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Abstract.

Despite its popularity, password based authentication is susceptible to var-
ious kinds of attacks, such as online or offline dictionary attacks. Employing
biometric credentials in the authentication process can strengthen the provided
security guarantees, but raises significant privacy concerns. This is mainly due
to the inherent variability of biometric readings that prevents us from simply
applying a standard hash function to them. In this paper we first propose
an ideal functionality for modeling secure, privacy preserving biometric based
two-factor authentication in the framework of universal composability (UC).
The functionality is of independent interest and can be used to analyze other
two-factor authentication protocols. We then present a generic protocol for bio-
metric based two-factor authentication and prove its security (relative to our
proposed functionality) in the UC framework. The first factor in our protocol
is the possession of a device that stores the required secret keys and the second
factor is the user’s biometric template. Our construction can be instantiated
with function hiding functional encryption, which computes for example the
distance of the encrypted templates or the predicate indicating whether the
templates are close enough. Our contribution can be split into three parts:
– We model privacy preserving biometric based two-factor authentication as

an ideal functionality in the UC framework. To the best of our knowledge,
this is the first description of an ideal functionality for biometric based
two-factor authentication in the UC framework.

– We propose a general protocol that uses functional encryption and prove
that it UC-realizes our ideal functionality.

– We show how to instantiate our framework with efficient, state of the
art inner-product functional encryption. This allows the computation of
the Euclidean distance, Hamming distance or cosine similarity between
encrypted biometric templates. In order to show its practicality, we im-
plemented our protocol and evaluated its performance.

Keywords: cryptographic protocols · biometric authentication · privacy pre-
serving computation · universal composability

1 Introduction

It is long known that password based authentication is not very secure. Users
tend to choose bad passwords and frequent leaks of password databases en-
able offline attacks. Biometric authentication mitigates many of these problems
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and has better usability, since users do not have to remember their passwords
anymore. However, the use of biometric authentication entails new problems.
Biometric readings present inherent variability and, thus, common protection
mechanisms such as standard hash functions or encryption cannot be employed.
Furthermore, the client’s biometric template (e.g. face, iris-scan or fingerprint)
can be considered privacy sensitive, as it may reveal ethnic origin or even health
conditions and, therefore, should remain private. Also, unlike passwords, bio-
metrics cannot be changed, hence, the breach of a biometric database may have
more severe consequences than the breach of a password database. Thus, for
both privacy and security reasons it is important to achieve reliable authentica-
tion, while preventing the server from seeing the client’s biometric templates. A
general technique to make authentication more secure is two-factor authentica-
tion. This incorporates a second factor in the authentication process, so that in
addition to the password or biometric the user needs for example a secret key
that is stored on a phone or a secure hardware device. This makes an attack
more difficult because it requires the attacker to get both the device and the
biometric/password.

Homomorphic encryption and general multiparty computation have been
used in the past to construct privacy preserving biometric authentication sys-
tems. However, using general multiparty computation usually requires multiple
rounds of communication, which can reduce efficiency. Approaches using homo-
morphic encryption (e.g. [19]) have the problem that some part of the server
needs to know the secret key to be able to decrypt the authentication decision.
This also means that, when the entire server infrastructure is compromised, the
attacker learns both the secret key and the encrypted templates and thereby
the cleartext templates. Functional encryption (FE) is similar to homomorphic
encryption in that it allows computing on encrypted data. The important ad-
vantage of FE in the biometric authentication setting is that it allows the server
to learn the result of the computation in cleartext without having access to the
secret key that allows decryption of the templates. Depending on the underlying
FE scheme, the server only learns the distance of the biometric templates, or
only the fact whether this distance is below a certain threshold. This makes FE
well suited for the use case of biometric authentication.

Function hiding inner-product functional encryption (fh-IPFE) essentially
allows computing the inner-product of two encrypted vectors. Therefore, fh-
IPFE and its restricted and more efficient variant of single-key fh-IPFE has
been used in the past to construct privacy preserving biometric authentication
and identification systems ([7, 18, 15, 5]). Since one of the biometric templates is
encoded as the function, the function hiding property is important, as otherwise
this template would not be hidden. Because fh-IPFE only exists in the secret key
setting and this key needs to be stored somewhere, it is very natural to consider
fh-IPFE in the setting of two-factor authentication, where the first factor is the
secret key stored on the device and the second factor is the user’s biometric.

However, the security of these constructions has not been studied in the con-
text of more complex systems in which multiple users have accounts on multiple
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servers and the authentication protocol is executed in conjunction with other
protocols. For example a user could try to authenticate towards two different
servers at the same time with very similar or identical biometric templates.
Even if both servers are corrupted they should learn no more than the output of
the authentication protocol. It is also important that an attacker, who is in con-
trol of the network, can neither learn anything about the biometric templates,
nor impersonate a legitimate user. Furthermore, a malicious server should not
be able to use the authentication message of a user to impersonate that user to
another server.

Let us illustrate the danger of too restrictive security models with a con-
crete example. For their biometric authentication system the authors of [7] only
consider the privacy of the biometric templates in a setting with a single client
and a single server. However, the model does not guarantee security, i.e. it does
not guarantee that it is hard to impersonate an honest client. Concretely, in the
security definition the adversary gets access to one oracle for each the enrolment
phase and the authentication phase. In the real world these oracles call the actual
IPFE scheme, whereas in the ideal world a simulator has to produce the answers
without knowing the biometric template. This guarantees that an attacker can-
not learn anything about the biometric templates from the ciphertexts. However,
this does not guarantee that it is hard to impersonate an honest client. In fact,
an attacker can send a random vector as ciphertext, which causes the output to
be a random number. With their first parameter-set this is a random number in
Z220 . When the threshold for the biometric authentication system is e.g. τ = 32,
then the probability that a random number is below τ is 2−15. This is a too
high chance to impersonate a legitimate user for an attacker who does neither
know the secret key nor the user’s biometric. This example illustrates why it is
important to model both privacy and security in complex environments.

Contribution: In order to fill this gap, we model biometric authentication as an
ideal functionality in the framework of universal composability (UC) ([6]). This
guarantees that the resulting protocols remain secure even in complex systems
and in the presence of powerful attackers. Our ideal functionality can also serve
as basis for the analysis of new protocols for two-factor authentication. In the
second step we propose a biometric based two-factor authentication protocol
that generically uses (single-key) function hiding functional encryption (fh-FE)
and signatures and formally prove that it realizes our ideal functionality. The
first factor is the secret key that is stored in secure hardware and the second fac-
tor is the biometric template. Next, we show how to instantiate our framework
with (single-key) fh-IPFE schemes so that it can compute either the Euclidean
distance, Hamming distance, or cosine similarity on encrypted biometric tem-
plates. We stress that our framework can also be instantiated in a way (e.g. with
techniques of [5]) that does not leak the distance of the templates to the server,
but only outputs the yes-no authentication decision. Finally, we describe the
proof of concept implementation of our protocol and present the results of the
performance tests. Thereby, we get a secure, privacy preserving and composable
biometric authentication protocol. Furthermore, the protocol is practically effi-
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cient and both enrolment and authentication only require a single message from
the client to the server. Our contribution can be summarized as follows:
– We provide a UC formalization of (two-factor) biometric authentication.
– We propose a general protocol/framework that realizes our ideal functional-

ity, which can be instantiated with fh-FE and signatures.
– We provide a concrete instantiation with fh-IPFE for computing the Eu-

clidean distance, Hamming distance or cosine similarity and a proof of con-
cept implementation.

1.1 Related Work

Universally Composable Biometric Authentication: Universally composable bio-
metric authentication has received some attention in the literature ([11],[10],[1],[2]).
Dupont et al. [10] considers fuzzy (symmetric) password authenticated key ex-
change, where the server also has to know the password in the clear. This prob-
lem is solved in [11] by moving to the asymmetric setting. Their protocol can
be used for biometric authentication with binary vectors and the Hamming dis-
tance. Asymmetric password authenticated key exchange is a stronger notion
of authentication than ours, since it considers mutual authentication, whereas
in our case only the client authenticates to the server. However, it is usually
less efficient, as Erwig et al. [11] note that “. . . going beyond password sizes of,
say, 40 bits does not seem feasible.”, where e.g. iris templates for the Hamming
distance are usually more than 1000 bits long (see e.g. [8], [4]). Agrawal et al.
[1] construct a biometric authentication system in which the reference template
is secret shared among three client devices. However, having three connected
devices whenever one wants to authenticate is not always practical. Agrawal et
al. [2] consider the scenario in which a client wants to get access to a certain
area and the client’s device, an external terminal and service provider interact in
order to perform the enrolment and the biometric matching. This is a different
setting than ours.

Function Hiding Inner-Product Functional Encryption for Biometrics: Function
hiding IPFE has already been used for biometric authentication ([7]) and identi-
fication ([18], [15], [5]), however their security models do not take composability
into account. Composability is an important property when a protocols runs
in conjunction with other protocols in a complex environment like the inter-
net. Both [18] and [15] only rely on the security definition of IPFE but have
no authentication or identification related security model. The security model
of [5] does take biometrics into account, but is specific to searchable encryption.
The work most closely related to ours is [7], because it is the only one that di-
rectly considers biometric authentication. Their security model is for biometric
authentication, however it only considers one user and one server and does not
guarantee that it is hard to impersonate another user. Both [7] and [18] have pro-
posed constructions for fh-IPFE. Contrary to existing work, we propose for the
first time a general protocol for privacy-preserving biometric based two-factor
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authentication that provides UC security guarantees and can be instantiated
using any suitable fh-FE scheme including the ones proposed by [7] and [18].

