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Abstract. STARK is a widely used transparent proof system that uses low-degree
tests for proving the correctness of a computer program. STARK consumes an
intermediate representation known as AIR that is more appropriate for programs
with a relatively short and structured description. However, an AIR is not able to
succinctly express non-equality constraints, leading to the incorporation of unwanted
polynomials.
We present the eSTARK protocol, a new probabilistic proof that generalizes the
STARK family through the introduction of a more generic intermediate representa-
tion called eAIR. We describe eSTARK in the polynomial IOP model, which com-
bines the optimized version of the STARK protocol with the incorporation of three
arguments into the protocol. We also explain various techniques that enhance the
vanilla STARK complexity, including optimizations applied to polynomial computa-
tions, and analyze the tradeoffs between controlling the constraint degree either at
the representation of the AIR or inside the eSTARK itself.
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1 Introduction
Since the term was coined and the first example was given in 1985 by Goldwasser et
al. [GMR85], probabilistic proofs leverages a set of protocols, such as Interactive Proofs
(IPs) [GMR85] and Probabilistic Checkable Proofs [AS92], that enable one party, known
as the prover, to provide a guarantee to another party, known as the verifier, that the
former performed a computation requested by the latter correctly. In practical terms,
probabilistic proofs enable a computationally weak device to monitor the execution of a
powerful but untrusted powerful server, allowing it to outsource a program execution to
the server.

Probabilistic proofs can be even more useful when they also possess a property known
as zero-knowledge [GMR85], which intuitively means that the proof reveals nothing but its
validity. Equipped with zero-knowledge, probabilistic proofs let the prover demonstrate
knowledge of a secret input satisfying a certain statement without revealing any informa-
tion about the input beyond the validity of the statement. For example, a probabilistic
proof satisfying zero-knowledge can be used to prove possession of a secret key associated
with a particular public key or the knowledge of the preimage of a particular hash digest;
without revealing any information about the secret key or the preimage. The latter could
be used to log in to a website without typing a password, by simply sending proof of
possession of the valid password.

Slightly more formal, our scenario is one in which the verifier, denoted as V, sends a
program description f and an input x for that program to the prover, denoted as P. Then,
P computes and returns the execution of program f on input x, i.e., y = f(x), along with
a proof π that the output y is correct and consistent with the description f and the input
x. The proof π should satisfy the following properties:

• Completeness. If P is honest, which means that he knows a pair (x, y) such that
the claim f(x) = y is true and follows the protocol properly, then P should be able
to compute a proof that convinces the verifier V of the validity of the claim.

• Soundness. A malicious prover P∗ should be able to produce a proof that convinces
the verifier V of a statement of a false claim, i.e., that f(x) ̸= y, with negligible
probability.

Completeness means that an honest verifier will always accept a proof if it is generated
by an honest prover. Soundness deals with the verifier not accepting false proofs from
malicious provers. These two properties protect the verifier against malicious provers.
Moreover, the verification of the proof π should be much more efficient than rerunning
the program f on x.

To also make probabilistic proofs privacy-preserving, P can provide his private input
w to the computation, known as the witness. Thus, f now is written as a function of two
inputs (x, w) such that f(x, w) = y. If at the end of the protocol, V is convinced that the
statement y = f(x, w) is true without learning anything about w, then the scheme satisfies
the zero-knowledge property and is typically called a Zero-Knowledge Proof (ZKP).

More formally, a ZKP satisfies completeness, soundness and zero-knowledge defined
as follows:

• Zero-Knowledge: After interacting with P about the claim f(x, w) = y, V should
learn nothing about the witness w and still be convinced of the validity of the claim.

Compared with completeness and soundness, the zero-knowledge property guarantees the
privacy of the prover’s secret information against malicious verifiers.

zk-SNARKs. One family of ZKPs that has become of important consideration in recent
years both in theory and in practice are zero-knowledge Succinct Non-interactive ARgu-
ments of Knowledge (zk-SNARKs) [BCCT11]. At a high level, zk-SNARKs is a generic
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term to refer to ZKPs whose cryptographic assumptions and computational complexity
are reasonable for practical use. More specifically, the acronym zk-SNARKs refers to
probabilistic proofs such that:

• zk: Satisfy the zero-knowledge property, even though it is optional.

• Succinct: Have size sublinear compared to the size of the statement or the witness,
i.e., the size of the computation itself.

• Non-Interactive: Do not require rounds of interaction between a particular prover
and verifier and are publicly verifiable.

• Argument: Assume that are generated by provers having at most polynomial com-
putational resources. In particular, provers are not able to break standard crypto-
graphic assumptions.

• Of Knowledge: Satisfy knowledge soundness rather than plain soundness. That is,
the proof demonstrates that the prover owns a witness for the statement, not only
its existence.

In the literature it can be found many examples of zk-SNARKs [Gro16], [BBB+18],
[GWC19], [CHM+19], each of them based on distinct cryptographic primitives and coming
with different tradeoffs.

An application that makes use of zk-SNARKs as its core technology is Zcash [Wil16],
a public blockchain based on bitcoin that uses these proofs in its core protocol for verify-
ing that private transactions, named shielded transactions, have been computed correctly
while revealing anything else to an external observer. More applications range from using
zk-SNARKs to fight disinformation [KHSS22], to using zk-SNARKs for proving that con-
volutional neural networks have made predictions correctly without revealing the model
itself [LXZ21].

zk-STARKs. Although zk-SNARKs have numerous applications, they suffer from a se-
vere limitation: the requirement of a trusted party that generates random public param-
eters, known as the trusted setup, for the system to work that eliminates any knowledge
of the randomness used in the process (typically known as the toxic waste). In fact, if a
malicious party obtains access to that toxic waste then this party can easily forge false
proofs.

As a result, systems that remove the previous requirement, and are therefore of trans-
parent nature, have been developed. The most prominent family of transparent ZKPs are
zero-knowledge Scalable Transparent ARguments of Knowledge (zk-STARKs) [BBHR18b].
Apart from satisfying the same properties of a zk-SNARKs, zk-STARKs are required to
satisfy two additional properties:

• Scalability. Proving time is at most quasilinear and verification time is at most
logarithmic in the size of the statement.

• Transparency. They do not require any trusted setup, i.e., any randomness used
by transparent frameworks are public coins.

Examples of zk-STARKs are also present in the literature [WTs+17], [COS19], [Set19].

Intermediate Representations. Given a program f , to compute a proof of the validity of
the execution of f , we typically agree upon an equivalent model amenable to probabilistic
proof and then express f as an algebraic constraint satisfaction problem of that model.
This latter step is often called arithmetization, the output of such being an intermediate
representation. For instance, (unstructured) arithmetic circuits are often encoded as a
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system of quadratic equations over a finite field known as Rank-1 Constraint System
(R1CS). In contrast, “structured” arithmetic circuits are often encoded as a set of repeated
polynomial computations known as Algebraic Intermediate Representation (AIR). Here,
by structured we are referring to circuits that are designed with a layered architecture,
where each layer contains a small circuit that is replicated in every layer. In fact, an AIR
is the standard intermediate representation consumed by a STARK [Sta21].

Since we will be dealing with structured arithmetic circuits, let us introduce an AIR
more formally. An AIR A over a field F is defined by a set of multivariate constraint
polynomials Ci ∈ F[X1, . . . , X2M ]. The idea is that f , represented as a set of univariate
polynomials p1, . . . , p2M ∈ F[X], will be said to satisfy A if and only if the following
polynomial constraints:

Ci(p1(X), . . . , p2M (X)) = 0,

are satisfied over a subset of F. Therefore, we translate the computation of f into the
satisfaction of every polynomial Ci of an (equivalent) AIR A, being the latter ready to be
consumed by an appropriate STARK.

Note that the definition of an AIR only captures polynomial constraints defined
through equality. So, for instance, we are not able to directly express that the evalua-
tions of a polynomial over the given subset are lower than a predetermined upper bound.
For this, we would need to express this inequality as a set of equality with the incorpora-
tion of new polynomials such that the new constraints satisfy the equality if and only if
the inequality is satisfied.

In this paper, we enlarge the type of constraints that can be captured by an AIR
with the addition of non-identity constraints satisfying some requirements. We call the
resulting constraint system an extended AIR (eAIR). Details will be explained in Section
4.1. Moreover, we provide a particular probabilistic proof that is ready to consume an
eAIR, and because it will be defined as a generalization of a STARK, we will refer to it
as an extended STARK (eSTARK).

1.1 Organization
This paper is organized as follows. In Section 2 we recall basic definitions related to
the IOP model, introduce the non-identity constraints from which we enlarge the AIR
expressiveness and provide an in-depth overview of STARKs. Moreover, we explain the
low-degree test FRI that will be later on used by our eSTARK. In Section 3 we not only
exhibit the main differences between STARKs and our eSTARK, but we also explain how
to introduce the new type of constraints into the STARK protocol. We put everything
together in Section 4 and proof that the eSTARK protocol is sound. Moreover, in Section
4.4 we provide a full description of our eSTARK in the practical realm. We conclude in
Section 5.

2 Preliminaries
2.1 Notation
We denote by F to a finite field of prime order p and F∗ to its respective multiplicative
group and define k to be the biggest non-negative integer such that 2k | (p − 1). We also
write K to denote a finite field extension of F, of size pe, e ≥ 2. Furthermore, we write
F[X] (resp. K[X]) for the ring of polynomials with coefficients over F (resp. K) and write
F<d[X] (resp. K<d[X]) to denote the set of polynomials of degree lower than d.

Although all the protocols presented in this article work over any prime order, we fix
our attention on fields that contain a multiplicative subgroup of size a large power of two.
This restriction is crucial to achieving a practical protocol.
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Given a cyclic subgroup S of F∗, we denote by Li ∈ F<|S|[X] the i-th Lagrange
polynomial for S. That is, Li satisfies Li(gi) = 1 and Li(gj) = 0 for j ̸= i, where g is used
here to denote the generator of S. Moreover, we denote by ZS(X) = X |S| − 1 ∈ F[X] to
the polynomial that vanishes only over S and call it the vanishing polynomial over S.

We denote by G to a cyclic subgroup of F∗ with order n satisfying n | 2k and 1 < n < 2k,
and let g ∈ F denote the generator of G. Similarly, we denote by H to a nontrivial coset
of a cyclic subgroup of F∗ with order m satisfying m | 2k and n < m.

Given a set of polynomials p1, p2, . . . , pN ∈ K[X] we denote by MTR(p1, . . . , pN )
to the Merkle root obtained after computing a Merkle tree [Mer88] whose leaves are
the evaluations of p1, . . . , pN over the domain H. Additionally, given a set of elements
x1, x2, . . . , xN ∈ K, we also use MTP(x1, . . . , xN ) to denote the Merkle tree path (i.e., the
Merkle proof) computed from the leaf containing these elements. If X = {x1, . . . , xN },
then we use MTP(X) as a shorthand for MTP(x1, . . . , xN ).

Finally, in the description of the protocols, we use P to denote the prover entity and
V to denote the verifier entity.

2.2 Interactive Oracle Proofs and STARKs
In this section, we define a polynomial IOP [BCS16] and the standard security notions
associated with this model. Moreover, we introduce a popular polynomial IOP family
of protocols known as STIK [BBHR19] and explain how a STIK can be compiled into a
STARK.

