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Abstract. Agrawal et al. (Asiacrypt 2013) proved the discrete Gaussian
leftover hash lemma, which states that the linear transformation of the
discrete spherical Gaussian is statistically close to the discrete ellipsoid
Gaussian. Showing that it is statistically close to the discrete spherical
Gaussian, which we call the discrete spherical Gaussian leftover hash
lemma (SGLHL), is an open problem posed by Agrawal et al. In this pa-
per, we solve the problem in a weak sense: we show that the distribution
of the linear transformation of the discrete spherical Gaussian and the
discrete spherical Gaussian are close with respect to the Rényi divergence
(RD), which we call the weak SGLHL (wSGLHL).

As an application of wSGLHL, we construct a sharper self-reduction
of the learning with errors problem (LWE) problem. Applebaum et al.
(CRYPTO 2009) showed that linear sums of LWE samples are statisti-
cally close to (plain) LWE samples with some unknown error parameter.
In contrast, we show that linear sums of LWE samples and (plain) LWE
samples with a known error parameter are close with respect to RD. As
another application, we weaken the independence heuristic required for
the fully homomorphic encryption scheme TFHE.

Keywords: Lattice · LWE · Discrete Gaussian · Leftover hash lemma

1 Introduction

Lattice-based cryptosystems are among the most promising candidates for
post-quantum security. The National Institute of Standards and Technology
(NIST) selected the lattice-based public key encryption scheme CRYSTALS-
Kyber [BDK+18] and lattice-based digital signature schemes CRYSTALS-
Dilithium [DKL+18] and Falcon [FHK+20] (as well as the hash-based digital
signature scheme SPHINCS+ [BHK+19]) as candidate algorithms to be stan-
dardized [AAC+22]. Furthermore, lattices can be used to build various advanced
cryptographic primitives including identity based encryption (IBE) [GPV08],
functional encryption [AFV11], fully homomorphic encryption (FHE) [BV11,
BGV12, GSW13, DM15, CGGI17, CKKS17], and etc.

A crucial object in lattice-based cryptography is a discrete Gaussian distri-
bution (Def. 2.23), which is a distribution over some fixed lattice, where every
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lattice point is sampled with probability proportional to that of a continuous
(multivariate) Gaussian distribution. In particular, efficient algorithms to sample
from discrete Gaussians [GPV08, Pei10, MP12, MW17, GM18, DGPY20], and
the analysis of various kinds of combinations of discrete Gaussians [Pei10,
AGHS13, AR16, GMPW20] are required for the development of the (advanced)
lattice-based cryptosystems.

A Gaussian Leftover Hash Lemma. The main concern of this paper is the discrete
Gaussian leftover hash lemma (GLHL) proposed by Agrawal et al. [AGHS13].
The classic leftover hash lemma (LHL) [IZ89, HILL99, DRS04] states that a
random linear combination of some (uniformly) random elements is statistically
close to the uniform distribution over some finite domain. Similarly, GLHL
states that the linear transformation of the discrete spherical Gaussian (vector
of i.i.d 1-dimensional discrete Gaussians) is statistically close to the discrete
ellipsoid Gaussian (vector of 1-dimensional discrete Gaussians that are neither
identical nor mutually independent). It is an open question posed by Agrawal
et al. [AGHS13] to show that the linear transformation of the discrete spherical
Gaussian is statistically close to the discrete spherical Gaussian, which we call
spherical GLHL (SGLHL):

“... our lattice version of LHL is less than perfect — instead of yielding
a perfectly spherical Gaussian, it only gives us an approximately spherical
one, i.e., DL,sX. Here approximately spherical means that all the singular
values of the matrix X within a small, constant sized interval.”

In this paper, we solve this open problem in a weak sense: we show that
Rényi divergence (RD) (Def. 2.11) between the linear transformation of the
discrete spherical Gaussian and the discrete spherical Gaussian is sufficiently
small to construct security arguments, which we call the discrete weak SGLHL
(wSGLHL). In addition, we show the continuous analog of the discrete wSGLHL,
which we call the continuous wSGLHL. The RD has been used in prior works
as a replacement to the statistical distance in lattice-based cryptography. As
shown in, e.g., [Pre17, BLR+18, BJRW22, ASY22], some non-negligible, but a
small RD is sometimes sufficient (or better) for constructing security proofs.

LWE Self Reduction. As an application of wSGLHL, we construct a new self-
reduction of the learning with errors (LWE) problem defined as follows:
Definition 1.1 (LWE). Let n ∈ N be a security parameter, m = poly(n) be
the number of samples, the modulus q = q(n) ≥ 2 be an integer, and χ be
an error distribution. The samples from the LWE distribution LWEs(m,n, q, χ)
are (A,As+ e) for a fixed s ∼ U(Zn

q ), where A ∼ U(Zm×n
q ), and e ∼ χm. The

Search-LWEs(m,n, q, χ) problem is to find s, given samples from LWEs(m,n, q, χ).
The Decision-LWEs(m,n, q, χ) problem is to distinguish between the distribution
LWEs(m,n, q, χ) and U(Zm×n

q ,Zn
q ).

Regev [Reg09] showed a (quantum) reduction from worst-case lattice prob-
lems to LWE with continuous Gaussian distribution (over the torus), and
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close w.r.t. RD, Thm. 6.2

[Reg09], data processing inequality

stat
≈ , [ACPS09, GMPW20]
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Fig. 1. Comparison of LWE self-reduction theorems. We write “X → Y” to represent
the (PPT) reduction from the problem defined with the distribution X to the problem
defined with Y, and “↔” denotes equivalence. Here, Φr denotes the continuous
or discrete Gaussian distribution with parameter r, and ς is the (scaled) standard
deviation of the elements of the randomization matrix X ∈ Zm×l

q or vector x ∈ Zm
q .

then reduced it to LWE with a discretized Gaussian distribution over Zq with
parameter r, denoted by Ψr (see Def. 2.22). Regev also constructed a pub-
lic key encryption scheme based on LWE. Applebaum et al. [ACPS09] (and
[GPV08, Pei10]) proposed a variant of Regev’s encryption. In this scheme, the
public key (A,b) ∼ LWEs(m,n, q,Ψr) is randomized for encryption as follows:
(a′ᵀ, b′) := (xᵀA,xᵀb + e′), where x ∼ DZm,ς and e′ ∼ Ψ√

mς(r+ 1
2q )

. Here, the
additional error e′ is needed to “smooth out” the distribution. Interestingly,
Applebaum et al. showed in [ACPS09, Lem. 4] that (a′ᵀ, b′) is statistically close
to an LWE sample with an unknown (albeit upper-bounded) error parameter
r′ ≤

√
2mς(r + 1

2q ), which is called the LWE self-reduction. We refer (a′ᵀ, b′)
to as the “rerandomized” LWE sample, since it is essentially a new LWE sample
with the fixed secret s (and a different error parameter). Similarly, Genise et
al. [GMPW20] showed a “fully discrete” version of LWE self-reduction that uses
only discrete Gaussians. However, in those self-reductions, the error parameter
r′ of the rerandomized LWE samples is unknown (secret), although its upper-
bounded is given. Thus, we can only state that the rerandomized LWE instances
are at least as hard as original given LWE samples with error parameter r (see
Fig. 1), although r′ is (often) larger than r.

In this paper, we show a sharper LWE self-reduction as an application of
our wSGLHL. We show that rerandomized LWE samples are instances that
are as hard as (plain) LWE samples with known (and large) error parameter.
Formally, we let (A,b := As + e) ∼ LWEs(m,n, q,DZ,r) be m LWE samples,
and we consider the case in which a randomization matrix X is sampled from a
centered and β-bounded distribution χm×l

β with V[χβ ] := ς2 and l rerandomized
LWE samples generated as (A′,b′) := (XᵀA,Xᵀb) ∈ Zl×n

q × Zl
q. We show

that RD between rerandomized LWE samples (A′,b′) and (plain) LWE samples
LWEs(l, n, q,DZ,

√
mςr) is sufficiently small (e.g., ' 1.01+negl(n)) to construct a

LWE self-reduction: we show that finding s from the rerandomized LWE samples
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(A′,b′) is almost as hard as Search-LWEs(l, n, q,DZ,
√
mςr), with the loss of only

a few bits of security.
We illustrate the difference between our self-reduction and existing works in

Fig. 1. It is easy to show that finding s from the rerandomized LWE samples
(A′,b′) is at least as hard as finding s from the original LWE samples (e.g.,
by the data processing inequality). Similarly, [Reg09, Lem. 5.4] shows that
distinguishing rerandomized LWE samples from the uniformly random distri-
bution is at least as hard as distinguishing the original LWE samples from
the uniformly random distribution. Although existing works [ACPS09, HKM18,
GMPW20] produce rerandomized samples that are statistically close to (plain)
LWE samples, their error parameter is unknown, and thus, we can only obtain
a hardness reduction from the original LWE instance. In contrast, our LWE self-
reduction is sharper than these reductions in terms that we can base the security
on a harder LWE instance with a (known) larger error parameter

√
mςr > r.

Note that our LWE self-reduction is between the search problems, while the
existing works are the reduction between the decision problems. This is because
our LWE self-reduction is based on RD. As discussed in the prior works that
utilize RD [Pre17, BLR+18, BJRW22], RD is suited for search problems, while
the statistical distance is suited for decision problems. Nonetheless, we can adapt
the search-to-decision reduction [Reg09, MM11] or the trivial decision-to-search
reduction if we want to connect our LWE self-reduction to Decision-LWE.

The Independence Heuristic. As another application of our wSGLHL, we weaken
the independence heuristic that is required for the fully homomorphic encryption
scheme TFHE [CGGI16, CGGI17, CGGI20]. The TFHE scheme relies on the
heuristic that linear combinations of the errors of ciphertexts are mutually
independent in order to analyze their variance. Since our continuous wSGLHL
shows that linear sums of Gaussian errors and mutually independent Gaussian
errors are close with respect to RD, it essentially mitigates the heuristic. We
adapt continuous wSGLHL to the concrete setting of the TFHE scheme, and we
mitigate the independence heuristic to a weaker heuristic. Note that our result
does not improve the parameter choice of the TFHE, since we only provide a
theoretical evidence to the independence heuristic.

Technical overview. We first show the construction of the approximately
orthogonal matrix (Def. 3.1), in Thm. 3.5. This is the building block of our
main theorem, the wSGLHL (Thm. 4.2 and Thm. 5.4). As an application of
wSGLHL, we show a new LWE self-reduction (Thm. 6.2, Cor. 6.3). In addition,
we apply wSGLHL to mitigate the independent heuristic of TFHE to some
weaker heuristic. We provide a technical overview of our results in what follows.

