
TENET : Sublogarithmic Proof and Sublinear
Verifier Inner Product Argument without a

Trusted Setup

Hyeonbum Lee and Jae Hong Seo?

Department of Mathematics & Research Institute for Natural Sciences,
Hanyang University, Seoul 04763, Republic of Korea

{leehb3706, jaehongseo}@hanyang.ac.kr

Abstract. We propose a new inner product argument (IPA), called
TENET, which features sublogarithmic proof size and sublinear verifier
without a trusted setup. IPA is a core primitive for various advanced
proof systems including range proofs, circuit satisfiability, and polyno-
mial commitment, particularly where a trusted setup is hard to apply. At
ASIACRYPT 2022, Kim, Lee, and Seo showed that pairings can be uti-
lized to exceed the complexity barrier of the previous discrete logarithm-
based IPA without a trusted setup. More precisely, they proposed two
pairing-based IPAs, one with sublogarithmic proof size and the other one
with sublinear verifier cost, but they left achieving both complexities si-
multaneously as an open problem. We investigate the obstacles for this
open problem and then provide our solution TENET, which achieves both
sublogarithmic proof size and sublinear verifier. We prove the soundness
of TENET under the discrete logarithm assumption and double pairing
assumption.

Keywords: Inner product argument, Transparent setup, Zero knowledge proof

1 Introduction

An argument system is a protocol between two parties, the prover and the veri-
fier, such that the prover can convince the verifier that a statement is true [16].
One of the most useful argument systems is an inner product argument (IPA),
an argument for the inner product relation of two committed vectors. Bootle,
Cerulli, Chaidos, Groth, and Petit [5] proposed the first IPA with logarithmic
proof size under the discrete logarithm assumption, which is a multi-round ex-
tension of constant-round discrete logarithm based sublinear argument systems
[17, 24, 25] for linear algebraic relations including inner product. Subsequently,
Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell [8] and Chung, Han, Ju,
Kim, and Seo [12] further improved communication costs and showed IPA’s ef-
ficacy by applying to prove range and arithmetic circuit relations.
? corresponding author
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Kim, Lee, and Seo [20] proposed two pairing-based IPAs without a trusted
setup, Protocol2 and Protocol3. Protocol2 and Protocol3 provide sublogarithmic
proof size and sublinear verifier costs, respectively. However, they do not achieve
both complexity simultaneously and leave it as an open problem.

We focus on generalization of pairing-based IPA without a trusted setup.
More concretely, we aim to combine two arguments, Protocol2 and Protocol3, to
achieve sublogarithmic proof size and sublinear verifier simultaneously.

1.1 Our Results

Generalization of IPA Without a Trusted Setup. We propose generaliza-
tion of pairing-based IPA without a trusted setup. Specifically, we focus on a
combination of two ideas of pairing-based IPAs, Protocol2 and Protocol3. One of
the core ideas of Protocol2 is commit-and-prove for relation of group elements,
which are messages of the prover. In this phase, pairing-based group commitment
scheme [1] is used to commit prover’s messages. Meanwhile, the prover’s message
in Protocol3 belongs to the target group. To combine two schemes, the prover
should make commitments of his messages that are not put to pairing-based
group commitment schemes.
Structure of Prover’s Message : The prover’s message consists of multiple target
groups of the form v =

∏
i,j e(g[i], H[j])a[i,j], where H is public. From the bilin-

ear structure, the message construction can be viewed as v =
∏
i e(g

a[j], H[j]).
Owing to this structure, we substitute the prover’s message v with the source
group elements ga[j]. After substitution, we apply pairing-based group commit-
ments to ga[j] for a commit-and-prove approach.
Optimization Technique for Sublogarithmic Size IPA. We introduce op-
timization techniques for sublogarithmic size IPAs, specifically Protocol2 and our
new IPA called TENET. These optimizations significantly impact the size of the
common reference string (CRS), proof size, and verifier cost.

In these optimizations, the prover generates several group vectors denoted as
v ∈ G2d(2d−1)

1 , where d is a dividing factor used for reduction. The prover then
sends commitments to each group vector along with a knowledge proof for them.
The proof size and verifier cost depend on the size of the group vectors, which is
originally O(d2). However, we propose using compressed vectors with a length
of O(d), which are sufficient to ensure soundness. This optimization reduces the
required size and verifier cost from quadratic to linear in terms of d.
TENET : Sublogarithmic Proof Size and Sublinear Verifier IPA Un-
der DL and DPair. After the generalization and optimization, we analyze the
arguments and then find appropriate parameters to achieve both sublogarithm
proof size and sublinear verifier cost. Certainly, we prove security of TENET
with perfect completeness and computational witness extended emulation under
discrete logarithm (DL) and double pairing (DPair) assumption. From our IPA
TENET, one can construct sublogarithm proof size and sublinear verifiable poly-
nomial commitment schemes, which can be used on polynomial IOP systems [9]
such as Sonic [23], Plonk [15], and Marlin [11] to get efficiency without a trusted
setup.
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Comm. P’s cost V’s cost Assumption Trusted Setup
Bootle et al.[5] O(logN) O(N) O(N) DL No
Bünz et al.[8] O(logN) O(N) O(N) DL No

Chung et al.[12] O(logN) O(N) O(N) DL No
Daza et al.[13] O(logN) O(N) O(logN) DL, DPair Yes
Zhou et al.[27] O(logN) O(N) O(logN) DL, DPair Yes
Protocol2[20] O(

√
logN) O(N2

√
logN ) O(N) DL, DPair No

Protocol3[20] O(logN) O(N) O(
√
N) DL No

Protocol4[20] O(logN) O(N) O(
√
N logN) DL No

TENET(Ours) O(
√

logN) O(N2
√
logN ) O(N/2

√
logN ) DL, DPair No

N : length of witness vectors, DL : discrete logarithm assumption, DPair : double
pairing assumption
Table 1. Comparison Table of Inner Product Arguments from Discrete Logarithms

1.2 Related Work

Inner Product Argument. Inner product arguments are used as building
blocks for range proof and zero knowledge proof, which can be used in numer-
ous applications such as verifiable computation, confidential transactions, and
decentralized identification.

There are many variants of IPAs [3, 9, 10, 12, 13, 20, 27], which are based on
inner product reduction. In [12], the zero knowledge weighted IPA was proposed
and used to construct a variant of [8], with a shorter proof size. In [13, 27], the
structured common reference string and bilinear maps are used to achieve both
logarithmic communication and verification. In [20], three IPAs without a trusted
setup are proposed: Protocol2 with sublogarithmic proof size, Protocol3 with
sublinear verifier, and Protocol4 with sublinear verifier. The difference between
Protocol3 and Protocol4 is reliance on pairing-based elliptic curves. We provide
a comparison among various IPAs in Table 1.