Definition 1 (Polynomial IOP). Given a function F , a public coin polynomial interactive
oracle proof (IOP) for F is an interactive protocol between two parties, the prover P and
the verifier V, that comprises k rounds of interaction. P is given an input w and both P
and V are given a common input x. At the start of the protocol, P provides to V a value
y and claims to him the existence of a w satisfying y = F (x, w).

In the i-th round, V sends a uniformly and independently random message αi to P.
Then P replies with a message of one of the two following forms: (1) a string mi that V
reads in full, or (2) an oracle to a polynomial fi that V can query (via random access)
after the i-th round of interaction. At the end of the protocol, V outputs either accept or
reject, indicating whether V accepts P’s claim.

The security notions for IOPs are similar to the security notions of other preceding
models (e.g., interactive proofs). In the following definition, probabilities are taken over
the internal randomness of V.

Definition 2 (Completeness and (Knowledge) Soundness). We say that a polynomial IOP
has perfect completeness and soundness error at most εs if the following two conditions
hold.

• Perfect Completeness. For every x and every prover P sending a value y satisfy-
ing y = F (x, w) at the start of the protocol, it holds that:

Pr [V(x, P(x, w)) = accept] = 1,

where V(x, P(x, w)) denotes the V’s output after interacting with the prover on
input x.

• Soundness. For every x and every prover P∗ sending a value y at the start of the
protocol, if it holds that:

Pr [V(x, P∗(x, w)) = accept] ≥ εs,

then y satisfies y = F (x, w).
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If the next condition holds as well, we say that the polynomial IOP has knowledge sound-
ness error at most εks.

• Knowledge Soundness. There exists a probabilistic polynomial-time algorithm
E , known as the knowledge extractor, such that for every x and every prover P∗

sending a value y at the start of the protocol if it holds that:

Pr [V(x, P∗(x, w)) = accept] ≥ εks,

then E (x, P∗(x, w)) = w and y satisfies y = F (x, w).

In words, soundness guarantees that a malicious prover cannot succeed with probability
greater than εs on the “existence” claim of w; whereas knowledge soundness guarantees
that a malicious prover cannot succeed with probability greater than εks claiming “pos-
session” of w satisfying y = F (x, w). A polynomial IOP satisfying knowledge soundness
is known as a polynomial IOP of knowledge.

Naturally, knowledge soundness implies soundness. Surprisingly, the converse is also
true for polynomial IOPs (see, e.g., Lemma 2.3 in [CBBZ22]). This means that proving
the soundness of a polynomial IOP is sufficient for achieving knowledge soundness.

Definition 3 (STIK). A Scalable Transparent polynomial IOP of Knowledge (STIK) is a
polynomial IOP that moreover satisfies the following properties:

• Transparent. They do not require a trusted setup before the execution of the
protocol. This setup constitutes a single point of failure and could be exploited by
powerful parties to forge false proofs.

• Doubly Scalable. The verifier runs in time O(log(n)) and the prover runs in time
O(n log(n)), where n informally denotes the size of the computation F .

When STIKs get instantiated for practical deployment, they result in protocols in
which the prover is assumed to be computationally bounded. Protocols of such kind are
known as argument systems (in contrast to proof systems), and consequently, instantiation
of STIKs results in protocols satisfying soundness only against adversaries running in
polynomial time.

Definition 4 (STARK). A scalable transparent argument of knowledge (STARK) is a
realization of a STIK through a family of collision-resistant hash functions. More specifi-
cally, polynomial oracles sent from the prover to the verifier in the underlying polynomial
IOP are substituted by Merkle roots (computed from polynomial evaluations over a set);
and whenever the verifier asks queries to a polynomial f at v, the prover answers with
f(v) together with the Merkle path associated with it.

Finally, we briefly explain how to remove the interaction between a specific prover
and verifier of protocols and make them publicly verifiable. The Fiat-Shamir heuristic
[FS87] can be used to compile a STIK into a non-interactive argument of knowledge in
the random oracle model by substituting verifier’s messages for queries to the random
oracle on input the previous prover’s messages until that point. The random oracle is
modeled in practice by a cryptographic hash function. Specific details on this compilation
will be explained in Section 4.4. Therefore, a realization of a non-interactive STIK is
called a non-interactive STARK (but we abuse notation and refer to both as STARKs).

2.3 FRI
Fast Reed-Solomon Interactive Oracle Proof of Proximity (FRI) [BCI+20] is a protocol
for proving that a function f : H → F is close to a polynomial of low degree d. Here,
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by low degree, we mean that d ≪ |H|. The FRI protocol consists of two phases. In the
first phase, known as the commit phase, the prover commits to (via Merkle trees) a series
of functions generated from f and random elements v0, v1, . . . from K provided by the
verifier at each round. Then, in the second phase, known as the query phase, the prover
provides a set of evaluations of the previously committed functions at a point randomly
chosen by the verifier. Following, we provide more details about how each phase works.

The Commit Phase

Let’s denote by p0 the function f of interest and assume for the simplicity of the exposition
that the prover is honest (i.e., p0 is a polynomial of low degree). In the commit phase,
the polynomial p0 is split into two other polynomials g0,1, g0,2 : H2 → K of degree lower
than d/2. These two polynomials satisfy the following relation with p0:

p0(X) = g0,1(X2) + X · g0,2(X2). (1)

Then, the verifier sends to the prover a uniformly sampled v0 ∈ K, and asks the prover
to commit to the polynomial:

p1(X) := g0,1(X) + v0 · g0,2(X).

Note that p1 is a polynomial of degree less than d/2 and the commitment of p1 is not over
H but over H2 = {x2 : x ∈ H}, which is of size |H|/2.

The prover then continues by splitting p1 into g1,1 and g1,2 of degree lower than d/4,
then constructing p2 with a uniformly sampled v1 ∈ K sent by the verifier. Again, p2 is of
degree d/22 and committed over H22 = {x2 : x ∈ H2}, whose size is |H|/22. The whole
derivation of pi+1 from pi is often known as split-and-fold due to the prover splitting the
initial polynomial into two and then folding it into one using a random value.

The previous process gets repeated a total of k = log2(d) times, the point at which
deg(pk) = 0 and the prover sends a constant pk, representing a polynomial of degree lower
than 1, to the verifier.

P(p0, d, G, H,F,K) V(d, G, H,F,K)
MTR(p0)

v0

MTR(p1)

v1

...

MTR(pk−1)

vk−1

pk

Figure 1: Skeleton description of FRI’s commit phase.

The Query Phase

In the query phase, the verifier sends a uniformly sampled r ∈ H to the prover and queries
the evaluations p0(r), p0(−r) and p1(r2). From p0(r) and p0(−r) the verifier computes
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p1(r2) and checks that the computed value matches with the third value p1(r2) provided
by the prover. To obtain p1(r2) from p0(r) and p0(−r), the verifier first solves the following
system of linear equations for g0,1(r2), g0,2(r2):

p0(r) = g0,1(r2) + r · g0,2(r2),
p0(−r) = g0,1(r2) − r · g0,2(r2),

and then computes:

p1(r2) = g0,1(r2) + v0 · g0,2(r2).

The verifier continues by querying for p1(−r2) and p2(r4). From p1(r2) and p1(−r2)
computes p2(r4) as before and checks that the computed value is consistent with p2(r4).
Each step locally checks the consistency between each pair (pi, pi+1). The verifier continues
in this way until it reaches the value of the constant pk. The verifier checks that the value
sent by the prover is indeed equal to the value that the verifier computed from the queries
up until pk−1. To fully ensure correctness, the prover must accompany the evaluations
that he sends with a claim of their existence (via Merkle tree paths).

P(p0, d, G, H,F,K) V(d, G, H,F,K)
...
pk

r

{p0(r), . . . , pk−1(r2k−1
)}

{MTP(p0(r)), . . . , MTP(pk−1(r2k−1
))}

{p0(−r), . . . , pk−1(−r2k−1
)}

{MTP(p0(−r)), . . . , MTP(pk−1(−r2k−1
))}

Figure 2: Skeleton description of one iteration of FRI’s query phase.

Upon the completion of this process, the verifier has a first confirmation that the
polynomials committed in the commit phase p0, p1, . . . , pk are consistent with each other.

Finally, to achieve the required bounds for the soundness of the protocol, the query
phase is repeated multiple times. We give the specific soundness bound of a more generic
version of FRI in Theorem 1. The full skeleton description of FRI can be found in Figure
3a.

The Batched FRI Protocol
In this version of FRI, the prover wants to prove closeness to low-degree polynomials
of a set of functions f0,f1,. . . ,fN : H → F at once. We could run the FRI protocol for
every function fi in parallel, but there is a more efficient way proposed in Section 8.2
of [BCI+20]. In the batched FRI protocol, the prover instead applies the FRI protocol
directly to a random linear combination of the function fi. More specifically, assuming
the prover has committed to functions f0, f1, . . . , fN and the verifier has sent a uniformly
sampled value ε ∈ K, the prover computes the function:

f(X) := f0(X) +
N∑

i=1
εifi(X), (2)
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and applies the FRI protocol to it.

Remark 1. In [BCI+20], they compute f as f0(X) +
∑N

i=1 εi · fi(X) instead, i.e., they
use a random value εi ∈ K per function fi instead of powers of a single one ε. Even if
secure, the soundness bound of this alternative version is linearly increased by the number
of functions N , so we might assume from now on that N is sublinear in |K| to ensure the
security of protocols.

The Batched Consistency Check

As an extra check in the batched version, the verifier needs to ensure the correct relation-
ship between functions f0, . . . , fN and the first FRI polynomial p0 = f . The verifier will
use the evaluations of p0 it received from the prover in each FRI query phase invocation.
To allow for this check, the prover also sends the evaluations of functions f0, f1, . . . , fN

at both r and −r so that the verifier can check that:

p0(r) = f0(r) +
N∑

i=1
εifi(r),

p0(−r) = f0(−r) +
N∑

i=1
εifi(−r),

i.e., a local consistency check between f0, . . . , fN and p0. The prover accompanies the
newly sent evaluations with their respective Merkle tree path. The full skeleton description
of batched FRI can be found in Figure 3b.

Similarly to the non-batched FRI protocol, both the query phase and the batched
consistency check gets repeated multiple times to ensure the protocol is sound. More
precisely, the soundness error is shown in the following theorem, which is a (somewhat
informally) adaptation of Theorems 7.2,8.3 from [BCI+20].

Theorem 1 (Batched FRI Soundness). Let f0, f1, . . . , fN be functions defined over H
and let m ≥ 3 be an integer. Suppose a batched FRI prover that interacts with a batched
FRI verifier causes it to accept with probability greater than:

εFRI = εC+εs
Q =

(
N ·

(m + 1
2 )7

3ρ3/2 · |H|2

|K|
+ N · (2m + 1) · (|H| + 1)

√
ρ

·
∑k−1

i=0 ai

|K|

)
+
(

√
ρ

(
1 + 1

2m

))s

,

where ai = |H2i |/|H2i+1 | is the ratio1 between consecutive prover messages in the commit
phase, ρ = |G|/|H| is the rate of the code, εC and εQ are respectively the soundness error
for the commit and the query phases and s is the number of repetitions of the query phase.

Then, functions f0, f1, . . . , fN are close to polynomials of degree lower than n.

In [BBHR18a] it is shown that for the FRI protocol to achieve security parameter λ
(i.e., εFRI ≤ 2−λ), at least s ≥ λ/ log2 ρ−1 many queries are needed, and Theorem 1 shows
that if |K| ≫ |H|2 then s ≈ 2λ/ log2 ρ−1.

