j ∈ Iv(`)

with s(`)
i , t

(`)
j ← Zp and ∑i∈Iy(`)

s
(`)
i +∑j∈Iv(`)

t
(`)
j = 0. All other variables ω(`), ρ

(`)
i , ρ̃

(`)
j , γ

(`)
i , γ̃

(`)
j

are generated exactly as in Game 1.

Game 3. Game 3 is identical to Game 2 except that the `-th secret key component [[kj]]2
satisfying the condition max(Iv(`)) > m∗2 ∧ min(Iv(`)) ≤ m∗2 is SKy(`),v(`) = ({[[k1

i]]2}i∈Iy(`) ,

{[[k2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) where

k2
j = (ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j , 0, 0)B̃∗ ∀j ∈ Iv(`)

with t̂
(`)
j ← Zp. Other components are generated similarly by B as in Game 2.

Game 4: This game is the same as Game 3 except that the challenger aborts the
game immediately if m′1 6= m∗1, i.e., the vector length associated with the challenge
ciphertext is not equal to the guess m′1. The adversary A will output ⊥ if the game aborts.

Game 5: Game 5 is equivalent to Game 4 except that the reply to B of the `-th secret key
query for the pair of vectors y(`) = (y(`)

i)i∈Iy(`) ,v(`) = (v(`)
j)j∈Iv(`) satisfying the condition

max(Iy(`)) > m′1 ∧ min(Iy(`)) ≤ m′1 is SKy(`),v(`) = (Iy(`) , Iv(`) , {[[k1
i]]2}i∈Iy(`) , {[[k

2
j]]2}j∈Iv(`))

where
k1
i = (ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i , 0, 0)B∗ ∀i ∈ Iy(`)

with ŝ(`)
i ← Zp for all ` ∈ [QSK]. All other variables are similarly generated by B as in Game 4.

28

Game 6: This game is similar to Game 5 except that the challenge ciphertext
CT(0)

x,w = ({[[c1
i]]1}i∈[m∗1], {[[c2

j]]1}j∈[m∗2]) is generated as

[[c1
i]]1 = [[

(
πi(1, i), x(0)

i + ξiσ , α, σ, 0, 0
)
B]]1 ∀i ∈ [m∗1]

[[c2
j]]1 = [[

(
π̃j(1, j), δw(0)

j + ξ̃jσ , α, σ, 0, 0
)
B̃]]1 ∀j ∈ [m∗2]

where ξi ← Zp for all i ∈ [m′1] and the `-th secret key SKy(`),v(`) =
({[[k1

i]]2}i∈Iy(`) , {[[k
2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) corresponding to the pair of vectors y(`) =

(y(`)
i)i∈Iy(`) ,v(`) = (v(`)

j)j∈Iv(`) for all ` ∈ [QSK] such that min(Iy(`)) ≤ m′1 and min(Iv(`)) ≤ m∗2
are generated as follows

k1
i =

 (ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − ξiy

(`)
i , 0, 0)B∗ if max(Iy(`)) ≤ m′1

(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − ξiy

(`)
i , 0, 0)B∗ if max(Iy(`)) > m′1

k2
j =

(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗ if max(Iv(`)) ≤ m∗2

(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗ if max(Iv(`)) > m∗2

where ξi, ξ̃j, s(`)
i , t

(`)
j , ŝ

(`)
i , t̂

(`)
j ← Zp such that ∑i∈Iy(`)

s
(`)
i +∑

i∈Iv(`)
t
(`)
j = 0. All other random

values are similarly generated as Game 5.

Game 7: Game 7 is the same as Game 6 except that the `-th secret key
SKy(`),v(`) = ({[[k1

i]]2}i∈Iy(`) , {[[k
2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) corresponding to the vectors y(`),v(`)

are generated as follows. If 〈w(0),v(`)〉 6= 0, 〈w(1),v(`)〉 6= 0, with max(Iy(`)) ≤ m′1,
max(Iv(`)) ≤ m∗2,

k2
j =

(
ρ̃

(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , r̃

(`)
j , 0, 0

)
B̃∗

where r̃
(`)
j ← Zp for all j ∈ Iv(`) .

Game 8: Game 8 is exactly identical to Game 7 except that [[c1
i]]1, [[c2

j]]1 in the challenge
ciphertext are generated as follows

[[c1
i]]1 = [[

(
πi(1, i), x(1)

i + ξiσ , α, σ, 0, 0
)
B]]1 ∀i ∈ [m∗1]

[[c2
j]]1 = [[

(
π̃j(1, j), δw(1)

j + ξ̃jσ , α, σ, 0, 0
)
B̃]]1 ∀j ∈ [m∗2].

The remaining values are generated identically by B as in Game 8.

29

Game 9: Game 9 is the same as Game 8 except that the challenge ciphertext com-
ponents [[c1

i]]1, [[c2
j]]1 and ∀` ∈ [QSK], the `-th secret key components k1

i ,k
2
j are set as

[[c1
i]]1 = [[

(
πi(1, i), x(1)

i , α, σ, 0, 0
)
B]]1 ∀i ∈ [m∗1]

[[c2
j]]1 = [[

(
π̃j(1, j), δw(1)

j , α, σ, 0, 0
)
B̃]]1 ∀j ∈ [m∗2]

k1
i = (ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i , 0, 0)B∗ ∀i ∈ Iy(`)

k2
j =

(
ρ̃

(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0

)
B̃∗ ∀j ∈ Iv(`)

where σ, s
(`)
i , t

(`)
j ← Zp such that ∑i∈Iy(`)

s
(`)
i + ∑

j∈Iy(`)
t
(`)
j = 0. All other variables are

similarly generated by B as in Game 8.

Game 10: This game is similar to Game 9 except that the abort condition defined
in Game 4 is removed.

Game 11: Game 11 is similar to Game 10 except that the `-th secret key compo-
nents k1

i and k2
j of SKy(`),v(`) = ({[[k1

i]]2}i∈Iy(`) , {[[k
2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) are generated as

follows:

k1
i = (ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , 0 , 0, 0)B∗ ∀i ∈ Iy(`)

k2
j = (ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , 0 , 0, 0)B̃∗ ∀j ∈ Iv(`) .

All random values πi, π̃j, ρ
(`)
i , ρ̃

(`)
j , α, δ, γ

(`)
i , γ̃

(`)
j are chosen from Zp such that∑

i∈Iy(`)
γ

(`)
i +∑

j∈Iv(`)
γ̃

(`)
j = 0.

Game 12. Game 12 is identical to Game 11 except that the challenge ciphertext
components [[c1

i]]1, and [[c2
j]]1 of CT(1)

x,w = ({[[c1
i]]1}i∈[m∗1], {[[c2

j]]1}j∈[m∗2]) are generated as
follows:

[[c1
i]]1 = [[

(
πi(1, i), x(1)

i , α, 0 , 0, 0
)
B]]1 ∀i ∈ [m∗1]

[[c2
j]]1 = [[

(
π̃j(1, j), δw(1)

j , α, 0 , 0, 0
)
B̃]]1 ∀j ∈ [m∗2].

We now prove the indistinguishability of the above games by the following claims. Combining
the following claims, the above Theorem follows.

Claim 3. |Pr(E1)− Pr(E0)| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We will show that the challenger B can solve the SXDH assumption using A as
a subroutine. Let B obtain an instance (G = (p,G1,G2,GT , g1, g2, e), [[a]]1 = ga1 , [[u]]1 =
gu1 , [[tβ]]1 = [[au + βf]]1 = gau+βf

1) of SXDH assumption for ι = 1 where a, u, f ← Zp, β ←

30

{0, 1} and sets PP = (p, g1, g2, gT , V, V
∗, E) as in Game 0. Now, B uses the SXDH instances

to interpolate between Game 0 and Game 1. The algorithm B implicitly defines random
orthonormal dual (B,B∗) by choosing D← GL7(Zp) and setting

B =

I3

1−a
0 1

I2

D,B∗ =

I3

1 0
a 1

I2

D∗; B̃ =

I3

1 −a
0 1

I2

 D̃, B̃∗ =

I3

1 0
a 1

I2

 D̃
∗

where D∗ = (D−1)> and a is implicitly set from the SXDH instance. Note that, [[a]]1 = ga1 and
the algorithm B can compute [[B]]1 using the given SXDH instances. Now, B simulates the
`-th secret key queries for the key vector y(`) = (y(`)

i)i∈Iy(`) along with the predicate vector
v(`) = (v(`)

i)i∈Iv(`) by responding with SKy(`),v(`) = ({[[k1
i]]2}i∈Iy(`) , {[[k

2
j]]2}j∈Iv(`) , Iy(`) , Iv(`))

where

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , 0, 0, 0)B∗]]2 ∀i ∈ Iy(`)

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , 0, 0, 0)B̃∗]]2 ∀j ∈ Iv(`)

with ρ
(`)
i , ω

(`), γ
(`)
i , γ̃

(`)
j ← Zp such that ∑

i∈Iy(`)
γ

(`)
i + ∑

i∈Iy(`)
γ̃

(`)
j = 0 and [[k2

j]]2
is generated similarly as in Game 0. Now for the challenge ciphertext, CT(0)

x,w =
({[[c1

i]]1}i∈[m∗1], {[[c2
j]]1}j∈[m∗2]), B sets [[c1

i]]1, [[c1
j]]1 for i ∈ [m∗1], j ∈ [m∗2] as

[[c1
i]]1 = [[(πi(1, i), x(0)

i , α′, 0, 0, 0)B + (0, 0, 0,−u, tβ, 0, 0)D]]1
= [[(πi(1, i), x(0)

i , α′ − u, βf, 0, 0)B]]1 ∀i ∈ [m∗1],
and [[c2

j]]1 = [[(π̃j(1, j), δw(0)
j , α′, 0, 0, 0)B̃ + (0, 0, 0,−u, tβ, 0, 0)D̃]]1

= [[(π̃j(1, j), δw(0)
j , α′ − u, βf, 0, 0)B̃]]1 ∀j ∈ [m∗2]

where x(0) = (x(0)
i)i∈[m∗1] and α′, ζ ← Zp. Here the knowledge of {[[bi]]1}i∈{1,2,...,4} are sufficient

to compute [[c1
i]]1 and [[c2

j]]1. As B has no information about [[a]]2, B cannot compute [[b∗5]]2 as
b∗5 contains the unknown a. However, the above simulation does not require any knowledge
of [[a]]2 = ga2 as the 5-th, 6-th and 7-th components of k1

i is set as 0 in both Game 0 and
Game 1. Then the secret key simulated by B has the same distribution as in Game 0 and
Game 1. Let us implicitly set α = α′ − u. Then A’s view simulated by B is the same as in
Game 0 if β = 0 since the sixth component of [[c1

i]]1 is 0 and the challenge ciphertext has the
same distribution as in Game 0. On the other hand, A’s view simulated by B is identical
as in Game 1 if β = 1 since the sixth components of ci is −βf = σ unless f = 0 and the
distribution of the challenge ciphertext in Game 0 is identical with the distribution in Game
1. So, B interpolates between Game 0 and Game 1. Thus the claim follows.
Claim 4. |Pr(E2)− Pr(E1)| ≤ AdvSXDH

B (λ) + 2−Ω(λ).

31

Proof. Let B obtain an instance of (G = (p,G1,G2,GT , g1, g2, e), [[a]]2 = ga2 , [[u]]2 = gu2 , [[tβ]]2 =
[[au + βf]]2 = gau+βf

2) of the SXDH problem for ι = 2 where a, u, f ← Zp, β ← {0, 1}
and sets PP = (p, g1, g2, gT , V, V

∗, E). We will show that B can utilize the instances of the
SXDH assumption to interpolate between Game 1 and Game 2 using A as a subroutine. The
algorithm B implicitly defines two orthonormal dual bases (B,B∗) and (B̃, B̃∗) by choosing
D, D̃← GL7(Zp) and setting

B =

I3

0 1
−1−a

I2

D,B∗ =

I3

−a 1
−1 0

I2

D∗; B̃ =

I3

0 1
−1 −a

I2

 D̃, B̃∗ =

I3

−a 1
−1 0

I2

 D̃
∗

where D∗ = (D−1)> and D̃
∗ = (D̃−1)> and a is implicitly set from the SXDH instance.

The algorithm B simulates the `-th secret key query for the vector y(`) = (y(`)
i)i∈Iy(`)

and the predicate v(`) = (v(`)
j)j∈Iv(`) by responding with the secret key SKy(`),v(`) =

({[[k1
i]]2}i∈Iy(`) , {[[k

2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) where

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , 0, 0, 0)B∗ + s

(`)
i (0, 0, 0, tβ,−u, 0, 0)D∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i − us

(`)
i ,−βfs

(`)
i , 0, 0)B∗]]2 ∀i ∈ Iy(`)

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , 0, 0, 0)B̃∗ + t

(`)
j (0, 0, 0, tβ,−u, 0, 0)D̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j − ut

(`)
j ,−βft

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`)

with ω(`), ρ
(`)
i , ρ̃

(`)
j , γ

(`)
i , γ̃

(`)
j , s

(`)
i , t

(`)
j ← Zp such that ∑

i∈Iy(`)
s

(`)
i + ∑

j∈Iv(`)
t
(`)
j =

0,∑i∈Iy(`)
γ

(`)
i + ∑

j∈Iv(`)
γ̃

(`)
j = 0. Now the challenge ciphertext CT(0)

x,w = ({[[c1
i]]1}i∈[m∗1],

{[[c2
j]]1}j∈[m∗2]) is generated by B by setting

[[c1
i]]1 = [[(πi(1, i), x(0)

i , α, 0, 0, 0)B + (0, 0, 0, σ, 0, 0, 0)D]]1
= [[(πi(1, i), x(0)

i , α− aσ,−σ, 0, 0)B]]1 ∀i ∈ [m∗1]
[[c2
j]]1 = [[(π̃j(1, j), δw(0)

j , α, 0, 0, 0)B̃ + (0, 0, 0, σ, 0, 0, 0)D̃]]1
= [[(π̃j(1, j), δw(0)

j , α− aσ,−σ, 0, 0)B̃]]1 ∀j ∈ [m∗2]

where πi, π̃j, δ, α ← Zp. Note that {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4} are sufficient to compute
[[(πi(1, i), x(0)

i , α, 0, 0, 0)B]]1 and [[(π̃j(1, j), δw(0)
j , α, 0, 0, 0)B̃]]1 respectively. Without knowl-

edge of [[a]]1 here B cannot compute [[b5]]1, [[b̃5]]1 as the rows b5, b̃5 consist of the element a
and B has no information about [[a]]1. Let us implicitly set α′ = α−aσ. Then A’s view simu-
lated by B is the same as in Game 1 if β = 0 since the fifth component of [[k1

i]]2, [[k2
j]]2 are zero,

so the secret keys have the same distribution as in Game 1. On the other hand, A’s view sim-
ulated by B is identical to that in Game 2 for β = 1 since −∑i∈Iy(`)

fs
(`)
i −

∑
j∈Iv(`)

ft
(`)
j = 0

32

and thus the distribution of secret keys in Game 2 is identical with the distribution of Game
1. Hence, B interpolates between Game 1 and Game 2 and the claim follows.

Claim 5. |Pr(E3)− Pr(E2)| ≤ 4m2,max · (tmax − 1)AdvSXDH
B (λ) + 2−Ω(λ).

Proof. We can make a reduction algorithm B1 that distinguishes the instances (D,Uβ) where
B̃← GL7(Zp). We consider the following distributions of Lemma 1.

D = (G, paramsV , [[b̃1]]1, [[b̃2]]1, . . . , [[b̃4]]1, [[b̃
∗
1]]2, [[b̃

∗
2]]2, . . . , [[b̃

∗
5]]2, {[[ũj]]}j∈[m∗2]),

ũj = (π̃′j(1, j), 0, 0, θ′, 0, 0)B̃ ∀j ∈ [m∗2], θ′, {π̃′j}j∈[m∗2] ← Zp,

ũ∗i,β = (ρ̃′j(−j, 1), 0, 0, βs̄′j, 0, 0)B̃∗ ∀j ∈ [m∗2 + 1, n], {ρ̃′j, s̄′j}j∈[m∗2+1,n] ← Zp,
Uβ = {[[ũ∗j,β]]2}j∈[m∗2+1,n].