Zero Knowledge Argument and Polynomial Commitment Schemes.
Bootle et al. [5] first proposed the logarithmic size ZK argument for circuit sat-
isfiability without a trusted setup. To construct the ZK argument, they applied
their IPA, which provides a logarithm proof size. The core idea to achieve loga-
rithm size is to construct an efficient reduction protocol that can run recursively.
This idea is widely used to construct ZK arguments without a trusted setup [8,
26, 6, 9, 22].

Kate, Zaverucha, and Goldberg [19] first introduced the polynomial commit-
ment scheme (PCS), which allows the prover to claim the polynomial evaluation
at a point without opening the polynomial itself. In addition, they constructed
a constant size PCS, called KZG PCS. KZG PCS is the core building block of
ZK arguments with a constant proof size [18, 23, 11, 15]. However, the arguments
require a trusted setup.
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Bünz, Fisch, and Szepieniec [9] proposed PCS without a trusted setup, called
DARK, and they introduced the paradigm of construction ZK argument, com-
bining a polynomial interactive oracle proof system [4] and PCS. From their
paradigm, they constructed logarithmic proof size and verifiable ZK argument
without a trusted setup by replacing KZG PCS with DARK. In their paradigm,
the complexity and cryptographic properties of ZK arguments are inherited from
those of PCS.

IPA can be converted to a PCS scheme because polynomial evaluations are
a kind of inner product relation; thus, some recent works [10, 22, 2] have focused
on efficient IPA to construct efficient PCS and ZK arguments.

2 Preliminary

2.1 Definitions

We first define notations used in the paper. Some notations are inspired by [20].
[m] denotes a set of integers from 1 to m, {1, · · · ,m}. Specifically, we define two
index sets Id and Jd. Id is the set of continuous odd integers from −2d + 1 to
2d−1, Id = {±1,±3, · · · ,±(2d−1)}. And Jd is the set of continuous even integers
excluding 0 from −4d+ 2 to 4d− 2, Jd = {±2,±4, · · · ,±(4d− 2)}. Note that Jd
consists of all possible differences between two distinct elements of Id. We define
G as an asymmetric bilinear group generator. G takes the security parameter λ
and outputs (p, g,G,G1,G2,Gt, e), where G1,G2, and Gt are distinct groups of
prime order p of length λ, g and G are generators of G1 and G2, respectively;
and e : G1 × G2 → Gt is a non-degenerate bilinear map. We use bold font to
represent vectors in Zmp or Gm. For a vector a ∈ Zmp , we use subscript index
i ∈ Id to denote 2d-separation of a. Starting from 1 for the first upper subvector
subscript, following the order : {1,−1, 3,−3, . . . , 2d−1,−2d+1}, small absolute
value is in front of a large one, and positive is in front of negative, for lower
subvector subscript. We denote a1 ‖ a−1 for sticking two vectors a1 and a−1,
and the notation ‖ can be used when sticking several vectors sequentially. To
represent the i-th element of the vector a, we use ai(non-bold style letter with
subscript i); that is a = (a1, a2, . . . , am). Now, we define notation for some vector
operations.

Component-Wise Multiplication : For g,h ∈ Gm, we denote g ◦ h =
(g1h1, . . . , gmhm). In general, we denote ©

i∈[I]
gi = (

∏
i∈[I] gi,1, · · · ,

∏
i∈[I] gi,m)

for several vectors gi = (gi,1, · · · , gi,m) ∈ Gm for i ∈ I.
Inner Product : For a, b ∈ Zmp , we denote 〈a, b〉 =

∑
i∈[m] aibi.

Multi-Exponentiation : For x ∈ Zmp and g ∈ Gm, we denote gx =
∏
i∈[m] g

xi
i .

Inner Pairing Product : For g ∈ Gm1 and H ∈ Gm2 , we denote E(g,H) =∏
i∈[m] e(gi, Hi).

Parallel Multi-Exponentiations. We denote two types of parallel multi-
exponentiation. One is parallel multi-exponentiation of common base elements,
and the other is parallel multi-exponentiation to common vectors.



Sublogarithmic Proof, Sublinear Verifier Inner Product Argument 5

1. Parallel multi-exponentiation of common base elements : Let a ∈ Zm×np be a
matrix and g ∈ Gm be group elements. We denote

−→
ga := (ga1 , . . . , gan), where

ai is the i-th column vector of matrix a.
2. Parallel multi-exponentiation to common vectors : Let a ∈ Znp be a vector and
g ∈ Gm×n be a group matrix. We denote ĝa := (ga

1 , . . . , g
a
m), where gi is the

i-th row group vector of group matrix g.
Outer-Pairing Product. We define an outer pairing product, which is a way
of generating a target group matrix from source group vectors. For g ∈ Gm1 and
H ∈ Gn2 , we denote

g ⊗H =

 e(g1, H1) · · · e(g1, Hn)
...

. . .
...

e(gm, Hn) · · · e(gm, Hn)

 ∈ Gm×nt

Argument System for Relation R. A set R is a polynomial-time verifiable
relation consisting of common reference string (CRS), statement, and witness,
denoted by σ, x, and w respectively. From the relation, we define language
Lσ = { x | ∃ w such that (σ, x, w) ∈ R }. We call the statement x true if the
statement belongs to the language Lσ, and we call w a witness of the statement
x under the relation R if (σ, x, w) belongs to R. For simplicity, we sometimes
omit CRS σ and simply write (x,w) ∈ R.

An interactive argument system for relation R consists of three probabilis-
tic polynomial-time algorithms (PPTs), key generation algorithms, prover al-
gorithms, verifier algorithms (K,P,V). The K algorithm takes the security pa-
rameter λ and outputs CRS, which is the input of P and V. P and V generate
transcript interactively, denoted by tr ← 〈P(σ, x, w),V(σ, x)〉. At the end of the
transcript, V outputs a bit, 0 or 1, which means reject or accept, respectively.
The purpose of P is to obtain acceptance from V, and the purpose of V is to
check the statement x belongs to Lσ.
Argument of Knowledge. An argument of knowledge (AoK) is a special case
of an argument system. Informally, the purpose of V is to check the knowledge
of the witness w of statement x, (x,w) ∈ R , which guarantees x ∈ Lσ. AoK
should satisfy the properties of completeness and witness extractability.