Approximately orthogonal matrix (Sect. 3). We call X ∈ Rm×l an approximately
orthogonal matrix with bound δ > 0, iff all the absolute values of the elements
of a matrix R := XᵀX − Il are smaller than δ (see Def. 3.1). As mentioned,
we sample the randomization matrix X from the centered and β-bounded
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distribution χm×l
β with V[χβ ] := ς2 and β > 0. Then, in Thm. 3.5, we show

that ( 1√
mς

X) is an approximately orthogonal matrix with bound δ = ω(1/
√
m),

with overwhelming probability over the choice of X. This construction of the
approximately orthogonal matrix is a key technique for our (continuous and
discrete) wSGLHL, as explained in the following part.

Continuous wSGLHL (Sect. 4). Let e be an m-dimensional multivariate con-
tinuous Gaussian with a mean of 0 and (scaled) covariance matrix Σ � 0; i.e.,
e ∼ Nm(Σ) (see Def. 2.18). We refer to e as spherical if Σ = s2Im for some
s > 0 (i.e., e ∼ Nm(s2)), and ellipsoid otherwise.

The continuous ellipsoid Gaussian LHL states that the linear transformation
of the continuous spherical Gaussian e ∼ Nm(s2) by X ∈ Rm×l, i.e., the
“rerandomized” Gaussian Xᵀe, is a continuous ellipsoid Gaussian. This follows
trivially from the linear transformation lemma for the continuous Gaussian
(Lem. 2.19), as we have Xᵀe ∼ Nl(s

2Σ) for Σ = XᵀX.
The continuous SGLHL states that Xᵀe is a continuous spherical Gaussian,

i.e., Xᵀe ∼ Nl(ς
2s2) for some ς > 0. This holds only if XᵀX = ς2Il, i.e.,

only when X is a (scaled) orthogonal matrix. However, sampling an orthogonal
matrix is not efficient and thus it is not preferable in cryptographic applications.
Hence, we consider taking X as an approximately orthogonal matrix, which
is more general and is easier to sample. Specifically, we sample X ∼ χm×l

β

and use Thm. 3.5 to obtain the bound on the elements of the residual matrix
R := 1

mς2X
ᵀX − Il. Then, we obtain (small) upper bound on RD between the

rerandomized Gaussian Xᵀe and some continuous spherical Gaussian, i.e., the
continuous wSGLHL. In Thm. 4.2, informally, we show that

Ra(X
ᵀNm(s2) ‖ Nl(mς2s2)) < (1 + l/

√
m)

1
a−1

holds for any constant a ∈ [2,∞) and some l <
√
m.

Furthermore, we propose an improved theorem Thm. 4.4 that is applicable
to any large l at the expense of increasing the size of the rerandomized Gaussian.
This theorem analyzes RD between Xᵀe+ e′′ and Nl((1 + k)ς2s2), where e′′ ∼
Nl(kς

2s2) is an additional continuous spherical Gaussian for k > 0, and it yields
the same upper bound on RD of Thm. 4.2. This technique is conceptually similar
to the “noise flooding” technique proposed in [BGM+16, BLR+18].

Discrete wSGLHL (Sect. 5). We present similar results for the discrete Gaussian.
Let e be a discrete Gaussian over the m-dimensional integer lattice Zm with a
mean of 0 and (scaled) covariance matrix Σ � 0; i.e., e ∼ DZm,

√
Σ (see Def. 2.23).

We refer to e as spherical if Σ = r2Im for some r > 0 (i.e., e ∼ DZm,r) and as
ellipsoid otherwise.

Unlike the case of the continuous Gaussian, the linear transformation lemma
for the discrete Gaussian is not trivial. Agrawal et al. first proved the discrete
(ellipsoid) Gaussian LHL in [AGHS13]. This lemma states that the linear
transformation of the discrete spherical Gaussian e ∼ DZm,r by X ∈ Rm×l, i.e.,
the rerandomized discrete Gaussian Xᵀe, is statistically close to the discrete
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ellipsoid Gaussian DZl,rX. We extend the discrete (ellipsoid) Gaussian LHL to
the discrete wSGLHL, which states that Xᵀe and the discrete spherical Gaussian
are close with respect to RD. In Thm. 5.4, informally, we show that

Ra(X
ᵀDZm,r ‖ DZm,

√
mςr) < (1 + negl(n))(1 + l/

√
m)

1
a−1

holds for any a ∈ [2,∞) and some l <
√
m by instantiating X ∼ (DZm,ς)

l and
applying Thm. 3.5.

A Sharper LWE self-reduction (Sect. 6). Finally, we show a sharper LWE self-
reduction in Thm. 6.2, by applying our wSGLHL. Although we only consider
the LWE with the discrete Gaussian in Sect. 6, similar results can be obtained
for the LWE with the continuous Gaussian from our continuous wSGLHL.

Our goal is to show that the distribution of rerandomized LWE samples is
close to (plain) LWE distribution. Let (A,b) ∼ LWEs(m,n, q,DZ,r), and define
the rerandomized LWE samples as (A′,b′) := (XᵀA,Xᵀb). By adapting the
classical leftover hash lemma [Lyu05, Reg09], we can show that A′ is statistically
close to U(Zl×n

q ). Hence, we only need to show that the rerandomized error
e′ := Xᵀe, where e := (b−As) ∼ DZm,r, is close to the discrete spherical Gaus-
sian DZl,

√
mςr: indeed, this is shown through the discrete wSGLHL. Informally,

Thm. 6.2 shows that

Ra((X
ᵀA,Xᵀb) ‖ LWEs(l, n, q,DZ,

√
mςr)) < (1 + negl(n))

(
1 + l/

√
m
) 1

a−1 .

Unlike the standard security arguments based on the statistical distance, we
do not (need to) show that RD is negligibly small (i.e., Ra = 1 + negl(n))3. As
mentioned earlier, some non-negligible, but small RD is sufficient for constructing
security arguments. We demonstrate that Thm. 6.2 implies the following LWE
self-reduction (Cor. 6.4) by selecting some concrete parameters:

Search-(XᵀLWEs(m,n, q,DZ,r)) ' Search-LWEs(l, n, q,DZ,
√
mςr)),

which means that the problem of finding s from the rerandomized LWE samples
(XᵀLWEs(m,n, q,DZ,r)) is almost as hard as Search-LWEs(l, n, q,DZ,

√
mςr) with

the loss of only a few small bits of security. Note that, while existing works
[ACPS09, HKM18, GMPW20] treat the given LWE samples (A,b) as fixed
values, we treat them as stochastic variables throughout this paper.

Related works. Pellet-Mary and Stehlé [PS21, Lem. 2.3] analyzed an upper
bound of the statistical distance between two (multivariate) discrete Gaussian
distributions DL+c1,S1

and DL+c2,S1
over the lattice L ⊂ Rn (see Def. 2.23),

where S1 and S2 are (conditioned) covariance matrices and c1 and c2 are
arbitrary centers. The lemma was derived from the Kullback–Leibler (KL)
divergence and Pinsker’s inequality. The KL divergence is a special case of RD:
3 Although we obtain Ra = 1 + negl(n) if we set, e.g., m = 2n and l = poly(n), this

may not be useful for practical cryptographic applications.
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KL(· ‖ ·) = logR1(· ‖ ·) by definition. Furthermore, since Ra is nondecreasing in
a ∈ [1,∞] (Lem. 2.12), logRa for any a ∈ [1,∞] gives an upper-bound on the
KL divergence. Similar to [PS21, Lem. 2.3], our Lem. 5.2 (and Lem. 4.1 for the
continuous Gaussian) analyzes RD between two discrete Gaussian distributions,
Ra(DZn,rX ‖ DZn,rsI), for any a ∈ (1,∞) and some r, s ∈ R. Although [PS21,
Lem. 2.3] is also applicable to our case of interest (L = Zn, S1 = rX, S2 = rsI),
it supports only a = 1 and thus is not sufficient for our LWE self-reduction,
Cor. 6.4. Due to the flexibility of a in our Lem. 5.2 (and Lem. 5.3), we can
adjust the loss of security bits so that it is very small in Cor. 6.4.

Case et al. [CGHX19] claimed that they removed the need for the inde-
pendence heuristic in TFHE works, namely, [CGGI20, Assumption 3.11], but
this claim is incorrect. They showed in [CGHX19, Thm. 3.2] that a linear sum
of sub-Gaussian variables is a sub-Gaussian variable, and derived the worst-
case upper bound of the errors included in TFHE ciphertexts in [CGHX19,
Lem. 5.2]. However, a worst-case upper bound of the errors was already given
in [CGGI16] without relying on the independence heuristic: As mentioned in
[CGGI16], the independence heuristic was only needed to analyze the “average-
case” bound, i.e., the variance of the errors. Case et al. did not derive the average-
case bound, and did not show that the linear sums of sub-Gaussian variables are
mutually independent. Therefore, we provide the first evidence that mitigates
the independence heuristic.

Organization. The remainder of the paper is organized as follows. In Sect. 2,
we provide the definitions and preliminaries required for our work. In Sect. 3, we
show the construction of the approximately orthogonal matrix: Thm. 3.5. Using
this theorem as a building block, we show the continuous wSGLHL (Thm. 4.2)
and discrete wSGLHL (Thm. 5.4) in Sect. 4 and Sect. 5, respectively. As an
application of the wSGLHL, we show a sharper LWE self-reduction (Thm. 6.2)
in Sect. 6. In addition, we discuss how the wSGLHL can be adapted to mitigate
the independence heuristic required for TFHE in Sect. 7.

2 Preliminaries

We use log and ln to denote the base 2 logarithm and the natural logarithm,
respectively. R+ denotes the set of positive real numbers. For any natural number
s ∈ N, the set of the first s positive integers is denoted by [s] = {1, · · · , s}.
Let ε > 0 denote some small (often, negligible) number; we use the notational
shorthand ε̂ := ε+O(ε2). One can check that 1+ε

1−ε = 1 + 2ε̂ and ln
(

1+ε
1−ε

)
= 2ε̂.

Other notation can be found in the rest of this section.