The algorithm B1 obtains the instances of Lemma 1 where n = tmax, m = m∗2 and sets
MPK = (PP = (p, g1, g2, gT , V, V

∗, E), {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}) where bi is the i-th row of
uniformly chosen matrix B ← GL7(Zp). Recall that, tmax is the maximum index of input
vector v(`) for all ` ∈ [QSK] with which A queries to the key generation oracle. Then, the
challenge ciphertext [[c2

j]]1 is generated by B1 using the instances (D,Uβ) as below:

[[c2
j]]1 = [[χ · ũj + δw

(0)
j · b̃3 + α · b̃4]]1 for η, δ, χ, α← Zp

= [[χπ̃′j · b̃1 + jχπ̃′j · b̃2 + δw
(0)
j · b̃3 + α · b̃4 + χθ′ · b̃5]]1

= [[(χπ̃′j(1, j), δw
(0)
j , α, χθ′, 0, 0)B̃]]1 ∀j ∈ [m∗2]

and [[c1
i]]1 is set by choosing a matrix B← GL7(Zp). Now for all ` ∈ [QSK], B1 generates the

secret key SKy(`),v(`) = ({[[k1
i]]2}i∈Iy(`) , {[[k

2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) component [[k2

j]]2 for two cases

Case 1: max(Iv(`)) ≤ m∗2 ∨min(Iv(`)) ≥ m∗2

ρ
(`)
i , ρ̃

(`)
j , γ

(`)
i , γ̃

(`)
j , si

(`), tj
(`) ← Zp for all i ∈ Iy(`) , j ∈ Iv(`) and ω(`) ← Zp such

that
∑

i∈Iy(`)

s
(`)
i +

∑
j∈Iv(`)

t
(`)
j = 0,

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
j , γ

(`)
i , s

(`)
i , 0, 0)B∗]]2 ∀j ∈ Iy(`) .

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

By using [[b̃∗1]]2, [[b̃
∗
2]]2, [[b̃

∗
3]]2, [[b̃

∗
4]]2, [[b̃

∗
5]]2 from the instances of Lemma 1, it is sufficient to

compute [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2 and [[k1

i]]2 is set as in Game 2.

Case 2: (min(Iv(`)) ≤ m∗2) ∧ (max(Iv(`)) > m∗2)

For j ≤ m∗2, [[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2

33

where ρ̃(`)
j ← Zp for j ≤ m∗2.

For j > m∗2, [[k2
j]]2 = [[µ̃(`)

j ũ∗j,β + (ρ̂(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2

= [[µ̃(`)
j (ρ̃′j(−j, 1), 0, 0, βs̄′j, 0, 0)B̃∗ + (ρ̂(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2

= [[((µ̃(`)
j ρ̃j

′ + ρ̂
(`)
j)(−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j + βµ̃

(`)
j s̄
′
j, 0, 0)]]2

where µ̃(`)
j , ρ̂

(`)
j ← Zp for j > m∗2. We implicitly set ρ̃(`)

j = µ̃
(`)
j ρ̃j

′ + ρ̂
(`)
j with ∑

i∈Iy(`)
s

(`)
i +∑

j∈Iv(`)
t
(`)
j = 0,∑i∈Iy(`)

γ
(`)
i + ∑

j∈Iv(`)
γ̃

(`)
j = 0. Here the key component [[k1

i]]2 is generated
as previous Case 1. We define

t̂
(`)
j =

 t
(`)
j if j ≤ m∗2

t
(`)
j + µ̃

(`)
j s̄
′
j if j > m∗2 (i.e., setting β = 1)

unless s̄′j = 0. Since {t(`)j }j∈[m∗2] and {µ̃(`)
j }j∈Iv(`) ,j>m

∗
2

both are independently chosen from Zp.
So t̂(`)j ’s are uniformly random for all j ∈ Iv(`) . Therefore, the adversary’s view is the same
as in Game 2 for β = 0, and if β = 1 it turns to Game 3. Now we have

|Pr(E3)− Pr(E2)| ≤
∑

i∈[m2,max]
AdvP1-SXDH

B1 (λ)

≤ 4 ·m2,max · (tmax −m∗2)AdvSXDH
B (λ) + 2−Ω(λ)

≤ 4 ·m2,max · (tmax − 1)AdvSXDH
B (λ) + 2−Ω(λ).

Thus the claim follows.
Claim 6. Pr(E4) = 1

m1,max
· Pr(E3).

Proof. Let m1,max,m2,max be the maximum length of the challenge vector and challenge at-
tribute vector respectively. Note that Game 4 is similar to Game 3 except that A’s output
is ⊥ if m′1 6= m∗1 where m′1 is the length guess of the challenge message vectors x(0),x(1). We
have

Pr(E4) =
∑

i∈[m1,max]
Pr[m′1 = i] · Pr[m∗1 = i ∧ E3|m′1 = i]

= 1
m1,max

·
∑

i∈[m1,max]
Pr[m∗1 = i ∧ E3|m′1 = i]

= 1
m1,max

·
∑

i∈[m1,max]

Pr[m′1 = i ∧m∗1 = i ∧ E3]
Pr[m′1 = i ∧m∗2 = i]

= 1
m1,max

· Pr(E3).

Claim 7. |Pr(E5)− Pr(E4)| ≤ 4(smax − 1)AdvSXDH
B (λ) + 2−Ω(λ).

34

Proof. We use the following instances of Lemma 1 to prove this claim. We can make a
reduction algorithm B1 that distinguishes the instances (D,Uβ) where B← GL7(Zp),

D = (G, paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗1]]2, [[b∗2]]2, . . . , [[b∗5]]2, {[[uj]]}j∈[m])
ui = (π′i(1, i), 0, 0, φ′, 0, 0)B ∀i ∈ [m′1] with φ′, {π′i}i∈[m′1] ← Zp

and u∗i,β = (ρ′i(−i, 1), 0, 0, βs′i, 0, 0)B∗ ∀i ∈ [m′1 + 1, n], {ρ′i, s′i}i∈[m′1+1,n] ← Zp
Uβ = {[[u∗i,β]]2}i∈[m′1+1,n].

Using A as a subroutine, we construct the reduction algorithm B1 that interpolates between
Game 4 and Game 5. Before proceeding further, B1 chooses m′1 ← [m1,max] which is a
guess of the length of the challenge vector x(0) = (x(0)

i)i∈[m∗1]. If the guess is incorrect i.e.,
m′1 6= m∗1, then the algorithm B1 will output 0. Otherwise B1 outputs A’s outputs as it is.
Now, B1 obtains an instance of Lemma 1 with n = smax, m = m′1 and set MPK = (PP =
(p, g1, g2, gT , V, V

∗, E), {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}) where bi, b̃i are i-th rows of uniformly chosen
matrices B, B̃ ← GL7(Zp) respectively. Recall that, smax is the maximum index of input
vector y(`) for all ` ∈ [QSK] with which A queries to the key generation oracle. Now, the
challenger B1 simulates the component [[c1

i]]1 for all i ∈ [m∗1] of the challenge ciphertext
CT(0)

x,w = ({[[c1
i]]1}i∈[m∗1], {[[c2

j]]1}j∈[m∗2]) as

[[c1
i]]1 = [[ξ · ui + x

(0)
i · b3 + α · b4]]1 for ξ, α← Zp

= [[ξπ′i · b1 + iξπ′i · b2 + x
(0)
i · b3 + α · b4 + ξφ′ · b5]]1

= [[(ξπ′i(1, i), x
(0)
i , α, ξφ′, 0, 0)B]]1

and [[c2
j]]1 is set as in Game 4 using B̃. Observe that, we implicitly set πi = ξπ′i, σ = ξφ′

unless ξ = 0. By using the instances of Lemma 1, B1 simulates the `-th secret key
SKy(`),v(`) = ({[[k1

i]]2}i∈Iy(`) , {[[k
2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) for all ` ∈ [QSK] in two cases:

Case 1: ((max(Iy(`)) ≤ m′1) ∨ (min(Iy(`)) ≥ m′1))

ρ
(`)
i , ρ̃

(`)
j , γ

(`)
i , γ̃

(`)
j , si

(`), tj
(`) ← Zp for all i ∈ Iy(`) , j ∈ Iv(`)

such that
∑

i∈Iy(`)

s
(`)
i +

∑
j∈Iv(`)

t
(`)
j = 0,

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
j , γ

(`)
i , s

(`)
i , 0, 0)B∗]]2 ∀j ∈ Iy(`) .

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

From the instances of P1-SXDH problem {[[b∗i]]2}i∈1,2,...,5 are sufficient to compute
[[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i , 0, 0)B∗]]2. Other key components [[k2

j]]2 are generated as in Game
4.

Case 2: ((min(Iy(`)) ≤ m′1) ∧ (max(Iy(`)) > m′1))

If i ≤ m′1, [[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i , 0, 0)B∗]]2

35

where ρ(`)
i ← Zp for i ≤ m′1.

If i > m′1, [[k1
i]]2 = [[µ(`)

i u∗i,β + (ρ
′(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[µ(`)
i (ρ′i(−i, 1), 0, 0, βs′i, 0, 0)B∗ + (ρ

′(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[((ρ′iµ
(`)
i + ρi

′(`))(−i, 1), y(`)
i , γ

(`)
i , s

(`)
i + βµ

(`)
i s
′
i, 0, 0)B∗]]2

where µ
(`)
i , ρ

′(`)
i ← Zp, ρ(`)

i = ρ′iµ
(`)
i + ρ

′(`)
i for i > m′1 and the secret key component

[[k2
j]]2 is generated similarly as Case 1 with the restriction that ∑i∈Iy(`)

s
(`)
i + ∑

j∈Iv(`)
t
(`)
j =

0,∑i∈Iy(`)
γ

(`)
i +∑

j∈Iv(`)
γ̃

(`)
j = 0. We can also set

ŝ
(`)
i =

s
(`)
i if i ≤ m′1

s
(`)
i + µ

(`)
i s
′
i if i > m′1 (i.e., setting β = 1)

unless s′i = 0. Since the information of µ(`)
i is hidden in ρ

(`)
i using ρ

′(`)
i , both collections

{s(`)
i }i≤m′1 , {µ(`)

i s
′
i}i∈Iy(`) ,i>m

′
1

are randomly chosen from Zp. Therefore, {ŝ(`)
i }i∈Iy(`) are inde-

pendently random elements in Zp. Therefore, A’s view is the same as in Game 4 for β = 0
and in Game 5 if β = 1. Now we have

|Pr(E5)− Pr(E4)| =

∣∣∣∣∣∣
∑

i∈[m1,max]
Pr(m′1 = i) Pr(G5|m′1 = i)− Pr(m′1 = i) Pr(G4|m′1 = i)

∣∣∣∣∣∣
= 1
m1,max

∣∣∣∣∣∣
∑

i∈[m1,max]
Pr(G5|m′1 = i)− Pr(G4|m′1 = i)

∣∣∣∣∣∣
≤ 1
m1,max

∑
i∈[m1,max]

AdvP1-SXDH
B1 (λ)

≤ 1
m1,max

·
∑

i∈[m1,max]
4(smax − 1)AdvSXDH

B (λ) + 2−Ω(λ)

= 4(smax − 1)AdvSXDH
B (λ) + 2−Ω(λ).

Thus, the claim follows.

Claim 8. |Pr(E6)− Pr(E5)| ≤ 8(m2,max +m1,max)AdvSXDH
B (λ) + 2−Ω(λ)

Proof. To prove the above claim, we construct a reduction algorithm B′ that uses A as a
subroutine to distinguish P3-SXDH instances. Let the reduction algorithm B′ distinguish

36

between the instances (D = (D1,D2),Wβ = (Uβ,Vβ)).

D1 = (G, paramsV , [[b1]]1, [[b2]]1, . . . , [[b4]]1, [[b∗1]]2, [[b∗2]]2, [[b∗4]]2, [[b∗5]]2, {[[v∗i]]2}i∈[m′1+1,n])
v∗i = (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ ∀i ∈ [m′1 + 1, n] with {ρ′i}i∈[m′1+1,n] ← Zp
ui,β = (π′i(1, i), βξi, 0, 1, 0, 0)B ∀i ∈ [m′1] with {π′i, ξi}i∈[m′1] ← Zp
u∗i,β = (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ ∀i ∈ [m′1] with {ξi, ρ′i}i∈[m′1] ← Zp
Uβ = {[[ui,β]]1, [[u∗i,β]]2}i∈[m′1]

D2 = (G, paramsV , [[b̃1]]1, [[b̃2]]1, . . . , [[b̃4]]1, [[b̃
∗
1]]1, , [[b̃

∗
2]]1, , [[b̃

∗
4]]1, [[b̃

∗
5]]1, {[[ṽ∗j]]2}j∈[m∗2+1,n])

ṽ∗j = (ρ̃′j(−j, 1), 1, 0, 0, 0, 0)B̃∗ ∀j ∈ [m∗2 + 1, n] with {ρ̃′j}j∈[m∗2+1,n] ← Zp
ũj,β = (π̃′j(1, j), βξ̃j, 0, 1, 0, 0)B̃ ∀j ∈ [m∗2] with {π̃′j, ξ̃j}j∈[m∗2] ← Zp
ũ∗j,β = (ρ̃′j(−j, 1), 1, 0,−βξ̃j, 0, 0)B̃∗ ∀j ∈ [m∗2] with {ξ̃j, ρ̃′j}j∈[m∗2] ← Zp
Vβ = {[[ũj,β]]1, [[ũ∗j,β]]2}j∈[m∗2]

Before starting the game, B′ first chooses m′1 ← m1,max as a guess of the length m∗1 of
the challenge vector x(0) = (x(0)

i)i∈[m∗1]. For the incorrect guess i.e., m∗1 6= m′1, B′ outputs 0.
Otherwise, B′ outputs A’s output as it is. On receiving the instance (D,Wβ) of P3-SXDH
problem as described in Lemma 3 with n = smax, m = m′1 and n = tmax, m = m∗2, the
challenger B′ sets MPK = (PP = (p, g1, g2, gT , V, V

∗, E), {[[bi]]1, [[b̃i]]1}i∈{1,2,...,4}). Now, B′
simulates the challenge ciphertext components [[c1

i]]1 and [[c2
j]]1 as follows:

[[c1
i]]1 = [[σui,β + (0, 0, x(0)

i , α, 0, 0, 0)B]]1
= [[σ(π′i(1, i), βξi, 0, 1, 0, 0)B + (0, 0, x(0)

i , α, 0, 0, 0)B]]1
= [[(σπ′i(1, i), βσξi, 0, σ, 0, 0)B + (0, 0, x(0)

i , α, 0, 0, 0)B]]1
= [[(σπ′i(1, i), βσξi + x

(0)
i , α, σ, 0, 0)B]]1 ∀i ∈ [m′1]

[[c2
j]]1 = [[σũj,β + (0, 0, δw(0)

j , α, 0, 0, 0)B̃]]1
= [[σ(π̃′j(1, j), βξ̃j, 0, 1, 0, 0)B̃ + (0, 0, δw(0)

j , α, 0, 0, 0)B̃]]1
= [[(σπ̃′j(1, j), βσξ̃j, 0, σ, 0, 0)B̃ + (0, 0, δw(0)

j , α, 0, 0, 0)B̃]]1
= [[(σπ̃′j(1, j), βσξ̃j + δw

(0)
j , α, σ, 0, 0)B̃]]1 ∀j ∈ [m∗2]

where σ, δ, α← Zp. We set πi = σπ′i, π̃j = σπ̃′j unless σ = 0. Now for all ` ∈ [QSK], B′ replies
to A, the `-th secret key query SKy(`),v(`) = ({[[k1

i]]2}i∈Iy(`) , {[[k
2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) for the

vector y(`) = (y(`)
i)i∈Iy(`) which is categorized into the following cases:

Case 1: max(Iy(`)) ≤ m′1 ∧max(Iv(`)) ≤ m∗2

37

For all i ∈ Iy(`) ,

[[k1
i]]2 = [[y(`)

i u∗i,β + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0,−βy(`)
i ξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − βy

(`)
i ξi, 0, 0)B∗]]2 ∀i ∈ Iy(`) .

For all j ∈ Iv(`) ,

[[k2
j]]2 = [[ω(`)v

(`)
j ũ∗j,β + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0,−βξ̃j, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0,−βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

Here ρ
′′(`)
i , ρ̃

′′(`)
j , s

(`)
i , t

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that ∑

i∈Iy(`)
s

(`)
i + ∑

j∈Iv(`)
t
(`)
i = 0 with∑

i∈Iy(`)
γ

(`)
i +∑

j∈Iv(`)
γ̃

(`)
j = 0.

Case 2: ((max(Iy(`)) > m′1) ∧ (min(Iy(`)) ≤ m′1)) ∧ ((max(Iv(`)) > m∗2) ∧ (min(Iv(`)) ≤ m∗2))

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , ŝ

(`)
i , t̂

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

For i ≤ m′1,

[[k1
i]]2 = [[y(`)

i u∗i,β + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0,−βy(`)
i ξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − βy

(`)
i ξi, 0, 0)B∗]]2.