Definition 1 (Perfect Completeness). Let (K,P,V) be an argument system
and R be a polynomial-time verifiable relation. We say that the argument sys-
tem (K,P,V) for the relation R has perfect completeness if, the following
probability equation holds for all σ ← K(1λ):

Pr
(σ,x,w)∈R

[
〈P(σ, x, w),V(σ, x)〉 = 1

]
= 1.

Definition 2 (Computational Witness Extended Emulation). Let (K,P,V)
be an argument system and R be a polynomial-time verifiable relation. We say
that the argument (P,V) has witness-extended emulation if, for every deter-
ministic polynomial prover P∗, which may not follow P, there exists a polynomial
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time emulator E for which the following inequality holds:

Pr

 (σ, x, w) ∈ R

∣∣∣∣∣∣
σ ← K(1λ);

(tr, w)← E〈P
∗(σ,x,s),V(σ,x)〉(σ, x)

tr is accepting

 > 1− negl(λ),

where negl(λ) is a negligible function in λ. Emulator E can access the oracle
〈P∗(σ, x, s),V(σ, x)〉, which outputs the transcript between P∗ and V. E permits
to rewind P∗ at a specific round and rerun V using fresh randomness. s can be
considered as the state of P∗, which includes randomness.

Definition 3. We say that the argument system (K,P,V) is an argument of
knowledge for relation R if the argument has (perfect) completeness and (com-
putational) witness-extended emulation.

Trusted Setup. In some arguments, the CRS generator algorithm takes a trap-
door that should not be revealed to anyone, including the prover and verifier. In
this case, CRS generation should be run by a trusted third party. The setting
requiring trusted party is called a trusted setup.
Non-interactive Argument in the Random Oracle Model. We call an
interactive argument a public coin if V outputs without decision bits constitut-
ing a uniformly random message without dependency of P’s messages. Fiat and
Shamir [14] proposed a method to transform any public coin interactive argu-
ment into a non-interactive one using the random oracle model. The approach
involves replacing V’s random messages with random oracle outputs, where the
inputs are derived from previous messages at that point.
Assumptions. Let G be a group generator. G takes security parameters λ and
then outputs G, describing a group of order p.

Definition 4 (Discrete Logarithm Relation Assumption [7]). We say
that G satisfies the discrete logarithm relation (DLR) assumption1 if, for all
non-uniform polynomial-time adversaries A, the following inequality holds:

Pr[a 6= 0 ∧ ga = 1G|(p, g,G)← G(1λ); g
$← Gn;a← A(g, p, g,G)] < negl(λ)

where negl(λ) is a negligible function in λ.
Definition 5 (q-Pairing Assumption [1]). We say that the asymmetric bilin-
ear group generator Gb satisfies the q-pairing assumption if, for all non-uniform
polynomial-time adversaries A, the following inequality holds.

Pr

E(g,H) = 1Gt ∧ g 6= 1G1

∣∣∣∣∣∣∣
(p, g,H,G1,G2,Gt, e)← G(1λ);

H
$←Gq2;

g ← A(H, (p, g,H,G1,G2,Gt, e))

 < negl(λ)

The discrete logarithm relation (DLR) assumption is equivalent to the DL
assumption. Similarly, the q-pairing assumption is equivalent to the 2-pairing
assumption, DPair assumption.
1 To the best of our knowledge, [7] is the oldest reference introducing DLR. Although
the DLR is widely used due to the equivalence to the DL, we could not find the
original reference that firstly proved the equivalence. Instead, we provide a recent
reference [20] for the proof of the equivalence between the DLR and the DL.
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2.2 Inner Product Argument

An IPA is an argument of knowledge for the inner product relation between two
vectors [5], which can be written as RIPA:

RIPA = {(g,h ∈ GN , A,B ∈ G, c ∈ Zp;a, b ∈ ZNp ) : A = ga∧B = hb∧c = 〈a, b〉}

Bünz et al. [8] proposed an improved IPA by relation reduction. To achieve
low communication cost, they provided a reduction technique from relation RIPA

to the following relation RBPIP using Pedersen commitment of the inner product
value c:

RBPIP = {(g,h ∈ GN , u, P ∈ G;a, b ∈ ZNp ) : P = gahbu〈a,b〉}

After the reduction, they constructed an argument of knowledge for RBPIP using
recursive reduction. The improved IPA, denoted by BPIP, provides the O(logN)
proof size and O(N) prover and verifier cost.

Lai, Malavolta, and Ronge [21] proposed an inner pairing product argument,
and Bünz, Maller, Mishra, and Vesely [10] optimized it. We denote the inner
pairing product argument as IPP, which is an argument for the below relation
RIPP. The core structure of IPP is similar to that of BPIP, and its complexity is
O(logN) size with the O(N) prover and verifier cost.

RIPP = {(h ∈ GN2 , P ∈ Gt;g ∈ GN1 ) : P = E(g,h)}

Kim, Lee, and Seo [20] proposed two pairing-based IPAs: sublogarithmic
proof size Protocol2 and sublinear verifier Protocol3. Before describing our pro-
tocols, we briefly explain two schemes: Protocol2 and Protocol3.
Protocol2: Sublogarithm Communication IPA. Protocol2 is an AoK for
the relation RBPIP. The construction of Protocol2 consists of three steps: round
reducing, commit-and-prove, aggregating technique. First, they construct refined
reduction, which induces decreasing total rounds. However, there is no bene-
fit in terms of communication costs because refined reduction results in high
communication costs per round. To reduce communication cost, they apply the
commit-and-prove approach, which commits the prover’s message per round and
then proves the knowledge of the prover’s message. This approach reduces total
communication cost, but logarithmic complexity remains. To further reduce com-
munication cost, they apply the aggregating technique, which delays the proof for
each round until the last time the prover generates proof for the previous claims.
To achieve sublogarithm communication, they proposed augmented aggregating
multi-exponentiation argument, aAggMEA.
Protocol3: Sublinear Verifier IPA. Protocol3 is an inner product argument
with a sublinear verifier for the below relation RPT3. The reduction process is
equivalent to BPIP, but one difference is the common reference string. The CRS
of Protocol3 is g,h, and H, whose length is the square root of the witness length.
The CRS structure makes the verifier avoid linear computation.