2.1 Linear Algebra

Vectors are in column form and are written using bold lower-case letters, e.g., x.
The i-th component of x is denoted by xi. Matrices are written as bold capital
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letters, e.g., X, and the i-th column vector of X is denoted as xi. When we write
X = [xij ], xij denotes the i-th element of xj . The inverse transpose of X is
denoted as X−ᵀ.We write X � 0 (X � 0) if X is positive definite (semidefinite).
Let In ∈ Zn×n be the identity matrix and let On ∈ Zn×n be the zero matrix. We
sometimes denote In and On by I and O, respectively, when the subscript n is
obvious from the context. For m ≥ n, we call X ∈ Rm×n an orthogonal matrix if
XᵀX = In. For a rank-n matrix X ∈ Rm×n with m ≥ n, we denote its singular
values by σ1(X) ≤ · · · ≤ σn(X). The eigenvalues of X ∈ Rn×n are denoted by
e1(X) ≤ · · · ≤ en(X). The determinant of a square matrix X is denoted by
det(X) or |X|. The usual Euclidean norm (l2-norm) and infinity norm of the
vector x are denoted by ‖x‖ and ‖x‖∞, respectively. The spectral norm |||·||| is
defined on Rn×n by |||A||| = max‖x‖=1 ‖Ax‖ = σn(A). We also define the length
of a matrix on Rn×n as |||A|||len = maxi∈[n] ‖ai‖. Although the length of a matrix
is not a matrix norm, it has the following properties:
Fact 2.1. For any matrices X, Y ∈ Rn×n, |||XY|||len ≤

√
n · |||X|||len |||Y|||len .

Fact 2.2. For any A ∈ Rn×n, |||A|||len ≤ |||A||| = σn(A).

We recall some notions related to the positive (semi)definite matrix.
Lemma 2.3 ([HJ85, Thm. 7.2.6]). Let A ∈ Rn×n be a symmetric matrix,
A � 0, and let k ∈ {2, 3, . . . }. There is a unique symmetric matrix B such that
B � 0, Bk = A, and rankA = rankB. (In particular, we denote the unique
positive (semi)definite square root of A by

√
A.)

Lemma 2.4 ([HJ85, Thm. 7.2.7]). Let A ∈ Rn×n be a symmetric matrix. If
A = BᵀB with B ∈ Rm×n, then A � 0 if and only if B has full column rank.

We recall some notions related to the diagonally dominant matrix:
Definition 2.5. A square matrix A = [aij ] ∈ Rn×n is diagonally dominant
if |aii| ≥

∑
j 6=i |aij | holds for all i ∈ [n]. It is strictly diagonally dominant if

|aii| >
∑

j 6=i |aij | holds for all i ∈ [n].
Lemma 2.6 ([HJ85, Thm. 6.1.10]). Let A = [aij ] ∈ Rn×n be strictly
diagonally dominant. If A is symmetric and ∀i ∈ [n], aii > 0, then A � 0.

We refer to some useful lemmas for a matrix with bounded entries.
Lemma 2.7 ([Ost38]). Let R = [rij ] ∈ Rn×n. If |rij |≤ δ for all i, j ∈ [n] and
nδ ≤ 1, then 1− nδ ≤ |In −R| ≤ 1/(1− nδ)4 holds.
Lemma 2.8 ([Zha05]). Let R = [rij ] ∈ Rn×n be symmetric. If |rij |≤ δ for all
i, j ∈ [n], then −nδ ≤ ei(R) ≤ nδ for all i ∈ [n].
Lemma 2.9 (Adapted from [GV96, Thm. 8.1.5]). If R ∈ Rn×n is a
symmetric matrix, then for all i ∈ [n], 1 + e1(R) ≤ ei(I+R) ≤ 1 + en(R).

2.2 Lattices

A lattice is a discrete additive subgroup of Rm. A set of linearly independent
vectors that generates a lattice is called a basis and is denoted as B =

4 Although [BOS15, Thm. 2] gives a sharper bound, we use this simpler formula.
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{b1, . . . ,bn} ⊂ Rm for integers m ≥ n ≥ 1. The lattice generated by the basis
B is L = L(B) = {

∑n
i=1zibi | z ∈ Zn}. If we arrange the vectors bi as the

columns of a matrix B ∈ Rn×m, then we can write L = {Bz | z ∈ Zn}. We
say that the rank of this lattice is n and its dimension is m. If n = m, we
call the lattice full rank. Let L̂ = {u ∈ span(L) | ∀v ∈ L, 〈u,v〉 ∈ Z} be the
dual lattice of L. We denote the volume of the fundamental parallelepiped of
L as det(L). If lattice L(B) is full rank, then B is a nonsingular square matrix
and det(L(B)) = |det(B)|. Note that det(L̂) = 1/ det(L). For any (ordered) set
S = {s1, . . . , sn} ⊂ Rn of linearly independent vectors, let S̃ = {s̃1, . . . , s̃n} ⊂ Rn

denote its Gram–Schmidt orthogonalization. For a lattice L(B), we define the
Gram–Schmidt minimum as b̃l(L(B)) = minB |||B̃|||len = minB maxi∈[n] ‖b̃i‖.

2.3 Statistics

We write X ∼ D to indicate that the random variable X is distributed according
to the distribution D. Let X ∼ D. We denote the probability function of a
distribution D as D(x) = Pr[X = x] and let Supp(D) := {x | D(x) 6= 0}. We
denote the mean and variance of X by E[X] and V[X], respectively. We say D
is β-bounded if Supp(D) ⊆ [−β, β] for 0 < β ∈ R, and is centered if E[X] = 0.
For a real-valued function f and a countable set S, we write f(S) = Σx∈Sf(x),
assuming that this sum is absolutely convergent. For a matrix X ∈ Rm×n and
a distribution D over Rm, we denote the distribution {Xᵀv ∈ Rn | v ∼ D}
as XᵀD. For distributions D1 and D2, we denote the distribution {v1 + v2 |
v1 ∼ D1, v2 ∼ D2} as (D1 + D2). We denote X1, . . . , Xn

iid∼ D if X1, . . . , Xn are
independent and identically distributed (i.i.d.) according to the distribution D.
We define the statistical distance and RD as follows:
Definition 2.10 (Statistical distance). Let D1 and D2 be probability distri-
butions over a (countable) set Ω. Then, the statistical distance between D1 and
D2 is defined as the function

∆(D1,D2) :=
1
2

∑
x∈Ω|D1(x)−D2(x)|.

The definition is extended in a natural way to continuous distributions.
Definition 2.11 (Rényi divergence). For any two discrete probability distri-
butions D1 and D2 such that S := Supp(D1) ⊆ Supp(D2), we define the Rényi
divergence (RD) of order a ≥ 1 as

R1(D1 ‖ D2) := exp
(∑

x∈SD1(x) log (D1(x)/D2(x))
)
,

Ra(D1 ‖ D2) :=
(∑

x∈SD1(x)
a/D2(x)

a−1
) 1

a−1 for a ∈ (1,∞), and
R∞(D1 ‖ D2) := max

x∈S
(D1(x)/D2(x)).

The definitions are extended in a natural way to continuous distributions.
The above RD is slightly different from some other definitions [Rén61], which

take the log of our version of RD. The properties of RD can be found in [EH14,
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LSS14, BLR+18]. We recall the properties required for our construction. In the
rest of paper, we use the shorthand ca := a

a−1 for a > 1.
Lemma 2.12 ([BLR+18, Lem. 2.9]). Let a ∈ [1,∞], and define ca := a

a−1
for a > 1. Let P and Q denote distributions with Supp(P) ⊆ Supp(Q). Then,
the following properties hold:

Data processing inequality: Ra(Pf ‖Qf ) ≤ Ra(P ‖Q) for any function f
where Pf (resp. Qf ) denotes the distribution of f(y) induced by sampling y ∼ P
(resp. y ∼ Q).

Multiplicativity: Assume P andQ are two distributions of a pair of mutually
independent random variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote
the marginal distribution of Yi under P (resp. Q). Then, Ra(P ‖ Q) = Ra(P1 ‖
Q1)Ra(P2 ‖ Q2).

Probability preservation: Let E ⊆ Supp(Q) be an arbitrary event. For
a ∈ (1,∞), Q(E) ≥ P(E)ca/Ra(P ‖ Q), and Q(E) ≥ P(E)/R∞(P ‖ Q).

Weak triangle inequality: Let P1, P2, and P3 be three distributions with
Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3). Then, we have Ra(P1 ‖ P3) ≤ Ra(P1 ‖
P2)R∞(P2 ‖ P3) and Ra(P1 ‖ P3) ≤ R∞(P1 ‖ P2)

caRa(P2 ‖ P3) if a ∈ (1,∞).
Lemma 2.13 ([EH14, Thm. 3]). Ra(P ‖ Q) is nondecreasing in a ∈ [1,∞].
Lemma 2.14 (Adapted from [Pre17, Sect. 3.3]). Let n ∈ N be a security
parameter. For any algorithm f , define Pf (resp. Qf ) as the distribution of
f(y) induced by sampling y ∼ P (resp. y ∼ Q). Assume that for any (PPT)
algorithm f and an event E ⊆ Supp(Qf ), there exists a constant C > 0 and
Qf (E) ≤ 2−C·n(= negl(n)) holds. Then, for any a > 1, we have Pf (E) ≤
2−

1
ca

(Cn−log Ra(P‖Q)).

Proof. For any a > 1, we have Qf (E) ≥ (Pf (E))ca/Ra(Pf ‖ Qf ) ≥
(Pf (E))ca/Ra(P‖Q) by Lem. 2.12, and thus, Pf (E) ≤ (Qf (E)Ra(P‖Q))1/ca ≤
2−

1
ca

(Cn−log Ra(P‖Q)).

We also define another useful statistical metric called the max-log distance:
Definition 2.15 (Max-log distance). Given two distributions D1 and D2 with
common support S = Supp(D1) = Supp(D2), the max-log distance between D1

and D2 is defined as

∆ML(D1,D2) := max
x∈S
| ln(D1(x))− ln(D2(x))|.

The log of ∞-RD is upper-bounded by the max-log distance since we have
∆ML(D1,D2) = max{ln(R∞(D1 ‖ D2)), ln(R∞(D2 ‖ D1))} by definition. Thus,
we have the following fact by Lem. 2.13:
Fact 2.16. Let D1 and D2 be distributions with a common support. For any
a ∈ [1,∞], ln(Ra(D1 ‖ D2)), ln(Ra(D2 ‖ D1)) ≤ ∆ML(D1,D2).

Similarly, the statistical distance is bounded by the bound of ∞-RD:
Fact 2.17. Let D1 and D2 be distributions with a common support. If
R∞(D1‖D2) ≤ 1 + δ and R∞(D2‖D1) ≤ 1 + δ hold for some δ > 0, then
∆(D1,D2) ≤ δ.
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2.4 Gaussians

Gaussian function. For a rank-n matrix S ∈ Rm×n, the ellipsoid Gaussian
function on Rn with center c ∈ Rn and the (scaled) covariance matrix Σ = SᵀS
is defined as:

ρS,c(x) := exp(−π(x− c)ᵀ(SᵀS)−1(x− c)).