For i > m′1,

[[k1
i]]2 = [[y(`)

i v∗i + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i , 0, 0)B∗]]2.

For j ≤ m∗2,

[[k2
j]]2 = [[ω(`)v

(`)
j ũ∗j,β + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0,−βξ̃j, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0,−βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗]]2.

38

For j > m∗2,

[[k2
j]]2 = [[ω(`)v

(`)
j ṽ∗j + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0, 0, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j , 0, 0)B̃∗]]2.

We implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Case 3: (min(Iy(`)) > m′1) ∧ (min(Iv(`)) > m∗2)

For all i ∈ Iy(`) ,

[[k1
i]]2 = [[y(`)

i v∗i + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , s

(`)
i , 0, 0)B∗]]2.

For all j ∈ Iv(`) ,

[[k2
j]]2 = [[ω(`)v

(`)
j ṽ∗j + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0, 0, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2.

Here ω(`), γ
(`)
i , γ̃

(`)
j , s

(`)
i , t

(`)
j ← Zp such that ∑i∈Iy(`)

γ
(`)
i + ∑

j∈Iv(`)
γ̃

(`)
j = 0,∑i∈Iy(`)

s
(`)
i +∑

j∈Iv(`)
t
(`)
j = 0. Let ρ(`)

i = ρ
′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′. Then ρ(`)
i and ρ̃(`)

j ’s are
uniformly random since ρ′′(`)i , ρ′i, ρ̃

′′(`)
j and ρ̃′j all are uniformly random in Zp.

Case 4: (max(Iy(`)) ≤ m′1) ∧ ((max(Iv(`)) > m∗2) ∧ (min(Iv(`)) ≤ m∗2))

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , s

(`)
i , t̂

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

For all i ∈ Iy(`) ,

[[k1
i]]2 = [[y(`)

i u∗i,β + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0,−βy(`)
i ξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − βy

(`)
i ξi, 0, 0)B∗]]2.

39

For j ≤ m∗2,

[[k2
j]]2 = [[ω(`)v

(`)
j ũ∗j,β + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0,−βξ̃j, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0,−βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗]]2.

For j > m∗2,

[[k2
j]]2 = [[ω(`)v

(`)
j ṽ∗j + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0, 0, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j , 0, 0)B̃∗]]2.

We have implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Case 5: ((max(Iy(`)) > m′1) ∧ (min(Iy(`)) ≤ m′1)) ∧ (max(Iv(`)) ≤ m∗2)

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , ŝ

(`)
i , t

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

For i ≤ m′1,

[[k1
i]]2 = [[y(`)

i u∗i,β + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0,−βy(`)
i ξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − βy

(`)
i ξi, 0, 0)B∗]]2.

For i > m′1,

[[k1
i]]2 = [[y(`)

i v∗i + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i , 0, 0)B∗]]2.

For all j ∈ Iv(`) ,

[[k2
j]]2 = [[ω(`)v

(`)
j ũ∗j,β + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0,−βξ̃j, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0,−βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗]]2.

40

We have implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Case 6: ((max(Iy(`)) > m′1) ∧ (min(Iy(`)) ≤ m′1)) ∧ (min(Iv(`)) > m∗2)

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , ŝ

(`)
i , t

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

For i ≤ m′1,

[[k1
i]]2 = [[y(`)

i u∗i,β + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0,−βy(`)
i ξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − βy

(`)
i ξi, 0, 0)B∗]]2.

For i > m′1,

[[k1
i]]2 = [[y(`)

i v∗i + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , ŝ
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i , 0, 0)B∗]]2.

For all j ∈ Iv(`) ,

[[k2
j]]2 = [[ω(`)v

(`)
j ṽ∗j + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0, 0, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2.

We have implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Case 7: (min(Iy(`)) > m′1) ∧ ((max(Iv(`)) > m∗2) ∧ (min(Iv(`)) ≤ m∗2))

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , s

(`)
i , t̂

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

For all i ∈ Iy(`) ,

[[k1
i]]2 = [[y(`)

i v∗i + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , s

(`)
i , 0, 0)B∗]]2.

41

For j ≤ m∗2,

[[k2
j]]2 = [[ω(`)v

(`)
j ũ∗j,β + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0,−βξ̃j, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0,−βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗]]2.

For j > m∗2,

[[k2
j]]2 = [[ω(`)v

(`)
j ṽ∗j + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0, 0, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t̂
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j , 0, 0)B̃∗]]2.

We have implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Case 8: (min(Iy(`)) > m′1) ∧ (max(Iv(`)) ≤ m∗2)

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , s

(`)
i , t

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

For all i ∈ Iy(`) ,

[[k1
i]]2 = [[y(`)

i v∗i + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0, 0, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , s

(`)
i , 0, 0)B∗]]2.

For all j ∈ Iv(`) ,

[[k2
j]]2 = [[ω(`)v

(`)
j ũ∗j,β + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0,−βξ̃j, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0,−βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − βω(`)v

(`)
j ξ̃j, 0, 0)B̃∗]]2.

We have implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Case 9: (max(Iy(`)) ≤ m′1) ∧ (min(Iv(`)) > m∗2)

Choose ω(`), ρ
′′(`)
i , ρ̃

′′(`)
j , s

(`)
i , t

(`)
j , γ

(`)
i , γ̃

(`)
j ← Zp such that

∑
i∈Iy(`)

γ
(`)
i +

∑
j∈Iv(`)

γ̃
(`)
j = 0.

42

For all i ∈ Iy(`) ,

[[k1
i]]2 = [[y(`)

i u∗i,β + (ρ′′(`)i (−i, 1), 0, γ(`)
i , s

(`)
i , 0, 0)B∗]]2

= [[y(`)
i (ρ′i(−i, 1), 1, 0,−βξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]1

= [[(y(`)
i ρ′i(−i, 1), y(`)

i , 0,−βy(`)
i ξi, 0, 0)B∗ + (ρ′′(`)i (−i, 1), 0, γ(`)

i , s
(`)
i , 0, 0)B∗]]2

= [[((ρ′′(`)i + y
(`)
i ρ′i)(−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − βy

(`)
i ξi, 0, 0)B∗]]2.

For all j ∈ Iv(`) ,

[[k2
j]]2 = [[ω(`)v

(`)
j ṽ∗j + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[ω(`)v
(`)
j (ρ̃j ′(−j, 1), 1, 0, 0, 0, 0)B̂∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]1

= [[(ω(`)v
(`)
j ρ̃j

′(−j, 1), ω(`)v
(`)
j , 0, 0, 0, 0)B̃∗ + (ρ̃j ′′(`)(−j, 1), 0, γ̃(`)

j , t
(`)
j , 0, 0)B̃∗]]2

= [[((ρ̃j ′′(`) + ω(`)v
(`)
j ρ̃j

′)(−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j , 0, 0)B̃∗]]2.

We have implicitly set ρ(`)
i = ρ

′′(`)
i + y

(`)
i ρ′i and ρ̃

(`)
j = ρ̃j

′′(`) + ω(`)v
(`)
j ρ̃j

′.

Thus A’s view is the same as in Game 5 if β = 0 and in Game 6 if β = 1. Therefore, we
have

|Pr(E5)− Pr(E6)| ≤ 8(m2,max +m1,max) · AdvSXDH
B (λ) + 2−Ω(λ)

due to Lemma 3.
Claim 9. |Pr(E7)− Pr(E6)| ≤ AdvSXDH

B (λ) + 2−Ω(λ).
Proof. Let B obtain an instance of (G = (p,G1,G2,GT , g1, g2, e), [[a]]2 = ga2 , [[u]]2 = gu2 , [[tβ]]2 =
[[au + βf]]2 = gau+βf

2) of the SXDH assumption for ι = 2 where a, u, f ← Zp, β ← {0, 1}
and sets PP = (p, g1, g2, gT , V, V

∗, E). We will show that B can utilize the instances of the
SXDH assumption to interpolate between Game 6 and Game 7 using A as a subroutine.
The algorithm B implicitly define two orthonormal dual bases (B̃, B̃∗) by choosing D, D̃←
GL7(Zp) and setting

B̂ =

I2

0 0 −1
0 1 0
1 0 a

I2

D̃, B̃∗ =

I2

a 0−1
0 1 0
1 0 0

I2

D̃
∗

where D̃
∗ = (D̃−1)> and a is implicitly provided through the SXDH instance.

Note that, by using [[a]]2 = ga2 , the algorithm B can compute the first four rows
{[[bi]]∗1, [[b̃

∗
i]]1}i∈{1,2,...,4} of B̃∗. Note that, (0, 0, tβ, 0,−u, 0, 0)D̃∗ = (0, 0, u, 0, βf, 0, 0)B̃∗. For

〈w(0),v(`)〉 6= 0, 〈w(1),v(`)〉 6= 0, the algorithm B simulates the `-th secret key SKy(`),v(`) =

43

({[[k1
i]]2}i∈Iy(`) , {[[k

2
j]]2}j∈Iv(`) , Iy(`) , Iv(`)) corresponding to the vectors y(`) = (y(`)

i)i∈Iy(`) ,v(`) =
(v(`)
j)j∈Iv(`) as follows:

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − ξ̃j(ω(`) + u〈w(0),v(`)〉)v(`)

j , 0, 0)B̃∗

+ v
(`)
j 〈w(0),v(`)〉(0, 0, tβ, 0,−u, 0, 0)D̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ξ̃j(ω(`) + u〈w(0),v(`)〉)v(`)

j , 0, 0)B̃∗

+ v
(`)
j 〈w,v(`)〉(0, 0, u, 0, βf, 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), (ω(`) + u〈w,v(`)〉)v(`)

j , γ̃
(`)
j , t

(`)
j − ξ̃j(ω(`) + u〈w(0),v(`)〉)v(`)

j +
βfv

(`)
j 〈w(0),v(`)〉, 0, 0)B̃∗]]2

with ρ̃
(`)
j , γ̃

(`)
j , t

(`)
j ← Zp such that ∑

i∈Iy(`)
γ

(`)
i + ∑

j∈Iv(`)
γ̃

(`)
j = 0 and ∑

i∈Iy(`)
s

(`)
j +∑

j∈Iv(`)
t
(`)
j = 0 where both γ(`)

i , s
(`)
i are uniformly chosen from Zp. As 〈w(0),v(`)〉 6= 0, we can

implicitly set ω(`)′ = ω(`)+u〈w(0),v(`)〉, r(`)
j = t

(`)
j − ξ̃j(ω(`)+u〈w(0),v(`)〉)v(`)

j +fv(`)
j 〈w(0),v(`)〉

which are random elements in Zp for f 6= 0. Therefore, the fifth component of [[k2
j]]2 is

random element for β = 1. Here, we use a fact that r̃
(`)
j + s

(`)
i + ξiy

(`)
i 6= 0 with high

probability. Hence, the adversarial view is the same as in Game 7 for β = 1, other-
wise, the view is similar as in Game 6 if β = 0. Let choose σ ← Zp and computes
(0, 0, σ, 0, 0, 0, 0)D̃ = (0, 0, aσ, 0, σ, 0, 0)B̃ and (0, 0, σ, 0, 0, 0, 0)D = (0, 0, aσ, 0, σ, 0, 0)B.
Now, the challenge ciphertext CT(0)

x,w = ({[[c1
i]]1}i∈[m∗1], {[[c2

j]]1}j∈[m∗2]) components [[c2
j]]1, [[c1

i]]1
are generated by B as follows:

[[c2
j]]1 = [[(π̃j(1, j), δw(0)

j + σξ̃′j, α, 0, 0, 0)B̃ + (0, 0, σ, 0, 0, 0, 0)D̃]]1.
= [[(π̃j(1, j), δw(0)

j + σξ̃′j, α, 0, 0, 0)B̃ + (0, 0, aσ, 0, σ, 0, 0)B̃]]1
= [[(π̃j(1, j), δw(0)

j + σξ̃j, α, σ, 0, 0)B̃]]1 ∀j ∈ [m∗2]

where π̃j, δ, ξ̃′j, α ← Zp for all j ∈ Iv(`) . Note that, {[[bi]]1, [[b̃i]]1}i∈{1,2,...,5} are sufficient to
compute [[(πi(1, i), x(0)

i , α, 0, 0, 0)B]]1 and [[(π̃j(1, j), δw(0)
j , α, 0, 0, 0)B̃]]1 respectively. Without

knowledge of [[a]]1 here B cannot compute [[b5]]1, [[b̃5]]1 as the rows b5, b̃5 consist of the element
a and B has no information about [[a]]1. Thus the distribution of the challenge ciphertext
components in Game 6 is identical with the distribution of Game 7. Hence, B interpolates
between Game 7 and Game 6 and the claim follows.
Claim 10. |Pr(E8)− Pr(E7)| ≤ 2−Ω(λ).
Proof. Let Ẽι be the event that denotes m′1 = m∗1 in Game ι where m′1 is the guess of the
length m∗1 of message vector. Since A’s view are equivalent for all previous ciphertext query,
we have Pr(Ẽ7) = Pr(Ẽ8). Let us define for all i ∈ [m′1], j ∈ [m∗2] as follows:

ξ′i = ξi −
x

(1)
i − x

(0)
i

σ
, ξ̃′j = ξ̃j −

δ(w(1)
j − w

(0)
j)

σ

44

where σ, δ ← Zp and (x(0),w(0)), (x(1),w(1)) are challenge message and attribute pairs. Note
that, ξ′i, ξ̃′j are independently random elements in Zp unless σ = 0. Then the challenge
ciphertext components [[c1

i]]1 and [[c2
j]]1 are indistinguishable in Game 7 and Game 8 as

shown below,

[[c1
i]]1 = [[(πi(1, i), x(0)

i + ξiσ, α, σ, 0, 0)B]]1

= [[(πi(1, i), x(0)
i + σ(ξ′i + x

(1)
i − x

(0)
i

σ
), α, σ, 0, 0)B]]1

= [[(πi(1, i), x(1)
i + σξ′i, α, σ, 0, 0)B]]1 ∀i ∈ [m′1]

[[c2
j]]1 = [[(π̃j(1, j), δw(0)

j + ξ̃jσ, α, σ, 0, 0)B̃]]1

= [[(π̃j(1, j), δw(0)
j + σ(ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), α, σ, 0, 0)B̃]]1

= [[(π̃j(1, j), δw(1)
j + σξ̃′j, α, σ, 0, 0)B̃]]1 ∀j ∈ [m∗2]

where πi, σ, α ← Zp and π̃j ← Zp. For all ` ∈ [QSK] we categorise adversary’s queries to
the `-th oracle secret key on y(`) = (y(`)

i)i∈Iy(`) ,v(`) = (v(`)
j)j∈Iv(`) and show that in each

cases the `-th secret key components [[k1
i]]2, [[k2

j]]2 are indistinguishable in Game 7 and Game 8.

Case I when 〈w(0),v(`)〉 6= 0, 〈w(1),v(`)〉 6= 0.

(i) If (max(Iy(`)) ≤ m′1) ∧ (max(Iv(`)) ≤ m∗2), then

[[k1
i]]2 = [[

(
ρ

(`)
i (−i, 1), y(`)

i , γ
(`)
i , r

(`)
i , 0, 0

)
B∗]]2

[[k2
j]]2 = [[

(
ρ̃

(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , r̃

(`)
j , 0, 0

)
B̃∗]]2

where r̃
(`)
j , r

(`)
i ← Zp for all j ∈ Iv(`) , i ∈ Iy(`) . Since k1

i and k2
j does not contain the value

ξi and ξ̃j, so there is no need to use the transformations as mentioned above. So the
distributions for the `-th secret key components k1

i ,k
2
j remain unaltered as Game 8.

(ii) If (max(Iy(`)) > m′1) ∧ (max(Iv(`)) ≤ m∗2), then

For i ≤ m′1,

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2 ∀i ∈ Iy(`) .

45

For i > m′1;

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

Hence, we set ŝ(`)
i = ŝ

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i for i ≤ m′1 which are independently random elements

from Zp as there are no condition on (x(0)
i − x

(1)
i)y(`)

i and ŝ
(`)
i are independently random

elements in Zp. Also, ŝ(`)
i are random elements from i > m′1, so fifth component of k1

i is
uniform element from Zp for all i ∈ Iy(`) . Similarly set, t(`)j = t

(`)
j −

ω(`)δ(w(1)
j −w

(0)
j)

σ
v

(`)
j which

are uniformly random in Zp.
(iii) If max(Iy(`)) ≤ m′1) ∧ (max(Iv(`)) > m∗2, then

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2 ∀i ∈ Iy(`) .