RPT3 =

{(
g,h ∈ Gm1 ,H ∈ Gn2 , u, P ∈ Gt;a, b ∈ Zm×np

)
:

P = (g ⊗H)a · (h⊗H)b · u〈a,b〉
}
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RRPT3(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ∈ Gt;a, b ∈ Zm×np )

If m = 1
P & V : Run BPIP(g ⊗H, h⊗H, u, P ;a, b)

Else (m > 1): Let m′ = m
2d
. Parse a, b, g, and h to

a = [a1 ‖ a−1 ‖ · · · ‖ a2d−1 ‖ a−2d+1], g = g1 ‖ g−1 ‖ · · · ‖ g2d−1 ‖ g−2d+1,

b = [b1 ‖ b−1 ‖ · · · ‖ b2d−1 ‖ b−2d+1], h = h1 ‖ h−1 ‖ · · · ‖ h2d−1 ‖ h−2d+1

P : Calculate v[i, j] for all distinct i, j ∈ In, such that

v[i, j] = (gi ⊗H)aj · (hj ⊗H)bi · u〈aj ,bi〉 ∈ Gt

and concatenate v[i, j] to v ∈ G2d(2d−1)
t in lexicographic order

P → V : v

V → P : x $←Z∗p
P & V : Set x = (xj−i) ∈ Z2d(2d−1)

p in lexicographic order. Then, computes

g′ = ©
i∈Id

gx
−i

i , h′ = ©
i∈Id

hx
i

i , P ′ = P · vx

P : Compute

a′ =
∑
i∈In

aix
i ∈ Zm

′×n
p , b′ =

∑
i∈In

bix
−i ∈ Zm

′×n
p

P & V : Run RRPT3(g′,h′,H, u, P ′;a′, b′).

Fig. 1. RRPT3: Round Reduced Protocol3

3 Main Results

3.1 Motivation and Reducing Round

This paper mainly aims to construct a pairing-based inner product argument
that provides a sublogarithmic proof size and sublinear verifier cost simulta-
neously. To construct it, we focus on combining two protocols: Protocol2 and
Protocol3. Our approach is to apply the idea of Protocol2 on Protocol3 for the
relation RPT3. Rather than half reduction, it is 2d times smaller per round.
The following protocol RRPT3 in Fig. 1 is a round reduced version of Protocol3,
applying a round-reducing technique.

The next step is commit-and-prove. To reduce communication cost per round,
we substitute sending whole commitment v with sending commitment to v with
proof for v. In the case of Protocol2, 2d(2d − 1) group elements are committed
by the pairing-based commitment scheme by Abe et. al. [1] because they belong
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to the source group G1. Meanwhile, it is difficult to apply pairing-based group
commitments directly on RRPT3 because group elements v belong to the target
group Gt. To the best of our knowledge, there are no homomorphic commitment
schemes for target group elements of bilinear groups.

Key Idea : Decompose Commitment of a and b. To detour the obstacle,
we observe the bilinear structure of the following product:

(g ⊗H)a · (h⊗H)b = E(
−→
ga ◦

−→
hb,H)

From the bilinear property, we can change operation order, outer prod-
uct, and multi-exponentiation to parallel multi-exponentiation and inner pairing

product. Let us focus on the term
−→
ga◦
−→
hb. By DL assumption on G1,

−→
ga◦
−→
hb ∈ Gn1

can be a valid binding commitment of a and b. In addition, we can apply pairing-

based group commitment for
−→
ga ◦

−→
hb.

Inner Product Term. In the above change, we only substitute commitment
of witness vectors a, b, not their inner product 〈a, b〉. In Protocol3, the inner
product part 〈a, b〉 is committed using single exponentiation on the base u ∈ Gt.
To apply pairing-based group commitments to the exponentiation u〈a,b〉, we
use G1 base for commitment, not Gt. Then, we add additional CRS U ∈ G2

to combine vector commitment and inner product terms to one target group
element P ∈ Gt

Now, we describe VRPT3, a variant of RRPT3, as shown in Fig. 2. VRPT3 is
an argument of knowledge for the following relation:

RVRPT3 =

{(
g,h ∈ Gm1 ,H ∈ Gn2 , u ∈ G1, U ∈ G2, P ∈ Gt;a, b ∈ Zm×np

)
:

P = E(
−→
ga ◦

−→
hb,H) · e(u, U)〈a,b〉

}

Theorem 1. VRPT3 provides perfect completeness and witness extended emu-
lator under the discrete logarithm assumption.

The main idea of the proof is similar to that of generalized-BP [20]. For more
details, please refer to Appendix A.

3.2 Commit-and-Prove approach

In this section, we apply the commit-and-prove approach to VRPT3. Instead of
sending v,w, the prover sends commitments V = E(v,F ) and W = E(w,K),
where F ∈ Gn×2n(2n−1)2 and K ∈ G2n(2n−1)

2 are additional CRS for commit-
ments. After receiving commitments V and W , the verifier sends a random chal-
lenge to the Prover. Unlike VRPT3, the verifier cannot update instance P ′ be-
cause the verifier does not know v and w. Thus, the prover sends ν = E(v̂x,H)
and µ = wx to the verifier to update P ′, and then they run additional argument
for knowledge v and w. The argument should guarantee knowledge for v and w
such that ν = E(v̂x,H) and µ = wx.
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VRPT3(g,h ∈ Gm1 ,H ∈ Gn2 , u ∈ G1, U ∈ G2, P ∈ Gt;a, b ∈ Zm×np

)
If m = 1
P & V : Run BPIP(g ⊗H, h⊗H, u, P ;a, b)

Else (m > 1): Let m′ = m
2d
. Parse a, b, g, and h to

a = [a1 ‖ a−1 ‖ · · · ‖ a2d−1 ‖ a−2d+1], g = g1 ‖ g−1 ‖ · · · ‖ g2d−1 ‖ g−2d+1,

b = [b1 ‖ b−1 ‖ · · · ‖ b2d−1 ‖ b−2d+1], h = h1 ‖ h−1 ‖ · · · ‖ h2d−1 ‖ h−2d+1

P : Compute v[i, j] and w[i, j] for all distinct i, j ∈ Id such that

v[i, j] =
−−→
gi

aj ◦
−−→
hj

bi ∈ Gn1 , w[i, j] = u〈aj ,bi〉 ∈ G1

and concatenate v[i, j] and w[i, j] to v ∈ Gn×2d(2d−1)
1 and w ∈ G2d(2d−1)

1 in
lexicographic order, respectively.
P → V : v, w

V → P : x $←Z∗p
P & V : Set x = (xj−i) ∈ Z2d(2d−1)

p in lexicographic order. Then, compute

ν = E(v̂x,H) ∈ Gt, µ = wx ∈ G1, P ′ = P · ν · e(µ,U) ∈ Gt

g′ = ©
i∈Id

gx
−i

i ∈ Gm
′

1 , h′ = ©
i∈Id

hx
i

i ∈ Gm
′

1

P : Compute

a′ =
∑
i∈In

aix
i ∈ Zm

′×n
p , b′ =

∑
i∈In

bix
−i ∈ Zm

′×n
p

P & V : Run VRPT3(g′,h′,H, u, P ′;a′, b′).