1In our case, ai = 2 for all i. We decide to not explicitly write it to capture a version of FRI in which
some layers of the commit phase can be skipped.
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P(p0, pp) V(pp)
MTR(p0)

v0

MTR(p1)

v1

...
vk−1

pk

h1

{p0(h1), . . . , pk−1(h2k−1
1 )}

{MTP(p0(h1)), . . . , MTP(pk−1(h2k−1
1 ))}

{p0(−h1), . . . , pk−1(−h2k−1
1 )}

{MTP(p0(−h1)), . . . , MTP(pk−1(−h2k−1
1 ))}

...

hs

{p0(hs), . . . , pk−1(h2k−1
s )}

{MTP(p0(hs)), . . . , MTP(pk−1(h2k−1
s ))}

{p0(−hs), . . . , pk−1(−h2k−1
s )}

{MTP(p0(−hs)), . . . , MTP(pk−1(−h2k−1
s ))}

(a)

P({fi}i, pp) V(pp)
MTR(p0)

v0

MTR(p1)

v1

...
vk−1

pk

h1

{p0(h1), . . . , pk−1(h2k−1
1 )}

{MTP(p0(h1)), . . . , MTP(pk−1(h2k−1
1 ))}

{p0(−h1), . . . , pk−1(−h2k−1
1 )}

{MTP(p0(−h1)), . . . , MTP(pk−1(−h2k−1
1 ))}

{f0(h1), f1(h1), . . . , fN (h1)}

{MTP(f0(h1)), . . . , MTP(fN (h1))}

{f0(−h1), f1(−h1), . . . , fN (−h1)}

{MTP(f0(−h1)), . . . , MTP(fN (−h1))}

...

hs

{p0(hs), . . . , pk−1(h2k−1
s )}

{MTP(p0(hs)), . . . , MTP(pk−1(h2k−1
s ))}

{p0(−hs), . . . , pk−1(−h2k−1
s )}

{MTP(p0(−hs)), . . . , MTP(pk−1(−h2k−1
s ))}

{f0(hs), f1(hs), . . . , fN (hs)}

{MTP(f0(hs)), . . . , MTP(fN (hs))}

{f0(−hs), f1(−hs), . . . , fN (−hs)}

{MTP(f0(−hs)), . . . , MTP(fN (−h))}

(b)

Figure 3: Skeleton description of FRI and batched FRI, respectively for (a) and (b). Here,
pp = (d, H,F,K).
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FRI as a Polynomial Commitment Scheme
Although FRI has a different setting, it can be converted to a Polynomial Commitment
Scheme (PCS) (for a definition, see [KZG10]) without much overhead. The scheme is
based on the following claim: if f ∈ F[X] is a polynomial of degree lower than d, then
f(z) is the evaluation of f at the point z if and only if f(X) − f(z) = (X − z) · q(X),
where q ∈ F[X] is some polynomial of degree lower than d − 1.

FRI can be converted to a polynomial commitment scheme as follows.

Protocol 1 (FRI-based PCS). The protocol starts with a function f : H → F in possession
of the prover. The verifier knows an upper bound d on the degree of f .

1. As with FRI, the prover’s first message is a commitment to f .

2. The verifier uniformly samples a challenging point z ∈ K\H at which he asks the
prover to compute and send the evaluation of f .

3. The prover outputs f(z) along with a FRI proof πFRI that:

q(X) := f(X) − f(z)
X − z

,

is close to a polynomial of degree lower than d − 1.

P(f, d, G, H,F,K) V(d, G, H,F,K)
MTR(f)

z

f(z), πFRI

Figure 4: Skeleton description of FRI-based PCS.

If FRI passes, the verifier is convinced with high probability that the prover committed,
in the first step, to a polynomial f of degree lower than d and that f(z) is the evaluation
of f at z.

In [VP19], the authors prove that this scheme satisfies the standard notions of se-
curity related to polynomial commitment schemes: correctness, polynomial binding and
evaluation binding.

2.4 Vanilla STARK
In this section, we review the STARK generation procedure from [Sta21] as applied to a
particular statement.

Constraints and Trace

Fix vectors a, b, c, d, e in Fn. Denote the elements of a, b, c, d, e by ai, bi, ci, di, ei, for i ∈ [n],
respectively. Let’s say we want to generate a STARK for the following statement:

12



“I know some ai, bi, ci, di, ei ∈ F such that:

aibici = ai + bi + ci,

d2
i +2ai+1 = ei,

(3)

for all i ∈ [n].”

Denote by tr1, tr2, tr3, tr4, tr5 ∈ F<n[X] the polynomials that interpolate the values
ai,bi,ci,di,ei over the domain G, respectively. That is, tr1(gi) = ai, tr2(gi) = bi, tr3(gi) =
ci, tr4(gi) = di, tr5(gi) = ei for i ∈ [n]. From now on, we will refer to G as the trace
evaluation domain and to tr1, tr2, tr3, tr4, tr5 as the trace column polynomials. Hence,
the above constraint system (of size 2n) can be “compressed” down into two polynomial
constraints through the trace column polynomials. In particular, if for all x ∈ G the
following constraints are true:

tr1(x) · tr2(x) · tr3(x) = tr1(x) + tr2(x) + tr3(x),

tr4(x)2 + 2 · tr1(gx) = tr5(x),
(4)

then the original constraint system (3) must hold. The prover sends commitments to
tr1, tr2, tr3, tr4, tr5 to the verifier.

In general, we will be in the situation of generating a STARK for the knowledge of
some polynomials tr1, . . . , trN : G → F that satisfy a system of polynomial constraints
C = {C1, . . . , Cℓ}, where:

(a) Ci ∈ F[X1, . . . , XN , X ′
1, . . . , X ′

N ] for all i ∈ [ℓ].

(b) For all x ∈ G and all i ∈ [ℓ], we have:

Ci(tr1(x), . . . , trN (x), tr1(gx), . . . , trN (gx)) = 0, (5)

when variables Xj are replaced by polynomials trj(X) and variables X ′
j are replaced

by polynomials trj(gX) in each Ci.

From Polynomial Constraints to Rational Functions

Given a constraint Ci, a rational function is associated with each one of them:

qi(X) := Ci(tr1(X), . . . , trN (X), tr1(gX), . . . , trN (gX))
ZG(X)

, (6)

where, recalling that deg(tri) ≤ n − 1, each qi is a polynomial of degree at most deg(Ci) ·
(n − 1) − n if and only if the polynomial ZG divides Ci (i.e., Ci is satisfed over G).

Following with our particular example, we have:

q1(X) := tr1(X) · tr2(X) · tr3(X) − tr1(X) − tr2(X) − tr3(X)
ZG(X)

,

q2(X) := tr4(X)2 + 2 · tr1(gX) − tr5(X)
ZG(X)

,

where deg(C1) = 3, deg(C2) = 2 and, q1(X), q2(X) are of degree at most 2n − 3 and
n − 2, respectively. In fact, the constraints in expression (4) get satisfied if and only if
deg(q1) ≤ 2n − 3 and deg(q2) ≤ n − 2.
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The Quotient Polynomial

In the next step, polynomials qi are combined into a single polynomial Q known as the
quotient polynomial. In the STARK proposed in [Sta21], to generate Q, the degree of
each qi is adjusted to a sufficiently large power of two. More precisely, we define Di :=
deg(Ci)(n − 1) − |G| and call D to the first power of two for which D > Di for all i ∈ [ℓ].
Then, we compute the adjusted version of the rational functions:

q̂i(X) := (aiX
D−Di−1 + bi) · qi(X) (7)

where ai, bi ∈ K for all i ∈ [ℓ].
In our example, we have D1 = 2n − 3, D2 = n − 2, and therefore we take D = 2n

(recall n is a power of 2) and then:

q̂1(X) := (a1X2 + b1) · q1(X),

q̂2(X) := (a2Xn+1 + b2) · q2(X),

hence, deg(q1) ≤ 2n − 3 and deg(q2) ≤ n − 2 if and only if deg(q̂1), deg(q̂2) < 2n.
Given polynomials q̂i, we can now compute the quotient polynomial as follows:

Q(X) :=
ℓ∑

i=1
q̂i(X) =

ℓ∑
i=1

(aiX
D−Di−1 · bi)

Ci(tr1(X), . . . , trN (X), tr1(gX), . . . , trN (gX))
ZG(X)

(8)
that satisfies deg(Q) < D.

Then, Q is split into S := D/n polynomials Q1, . . . , QS ∈ K[X] of degree lower than
n satisfying:

Q(X) =
S∑

i=1
Xi−1Qi(XS) (9)

Notice that the polynomials Qi are bounded by the same degree as the trace column
polynomials, so we refer to them as the trace quotient polynomials.

Continuing with our example, the quotient polynomial is Q(X) := q̂1(X) + q̂2(X)
satisfying deg(Q) < 2n. In this case, we represent the quotient polynomial Q(X) as two
polynomials Q1, Q2 ∈ F<n[X] such that Q(X) = Q1(X2) + X · Q2(X2).

Trace Low Degree Extension

Since the quotient polynomial Q is defined through rational functions qi that we are going
to evaluate, for Cstr. (6) to be well-defined, we need to ensure that the denominators
of these rational functions are never zero. Therefore, from now on, the polynomials will
not be evaluated over the trace evaluation domain, but rather over a larger and disjoint
domain, which we refer to as the evaluation domain.

More specifically, we introduce the evaluation domain to be:

1. Larger than G, so that the trace column polynomial has enough redundancy to
ensure the soundness of the FRI protocol.

2. Disjoint of G, so that Cstr. (6) is well-defined.

In order to achieve the previous two requirements, we will choose the evaluation domain
to be the coset H, where remember that |H| = 2k · n, with k ≥ 1. We will refer to 2k

as the blowup factor. Therefore, we need to evaluate all the trace column polynomials
over the evaluation domain. We refer to the resulting set of polynomial evaluations as the
trace Low Degree Extension (LDE).

The trace LDE is computed in two steps:
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1. We calculate the interpolation polynomial on the trace evaluation domain of each
trace column polynomial using the Inverse Fast Fourier Transform (IFFT).

2. We evaluate the polynomials that result from the previous step on the evaluation
domain using the Fast Fourier Transform (FFT).

Trace Consistency Check

At this point, the verifier has everything he needs to perform a local consistency check
between the trace column polynomials and the trace quotient polynomials, referred to
as the trace consistency check. Hence, after the prover commits to the trace quotient
polynomials, the verifier uniformly samples a random z and requests the prover to send
the necessary polynomial evaluations on either z or gz.

More specifically, for a given z ∈ K\(G ∪ H̄) (here, H̄ = {x ∈ K | xS ∈ H}) uniformly
sampled by a verifier, the prover sends back the trace column polynomials evaluations
tri(z), trj(gz) and trace quotient polynomials evaluations Qk(zS) for i, j ∈ N and k ∈ [S].
Notice that the necessary evaluations of the trace column polynomials strictly depend on
the particular polynomial expressions in (5). Denote by Evals(z) the set of polynomial
evaluations over z and by Evals(gz) the set of polynomial evaluations over gz. Naturally,
there could exist evaluations of a single polynomial in both sets.