For j ≤ m∗2;

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

For j > m∗2;

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2.

Hence, we set s
(`)
i = s

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i for i ∈ Iy(`) which are independently ran-

dom elements from Zp as there are no condition on (x(0)
i − x

(1)
i)y(`)

i . Similarly take
t̂
(`)
j = t̂

(`)
j −

ω(`)δ(w(1)
j −w

(0)
j)

σ
v

(`)
j for j ≤ m∗2, which are uniformly random element in Zp

and also for j > m∗2, t̂(`)j are uniform elements in Zp. So the fifth component of k2
j are

independently random elements in Zp.

46

(iv) If max(Iy(`)) > m′1) ∧ (max(Iv(`)) > m∗2, then
For i ≤ m′1;

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2

and for i > m′1 and i ∈ Iy(`) , we set

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

where γ
(`)
i , r̂

(`)
i , ρ

(`)
i ← Zp. As there are no condition on ∑

i∈Iy(`)
(x(1)

i − x
(0)
i)y(`)

i i.e.,∑
i∈Iy(`)

(x(1)
i − x

(0)
i)y(`)

i 6= 0 or not, let us define ŝ
(`)
i = ŝ

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i which is uniformly

random in Zp for i ≤ m′1 as ŝ(`)
i is uniformly random over Zp.

For j ≤ m∗2, we set

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2

and for j > m∗2, we set

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`)

with γ̃
(`)
j , t̂

(`)
j , ρ̃

(`)
j , ω

(`) ← Zp. As ∑j∈Iv(`)
(w(1)

j − w
(0)
j)v(`)

i 6= 0, t̂j = t̂
(`)
j −

ω(`)δ(w(1)
j −w

(0)
j)

σ
v

(`)
j

for j ≤ m∗2 are independently random elements from Zp and for j > m∗2, the fifth compo-
nent of [[k2

j]]2 is also random.

Case II when 〈w(0),v(`)〉 = 〈w(1),v(`)〉 = 0.

(v) If max(Iy(`)) ≤ m′1) ∧ (max(Iv(`)) ≤ m∗2, then

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2 ∀i ∈ Iy(`) ,

47

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`)

where γ(`)
i , s

(`)
i , ρ

(`)
i ← Zp and γ̃(`)

j , t
(`)
j , ρ̃

(`)
j , ω

(`) ← Zp such that ∑i∈Iy(`)
s

(`)
i +∑j∈Iv(`)

t
(`)
j =

0 and ∑
i∈Iy(`)

γ
(`)
i + ∑

j∈Iv(`)
γ̃

(`)
j = 0. Since 〈x(0),y(`)〉 = 〈x(1),y(`)〉 in challenge query

phase as per Def. 2, we get ∑i∈Iy(`)
y

(`)
i (x(0)

i −x
(1)
i) = 0 when 〈w(0),v(`)〉 = 〈w(1),v(`)〉 = 0

which yields ∑j∈Iv(`)
v

(`)
j (w(0)

j − w
(1)
j) = 0. We set s′(`)i = s

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i and t

′(`)
j =

t
(`)
j −

ω(`)δ(w(1)
j −w

(0)
j)

σ
v

(`)
j which are uniformly random over Zp for all i ∈ Iy(`) , j ∈ Iv(`)

respectively and these satisfy ∑i∈Iy(`)
s
′(`)
i +∑

j∈Iv(`)
t
′(`)
j = 0 as in Game 7.

(vi) If (max(Iy(`)) > m′1) ∧ (max(Iv(`)) ≤ m∗2, then

For i ≤ m′1,

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2 ∀i ∈ Iy(`) .

For i > m′1;
[[k1

i]]2 = [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

Hence, we set ŝ(`)
i = ŝ

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i for i ≤ m′1 which are independently random elements

from Zp as we have no condition on (x(0)
i − x

(1)
i)y(`)

i , also ŝ
(`)
i are independently random

elements from i > m′1, so fifth component of k1
i is uniform in Zp for all i ∈ Iy(`) . Also set,

t
(`)
j = t

(`)
j (as ∑j∈Iv(`)

(w(0)
j − w

(1)
j)v(`)

j = 0) which are uniformly random in Zp since the
corresponding fifth element of k2

j is set as random.

48

(vii) If max(Iy(`)) ≤ m′1) ∧ (max(Iv(`)) > m∗2, then

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , s

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , s

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2 ∀i ∈ Iy(`) .

For j ≤ m∗2;

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`) .

For j > m∗2;

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2.

Hence, we set s
(`)
i = s

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i for i ∈ Iy(`) which are independently ran-

dom elements from Zp as we have no condition on (x(0)
i − x

(1)
i)y(`)

i , Also set,
t̂
(`)
j = t̂

(`)
j −

ω(`)δ(w(1)
j −w

(0)
j)

σ
v

(`)
j for j ≤ m∗2, which are uniformly random elements

from Zp and for j > m∗2, t̂
(`)
j ’s are uniform in Zp. So the fifth component of k2

j are
independently random elements from Zp.

(viii) If max(Iy(`)) > m′1) ∧ (max(Iv(`)) > m∗2, then:

For i ≤ m′1;

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i − ξiy

(`)
i , 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − y

(`)
i (ξ′i + x

(1)
i − x

(0)
i

σ
), 0, 0)B∗]]2

= [[(ρ(`)
i (−i, 1), y(`)

i , γ
(`)
i , ŝ

(`)
i − ξ′iy

(`)
i −

x
(1)
i − x

(0)
i

σ
y

(`)
i , 0, 0)B∗]]2

also for i > m′1 and i ∈ Iy(`) , we set

[[k1
i]]2 = [[(ρ(`)

i (−i, 1), y(`)
i , γ

(`)
i , ŝ

(`)
i , 0, 0)B∗]]2

where γ
(`)
i , r̂

(`)
i , ρ

(`)
i ← Zp. Since there are no condition on ∑

i∈Iy(`)
(x(1)

i − x
(0)
i)y(`)

i . Let

us define ŝ
(`)
i = ŝ

(`)
i −

x
(1)
i −x

(0)
i

σ
y

(`)
i , which is uniformly random in Zp for i ≤ m′1 as ŝ(`)

i is

49

uniformly random in Zp.

For j ≤ m∗2, we set

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j − ξ̃jω(`)v

(`)
j , 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j (ξ̃′j +

δ(w(1)
j − w

(0)
j)

σ
), 0, 0)B̃∗]]2

= [[(ρ̃(`)
j (−j, 1), ω(`)v

(`)
j , γ̃

(`)
j , t̂

(`)
j − ω(`)v

(`)
j ξ̃′j −

ω(`)δ(w(1)
j − w

(0)
j)

σ
v

(`)
j , 0, 0)B̃∗]]2

and for j > m∗2, we set

[[k2
j]]2 = [[(ρ̃(`)

j (−j, 1), ω(`)v
(`)
j , γ̃

(`)
j , t̂

(`)
j , 0, 0)B̃∗]]2 ∀j ∈ Iv(`)

with γ̃
(`)
j , t̂

(`)
j , ρ̃

(`)
j , ω

(`) ← Zp. Since, t̂(`)j = t̂
(`)
j −

ω(`)δ(w(1)
j −w

(0)
j)

σ
v

(`)
j for j ≤ m∗2 are inde-

pendently random elements from Zp and for j > m∗2 the fifth component of k2
j are also

random.

Therefore, Game 7 and Game 8 are indistinguishable except a negligible probability i.e.,

|Pr(E8)− Pr(E7)| =
∣∣∣Pr(Ẽ8) · Pr(E8|Ẽ8)− Pr(Ẽ7) · Pr(E7|Ẽ7)

∣∣∣ ≤ 2−Ω(λ).

This establishes the claim.

Claim 11. |Pr(E9)− Pr(E8)| ≤
8(m1,max + m2,max) + 4(smax − 1) + 4m2,max(tmax −

1)
AdvSXDH

B (λ) + 2−Ω(λ).

The proof of this claim can be achieved utilizing the proofs of claims 9, 7 and 5.

Claim 12. Pr(E9) ≤ 1
m1,max

· Pr(G10).

This proof is exactly the same as that of claim 6.

Claim 13. |Pr(E11)− Pr(E10)| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

This proof is exactly the same as that of claim 4.

Claim 14. |Pr(E12)− Pr(E11)| ≤ AdvSXDH
B (λ) + 2−Ω(λ).

This proof is exactly the same as that of claim 3.

50

5 Our Succinct UQFE

In the following, we define unbounded quadratic functional encryption (UQFE) for the mes-
sage spaces {Xλ}2

λ, a key space {Yλ}λ for any λ ∈ N which is a security parameter. In our
definition, the message vectors z1 ∈ Zn1

p , z2 ∈ Zn2
p are associated with index sets Iz1 , Iz2

respectively and the key vector f ∈ Zn1n2
p is associated with the index set If . We assume

that the index set If is a cartesian product between two index sets If1 , If2 . In the permissive
case of UQFE scheme, it recovers (z1 ⊗ z2)f> if and only if If1 ⊆ Iz1 and If2 ⊆ Iz2 and in
the strict case, it outputs (z1 ⊗ z2)f> if and only if Iz1 = If1 and Iz2 = If2 . Clearly, it can
be observed that if the UQFE scheme is permissive then it also satisfies the condition of
strict relation. So for simplicity here we define the UQFE scheme in permissive setting. Our
UQFE = (Setup,Enc,KeyGen,Dec) consists of four PPT algorithms satisfying the following
requirements.

Setup(1λ) → (PP,MSK): The setup algorithm takes as input the security parameter 1λ,
and outputs a public parameter and a master secret key pair (PP,MSK).

Enc(PP, z1, z2) → CT: The encryption algorithm takes as input the public parameter
PP and a pair of message vectors (z1, z2) ∈ Xλ × Xλ with associated index sets Iz1 , Iz2

respectively, and outputs a ciphertext CT.

KeyGen(PP,MSK, f) → SKf : The key generation algorithm takes as input the public
parameter PP, the master secret key MSK and a function f ∈ Yλ with an associated index
set If , and outputs a secret key SKf .

Dec(PP, SKf ,CT) → d/⊥: The decryption algorithm takes as input the secret key SKf ,
a ciphertext CT and the vector f , and outputs a value d or the symbol ⊥.

Correctness: An UQFE scheme is said to be correct if for any λ ∈ N, any pair of message
vectors (z1, z2) with associated index sets Iz1 , Iz2 , any secret key vector f with associated
index set If = If1 × If2 satisfying If1 ⊆ Iz1 and If2 ⊆ Iz2 , it holds that

Pr

Dec(PP, SKf ,CT) = (z1 ⊗ z2)f> :
(PP,MSK)← Setup(1λ)
CT← Enc(PP,MSK, z1, z2)
SKf ← KeyGen(PP,MSK, f)

 = 1.

Succinctness and Compactness: An UQFE is said to be succinct if the secret key size is
independent of the size of the function f , i.e. |SKf | = O(1), and the ciphertext size is linear
in the size of z1 and z2, i.e. |CT| = O(|z1|) +O(|z2|).

Concurrently, Tomida [Tom22] studied UQFE in the public key setting and presented a
construction with IND-based security model. We use UQFE of [Tom22] to instantiate our
public key UNP-IPFE. The secret key UNP-IPFE is, however, proved in the SIM-based model
and depends on a secret key UQFE which encrypts message vectors in the presence of MSK.
Thus, we present the SIM-based security notion of UQFE in the secret key setting below and
for completeness the IND-based security model is given in Appendix A.

51

Definition 4 (SA-SIM Security for UQFE). The UQFE = (Setup,Enc,KeyGen,Dec) is
said to be semi-adaptive simulation (SA-SIM) secure if for any security parameter λ, any
PPT adversary A, there exists a PPT simulator S := (Setup∗,Enc∗,KeyGen∗) such that the
following holds

AdvUQFE
A,SA-SIM(λ) :=

∣∣∣Pr[ExpReal
UQFE,A(λ) = 1]− Pr[ExpIdeal

UQFE,A,S(λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExpReal
UQFE,A(λ) and ExpIdeal

UQFE,A,S(λ) are defined as follows:

ExpReal
UQFE,A(λ)

1: (PP,MSK)← Setup(1λ)
2: (z∗1, z∗2)← A(PP)
3: CT∗ ← Enc(PP,MSK, z∗1, z∗2)
4: b← AKeyGen(PP,MSK,·)(CT∗).

ExpIdeal
UQFE,A,S(λ)

1: (PP∗,MSK∗)← Setup∗(1λ)
2: (z∗1, z∗2)← A(PP∗)
3: CT∗ ← Enc∗(PP∗,MSK∗, Iz∗1 , Iz∗2)
4: b← AKeyGen∗(PP∗,MSK∗,·,·)(CT∗).

In the Real security experiment, KeyGen(PP,MSK, ·) is an oracle that takes input the secret
key vector f with associated the index set If and outputs SKf ← KeyGen(PP,MSK, f). In the
Ideal security experiment, KeyGen∗(PP∗,MSK∗, ·, ·) oracle returns a simulated secret key SK∗f
on input a key vector f with index set If and µ where the value of µ is (z∗1⊗ z∗2)f> whenever
the conditions If1 ⊆ Iz∗1 and If2 ⊆ Iz∗2 hold, else µ = ⊥.

5.1 Construction

In this section, we construct a secret key UQFE scheme with strict relation. Let us consider
two hash functions H1,H2 and two PRF families F1 = {FK1}K1∈Kλ , F2 = {FK2}K2∈Kλ with
the key space Kλ defined as follows:

• H1 : Z→ Gk+1
1 ×Gk+1

2 s.t. H1(i) = ([[ai]]1, [[ai]]2) ∈ Gk+1
1 ×Gk+1

2 .
• H2 : Z→ Gk′+1

2 s.t. H2(i) = [[bi]]2 ∈ Gk′+1
2 .

• F1 = {FK1|FK1 : Z→ Zp, K1 ∈ Kλ} s.t. FK1(i) = wi ∈ Zp.
• F2 = {FK2|FK2 : Z→ Zp, K2 ∈ Kλ} s.t. FK2(j) = wj ∈ Zp.

Our UQFE = (Setup,Enc,KeyGen,Dec) scheme is described below. As all prior works on FEs
from DDH and bilinear groups, the required functional value comes from a polynomial range
so that at the end of the decryption phase, we can efficiently perform an exhaustive search
to obtain the value (z1 ⊗ z2)f>.

Setup(1λ) → (PP,MSK): The setup algorithm takes as input security parameter 1λ and
proceeds the following steps:

1. Sample bilinear group G = (p,G1,G2,GT , g1, g2, e)← GBG.Gen(1λ).
2. Sample A0 ← Zk′×(k′+1)

p ,W1 ← Z(k′+1)×k′
p , W2 ← Z(k′+1)×k

p .
3. Chooses PRF keys K1, K2 ← Kλ.
4. Output PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1) and MSK = (K1, K2,W1,W2).

52

Enc(PP,MSK, z1, z2)→ CT: The encryption algorithm takes as input the public param-
eter PP, the master secret key MSK, a message (z1, z2) ∈ Zn1

p ×Zn2
p with its associated index

sets Iz1 , Iz2 and executes the following steps:

1. Parse PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).
2. Parse Iz1 := {i1, . . . , in1}, Iz2 := {j1, . . . , jn2} for some n1, n2 ≥ 1.
3. Compute the following vectors using the hash functions as

H1(i`) =
(
[[a(1)

i`
]]1, [[a(1)

i`
]]2
)
∈ Gk×1

1 ×Gk×1
2 , ∀` ∈ [n1] (2)

H2(j`) =[[a(2)
j`

]]2 ∈ Gk′×1
2 , ∀` ∈ [n2]. (3)

4. Set the vectors w1 = (FK1(it))t∈[n1] ∈ Zn1
p and w2 = (FK2(jt))t∈[n2] ∈ Zn2

p .
5. Set the matrices

[[A1]]1 =[[a(1)
i1 ‖ . . . ‖ a(1)

in1
]]1 ∈ Gk×n1

1 , (4)

[[A2]]2 =[[a(2)
j1 ‖ . . . ‖ a(2)

jn2
]]2 ∈ Gk′×n2

2 (5)

6. Compute and set [[A0W]]1 := [[A0W̃1 ‖ A0W̃2]]1 where W̃1 = W1 ⊗ w1 ∈ Z(k′+1)×k′n1
p

and W̃2 = W2 ⊗w2 ∈ Z(k′+1)×kn2
p .