Fig. 2. VRPT3: Variant Round Reduced Protocol3

Parallel Multi-Exponentiation Argument. Let us focus on the argument
of knowledge for v. In the argument system, the prover’s claim is the knowledge
of v, which satisfies V = E(v,F ) and ν = E(v̂x,H). We can construct an
argument system using the half-reduction idea of BPIP. We denote the argument
for v as parallel multi-exponentiation argument (PMEA). PMEA is an argument
system for the following relation:

RPMEA =

{
(F ∈ Gn×c2 ,x ∈ Zcp,H ∈ Gn2 , V, ν ∈ Gt;v ∈ Gn×c1 ) :

V = E(v,F ) ∧ ν = E(v̂x,H)

}
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Argument of Knowledge for w. Certainly, the prover claims knowledge of
w, which satisfies multi-exponentiation relation µ = wx. We can apply the MEA
protocol [20] for knowledge of w. Therefore, we do not explain the details of the
argument for w.

Using two protocols PMEA andMEA, we can construct a reduced communica-
tion protocol. However, for a similar reason as constructing Protocol2, we should
apply an Aggregation technique to achieve sublogarithmic communication cost.
The aggregation of multi MEA, called aAggMEA, was already proposed by Kim,
Lee, and Seo [20]. Inspired by the idea of aAggMEA, we construct aggregated
arguments for PMEA.

Aggregation PMEA. In this section, we focus on aggregating PMEA protocols
to apply our main protocol. One of the aggregating techniques is random linear
combination. However, naïve random combination does not guarantee unuseness
of F s to construct V` for all s 6= `. To detour it, we use idea of aAggMEA, which
are used in Protocol2. Similarly, we add redundant witness v`,r and construct
an argument for the following relation.

RAPMEA =


(F ` ∈ Gn×c2 ,x` ∈ Zcp,H ∈ Gn2 , V`, ν` ∈ Gt;v`,r ∈ Gn×c1 , `, r ∈ [R]) :

∧`∈[R]

(
V` =

∏
s∈[R] E(v`,s,F s) ∧ ν = E(v̂`,`x` ,H)

)
∧
(
∧`,r∈[R]∧` 6=rv̂`,rxr = 1

)


We construct a protocol APEMA for the relation RAPMEA. We describe details in
Fig. 3. APEMA consists of two steps, the aggregation and the recursive reduction.
Using the verifier challenges, the protocol lets R distinct commitments V` and
evaluation ν` aggregate to one group element P . After the aggregating step, the
prover and verifier run ProdPMEA for the following relation:

RProdPMEA =

{
(F ` ∈ Gn×c2 ,x` ∈ Zcp,H ∈ Gn2 , P ∈ Gt;v` ∈ Gn×c1 , ` ∈ [R]) :

P =
∏
s∈[R] E(vs,F s) ·E(v̂sxs ,H)

}

Theorem 2. Let ProdPMEA provide perfect completeness and witness extended
emulator. Then, the APMEA protocol provides perfect completeness and witness
extended emulator under the double pairing assumption.

Theorem 3. The ProdPMEA protocol provides perfect completeness and witness
extended emulator under the double pairing assumption.

Proof Sketch. We sketch the proof for witness extended emulation (WEE) of
APMEA. In a similar way to ProdMEA [20], we can construct WEE of ProdPMEA.
One difference is that the WEE of ProdPMEA runs the WEE of IPP as a subrou-
tine. Once getting WEE of ProdPMEA, one can construct a WEE of APMEA,
which uses the WEE of ProdPMEA as a subroutine. From 2R distinct extracted
witnesses from the WEE of ProdPMEA, one can extract witness v`,r.
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APMEA(F ` ∈ Gn×c2 ,x` ∈ Zcp,H ∈ Gn2 , V`, ν` ∈ Gt;v`,r ∈ Gn×c1 , `, r ∈ [R])

V → P : α $←Z∗p
P & V : Compute F ′` ∈ Gn×c2 ,x′` ∈ Zcp,H ′ ∈ Gn2 , P ∈ Gt such that

F ′` = F α`−1

` , x′` = α`−1x`, H ′ = HαR

, P =
∏
`∈[R]

V α
`−1

` να
R+`−1

`

P : Compute v′` = ©
s∈[R]

vα
s−`

s,`

P & V : Run ProdPMEA(F ′`,x
′
`,H

′, P ;v′`)

ProdPMEA(F ` ∈ Gn×c2 ,x` ∈ Zcp,H ∈ Gn2 , P ∈ Gt;v` ∈ Gn×c1 , ` ∈ [R])

If c = 1
P & V : Set F ′` = F ` ◦Hx`

` ∈ Gn2 , ∀` ∈ [R] and then concatenate ` vectors F ′`
into F ′ ∈ GnR2 .
P : Concatenate all of v` ∈ Znp into v ∈ GnR1
P & V : Run IPP(F ′, P ;v)
Else (c > 1) : Let c′ = c

2
and parse F `, x`, v`

F ` = [F `,1 ‖ F `,−1], x` = x`,1 ‖ x`,−1, v` = [v`,1 ‖ v`,−1]

P : Calculate L,R ∈ Gt such that

L =
∏
`∈[R]

E(v`,1,F `,−1)E( ̂v`,1x`,−1 ,H), R =
∏
`∈[R]

E(v`,−1,F `,1)E( ̂v`,−1
x`,1 ,H)

P → V : L,R

V → P : α $←Z∗p
P & V : Compute F ′` ∈ Gn×c

′

2 ,x′` ∈ Zc
′
p , P

′ ∈ Gt such that

F ′` = F α−1

`,1 ◦ F α
`,−1, x′` = α−1x`,1 + αx`,−1, P

′ = Lα
2

PRα
−2

P : Compute v′` = vα`,1 ◦ vα
−1

`,−1 ∈ Gn×c
′

1

P & V : P and V run ProdPMEA(F ′`,x
′
`,H, P ′;v′`)

Fig. 3. APMEA: Augmented Aggregating Parallel Multi-Exponentiation Argument

3.3 Main Protocols

In this section, we explain our main protocol TENET, sublogarithm communi-
cation, and sublinear verifier without a trusted setup. TENET consists of four
phases: row reduction, column reduction, APMEA, and aAggMEA.
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The purpose of row reduction is to reduce witness size from m× n to m
2d × n

per round. For each round, the prover sends commitments V and W to the
verifier. After receiving the verifier’s challenges, the prover sends evaluation ν
and µ to the verifier. Then, the prover and verifier run the protocol recursively
without checking the proof for knowledge v and w. Rather than checking per
round, the prover and verifier store statements v,w, ν, µ per round. Then, the
prover and verifier run column reduction, which is identical to BPIP on base Gt.
If the BPIP verifier outputs 1, the prover and verifier run APMEA and aAggMEA
using stored statements from row reduction. We describe TENET in Fig.4, which
is applied using the following optimization technique.