ρS,c(x) is determined exactly by Σ � 0, and there exist a unique
√
Σ � 0 s.t.√

Σ
√
Σ = Σ, by Lem. 2.3. Thus, we also write ρS,c as ρ√Σ,c. When c = 0, the

function is written as ρS or ρ√Σ and is called centered. For S = sIn, we write
ρS,c as ρs,c, and it is written as ρs when c = 0.

Continuous Gaussian distribution. We define the continuous multivariate Gaus-
sian distribution and describe its several important properties.
Definition 2.18. Given µ ∈ Rm and Σ ∈ Rm×m, we say that e follows the
continuous (ellipsoid) Gaussian distribution Nm(µ, 1

2πΣ) if one of the following
is satisfied:

1. Σ � 0 and the p.d.f of e is ρ√Σ,µ(x)/
√
|Σ|.

2. Σ � 0 and MX(t) := E[etᵀX] = exp(µᵀt+ 1
4π t

ᵀΣt).

In particular, we write Nm(µ, σ2) := Nm(µ, σ2Im) for σ > 0, and call it the
continuous spherical Gaussian distribution. We also define Nm(Σ) := Nm(0,Σ),
Nm(σ2) := Nm(0, σ2Im), and N (σ2) := N1(σ

2).
Lemma 2.19. For e ∼ Nm(µ,Σ), A ∈ Rm×l, b ∈ Rl, we have Aᵀe + b ∼
Nl(A

ᵀµ+ b,AᵀΣA).
Lemma 2.20. Let e1 ∼ Nm(µ1,Σ1) and e2 ∼ Nm(µ2,Σ2) be independent.
Then, e1 + e2 ∼ Nm(µ1 + µ2,Σ1 +Σ2).

Lemma 2.21. Let e := (e1, · · · , em)ᵀ ∼ Nm(µ,Σ). If e1, · · · , em are un-
correlated, i.e., the nondiagonal elements of Σ are all zero, then, e1, · · · , em
are mutually independent. (Thus, the elements of e ∼ Nm(σ2) are mutually
independent).

Discrete Gaussian distribution. One way to obtain a discrete analog of a
continuous Gaussian is by simple rounding. We refer to this as the discretized
Gaussian distribution Ψr defined as follows:
Definition 2.22. For r > 0, define Ψr as the distribution on Zq obtained by
drawing y ← N (r2) and outputting bq · ye (modq).

The other discrete analog of a Gaussian distribution, which is of greatest
concern to us, is the discrete Gaussian distribution over the lattice:
Definition 2.23. For a rank-n lattice L, a matrix S ∈ Rm×n, and c ∈ Rn, the
discrete (ellipsoid) Gaussian distribution with parameter S and support L+ c is
defined as, ∀x ∈ L+ c,DL+c,S(x) =

ρS(x)
ρS(L+c) . When SᵀS = s2In for some s > 0,

we write DL+c,s(x) and call it the discrete spherical Gaussian distribution.
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Given a lattice L and ε > 0, we define the smoothing parameter of
L as ηε(L) = min{s | ρ1/s(L̂) ≤ 1 + ε}. We also define η≤ε (Zn) :=√

ln(2n(1 + 1/ε))/π, and recall some facts related to the smoothing parameter.
Lemma 2.24 ([GPV08, Lem. 3.1]). For any n-dimensional full rank lattice L
and real ε > 0, we have ηε(L) ≤ b̃l(L) · η≤ε (Zn) In particular, for any ω(

√
logn)

function, there exists a negligible ε(n) for which ηε(L) ≤ b̃l(L) · ω(
√

logn).
Lemma 2.25 ([MR07, Lem. 4.3]). For any n-dimensional full rank lattice L,
vector c ∈ Rn, ε ∈ (0, 1), and s ≥ 2ηε(L), we have

Ex∼DL+c,s [‖x− c‖2] ≤ (1/2π + ε/(1− ε)) s2n.

Lemma 2.26 ([MR07, Lem. 4.4]). For any n-dimensional full rank lattice L,
vector c ∈ Rn, ε ∈ (0, 1), and s ≥ ηε(L), we have

Pr
x∼DL+c,s

[‖x− c‖ > s
√
n] ≤ 1+ε

1−ε · 2
−n.

(Hence, we have Prx∼DL+c,s [‖x− c‖∞ > s] ≤ 1+ε
1−ε · 2

−n.)
Lemma 2.27 ([Reg09, Claim 3.8]). For any n-dimensional full rank lattice
L, c ∈ Rn, ε > 0, and r ≥ ηε(L), ρr(L+ c) ∈ (1± ε)rn/det(L).

From Lem. 2.27, when c = 0 and L = S−ᵀZn, where S ∈ Rn×n is a non-
singular matrix, we obtain the following corollary:
Corollary 2.28. For any nonsingular matrix S ∈ Rn×n, any ε > 0, and r ≥
ηε(S

−ᵀZn), ρrS(Zn) ∈ (1± ε)rn|S|.
In addition, by Lem. 2.27, we obtain a discrete analog of Lem. 2.21:

Lemma 2.29. Let n ∈ N. For any ε > 0 and r ≥ ηε(Zn), we have
∆(DZn,r, (DZ,r)

n) = ε̂ and ∆ML(DZn,r, (DZ,r)
n) = ln(1+ε̂), where ε̂ := ε+O(ε2).

3 Approximately Orthogonal Matrices

The main goal of this section (Thm. 3.5) is to introduce a construction of the
approximately orthogonal matrix, defined as follows:
Definition 3.1. Let X ∈ Rm×n, and define a residual matrix R := XᵀX−In :=
[rij ]. We say that X is approximately orthogonal with bound δ > 0 if |rij | < δ
holds for all i, j ∈ [n].

Then, we apply Thm. 3.5 to obtain Cor. 3.6 and Lem. 3.7. They are the
building blocks for the proofs of Thm. 4.2 and Lem. 5.3 in Sect. 4 and Sect. 5.
To begin, we derive some facts regarding centered and bounded distributions.
Fact 3.2. Let X and Y be centered, β-bounded for β > 0, and mutually
independent. Then, XY is centered and β2-bounded.
Lemma 3.3. Let X1, X2, . . . , Xn be centered, β-bounded for β > 0, and mutually
independent. Let C > 0 be a constant, and define X := 1

n

∑n
i=1 CXi. Then, for

ε > 0, we have Pr[|X| ≥ ε] < 2 exp
(
− 1

2C2β2 ε
2n
)
.
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Proof. This follows from the Hoeffding bound.

Lemma 3.4. Let χβ be a centered and β-bounded distribution for β > 0 with
V[χβ ] := ς2. Let X1, X2, . . . , Xn

iid∼ χβ, Yi :=
X2

i

ς2 for i ∈ [n], and define Y :=

1
n

∑n
i=1 Yi. Then for ε > 0, we have Pr[|Y − 1| ≥ ε] < 2 exp

(
−2 ς4

β4 ε
2n
)
.

Proof. We have E[Y ] = 1
n

∑n
i=1 E[X

2
i

ς2 ] =
1
n

∑n
i=1

1
ς2 V[Xi] = 1, and Supp(Yi) ⊂

[0, β2

ς2 ]. Thus, the lemma follows from the Hoeffding bound.

Now, we show the construction of the approximately orthogonal matrix.

Theorem 3.5. Let m ∈ N be a security parameter, and let l = poly(m) be a
positive integer. Let χβ be a centered and β-bounded distribution for β > 0 with
V[χβ ] := ς2, and assume β/ς = O(1). Let X ∼ χm×l

β , then, for any constants
γ ∈ (0, 1/2) and c > 0,

(
1√
mς

X
)

is an approximately orthogonal matrix with
bound δ := c ·m−γ , with overwhelming probability over the choice of X.

Proof. We analyze the distribution of S :=
(

1
mς2X

ᵀX
)
= [sij ]. Let Xi for i ∈

[l] be an i-th column vector of X = [xij ]. For the nondiagonal elements, i.e.,
when i 6= j, we have sij = 1

mς2 (xi)
ᵀxj = 1

m

∑m
k=1

1
ς2xikxjk by definition. Since

xik, xjk
iid∼ χβ for all k ∈ [m], by Fact 3.2, we have that (xi1xj1), . . . , (ximxjm)

are centered, β2-bounded, and mutually independent. Thus, by Lem. 3.3 (with
C := 1

ς2 ), we have Pr[|sij | ≥ δ] < 2 exp
(
− 1

2
ς4

β4 δ
2m
)
= negl(m) for all i 6= j.

Hence, by the union bound, Pr[
⋃

i 6=j(|sij | ≥ δ)] ≤
∑

i 6=j Pr[|sij | ≥ δ] = negl(m)
holds. Thus, we have

Pr[
⋂

i 6=j(|sij | < δ)] ≥ 1− negl(m).

Next, for the diagonal elements, we have sii = 1
mς2 ‖xi‖2 = 1

m

∑m
k=1

x2
ik

ς2 by
definition. Since xi1, . . . , xim

iid∼ χβ by Lem. 3.4, we have Pr[|sii − 1| ≥ δ] <

2 exp
(
−2 ς4

β4 δ
2m
)

= negl(m). Thus, by the union bound, Pr[
⋃

i∈[l](|sii − 1| ≥
δ)] ≤

∑
i∈[l] Pr[|sii − 1| ≥ δ] = negl(m) holds, and we have

Pr[
⋂

i∈[l](|sii − 1| < δ)] ≥ 1− negl(m).

Since the residual matrix is R = S− Il, we obtain the theorem.

The upper bound on the absolute values of the elements of the residual matrix
R enables useful analysis. We can bound |Il +R| by Lem. 2.7:
Corollary 3.6. In Thm. 3.5, let the residual matrix R := 1

mς2X
ᵀX − Il, then

for any l < 1/δ (= mγ

c ), 1− lδ ≤ |Il +R| ≤ 1/(1− lδ) holds with overwhelming
probability over the choice of X.

Furthermore, we can analyze the positive definiteness of a matrix in the form
S := Il − kR for small k ∈ R when the elements of R have a small bound.
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Lemma 3.7. Let R = [rij ] ∈ Rl×l be a symmetric matrix s.t. |rij | ≤ δ for i, j ∈
[n], and δ ∈ R. For any 2 ≤ l ∈ N and δ, k ∈ R s.t. |k|lδ < 1, S := Il − kR � 0
holds.

Proof. S = [sij ] is a diagonally dominant matrix, since
∑

j 6=i |sij | < (l−1)|k|δ <
1 − |k|δ ≤ |sii| holds for all i ∈ [l]. All diagonal elements of S are positive; i.e.,
sii > 0 holds for all i ∈ [l] since |krii| < |k|δ = 1/l < 1. Thus, Lem. 2.6 is
applicable to S, and the lemma follows.