7. Sample s1 ← Zkp and s0, s2 ← Zk′p
8. Output the ciphertext

CT =

[[s1A1 + z1︸ ︷︷ ︸
y1

]]1, [[s2A2 + z2︸ ︷︷ ︸
y2

]]2, [[s0A0︸ ︷︷ ︸
c0

]]1, [[s0A0W + (s1 ⊗ z2 ‖ y1 ⊗ s2)︸ ︷︷ ︸
y0

]]1, Iz1 , Iz2

 .
KeyGen(PP,MSK, f) → SKf : The key generation algorithm takes as input the public
paramter PP, the master secret keys MSK and a function f ∈ Zn

′
1n
′
2

p which is associated with
an index set If . It performs as follows:

1. Parse MSK = (W1,W2).
2. Parse If = If1 ⊗ If2 where If1 := {i′1, . . . , i′n′1}, If2 := {j′1, . . . , j′n′2}.
3. Use H1 and H2 (as in Eq. 2, 3) for the index sets If1 and If2 to generate the matrices

[[A′1]]2 ∈ Gk×n′1
2 and [[A′2]]2 ∈ Gk′×n′2

2 similar to Eq. 4 and 5 respectively.
4. Set the vectors w′1 = (FK1(i′t))t∈[n′1] ∈ Zn

′
1
p and w′2 = (FK2(j′t))t∈[n′2] ∈ Zn

′
2
p .

5. Define W′ := (W1 ⊗w′1 ‖W2 ⊗w′2).
6. Output the secret key

SKf =
[[W′ ·

(A′1 ⊗ In′2)f>

(In′1 ⊗A′2)f>

]]2, f , If1 , If2

 .
53

Dec(PP, SKf ,CT) → d: The decryption algorithm takes as input the public parameter
PP, the secret key SKf of a function f and a ciphertext CT. It works as follows:

1. Parse SKf = ([[k>1]]2, f , If1 , If2) and CT = ([[y1]]1, [[y2]]2, [[c0]]1, [[y0]]1, Iz1 , Iz2).
2. If Iz1 6= If1 or Iz2 6= If2 , then output ⊥.

3. Else compute k>2 = [[
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]2 where [[A1]]2, [[A2]]2 are generated as Eq. 4 and

Eq. 5 over the index sets If1 , If2 respectively and output loggT d where

[[d]]T = [[(y1 ⊗ y2)f>]]T · e
(
[[c0]]1, [[k>1]]2

)
· e
(
[[y0]]1, [[k>2]]2

)−1
. (6)

Correctness: If Iz1 = If1 and Iz2 = If2 then we have A′1 = A1,A′2 = A2,W′ = W. The
terms in the decryption equation can be simplified as follows:

[[(y1 ⊗ y2)fT]]T = [[(z1 ⊗ z2)f> + (y1 ⊗ s2A2)f> + (s1A1 ⊗ z2)f>]]T

= [[(z1 ⊗ z2)f>]]T · [[(s1 ⊗ z2 ‖ y1 ⊗ s2)
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]T .

e
(
[[c0]]1, [[k>1]]2

)
= e

[[s0A0]]1, [[W ·

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]2

= [[s0A0W

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]T .

e
(
[[y0]]1, [[k>2]]2

)
= e

[[s0A0W + (s1 ⊗ z2 ‖ y1 ⊗ s2)]]1, [[
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]2

= [[s0A0W

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

+ (s1 ⊗ z2 ‖ y1 ⊗ s2)
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]T .

Putting everything together, it can be seen that correctness follows from Eq. 6.

Succinctness and Compactness: A salient feature of our UQFE is the succinctness of
secret keys. A secret key SKf consists of only (k′+ 1) elements of G2

3, no matter how long is
the vector f . Further, the ciphertext size is compact. It consists of (k′ + 1)(n1 + 1) elements
from G1 and kn2 elements from G2. Concretely, the size of the secret key could be as small
as 2|G2| and the ciphertext is 2(n1 +1)|G1|+2n2|G2| where |G| represents the size of a single
element of the group G. The public key UQFE of [Tom22] is designed for n1 = n2 = n. For
message vectors of lengths n and key vectors of length (n′)2, the size of the the ciphertext is
(26n+ 21)|G1|+ 12n|G2| and that of the secret key is at least (14n′ + 9)|G2|.

3 We do not include the function f while measuring the actual size of SKf since a secret key holder always has the
corresponding to the key.

54

5.2 Simulator

We now describe the simulator of our UQFE before going to the formal security analysis.

Setup∗(1λ): Sample A0 ← Zk′×(k′+1)
p ,W1 ← Z(k′+1)×k′

p ,W2 ← Z(k′+1)×k
p ,W ←

Z(k′+1)×(kn2+k′n1)
p , a⊥0 ← Zk′+1

p ,u ← Z1×(k′+1)
p such that A0 · a⊥0 = 0; u · a⊥0 = 1. Choose

K1, K2 ← Kλ. Then it generates

PP∗ = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1) , MSK∗ = (K1, K2,W1,W2,W,u, a⊥0).

Enc∗(PP∗,MSK∗, Iz∗
1
, Iz∗

2
): Outputs

CT∗ =
(
y1,y2, c0 = [[u]]1,y0 = [[uW]]1, Iz∗1 , Iz∗2

)
where y1 ← G

|Iz∗1
|

1 ,y2 ← G
|Iz∗2
|

2 .

KeyGen∗(PP∗,MSK∗, µ, f): Parse If = If1 ⊗ If2 . If If1 6= Iz∗1 or If2 6= Iz∗2 then the secret
key is computed as in the real key generation algorithm, i.e., using W1,W2, it outputs

SKf =
k>1 = [[W′

(A′1 ⊗ In′2)f>

(In′1 ⊗A′2)f>

]]2, f , If1 , If2

where W′ := (W1 ⊗ w′1 ‖ W2 ⊗ w′2) with (w′1,w′2) and (A′1,A′2) are generated via the
PRF functions FK1 , FK2 and hash functions H1,H2 respectively (similar ato Eq. 4 and Eq.
5). Otherwise, if If1 = Iz∗1 , If2 = Iz∗2 , it outputs

SKf =
(
k>1 = [[Wf̃

> − µ′a⊥0]]2, f , If1 , If2

)

where [[A1]]2 ← Gk×|If1 |
2 , [[A2]]2 ← Gk′×|If2 |

2 , f̃
> =

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

 , µ′ = (y1⊗ y2)f>− µ with

µ = (z∗1 ⊗ z∗2)f> and y1 ← G|If1 |
1 ,y2 ← G|If2 |

2 .

5.3 Security Analysis

Theorem 2. Assuming the hardness of the bilateral k-Lin and k′-Lin assumptions, our
UQFE = (Setup,Enc,KeyGen,Dec) scheme is SA-SIM secure in the random oracle model
as per Def. 4. More precisely, if there exists a PPT adversary A that breaks the SA-SIM
security of our UQFE then we construct PPT machines B1,B2 and B3 such that for any
security parameter λ, the advantage

AdvUQFE
A,SA-SIM(λ) ≤ Adv

MDDHk
′+1
k′,1

B1 (λ) + Advbi-MDDHn1
k,1

B2 (λ) + Adv
MDDHn2

k′,1
B3 (λ)

where (n1, n2) is the lengths of challenge message vectors.

55

Proof. We consider a sequence of games to prove the theorem. Suppose A be a PPT
adversary against SA-SIM experiment of our UQFE scheme. The games are described below.
In the description of these games, a part framed by a box indicates the elements that are
altered in a transition from its previous game.

Game 0: This game corresponds to the experiment ExpReal
UQFE,A(1λ) as defined in Def.

4 where the ciphertext CT∗ associated with the vectors pair (z∗1, z∗2) is generated as

CT∗ =

[[s1A1 + z∗1︸ ︷︷ ︸
y1

]]1, [[s2A2 + z∗2︸ ︷︷ ︸
y2

]]2, [[s0A0︸ ︷︷ ︸
c0

]]1, [[s0A0W + (s1 ⊗ z∗2 ‖ y1 ⊗ s2)︸ ︷︷ ︸
y0

]]1, Iz∗1 , Iz∗2

 .
Here, s1 ← Zkq , s2 ← Zk′q and [[A1]]1, [[A2]]2 are generated similarly as Eq. 4 5. Also, [[A0W]]1 :=
[[A0(W1 ⊗w1) ‖ A0(W2 ⊗w2)]]1 with w1 = (FK1(it))t∈[n1] ∈ Zn1

p and w2 = (FK2(jt))t∈[n2] ∈
Zn2
p . The secret key queried by A corresponding to the function f with the index sets If1 , If2

is formed as SKf = (k>1 , f , If1 , If2) such that

SKf =
k>1 = [[W

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]2, f , If1 , If2

whenever If1 = Iz∗1 , If2 = Iz∗2 .
Game 1: This game is identical with the Game 0 except that the challenge ciphertext
component y0 is set as

CT∗ =
(
[[s1A1 + z∗1]]1, [[s2A2 + z∗2]]2, [[s0A0]]1, [[s0A0W + (s1 ⊗ z∗2||y1 ⊗ s2)]]1, Iz∗1 , Iz∗2

)
where [[A0W]]1 = [[A0(W1 ⊗ w1)||A0(W2 ⊗ w2)]]1 such that w1 ← Z1×n1

p ,w2 ← Z1×n2
p .

In this Game, we replace the PRFs FK1(·), FK2(·) with the random functions
Rand1(·) ← Rand1,λ,Rand2(·) ← Rand2,λ where Rand1,λ,Rand2,λ are the set of func-
tions that have the same domain and range space as FK1 and FK2 respectively. Therefore,
from the security of PRF, the Game 0 and Game 1 are computationally indistinguishable.

Game 2: Game 2 is the same as Game 1 except that the challenge ciphertext com-
ponent c0 are generated as follows:

CT∗ =
(
[[s1A1 + z∗1]]1, [[s2A2 + z∗2]]2, [[u]]1 , [[uW + (s1 ⊗ z∗1||y1 ⊗ s2)]]1, Iz∗1 , Iz∗2

)
where u← Zk′+1

p . All others components are generated similarly by B as Game 1.

We prove the indistinguishability between Game 1 and Game 2 in the Lemma 4.

56

Game 3: This is exactly the same as Game 2 except the secret key SKf for If1 = Iz∗1 and
If2 = Iz∗2 , and the challenge ciphertext text CT∗ are computed as

CT∗ =
(

[[s1A1 + z∗1]]1, [[s2A2 + z∗2]]2, [[u]]1, [[uW̃]]1 , Iz∗1 , Iz∗2

)
SKf =

(
[[W̃f̃

> − a⊥0 (〈z∗, f̃〉)]]2 , f , If1 , If2

)

where W̃ is chosen uniformly from Z(k′+1)×(k′n1+kn2)
p . We justify the transition between

Game 2 and Game 3 in the Lemma 5.

Game 4: Game 4 is the same as Game 3 except that the secret key component k>1 associated
with the function f ∈ Zn1n2

p is generated as

SKf =
(
k>1 = [[W̃f̃

> − a⊥0 µ′]]2, f , If1 , If2

)

where µ′ = (y1 ⊗ y2)f> − (z∗1 ⊗ z∗2)f> and f̃
> =

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

.

We justify the game transition between Game 3 and Game 4 in the Lemma 6.

Game 5: This game is the same as Game 4 except that we program [[A1]]1 =
[[a(1)

i1 ‖ . . . ‖ a(1)
in1

]]1 ∈ G
k×|Iz∗1

|
1 by [[a(1)

i`
]]1 ← Gk×1

1 for Iz∗1 = {i1, . . . , in1} and the challenge
ciphertext as

CT∗ =
(

y1 ,y2 = [[s2A2 + z∗2]]2, c0 = [[u]]1,y0 = [[uW̃]]1, Iz∗1 , Iz∗2

)
where y1 ← G

|Iz∗1
|

1 .
We prove the indistinguishability between Game 4 and Game 5 in Lemma 7.

Game 6: This game is the same as Game 5 except that we program [[A2]]2 =
[[a(2)

j1 ‖ . . . ‖ a(2)
jn2

]]2 ∈ G
k′×|Iz∗2

|
2 by [[a(2)

j`
]]2 ← Gk′×1

2 for Iz∗2 = {j1, . . . , jn2} and the chal-
lenge ciphertext is computed as

CT∗ =
(
y1, y2 , c0 = [[u]]1,y0 = [[uW̃]]1, Iz∗1 , Iz∗2

)
where y2 ← G

|Iz∗2
|

2 .

We justify the transition from Game 5 to Game 6 in Lemma 8.

Finally, note that Game 6 is exactly the output of the simulator. We represent Eι as
the event that A outputs 1 in Game ι. We prove the following lemmas by showing the
indistinguishability of adjacent games listed above.

57

Lemma 4. For all adversary A, there exist B1 such that

|Pr[E2]− Pr[E1]| ≤ Adv
MDDHk

′+1
k′,1

B1 (λ).

Proof. Let us assume that the challenger obtains an instance (G, [[A0]]1, [[ub]]1) of MDDHk′+1
k′,1

assumption where

ub =

s0A0 if b = 0,
u← Zk′+1

p if b = 1.

The challenger uses the MDDHk′+1
k′,1 instance to traverse from Game 2 to Game 1.

Public key simulation. The reduction samples W1 ← Z(k′+1)×k′
p , W2 ← Z(k′+1)×k

p and
sets PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).

Ciphertext simulation. The challenge ciphertext CT∗ = (y1,y2, c0,y0, Iz∗1 , Iz∗2) corre-
sponding to the challenge message (z∗1, z∗2) is generated as follows:
– Sample s1 ← Zkp and s2 ← Zk′p and generate y1 = [[s1A1 + z∗1]]1,y2 = [[s2A2 + z∗2]]2,

c0 = [[ub]]1 where

[[A1]]1 =[[a(1)
i1 ‖ . . . ‖ a(1)

in1
]]1 ∈ Gk×n1

1 ,

[[A2]]2 =[[a(2)
j1 ‖ . . . ‖ a(2)

jn2
]]2 ∈ Gk′×n2

2

and H1(i`) =
(
[[a(1)

i`
]]1, [[a(1)

i`
]]2
)
∈ Gk×1

1 ×Gk×1
2 for all ` ∈ [n1] and H2(j`) = [[a(2)

j`
]]2 ∈ Gk′×1

2
for all ` ∈ [n2].

– Compute y0 = [[ubW + (s1 ⊗ z∗2 ‖ y1 ⊗ s2)]]1 where [[ubW]]1 := [[ubW̃1 ‖ ubW̃2]]1 and
W̃1 = W1⊗w1 ∈ Z(k′+1)×k′n1

p , W̃2 = W2⊗w2 ∈ Z(k′+1)×kn2
p with w1 ← Zn1

p , w2 ← Zn2
p .

Secret key simulation. In the following, we describe how challenger simulates the secret
key SKf = (k>1 , f , If1 , If2) associated with the function f ∈ Zn1n2

p .
– Using the hash functions H1,H2 over the index sets If1 , If2 , generate the matrices [[A1]]2 ∈
Gk×n1

2 , [[A2]]2 ∈ Gk′×n2
2 as described in ciphertext simulation phase.

– Generate the secret key component k>1 corresponding to the function f ∈ Zn1n2
p as

k>1 = [[W
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

]]2

where W := (W1 ⊗w1 ‖W2 ⊗w2) such that w1 ← Zn1
p , w2 ← Zn2

p .

Analysis. According to the MDDHk′+1
k′,1 assumption, we have

(G, [[A0]]1, [[s0A0]]1) ≈c (G, [[A0]]1, [[u]]1).

If b = 0, ub = [[s0A0]]1, then the adversarial view is the same as Game 1; otherwise for b = 1,
ub is randomly chosen from the group Gk′+1

1 and hence the adversarial view is similar to
Game 2. Thus, we have Game 1 ≈c Game 2 via the MDDHk′+1

k′,1 assumption.

58

Lemma 5. For all adversary A, we have E3 ≈s E2.