Other Biometric Authentication Protocols: There are many other protocols for
privacy preserving biometric authentication, such as [24, 14, 25, 3, 13]. The
authors of [24] and [13] consider biometric authentication for secure messaging
and text search, respectively, which is a different setting than ours. The authors
of [14], [25] and [3] consider the classical setting of a client authenticating to
a server. The disadvantage of [3] and [14] is that the protocols need two non-
colluding servers and that they are not secure against fully malicious attackers.
The authors of [25], only consider the privacy of the client’s biometrics, but not
security against e.g. impersonations. None of them takes security under general
composition into account.

Jarecki et al. [17] propose protocols for secure, password based two-factor
authentication, where the user has a password and additionally owns a “crypto-
capable device”. They provide a very detailed security analysis of their protocol
in a game base setting. The main difference to our setting is that we use the UC
framework and that we work with biometrics instead of passwords.

2 Preliminaries

Notation: We write [n] for {1, . . . , n}. We use boldface letters such as v for
vectors and we write vi for the i-th entry of v. With ‖v‖ we denote the L2
norm of v. We write C for a client, S for a server, A for the adversary, Sim for
the simulator and Z for the environment. With reference template we mean the
biometric template used for enrolment and with probe template we mean the
template used for authentication. We usually denote them as b and b′.

2.1 (Secret Key) Function Hiding Functional Encryption

Definition 1. A secret key functional encryption scheme for a set of functions
F , which map from X to Y consists of the following four algorithms:
– FE.Setup(1λ) outputs public parameters pp and the master secret key msk
– FE.KeyGen(msk, f ∈ F) outputs a functional decryption key skf
– FE.Enc(msk, x ∈ X ) outputs a ciphertext cx
– FE.Dec(skf , cx) outputs a value y ∈ Y

We assume that pp is given as implicit input to all other FE algorithms.
Correctness: A functional encryption scheme FE is correct if ∀msk← FE.Setup(1λ),
∀f ∈ F ,∀x ∈ X it holds that FE.Dec(FE.KeyGen(msk, f),FE.Enc(msk, x)) =
f(x).

In the special case of inner-product functional encryption (IPFE), which
we use for our instantiation in Section 5, the inputs are X := Znq \ {0n} and
F := {fy : y ∈ Znq \ {0n}}, where fy(x) := 〈y, x〉.
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Definition 2. For b ∈ {0, 1} we define ExpbA(λ) as the following experiment:
The experiment generates (pp,msk) ← FE.Setup(λ) and gives pp to A. The ex-
periment then answers the following types of oracle queries from A:
– QKeyGen(f0, f1): The experiment returns sk← FE.KeyGen(msk, fb).
– QEnc(x0, x1): The experiment returns c← FE.Enc(msk, xb).

When A outputs a guess bit b′, ExpbA outputs the same b′.

Definition 3. (Admissible adversaries) For an adversary A, let (f10 , f
1
1 ), . . . ,

(fQK0 , fQK1 ) and (x10, x
1
1), . . . , (x

QE
0 , xQE1 ) be the QKeyGen and QEnc queries. We

say that an adversary is admissible if ∀i ∈ [QK ],∀j ∈ [QE ] : f
i
0(x

j
0) = f i1(x

j
1).

Considering only admissible adversaries prevents A from trivially winning the
game by querying functions and inputs with different output values. We say that
an FE-scheme FE is fh-IND-secure, if for all admissible PPT adversaries A there
is a negligible function negl(λ) such that for all large enough λ

| Pr
[
Exp0A(λ) = 1

]
− Pr

[
Exp1A(λ) = 1

]
| ≤ negl(λ) .

We say that an FE-scheme FE is single-key fh-IND-secure if the above holds
for the modified version of the experiment were only the first QKeyGen query
is answered, i.e. A only gets a single key. The function hiding property of the
definition is given by the fact that A does not know whether they got a secret
key for f0 or f1.

3 Modeling Biometric Authentication in the UC
Framework

In this section we describe our approach to modeling biometric based two-factor
authentication in the UC framework. We start by describing the threat model
and proceed by motivating and stating our ideal functionality. We then explain
the meaning of the functionality’s different interfaces. Furthermore, we describe
how we model message transfer and corruptions in the real world. We conclude
by discussing some design decisions and the security and privacy guarantees that
our functionality provides.

3.1 Threat Model

In this section we describe the threat model we consider. We will discuss the
attacker’s capabilities in more detail in Section 3.2, where we explain the dif-
ferent interfaces of the ideal functionality. We expect our protocol to be used
for authentication over the internet. Communication is supposed to be done via
TLS, which means that clients can send messages to a server and be sure that
only the server can read them. On the other hand, the server does not know who
the sender of a message is. We assume that the attacker controls the network.
So the attacker notices when a message is sent. Although the attacker cannot
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read the messages sent via TLS, they can delay or block them or inject their
own messages.

The attacker can corrupt both arbitrary clients and the server and then
control their actions in arbitrary ways, i.e. we consider malicious corruptions.
For simplicity we only consider static corruptions of the server which means,
that the server is corrupted either the entire time or not corrupted at all. Clients
can be corrupted adaptively, i.e. the attacker can decide at any point in time
to corrupt an arbitrary client. However, looking ahead, we will assume that the
clients’ keys are stored in secure hardware. So when the attacker corrupts a
client, they will only gain control over that client’s actions and gain blackbox
access to the secure hardware. This means, they can give to the secure hardware
instructions to enrol or authenticate, but they do not learn the internal state
of the secure hardware. The use of secure hardware is also the reason why the
attacker does not immediately learn the user’s biometric reference template, even
if they corrupt both the server and the client. Nevertheless, in the case that the
adversary corrupts both the client and the server, they may be able to extract
the biometric reference template (cf. Section 3.2 for an explanation of when this
is possible).

3.2 The Ideal Functionality

We will first describe a simple ideal functionality in Figure 1 for two-factor au-
thentication with biometrics as a second factor. Then we explain the changes
that we applied to this simple functionality in order to get to the actual two-
factor authentication functionality Fout

2FA in Figure 2. Both functionalities are
parameterized with the out(·, ·) function, which will be part of our framework. It
models both the output that the server gets from the protocol and the informa-
tion that is leaked about the biometric templates. For example the out function
could return the distance of the biometric templates, which would then mean
that the server learns this distance. Alternatively the out function could only
return one bit, indicating whether the biometric templates are close enough.

− On (Enrol, sid, uid, b) from C
• if there is no record 〈·, ·, C〉:
∗ store 〈uid, b, C〉 and send (enrol, sid, uid) to S

− On (Auth, sid, uid, b′) from C:
• if there is a record 〈uid, b, C〉:
∗ send (auth, sid, uid, out(b, b′)) to S

• else send (auth-fail, sid) to S

Fig. 1: The code of the simplified ideal functionality.

We want to capture the setting of two-factor authentication where the first
factor is a secret key stored on the user’s phone or a dedicated hardware device.
The second factor is the user’s biometric. In our model the client C is the device
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on which the secret key is stored and the user is the actual person. For enrolment
the client sends the user-id uid, such as an email address, and the biometric
reference template b to the ideal functionality. If that client is not yet enroled,
the ideal functionality stores an internal record and notifies the server that a
client with uid has enroled. Note that the server gets no information about b.

For the authentication, C again sends the user-id and a fresh biometric tem-
plate b′ to the ideal functionality. If and only if the same client has previously
enroled with the same user-id, the ideal functionality gives out(b, b′) to S. De-
pending on the underlying FE scheme this can be the distance of the templates
or the yes-no authentication decision. Note that apart from out(b, b′) the server
learns nothing about the biometric templates. The fact that the ideal function-
ality checks that the identity C of the client in the authentication phase is the
same as the identity of the client in the enrolment phase represents the first fac-
tor, i.e. possession of the secret key. Because in the UC framework clients cannot
fake their identity, a client cannot authenticate with the uid of another client.
The second factor, i.e. the biometric authentication is represented by the ideal
functionality storing the biometric templates and giving out(b, b′) to the server.

This simple functionality, however, does not capture all actions that an ad-
versary can take in the real world. Therefore, we added several interfaces in order
to model the adversary’s capabilities. Also we exchanged the uid by a randomly
chosen rid to avoid that two clients enrol with the same identifier. The resulting
functionality Fout

2FA is shown in Figure 2.

Meaning of the interfaces of Fout
2FA: Here we explain the meaning of all the

interfaces of Fout
2FA and their connection to reality.