Optimization : Compress Columns of v and w. In this section, we present
an optimization technique for APMEA and aAggMEA. Certainly, this idea can be
applied to Protocol2, which contains aAggMEA as a subprotocol. Let us focus on
the prover’s message of VRPT3 in Fig. 2. For each round, the prover sends v and
w, which are commitments to parsed matrices and inner products with 2d(2d−1)
columns. When computing multi-exponentiation to x, each of the columns v[i, j]
and w[i, j] meet an exponent xj−i. In this case, some columns meet the same
exponent xj−i. More concretely, we can rewrite multi-exponentiation of 4d − 2
group elements by the following equations:

©
i,j∈Id∧i 6=j

v[i, j]x
i−j

= ©
s∈Jd

(
©

s=i−j
v[i, j]

)xs
,

∏
i,j∈Id∧i6=j

w[i, j]x
i−j

=
∏
s∈Jd

( ∏
s=i−j

w[i, j]
)xs

This implies that only 4d− 2 different terms are sufficient to update P ′. Then,
is 4d − 2 terms sufficient to guarantee knowledge of witness a and b? Let Ds

be a set of tuples such that Ds = {i, j ∈ Id|s = i − j}. Then, any tuples in Ds

cannot have a common entry with each other. Since the tuple is related to base

group elements, v[i, j] =
−−→
gi

aj ◦
−−→
hj

bi have distinct bases from each other on tuple
set Ds. Under the DLR assumption, witness vectors aj and bi are extractable
from products of v[i, j]. For more details on witness extraction, please refer to
Appendix A.

Let us define the column-reduced vector v̄ ∈ Gn×4d−21 and w̄ ∈ G4d−2
1 as

v̄ =
(
©

(i,j)∈Ds

v[i, j]
)
s∈Jd

and w̄ =
(∏

(i,j)∈Ds
w[i, j]

)
s∈Jd

. Then, we can adjust

the prover’s action in VRPT3 by generating v̄ and w̄ and sending them to the
verifier. After applying the commit-and-prove approach, the prover’s action is
changed to sending commitment to v̄ and w̄ and their proofs, rather than to v
and w. Since the witness size is reduced from O(d2)(resp. v,w) to O(d)(resp.
v̄, w̄), the required CRS size F and K decrease to O(d), and proof size and
verifier cost for APMEA and aAggMEA can be decreased.

Uniform Reference Strings. The required common reference strings for TENET
are g,h ∈ Gm1 , H ∈ Gn2 , F ` ∈ Gn×4d−22 , K` ∈ G4d−2

2 , and (u, U) ∈ G1 × G2,
which are all chosen randomly from a uniform distribution, not depending on
a trusted party. The total size of common reference strings is (2m + 1)|G1| +
(R(4d− 2)(n+ 1) + 1)|G2|.
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TENET(g,h,H,F `,K`, u, U, P, stI ;a, b, stW for ` ∈ [R])

If m = 1 :
P & V : Run BPIP(g ⊗H, h⊗H, e(u, U), P ;a, b)

If stP =⊥ :
V Accept the protocol.
Else : Let (V`, ν`,W`, µ`,x`;v`,r,w`,r) be the `-th row in (stI , stW )

P : Set v`,` = v`, w`,` = w` for all ` ∈ [R] and v`,r = 1G1 , w`,r = 1G1 for all
distinct `, r ∈ [R]

P & V : Run APMEA(F `,x`,H,K, V`, ν`;v`,r), aAggMEA(K`,x`,W`, µ`;w`,r)

Else (m > 1): Let m′ = m
2d
. Parse a, b, g, and h to

a = [a1 ‖ a−1 ‖ · · · ‖ a2d−1 ‖ a−2d+1], g = g1 ‖ g−1 ‖ · · · ‖ g2d−1 ‖ g−2d+1,

b = [b1 ‖ b−1 ‖ · · · ‖ b2d−1 ‖ b−2d+1], h = h1 ‖ h−1 ‖ · · · ‖ h2d−1 ‖ h−2d+1

P : Compute v[s] = ©
s=i−j

(
−−→
gi

aj ◦
−−→
hj

bi) ∈ Gn1 , w[s] =
∏
s=i−j u

〈aj ,bi〉 ∈ G1 ∀s ∈ Jd,

and then concatenate v[s] and w[s] to v ∈ Gn×4d−2
1 and w ∈ G4d−2

1 in ascending
order. And then compute V = E(v,F `) and W = E(w,K`)

P → V : V,W

V → P : x $←Z∗p
P : Set x = (xs)s∈Jd ∈ Z4d−2

p in ascending order. Then, compute ν, µ

ν = E(v̂x,H) ∈ Gt, µ = wx ∈ G1

P → V : ν, µ
P & V : Compute g′,h′, P ′

g′ = ◦i∈Idg
x−i

i ∈ Gm
′

1 , h′ = ◦i∈Idh
xi

i ∈ Gm
′

1 , P ′ = P · ν · e(µ,U) ∈ Gt

Then, update stI by adding a tuple (V, ν,W, µ,x) to the bottom.
P : Compute a′ =

∑
i∈In aix

i ∈ Zm
′×n

p , b′ =
∑
i∈In bix

−i ∈ Zm
′×n

p

Then, update stW by adding a tuple (v,w) to the bottom.
P & V : Run TENET(g′,h′,H,F `,K`, u, U, P, stV ;a′, b′, stP for ` ∈ [R− 1])

Fig. 4. TENET: Sublogarithm Proof and Sublinear Verifier IPA

Theorem 4. TENET provides perfect completeness and witness extended em-
ulator under the discrete logarithm and double pairing assumptions if APMEA
and aAggMEA provide perfect completeness and witness extended emulator.