Proof. The change from Game 2 to Game 3 follows from the following change of variables
which embeds the selective challenge z∗ into W:

W̃ = W + a⊥0 z∗

where a⊥0 ∈ Z(k′+1)
p such that A0 · a⊥0 = 0,u · a⊥0 = 1. Since W is chosen uniformly from

Z(k′+1)×(k′n1+kn2)
p , then the matrix W̃ is also uniform over Z(k′+1)×(k′n1+kn2)

p .
Let us denote (z∗)> = (s1 ⊗ z∗1||y1 ⊗ s2) ∈ Zk′n1+kn2

p . We have

W̃1 = W1 ⊗w∗1; W̃2 = W2 ⊗w∗2; W = (W̃1||W̃2) ∈ Z(k′+1)×(k′n1+kn2)
p

which in particular implies that

A0W̃ = A0W + A0a⊥0 z = A0W = (A0W̃1||A0W̃2) (7)
uW̃ = uW + u(a⊥0 z∗) = uW + z∗ (8)

W̃f̃
> = Wf̃

> + a⊥0 (z∗f̃>) = Wf̃
> + a⊥0 (〈z∗, f̃〉)

Wf̃
> = W̃f̃

> − a⊥0 (〈z∗, f̃〉) = k>1 (9)

where f̃
> =

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

Formally to justify the change of variables, observe that for all A0, z∗, we have(

A0W,W + a⊥0 z∗
)
≡
(
A0W̃,W̃

)
(10)

where the distributions are taken over the random choice of W. Then, whenever If1 = Iz∗1
and If2 = Iz∗2 we have

CT∗ =
(
[s1A1 + z∗1]1, [s2A2 + z∗2]2, [u]1, [uW̃]1, Iz∗1 , Iz∗2

)
,

SKf =
(

[[W̃f̃
> − a⊥0 (〈z∗, f̃〉)]]2, f , If1 , If2

)
.

If If1 6= Iz∗1 or If2 6= Iz∗2 then the secret key corresponding to the vector f is generated as

SKf =
k>1 = [[W′

(A′1 ⊗ In′2)f>

(In′1 ⊗A′2)f>

]]2, f , If1 , If2

where [[A′1]]2 ∈ Gk×n′1

2 , [[A′2]]2 ∈ Gk′×n′2
2 are generated by using the hash func-

tions H1,H2 over the index sets If1 , If2 and W := (W1 ⊗ w1 ‖ W2 ⊗ w2) with
w1 = (FK1(it))t∈[n′1] ∈ Zn

′
1
p ,w2 = (FK2(jt))t∈[n′2] ∈ Zn

′
2
p .

So from the above, we can conclude that the distribution of Eq. 10 are identically dis-
tributed even if z∗ is selectively chosen. Therefore, Game 2 and Game 3 are statistically
indistinguishable.

59

Lemma 6. For all adversary A, we have Pr[E4] = Pr[E3].

Proof. The secret key SKf = (k>1 , f , If1 , If2) for If1 = Iz∗1 and If2 = Iz∗2 is given by the
component

k>1 = W̃f̃
> − a⊥0 〈z∗, f̃〉.

To see that the Game 3 and Game 4 follow the same distribution, we use the following
identity

(y1 ⊗ y2)f> = (z∗1 ⊗ z∗2)f> + (s1 ⊗ z∗1||y1 ⊗ s2)
(A1 ⊗ In2)f>

(In1 ⊗A2)f>

= (z∗1 ⊗ z∗2)f> + 〈z∗, f̃〉

=⇒ 〈z∗, f̃〉 = (y1 ⊗ y2)f> − (z∗1 ⊗ z∗2)f> = µ′.

It is now clear that the distribution of secret keys in Game 3 and Game 4 are identical.
Hence, Game 3 and Game 4 are identically in the adversary’s view.
Lemma 7. For all adversary A, there exist B2 in the random oracle model such that

|Pr[E5]− Pr[E4]| ≤ Advbi-MDDHn1
k,1

B2 (λ).

Proof. We will now show that the challenger B2 can break the bi-MDDHn1
k,1 assumption using

A as a subroutine. The adversary B2 obtains the instances (G, [[A1]]1, [[A1]]2, [[tb]]1, [[tb]]2) of
bi-MDDHn1

k,1 assumption where

tb =

s1A1 + z∗1 if b = 0,
t← Zn1

p if b = 1.

We have to show that B2 can interpolate between Game 4 and Game 5 by using the
bi-MDDHn1

k,1 instances.

Public parameter simulation. Samples W1 ← Z(k′+1)×k′
p , W2 ← Z(k′+1)×k

p and
A0 ← Zk′×(k′+1)

p generate PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).

Random oracle simulation. When the adversary A gives out Iz∗1 and Iz∗2 , we initiate the
random oracle H1(i) = ([[a(1)

i]]1, [[a(1)
i]]2) for all i ∈ Iz∗1 where a(1)

i is the ith column of A1 and
H2 = φ. When the adversary A makes random oracle query on j,
– on H1: if H1(j) is empty, we sample uj ← Zkp and assign H1(j) = ([[u(1)

j]]1, [[u(1)
j]]2) before

sending H1(j) back. Otherwise, we just send H1(j) back.
– on H2: if H2(j) is empty, we sample aj ← Zk′p and assign H2(j) = ([[a(2)

j]]2) before sending
H2(j) back. Otherwise, we just send H2(j) back.

Ciphertext simulation. The challenger simulates the challenge ciphertext CT∗ =
(y1,y2, c0,y0, Iz∗1 , Iz∗2) as follows:

60

– Sample s2 ← Zk′p ,u← Zk′p and set y1 = [[tb]]1,y2 = [[s2A2 + z∗2]]2, c0 = [[u]]1, y0 = [[uW̃]]1
where

[[A2]]2 =[[a(2)
j1 ‖ . . . ‖ a(2)

jn2
]]2 ∈ Gk′×n2

2

such that [[a(2)
j`

]]2 ← Gk′×1
2 for all ` ∈ [n2], and W̃← Z(k′+1)×(k′n1+kn2)

p .

Secret key simulation. In the following, we describe how the challenger simulates the
secret key SKf using the given instance whenever If1 = Iz∗1 , If2 = Iz∗2 .

– Generate the secret key SKf = (k>1 , f , If1 , If2) corresponding to the secret key vector
f ∈ Zn1n2

p as
SKf =

(
k>1 = [W̃f̃

> − a⊥0 µ′]2, f , If1 , If2

)

where µ′ = (y1 ⊗ y2)f> − (z∗1 ⊗ z∗2)f> and f̃
> =

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

.

If If1 6= Iz∗1 or If2 6= Iz∗2 then the secret key SKf = (k>1 , f , If1 , If2) corresponding to the secret
key vector f is generated as

SKf =
k>1 =

W′

(A′1 ⊗ In′2)f>

(In′1 ⊗A′2)f>

2

, f , If1 , If2

where [[A′1]]2 ∈ Gk×n′1

2 and [[A′2]]2 ∈ Gk′×n′2
2 are computed honestly by using the hash

functions H1 and H2 over the index set If1 , If2 and W := (W1 ⊗ w1 ‖ W2 ⊗ w2) with
w1 = (FK1(it))t∈[n′1] ∈ Zn

′
1
p ,w2 = (FK2(jt))t∈[n′2] ∈ Zn

′
2
p .

Analysis. According to the security of bilateral k-Lin assumption, we have

([[A1]]1, [[A1]]2, [[s1A1 + z∗1]]1, [[s1A1 + z∗1]]2) ≈c ([[A1]]1, [[A1]]2, [[t]]1, [[t]]2) .

In that case, for b = 0, i.e., tb = [[s1A1 + z∗1]], then B3 simulates the Game 4; otherwise for
b = 1, tb = t is uniformly chosen from the group Zn1

p and hence B simulates the Game
5. Therefore, we can conclude that Game 4 ≈c Game 5, i.e., Game 4 and Game 5 are
computationally indistinguishable.

Lemma 8. For all adversary A, there exist B3 in the random oracle model such that

|Pr[E6]− Pr[E5]| ≤ Adv
MDDHn2

k′,1
B3 (λ).

Proof. We will now show that the challenger B3 can break the MDDHn2
k′,1 problem using A as

a subroutine. The adversary B3 obtains the instance (G, [[A2]]2, [[t′b]]2) of MDDHn2
k′,1 problem

where

t′b =

s2A2 + z∗2 if b = 0,
t′ ← Zn2

p if b = 1

61

by using the instance of MDDHn2
k′,1, the challenger B3 can interpolate between Game 5 and

Game 6.

Public parameter simulation. Sample W1 ← Z(k′+1)×k′
p , W2 ← Z(k′+1)×k

p and
A0 ← Zk′×(k′+1)

p to generate the public parameter PP = (G, [[A0]]1, [[A0W1]]1, [[A0W2]]1).

Random oracle simulation. When the adversary A gives out Iz∗1 and Iz∗2 , we initiate the
random oracles H1 = φ and H2(i) = ([[a(2)

i]]2) for all i ∈ Iz∗2 where a(2)
i is the ith column of

A2. When the adversary A makes random oracle query on j,
– on H1: if H1(j) is empty, we sample a(1)

j ← Zkp and assign H1(j) = ([[a(1)
j]]1, [[a(1)

j]]2) before
sending H1(j) back. Otherwise, we just send H1(j) back.

– on H2: if H2(j) is empty, we sample dj ← Zk′p and assign H2(j) = ([[d(1)
j]]2) before sending

H2(j) back. Otherwise, we just send H2(j) back.

Ciphertext simulation. Now B3 simulates the challenge ciphertext CT∗ =
(y1,y2, c0,y0, Iz∗1 , Iz∗2) as follows:

– Sample u ← Zk′p , y1 ← Gn1 and sets y2 = [[t′b]]2, c0 = [[u]]1, y0 = [[uW̃]]1 where W̃ ←
Z(k′+1)×(k′n1+kn2)
p .

Secret key simulation. In the following, we describe how B3 simulates the secret key SKf
using the given instance whenever Iz∗1 = If1 and Iz∗2 = If2 :

– Generate the secret key SKf = (k>1 , f , If1 , If2) corresponding to the secret key vector
f ∈ Zn1n2

p as
SKf =

(
k>1 = [[W̃f̃

> − a⊥0 µ′]]2, f , If1 , If2

)

where µ′ = (y1 ⊗ y2)f> − (z∗1 ⊗ z∗2)f>, f̃
> =

(A1 ⊗ In2)f>

(In1 ⊗A2)f>

 and [[A1]]2 ← Gk×|If1 |
2 .

If If1 6= Iz∗1 or If2 6= Iz∗2 then the secret key corresponding to the vector f is generated as

SKf =
k>1 = [[W′

(A′1 ⊗ In′2)f>

(In′1 ⊗A′2)f>

]]2, f , If1 , If2

where [[A′1]]2 = [[a(1)

i1 ‖ . . . ‖ a(1)
in1

]]2 ∈ Gk×n′1
2 and [[A′2]]2 = [[a(2)

j1 ‖ . . . ‖ a(2)
jn2

]]2 ∈ Gk′×n2
2

such that H1(i`) =
(
[[a(1)

i`
]]1, [[a(1)

i`
]]2
)
∈ Gk×1

1 × Gk×1
2 for all ` ∈ [n′1] and

H2(j`) = [[a(2)
j`

]]2 ∈ Gk′×1
2 for all ` ∈ [n′2] and W′ := (W1 ⊗ w′1 ‖ W2 ⊗ w′2) with

w′1 = (FK1(it))t∈[n′1] ∈ Zn
′
1
p ,w′2 = (FK2(jt))t∈[n′2] ∈ Zn

′
2
p .

Analysis. According to the security of k′-Lin assumption, we have

([[A2]]2, [[s2A2 + z∗2]]2) ≈c ([[A2]]2, [[y2]]2) .

62

In that case, if b = 0, then t′b = s2A2 + z∗2, then B3 simulates the Game 5; otherwise for
b = 1, t′b = t′ is uniformly chosen from Zn2

p and hence B3 simulates the Game 6. Therefore,
we can conclude that Game 5 ≈c Game 6, i.e., Game 5 and Game 6 are computationally
indistinguishable.

6 Our Weak Attribute-Hiding UNP-IPFE
We consider a UQFE = (UQFE.Setup,UQFE.Enc,UQFE.KeyGen,UQFE.Dec) and a UIPFE =
(UIPFE.Setup,UIPFE.Enc,UIPFE.KeyGen,UIPFE.Dec) scheme to construct an UNP-IPFE =
(Setup,KeyGen,Enc,Dec) scheme. Recall that a UNP-IPFE computes ciphertexts for vectors
(x,w) and generate secret keys for vectors (y,v) such that decryption algorithm recovers
〈x,y〉 if 〈w,v〉 6= 0 and the vectors satisfy a strict/permissive relation, i.e., (x,y), (w,v) ∈
Rs or Rp. Depending on the underlying UQFE and UIPFE, our generic construction yields a
permissive or strict UNP-IPFE. Here, we present the strict case where the correctness holds
only when (x,y), (w,v) ∈ Rs.

We slightly modify the Dec algorithms of UIPFE and UQFE schemes, which now return
the inner product and quadratic values in the exponent of the underlying target group (that
is, before solving the discrete logarithm problem). As with all pairing-based IPFE in the
literature, our required inner product value comes from a polynomial range so that we can
efficiently perform an exhaustive search to obtain the value at the end of the decryption
phase.

6.1 Construction
Our UNP-IPFE = (Setup,Enc,KeyGen,Dec) scheme works as follows:

Setup(1λ) → (MPK,MSK): The setup algorithm takes input the security parameter λ
and performs the following steps:
1. Generate

(UQFE.MPK, UQFE.MSK)← UQFE.Setup(1λ)
(UIPFE.MPK, UIPFE.MSK)← UIPFE.Setup(1λ).

2. Set MSK = (UQFE.MSK,UIPFE.MSK) and MPK = (UQFE.MPK, UIPFE.MPK)

Enc(MPK, x,w) → CTx,w: The encryption algorithm takes input the master key MPK,
message-attribute vector pair (x,w) ∈ Z|Ix|×Z|Iw| with the associated index sets Ix, Iw and
executes the following steps:
1. Parse MPK = (UQFE.MPK,UIPFE.MPK).
2. Compute

UQFE.CTx,w ← UQFE.Enc(UQFE.MPK,x,w)
UIPFE.CTw ← UIPFE.Enc(UIPFE.MPK,w).

3. Output CTx,w = (UQFE.CTx,w,UIPFE.CTw).

63

KeyGen(MPK,MSK, y, v)→ SKy,v: The key generation algorithm takes input the master
public key MPK, the master secret key MSK, key-predicate vector pair (y,v) ∈ Z|Iy| × Z|Iv|

with the associated index sets Iy, Iv and performs the following steps:

1. Parse MSK = (UQFE.MSK,UIPFE.MSK) and MPK = (UQFE.MPK, UIPFE.MPK).
2. Compute

UQFE.SKy⊗v ← UQFE.KeyGen(UQFE.MPK,UQFE.MSK,y⊗ v)
UIPFE.SKv ← UIPFE.KeyGen(UIPFE.MPK,UIPFE.MSK,v).

3. Output SKy,v = (UQFE.SKy⊗v,UIPFE.SKv).

Dec(MPK, SKy,v,CTx,w) → d/ ⊥: The decryptor takes as input the master public key
MPK, a ciphertext CTx,w for the associated vectors x,w with the index sets Ix, Iw and a
secret key SKy,v corresponding to the vectors y,v with index sets Iy, Iv respectively. Then
the decryption algorithm runs the following steps:

1. Parse SKy,v = (UQFE.SKy⊗v,UIPFE.SKv).
2. Parse CTx,w = (UQFE.CTx,w,UIPFE.CTw).
3. If (x,y) 6∈ Rs or (w,v) 6∈ Rs, return ⊥.
4. Else, compute

ζ ← UQFE.Dec(UQFE.MPK,UQFE.SKy⊗v,UQFE.CTx,w)
η ← UIPFE.Dec(UIPFE.MPK,UIPFE.SKv,UIPFE.CTw).

5. Output logη ζ.

Correctness. Let the ciphertext CTx,w = (UQFE.CTx,w,UIPFE.CTw) be computed
for a pair of vectors x = (xi)i∈Ix ∈ Z|Ix|,w = (wj)j∈Iw ∈ Z|Iw| and the se-
cret key SKy,v = (UQFE.SKy⊗v,UIPFE.SKv) be generated for a pair of vectors y =
(yi)i∈Iy ∈ Z|Iy|,v = (vj)j∈Iv ∈ Z|Iv |. If R(w,v) = 1, i.e., 〈w,v〉 6= 0 with (x,y), (w,v) ∈ Rs,
then we have

UQFE.Dec(UQFE.MPK,UQFE.SKf ,UQFE.CTx,w) = [[〈x,y〉〈w,v〉]]T = ζ

UIPFE.Dec(UIPFE.MPK,UIPFE.SKv,UIPFE.CTw) = [[〈w,v〉]]T = η.

Since 〈w,v〉 6= 0, the correctness follows as one can compute logη ζ = 〈x,y〉 by performing
an exhaustive search over a polynomial range where 〈x,y〉 belongs.
Remark 2. In this paper, we consider IND-based security for our UNP-IPFE in the public
key setting and SIM-based security in the secret key setting. We present two instantations
accordingly and compare the efficiency of the concrete schemes. For now, we prove the SIM-
based security of our UNP-IPFE in the secret key setting. The IND-based security can be
proved similarly, however, for completeness we provide the security analysis of the public key
version in Appendix A.