The (Enrol, sid, ssid, b) and (Auth, sid, ssid, b) interface of a client C:
These are the interfaces that a client would use for normal enrolment and authen-
tication. All other interfaces are there to model the adversary’s capabilities. We
let the environment Z choose the biometric template and the time of enrolmen-
t/authentication, because in practice we do not have control over the biometric
template or the timing. In UC-PAKE for example the environment also chooses
the credential i.e. the password and the time of enrolment/authentication (cf.
[16]). Letting the environment choose the biometric templates of the clients and
the time (and order) of their enrolments/authentications is in a sense like taking
the worst case of possible events in reality.

The EnrolOK and AuthOK interfaces: In the real world the ad-
versary can delay or block messages. The EnrolOK and AuthOK interfaces
model the fact that messages are only delivered when A explicitly allows this.

The (Enrol, sid, ssid, rid, b) and (Auth, sid, ssid, rid, b′) interface of A:
These two interfaces are necessary because the adversary has more control over
the records of corrupted clients. Our ideal functionality in Figure 2 has an Enrol
interface which explicitly allows the adversary to enrol malicious clients with
arbitrary rid. All clients enroled in that way are explicitly stored as adversar-
ially enroled clients by Fout

2FA. The adversary can then use its Auth interface
to authenticate in the name of any such client. Importantly, the adversary has,
through their Enrol and Auth interfaces, only influence on the records of the
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This functionality interacts with a server S (specified in the sid) and arbitrary
clients. It is parameterized by the function out(·, ·), which determines the output
that S gets.
Enrolment:
− On (Enrol, sid, ssid, b) from C
• if there is no record 〈enrol-request, ·, ·, C〉:
∗ store 〈enrol-request, ssid, b, C〉
∗ send (enrol, sid, ssid, C) to A

− On (EnrolOK, sid, ssid) from A
• if there is a record 〈enrol-request, ssid, b, C〉 and no record 〈enroled, C, ·, ·〉:
∗ sample rid←$ {0, 1}λ
∗ store 〈enroled, C, rid, b〉
∗ if the record 〈enrol-request, ssid, b, C〉 is marked corrupted:
· mark the record 〈enroled, C, rid, b〉 as corrupted

∗ send (enrol, sid, ssid, rid) to S

− On (Enrol, sid, ssid, rid, b) from A:
• if there is a record 〈enroled-adversarial, rid, ·〉 or 〈enroled, ·, rid, ·〉:
∗ send (enrol, sid, ssid,⊥) to S

• else: store 〈enroled-adversarial, rid, b〉 and send (enrol, sid, ssid, rid) to S

Authentication:
− On (Auth, sid, ssid, b′) from C:
• if there is a record 〈enrol-request, ·, ·, C〉:
∗ store 〈auth-request, ssid, b′, C〉
∗ send (auth, sid, ssid, C) to A

− On (AuthOK, sid, ssid) from A:
• if there is a record 〈auth-request, ssid, b′, C〉:
∗ if there is a record 〈enroled, C, rid, b〉:
· delete the record 〈auth-request, ssid, b′, C〉 and send (auth, sid, ssid, rid, out(b, b′)) to S

∗ else delete the record 〈auth-request, ssid, b′, C〉 and send (auth-fail, sid, ssid) to S

− On (Auth, sid, ssid, rid, b′) from A:
• if there is a record 〈enroled-adversarial, rid, b〉
∗ send (auth, sid, ssid, rid, out(b, b′)) to S

• else send (auth-fail, sid, ssid) to S

Corruption and impersonation:

− On (Corrupt, sid, C) from A:
• if there is a record 〈enroled, C, rid, b〉:
∗ mark the record corrupted
∗ send (corrupted, sid, rid) to A

• if there is a record 〈enrol-request, ssid, ·, C〉:
∗ mark the record corrupted
∗ send (corrupted, sid, rid) to A

− On (TryImpersonate, sid, ssid, C, b′) from A:
• if there is a record 〈enroled, C, rid, b〉 that is marked corrupted:
∗ send (auth, sid, ssid, rid, out(b, b′)) to S

Fig. 2: The code of the ideal functionality Fout
2FA.
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adversarially enroled clients. This guarantees that the adversary cannot authen-
ticate in the name of an honest client and, thus, cannot impersonate an honest
client by using this interface.

The Corrupt and TryImpersonate interfaces: The adversary can
use the Corrupt interface to corrupt an honest client and thereby bypass the
first authentication factor. In reality this could mean that the adversary has
gained remote access to the device that the client uses. It can also mean that the
adversary has stolen the device or secure hardware token and has physical access
to it. These two cases are modeled by the same interface, because in both cases
the adversary gains the same capabilities, namely to try to impersonate the client
with a self-chosen biometric template. This is modeled by the TryImpersonate
interface, where A can specify a client C and a biometric template b′. If C has
been corrupted previously, Fout

2FA will send (auth, sid, ssid, rid, out(b, b′)) to the
server S. Thus, essentially the impersonation attempt will only succeed if A
knows a biometric template b′ that is close enough to the reference template b
and thereby bypasses the second authentication factor. This meaningfully models
reality where the adversary can only successfully impersonate an honest client
if they both have access to the device and know a matching biometric template.

Modeling corruptions in the real world: The code in Figure 3 models the client’s
behavior upon corruption. This code is not part of the protocol that would be
executed in reality, but is added to the client in the real world experiment in the
UC framework in order to properly model client corruptions. In the language of
the UC framework, this code describes the behavior of the client’s shell, whereas
the body contains the actual protocol code. Later in our protocol we assume the
use of secure hardware for storing key material and computing the enrolment and
authentication messages, which is also reflected in the code in Figure 3. Namely,
the adversary does not get the internal state of the client, but only blackbox
access to the secure hardware. This means that A can try to impersonate a
client by giving a biometric template b′ to the secure hardware and forwarding
the message to the server. We distinguish the host from the secure hardware.
The host would usually be the software on a smartphone or laptop and the secure
hardware would be a special chip in the phone or laptop, or a USB-stick like
hardware token.

When one wants to instantiate our model without the use of secure hardware
then it is necessary to adapt the code in Figure 3 to return the entire local state
of the client and then exactly follow the instructions from A.

Modeling message transfer in the real world: Messages in our framework will be
sent via the F ′SMT functionality (Figure 4), which is an adaption of FSMT from
[6]. It is meant to model TLS connections where the server is authenticated via
a certificate but the client is not authenticated. This is modeled by the fact that
F ′SMT, as opposed to FSMT, does not give the client’s identity C to the server.
However, the client can be sure that only the server can read the message. It
is important to model this, because giving the client’s identity C to the server
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This code describes the behavior (of the shell) of a client C upon corruption.
− On (Corrupt, sid) from A
• if C is enroled (i.e. (Enrol, ·, ·)) has been called before:
∗ set flag corrupted
∗ from now on ignore every input from Z and only take instructions from A
∗ send (corrupted, sid) to A

− On (TryImpersonate, sid, ssid, b′) from A
• if flag corrupted is set
∗ give (Auth, sid, ssid, b′) to the secure hardware in the name of the host
∗ when getting an output m from the secure hardware, send m to A

Fig. 3: The code modeling client behavior corruption.

− On (Send, sid,S,m) from a client C
• send (sent, sid, C,S, l(m)) to A

− On (ok, sid) from A:
• If not yet generated output then send (Sent, sid,m) to server S

Fig. 4: The code of the F ′
SMT functionality (adapted from [6] to mimic TLS messages).

would make further authentication unnecessary. Simply put, we will use F ′SMT
to capture the client’s instruction “send m to S over the internet via TLS”.

On using rid instead of uid: It is important that the server gets a unique identifier
with which they can link account information such as the user’s bank account.
We chose to replace the environment supplied uid by a rid that is randomly
chosen by Fout

2FA in the enrolment phase. This reduces the options of Z, as now
Z cannot make two honest clients enrol with the same identifier. Of course the
server can still store the user’s email address alongside to the user record.

On (not) including an interface for the adversary to guess the biometric: Other
authentication functionalities such as in [16] and [11] have an interface that A
can use to make online or offline password guesses. Our functionality does not
have an interfaces for offline guesses of credentials, because even if the server is
corrupted, our protocol protects against such an attack. This is possible, because
as opposed to [16] and [11] in our case the client stores secret key material.
Looking ahead, the only way that A could perform an offline attack is after both
corrupting the server and the client and breaking the security of the client’s
secure hardware module. Note that it is not enough to corrupt the client and
break the security of the hardware module, because all data, which the hardware
module stores, are independent of the biometrics. Regardless, our protocol builds
on the assumption that the secure hardware is indeed secure and, thus, such an
attack is out of scope of our model.

The TryImpersonate-interface can be seen as a way of allowing A to per-
form online credential guesses for specific clients. Note, however, that this is only
possible after A has corrupted the respective client.
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On using passwords instead of biometrics: Although our ideal functionality in
Figure 2 is aimed at capturing biometric authentication, it does in fact also
capture password based authentication. Whether the inputs to the interfaces for
the functionality are biometric templates or passwords does not matter. In order
to perform equality checks on the passwords, one simply has to define the out(·, ·)
function to return 1 if both arguments are equal (i.e. the passwords match), and
0 otherwise. Additionally our functionality naturally captures typo tolerance in
the password matching. For that, the out(·, ·) function would be set to return
1 if the passwords match except for some common typos. This increases the
applicability of our functionality to a wider range of scenarios.