Proof Sketch. The proof idea of TENET is similar to that of Protocol2. The
witness extended emulator of APMEA and that of aAggMEA extract prover’s
messages v and w for all rounds. Using them, we can construct a witness ex-
tended emulator for TENET following the witness extended emulator of VRPT3.
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Efficiency. We explain the cost of TENET, communication cost, verifier com-
putational cost and prover computational cost. We analyze TENET in four parts:
row reduction, column reduction, APMEA, and aAggMEA. We describe the effi-
ciency of them in Table 2.
• Row Reduction.
– Communication : For each row reduction, the prover sends 3 Gt elements

and 1 G1 element. Since the total round of row reduction is R = log2dm,
total communication is O(R).

– Prover’s Complexity: To compute v and w per round, the prover computes
m
2d · n · 2d(2d − 1) G1-exp with n · (4d − 2) pairing and 2d(2d − 1) G1-exp
with 4d− 2 pairing. After receiving a challenge, the prover constructs ν and
µ, whose costs are n · (4d − 2) G1-exp with n pairing and 4d − 2 G1-exp,
respectively. Then, the prover computes 2m G1-exp and mn field operations
with constant pairing for updating instance and witness steps. Since the size
of m is shrinking by 1/2d times per round, the overwhelming term of prover
complexity is O(mnd+ nd2R).

– Verifier’s Complexity: The verifier updates instances g,h, and P , whose com-
putation costs are 2m G1-exp in total. Similarly prover complexity, the over-
whelming term of verifier complexity is O(m).

• Column Reduction.
The column-reduction phase is only running BPIP on Gt. However, the CRS

update step can be changed to updating H ∈ Gn2 , rather than g ⊗H ∈ Gnt .
Therefore, total communication is O(log n) Gt-exp, and the prover and verifier
computation is O(n) G2-exp.

• APMEA.
– Communication: In the aggregating phase, the verifier sends one challenge

to the prover, but sending a challenge can be substituted by using random
oracle by the Fiat-Shamir transform [14]. In the recursive reduction phase,
the prover sends two Gt elements per round, so that the total communication
cost is O(log(ndR).

– Prover’s Complexity: In the aggregating phase, the prover computes n(4d−
2)R G1-exp for updating witness v`

2 , n(4d − 2)R G2-exp and n G2-exp
for updating F ` and H, and R Gt-exp for updating P . In the recursive
reduction phase, the prover complexity is linear to witness length n(4d− 2).
Then, the total prover complexity is O(ndR), which is a overwhelming term.

– Verifier’s Complexity: Since the verifier computes n(4d − 2)R G2-exp for
updating F ` too, the verifier’s complexity is also O(ndR)

• aAggMEA.
The complexity of aAggMEA is O(R+ log d), O(dR), and O(dR) for commu-

nication prover and verifier cost, respectively [20].

2 The complexity for computing v′` is O(ndR2). However, in TENET, the prover sets
vs,` = 1 for all distinct s, `. For this reason, the exponentiation of the redundant
terms can be omitted.
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Communication P’s computation V’s computation
Row Reduction O(R)|Gt| O(mnd+ nd2R)E1 O(m)E1

Column Reduction O(logn)|G2| O(n)E2 O(n)E2

APMEA O(logndR)|Gt| O(nd2R)E1 O(ndR)E2

aAggMEA O(R+ log d)|Gt| O(d2R)E2 O(dR)E2

Total(TENET) O(R+ lognd) O(mnd+ nd2R) O(m+ ndR)

Table 2. Complexity Table of TENET

|Gi| : size of group elements in Gi, Ei : group exponentiation on Gi

Parameter Setting. When choosing appropriate parameters on TENET, we
can achieve sublogarithm communication and sublinear verifier.

– Parameter Setting.: Let N = mn be a length of witness vectors. Set the col-
umn size and row size as n = 2

√
logN and m = N

n , respectively. Then, define
dividing factor as 2d = 2

√
logm. Then, the round number of row reduction

R = log2dm =
√

logm. Let us put all factors from the above results.
– Communication.: The communication cost is O(R+ log nd) = O(

√
logN)

– Prover’s Complexity.: The prover’s complexity is O(N · 2
√
logm). Since m is

smaller than N , we have rough bound O(N · 2
√
logN ).

– Verifier’s Complexity.: For simplicity, we focus on rough bound using sub-
stitution

√
logm with

√
logN . Then, the verifier’s complexity is O

(
N

2
√

log N +
√

logN ·4
√
logN

)
; the term d is substituted with 2

√
logN . The left-term N

2
√

log N

is larger scale than the right-term
√

logN · 4
√
logN . Hence, we can conclude

that the verifier complexity is O
(

N
2
√

log N

)
, which is smaller than O

(
N

logN

)
.
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A Appendix

A.1 Proof of Theorem 1

Proof. (completeness) If m = 1, completeness holds by perfect completeness of
BPIP. Consider the case m > 1.

P ′ = P · ν · e(µ,U) = P ·E(v̂x,H) · e(wx, U)

= E(
−→
ga ◦

−→
hb,H) · e(u, U)〈a,b〉 ·E(v̂x,H) · e(wx, U)

= E(
−→
ga ◦

−→
hb ◦ v̂x,H) · e(u〈a,b〉 ·wx, U)

Now, we claim that
−→
ga ◦

−→
hb ◦ v̂x =

−−→
g′

a′ ◦
−−→
h′

b′ and u〈a,b〉 · wx = u〈a
′,b′〉. From

the prover’s computation, we achieve the following equations:

−→
ga ◦

−→
hb ◦ v̂x =

(
◦i∈Id

−−→
gi

ai ◦
−−→
hi

bi
)
◦
(
◦i,j∈Id∧i 6=j (

−−→
gi

aj ◦
−−→
hj

bi)x
j−i)

= ◦i,j∈Id(
−−→
gi

aj ◦
−−→
hj

bi)x
j−i

=

−−−−−−−−−−−−−−−−−→(
◦i∈Id gx

−i

i

)(∑j∈Id
xjaj)

◦
−−−−−−−−−−−−−−−−−→(
◦j∈Id hx

j

j

)(∑i∈Id
x−ibi)

=
−−→
g′

a′ ◦
−−→
h′

b′

u〈a,b〉 ·wx =
∏
i∈Id

u〈ai,bi〉 ·
∏

i,j∈Id∧i 6=j

u〈ajx
j ,bix

−i〉 =
∏
i,j∈Id

u〈ajx
j ,bix

−i〉

= u
〈
∑

j∈Id
ajx

j ,
∑

i∈Id
bix
−i〉

= u〈a
′,b′〉
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From the equation P ′ = E(
−−→
g′

a′ ◦
−−→
h′

b′

,H) · e(u, U)〈a
′,b′〉, the updated instance-

witness pair (g′,h′,H, u, U, P ′;a′, b′) belongs to the relation R
(witness extended emulation) In order to show the computational witness ex-
tended emulation, we construct an expected polynomial time extractor whose
goal is to extract the witness using a polynomially bounded tree of accepting
transcripts. If so, we can apply the general forking lemma [5].