64

6.2 Simulator

We present the PPT simulator of our secret key UNP-IPFE scheme in the SA-WAH-SIM secu-
rity model. Let S := (Setup∗,Enc∗,KeyGen∗) be a PPT simulator for our UNP-IPFE scheme
and also let S1 := UQFE.(Setup∗,Enc∗,KeyGen∗), S2 := UIPFE.(Setup∗,Enc∗,KeyGen∗) be the
PPT simulators for the SA-SIM simulation secure UQFE and UIPFE respectively.

Setup∗(1λ): Run

(UQFE.PP∗,UQFE.MSK∗)← UQFE.Setup∗(1λ),
(UIPFE.PP∗,UIPFE.MSK∗)← UIPFE.Setup∗(1λ)

and output PP∗ = (UQFE.PP∗,UIPFE.PP∗); MSK∗ = (UQFE.MSK∗,UIPFE.MSK∗).

Enc∗(PP∗,MSK∗, Ix∗, Iw∗): Compute

UQFE.CT∗ ← UQFE.Enc∗(UQFE.PP∗,UQFE.MSK∗, Ix∗ , Iw∗),
UIPFE.CT∗ ← UIPFE.Enc∗(UIPFE.PP∗,UIPFE.MSK∗, Iw∗)

and output CT∗ = (UQFE.CT∗, UIPFE.CT∗).

KeyGen∗(PP∗,MSK∗, y, v, (σ, µ)): Compute

UQFE.SK∗y⊗v ← UQFE.KeyGen∗(UQFE,PP∗,UQFE.MSK∗, µσ,y⊗ v),
UIPFE.SK∗v ← UIPFE.KeyGen∗(UIPFE.PP∗,UIPFE.MSK∗, σ,v).

Output SK∗y,v = (UQFE.SK∗y⊗v,UIPFE.SK∗v).
Note that, the pair (σ, µ) is set as in Def. 3, however, it can be seen from the correctness of

our UNP-IPFE that the decryption of both UIPFE and UQFE output [[0]]T when R(w∗,v) 6=
1, i.e. 〈w∗,v〉 = 0. Thus, the simulator reassigns (σ, µ) = (0, 0) if 〈w∗,v〉 = 0 while simulating
a secret key for (y,v) such that (y,v) ∈ Rs and 〈w∗,v〉 = 0.

6.3 Security Analysis

Theorem 3. Assuming the underlying UQFE and UIPFE schemes are SA-SIM secure, our
proposed UNP-IPFE scheme is SA-WAH-SIM secure as per Def. 3.

Proof. We consider a sequence of games to prove the above theorem. Let A be a PPT adver-
sary of the SA-WAH-SIM security experiment. For ι ∈ {0, 1, 2}, We represent Eι as the event
that A outputs 1 in Game ι. We show that the games are computationally indistinguishable
ExpReal

UNP-IPFE,A(λ) ≡ Game 0 ≈ Game 1 ≈ Game 2 ≡ ExpIdeal
UNP-IPFE,A,S(λ).

65

Game 0: This game corresponds to the experiment ExpReal
UNP-IPFE,A(λ) as defined in Def. 3.

Therefore, it can be written as

Pr[ExpReal
UNP-IPFE,A(λ) = 1] = Pr[E0]

In this experiment, the ciphertext CT∗ = (UQFE.CT∗,UIPFE.CT∗) corresponding to the
vector pair x∗ = (x∗i)i∈Ix∗ ∈ Z|Ix∗ |, w∗ = (w∗i)i∈Iw∗ ∈ Z|Iw∗ | is generated as

UQFE.CT∗ = UQFE.Enc(UQFE.PP,UQFE.MSK,x∗,w∗)
UIPFE.CT∗ = UIPFE.Enc(UIPFE.PP,UIPFE.MSK,w∗)

A secret key SKy,v = (UQFE.SKy⊗v,UIPFE.SKv) queried by the adversary A corresponding
to vectors y = (yi)i∈Iy ∈ Z|Iy|,v = (vi)i∈Iv ∈ Z|Iv| is computed as

UQFE.SKy⊗v = UQFE.KeyGen(UQFE.PP,UQFE.MSK,y⊗ v)
UIPFE.SKv = UIPFE.KeyGen(UIPFE.PP,UIPFE.MSK,v)

Game 1: It proceeds exactly the same as Game 0 except the honest algorithms of
UIPFE are replaced by their simulated versions. In particular, the challenger replaces
UIPFE.(Setup,Enc,KeyGen) by UIPFE.(Setup∗, Enc∗,KeyGen∗). Therefore, the challenge ci-
phertext and secret key components generated using the UIPFE are given by

UIPFE.CT∗ = UIPFE.Enc∗(UIPFE.PP∗,UIPFE.MSK∗, Iw∗)
UIPFE.SKv = UIPFE.KeyGen∗(UIPFE.PP∗,UIPFE.MSK∗, σ,v)

where σ = 〈w∗,v〉 if (w∗,v) ∈ Rs, else σ = ⊥.

Analysis. First, we note that all the secret key queries for the pair of vectors (v,y) satisfy
the condition that dim{v : (w∗,v) ∈ Rs} ≤ |Iw∗| − 1. Thus, the SA-SIM security of the
underlying UIPFE guarantees that for any PPT adversary B1, we have

|Pr[E1]− Pr[E0]| ≤ AdvUIPFE
B1,SA-SIM(λ).

Game 2: It proceeds exactly the same as Game 1 except the honest algorithms of
UQFE are replaced by their simulated versions. In particular, the challenger replaces
UQFE.(Setup,Enc,KeyGen) by UQFE.(Setup∗, Enc∗,KeyGen∗). Therefore, the challenge ci-
phertext and secret key components generated using the UQFE are given by

UQFE.CT∗ = UQFE.Enc∗(UQFE.PP∗,UQFE.MSK∗, Ix∗ , Iw∗)
UQFE.SKy⊗v = UQFE.KeyGen∗(UQFE.PP∗,UQFE.MSK∗, µ′,y⊗ v)

where µ′ = µσ = 〈x∗,y〉σ if (x∗,y), (w∗,v) ∈ Rs; else µ′ = ⊥. Here, we use the fact that
(x∗ ⊗w∗)(y⊗ v)> = 〈x∗,y〉〈w∗,v〉.
Analysis. From the SA-SIM security of the underlying UQFE scheme, it holds that for any
PPT adversary B2,

|Pr[E2]− Pr[E1]| ≤ AdvUQFE
B2,SA-SIM(λ).

Observe that, Game 2 coincides with the experiment ExpIdeal
UNP-IPFE,A,S(λ) of the simulator

S as described above. This concludes the proof.

66

6.4 Instantiations

We instantiate our generic UNP-IPFE construction both in the public key setting as well as
the secret key setting. We obtain our pubic key UNP-IPFE by plugging the existing UIPFE
and UQFE schemes of [TT18, Tom22] to our generic construction. To obtain the secret
key construction, we use the UQFE scheme proposed in this paper. In Table 3, we present
concrete efficiency matrices of the two instantiations with respect to 128-bit and 256-bit
security levels.

Table 3: Sizes of our UNP-IPFE parameters in terms of kilo-bits.

Scheme
(mes, att)
vec. length

(key, pred)
vec. length

128-bit AES 256-bit AES

m1 = m2 = m n1 = n2 = n MPK CT SK MPK CT SK
Secret-key
UNP-IPFE

100 100 0.32 32.19 0.256 0.8 112.48 1.28
200 200 0.32 64.19 0.256 0.8 224.48 1.28

Public-key
UNP-IPFE

100 100 1.632 183.072 134.976 4.08 649.68 674.8
200 200 1.632 365.47 269.37 4.08 1297.68 1346.88

– (mes, att) vec.: (message , attribute) vectors; (key, pred) vec.: (key , predicate) vectors.
– Group sizes of asymmetric pairing follows from 2007 NIST recommendations of [BBB+06]. Descriptions of an

elliptic curves are in [FST10]. We consider a 256-bit Barreto-Naehrig curve [BN05] with embedding degree 12 for
128 bit security and a 640-bit Brezing-Weng curve [BW05] with embedding degree 24 for 256-bit security.

Public key UNP-IPFE: In [TT18], Tomida and Takashima proposed two UIPFE schemes
where one is a public key scheme. Their public key UIPFE scheme is permissive and achieves
adaptive IND-based security under the SXDH assumption in the standard model. Recently in
[Tom22], Tomida proposed the first UQFE scheme in the public key setting. Their UQFE con-
struction is in a symmetric vector setting, i.e., the inputs z1 = z2 = z and the UQFE scheme
recovers (z ⊗ z)f> where f denotes the key vector. Their scheme achieves semi-adaptive
IND-based security under the MDDH assumption in the ROM. In both these schemes, the
secret key and ciphertext sizes grow linearly with the length of the vectors. By plugging these
schemes in our generic UNP-IPFE construction, we obtain a public key UNP-IPFE scheme
in the permissive setting. Since the underlying UIPFE and UQFE schemes are IND-based
secure, our public key UNP-IPFE scheme achieves semi-adaptive IND-based security in the
ROM. Further, the secret key and ciphertext sizes grow linearly with the length of the as-
sociated vectors. Concretely, for a message-attribute pair of length m each, the ciphertext
requires (33m + 21) group elements in G1 and 12m group elements in G2. The secret key
requires (21n + 9) group elements in G2 where n is the length of both key and predicate
vectors.

Secret key UNP-IPFE: We use the secret key UQFE scheme proposed in this work to
obtain our secret key UNP-IPFE scheme. Our UQFE is an upgrade of the QFE scheme of

67

Wee [Wee20] in the strict setting with succinct secret keys and compact ciphertexts. The
proposed UQFE scheme achieves semi-adaptive SIM-based security in the ROM under the
bilateral k-Lin assumption. Since, UIPFE is a special case of UQFE, we instantiate our secret
key UNP-IPFE scheme in the strict setting by plugging our strict UQFE into the generic
construction. Since the underlying UQFE scheme is semi-adaptive SIM-secure in the ROM,
so is our UNP-IPFE scheme. Unlike our public key UNP-IPFE, our secret key UNP-IPFE
achieves succinct secret keys due to the succinctness of the underlying UQFE scheme. The
size of the ciphertext grows linearly with the length of the vectors. More specifically, for a
message-attribute pair with lengths m1 and m2, the ciphertext requires (2m1 + 4m2 + 6)
group elements in G1 and 2m2 group elements in G2. The secret key only requires 4 group
elements in G2.

References
ABCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption

schemes for inner products. In J. Katz, editor, Public-Key Cryptography – PKC 2015, Lecture Notes in
Computer Science, vol 9020, pages 733–751. Springer, 2015. 3

ABDCP16. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Better security for functional
encryption for inner product evaluations. Cryptology ePrint Archive, 2016. 3

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentralizing inner-
product functional encryption. In D. Lin and K. Sako, editors, Public-Key Cryptography – PKC 2019,
Lecture Notes in Computer Science, vol 11443, pages 128–157. Springer, 2019. 3

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input func-
tional encryption for inner products: function-hiding realizations and constructions without pairings.
In H. Shacham and A. Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Lecture Notes in
Computer Science, vol 10991, pages 597–627. Springer, 2018. 3

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional encryption
with fine-grained access control. In S. Moriai and H. Wang, editors, Advances in Cryptology – ASI-
ACRYPT 2020, Lecture Notes in Computer Science, vol 12493, pages 467–497. Springer, 2020. 3, 4, 5,
7, 8, 9, 11

AGRW17. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product functional
encryption from pairings. In JS. Coron and J. Nielsen, editors, Advances in Cryptology – EUROCRYPT
2017, Lecture Notes in Computer Science, vol 10210, pages 601–626. Springer, 2017. 3

AGT21a. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. In T. Malkin and C. Peikert, editors, Advances in Cryptology – CRYPTO 2021, Lecture Notes
in Computer Science, vol 12828, pages 208–238. Springer, 2021. 3, 4, 7

AGT21b. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryption. In K. Nissim
and B. Waters, editors, Theory of Cryptography Conference – TCC 2021, Lecture Notes in Computer
Science, vol 13043, pages 224–255. Springer, 2021. 3, 4, 5, 7, 9, 11, 15

AGW20. Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption for attribute-weighted sums
from k-lin. In Ristenpart T. Micciancio D., editor, Advances in Cryptology – CRYPTO 2020, Lecture
Notes in Computer Science, vol 12170, pages 685–716. Springer, 2020. 7, 9, 10

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In M. Robshaw and J. Katz, editors, Advances in Cryptology – CRYPTO
2016, Lecture Notes in Computer Science, vol 9816, pages 333–362. Springer, 2016. 3

AMY19. Shweta Agrawal, Monosij Maitra, and Shota Yamada. Attribute based encryption (and more) for non-
deterministic finite automata from LWE. In A. Boldyreva and D. Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, Lecture Notes in Computer Science, vol 11693, pages 765–797. Springer,
2019. 4

APM20. Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: attacks and fixes
for noisy linear fe. In A. Canteaut and Y. Ishai, editors, Advances in Cryptology – EUROCRYPT 2020,
Lecture Notes in Computer Science, vol 12105, pages 110–140. Springer, 2020. 3

68

Att19. Nuttapong Attrapadung. Unbounded dynamic predicate compositions in attribute-based encryption.
In Y. Ishai and V. Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Lecture Notes in
Computer Science, vol 11476, pages 34–67. Springer, 2019. 4

BBB+06. Elaine Barker, Elaine Barker, William Burr, William Polk, Miles Smid, et al. Recommendation for key
management: Part 1: General. National Institute of Standards and Technology, Technology Administra-
tion . . . , 2006. 67

BBL17. Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure inner-product functional encryp-
tion from projective hash functions. In S. Fehr, editor, Public-Key Cryptography – PKC 2017, Lecture
Notes in Computer Science, vol 10175., pages 36–66. Springer, 2017. 3

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In J. Katz and H. Shacham,
editors, Advances in Cryptology – CRYPTO 2017, Lecture Notes in Computer Science, vol 10401, pages
67–98. Springer, 2017. 3, 15

BJK15. Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product encryption. In
T. Iwata and J. Cheon, editors, Advances in Cryptology – ASIACRYPT 2015, Lecture Notes in Computer
Science, vol 9452, pages 470–491. Springer, 2015. 3

BN05. Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel
and S. Tavares, editors, International workshop on selected areas in cryptography – SAC 2005, Lecture
Notes in Computer Science, vol 3897, pages 319–331. Springer, 2005. 67

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Y. Ishai, editor, Theory of Cryptography Conference – TCC 2011, Lecture Notes in Computer Science,
vol 6597, pages 253–273. Springer, 2011. 14

BV16. Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: unbounded attributes and semi-
adaptive security. In M. Robshaw and J. Katz, editors, Advances in Cryptology – CRYPTO 2016, Lecture
Notes in Computer Science, vol 9816, pages 363–384. Springer, 2016. 4

BV18. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption.
Journal of the ACM (JACM), 65(6):1–37, 2018. 3

BW05. Friederike Brezing and Annegret Weng. Elliptic curves suitable for pairing based cryptography. Designs,
Codes and Cryptography, 37(1):133–141, 2005. 67

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted inner
product functional encryption modulo p. In T. Peyrin and S. Galbraith, editors, Advances in Cryptology
– ASIACRYPT 2018, Lecture Notes in Computer Science, vol 11273, pages 733–764. Springer, 2018. 3

DDM16. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product with
full function privacy. In CM. Cheng, KM. Chung, G. Persiano, and BY. Yang, editors, Public-Key
Cryptography–PKC 2016, Lecture Notes in Computer Science, vol 9614, pages 164–195. Springer, 2016.
3

DOT18. Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded) multi-input inner
product functional encryption from the k-Linear assumption. In M. Abdalla and R. Dahab, editors,
Public-Key Cryptography – PKC 2018, Lecture Notes in Computer Science, vol 10770, pages 245–277.
Springer, 2018. 3

DP21. Pratish Datta and Tapas Pal. (Compact) adaptively secure FE for attribute-weighted sums from k-lin.
In Advances in Cryptology – ASIACRYPT 2021, Lecture Notes in Computer Science, vol 13093, pages
434–467. Springer, 2021. 7, 9

DPD21. Subhranil Dutta, Tapas Pal, and Ratna Dutta. Fully secure unbounded zero inner product encryption
with short ciphertexts and keys. In Q. Huang and Y. Yu, editors, International Conference on Provable
Security, Lecture Notes in Computer Science, vol 13059, pages 241–258. Springer, 2021. 4, 5, 11