Discussion of the security guarantees: The functionality Fout
2FA guarantees that

an attacker cannot impersonate an honest client without corrupting that client
and having a matching biometric template. The only way for A to impersonate
a client is through the TryImpersonate interface, after calling the Corrupt
interface.

The functionality also guarantees that nobody learns anything about the
biometric templates, except of what can be inferred from the out function. This
can be seen by observing that Fout

2FA’s behavior does not depend on the biometric
templates and the only way a biometric template appears in Fout

2FA’s output is
within out(b, b′). This holds even if the server is malicious and an arbitrary
number of clients is corrupted. The same holds for the impossibility of offline
guessing attacks, as Fout

2FA simply does not allow them. However, if the adversary
corrupts both a client and the server, then they can try to impersonate that client
with arbitrary biometric templates and at the same time learn the result of the
out-function. When the out-function is the distance of the two templates, then
the adversary can often reconstruct the corrupted client’s reference template
from these results. Note however, that this is only possible when both the client
and the server are corrupted. Under these circumstances many protocols do not
retain any security guarantees. Our protocol in Section 4.3 achieves these strong
guarantees by using secure hardware on the client side.

Although the ideal functionality is for a single server, the composition the-
orem of [6] guarantees security also in situations with multiple servers, when
there is one instance of Fout

2FA per server. A single user can also have multiple
accounts at possibly different servers. In that case the user’s device would run
multiple instances of the protocol in Figure 6. Again the composition theorem
of [6] ensures that the security guarantees of Fout

2FA still hold.

4 The Framework

In this section we describe our general protocol Π2FA and show that it UC
realizes Fout

2FA. We start by describing a concrete use case in which our protocol
could be used in practice. We then define several algorithms that are used in our
protocol and the security proof and define their correctness. Every instantiation
of our general protocol needs to instantiate these algorithms. Then we describe
our general protocol and prove its security.
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4.1 Use Case

In our use case in Figure 5 the user has a device such as a smartphone or laptop
(the host in Figure 6) and wants to authenticate to a server. The secret keys of
the FE scheme and the signature scheme are stored in secure hardware. This can
be an external hardware token as in Figure 5, or a trusted execution environment
on the phone such as ARM’s TrustZone. For enrolment and authentication the
device takes the user’s biometric template and gives it to the secure hardware.
The secure hardware can optionally do liveness detection, i.e. trying to detect if
the biometric data is coming from a live person or if e.g. somebody is holding a
photo in front of the camera. In the next step, the secure hardware encodes and
encrypts the biometric template and sends the resulting message to the server.
The server then performs the enrolment or authentication. Thus, the client can
authenticate to the server in a secure and privacy preserving manner. The first
factor of the authentication is the possession of the hardware token and the
second factor is the user’s biometric. When an attacker compromises the user’s
host device or steals the hardware token, they cannot impersonate the user, as
they are lacking the user’s biometric.

3 rid, c, σ

4 auth, rid, c, σ
1 b

2 b

Fig. 5: The authentication phase of our use case where the secret keys are stored on a
secure hardware token.

This use case is very similar to the setting of FIDO2 [12]. However, in FIDO2
the biometric matching is performed in the secure hardware. Both with our pro-
tocol in Section 4.3 and with FIDO2, if the attacker manages to compromise
the keys in the secure hardware, then they can impersonate the user. However,
an advantage of our protocol over FIDO2 is that in this case the user’s bio-
metric reference template remains secret, because the data stored on the secure
hardware do not depend on the reference template.

4.2 Requirements

Let Sig = (Sig.Gen,Sig.Sign,Sig.Vfy) be a EUF-CMA secure signature scheme. Let
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) be a fh-IND secure FE scheme for
the family of functions F , the input space X and output space Y. To instantiate
our framework the following six algorithms have to be defined and fulfill certain
properties:
– encodeRef(·) : B → F , takes the reference template and encodes it as func-

tion of the FE scheme
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– encodeProbe(·) : B → X , takes the probe template and encodes it as input
of the FE scheme

– out(·, ·) : B × B → D, takes two biometric templates and outputs the au-
thentication result

– FE2out(·) : Y → D, takes an output of FE.Dec and converts it to an authen-
tication result

– chooseFakeRef(), outputs a fake reference template to be used by the simu-
lator

– chooseFakeProbe(·, ·) : B×D → B, takes a reference template and a desired
result and outputs a corresponding fake probe template

We say that (encodeRef, encodeProbe, out,FE2out) are correct if ∀b, b′ ∈ B,msk←
FE.Setup(1λ), skb ← FE.KeyGen(msk, encodeRef(b)), c← FE.Enc(msk, encodeProbe(b′)):

out(b, b′) = FE2out(FE.Dec(skb, c)).

We say that (chooseFakeRef, chooseFakeProbe) are correct if ∀d ∈ D,
b ← chooseFakeRef(), b′ ← chooseFakeProbe(b, d) : d = out(b, b′). Choosing fake
templates will later be necessary for the simulator and allows us to rely on the
weaker fh-IND security instead of simulation based security of the FE scheme.
We will instantiate these algorithms in Section 5.

4.3 The Protocol

The code of the client and the server of our protocol Π2FA are depicted in
Figure 6 and Figure 7. We divide the client in two parts, the host and the secure
hardware. The host is the normal program on the laptop or the phone, whereas
the code of the secure hardware runs in a trusted execution environment or on
an external hardware token. We use F ′SMT to model TLS messages sent by the
client to the server as described in Figure 4 and Section 3.2. Note that in our
version of F ′SMT (as opposed to FSMT from [6]), the client’s identity C is not
given to the server.

For enrolling, the host simply forwards the instruction to the secure hard-
ware, which chooses a random rid and keys for the signature scheme and FE
scheme. The secure hardware then encodes the biometric reference template and
generates a FE key for the encoded template. It gives the rid, the FE key and
the signature public key to the host, which sends it to the server. The server
simply stores these data. The secure hardware stores the FE master secret key,
the signature secret key and rid.

For authenticating, the host again passes the instruction to the secure hard-
ware, which first checks if it is already enroled. If so, it encodes the probe tem-
plate and encrypts it with the FE scheme. Furthermore it signs (sid, ssid, rid, c) in
order to prove ownership of the signature secret key. The secure hardware gives
the rid, the FE ciphertext and the signature to the host, who sends the message
to the server. The server checks the signature and computes the output of the
protocol. We assume that ssid is unique per client i.e. per rid. Thus, the value
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(sid, ssid, rid) is globally unique and prevents an attacker from reusing the signa-
ture. In practice the sid can be set as the server’s name and the ssid as a counter
that is increased by the client at each authentication. The server would also keep
a counter per client and only accept messages with a counter value higher than
the stored one. Upon receiving the signature and the encrypted probe template,
the server checks the signature and uses the FE.Dec algorithm to compute the
output, which for example could be the distance of the biometric templates or
a yes-no decision.

The code of the client, which is divided in the host and the secure hardware :
− the host on (Enrol, sid, ssid, b) from Z:
• give (Enrol, sid, ssid, b) to the secure hardware

− the secure hardware on getting (Enrol, sid, ssid, b) from the host
• if there is no record 〈rid, (·, ·), ·〉:
∗ rid←$ {0, 1}λ
∗ (pk, sk)← Sig.Gen(1λ)
∗ msk← FE.Setup(1λ)
∗ b := encodeRef(b)
∗ skb ← FE.KeyGen(msk,b)
∗ store record 〈rid, (pk, sk),msk〉
∗ give back m := (enrol, rid, pk, skb)) to the host

• on getting m from the secure hardware
∗ send (Send, (sid, ssid),S,m) to F ′

SMT as message to S

− the host on (Auth, sid, ssid, b′) from Z:
• give (Auth, sid, ssid, b′) to the secure hardware

− the secure hardware on getting (Auth, sid, ssid, b′) from the host
• if there is a record 〈rid, (pk, sk),msk〉
∗ b′ := encodeProbe(b′)
∗ c← FE.Enc(msk,b′)
∗ σ ← Sig.Sign(sk, (sid, ssid, rid, c))
∗ give back m := (auth, rid, c, σ)) to the host

• on getting m from the secure hardware
∗ send (Send, (sid, ssid),S,m) to F ′

SMT as message to S

Fig. 6: The code of the client.

On the need for secure hardware: Without secure hardware, the adversary can
—by compromising the client —get the secret keys and they could be able to
choose a fake encoding of a biometric template, which may convince the server
that the attacker is authentic. For example when we instantiate the FE scheme
with an IPFE scheme, as we do in Section 5, then the attacker can choose b′ =(
0 . . . 0

)>. This makes the inner-product with the encoded reference template
to be 0, which may convince the server that the distance is zero and allows
the attacker to impersonate the user. This problem seems to be inherent to
IPFE schemes and is also present in e.g [7] and [18]. We chose to address this
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The code of the server:
− on (sent, (sid, ssid),m = (enrol, rid, pk, skb)) from F

′
SMT as message from some client:

• if there is no record 〈rid, ·, ·〉:
∗ store 〈rid, pk, skb〉
∗ output (enrol, sid, ssid, rid)

• else output (enrol, sid, ssid,⊥)
− on (sent, (sid, ssid),m = (auth, rid, c, σ)) from F ′

SMT as message from some client:
• if there is a record 〈rid, pk, skb〉 and Sig.Vfy(pk, (sid, ssid, rid, c), σ) = 1:
∗ d := FE2out(FE.Dec(skb, c))
∗ output (auth, sid, ssid, rid, d)

• else output (auth-fail, sid, ssid)

Fig. 7: The code of the server.

problem by storing the client’s secret keys in secure hardware and letting the
secure hardware do the encoding of the biometric template. This ensures that
only correctly encoded templates are encrypted and signed. Another approach
to prevent this attack is to add zero knowledge proofs to the protocol. The client
would then have to prove to the server that the biometric template has been
correctly encoded before being encrypted.