The case (m = 1) is clear because BPIP has witness extended emulation [8].
Let us focus on the case (m > 1). We prove that, for each recursive step on input
(g,h,H, u, U, P ), we can efficiently extract from the prover witness vectors a
and b under the DLR assumption, whose instance is the CRS g ‖ h ‖ u on G1

and H ‖ u on G2. First, the extractor runs the prover to obtain v ∈ Gn×2d(2d−1)1

and w ∈ G2d(2d−1)
1 . At this point, the extractor rewinds the prover 12d−5 times

and feeds 12d− 5 non-zero challenges xt such that all x2t are distinct. Then, the
extractor obtains 12d− 5 pairs a′t and b′t such that for t ∈ [12d− 5],

P ·
∏
s∈Jd

(E(vs,H)e(ws, U))x
s
t = P ′t = E

 ©
i∈Id

−−−−−−→(
g
x−i
t
i

)a′t
◦
−−−−−→(
h
xit
i

)b′t
,H

 e
(
u〈a
′
t,b
′
t〉, U

)
(1)

where ©
j−i=s

v[i, j] = vs ∈ Gn1 , ©
j−i=s

w[i, j] = ws ∈ G1.3

The left-hand side (LHS) of Eq. (1) has exponentiation of xt, and its de-
gree takes even integers between −4n + 2 and 4n − 2. Our 4n + 1 distinct
challenges xt determine P . Then, the extractor can compute vP , wP such that
P = E(vP ,H)e(wP , U). By q-pairing assumption whose instance is the CRS
H ‖ U on G2, we can separate the H and U terms. Then, we obtain two equa-
tions:

H correspondence : vP ◦
(
©
s∈Jd

v
xs
t
s

)
= ©
i∈Id

−−−−−→(
g
x−i
t
i

)a′t
◦
−−−−→(
h
xi
t
i

)b′t
(2)

U correspondence : wP ·
∏
s∈Jd

w
xs
t
s = u〈a

′
t,b
′
t〉 (3)

for all t ∈ [12d− 5].
The extractor knows all the exponents xj−it , x−it , xjt ,a

′
t, and b′t in Eq. (2) from

4d− 2 distinct challenges. There are 4d− 1 distinct powers of x2t in the LHS in
Eq. (2). Thus, by using the inverse matrix of M and elementary linear algebra
in the public exponents of the first 4d − 1 equalities in Eq. (2), the extractor
can find the exponent matrices {aP,r, bP,r}r∈Id and {as,r, bs,r}r∈Id for s ∈ Jd
satisfying

vP = ©
r∈Id

−−−−→
gr

aP,r ◦
−−−→
hr

bP,r , vs = ©
r∈Id

−−−→
gr

as,r ◦
−−−→
hr

bs,r (4)

3 Once vs and ws are constructed, the extractor extracts the witness using them. In
the extract process, the extractor does not decompose vs to multi-v[i, j]. That is, it
does not affect soundness to substitute sending v ∈ Gn×2d(2d−1)

1 with v̄ ∈ G4d−2
1 in

Sec. 3.3.
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We claim that concatenation of submatrices aP,r, bP,r ∈ Zm′×np are valid
witnesses.

Combine Eq. (4) with Eq. (2):

vP ◦
(
©
s∈Jd

v
xs
t
s

)
= ©
r∈Id

−−−−→
gr

aP,r ◦
−−−→
hr

bP,r ◦ ( ©
s∈Jd

−−−→
gr

as,r ◦
−−−→
hr

bs,r )x
s
t

= ©
r∈Id

−−−−−−−−−−−−−−→
gr

aP,r+
∑

s∈Jd
as,rx

s
t ◦
−−−−−−−−−−−−−→
hr

bP,r+
∑

s∈Jd
bs,rx

s
t

= ©
r∈Id

−−−−−→
gr

a′tx
−r
t ◦
−−−−→
hr

b′tx
r
t

(5)

By discrete logarithm relation assumption, we can separate exponents. For
all t ∈ [12d− 5] and r ∈ Id, we obtain

gr exponentiation : aP,r +
∑
s∈Jd

as,rx
s
t = a′tx

−r
t (6)

hr exponentiation : bP,r +
∑
s∈Jd

bs,rx
s
t = b′tx

r
t (7)

Let both Eq. (6) and Eq. (7) be multiplied by xrt and x
−r
t respectively. Then,

both equations have degrees of xt range between 6d− 3 and −6d+ 3 according
to r ∈ Id and s ∈ Jd, and it holds for all t ∈ [12d−5]. 12d−5 distinct challenges
{xt} determine polynomials f, g : Zp → Zm×np satisfying the following equations:

aP,rX
r +

∑
s∈Jd

as,rX
s+r = f(X), bP,rX

−r +
∑
s∈Jd

bs,rX
s−r = g(X) (8)

for all r ∈ Id. Notice that the RHSs of Eq. (8) do not depend on the choice of r.
Since the possible value of r is between −2d+ 1 and r = 2d− 1, the polynomials
f(X) and g(X) take degrees between −2d+ 1 and 2d− 1. Then, we obtain the
following equations:

a′t =
∑
r∈Id

aP,rx
r
t , b′t =

∑
r∈Id

bP,rx
−r
t (9)

In a similar way to obtain exponent vectors aP,r bP,r, the extractor can obtain
exponents cP , cs ∈ Zp such that wP = ucP and ws = ucs . In the RHS in Eq. (2),
let us put the results of Eq. (9). Then, we obtain the following equation:

ucP ·
∏
s∈Jd

ucsx
s
t = u〈a

′
t,b
′
t〉 =

∏
i,j∈Id

u
∑

i,j∈Id
〈aP,j ,bP,i〉xj−i

t (10)

The exponents equation cP +
∑
s∈Jd csx

s
t =

∑
i,j∈Id〈aP,j , bP,i〉x

j−i
t holds by

DLR assumption. The 8n − 3 distinct values determine the coefficient of the
equation. Therefore, the emulator extracts valid witness aP , bP , which satisfies
cP =

∑
i∈Id〈aP,i, bP,i〉 = 〈aP , bP 〉.