With these evaluations, the verifier can check that:

S∑
i=1

zi−1Qi(zS) =
ℓ∑

i=1
(aiX

D−Di−1 · bi)
Ci(tr1(z), . . . , trN (z), tr1(gz), . . . , trN (gz))

ZG(z)
. (10)

In our particular example, the prover sends back tr1(z),tr1(gz),tr2(z),tr3(z),tr4(z),tr5(z)
(so that Evals(z) = {tr1(z), tr2(z), tr3(z), tr4(z), tr5(z)} and Evals(gz) = {tr1(gz)}) and
Q1(z2), Q2(z2), and the verifier checks that:

Q1(z2) + z · Q2(z2) = (a1z2 + b1) · tr1(z) · tr2(z) · tr3(z) − tr1(z) − tr2(z) − tr3(z)
ZG(z)

+

+(a2zn+1 + b2) · tr4(z)2 + 2 · tr1(gz) − tr5(z)
ZG(z)

.

(11)

The problem is that the verifier cannot be sure that the received values are actually the
evaluations of previously committed polynomials. In fact, it is easy to obtain values from
K that satisfy (10) but are not from the expected polynomials. Therefore, after the prover
sends the evaluations to the verifier, they engage in the part of the protocol to ensure that
the values are the actual evaluations of the corresponding polynomials.

The FRI Polynomial

To ensure the validity of the values sent from the prover to the verifier, the prover proceeds
to create another set of constraints, then translate them to a problem of low-degree testing,
and finally, combines them through the use of random field elements. To this end, the
prover computes the F polynomial:

F(X) :=
∑
i∈I1

ε
(1)
i · tri(X) − tri(z)

X − z
+
∑
i∈I2

ε
(2)
i · tri(gX) − tri(gz)

X − gz

+
S∑

i=1
ε

(3)
i · Qi(X) − Qi(zS)

X − zS
,

(12)
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where I1 = {i ∈ [N ] : tri(z) ∈ Evals(z)}, I2 = {i ∈ [N ] : tri(gz) ∈ Evals(gz)} and
ε

(1)
i , ε

(2)
j , ε

(3)
k ∈ K for all i ∈ I1, j ∈ I2, k ∈ [S].

What we obtain is that the F polynomial is of degree lower than n − 1 if and only
if: (1) both the trace columns polynomials tri and the trace quotient polynomials Qi are
of degree lower than n and (2) all the values sent by the prover in the previous step are
evaluations of the corresponding polynomials.

Finishing with our example, the prover computes the F polynomial as:

F(X) := ε
(1)
1

tr1(X) − tr1(z)
X − z

+ ε
(1)
2 · tr2(X) − tr2(z)

X − z
+ ε

(1)
3 · tr3(X) − tr3(z)

X − z

+ε
(1)
4 · tr4(X) − tr4(z)

X − z
+ ε

(1)
5 · tr5(X) − tr5(z)

X − z
+ ε

(2)
1 · tr1(X) − tr1(gz)

X − gz

+ε
(3)
1 · Q1(X) − Q1(z2)

X − z2 + ε
(3)
2 · Q2(X) − Q2(z2)

X − z2 .

Proof Verification

To verify the STARK, the verifier performs the following checks:

(a) Trace Consistency. Checks that the trace quotient polynomials Q1, . . . , QS are
consistent with the trace column polynomials tr1, . . . , trN by means of the evalua-
tions of these polynomials at either z, gz or zS . I.e., the verifier checks that Eq.
(10) is satisfied.

(b) Batched FRI Verification. It runs the batched FRI verification procedure on the
polynomial F.

If either (a) or (b) fails at any point, the verifier aborts and rejects. Otherwise, the verifier
accepts.

The full skeleton description of the vanilla STARK protocol can be found in one-shot
in Appendix A, in which we include the FRI message exchange in Figure 7.

Soundness

We finally recall the soundness error of the vanilla STARK protocol as in Theorem 4 of
[Sta21]. Recall that ρ = |G|/|H| is the rate of the code.

Theorem 2 (Soundness). Fix integer m ≥ 3. Suppose a prover that interacts with a
verifier in the vanilla STARK protocol causes it to accept with probability two times greater
than:

εSTARK := ℓ

(
1

|K|
+ (D + |G| + S) · ℓ

|K| − S|H| − |G|

)
+ εFRI, (13)

then Eq. (5) is satisfied (i.e., the original statement is true), where ℓ = m/ρ and εFRI is
as defined in Theorem 1.

We give some intuitions for the computation of this error bound. The first term in
Eq. (13) corresponds to the probability of sets {a1, b1, . . . , aT , bT } being “good” under a
dishonest prover. This means that if all ai, bi are uniformly and independently randomly
sampled, then the probability the quotient polynomial Q is a polynomial is at most ℓ/|K|.
The second term corresponds to the probability of sampling a z ∈ K\(G ∪ H̄) for which
the FRI protocol passes with a probability greater than εFRI.
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2.5 Arguments
In this section, we introduce the “arguments” that we will use to extend the vanilla
STARK. Here, by argument, we mean a relation between polynomials that cannot be
directly expressed through an identity. We often refer to these arguments as non-identity
constraint. The three arguments we will introduce are multiset equality, connection and
inclusion.

The protocols that instantiate these arguments are all based on the same idea of the
computation of a grand product polynomial over the two (or more) vectors involved in
the argument. Specifically, a polynomial is cumulatively computed as the quotient of a
function of the first vector and a function of the second vector. Then, a set of identities
is proposed as insurance for a verifier of the protocol that not only the grand product
was correctly computed by a prover, but also that the specific intention of the protocol is
satisfied. To ensure the soundness of the protocols, random values uniformly sampled by
the verifier are used in such computation.

Recall that G = ⟨g⟩ is a cyclic subgroup of F∗ of order n.

Multiset Equality

Given two vectors f = (f1, . . . , fn) and t = (t1, . . . , tn) in Fn, a multiset equality argument,
denoted f

.= t, is used for checking that f is equal to t as multisets (or equivalently, that f
and t are a permutation of each other). The protocol that instantiates the multiset equality
arguments works by computing the following grand product polynomial Z ∈ K<n[X]:

Z(gi) =


1, if i = 1
i−1∏
j=1

(fj + γ)
(tj + γ)

, if i = 2, . . . , n

where γ ∈ K is the value sent from the verifier.
The definition of the previous polynomial is based on the following lemma.

Lemma 1 (Soundness of Multiset Equality). Fix two vectors f = (f1, . . . , fn) and t =
(t1, . . . , tn) in Fn. If the following holds with probability larger than εMulEq(n) := n/|K|
over a random γ ∈ K:

n∏
i=1

(fi + γ) =
n∏

i=1
(ti + γ),

then f
.= t.

Proof. Assume that f ̸ .= t. Then, there must be some i∗ ∈ [n] such that ti∗ ̸= fi for all
i ∈ [n]. Define degree n polynomials F (X) :=

∏n
i=1(fi + X) and T (X) :=

∏n
i=1(ti + X).

By the assumption, we have that F ̸= T and therefore by the Schwartz-Zippel lemma
F (γ) ̸= T (γ) except with probability n/|K|. ■

As a consequence of Lemma 1, the identities that must be checked by the verifier for
x ∈ G are the following:

L1(x) · (Z(x) − 1) = 0, (14)
Z(x · g) · (t(x) + γ) = Z(x) · (f(x) + γ), (15)

where f, t ∈ F<n[X] are the polynomials resulting from the interpolation of {fi}i∈[n] and
{ti}i∈[n] over G,respectively.
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Connection

The protocol for a connection argument and the definitions and results we provide next
are adapted from [GWC19].

Given some vectors f1, . . . , fk ∈ Fn and a partition T = {T1, . . . , Ts} of the set [kn],
a connection argument, denoted (f1, . . . , fk) ∝ {T1, . . . , Ts}, is used to check that the
partition T divides the field elements {fi,j}i∈[k],j∈[n] into sets with the same value. More
specifically, if we define the sequence f(1), . . . , f(kn) ∈ F by:

f((i−1)n+j) := fi,j

for each i ∈ [k], j ∈ [n], then we have f(ℓ1) = f(ℓ2) if and only if ℓ1, ℓ2 belong to the same
block of T .

In order to express the partition T within a grand product polynomial, we define a
permutation σ : [kn] → [kn] as follows: σ is such that for each block Ti of T , σ(T ) contains
a cycle going over all elements of Ti. Then, the protocol that instantiates the connection
arguments works by computing the following grand product polynomial Z ∈ K<n[X]:

Z(gi) =


1, if i = 1

k∏
ℓ=1

i−1∏
j=1

(fℓ,j + γ · (ℓ − 1) · n + j) + δ)
(fℓ,j + γ · σ((ℓ − 1) · n + j) + δ)

, if i = 2, . . . , n

where γ, δ ∈ K are the values sent from the verifier.
The definition of the previous polynomial is based on the following lemma, a proof of

which can be found2 in Claim A.1. of [GWC19] and is similar to the one of Lemma 1.

Lemma 2 (Soundness of Connection). Fix f1, . . . , fk ∈ Fn and a partition T = {T1, . . . , Ts}
of [kn]. If the following holds with probability larger than εCon(n) := kn/|K| over randoms
γ, δ ∈ K:

k∏
ℓ=1

n∏
j=1

(fℓ,j + γ · ((ℓ − 1) · n + j) + δ) =
k∏

ℓ=1

n∏
j=1

(fℓ,j + γ · σ((ℓ − 1) · n + j) + δ),

then, (f1, . . . , fk) ∝ {T1, . . . , Ts}.

As a consequence of Lemma 2, the identities that must be checked by the verifier for
x ∈ G are the following:

L1(x) · (Z(x) − 1) = 0,

Z(x · g) = Z(x) · (f1(x) + γ · SID1(x) + δ)
(f1(x) + γ · Sσ1(x) + δ)

· · · · · (fk(x) + γ · SIDk
(x) + δ)

(fk(x) + γ · Sσk
(x) + δ)

,
(16)

where SIDi(gj) = (i−1)·n+j is the polynomial mapping G-elements to indexes in [kn] and
Sσi

(gj) = σ((i−1)·n+j) is the polynomial defined by σ. Since the permutation σ perfectly
relates with the partition T it refers to, from now on we denote a connection argument
between polynomials f1, . . . , fk ∈ F[X] and a partition T as (f1, . . . , fk) ∝ (Sσ1 , . . . , Sσk

).
As we will see in later sections, this overloading notation will become very natural.

For more details see [GWC19].

2The claim in [GWC19] is for a slightly more general protocol.

18



Inclusion

The protocol for an inclusion argument and the definitions and results we provide next is
adapted from the well-known Plookup protocol [GW20], with the “alternating method”
provided in [PFM+22].

Given two vectors f = (f1, . . . , fn) and t = (t1, . . . , tn) in Fn, a inclusion argument,
denoted f ∈ t, is used for checking that the set A formed with the values {fi}i∈[n] is
contained in the set B formed with the values {t}i∈[n]. Notice that |A|, |B| ≤ n.

In the protocol, the prover has to construct an auxiliary vector s = (s1, . . . , s2n)
containing every element of f and t where the order of appearance is the same as in t.
The main idea behind the protocol is that if f ∈ t, then f contributes to s with repeated
elements. To check this fact, a vector ∆s is defined as follows:

∆s = (s1 + γ s2, s2 + γ s3, · · · , s2n + γ s1).