4.4 Security Proof

Theorem 1. If FE is a (single-key) fh-IND secure fh-FE scheme and Sig is an
EUF-CMA secure signature scheme, then Π2FA UC-emulates Fout

2FA in the F ′SMT
hybrid model in the presence malicious adversaries.

We defer the security proof to Appendix A

5 Instantiation

Function hiding IPFE schemes allow computing inner-products between two
encrypted vectors. This enables us to evaluate any distance measure between
biometric templates that can be written as inner-product. When we then use fh-
IPFE schemes in our framework, this enables the server to compute the distance
between the client’s reference and probe template. In this section we describe
how to use an fh-IPFE scheme IPFE to instantiate our framework for computing
the Euclidean distance, the Hamming distance or the cosine similarity of two
biometric templates. We also sketch how the techniques of [5] can be used to
instantiate our framework in a way that avoids the leakage of the distance of the
biometric templates.

Our framework can be instantiated with both [7] and [18]. Both provide
function hiding simulation security, which implies fh-IND security which is the
notion that we need in our framework. The IPFE scheme of Cheon et al. [7] only
allows the creation of a single decryption key, which is sufficient in our setting
and allows the scheme to be quite efficient. The scheme relies on the security of
the learning with errors assumption. The IPFE scheme of Kim et al. [18] allows
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an arbitrary number of decryption keys, which makes it less efficient. It uses
pairings and has a security proof in the generic group model. We use the IPFE
scheme as black-box, the parties call the IPFE.Setup, IPFE.KeyGen, IPFE.Enc,
IPFE.Dec algorithms whenever the respective algorithm in Figure 6 and Figure 7
is called. We will assume that our biometric templates b are already embedded
in e.g. Euclidean or Hamming space, i.e. they are vectors were a small distance
implies similar biometrics. This is often achieved by applying a neural network
to the biometric reading ([23, 9]). Letting Z directly choose the embedding can
be seen as modeling Z’s influence on the network creation and training. Next
we show how to instantiate the algorithms described in Section 4.2.

Squared Euclidean Distance: In [23] the authors show how to transform face bio-
metrics into vectors, where similar faces have low squared Euclidean distance. Let
the discretized embedding be vectors in Znm+1 (in [23] n = 128). Then the max-
imum squared Euclidean distance is m2 · n and we can set D := {0, . . . ,m2 · n}.
To later simplify the chooseFakeRef and chooseFakeProbe algorithms of the sim-
ulator we set B := Znq , for q > m2 · n. Note that this also allows Z to choose
biometric templates with too large coordinates, however, this does not help in
finding a vector that is close to the reference template and, thus, does not impact
security. Because the desired output is the squared Euclidean distance dE , we de-
fine out(b, b′) := min(dE(b, b′),m2 ·n). Note that the squared Euclidean distance
between b and b′ can also be written as dE(b, b′) = −2〈b, b′〉+‖b‖2+‖b′‖2. Thus,
we can define encodeRef(b) := b =

(
b1 . . . bn 1 ‖b‖2

)> and encodeProbe(b′) :=

b′ =
(
−2b′1 . . . −2b′n ‖b′‖2 1

)>. Then 〈b,b′〉 is the squared Euclidean distance
of b and b′. This requires an IPFE scheme with X = Zn+2

q and Y = Zq. Finally
we define FE2out(d) := min(d,m2 ·n). Capping the result atm2 ·n is necessary to
ensure that it stays inside of D. Kim et al. [18] used the same encoding technique
for computing similarity of text documents.

Next we explain how to instantiate chooseFakeRef and chooseFakeProbe. Let
chooseFakeRef() := b :=

(
0 . . . 0

)> ∈ Znq . Then, finding a fake probe template
with distance d, is the same as finding a vector

(
b′1 . . . b

′
n

)> s.t.
∑
i∈[n] b

′2
i = d.

When n is at least 4, then the existence of such a vector is guaranteed by
Lagrange’s four square theorem, furthermore there exist efficient algorithms for
computing these four values [22]. We define chooseFakeProbe as setting the first
four coordinates of b′ as the output of the algorithm of [22] and setting the other
coordinates to 0. Note that chooseFakeRef and chooseFakeProbe are only part of
the simulator and never need to be actually implemented or executed.

Hamming Distance: Iris readings can be transformed into binary vectors where
a small Hamming distance corresponds to similar irises, e.g. with techniques
described in [5]. For computing the Hamming distance dH we use the same
encoding technique as Kim et al. [18]. We assume that our templates are binary
vectors b ∈ B := {0, 1}n. Then the largest possible Hamming distance is n,
so we define D := {0, . . . , n}. We require from the IPFE scheme that X = Znq
and Y = Zq, for q > n. Furthermore, we define out(b, b′) := dH(b, b′). For
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encoding a template b we define the vector b via bi = 1, if bi = 1 and bi =

−1 if bi = 0. For example
(
1, 0, 1

)> becomes
(
1,−1, 1

)>. We can then define
encodeRef(b) := encodeProbe(b) := b. However, the inner-product 〈b,b′〉 is not
equal to the Hamming distance dH(b, b′). Let ip be the inner-product output by
the IPFE.Dec algorithm. Then we define FE2out(ip) := max(n−ip2 , 0), to convert
the inner-product into the Hamming distance.

Defining the algorithms for the simulator is relatively simple. We define
chooseFakeRef() := b :=

(
1 . . . 1

)> ∈ B and chooseFakeProbe(b, d) as the same
vector with d of the entries flipped to 0.

Cosine Similarity: As noted in [2], the cosine similarity can also be used for
biometric matching (e.g. for faces as in [20]) and can be easily computed as an
inner-product. The cosine similarity of two vectors v,w is defined as dC(v,w) :=
〈v,w〉
‖v‖‖w‖ , whereby the largest possible cosine similarity is 1, so we define D :=

[0, 1] ⊂ R. Close vectors have a high cosine similarity. We assume that the
templates are vectors in B := Znm, with a fixed public L2 norm l. We require
X = Znq , Y = Zq, for q > l2. We define out(b, b′) := dC(b, b

′) and encodeRef(b) :=
encodeProbe(b) := b. Then the cosine similarity can be computed as dC(b, b′) =
FE2out(〈b,b′〉) := min( 〈b,b

′〉
l2 , 1).

Defining chooseFakeRef and chooseFakeProbe such that the templates have
the correct distance, satisfy the norm bound l and still have integer coordinates
seems rather complex and we leave it as future work. Thus, our security proof
does not cover the cosine similarity instantiation.

Checking if the Distance is Below a Threshold: The above constructions leak the
distance of the biometric templates to the server, which can be avoided by using
a construction of [5]. They use orthogonality functional encryption to check if
the inner-product is equal to a certain value and further use it to check if the
distance of two encrypted biometric templates is within a certain range i.e. below
a threshold. Their technique works with both the Euclidean and the Hamming
distance and can be used to instantiate our framework so that the server only
learns the yes-no authentication result.

6 Implementation

In this section we will briefly describe our proof of concept implementation and
the results of our performance tests. The source code is available at: https:
//github.com/johanernst/ipfe-bio-auth. This includes the Golang source
code of the protocol and the performance tests, the Python code for creating
the plots and the raw output data of the experiments. For the function hiding
IPFE scheme we used the implementation of the scheme of [18] in the GOFE
library described in [21]. We run the performance tests on a single thread of an
Intel Core i5-10210U CPU on a laptop. As biometric templates we used random
vectors with increasing number of elements. Each element is an integer value

https://github.com/johanernst/ipfe-bio-auth
https://github.com/johanernst/ipfe-bio-auth
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between 0 and 255 and we used the instantiation for the squared Euclidean
distance described in Section 5. The choice of parameters is motivated by [23]
who constructed a neural network that embeds face images into Euclidean space
and has a very high accuracy. They use float vectors with 128 entries and report
that “...it can be quantized to 128-bytes without loss of accuracy.”

For each of the different template lengths we performed 3 runs, where each
run consisted of enrolling/authenticating 10 clients. Finally we took the average
to get the running time of a single call to each of the algorithms. We also sepa-
rately measured the time spent in the calls to the IPFE schemes with the same
number of runs and clients. The results are depicted in Figure 8 and Table 1.