4 Continuous Weak Spherical Gaussian LHL

The goal of this section is to show the continuous wSGLHL (Thm. 4.2) and its
extended theorem (Thm. 4.4) with the noise flooding technique. Let e′ := Xᵀe,
where X ∈ Rm×l and e ∼ Nm(σ2) is a continuous spherical Gaussian. Then,
have e′ ∼ Nl(σ

2Σ), where Σ := XᵀX, by Lem. 2.19. We instantiate X ∼ χm×l
β

and define R := 1
mς2Σ−Il, then we obtain a small bound on the elements of R by

Thm. 3.5. In Sect. 4.1, we show that Ra(Nl(σ
2Σ),Nl(mς2σ2Il)) is small, which

is the continuous wSGLHL (Thm. 4.2). In Sect. 4.2, we present an improved
theorem (Thm. 4.4) that supports an arbitrarily large l, which is restricted to
l <
√
m in Thm. 4.2.

4.1 (Plain) Continuous Weak Spherical Gaussian LHL

In this subsection, we present the continuous wSGLHL (Thm. 4.2). We first show
that RD between e′ := Xᵀe with the general (column full rank) matrix X and
continuous spherical Gaussian can be written with a simpler formula.
Lemma 4.1. Let m ≥ l ∈ N, and let X ∈ Rm×l be a column full rank matrix.
Define Σ := XᵀX, and let R := 1

s2Σ− Il for s ∈ R+.
For any X, s, and a ∈ (1,∞) s.t. Il − (a− 1)R � 0,

Ra := Ra(X
ᵀNm(σ2) ‖ Nl(s

2σ2)) = 1/

√
|Il +R||Il − (a− 1)R|

1
a−1 . (1)

For any X and s s.t. −R � 0,

R∞ := R∞(XᵀNm(σ2) ‖ Nl(s
2σ2)) = 1/

√
|Il +R|. (2)

Proof. Since X is column full rank, we have Σ � 0 by Lem. 2.4. Thus, by
Lem. 2.19, XᵀNm(σ2) ∼ Nl(σ

2Σ). In addition, from Lem. 2.3, there exists a
symmetric matrix

√
Σ ∈ Rl×l s.t.

√
Σ
√
Σ = Σ and

√
Σ � 0. Note that Σ−1 � 0.

Then, for any a ∈ (1,∞), we have

(Ra)
a−1 =

∫
y∈Rl

(
exp

(
− 1

2σ2y
ᵀΣ−1y

)√
(2πσ2)l|Σ|

)a(
exp

(
− 1

2s2σ2y
ᵀy
)√

(2πs2σ2)l

)−(a−1)

dy

=

∫
y∈Rl

exp
(
− 1

2σ2

(
yᵀ(aΣ−1 − a−1

s2 Il)y
))√

(2πσ2/s2(a−1))l|Σ|a
dy
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By defining y :=
√
Σx, we have dy = |

√
Σ|dx, and thus

(Ra)
a−1 =

∫
x∈Rl

exp(− 1
2σ2 (x

ᵀ(aIl − a−1
s2 Σ)x))√

(2πσ2)l| 1s2Σ|a−1
dx

=

∫
x∈Rl

exp(− 1
2σ2 (x

ᵀ(Il − (a− 1)R)x))√
(2πσ2)l|Il +R|a−1

dx

=
1√

|Il +R|a−1|Il − (a− 1)R|

∫
x∈Rl

exp(− 1
2σ2 (x

ᵀ(Il − (a− 1)R)x))√
(2πσ2)l|(Il − (a− 1)R)−1|

dx.

Hence, for any X, s, and a ∈ (1,∞) s.t. Il− (a− 1)R � 0, we obtain (1) because
exp(− 1

2σ2 (xᵀ(Il−(a−1)R)x))√
(2πσ2)l|(Il−(a−1)R)−1|

is the p.d.f of Nl(σ
2(Il − (a− 1)R)−1).

Similarly, for a =∞, we have

R∞ = max
y∈Rl

(
exp

(
− 1

2σ2y
ᵀΣ−1y

)√
(2πσ2)l|Σ|

/
exp

(
− 1

2s2σ2y
ᵀy
)√

(2πs2σ2)l

)

=
1√
|Il +R|

max
x∈Rl

exp
(
− 1

2σ2
xᵀ(−R)x

)
.

Thus, if −R � 0, we obtain (2).

By sampling X from a centered and bounded distribution, and applying
Thm. 3.5, we obtain the continuous wSGLHL:

Theorem 4.2 (Continuous wSGLHL). Let m ∈ N be a security parameter,
γ ∈ ( 1

log m , 1
2 ) be a constant, and l := l(m) < mγ be a positive integer. Let

χβ be a centered and β-bounded distribution for β > 0 with V[χβ ] := ς2, and
assume β/ς = O(1). Let X ∼ χm×l

β . Then, for any constant a ∈ [2,∞), with
overwhelming probability over the choice of X, we have

Ra := Ra(X
ᵀNm(σ2) ‖ Nl(mς2σ2)) <

(
1 + 1/(m

γ

l − 1)
) 1

a−1 .

Proof. Define Σ := XᵀX and R := 1
mς2Σ − Il. Let δ := 1

(a−1)mγ ; then, by
Thm. 3.5, all elements of R = [rij ] simultaneously satisfy |rij | < δ for all i, j ∈ [l]
with overwhelming probability over the choice of X.

Let Sa := Il − (a − 1)R. By construction, (a − 1)lδ < 1 holds, and Sa

is a symmetric matrix since Σ is symmetric (as is R). Hence, by Lem. 3.7,
Sa � 0 holds with overwhelming probability over the choice of X. Similarly,
Σ = mς2(Il +R) � 0 holds with overwhelming probability. Therefore, we have

Ra = 1/

√
|Il +R||Il − (a− 1)R|

1
a−1 by Lem. 4.1. Finally, we analyze the upper

bound on Ra. Since lδ < (a − 1)lδ < 1 holds, we have |Il + R| > 1 − lδ and
|Il − (a − 1)R| > 1 − (a − 1)lδ by Lem. 2.7, and (1 − lδ) > (1 − (a − 1)lδ)

1
a−1 .

Hence, we have Ra < 1/

√
(1− lδ)(1− (a− 1)lδ)

1
a−1 < 1/(1 − (a − 1)lδ)

1
a−1 =(

1/(1− l
mγ )

) 1
a−1 =

(
1 + 1/(m

γ

l − 1)
) 1

a−1 .
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Note that, in Thm. 4.2, we could not derive quantitative bound of R∞ of
(2) derived in Lem. 4.1. We need −R � 0 to use Lem. 4.1, but this condition
does not necessary holds (with overwhelming probability) when X ∼ χm×l

β . We
require additional condition on X: as a trivial example, (exactly) orthogonal
matrices X satisfy R = XᵀX− I = O � 0.

4.2 Improvement with Noise Flooding

In Thm. 4.2, the number of outputs l must be less than
√
m. We extend l to an

arbitrarily large number by adding extra Gaussian errors to the linear sums of
the Gaussian errors, in Thm. 4.4 of this section. This technique is conceptually
similar to the technique called “noise flooding” that is used in [BGM+16,
BLR+18]. First, we perform analysis with the general matrix X ∈ Rm×l as
in Lem. 4.1. Note that we do not require m ≥ l here, unlike Lem. 4.1.
Lemma 4.3. Let m, l ∈ N and k, s ∈ R+. We define X ∈ Rm×l, Σ := XᵀX,
and assume Σ′ := Σ+ ks2Il � 0. Let R := 1

s2(1+k)Σ
′ − Il.

For any X, s, and a ∈ (1,∞) s.t. Il − (a− 1)R � 0,

Ra := Ra(X
ᵀNm(σ2) +Nl(ks

2σ2) ‖ Nl((1 + k)s2σ2))

= 1/

√
|Il +R||Il − (a− 1)R|

1
a−1 .

For any X and s s.t. −R � 0,

R∞ := R∞(XᵀNm(σ2) +Nl(ks
2σ2) ‖ Nl((1 + k)s2σ2)) = 1/

√
|Il +R|.

Proof. By definition, Σ � 0 holds5. Thus, XᵀNm(σ2) = Nl(σ
2Σ) by Lem. 2.19,

and therefore, XᵀNm(σ2)+Nl(ks
2σ2) = Nl(σ

2Σ′) by Lem. 2.20. By hypothesis,
we have Σ′ � 0, and thus there exists a unique

√
Σ′ ∈ Rl×l s.t.

√
Σ′ � 0 and√

Σ′
√
Σ′ = Σ′ by Lem. 2.3. Hence, we have:

(Ra)
a−1 = (Ra(Nl(σ

2Σ′) ‖ Nl((1 + k)s2σ2)))a−1

=

∫
y∈Rl

(
exp

(
− 1

2σ2y
ᵀ(Σ′)−1y

)√
(2πσ2)l|Σ′|

)a
exp

(
− 1

2(1+k)s2σ2y
ᵀy
)

√
(2π(1 + k)s2σ2)l

−(a−1)

dy

=

∫
y∈Rl

exp
(
− 1

2σ2y
ᵀ(a(Σ′)−1 − a−1

(1+k)s2 Il)y
)

√
(2πσ2((1 + k)s2)−(a−1))l|Σ′|a

dy.

5 Σ � 0 does not necessarily hold since X is not necessarily column full rank (l may
be larger than m) in this lemma.
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By defining y :=
√
Σ′x, we have dy = |

√
Σ′|dx = |Σ′|1/2dx. Then, we have

(Ra)
a−1 =

∫
x∈Rl

exp
(
− 1

2σ2x
ᵀ(aIl − a−1

(1+k)s2Σ
′)x
)

√
(2πσ2)l| 1

(1+k)s2Σ
′|a−1

dx

=

∫
x∈Rl

exp
(
− 1

2σ2x
ᵀ(Il − (a− 1)R)x

)√
(2πσ2)l|Il +R|a−1

dx.

The rest of the proof is identical to that of Lem. 4.1. We can derive R∞ similarly.

By sampling X from a centered and bounded distribution and applying
Thm. 3.5, we obtain an extension of Thm. 4.2. This theorem subsumes Thm. 4.2
since they are identical when k → 0.

Theorem 4.4 (Extended continuous wSGLHL). Let m ∈ N be a security
parameter. Let γ ∈ ( 1

log m , 1
2 ) be a constant, and define k := k(m) > 0 and

l := l(m) < (1 + k)mγ . Let χβ be a centered and β-bounded distribution for
β > 0 with V[χβ ] := ς2, and assume β/ς = O(1). Let X ∼ χm×l

β . Then, for any
constant a ∈ [2,∞), with overwhelming probability over the choice of X, we have

Ra := Ra(X
ᵀNm(σ2) +Nl(kmς2σ2) ‖ Nl((1 + k)mς2σ2))

<
(
1 + 1/((1 + k)m

γ

l − 1)
) 1

a−1 .