Then, the protocol essentially checks that ∆s is consistent with the elements of f , t
and s. To do so, the vector s is split into two vectors h1, h2 ∈ Fn. In the protocol described
in [GW20], h1 and h2 contain the lower and upper halves of s, while in our protocol in
[PFM+22], we use h1 to store elements with odd indexes and h2 for even indexes, that is:

h1 = (s1, s3, s5, ..., s2n−1) and h2 = (s2, s4, s6, ..., s2n). (17)

With this setting in mind, the grand product polynomial is defined as:

Z(gi) =


1, if i = 1

(1 + γ)i−1
i−1∏
j=1

(δ + fj)(δ(1 + γ) + tj + γtj+1)
(δ(1 + γ) + s2j−1 + γs2j)(δ(1 + γ) + s2j + γs2j+1)

, if i = 2, . . . , n

where γ, δ ∈ K are the values sent from the verifier.
The definition of the previous polynomial is based on the following lemma, which is a

slight modification of Claim 3.1. of [GW20].

Lemma 3 (Soundness of Inclusion). Fix three vectors f = (f1, . . . , fn), t = (t1, . . . , tn)
and s = (s1, . . . , s2n) with elements in F. If the following holds with probability larger
than εInc(n) := (4n − 2)/|K| over randoms γ, δ ∈ K:

(1 + γ)n
n∏

i=1
(δ + fi)

n−1∏
i=1

(δ(1 + γ) + ti + γti+1) =
2n−1∏
i=1

(δ(1 + γ) + si + γsi+1),

then f ∈ t and s is the sorted by t concatenation of f and t.

As a consequence of Lemma 3, the identities that must be checked by the verifier for
x ∈ G are the following:

L1(x) (Z(x) − 1) = 0,

Z(x · g) = Z(x) (1 + γ)(δ + f(x))(δ(1 + γ) + t(x) + γt(gx))
(δ(1 + γ) + h1(x) + γh2(x))(δ(1 + γ) + h2(x) + γh1(x · g))

.
(18)

where f, t ∈ F<n[X] are the polynomials resulting from the interpolation of {fi}i∈[n] and
{ti}i∈[n] over G, respectively; and h1, h2 ∈ F<n[X] are the polynomials resulting from the
interpolation of the values defined in Eq. (17) over G.

For more details see [GW20] and [PFM+22].
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3 Our Techniques
We now explain the main differences between the polynomial computations carried on
during the rounds of the vanilla STARK (Section 2.4) and our protocol. We also explain
the tradeoffs arising from controlling the constraint degree either at the representation of
the AIR or inside the protocol itself.

3.1 Commiting to Multiple Polynomial at Once
In our protocol, the prover sends Merkle tree commitments to multiple polynomials in each
round. The naive way of proceeding is by sending one Merkle tree root per polynomial. In
this section, we explain how we achieve a sound alternative by computing a single Merkle
tree of all polynomials in each round. Our strategy not only reduces the amount of Merkle
roots that P has to send to V in each round but also reduces the Merkle paths that P
needs to send to V when P gets asked for evaluations of multiple polynomials at the same
point.

Notation. As explained in Section 2.4, commitments are generated by computing Merkle
trees over polynomial evaluations over a nontrivial coset H of a cyclic subgroup of F∗ with
order m. For this section, explicitly set H = {h1, h2, h3, . . . , hm}.

Say that f1, . . . , fN ∈ K<n[X] is the set of polynomials that we want to construct the
Merkle Tree on. More precisely, we want to compute the Merkle tree over the following
m × N matrix of polynomial evaluations:

f1(h1), f2(h1), . . . , fN (h1)
f1(h2), f2(h2), . . . , fN (h2)

...
... · · ·

...
f1(hm), f2(hm), . . . , fN (hm)


We start the construction of the Merkle Tree by grouping the evaluations of f1, . . . , fN

at a single point of H. That is, the i-th leaf of the Merkle tree is formed by (the hash of)
the i-th row of the previous matrix. This gives a total of m leaves, which is by assumption
a power of two. To be more precise, the leaf elements of the Merkle Tree, indexed by the
corresponding H-value, will consist on:

leaf h1 =⇒ H(f1(h1), f2(h1), . . . , fN (h1))
leaf h2 =⇒ H(f1(h2), f2(h2), . . . , fN (h2))

...
...

leaf hm =⇒ H(f1(hm), f2(hm), . . . , fN (hm))

where H is any collision-resistant hash function. Once all the leaves are computed, the
rest of the Merkle tree is computed, as usual, by recursively hashing the concatenation of
its two child nodes until the Merkle root is achieved. The commitments to f1, . . . , fN is
this single Merkle root.

Now, notice how if V requests a Merkle proof for the evaluation of all f1, . . . , fN at a
single point hi, P can prove the consistency of all the evaluations f1(hi), . . . , fN (hi) with
the Merkle root by simply sending the Merkle path corresponding to the leaf containing
such evaluations. Compared to the naive version, this version improves the proof size from
O(N log m) elements down to O(log m) elements. This will be convenient for the batched
FRI execution of our protocol, where we group evaluations of a set of polynomials at a
single point for succinctly answering each batched consistency check.
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3.2 Preprocessed Polynomials and Public Values
Among the set of polynomials that are part of the polynomial constraint system represent-
ing the problem’s statement, we differentiate between two types: committed polynomials
and preprocessed polynomials.

Committed polynomials are those polynomials for which the verifier only has oracle
access and are therefore committed (via Merkle trees) by the prover before the verifier
starts querying them. In other words, these polynomials can only be known, in principle,
in their entire form by the prover of the protocol. Consequently, the verifier is limited to
knowing a “small fraction” of these polynomials’ evaluations. In practice, this fraction is
randomly chosen by the verifier and is proportional to the number of oracle queries that the
verifier makes to the particular polynomial. For the shake of the protocols to be scalable,
the number of queries made to committed polynomials should be at most logarithmic in
their degree. An example of committed polynomials is trace columns polynomials tri.

On the other hand, preprocessed polynomials are known by the verifier in their entirety
even before the execution of the protocol. More precisely, once a polynomial constraint
system C is fixed, the verifier has complete access (either in coefficient form or in evaluation
form) to the set of preprocessed polynomials. As with committed polynomials, the verifier
ends up needing only a small subset of evaluations of such polynomials during the protocol.
An example of preprocessed polynomials is Lagrange polynomials Li. We explain how we
treat preprocessed polynomials in the protocol in Section 4.2.

Example 1. As an example, the polynomial constraints such that for all x ∈ G satisfies:

L1(x)(tr1(x) − 7) = 0, Ln(x)(tr1(x) − 3) = 0, (19)

is composed of one committed polynomial, namely tr1, and two preprocessed polynomial,
namely L1, Ln.

Finally, we define public values as the set of committed polynomial evaluations that
are attested by some constraint. Public values are known to both the prover and the
verifier and a particular polynomial can have many public values associated with it. In
the previous example, the evaluation of tr1 at g and gn are public values since Eq. (19)
are satisfied if and only if tr1(g) = 7 and tr1(gn) = 3.

3.3 Adding Selected Vector Arguments
In this section, we describe how to augment the type of available constraints with the
arguments presented in Section 2.5. Recall that we will add three new types of arguments:

• Inclusion (∈). The set constructed from the evaluations of a polynomial f over a
multiplicative subgroup G is contained in an equally defined set of another polyno-
mial t.

• Multiset Equality ( .=). The multiset considered from the evaluations of a poly-
nomial f over a multiplicative subgroup G is equal to the multiset considered from
the evaluations of another polynomial t.

• Connection (∝). The vectors constructed from the evaluations of a set of poly-
nomials f1, . . . , fN over a multiplicative subgroup G does not vary after applying a
particular permutation σ to them.

To include non-identity constraints in the protocol, we will represent them through their
succinct set of identity constraints. We denote by M the number of inclusion instantiations,
M ′ the number of multiset equality instantiations and M ′′ the number of connection
instantiations.
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As detailed in Section 2.5, for the inclusion argument, we need to compute and commit
the associated polynomials h1,j and h2,j before being able to compute the corresponding
grand product polynomial for each inclusion constraint j ∈ [M ]. This sums up to 2M
polynomials. After this, for each non-identity constraint, we compute the associate grand
product polynomial Z and commit to it. This definition of this polynomial is different
depending on which argument we are executing as shown in Section 2.5. This sums up
to M inclusion polynomials, M ′ multiset equality polynomials and M ′′ connection poly-
nomials. Overall, adding non-identity constraints adds up to 3M + M ′ + M ′′ committed
polynomials and 2(M + M ′ + M ′′) polynomial constraints to the STARK.

Following, we explain how we generalize both inclusions and multiset equalities to not
only involving multiple polynomials but also to a subset of the resulting vector. Therefore,
somewhat artificially, enlarge the expressiveness of our arguments and let us handle more
generic non-identity constraints.

From Vector Arguments to Simple Arguments

Let’s explain first how we reduce vector inclusions or multiset equalities to simple (i.e.,
involving only one polynomial on each side) inclusions or multiset equalities.

Definition 5 (Vector Arguments). Given polynomials fi, ti ∈ K<n[X] for i ∈ [N ], a
vector inclusion, denoted (f1, . . . , fN ) ∈ (t1, . . . , tN ), is the argument in which for all
x ∈ G there exists some y ∈ G such that:

(f1(x), . . . , fN (x)) = (t1(y), . . . , tN (y)). (20)

A vector multiset equality, denoted (f1, . . . , fN ) .= (t1, . . . , tN ), is the argument in
which for all y ∈ G there exists exactly one x ∈ G for which Eq. (20) holds. That is,
(vector) multiset equalities define a bijective mapping.

To reduce the previous vector arguments to simple ones, we make use of a uniformly
sampled element α ∈ K. Namely, instead of trying to generate an argument for the vector
relation, we define the following polynomials:

F ′(X) :=
N∑

i=1
αi−1fi(X), T ′(X) :=

N∑
i=1

αi−1ti(X), (21)

and proceed to prove the relation F ′ ∈ T ′ or F ′ .= T ′. Notice that both F ′ and T ′ are in
general polynomials with coefficients over the field extension K even if every coefficient of
fi, ti is precisely over the base field F.

The previous reduction leads to the following result.

Lemma 4. Given polynomials fi, ti ∈ K<n[X] for i ∈ [N ] and F ′, T ′ ∈ K<n[X] as
defined by Eq. (21), if F ′ ∈ T ′ (resp. F ′ .= T ′), then (f1, . . . , fN ) ∈ (t1, . . . , tN ) (resp.
(f1, . . . , fN ) .= (t1, . . . , tN )) except with probability n · (N − 1)/|K| over the random choice
of α.

Proof. Assume (f1, . . . , fN ) /∈ (t1, . . . , tN ), then there exists some x ∈ G such that for
every y ∈ G we have (f1(x), . . . , fN (x)) /∈ (t1(y), . . . , tN (y)). This means that F ′(x) ̸=
T ′(y) for each y ∈ G except with probability (N − 1)/|K| over the random choice of α.
Since |G| = n, the lemma follows. ■

We generalize to vector arguments the protocols for (simple) inclusion arguments and
multiset equality arguments explained in Section 2.5 by incorporating the previous reduc-
tion strategy. Therefore, we give next the soundness bounds for these protocols.