The experiments show that most algorithms are rather fast (below 0.25ms),
only the enrolment algorithm of the client is a bit slower (about 1.4s), because
the Setup algorithm of the underlying IPFE scheme [18] requires the inversion
of a n × n matrix, where n is the length of the vector. However, the enrolment
is only performed once and the 1.4 seconds (for templates with 128 entries as
in [23]) are unlikely to significantly disturb the user experience. The time that
the server needs to enrol a client is so low because the server does not have to
run any IPFE operations. Furthermore, Table 1 shows that most of the running
time is consumed by the IPFE scheme. This means that our protocol profits
significantly from future improvements in the area of function hiding IPFE.
Also our scheme only needs single-key function hiding IPFE which can probably
be constructed much more efficiently. Therefore, instantiating our protocol with
a single-key function hiding IPFE will likely also boost efficiency. For templates
with 128 entries the size of the enrolment message is 16.47 KB and the size of
the authentication message is 33.29 KB.

Fig. 8: The running time of the different parts of our protocol with different template
lengths.
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Table 1: This table shows the exact running times in seconds of the four algorithms of
our protocol. In parenthesis there is the time spent in the calls to the IPFE scheme.
Template
size

Client Enrol-
ment

Server Enrol-
ment

Client Authenti-
cation

Server Authen-
tication

64 0.211 (0.210) 0.0001 (-) 0.028 (0.027) 0.123 (0.121)
128 1.387 (1.389) 0.0001 (-) 0.053 (0.054) 0.224 (0.224)

7 Conclusion and Future Work

Privacy-preserving biometric authentication is a complex problem and although
significant work has been proposed in the area, the respective security models
often do not capture all desired security goals or do not model all realistic ad-
versarial behavior. In this paper we discussed and highlighted the importance of
both privacy preserving and secure biometric authentication systems that main-
tain their security guarantees in complex real world settings. To this end we
proposed an ideal functionality for universally composable biometric based two-
factor authentication. To the best of our knowledge this is the first description
of an ideal functionality for biometric based two-factor authentication in the UC
framework. Furthermore, we proposed a general protocol for privacy preserving
biometric authentication that provides UC security guarantees and can be in-
stantiated using any suitable function hiding functional encryption scheme and
a signature scheme. We provide a detailed security analysis and proof of the
proposed general framework. Additionally, we showed how to concretely instan-
tiate our framework with a function hiding IPFE scheme and, thereby, allow the
computation of the Euclidean distance, the Hamming distance or the cosine sim-
ilarity. Finally we explained our proof of concept implementation and presented
the results of the performance tests.

Future Work: A worthwhile direction for future work may be to use our ideal
functionality to analyze the FIDO2 protocol in the UC framework. The func-
tionality would need to be adapted a little bit. For example it would probably
need an interface for the server to indicate that they are willing to participate
in the protocol and an interface for the adversary to allow the delivery of the
server’s message to the client.

Another interesting direction would be to extend our model to allow cor-
rupted clients to get uncorrupted again. This can happen when the malware is
removed from the client’s device, or when the client gets back their, previously
stolen, hardware token.
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A Security Proof

Below we give the proof of Theorem 1.

Proof. We first provide a simulator in Figure 9 and Figure 10. Then we show
that no PPT environment Z can distinguish between the real world, where it
is interacting with the honest parties and the dummy adversary, from the ideal
world, where it is interacting with the honest parties and the simulator. We do
so by considering all actions that Z can take and argue for each of them that
the results, which Z gets in the real world and the ideal world, are essentially
the same. The actions that Z can take are:

– (Enrol, sid, ssid, b) to an honest client
– (Auth, sid, ssid, b′) to an honest client
– (ok, (sid, ssid)) to F ′SMT
– (Send, (sid, ssid),S,m = (enrol, rid, pk, skb)) to F ′SMT in the name of a cor-

rupted client
– (Send, (sid, ssid),S,m = (auth, rid, c, σ)) to F ′SMT in the name of a corrupted

client
– (Corrupt, sid) to a client C
– (TryImpersonate, sid, ssid, b′) to a client C

To simplify the presentation, we assume that Z does not delay or block messages,
whenever the sender or receiver is corrupted. In that case the receiver directly
gets the message without the need for Z to send (ok, (sid, ssid)) to F ′SMT. This
is reasonable, because Z cannot gain anything from blocking its own messages.
Therefore, when S is corrupted, Sim can directly send (EnrolOK, sid, ssid)
(resp. (AuthOK, sid, ssid)) to Fout

2FA after receiving (enrol, sid, ssid, ·) (resp.(auth,
sid, ssid, ·)) from Fout

2FA. In the real world we say that rid is enroled, if the server
has a record 〈rid, ·, ·〉. In the ideal world we say that rid is enroled, if the ideal
functionality has a record 〈enroled, ·, rid, ·〉 or 〈enroled-adversarial, rid, ·〉. In both
worlds this is equivalent to the server having output (enrol, sid, ssid, rid), for
some sid and ssid.

The simulator uses five different tables. Table T1 is for pending messages,
T2 contains entries for the adversarially enroled clients. In case the server is
corrupted, T3 contains an entry for each of the enroled clients. Table T4 contains
an entry for each client that was adaptively corrupted by Z and T5 contains all
(fake) messages that Sim created as response to TryImpersonate instructions
from Z.
• (Enrol, sid, ssid, b) to an honest client C: Z calls the enrol-interface of C.
Case 1. The server is honest:
Real world : C only continues if this is the first Enrol message they got. They exe-
cute the setup algorithm of the FE scheme and the signature scheme and choose a
random rid. C prepares the messagem for the server and sends (Send, (sid, ssid),S,m)
to F ′SMT. F ′SMT then sends (sent, (sid, ssid), C,S, length(m)) to A, who gives it
to Z.
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1 : Let le, la be the length of the enrolment- and authentication messages respectively.

2 : Forwarding messages:

3 : − on (enrol, sid, ssid, C) from Fout
2FA:

4 : • if S is corrupted: send (EnrolOK, sid, ssid) to Fout
2FA

5 : • else:
6 : ∗ simulate F ′

SMT by sending (sent, (sid, ssid), C,S, le) to Z as message from F ′
SMT

7 : ∗ store (enrol, ssid) in table T1

8 : − on (auth, sid, ssid, C) from Fout
2FA:

9 : • if S is corrupted: send (AuthOK, sid, ssid) to Fout
2FA

10 : • else:
11 : ∗ simulate F ′

SMT by sending (sent, (sid, ssid), C,S, la) to Z as message from F ′
SMT

12 : ∗ store (auth, ssid) in table T1

13 : − on (ok, (sid, ssid)) from Z to F ′
SMT:

14 : • if there is a record (enrol, ssid) in table T1: send (EnrolOK, sid, ssid) to Fout
2FA

15 : • else if there is a record (auth, ssid) in table T1: send (AuthOK, sid, ssid) to Fout
2FA

16 : • else: ignore this message

17 : Client messages to F ′
SMT:

18 : − on (Send, (sid, ssid),S,m = (enrol, rid, pk, skb)) from Z to F ′
SMT (from corrupted client)

19 : • if server S is corrupted: send (sent, (sid, ssid),m) to Z as F ′
SMT’s output to S

20 : • else:
21 : ∗ choose b← chooseFakeRef()
22 : ∗ send (Enrol, sid, ssid, rid, b) to Fout

2FA //using the adversary’s interface
23 : ∗ if record (rid, ·, ·, ·) does not exist in table T2: store (rid, b, pk, skb) in table T2

24 : − on (Send, (sid, ssid),S,m = (auth, rid, c, σ)) from Z to F ′
SMT (from corrupted client)

25 : • if server S is corrupted: send (sent, (sid, ssid),m) to Z as F ′
SMT’s output to S

26 : • else:
27 : ∗ if there is entry (rid, b, pk, skb) in table T2 and Sig.Vfy(pk, σ, (sid, ssid, rid, c)) = 1:
28 : · d := FE2out(FE.Dec(skb, c)

29 : · choose b′ ← chooseFakeProbe(b, d) //make sure that out(b, b′) = d
30 : · send (Auth, sid, ssid, rid, b′) to Fout

2FA //using the adversary’s interface
31 : ∗ else if there is an entry (rid, sid, ssid, c, pk, C, b′) in T5

32 : and Sig.Vfy(pk, σ, (sid, ssid, rid, c)) = 1:
33 : · send (TryImpersonate, sid, ssid, C, b′) to Fout

2FA
34 : ∗ else: send (Auth, sid, ssid,⊥,⊥) to Fout

2FA //using the adversary’s interface

35 : Simulating a corrupted server:

36 : − on (enrol, sid, ssid, rid) from Fout
2FA to the corrupted server:

37 : • msk← FE.Setup(1λ)
38 : • choose b← chooseFakeRef()
39 : • b := encodeRef(b)
40 : • skb ← FE.KeyGen(msk, b)

41 : • (pk, sk)← Sig.Gen(1λ)
42 : • store (rid, b, pk, sk,msk, skb) in table T3

43 : • send (sent, (sid, ssid),m = (enrol, rid, pk, skb)) to Z as F ′
SMT’s output to S

44 : − on (auth, sid, ssid, rid, d) from Fout
2FA to the corrupted server:

45 : • retrieve record (rid, b, pk, sk,msk, skb) from table T3

46 : • choose b′ ← chooseFakeProbe(b, d) //make sure that out(b, b′) = d
47 : • b′ := encodeProbe(b′)
48 : • c← FE.Enc(msk,b′)
49 : • σ ← Sig.Sign(sk, (sid, ssid, rid, c))
50 : • send (sent, (sid, ssid),m = (auth, rid, c, σ)) to Z as F ′

SMT’s output to S

Fig. 9: The code of the simulator.
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51 : Continuation of the simulator’s code
52 : − on (Corrupt, sid) from Z to C:
53 : • send (Corrupt, sid, C) to Fout

2FA
54 : • if Fout

2FA answers with (corrupted, sid, rid):
55 : ∗ if S is corrupted:
56 : · retrieve (rid, b, pk, sk,msk, skb) from T3

57 : · store (C, rid,msk, pk, sk, b) in T4.
58 : ∗ else: //if S is not corrupted
59 : · msk← FE.Setup(1λ)
60 : · (pk, sk)← Sig.Gen(1λ)
61 : · choose b← chooseFakeRef()
62 : · store (C, rid,msk, pk, sk, b) in table T4

63 : ∗ send (corrupted, sid) to Z

64 : − on (TryImpersonate, sid, ssid, b′) to C:
65 : • retrieve record (C, rid,msk, pk, sk, b) from T4

66 : • if server S is corrupted:
67 : ∗ send (TryImpersonate, sid, ssid, C, b′) to Fout

2FA
68 : ∗ receive back (auth, sid, ssid, rid, d) as output to S
69 : ∗ b̂′ ← chooseFakeProbe(b, d)
70 : ∗ b̂′ := encodeProbe(b̂′)
71 : ∗ c← FE.Enc(msk, b̂′)
72 : ∗ σ ← Sig.Sign(sk, (sid, ssid, rid, c))
73 : ∗ give (rid, c, σ) to Z as the output of the secure hardware to the host
74 : • else: //S is not corrupted
75 : ∗ b′ := encodeProbe(b′)
76 : ∗ c← FE.Enc(msk,b′)
77 : ∗ σ ← Sig.Sign(sk, (sid, ssid, rid, c))
78 : ∗ store (rid, sid, ssid, c, pk, C, b′) in T5

79 : ∗ give (rid, c, σ) to Z as the output of the secure hardware to the host

Fig. 10: The second part of the code of the simulator.
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Ideal world : C sends (Enrol, sid, ssid, b) to Fout
2FA, which only continues if this is

the first Enrol message from C. Fout
2FA then sends (enrol, sid, ssid, C,S) to Sim,

who gives (sent, (sid, ssid), C,S, le) to Z.
In both worlds Z gets a message if and only if the client has not yet sent

an enrolment message. By definition of le, we have that length(m) = le and,
therefore, the messages that Z gets in both worlds are the same.
Case 2. The server is corrupted:
Real world : C sends (Send, (sid, ssid),S,m := (enrol, rid, pk, skb)) to F ′SMT for
random rid and fresh pk and skb. S directly gives this message to Z.
Ideal world : Fout

2FA sends (enrol, sid, ssid, C) to Sim, which replies with (EnrolOK,
sid, ssid). Sim then gets (enrol, sid, ssid, rid) as output to the corrupted server.
Sim chooses b and generates pk and skb. They then give (sent, (sid, ssid),m :=
(enrol, rid, pk, skb)) to Z in the name of the corrupted server.

In both worlds sid and ssid are the same and rid is a random value that Z
has not previously seen. Also pk is in both worlds the result of Sig.Gen. The
only critical part is skb. In the real world the underlying vector b is the user’s
biometric, whereas in the ideal world the simulator chose b← chooseFakeRef().
However, both skb are indistinguishable due to the function hiding property of
the FE scheme. In Lemma 1 we give a reduction that breaks the fh-IND-security
of FE if Z can distinguish between the real and ideal world.
• (Auth, sid, ssid, b′) to an honest client C: Z calls the auth-interface of C.
Case 1. The server is honest:
Real world : C checks if they are enroled. If so, C prepares the authentication
messagem for the server and sends (Send, (sid, ssid),S,m) to F ′SMT, which sends
(sent, (sid, ssid), C,S, length(m)) to A, who forwards it to Z.
Ideal world : C sends (Auth, sid, ssid, b′) to Fout

2FA. If C has previously sent an enrol-
message, Fout

2FA sends (auth, sid, ssidC,S) to Sim, who gives (sent, (sid, ssid),
C,S, la) to Z.

In both worlds Z gets a message if and only if the client has previously sent
an enrolment message. By definition of la, we have that length(m) = la and,
therefore, the messages that Z gets are the same in both worlds.
Case 2. The server is corrupted:
Real world : If C has previously sent an enrol-message, they send (Send, (sid, ssid),
S,m = (auth, rid, c, σ)) to F ′SMT, where c is the encrypted, encoded b and σ a
signature of (sid, ssid, rid, c). S receives this message and directly gives it to Z.
Ideal world : If C has previously sent an enrol-message, Fout

2FA sends (auth, sid, ssid, C)
to Sim, which replies with (AuthOK, sid, ssid). Sim then gets (auth, sid, ssid, rid,
d = out(b, b′)) as output to the corrupted server, where b and b′ are the client’s
reference and fresh template. Sim chooses a fake probe template such that its
FE output with the fake reference template is exactly d. Sim then encodes and
encrypts the new fake template and creates a signature, using the self-chosen
keys from the enrolment phase, as an honest client would do. They then give
(sent, (sid, ssid),m := (auth, rid, c, σ)) to Z in the name of the corrupted server.

In both worlds ssid is the same and rid is a random value that matches
the rid from the enrolment phase. The critical component is the ciphertext c.
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Here we rely on the fh-IND-security of the FE scheme, which ensures that
no PPT adversary can distinguish between two ciphertexts, if the output of
FE.Dec(skb, ·) is the same in both cases. By choosing the fake templates as
b′ ← chooseFakeProbe(b, d), Sim ensures that the FE outputs are the same
in both worlds. We show the indistinguishability of both worlds formally in
Lemma 1 by giving a reduction, which breaks the fh-IND-security of the FE
scheme, if Z is able to distinguish between the worlds. The signatures σ in both
worlds are indistinguishable, as the secret keys are identically distributed and
the signed messages are indistinguishable.
• (ok, (sid, ssid)) to F ′SMT: The environment lets through a client’s message:
Case 1. (ssid belongs to an enrol -message of a client C):
Real world : C chose rid uniformly from {0, 1}λ, therefore, S will not have a
record 〈rid, pk, skb〉 with overwhelming probability. Thus, S outputs (enrol, sid,
ssid, rid).
Ideal world : Sim sends (EnrolOK, sid, ssid) to Fout

2FA. Fout
2FA will not have a record

〈enroled, C, ·, ·〉, because C has not yet enroled and enrols at most once. Hence,
Fout
2FA will choose rid at random and give (enrol, sid, ssid, rid) as output to Z.
In both worlds rid is a random bit string that Z has not seen before. There-

fore, both worlds are indistinguishable for Z.
Case 2. (ssid belongs to an authentication-message of a client C): If Z previously
let through the corresponding enrol-message of C then S has a record 〈rid, pk, skb〉
and Fout

2FA has a record 〈enroled, C, rid, b〉. Thus, in the real world Z will get
(auth, sid, ssid, rid, d = FE2out(FE.Dec(skb, c))) from S. In the ideal world Z
will get (auth, sid, ssid, rid, out(b, b′)), where b, b′ are the same in both worlds
(chosen by Z). In both worlds rid will match the rid from the enrol-message. By
correctness of (encodeRef, encodeProbe, out,FE2out) we have d = out(b, b′).

If Z did not let through C’s enrol-message, S has no record 〈rid, ·, ·〉 (Z does
not even know rid) and Fout

2FA has no record 〈enroled, C, ·, ·〉. Thus, in both worlds,
Z gets as output (auth-fail, sid, ssid).
• (Send, (sid, ssid),m = (enrol, rid, pk, skb)) to F ′SMT: A corrupted client’s
enrol-message:
Case 1. The server is honest:
Real world : If S previously output (enrol, sid, ssid′, rid) (i.e. rid is already en-
roled), then S will output (enrol, sid, ssid,⊥). Otherwise S will output (enrol,
sid, ssid, rid).
Ideal world : Sim uses the adversary-interface of Fout

2FA by sending (Enrol, sid, ssid,
rid, b), for a fake template b. If rid is already enroled, Fout

2FA will output (enrol, sid,
ssid,⊥) to S and otherwise (enrol, sid, ssid, rid). The outputs in both worlds are
identical.
Case 2. The server is corrupted: In the real world S will receive (sent, (sid, ssid),m)
from F ′SMT and output it to Z. In the ideal world Sim will give (sent, (sid, ssid),m)
to Z in the name of S. In both worlds Z gets identical output.
• (Send, (sid, ssid),m = (auth, rid, c, σ)) to F ′SMT: A corrupted client’s auth-
message:
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Case 1. The server is honest: This is the case which shows that an attacker can
first, not impersonate an honest client and second, still needs a valid biometric
to impersonate an adaptively corrupted client.