DSP19. Edouard Dufour-Sans and David Pointcheval. Unbounded inner-product functional encryption with
succinct keys. In R. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung, editors, Applied Cryptography
and Network Security – ACNS 2019, Lecture Notes in Computer Science, vol 11464, pages 426–441.
Springer, 2019. 4, 5, 7, 9, 11, 15

EHK+17. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for
diffie–hellman assumptions. Journal of cryptology, 30(1):242–288, 2017. 18

FST10. David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-friendly elliptic curves. Journal
of cryptology, 23(2):224–280, 2010. 67

Gay20. Romain Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In IACR
International Conference on Public-Key Cryptography – PKC 2020, Lecture Notes in Computer Science,
vol 12110, pages 95–120. Springer, 2020. 3, 15

69

GKP+13. Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan, and Nickolai Zeldovich.
Reusable garbled circuits and succinct functional encryption. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 555–564, 2013. 3

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and
Communications security, pages 89–98, 2006. 3, 4

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits.
Journal of the ACM (JACM), 62(6):1–33, 2015. 3

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded assump-
tions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
60–73, 2021. 3

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In N. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
Lecture Notes in Computer Science, vol 4965, pages 146–162. Springer, 2008. 4, 8

KY19. Shuichi Katsumata and Shota Yamada. Non-zero inner product encryption schemes from various as-
sumptions: LWE, DDH and DCR. In D. Lin and K. Sako, editors, Public-Key Cryptography – PKC 2019,
Lecture Notes in Computer Science, vol 11443, pages 158–188. Springer, 2019. 14

Lin17. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In J. Katz
and H. Shacham, editors, Advances in Cryptology – CRYPTO 2017, Lecture Notes in Computer Science,
vol 10401, pages 599–629. Springer, 2017. 15

LKK+18. Joohee Lee, Dongwoo Kim, Duhyeong Kim, Yongsoo Song, Junbum Shin, and Jung Hee Cheon. Instant
privacy-preserving biometric authentication for hamming distance. Cryptology ePrint Archive, Paper
2018/1214, 2018. https://eprint.iacr.org/2018/1214. 8

LLW21. Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. New lattice two-stage sampling technique and its appli-
cations to functional encryption–stronger security and smaller ciphertexts. In A. Canteaut and FX.
Standaert, editors, Advances in Cryptology – EUROCRYPT 2021, Lecture Notes in Computer Science,
vol 12696, pages 498–527. Springer, 2021. 3, 4, 5, 7, 8, 11

LT19. Benoit Libert and Radu Titiu. Multi-client functional encryption for linear functions in the standard
model from LWE. In S. Galbraith and S. Moriai, editors, Advances in Cryptology – ASIACRYPT 2019,
Lecture Notes in Computer Science, vol 11923, pages 520–551. Springer, 2019. 3

LW11. Allison Lewko and Brent Waters. Unbounded HIBE and attribute-based encryption. In K.G. Paterson,
editor, Advances in Cryptology – EUROCRYPT 2011, Lecture Notes in Computer Science, vol 6632,
pages 547–567. Springer, 2011. 4

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In T. Rabin, editor, Advances in Cryptology – CRYPTO 2010,
Lecture Notes in Computer Science, vol 6223, pages 191–208. Springer, 2010. 12, 22

OT12a. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product
encryption. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology – EUROCRYPT 2012,
Lecture Notes in Computer Science, vol 7237, pages 591–608. Springer, 2012. 4

OT12b. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-
based encryption. In X. Wang and K. Sako, editors, Advances in Cryptology – ASIACRYPT 2012,
Lecture Notes in Computer Science, vol 7658, pages 349–366. Springer, 2012. 4, 5, 11, 13, 14, 19

OT15. Tatsuaki Okamoto and Katsuyuki Takashima. Achieving short ciphertexts or short secret-keys for adap-
tively secure general inner-product encryption. Designs, Codes and Cryptography, 77(2):725–771, 2015.
4

PD21. Tapas Pal and Ratna Dutta. CCA secure attribute-hiding inner product encryption from minimal
assumption. In Information Security and Privacy: 26th Australasian Conference, ACISP 2021, Virtual
Event, December 1–3, 2021, Proceedings, page 254–274, Berlin, Heidelberg, 2021. Springer-Verlag. 3, 4,
5, 8, 11, 14

Tom22. Junichi Tomida. Unbounded quadratic functional encryption and more from pairings. Cryptology ePrint
Archive, Paper 2022/1124, 2022. 6, 7, 10, 15, 17, 51, 54, 67

TT18. Junichi Tomida and Katsuyuki Takashima. Unbounded inner product functional encryption from bilinear
maps. In T. Peyrin and S. Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018, Lecture Notes
in Computer Science, vol 11273, pages 609–639. Springer, 2018. 4, 5, 6, 7, 9, 11, 14, 15, 17, 24, 25, 67

Wat09. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In S. Halevi, editor, Advances in Cryptology - CRYPTO 2009, Lecture Notes in Computer Science, vol
5677, pages 619–636. Springer, 2009. 11

70

https://eprint.iacr.org/2018/1214

Wee20. Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In R. Pass and
K. Pietrzak, editors, Theory of Cryptography Conference – TCC 2020, Lecture Notes in Computer Sci-
ence, vol 12550, pages 210–228. Springer, 2020. 3, 7, 15, 16, 17, 68

A Appendix

We provide the SIM-based security definition of UIPFE with permissive relations. As we
mentioned earlier that the permissive relation implies the strict relation, so we use the
following security model in the security analysis of our secret key UNP-IPFE in Section 6.3
with strict relation.

Definition 5 (SA-SIM Security for UIPFE). The UIPFE = (Setup,Enc,KeyGen,Dec) is
said to be semi-adaptive simulation (SA-SIM) secure if for any security parameter λ, any
PPT adversary A, there exists a PPT simulator S := (Setup∗,Enc∗,KeyGen∗) such that the
following holds

AdvUIPFE
A,SA-SIM(λ) :=

∣∣∣Pr[ExpReal
UIPFE,A(λ) = 1]− Pr[ExpIdeal

UIPFE,A,S(λ) = 1]
∣∣∣ ≤ negl(λ)

where the experiments ExpReal
UIPFE,A(λ) and ExpIdeal

UIPFE,A,S(λ) are defined as follows:

ExpReal
UIPFE,A(λ)

1: (PP,MSK)← Setup(1λ)
2: x∗ ← A(PP)
3: CT∗ ← Enc(PP,MSK,x∗)
4: b← AKeyGen(PP,MSK,·)(CT∗)

ExpIdeal
UIPFE,A,S(λ)

1: (PP∗,MSK∗)← Setup∗(1λ)
2: x∗ ← A(PP∗)
3: CT∗ ← Enc∗(PP∗,MSK∗, Ix∗)
4: b← AKeyGen∗(PP∗,MSK∗,·,·)(CT∗)

In the Real security experiment, KeyGen(PP,MSK, ·) is an oracle that takes input the secret
key vector y with associated the index set Iy and outputs SKy ← KeyGen(PP,MSK,y). In the
Ideal security experiment, KeyGen∗(PP∗,MSK∗, ·, ·) oracle returns a simulated secret key SK∗y
on input a key vector y with index set Iy and µ where the value of µ is 〈x∗,y〉 whenever the
condition (x∗,y) ∈ Rp holds, else µ = ⊥.

Now, we present the security definitions of UQFE and UP-IPFE with the permissive
relation in the IND-based model, which are needed for the security analysis of our UNP-
IPFE in Appendix A.1.

Definition 6 (Semi-Adaptive Indistinguishability). The UQFE =
(Setup,Enc,KeyGen,Dec) is said to be semi-adaptive indistinguishability (SA-IND) se-
cure if for any security parameter λ, any PPT adversary A, there exists a negligible function
negl such that the following holds

AdvUQFE
A,SA-IND(λ) :=

∣∣∣∣Pr
[
ExptUQFE

0,A,SA-IND(λ) = 1
]
− Pr

[
ExptUQFE

1,A,SA-IND(λ) = 1
]∣∣∣∣ ≤ negl(λ)

where the experiment ExptUQFE
β,A,SA-IND(λ) is defined for β ∈ {0, 1} as follows:

71

ExptUQFE
β,A,SA-IND(λ)

1: (MPK,MSK)← Setup(1λ)
2: ((z(0)

1 , z(0)
2), (z(1)

1 , z(1)
2))← A(1λ,MPK) where |Iz(0)

1
| = |Iz(1)

1
| and |Iz(0)

2
| = |Iz(1)

2
|

3: CT(β) ← Enc(MPK, z(β)
1 , z(β)

2)
4: β′ ← AKeyGen(MPK,MSK,·)(MPK,CT(β))
5: Outputs: β′

In this experiment, KeyGen(MPK,MSK, ·) is an oracle that takes input the secret key vector
f with the associated index set If (a cartesian product between two index sets If1 , If2) and
outputs the secret key SKf ← KeyGen(MPK,MSK, f) satisfying (z(0)

1 ⊗ z(0)
2)f> = (z(1)

1 ⊗
z(1)

2)f> whenever If1 ⊆ Iz(0)
1
, If2 ⊆ Iz(0)

2
and If1 ⊆ Iz(1)

1
, If2 ⊆ Iz(1)

2
. Here (Iz(0)

1
, Iz(0)

2
) and

(Iz(1)
1
, Iz(1)

2
) represents the index sets of the challenge message vectors (z(0)

1 , z(0)
2) and (z(1)

1 , z(1)
2)

respectively.

Definition 7 (Semi-Adaptive Weak Attribute-hiding Indistinguishability). The
UP-IPFE = (Setup,Enc,KeyGen,Dec) is said to be semi-adaptive weak attribute-hiding in-
distinguishability (SA-WAH-IND) secure if for any security parameter λ, any PPT adversary
A, there exists a negligible function negl such that the following holds

AdvUP-IPFE
A,SA-WAH-IND(λ) :=

∣∣∣∣Pr
[
ExptUP-IPFE

0,A,SA-WAH-IND(λ) = 1
]
− Pr

[
ExptUP-IPFE

1,A,SA-WAH-IND(λ) = 1
]∣∣∣∣ ≤ negl(λ)

where the experiment ExptUP-IPFE
β,A,SA-WAH-IND(λ) is defined for β ∈ {0, 1} as follows:

ExptUP-IPFE
β,A,SA-WAH-IND(λ)

1: (MPK,MSK)← Setup(1λ)
2: (w(0),w(1))← A(1λ,MPK) where |Iw(0) | = |Iw(1) |
3: (x(0),x(1))← AKeyGen(MPK,MSK,·,·)(MPK) where |Ix(0) | = |Ix(1) |.
4: CT(β)

x,w ← Enc(MPK,x(β),w(β))
5: β′ ← AKeyGen(MPK,MSK,·,·)(MPK,CT(β)

x,w)
6: Outputs: β′

In this experiment, KeyGen(MPK,MSK, ·, ·) is an oracle that takes input the key-predicate
vector pair (y,v) associated with the index sets Iy, Iv and outputs the secret key SKy,v ←
KeyGen(MPK,MSK,y,v). The secret key queries satisfy the following conditions:

– if (w(b),v) ∈ Rp for b = 1, 2 then 〈w(0),v〉 = 〈w(1),v〉,
– if R(w(0),v) = R(w(1),v) = 1 and (x(b),y), (w(b),v) ∈ Rp then 〈x(0),y〉 = 〈x(1),y〉.

A.1 IND-based Security Analysis of UNP-IPFE of Section 6

Theorem 4. Assuming the underlying UQFE and UIPFE schemes are SA-IND-based secure
in the public key setting, then UNP-IPFE scheme as described in Sec. 6 is a SA-WAH-IND
secure as per Def. 7.

72

Proof. We consider a PPT adversary A against SA-WAH-IND security of the UNP-IPFE
scheme. Let us choose an adversary B1 against SA-IND security of the underlying UQFE
scheme and an adversary B2 against SA-IND security of the underlying UIPFE scheme. In
particular, we show that if A can break the SA-WAH-IND security of the UNP-IPFE scheme,
then there exist PPT adversaries B1, B2 which will break SA-IND security of the UQFE and
SA-IND security of the UIPFE scheme.

To prove this theorem, consider the following games. We start with Game 0 which is the
real SA-WAH-IND security experiment as mentioned in Def. 7 where the challenger chooses
the random bit as β = 0. Then we modify this game in Game 1 and finally end up in Game
2 where the random bit (chosen by the challenger) is converted to β = 1. We proof the
indistinguishability between corresponding games using the security of UQFE and UIPFE.
Let Eι denotes the event that A outputs 1 in Game ι. Now, we formally describe the games
as follows:

Game 0: Game 0 is the same as real security experiment ExptUNP-IPFE
0,A,SA-WAH-IND(λ) of Def. 7.

All the secret key queries corresponding to the key-predicate vector pair (y,v) associated
with the index sets Iy, Iv must satisfy the restrictions as given in Def. 7. The challenge
ciphertext CT(0)

x,w = (UQFE.CT(0),UIPFE.CT(0)) corresponding to the pair of vectors (x(0),
w(0)) is generated as

UQFE.CT(0) = UQFE.Enc(UQFE.MPK,x(0),w(0)),
UIPFE.CT(0) = UIPFE.Enc(UIPFE.MPK,w(0)).

The secret key SKy,v = (UQFE.SKy⊗v,UIPFE.SKv) associated with the pair of vectors (y,v)
are generated as

UQFE.SKy⊗v = UQFE.KeyGen(UQFE.MSK,y⊗ v),
UIPFE.SKv = UIPFE.KeyGen(UIPFE.MSK,v).

Game 1: Game 1 is identical with Game 0 except the second component of the challenge
ciphertext is now replaced with

UIPFE.CT(1) = UIPFE.Enc(UIPFE.MPK,w(1))

Therefore, the challenge ciphertext can be represented as (UQFE.CT(0), UIPFE.CT(1)). Con-
sider, B2 is an admissible adversary for the SA-IND security game of UIPFE. From the ad-
missible condition of SA-WAH-IND)(as per Def. 7), it holds that 〈w(0),v〉 = 〈w(1),v〉 for all
secret key queries corresponding to the key, predicate vectors y,v satisfying (w(b),v) ∈ Rp.
Therefore, the advantage of A in distinguishing between Game 1 and Game 2 is exactly
the same as the advantage in distinguishing between the experiments ExptUIPFE

0,B2,SA-IND(λ) and
ExptUIPFE

1,B2,SA-IND(λ). Thus, we have

|Pr[E0]− Pr[E1]| ≤ AdvUIPFE
B2,SA-IND(λ).

73

Game 2: Game 2 is the same as Game 1 except the second component of the challenger
ciphertext is now replaced by

UQFE.CT(1) = UQFE.Enc(UQFE.MPK,x(1),w(1))

Observe that, for 〈w(0),v〉 = 〈w(1),v〉 6= 0, i.e., when the decryption succeeds, it holds
that 〈x(0),y〉 = 〈x(1),y〉 whenever (w(b),v), (x(b),y) ∈ Rp. Therefore, B1 is an admissible
adversary for the SA-IND security game of UQFE since

(x(0) ⊗w(0))(y⊗ v)> = 〈x(0),y〉〈w(0),v〉 = 〈x(1),y〉〈w(1),v〉 = (x(1) ⊗w(1))(y⊗ v)>

holds for all key queries made by B1 satisfying (w(b),v), (x(b),y) ∈ Rp. Thus, the advantage
of A in distinguishing between Game 1 and Game 2 is exactly the same as the advantage in
distinguishing between the experiments ExptUQFE

0,B1,SA-IND(λ) and ExptUQFE
1,B1,SA-IND(λ), and we have

|Pr[E1]− Pr[E2]| ≤ AdvUQFE
B1,SA-IND(λ).

This completes the security proof.

74

	Unbounded Predicate Inner Product Functional Encryption from Pairings
	Introduction
	Our Contributions
	Related work

	Technical Overview
	Public Key UP-IPFE: UZP-IPFE
	Secret Key UP-IPFE: UNP-IPFE

	Preliminaries
	Bilinear Groups
	Complexity Assumptions
	Dual Pairing Vector Space
	Pseudorandom Function
	Unbounded Predicate Inner Product Functional Encryption

	Our Full Attribute-hiding UZP-IPFE
	Construction
	Security Analysis

	Our Succinct UQFE
	Construction
	Simulator
	Security Analysis

	Our Weak Attribute-Hiding UNP-IPFE
	Construction
	Simulator
	Security Analysis
	Instantiations

	Appendix
	IND-based Security Analysis of UNP-IPFE of Section 6