Lemma 5. Given polynomials fi, ti ∈ K<n[X] for i ∈ [N ], we obtain:
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1. Inclusion Protocol. Let F, T ∈ K<n[X] as defined by Eq. (21). The prover sends
oracle functions [fi], [ti] for i ∈ [N ] to the verifier in the first round, who responds
with a uniformly sampled α ∈ K. If a prover that interacts with a verifier in the
inclusion protocol of Section 2.5 on input F and T causes it to accept with probability
greater than:

n
N − 1

|K|
+ εInc(n),

then (f1, . . . , fN ) ∈ (t1, . . . , tN ).

2. Multiset Equality Protocol. Let F, T ∈ K<n[X] as defined by Eq. (21). The
prover sends oracle functions [fi], [ti] for i ∈ [N ] to the verifier in the first round,
who responds with a uniformly sampled α ∈ K. If a prover that interacts with a
verifier in the multiset equality protocol of Section 2.5 on input F and T causes it
to accept with probability greater than:

n
N − 1

|K|
+ εMulEq(n),

then (f1, . . . , fN ) .= (t1, . . . , tN ).

From Selected Vector Arguments to Simple Arguments

Now, let’s go one step further by the introduction of selectors. Informally speaking, a
selected inclusion (multiset equality) is an inclusion (multiset equality) not between the
specified two polynomials f, t, but between the polynomials generated by the multiplica-
tion of f and t with (generally speaking) independently generated selectors. We generalize
to the vector setting.
Definition 6 (Selected Vector Arguments). We are given polynomials fi, ti ∈ K<n[X]
for i ∈ [N ]. Furthermore, we are also given two polynomials f sel, tsel ∈ F<n[X] whose
range over the domain G is {0, 1}. That is, f sel and tsel are selectors. A selected vector
inclusion, denoted f sel · (f1, . . . , fN ) ∈ tsel · (t1, . . . , tN ), is the argument in which for all
x ∈ G there exists some y ∈ G such that:

f sel(x) · (f1(x), . . . , fN (x)) = tsel(y) · (t1(y), . . . , tN (y)), (22)

where f sel(x) · (f1(x), . . . , fN (x)) denotes the component-wise scalar multiplication be-
tween the field element f sel(x) and the vector (f1(x), . . . , fN (x)).

A selected vector multiset equality, denoted f sel · (f1, . . . , fN ) .= tsel · (t1, . . . , tN ), is the
argument in which for all y ∈ G there exists exactly one x ∈ G for which Eq. (22) holds.
Remark 1. Note that if f sel = tsel = 1, then Eq. (22) is reduced to (20); if f sel = tsel = 0
then the argument is trivial; and if either f sel or tsel is equal to the constant 1, then we
remove the need for f sel or tsel, respectively.

To reduce selected vector inclusion to simple ones, we proceed in two steps. First, we
use the reduction shown in Eq. (21) to reduce the inner vector of polynomials to a single
one. This process outputs polynomials F ′, T ′ ∈ K<n[X]. Second, we make use of another
uniformly sampled β ∈ K as follows. Namely, we define the following polynomials:

T (X) := tsel(X)[T ′(X) − β] + β,

F (X) := f sel(X)[F ′(X) − T (X)] + T (X),
(23)

and proceed to prove the relation F ∈ T .
Importantly, the presentation “re-ordering” in Eq. (23) is relevant: if β had been

introduced in the definition of F instead, then there would be situations in which we
would end up having β as an inclusion value and therefore the inclusion argument not
being satisfied even if the selectors are correct. See Example 2 to see why this is relevant.
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Example 2. Choose N = 1, n = 23. We compute the following values:

x
g
g2

g3

g4

g5

g6

g7

g8

f1(x) F ′(x) f sel(x) F (x)
3 3 0 1
7 7 1 7
4 4 0 7
1 1 1 1
5 5 1 5
1 1 0 5
2 2 1 2
5 5 1 5

t1(x) T ′(x) tsel(x) T (x)
1 1 1 1
1 1 0 β
7 7 1 7
6 6 0 β
5 5 1 5
5 5 1 5
5 5 0 β
7 2 1 2

Notice how F ∈ T . However, if we would have instead defined F, T as F (X) = f sel(X)[F ′(X)−
β] + β and T (X) = tsel(X)[T ′(X) − F (X)] + F (X) then we would end up having β as a
inclusion value, which implies that F /∈ T even though f1, t1 and f sel, tsel are correct.

To reduce selected vector multiset equalities to simple ones, we follow a similar process
as with selected vector inclusions. We also first use the reduction in Eq. (21) to reduce
the inner vector argument to a simple one, but then we define the following polynomials:

F (X) := f sel(X)[F ′(X) − β] + β,

T (X) := tsel(X)[T ′(X) − β] + β,
(24)

and proceed to prove the relation F
.= T . Here, we have been able to first define F since

we are dealing with multiset equalities instead of inclusions.
Similarly to Lemma 4, we obtain the following result. by observing that β do not grow

the total degree of polynomials F, T (either from Eq. (23) or Eq. (24)) over variables
α, β.
Lemma 6. Given polynomials fi, ti ∈ K<n[X] for i ∈ [N ], selectors f sel, tsel ∈ K<n[X]
and F, T ∈ K<n[X] as defined by Eq. (23) (resp. Eq. (24)), if F ∈ T (resp. F

.= T ), then
f sel · (f1, . . . , fN ) ∈ tsel · (t1, . . . , tN ) (resp. f sel · (f1, . . . , fN ) .= tsel · (t1, . . . , tN )) except
with probability n · (N − 1)/|K| over the random and independent choice of α and β.

We generalize to selected vector arguments the protocols for (simple) inclusion ar-
guments and multiset equality arguments explained in Section 2.5 by incorporating the
reduction strategies explained in this section. Therefore, we give next the soundness
bounds for these protocols.
Lemma 7. Given polynomials fi, tj ∈ K<n[X] for i ∈ [N ] and selectors f sel, tsel ∈
K<n[X], we obtain:

1. Inclusion Protocol. Let T ∈ K<2n−1[X] and F ∈ K<3n−1[X] as defined by Eq.
(23). The prover sends oracle functions [fi], [ti], [f sel], [tsel] for i ∈ [N ] to the verifier
in the first round, who responds with uniformly sampled α, β ∈ K. Moreover, enlarge
the set of identities that must be checked by the verifier in the inclusion protocol of
Section 2.5 with:

f sel(x)(f sel(x) − 1) = 0,

f sel(x)(f sel(x) − 1) = 0,

for all x ∈ G, i.e., the verifier checks that polynomials f sel, tsel are valid selectors. If
a prover that interacts with a verifier in the (enlarged) inclusion protocol of Section
2.5 on input F and T causes it to accept with probability greater than:

n
N − 1

|K|
+ εInc(3n − 1),

then f sel · (f1, . . . , fN ) ∈ tsel · (t1, . . . , tN ).
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2. Multiset Equality Protocol. Let F, T ∈ K<2n−1[X] as defined by Eq. (24). The
prover sends oracle functions [fi], [ti], [f sel], [tsel] for i ∈ [N ] to the verifier in the
first round, who responds with uniformly sampled α, β ∈ K. Moreover, enlarge the
set of identities that must be checked by the verifier in the multiset equality protocol
of Section 2.5 with:

f sel(x)(f sel(x) − 1) = 0,

f sel(x)(f sel(x) − 1) = 0,

for all x ∈ G. If a prover that interacts with a verifier in the (enlarged) multiset
equality protocol of Section 2.5 on input F and T causes it to accept with probability
greater than:

n
N − 1

|K|
+ εMulEq(2n − 1),

then f sel · (f1, . . . , fN ) .= tsel · (t1, . . . , tN ).

Example 3. Say that for all x ∈ G the prover wants to prove that he knows some
polynomials tr1, tr2, tr3, tr4, tr5 ∈ F<n[X] such that:

tr1 ∈ tr3,

tr3
.= tr4,

(tr2, tr1, tr5) ∝ (Sσ1 , Sσ2 , Sσ3),

(25)

where we have used the notation .= to denote that c and d are a permutation of each other,
without specifying a particular permutation.

Following the previous section and Section 3.5, the polynomial constraint system (25)
gets transformed to the following one, so that for all x ∈ G:

L1(x) (Z1(x) − 1) = 0,

Z1(gx) = Z1(x) (1 + β)(γ + tr1(x))(γ(1 + β) + tr3(x) + βtr3(gx))
(γ(1 + β) + h1,1(x) + βh1,2(x))(γ(1 + β) + h1,2(x) + βh1,1(gx))

,

L1(x) (Z2(x) − 1) = 0,

Z2(gx) = Z2(x) (γ + tr3(x))
(γ + tr4(x))

,

L1(x) (Z3(x) − 1) = 0,

im1(x) = (tr1(x) + βk1x + γ)(tr5(x) + βk2x + γ),

im2(x) = (tr1(x) + Sσ2(x) + γ)(tr5(x) + Sσ3(x) + γ),

Z3(gx) = Z3(x) (tr2(x) + βx + γ)im1(x)
(tr2(x) + Sσ1(x) + γ)im2(x)

,

where we notice that the only type of argument that sometimes need to be adjusted is
the connection argument.

Parallel Execution of the Arguments

We end this section by explaining the protocol corresponding to multiple executions of
the previous protocols combined.

Protocol 2. The protocol starts with a set of polynomials fi,j , ti,j ∈ F<n[X] for i ∈ [N ]
and j ∈ [M + M ′ + M ′′] known to the prover. Here, for each j ∈ [M ], {fi,j , ti,j}i
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correspond to the polynomials of each M inclusion invocations; for each j ∈ [M + 1, M +
M ′], {fi,j , ti,j}i correspond to the polynomials of each M ′ multiset equality invocations
and for each j ∈ [M + M ′ + 1, M + M ′ + M ′′], {fi,j}i correspond to the polynomials
of each M ′′ connection invocations and {ti,j}i correspond to the polynomials {Si,σj

}i

derived from each permutation σj . For each j ∈ [M + M ′], the prover possibly also knows
selectors f sel

j , tsel
j .

1. Execution Trace Oracles: The prover sends oracle functions [fi,j ], [ti,j ], [f sel
j ], [tsel

j ]
for i ∈ [N ] and j ∈ [M + M ′ + M ′′] to the verifier, who responds with uniformly
sampled values α, β ∈ K.

2. Inclusion Oracles: The prover computes the inclusion polynomials h1,j , h2,j for
each inclusion invocation j ∈ [M ]. Then, he sends oracle functions of them to the
verifier, who answers with uniformly sampled values γ, δ ∈ K.

3. Grand Product Oracles: The prover computes the grand product polynomials
Zj for each argument j ∈ [M + M ′ + M ′′] and sends oracle functions of them to the
verifier.

4. Verification: For each j ∈ [M ] and all x ∈ G, the verifier checks that constraints
in Eq. (18) hold; for each j ∈ [M + 1, M + M ′], constraints in Eq. (14) hold; and
for each j ∈ [M + M ′ + 1, M + M ′ + M ′′], constraints in Eq. (16) hold. Finally, the
verifier also confirms that for each j ∈ [M + M ′], the polynomials f sel

j , tsel
j are valid

selectors by checking the following constraints also hold:

f sel
j (x)(f sel

j (x) − 1) = 0,

f sel
j (x)(f sel

j (x) − 1) = 0.