First consider the case where rid is not enroled, or the signature σ is not
valid. Then in both worlds Z will get (auth-fail, sid, ssid) as output from S.

Next, consider the case that the signature is valid and rid belongs to a client
that has been enroled by A, i.e. Fout

2FA has a record 〈enroled-adversarial, rid, ·〉
and equivalently Sim has an entry (rid, ·, ·, ·) in T2. In the real world, S will
output (auth, sid, ssid, rid, dreal) and in the ideal world S will output (auth, sid,
ssid, rid, dideal). We have dreal = dideal, because Sim computes its internal vari-
able d exactly as the real server computes its output value and then uses it to
generate fake templates that make Fout

2FA output out(b, b′) to S. By correctness of
(chooseFakeRef, chooseFakeProbe) Sim’s fake template b′ ← chooseFakeProbe(b, d)
satisfies out(b, b′) = d.

Now consider the case where rid is enroled, the signature is valid and Sim
has an entry (rid, sid, ssid, c, ·, C, b′) in T5, where rid, sid, ssid and c are the
same as from Z’s message to F ′SMT. This implies that Z has corrupted C
and has sent a (TryImpersonate, sid, ssid, b′) instruction to A/Sim and is
now instructing A/Sim to send the message —that Z got as response to the
TryImpersonate instruction —to S. Thus, in the real world S will output
(auth, sid, ssid, rid, dreal). In the ideal world Sim will send (TryImpersonate, sid,
ssid, C, b′) to Fout

2FA which will then send (auth, sid, ssid, rid, out(b, b′)) to S. Since
in this case b and b′ will be the same in both worlds, we have that dreal =
out(b, b′), by correctness of (encodeRef, encodeProbe, out,FE2out).

Let us now consider the last case, where neither of the above is true, Sim
gets to the else-case (in line 34) and rid is enroled and the signature is valid.
In the ideal world, Sim will send (Auth, sid, ssid,⊥,⊥) to Fout

2FA, which will then
give (auth-fail, sid, ssid) as output to S. In the real world, however, S will out-
put (auth, sid, ssid, rid, dreal). Thus, in this case Z can distinguish between the
worlds. However, this case can only occur if Z forges a signature. In Lemma 2
we sketch a reduction that wins the EUF-CMA game in that case.
Case 2. The server is corrupted: Exactly as in the case of a corrupted client’s
enrol-message, in both worlds the server will output (sent, (sid, ssid),m).
• Instruction to A/Sim to send (Corrupt, sid) to (the backdoor tape
of) client C:
Real world : A will send (Corrupt, sid) to C (on the backdoor tape). If and only
if the client C exists and is enroled, C’s shell will answer with (corrupted, sid).
A will then forward this message to Z.
Ideal world : Sim will send (Corrupt, sid, C) to Fout

2FA. Fout
2FA will answer with

(corrupted, sid, rid) if and only if the client C exists and is enroled. In that
case Sim will send (corrupted, sid) to Z.

Therefore, in both worlds Z will get the output (corrupted, sid) if and only
if C exists and is enroled. This is independent of whether the server is corrupted.
• Instruction to A/Sim to send (TryImpersonate, sid, ssid, b′) to (the
backdoor tape of) client C:
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Case 1. The server is honest:
Real world : A will send (TryImpersonate, sid, ssid, b′) to C (on the backdoor
tape). If C is corrupted, the shell will give (Auth, sid, ssid, b′) to the secure hard-
ware, which will respond with m = (auth, rid, c, σ). The shell will give m to A
who forwards it to Z.
Ideal world : Sim will retrieve the fake keys from table T4 which will exist only if
C has been corrupted. Then Sim will encode, encrypt and sign b′ as the secure
hardware would have done and give m = (auth, rid, c, σ) to Z.

In both worlds Z will get an answer if and only if C has been corrupted before.
In both worlds the rid is uniformly random, but stays the same over multiple
TryImpersonate instructions. Furthermore, c and σ are generated with the
same inputs and identically distributed keys which stay the same for multiple
calls to TryImpersonate. Therefore, both worlds are perfectly indistinguish-
able.
Case 2. The server is corrupted:
Real world : Z will get the same as in the case of an uncorrupted server, namely
m = (auth, rid, c, σ).
Ideal world : Sim will retrieve the fake keys from table T4 which will exist only
if C has been corrupted. Then Sim will send (TryImpersonate, sid, ssid, C, b′)
to Fout

2FA and get back (auth, sid, ssid, rid, d) as Fout
2FA’s answer to the corrupted

server. Sim creates a fake probe template so that the distance to the earlier fake
reference template is exactly d and encrypts and signs the message with the
corresponding fake keys. Sim then gives m = (auth, rid, c, σ) to Z.

In both worlds rid is uniformly random and stays the same over multiple
calls to TryImpersonate. The encryption and signature keys are identically
distributed and also stay the same for multiple calls to TryImpersonate. The
only difference is that the ciphertext c in the real world is the encryption of b′,
whereas in the ideal world it is the encryption of the fake probe template b̂′.
In Lemma 1 we show that if Z can distinguish between the real and the ideal
world, there is a reduction which breaks the fh-IND-security of the FE scheme.

Lemma 1. If Z can distinguish between a key skb in the real world and the ideal
world, or between a ciphertext c in the real world and the ideal world, then there
is a reduction B that wins the fh-IND-security experiment of the FE scheme.

Proof sketch. We use a hybrid argument over an upper bound on the number of
honest clients l. LetHi be the execution in which the first i honest clients use keys
and ciphertexts as produced by the simulator. The other clients are still executed
as in the real world. In a bit more detail, in Hi, for honest clients {1, . . . , i},
whenever an enrolment-message is delivered to a corrupted server, Z gets the
output of the “on (Enrol, sid, ssid, rid) from Fout

2FA”-interface of the simulator.
Whenever an authentication-message of one of the first i clients is delivered to
a corrupted server, Z gets the output of the “on (Auth, sid, ssid, rid, d) from
Fout
2FA”-interface of the simulator. For clients {i+ 1, . . . , l}, Z gets the output of

the real clients Enrol (resp. Auth) interface. So in H0 all secret keys skb and
ciphertexts c are produced as in the real world, whereas in Hl all secret keys
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and ciphertexts are produced as in the ideal world. An environment that is able
to tell apart the real world from the ideal world by distinguishing between the
real and simulated FE keys or ciphertexts, is also able to distinguish between H0

and Hl. Therefore, there must exist i ∈ {1, . . . , l} such that Z can distinguish
between Hi−1 and Hi. We give a reduction B that wins the fh-IND-security
experiment, given a distinguisher D for Hi−1 and Hi:

When Z calls the “(Enrol, sid, ssid, b)”-interface of the i-th honest client, B
takes the public parameters from the fh-IND FE security experiment and asks a
QKeyGen(b, b̂) query, where b is the encoding of b and b̂ = encodeRef(chooseFakeRef())
is the encoding of the fake reference template. B receives back the functional de-
cryption key sk and gives this as part of the enrolment-message to the corrupted
server and thereby to Z. When Z calls the “(Auth, sid, ssid, b′)”-interface of the
i-th honest client, B asks a QEnc(b′, b̂′) query, where b′ is the encoding of b′

and b̂′ is the encoding of the fake probe template that the simulator would have
chosen via chooseFakeProbe(·, ·). B receives back the ciphertext c and gives this
as part of the authentication-message to the corrupted server and thereby to Z.

When the experiment’s bit b = 0, then B gets the secret key and ciphertexts
for the real biometric templates, whereby B perfectly simulates Hi−1. When the
experiment’s bit b = 1, then B gets the secret key and ciphertexts for the fake
biometric templates chosen by the simulator, whereby B perfectly simulates Hi.

Lemma 2. There is a reduction B that wins the EUF-CMA game if the envi-
ronment manages to get to the else-case in line 34 of the simulator with a valid
signature σ.

Proof sketch. The general idea is that B runs the simulator’s code, but whenever
the simulator would create a signature keypair, or sign a message, B instead uses
its challenger to get the keypair or signature.

A bit more in detail, B will guess a client C∗. When Sim creates a keypair for
that client in line 60 in Figure 10), B will get the public key from its EUF-CMA
challenger. Whenever Sim would create a signature under the corresponding
secret key (e.g. in line 77 in Figure 10), B asks a signing query to their challenger
and uses the response as the signature that Sim would have created. When B
gets a “(Send, (sid, ssid),S,m = (auth, rid, c, σ))” instruction from Z with a valid
signature σ (relative to the pk associated with rid), and gets to the else-case in
line 34 in Figure 9), B outputs ((sid, ssid, rid, c), σ) as forgery to its EUF-CMA
challenger.

Now let us argue that this is indeed a valid forgery. First, observe that since
B came to the else-case, it does not have an entry in table T2, which means that
the message did not belong to an adversarially enroled client and thereby pk was
not chosen by Z, but by B’s EUF-CMA challenger. Second, since B came to the
else-case, it also does not have a matching entry in table T5, which means, it
did not ask a signing query for (sid, ssid, rid, c) to its challenger in response to a
TryImpersonate instruction. Therefore, ((sid, ssid, rid, c), σ) constitutes a valid
forgery and B wins the EUF-CMA game.
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