Proof. Define Σ := XᵀX, Σ′ := Σ+kmς2Il, and R := 1
mς2(1+k)Σ

′−Il. Let R′ :=
1

mς2Σ− Il; then, R = 1
1+kR

′. Let δ := 1
(a−1)mγ ; then, by Thm. 3.5, all elements

of R′ = [r′ij ] simultaneously satisfy |r′ij | < δ with overwhelming probability over
the choice of X. Thus, all elements of R = [rij ] simultaneously satisfy |rij | <
δ

1+k with overwhelming probability. Let Sa := Il − (a − 1)R. By construction,
(a−1)lδ
1+k < 1, and Sa is a symmetric matrix. Hence, by Lem. 3.7, Sa � 0 holds

with overwhelming probability. Similarly, we can show that Il +R � 0 and thus
that Σ′(= (1+ k)mς2(Il +R)) � 0 holds with overwhelming probability. Hence,

by Lem. 4.3, we obtain Ra = 1/

√
|Il +R||Il − (a− 1)R|

1
a−1 . Finally, we analyze

the upper bound on Ra. Since lδ
1+k < (a−1)lδ

1+k < 1 holds, we have 1− lδ
1+k < |Il+R|

and 1− (a−1)lδ
1+k < |Il−(a−1)R| by Lem. 2.7, as well as (1− lδ

1+k ) > (1− (a−1)lδ
1+k )

1
a−1 .

Hence, we have Ra < 1/
√
(1− lδ

1+k )(1−
(a−1)lδ
1+k )

1
a−1 < 1/(1 − (a−1)lδ

1+k )
1

a−1 =

1/(1− l
(1+k)mγ )

1
a−1 , and the theorem follows.

5 Discrete Weak Spherical Gaussian LHL

The goal of this section is to show the discrete wSGLHL (Thm. 5.4), which is a
discrete analog of Thm. 4.2. The proof of this theorem is conceptually the same
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as that of Thm. 4.2. We analyze RD between e′ := Xᵀe and a discrete spherical
Gaussian, where e ∼ DZm,r is a discrete spherical Gaussian and X ∈ Rm×l.

This analysis is more complicated than that for the continuous Gaussian.
Although the linear transformation of the multivariate continuous Gaussian
is exactly a multivariate continuous Gaussian as shown in Lem. 2.19, the
counterpart of the discrete multivariate Gaussian is not trivial; it was first
shown by Agrawal et al. in [AGHS13]. Similar analyses were performed in [AR16,
CGM19, DGPY20, GMPW20] (with some generalization). We rely on the lemma
given by Aggarwal and Regev [AR16], which improves upon [AGHS13]6.
Lemma 5.1 (Adapted from [AR16, Thm. 5.1]). Let m > l ≥ 100 be
integers, and let ε = ε(l) ∈ (0, 10−3). Let ς ∈ R+ and let X ∼ (DZm,ς)

l.
If m ≥ 30l log(ςl), r ≥ 10ςl logm

√
log(1/ε) log(ςl), and ς ≥ 9η≤ε (Zl), then,

with probability 1 − 2−l over the choice of X, for any z ∈ Zl, (XᵀDZm,r)(z) ∈[
1−ε
1+ε , 1

]
· DZl,rX(z) holds, and thus we have ∆ML(X

ᵀDZm,r,DZl,rX) ≤ ln( 1+ε
1−ε ).

Note that this lemma states only that the linear transformation of the discrete
spherical Gaussian is a discrete ellipsoid Gaussian. We will show in Lem. 5.3
that when we take X as a (scaled) approximately orthogonal matrix, namely,
X ∼ χm×l

β , the discrete ellipsoid Gaussian DZl,rX can be approximated as a
discrete spherical Gaussian. Although Lem. 5.1 samples X from the discrete
spherical Gaussian distribution (DZm,ς)

l, we can show that the Gaussian distri-
bution7 is also a bounded distribution with overwhelming probability, by using
the standard bound Lem. 2.268. Thus, Lem. 5.1 is compatible with our framework
based on Thm. 3.5.

We first show the discrete analog of Lem. 4.1. (Here, recall the notational
shortcuts ca := a

a−1 for a > 1 and ε̂ := ε+O(ε2).)
Lemma 5.2. Let m ≥ l ∈ N, and let X ∈ Zm×l be a column full rank matrix.
Define Σ := XᵀX, and let R := 1

s2Σ − Il for s ∈ R+. Let a ∈ [2,∞) be a
constant, let Sa := Il− (a−1)R, and assume that Sa � 0 holds. For any ε ∈ R+

and r > ηε(
√
Σ

−1√
SaZl), we have

Ra := Ra(DZl,rX ‖ DZl,rs) ≤ (1 + 2caε̂)/

√
|In +R||In − (a− 1)R|

1
a−1 .

Proof. Since X is column full rank, we have Σ � 0 by Lem. 2.4. Hence,
by Lem. 2.3 there exists a symmetric matrix

√
Σ ∈ Rl×l s.t.

√
Σ
√
Σ = Σ

and
√
Σ � 0. By the hypothesis that Sa � 0, there exists a symmetric

matrix
√
Sa ∈ Rn×n s.t.

√
Sa

√
Sa = Sa and

√
Sa � 0. Thus, we have

6 We can also adapt the result of [KNSW20], which is the follow-up work of [AGHS13]
and [AR16], to give a different range of parameter sets: We can obtain a smaller
lower-bound on r if we set ς = Ω(n) by adapting [KNSW20].

7 Similarly, e.g., the sub-Gaussian variable can also be seen as a bounded distribution.
8 Almost equivalently, we can rely on the tail-cut lemma, e.g., [Pre17, Lem. 2].
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Ra =
(

(ρrs(Zl))a−1

(ρr
√

Σ(Zl))a

∑
x∈Zl

(
ρr

√
Σ(x)

)a
(ρrs(x))

a−1

) 1
a−1

, and

∑
x∈Zl

(
ρr

√
Σ(x)

)a
(ρrs(x))

a−1 =
∑
x∈Zl

exp
(
− π

r2
xᵀ(aΣ−1 − a− 1

s2
In)x

)
= ρ

r
√
Sa

−1√
Σ
(Zl).

Then, by Cor. 2.28 and the hypothesis that r > ηε(
√
Σ

−1√
SaZl), we have

Ra ≤
(
(rs(1 + ε))n(a−1)

(rl|
√
Σ|(1− ε))a

rl|
√
Sa

−1√
Σ|(1 + ε)

) 1
a−1

=
1

| 1s
√
Σ||
√
Sa|

1
a−1

(
1 + ε

1− ε

)ca

=
1 + 2a

a−1 ε̂√
|In +R||In − (a− 1)R|

1
a−1

.

Then, by sampling X from a centered and bounded distribution and applying
Thm. 3.5 to the above lemma, we obtain the following theorem:
Lemma 5.3. Let m ∈ N be a security parameter, γ ∈ ( 1

log m , 1
2 ) be a constant,

and l := l(m) < mγ be a positive integer. Let χβ be a centered and β-bounded
distribution over Z for β > 0 with V[χβ ] := ς2. Let X ∼ χm×l

β . Then, for

any constant a ∈ (2,∞), ε := ε(m) ∈ (0, 1), and r ≥ 1
ς

√
2ca−1l

m η≤ε (Zl), with
overwhelming probability over the choice of X, we have

Ra := Ra(DZl,rX ‖ DZl,
√
mςr) < (1 + 2caε̂)

(
1 + 1/(m

γ

l − 1)
) 1

a−1 .

Proof. Define Σ := XᵀX and R := 1
mς2Σ− Il. Let δ := 1

(a−1)mγ . Then, similar
to the proof of Thm. 4.2, with overwhelming probability over the choice of X,
all elements of R = [rij ] simultaneously satisfy |rij | < δ for all i, j ∈ [l], and
Sa := Il−(a−1)R � 0, Σ � 0. Next, by Lem. 2.24 and Fact 2.1, for any ε ∈ R+,
we have

ηε(
√
Σ

−1√
Sa · Zl) ≤ b̃l(

√
Σ

−1√
Sa) · η≤ε (Zl) ≤ |||

√
Σ

−1√
Sa|||len · η

≤
ε (Zl)

≤
√
l · |||
√
Σ

−1
|||len|||

√
Sa|||len · η

≤
ε (Zl).

By the definition of ||| · |||len, and given that δ < 1, we have

|||
√
Sa|||len =

√
maxi∈[l](1− (a− 1)rii) ≤

√
1 + δ <

√
2.

By Fact 2.2, |||
√
Σ

−1|||len ≤ σl(
√
Σ

−1
) ≤

√
el(Σ

−1) ≤
√
(e1(Σ))−1 =√

1/mς2e1(Il +R). Furthermore, by Lem. 2.8 and Lem. 2.9, we have

|||
√
Σ

−1
|||len ≤

1
ς
√
m

√
1

1+e1(R) ≤
1

ς
√
m

√
1

1−lδ < 1
ς

√
ca−1

m .
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Thus, we have ηε(
√
Σ

−1√
Sa · Zl) < 1

ς

√
2ca−1l

m · η≤ε (Zl) ≤ r. Therefore, we can

apply Lem. 5.2 and we have Ra ≤ (1+2caε̂)/

√
|In +R||In − (a− 1)R|

1
a−1 . The

rest of the proof is identical to that of Thm. 4.2.

Finally, we obtain the discrete wSGLHL from Lem. 5.1 and Lem. 5.3:

Theorem 5.4 (Discrete wSGLHL). Let m ∈ N be a security parameter.
Let γ ∈ ( 1

log m , 1
2 ) be a constant, let l = ω(logm) be a positive integer s.t.

l ∈ [100,mγ), and let ε := ε(m) ∈ (0, 10−3). Let ς ∈ R+, X ∼ (DZm,ς)
l

and let (ς ′)2 := V[DZ,ς ]. If m ≥ max(30l log(ςl), l1/γ), ς ≥ 9η≤ε (Zl), and
r ≥ max( 1

ς′

√
2cal
m η≤ε (Zl), 10ςl logm

√
log(1/ε) log(ςl)), then, for any constant

a ∈ (2,∞), with overwhelming probability over the choice of X, we have

Ra := Ra(X
ᵀDZm,r ‖ DZl,

√
mςr) < (1 + 4caε̂)

(
1 + 1/(m

γ

l − 1)
) 1

a−1 .