P({fi,j , ti,j}i,j ,F,K) V(F,K)
{[fi,j ], [ti,j ], [f sel

j ], [tsel
j ]}i,j

{α, β}

{[h1,1], [h2,1], . . . , [h1,M ], [h2,M ]}

{γ, δ}

{[Z1], . . . , [ZM+M′+M′′ ]}

Figure 5: Skeleton description of Protocol 2.

Using Theorem 7 and the Parallel Repetition Theorem for polynomial IOPs [BCS16],
[Gol98] we obtain the following result. Use M1, M2, M3 to refer to the number of simple,
vector and selected vector inclusions. We have M = M1 + M2 + M3. For the multiset
equality scenario, analogously define M ′

1, M ′
2, M ′

3, which also satisfy M ′ = M ′
1 + M ′

2 + M ′
3.

Lemma 8 (Soundness bound for Protocol 2). Let εInc, εMulEq, εCon be the soundness for a
single invocation of the protocols asserting the inclusion, multiset equality and connection
arguments, respectively. Then if the prover interacts with the verifier in Protocol 2 and
causes it to accept with probability greater than:

εArgs := (M2 + M3 + M ′
2 + M ′

3)n(N − 1)
|K|

+

+ εInc(n)M1+M2 εInc(2n − 1)M3 εMulEq(n)M1+M2 εMulEq(3n − 1)M3 εCon(n)M ′′
,
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then each of the M inclusion arguments, M ′ multiset equality arguments and M ′′ connec-
tion arguments get satisifed.

Proof Sketch. First, notice that εArgs is the soundness bound in the “best-case” scenario,
that is, assuming that the prover is lying in all the M +M ′+M ′′ arguments. An analogous
expression for εArgs (and its corresponding proof) can be easily obtained.

For each i ∈ [M2 + M3 + M ′
2 + M ′

3], denote by Ei the event in which the reduction
from either the (vector or selected) inclusion argument or the (vector or selected) multiset
equality argument is correct. Also, denote by E the event in which every constraint
corresponding to each of the arguments are satisfied. Then, using the union bound, the
first term of εArgs corresponds to an upper bound to the probability Pr[∪iEi]. Now, apply
the Parallel Repetition Theorem for polynomial IOPs and the second term of εArgs is
obtained. ■

3.4 On the Quotient Polynomial
In the vanilla STARK protocol, the quotient polynomial Q (Eq. 8) is computed by
adjusting the degree of the rational functions:

qi(X) := Ci(tr1(X), . . . , trN (X), tr1(gX), . . . , trN (gX))
ZG(X)

,

to a sufficiently large power of two D with the help of two random values ai, bi. The sum
of the resulting polynomials q̂i := (aiX

D−deg(qi)−1 + bi) · qi(X) is precisely Q.
There are two major issues with the previous definition of the quotient polynomial:

(1) it leads to an amount of uniformly sampled values ai, bi proportional to the number
of constraints; and (2) [Sta21] (or any other source, as far as we know) does not provide
a proof of why the degree adjustment is necessary at all.

Therefore, we instead obtain a single random value a ∈ K and define the quotient
polynomial as a random linear combination of the rational functions qi as follows:

Q(X) :=
ℓ∑

i=1
ai−1qi(X).

Note that we not only remove the degree adjustment of the qi’s but also use powers
of a uniformly sampled value a instead of sampling one value per constraint. A proof
that this alternative way of computing the quotient polynomial is sound was carefully
analyzed in Theorem 7 of [Hab22] (and based on Theorem 7.2 of [BCI+20]). Importantly,
the soundness bound of this alternative version is linearly increased by the number of
constraints ℓ, so we might assume from now on that ℓ is sublinear in |K| to ensure the
security of protocols.

3.5 Controlling the Constraint Degree wih Intermediate Polynomials
In the vanilla STARK protocol, the initial set of constraints that one attest to compute
the proof over is of unbounded degree. However, when one arrives at the point after
computing the quotient polynomial Q, it should be split into polynomials of degree lower
than n to ensure the same redundancy is added as with the trace column polynomials tri

for a sound application of the FRI protocol. In this section, we explain an alternative for
this process and propose the split to happen “at the beginning” and not “at the end” of
the proof computation.

Therefore, we will proceed with this approach assuming that the arguments in Section
2.5 are included among the initial set of constraints. The constraints imposed by the
grand products polynomials Zi of multiset equalities and inclusions are of known degree:
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degree 2 for the former and degree 3 for the latter. Based on this information, we will
propose a splitting procedure that allows for polynomial constraints up to degree 3 but
will split any exceeding it.

Say the initial set of polynomial constraints C = {C1, . . . , Cℓ} contain a constraint of
total degree greater or equal to 4. For instance, say that we have C = {C1, C2} with:

C1(X1, X2, X3, X ′
1, X ′

2, X ′
3) = X1 · X2 · X ′

2 · X ′
3 − X3

3 ,

C2(X1, X2, X3, X ′
1, X ′

2, X ′
3) = X2 − 7 · X ′

1 + X ′
3.

(26)

Now, instead of directly computing the (unbounded) quotient polynomial Q and then
doing the split, we will follow the following process:

1. Split the constraints of degree t ≥ 4 into ⌈t/3⌉ constraints of degree lower or equal
than 3 through the introduction of one formal variable and one constraint per split.

2. Compute the rational functions qi. Notice the previous step restricts the degree of
the qi’s to be lower than 2n.

3. Compute the quotient polynomial Q ∈ F<2n[X] and then split it into (at most) two
polynomials Q1 and Q2 of degree lower than n as follows:

Q(X) = Q1(X) + Xn · Q2(X), (27)

where Q1 is obtained by taking the first n coefficients of Q and Q2 is obtained by
taking the last n coefficients (filling with zeros if necessary).
Remark 2. Here, we might have that Q2 is identically equal to 0. This is in contrast
with the technique used for the split in Eq. (9), where the quotient polynomial Q
is distributed uniformly across each of the trace quotient polynomials Qi.

This process will “control” the degree of Q so that it will be always of a degree lower than
2n.

Following with the example in Eq. (26), we rename C2 to C3 and introduce the formal
variable Y1 and the constraint:

C2(X1, X2, X3, X ′
1, X ′

2, X ′
3, Y1) = X1 · X2 − Y1, (28)

Now, to compute the rational functions qi, we have to compose C2 not only with the
trace column polynomials tri but also with additional polynomials corresponding with the
introduced variables Yi. We will denote these polynomials as imi and refer to them as
intermediate polynomials.

Hence, the set of constraints in (26) gets augmented to the following set:

C1(X1, X2, X3, X ′
1, X ′

2, X ′
3, Y1) = Y1 · X ′

2 · X ′
3 − X3

3 ,

C2(X1, X2, X3, X ′
1, X ′

2, X ′
3, Y1) = X1 · X2 − Y1,

C3(X1, X2, X3, X ′
1, X ′

2, X ′
3, Y1) = X2 − 7 · X ′

1 + X ′
3,

where we include the variable Y1 in C3 for notation simplicity. Note that now what we
have is two constraints of degree lower than 3, but we have added one extra variable and
constraint to take into account.

Discussing more in-depth the tradeoff generated between the two approaches, we have
for one side that deg(Q) = maxi{deg(qi)} = maxi{deg(Ci)(n − 1) − |G|}. Denote by imax
the index of the qi where the maximum is attained. Then, the number of polynomials S
in the split of Q is equal to:⌈

deg(Q)
n

⌉
=
⌈

deg(Cimax)(n − 1) − |G|
n

⌉
= deg(Cimax) +

⌈
−|G|

n

⌉
,
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which is equal to either deg(Cimax) − 1 or deg(Cimax).
We must compare this number with the number of additional constraints (or polyno-

mials) added in our proposal. So, on the other side, we have that the overall number of
constraints ℓ̃ is:

ℓ∑
i=1

⌈
deg(Ci)

3

⌉
,

with ℓ̃ ≥ ℓ.
We conclude that the appropriate approach should be chosen based on the minimum

value between ℓ̃ − ℓ and S. Specifically, if the goal is to minimize the number of poly-
nomials in the proof generation, then the vanilla STARK approach should be taken if
min

{
ℓ̃ − ℓ, S

}
= S, and our approach should be taken if min

{
ℓ̃ − ℓ, S

}
= ℓ̃ − ℓ.

Example 4. To give some concrete numbers, let us compare both approaches using the
following set of constraints:

C1(X1, X2, X3, X4, X ′
1) = X1 · X2

2 · X4
3 · X4 − X ′

1,

C2(X1, X2, X3) = X1 · X3
2 + X3

3 ,

C3(X2, X3, X4, X ′
2) = X3

2 · X3 · X4 + X ′
2,

In the vanilla STARK approach, we obtain S = 8. On the other side, using the early
splitting technique explained before, by substituting X1 · X2

2 by Y1 and X2 · X3 · X4 by Y2
we transform the previous set of constraints into an equivalent one having all constraints
of degree less or equal than 3. This reduction only introduces 2 additional constraints:

C1(X ′
1, Y1, Y2) = Y 2

1 · Y2 − X ′
1,

C2(X2, X3, Y1) = Y1 · X2 + X3
3 ,

C3(X2, X ′
2, Y2) = Y2 · X2

2 + X ′
2,

C4(X1, X2, Y1) = Y1 − X1 · X2
2

C5(X2, X3, X4, Y2) = Y2 − X2 · X3 · X4

Henceforth, the early splitting technique is convenient in this case, introducing 3 new
polynomials instead of the 7 that proposes the vanilla STARK approach.

However, early splittings are not unique. That is, we can reduce the degree of the
constraints differently, giving more polynomials and worsening our previous splitting in
terms of numbers of polynomials. For example, the following set of constraints (achieved
by substituting X1 · X2

2 by Y1, X3
3 by Y2, X3 · X4 by Y3 and X3

2 by Y4) is equivalent to
the former ones, but in this case we added 4 extra polynomial constraints:

C1(X ′
1, Y1, Y2, Y3) = Y1 · Y2 · Y3 − X ′

1,

C2(X2, Y1, Y2) = Y1 · X2 + Y2,

C3(X ′
2, Y3, Y4) = Y3 · Y4 + X ′

2,

C4(X1, X2, Y1) = Y1 − X1 · X2
2 ,

C5(X3, Y2) = Y2 − X3
3 ,

C6(X3, X4, Y3) = Y3 − X3 · X4,

C7(X2, Y4) = Y4 − X3
2

29



On the other side, a system of constraints composed by the following kind of constraints
is not easily early-reducible:

Ci(Xi, Xi+1, Xi+2) = X3
i · Xi+1 + X3

i+1 · Xi + Xi+2

More specifically, each Ci added into our constraints system will increase by 2 the
number of polynomial constraints if the early splitting technique is used. Informally,
these constraints do not have repetitions in the monomials composing them, not allowing
to generate optimal substitutions as done before. Therefore, even having only one of such
constraints, Vanilla STARK approach is preferable.

That being said, a careful and sophisticated analysis should be used in order to choose
the optimal solution between both approaches. However, as a rule of thumb, our approach
is preferable whenever only a few constraints exceed degree 3 or/and there exists several
repetitions among the monomials of the exceeding constraints.