Proof. By Lem. 5.1 and Fact 2.16, we have

R∞(XᵀDZm,r ‖ DZl,rX) ≤ 1+ε
1−ε = 1 + 2ε̂,

with probability 1−2−l(m) over the choice of X. Next, we show that X ∼ (DZm,ς)
l

can be viewed as a ς-bounded distribution, with overwhelming probability. By
Lem. 2.26, we have Prx∼DZm,ς

[‖x‖∞ > ς] ≤ 1+ε
1−ε · 2

−m = negl(m). Hence, by the
union bound, we can show that all elements of X = [xij ] simultaneously satisfy
|xij | ≤ ς with overwhelming probability. And, we have ς′

ς = O(1) by Lem. 2.25.
Therefore, by Lem. 5.3, for any constant a ∈ (2,∞), we have

Ra(DZl,rX ‖ DZl,
√
mςr) < (1 + 2caε̂)

(
1 + 1/(m

γ

l − 1)
) 1

a−1

with overwhelming probability over the choice of X. Therefore, by the weak
triangle inequality of the Rényi divergence (Lem. 2.12), we obtain

Ra < (1 + 2ε̂)ca(1 + 2caε̂)
(
1 + 1/(m

γ

l − 1)
) 1

a−1 ,

and the theorem follows.

Note that we usually set ε = negl(m) for cryptographic applications, and
thus we have 1 + 4caε̂ = 1 + negl(m) for any constant a > 2.

6 A Sharper LWE Self-Reduction

The purpose of this section is to show our LWE self-reduction in Thm. 6.2. For
simplicity, we consider only LWE with the discrete Gaussian. Similar results for
LWE with a continuous Gaussian can be obtained by relying on the continuous
wSGLHL, Thm. 4.2. We first recall the (classical) leftover hash lemma:
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Lemma 6.1 ([Reg09, Claim 5.3]). Let A ∼ U(Zm×n
q ), X ∼ (DZm,ς)

l for some
ς = ω(

√
logm). Then, ∆(XᵀA,U(Zl×n

q )) = negl(m) and ∆ML(X
ᵀA,U(Zl×n

q )) =
ln(1 + negl(m)) hold.

By combining Lem. 6.1 and Thm. 5.4, we obtain our LWE sample rerandom-
ization theorem, which states that rerandomized LWE samples and (plain) LWE
samples are close with respect to RD:

Theorem 6.2. Let n ∈ N be a security parameter, and let m = Ω(n) and q :=
q(n) be integers. Let γ ∈ ( 1

log m , 1
2 ) be a constant, l = ω(logn) be a positive integer

s.t. l ∈ [100,mγ), and ε := ε(n) ∈ (0, 10−3). Let ς ∈ R+, X ∼ (DZm,ς)
l, and ς ′ :=

V[DZ,ς ]. If ς ≥ 9η≤ε (Zl), m ≥ max(30l log(ςl), l1/γ), r ≥ max( 1
ς′

√
2cal
m η≤ε (Zl),

10ςl logm
√

log(1/ε) log(ςl)), and q > 2
√
mςr, then, for any constant a ∈ (2,∞),

with overwhelming probability over the choice of X, we have

Ra := Ra(X
ᵀLWEs(m,n, q,DZ,r) ‖ LWEs(l, n, q,DZ,

√
mςr))

< (1 + negl(n))(1 + 4caε̂)
(
1 + 1/(m

γ

l − 1)
) 1

a−1 .

Proof. Let (A,b := As + e) ∼ LWEs(m,n, q,DZ,r) and (A′,b′ := A′s + e′) ∼
LWEs(l, n, q,DZ,

√
mςr). Let U ∼ U(Zl×n

q ) and v ∼ U(Zl
q) be uniformly random

variables. By the weak triangle inequality and multiplicativity (Lem. 2.12),
Lem. 6.1 and Lem. 2.29, we have

Ra = Ra((X
ᵀA,XᵀAs+Xᵀe) ‖ (A′,A′s+ e′))

< R∞((XᵀA,XᵀAs+Xᵀe) ‖ (U,v +Xᵀe))ca

·Ra(U,v +Xᵀe)) ‖ (A′,A′s+ e′))

= (1 + negl(n)) ·Ra(U,v +Xᵀe)) ‖ (A′,A′s+ e′))

= (1 + negl(n)) ·Ra(U ‖A′) ·Ra(v +Xᵀe ‖A′s+ e′)

= (1 + negl(n)) ·Ra(X
ᵀe ‖ e′)

= (1 + negl(n)) ·Ra(X
ᵀDZm,r ‖ DZl,

√
mςr).

Hence, the theorem follows from Thm. 5.4.

Note that we use sufficiently large q to ensure that the rerandomized Gaussian
errors are smaller than q/2 with overwhelming probability; i.e., the discrete
Gaussian on Zq is statistically close to that on Z by Lem. 2.26. As a corollary of
Thm. 6.2, we obtain the following LWE self-reduction from Lem. 2.14:
Corollary 6.3 (LWE self-reduction). In Thm. 6.2, assume that for any PPT
algorithm, the success probability of solving Search-LWEs(l, n, q,DZ,

√
mςr) is at

most 2−Cn for some constant C ∈ R+. Then, the success probability of any PPT
algorithm for finding s from the distribution (XᵀLWEs(m,n, q,DZ,r)) is at most

p := 2
− 1

ca

(
Cn−log

(
(1+negl(n))(1+4caε̂)

(
1+1/(mγ

l −1)
) 1

a−1

))
, (3)

with overwhelming probability over the choice of X.
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Unlike security analysis based on, e.g., statistical distance, we do not (need
to) show that RD is negligibly small (precisely, 1+ negl(n)). As shown in recent
works, e.g., [Pre17, BLR+18, BJRW22, ASY22], some non-negligible, but a small
RD is sufficient for constructing meaningful security arguments. We demonstrate
that Cor. 6.3 is useful by instantiating some concrete parameters. For the
selected parameters, we show that finding s from the rerandomized LWE samples
(XᵀLWEs(m,n, q,DZ,r)) is almost as hard as Search-LWEs(l, n, q,DZ,

√
mςr) with

the loss of only a few security bits.
Corollary 6.4. Let γ = 0.45, m = poly(n) > 1003, l = 3

√
m, and ε = negl(n) in

Cor. 6.3. Then, we have p = 2−0.99Cn+0.01+negl(n), where p is defined in (3).

7 Application to the Independence Heuristic

In this section, we weaken the heuristic upon which the TFHE scheme relies, by
applying our continuous wSGLHL (Thm. 4.2 and Thm. 4.4).

The TFHE scheme [CGGI16, CGGI17, CGGI20] is an FHE scheme based
on the Ring-LWE (or Module-LWE) problem. The scheme relies on the heuristic
that linear combinations of the errors of ciphertexts are mutually independent to
analyze their variance. Since our continuous wSGLHL (Thm. 4.2 and Thm. 4.4)
shows that linear sums of Gaussian errors and mutually independent Gaussian
errors are close with respect to RD, it essentially mitigates the heuristic.

We first provide a brief overview of the TFHE construction in Sect. 7.1. Then,
in Sect. 7.2, we explain how our theorem can be adapted to the concrete setting
of the TFHE scheme to weaken the independence heuristic.

7.1 Brief Overview of the TFHE Construction

We define B := {0, 1} and T := R/Z. Let N ∈ N. We denote by ZN [X] the ring
of polynomials Z[X]/(XN + 1), and define TN [X] := R[X]/(XN + 1) mod 1.
BN [X] denotes the polynomials in ZN [X] with binary coefficients. The TFHE
scheme is based on generalized variants of LWE ciphertexts; TLWE ciphertexts:
Definition 7.1. Let k ∈ N, N be a power of 2 and α ∈ R+ be a standard
deviation. Let the secret key s ∼ U(BN [X]k). The (canonical) TLWE ciphertext
of the message µ ∈ TN [X] is (a, b := sᵀa + µ + e) ∈ TN [X]k+1, where a ∼
U(TN [X]k) and e← DTN [X],α. The phase and error of the ciphertext is denoted
by φs((a, b)) := b− sᵀa and Err((a, b)), respectively.

The fully homomorphic property of the TFHE scheme is based on the TGSW
encryption, the ciphertext of which is essentially a matrix composed of rows
of TLWE ciphertexts. Before we define the TGSW ciphertexts, we define the
(canonical) gadget decomposition of the TLWE ciphertexts as follows:
Definition 7.2. Let l, Bg ∈ N, and let b ∈ TN [X]k+1 be the TLWE sample.
Define the (canonical) gadget as a matrix H ∈ TN [X](k+1)l×(k+1) whose diagonal
blocks are gᵀ := (1/Bg, . . . , 1/B

l
g)

ᵀ and whose other elements are all zero. The
valid decomposition algorithm DecH,β,ε(b) on the gadget H with quality β =
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Bg/2 and precision ε = 1/Bl
g outputs a vector u ∈ RN [X](k+1)l s.t. ‖u‖∞ ≤ β,

‖uᵀH− b‖∞ ≤ ε, and E[uᵀH− b] = 0 when b is uniformly random.
We are now ready to define the TGSW ciphertext, and the external product

between a TGSW ciphertext and a TLWE ciphertext.
Definition 7.3. A (canonical) TGSW ciphertext of message µ ∈ ZN [X] is C =
Z + µ · H, where each row of Z ∈ TN [X](k+1)l×(k+1) is a (canonical) TLWE
ciphertext of 0 over TN [X](k+1). Let Err(C) denotes the list of the (k+1)l TLWE
errors of each line of C.
Definition 7.4 (External product). We define the product � as, � : TGSW×
TLWE −→ TLWE : (A,b) 7−→ A� b = (DecH,β,ε(b))

ᵀA, where DecH,β,ε is the
gadget decomposition defined in Def. 7.2.

7.2 Mitigating the Independence Heuristic for TFHE

We recall the independence heuristic presented in [CGGI20] (which is common
in [CGGI16, CGGI17]):
Assumption 7.5 (Independence heuristic, [CGGI20, Assumption
3.11]). All the coefficients of the errors of TLWE or TGSW samples that occur
in all the linear combinations we consider are independent and concentrated.
More precisely, they are σ-subGaussian where σ is the square-root of their
variance.

The core analysis that requires this assumption is the following theorem,
which yields the fully homomorphic property of the TFHE scheme:

Theorem 7.6 ([CGGI20, Thm. 3.13 and Cor. 3.14]). Let A be a TGSW
ciphertext of message µA (Def. 7.3) and let b be a TLWE ciphertext of message
µb (Def. 7.1). Then, we have that A�b (Def. 7.4) is a TLWE sample of message
µA · µb, and

‖Err(A� b)‖∞ ≤ (k + 1)lNβ‖Err(A)‖∞ + (1 + kN)‖µA‖1ε+ ‖µA‖1‖Err(b)‖∞,

where β and ε are the parameters used in the decomposition DecH,β,ε(b)
(Def. 7.2). Furthermore, under Assumption 7.5, we have

V(Err(A�b)) ≤ (k+1)lNβ2 V(Err(A)) + (1+ kN)‖µA‖2ε2 + ‖µA‖22 V(Err(b)).

We derive the above bound of V(Err(A � b)) with a weaker heuristic than
Assumption 7.5. First, we formulate Err(A�b). Let u := Dech,β,ε(b) and define
εdec := b− uᵀH. It is shown in the proof of [CGGI20, Thm. 3.13] that

Err(A� b) = uᵀErr(A) + µA · φs(εdec) + µA · Err(b) (4)

holds. Let us denote uᵀ := (u1, . . . , u(k+1)l)
ᵀ ∈ RN [X](k+1)l and Err(A) := eᵀ :=

(e1, . . . , e(k+1)l)
ᵀ ∈ TN [X](k+1)l. Then, we have uᵀe =

∑(k+1)l
i=1 uiei ∈ TN [X].

For some i ∈ [(k + 1)l], we define ui :=
∑N−1

j=0 υjX
j and ei :=

∑N−1
j=0 ηjX

j , and
we let υᵀ := (υ0, . . . , υN−1)

ᵀ ∈ RN and ηᵀ := (η0, . . . , ηN−1)
ᵀ ∈ TN . We also
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define ei :=
∑N−1

j=0 ηjX
−j , where ηj := −ηN−j and ηN := −η0, and we define

ηᵀ := (η0, . . . , ηN−1)
ᵀ ∈ TN . For k ∈ {0, . . . , N − 1}, we define the k-th rotation

of υ as (υ(k))ᵀ := (υ
(k)
0 , . . . , υ

(k)
N−1)

ᵀ ∈ RN , where υ(k)
j = υj+k if j+k ≤ N−1 and

υ
(k)
j = −υ(j+k mod N) otherwise. Then, we can write uiei =

∑N−1
k=0 (υ(k))ᵀηXk.

Let Υ ∈ RN×N be the matrix of the columns of υ(0), . . . ,υ(N−1), then we can
write the coefficient vector of uiei as v = Υᵀη.

Next, we explain how our results mitigates the required assumption in
Thm. 7.6. We consider the dependence among the coefficients of the term uᵀe
(= uᵀErr(A) in (4)). Now, we assume b is uniformly random since we have
b

comp
≈ U(TN [X]k+1) under the hardness assumption of the (decision) TLWE

problem. Then, we assume u := Dech,β,ε(b) is also uniformly random over the
set {u ∈ RN [X](k+1)l | ‖u‖∞ ≤ β} (see Def. 7.2). Under this assumption, for
any i1 6= i2, ui1ei1 and ui2ei2 are mutually independent. Hence, we only need
to analyze the dependence between the coefficients of uiei for each i, i.e., the
dependence between the elements of v = Υᵀη. By Defs. 7.1 and 7.3, ei ∼
DTN [X],α, where α :=

√
V(Err(A)), and thus we can consider that η ∼ NN (α2),

by assuming that the standard deviation α is sufficiently small. Since ‖u‖∞ ≤ β
by definition, we have ‖υ‖∞ ≤ β, and thus υ(0), . . . ,υ(N−1) ∼ χN

β . If they are
independent, i.e., υ(0), . . . ,υ(N−1) iid∼ χN

β , our Thm. 4.2 (or, Thm. 4.4) essentially
shows that v = Υᵀη ∼ NN (Nβ2α2); this means the elements of v are mutually
independent, and moreover, V(uᵀErr(A)) ' (k + 1)lNβ2 V(Err(A)). Thm. 4.2
(Thm. 4.4) only needs independence among υ(0), . . . ,υ(N−1) to use Thm. 3.5.
Interestingly, we can show that Thm. 3.5 also holds when we set X := Υ.
Lemma 7.7. Let χβ be a centered and β-bounded distribution for β > 0 with
V[χβ ] := ς2. Let υ ∼ χm

β , and let Υ ∈ Rm×m be the matrix of rotations of υ;
i.e., υ(0), . . . ,υ(m−1). Then, Thm. 3.5 also holds for X := Υ.

Proof (Lem. 7.7). Let S :=
(

1
mς2Σ

)
= [sij ]. For i ∈ [2m] we define υ̂i = υi and

υ̂−i = υm−i if i ∈ [m] and υ̂i = −υi−m if i ∈ [m + 1, 2m]. For simplicity, we
assume m ≡ 0 mod 3. For i > j, we define d := dij = (i− j) > 0, then we have

sij =
1

mς2 (υ
(i−1))ᵀυ(j−1) = 1

mς2

∑m
k=1υ

(i−1)
k υ

(j−1)
k = 1

mς2

∑m
k=1υ̂k+iυ̂k+j

= 1
mς2

∑m/3
k=1 υ̂i+3(k−1)(υ̂i+3(k−1)−d + υ̂i+3(k−1)+d).

Since υ̂i+3(k−1)−d + υ̂i+3(k−1)+d is 2β-bounded, by Fact 3.2, all terms
υ̂i+3(k−1)(υ̂i+3(k−1)−d+υ̂i+3(k−1)+d) for i ∈ [m/3] are 2β2-bounded and indepen-
dent. Thus, by Lem. 3.3, we have Pr[|sij | ≥ δ] < 2 exp

(
− 3ς4

8β4 δ
2m
)
= negl(m)

for all i 6= j. Hence, by the union bound, Pr[
⋃

i6=j(|sij | ≥ δ)] ≤
∑

i 6=j Pr[|sij | ≥ δ]
= negl(m) holds, and we have

Pr[
⋂

i 6=j(|sij | < δ)] ≥ 1− negl(m).

Every diagonal elements are sii =
1

mς2 ‖υ
(i−1)‖2 = 1

mς2 ‖υ‖
2 = 1

mς2

∑m
k=1 υ

2
k by

definition. Since υ1, . . . , υm
iid∼ χβ , by Lem. 3.4, we have Pr[|sii − 1| ≥ δ] <
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2 exp
(
−2 ς4

β4 δ
2m
)
= negl(m), and,

Pr[
⋂

i∈[l](|sii − 1| < δ)] = Pr[|sii − 1| < δ] ≥ 1− negl(m).

Since R = S− Il, we obtain the theorem.

Thus, Thm. 4.2 (Thm. 4.4) holds even when we set X := Υ, and we can show
that all the coefficients of uᵀErr(A) in (4) are mutually independent. Therefore,
we only need to partially rely on Assumption 7.5 to heuristically assume that
φs(εdec) and b in (4) are mutually independent.

8 Conclusion and Open Problems

The main contribution of this paper is the (continuous and discrete) wSGLHL
presented in Sects. 4 and 5. Indeed, the discrete wSGLHL (Thm. 5.4) solves a
open question posed by Agrawal et al. [AGHS13] in a weak sense.

Based on our wSGLHL, we presented a sharp LWE self-reduction (Cor. 6.3),
which states that finding s from rerandomized LWE samples is at least as
hard as Search-LWE with errors of known variance (with the loss of a few
bits of security). Existing works [ACPS09, HKM18, GMPW20] only show that
rerandomized LWE samples are statistically close to (plain) LWE samples with
some unknown variance. Thus, our reduction is sharper than the existing work
in terms of the size of errors (see also Fig. 1). As another application of our
continuous wSGLHL, we weakened the independence heuristic required for the
TFHE scheme in Sect. 7. We discuss open problems and future works in the
following.

Why Rényi divergence? We constructed the wSGLHL based on RD rather than
(standard) metrics such as the statistical distance or the max-log distance,
because it seems difficult to perform our analysis with these metrics. The
max-log distance is equivalent to R∞ since ∆ML(D1,D2) = max{ln(R∞(D1 ‖
D2)), ln(R∞(D2‖D1))} by definition. In addition, if we obtain a bound on R∞, we
can obtain the bound on the statistical distance by Fact 2.17. However, it seems
difficult to derive a quantitative bound on R∞ when X is taken from the general
centered and bounded distribution. We showed in Lem. 4.1 that we can analyze
R∞ if the residual matrix R satisfies −R � 0. In our framework, Thm. 3.5 is
used to show that the absolute values of all elements of R are bounded by δ = 1

mγ

for some γ < 1
2 . Hence, we can show that at least limm→∞(−R) = O � 0 holds,

but it is difficult to show that −R � 0 holds for some finite m, when we sample
X from the general centered and bounded distribution. We should require an
additional condition on X: as a trivial example, (exactly) orthogonal matrices
X satisfy R = XᵀX− I = O � 0.

Nonetheless, security arguments based on the RD are sometimes sufficient (or
better) for cryptographic applications, as mentioned earlier. We demonstrated
that we can construct the LWE self-reduction (Cor. 6.4) with the loss of only a
few small bits of security.
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Additionally, note that RD is not symmetric (and thus it is not a metric);
Ra(D1 ‖D2) = Ra(D2 ‖D1) does not necessarily hold. Although we only analyze
RD needed for the LWE self-reduction (Cor. 6.3), a similar analysis can be
performed for the “opposite” of RD analyzed in this paper.

Further improvements to the discrete wSGLHL. We showed in Sect. 4.2 that
our continuous wSGLHL (Thm. 4.2) can be improved with the noise flooding
technique (Thm. 4.4): We can increase the dimension (=l) of the output spherical
Gaussian at the expense of increasing the variance of the errors. We believe
that a similar analysis is also applicable to the discrete wSGLHL (Thm. 5.4).
The theorem relies on the discrete (ellipsoid) Gaussian LHL [AR16, Thm. 5.1]
(Lem. 5.1), which requires the input dimension m to be larger than the output
dimension l. However, we require the discrete analog of Lem. 4.3, which is
applicable to any m, l ∈ N: We need to modify Lem. 5.1 to support any m, l ∈ N,
which we leave for future work.

Other possible applications. Our discrete wSGLHL is an extension of the discrete
(ellipsoid) Gaussian LHL proposed by Agrawal et al. [AGHS13]. They discussed
their discrete Gaussian LHL is sufficient for GGH encoding [GGH13]. On the
other hand, it has also been mentioned that in some applications where the
trapdoor is explicitly available, and oblivious sampling is not needed, it is safer
to use a perfectly spherical Gaussian that is statistically independent of the
trapdoor. Our discrete wSGLHL could possibly provide a better (or simpler)
security proof for construction. The verification of this observation remains a
topic for future consideration.
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