3.6 FRI Polynomial Computation
Recall from Section 2.4 the F polynomial was computed as follows:

F(X) :=
∑
i∈I1

ε
(1)
i · tri(X) − tri(z)

X − z
+
∑
i∈I2

ε
(2)
i · tri(gX) − tri(gz)

X − gz

+
S∑

i=1
ε

(3)
i · Qi(X) − Qi(zS)

X − zS
,

where I1 = {i ∈ [N ] : tri(z) ∈ Evals(z)}, I2 = {i ∈ [N ] : tri(gz) ∈ Evals(gz)} and
ε

(1)
i , ε

(2)
j , ε

(3)
k ∈ K for all i ∈ I1, j ∈ I2, k ∈ [S]. This way of computing the F polyno-

mial has again (see Section 3.4) the issue that the number of random values sent from the
verifier is proportional to the number of polynomials involved in the previous sum.

We will therefore compute the F polynomial by requesting two random values ε1, ε2 ∈
K instead, using ε1 to compute the part regarding evaluations at z and gz separately and
finally mixing it all with ε1.

Following with the previous example, we define polynomials F1, F2 ∈ K<n[X]:

F1(X) :=
∑
i∈I1

εi−1
2 · tri(X) − tri(z)

X − z
+

S∑
i=1

ε
|I1|+i−1
2 · Qi(X) − Qi(z)

X − z

F2(X) :=
∑
i∈I2

εi−1
2 · tri(gX) − tri(gz)

X − gz
,

and then we set F(X) := F1(X) + ε1 · F2(X). Note that since ε1, ε2 are uniformly sampled
elements, then so is ε1 · εi

2 for all i ≥ 0.
A commonly used alternative version of the F polynomial computation in practice

involves requesting a single random value ε ∈ K and directly computing

F̃(X) :=
∑
i∈I1

εi−1 · tri(X) − tri(z)
X − z

+
∑
i∈I2

ε|I1|+i−1 · tri(gX) − tri(gz)
X − gz

+
S∑

i=1
ε|I1|+|I2|+i−1 · Qi(X) − Qi(zS)

X − zS
.

This version has the disadvantage of not being computable in parallel like the previous
version, so we prefer the first option (even if it means increasing the proof size by one
field element). Specifically, when the powers of ε2 are being computed, it is possible to
compute the polynomials F1 and F2 both sequentially and in parallel, while F̃ can only be
computed sequentially after the computation of the powers of ε.
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4 Our eSTARK Protocol
4.1 Extended Algebraic Intermediate Representation (eAIR)
In this section, we introduce the notion of eAIRs and eAIR satisfiability as a natural
extension of the well-studied AIRs [BBHR19]. Informally speaking, an eAIR is an AIR
whose expressiveness is extended with more types of allowed constraints. In the following
recall that G = ⟨g⟩ is a multiplicative subgroup of F of order n.

Definition 7 (AIR and AIR Satisfiability). Given polynomials p1, . . . , pM ∈ F[X], an al-
gebraic intermediate representation (AIR) A is a set of algebraic constraints {C1, . . . , CK}
such that each Ci is a polynomial over F[X1, . . . , XM , X ′

1, . . . , X ′
M ]. For each Ci, the first

half variables X1, . . . , XM will be replaced by polynomials p1(X), . . . , pM (X), whereas the
second half variables X ′

1, . . . , X ′
M will be replaced by polynomials p1(gX), . . . , pM (gX).

Moreover, we say that polynomials p1, . . . , pM satisfy a given AIR A = {C1, . . . , CK}
if and only if for each i ∈ [K] we have that:

Ci(p1(x), . . . , pM (x), p1(gx), . . . , pM (gx)) = 0, ∀x ∈ G.

Remark 2. There are two main simplifications between our definition for AIR and the
definition for AIR in [Sta21]: (1) we define constraints only over the “non-shifted” and
“shifted-by-one” version of the corresponding polynomials, i.e., pi(X) and pi(gX), respec-
tively; and (2) we enforce constraints to vanish over the whole G and not over a subset of
it. The following definitions can, however, support a more generic version.

Now, we extend the definition of an AIR by allowing the arguments defined in Section
3.3 as new types of available constraints.

Definition 8 (Extended AIR). Given polynomials p1, . . . , pM ∈ F[X], an extended alge-
braic intermediate representation (eAIR) eA is a set of constraints eA = {C1, . . . , CK}
such that each Ci can be one of the following form:

(a) A polynomial over F[X1, . . . , XM , X ′
1, . . . , X ′

M ] as in Def. 7.

(b) A positive integer Ri, a set of 2Ri polynomials Ci,j over F[X1, . . . , XM ] and two
selectors f sel

i , tsel
i over F[X] (recall that f sel

i (x), tsel
i (x) ∈ {0, 1} for all x ∈ G).

(c) An integer Si ∈ [M ], a subset of Si polynomials p(1), . . . , p(Si) ∈ F[X] from the set
{p1, . . . , pM } and Si more polynomials Sσi,1, . . . , Sσi,Si representing a permutation
σi.

Finally, we refer to the set constraints of the form described in (a) as the set of identity
constraints of eA and to the set of constraints of the form described by either (b) or (c)
as the set of non-identity constraints of eA.

Definition 8 aims to capture the arguments in Section 3.3 in a slightly more generic
way. Here, the polynomials subject to these arguments are generated as a polynomial
combination between p1, . . . , pM .

In what follows, we use P as a shorthand for (p1, . . . , pM ) and denote by C ◦ P to the
univariate polynomial over F[X] resulting from the substitution of each of the variables
Xi, X ′

i of the constraint C ∈ F[X1, . . . , XM , X ′
1, . . . , X ′

M ] by pi(X), pi(gX), respectively.
That is C ◦ P is the polynomal C(p1(X), . . . , pM (X), p1(gX), . . . , pM (gX)).

Definition 9 (Extended AIR Satisfiability). We say that polynomials p1, . . . , pM ∈ F[X]
satisfy a given eAIR eA = {C1, . . . , CK} if and only if for each i ∈ [K] one and only one
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of the following is true for all x ∈ G:

(Ci ◦ P)(x) = 0,

f sel
i (x) · ((Ci,1 ◦ P)(x), . . . , (Ci,Ri

◦ P)(x)) ∈ tsel
i (x) · ((Ci,Ri+1 ◦ P)(x), . . . , (Ci,2Ri

◦ P)(x)),

f sel
i (x) · ((Ci,1 ◦ P)(x), . . . , (Ci,Ri

◦ P)(x)) .= tsel
i (x) · ((Ci,Ri+1 ◦ P)(x), . . . , (Ci,2Ri

◦ P)(x)),

(p(1)(x), . . . , p(Si)(x)) ∝ (Sσi,1(x), . . . , Sσi,Si(x)).

4.2 The Setup Phase
During the protocol of Section 4.3, both the prover and the verifier will need to have
access to a set of preprocessed polynomials prei ∈ F[X]. In particular, the prover will
need to have full access to them, either in coefficient or in the evaluation form, to be able
to correctly generate the proof. On the other hand, the verifier will only need to have
access to a subset of the evaluations of these polynomials over the domain H.

To this end, in our protocol we assume the existence of a phase, known as the setup
phase, that is before the protocol message exchange but after the particular statement
to be proven (or equivalently, the set of constraints that describe the statement) is fixed.
In the setup phase, the preprocessed polynomials are computed and the prover and the
verifier receive different information regarding them. Particularly, the setup phase, with
input from a set of polynomial constraints, consists of the following steps:

1. The trace LDE of each preprocessed polynomial is computed.

2. The Merkle tree of the set of preprocessed polynomials is computed.

3. Finally, the complete tree is sent to the prover and its corresponding root is sent
to the verifier. This way, when the verifier needs to compute the evaluation of any
preprocessed polynomial over h ∈ H, he can request it from the prover, who will
respond with the evaluation along with its corresponding Merkle tree path. The
verifier then verifies the accuracy of the information received by using the root of
the tree.

Remark 3. Since the computational effort of the setup phase is greater than O(log(n)),
we cannot include this phase as part of the verifier description if we want our protocol to
satisfy verifier scalability.

Note that the setup phase does not include a measure for the verifier to be sure that
the computation of the Merkle tree of preprocessed polynomials is correct. However,
as the setup phase input is the set of polynomial constraints representing the problem’s
statement (something that the verifier also knows), the verifier can run at any time during
the setup phase to check the validity of the computations.

Moreover, both the prover and the verifier will need to have access to the evaluations
over H of the vanishing polynomial ZG(X) := Xn − 1 and the first Lagrange polynomial
L1(X) := g(Xn−1)

n(X−g) . However, ZG and L1 will appear later on in the protocol, and although
in principle we do not consider them preprocessed polynomials, they are publicly known
and therefore included in the Merkle tree computation of the setup phase.

4.3 Our IOP for eAIR
Before the start of the protocol, we assume the prover and verifier have fixed a specific
eAIR instance eA =

{
C̃1, . . . , C̃T ′

}
and that the constraints of eA are ordered as follows:

first, the identity constraints, then the inclusion arguments, followed by the permutation
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arguments, and finally, the connection arguments. Additionally, we assume that the setup
phase has been successfully executed.

Throughout the description of the protocol, we use the following useful notation:

• Let N, R be two non-negative integers. We set N to be the number of trace column
polynomials and R to be the number of preprocessed polynomials.

• Among the set of polynomial constraints eA, we denote by M, M ′, M ′′ ∈ Z≥0 the
number of inclusion arguments, permutation arguments and connection arguments,
respectively.

• The prover parameters pp is composed of the finite field F, the domains G and H, the
field extension K, the eAIR instance eA, all the public values, the set of committed
polynomials and the Merkle tree of preprocessed polynomials.

• The verifier parameters vp is composed of the finite field F, the domains G and H,
the field extension K, the eAIR instance eA, all the public values and the Merkle
tree’s root of preprocessed polynomials.

Our IOP for eAIR, which can be seen as an extension of the DEEP-ALI protocol
[BGKS19], is as follows.

Protocol 3 (IOP for eAIR). The protocol starts with a set of trace column polynomials
tr1, . . . , trN ∈ F<n[X] and preprocessed polynomials pre1, . . . , preR ∈ F<n[X]. The follow-
ing protocol is used by a prover to prove to a verifier that polynomials tr1, . . . , trN , pre1, . . . , preR

satisfy eA:

1. Trace Column Oracles: The prover sets oracle functions [tr1], . . . , [trN ] to tr1,. . . ,trN ∈
F<n[X] for the verifier, who responds with uniformly sampled values α, β ∈ K. Dur-
ing this step, the prover also computes the intermediate polynomials resulting from
the subset of identity constraints. Let K ∈ Z≥0 be the number of these polynomi-
als, denoted as imi ∈ F<n[X], where i ∈ [K]. It is important to recall that new
identity constraints must also be considered when introducing intermediate polyno-
mials, as demonstrated in Eq. (28). As additional intermediate polynomials may be
introduced in Round 3, the prover will set oracles for im1, . . . , imK in that round.

2. Inclusion Oracles: As explained by Section 3.3, the prover, if needed:

• Uses α to reduce both vector inclusions and vector permutations into simple
(possibly selected) inclusions and permutations.

• Uses β to reduce both selected inclusions and selected permutations into simple
(non-selected) inclusions and permutations.

After the previous two reductions, the prover computes the inclusion polynomials
hi,1, hi,2 ∈ K<n[X] for each inclusion argument, with i ∈ [M ]. Then, he sets oracle
functions [h1,1],[h1,2],. . . ,[hM,1],[hM,2] for the verifier, who answers with uniformly
sampled values γ, δ ∈ K.

3. Grand Product and Intermediate Oracles: The prover uses γ, δ to compute the
grand product polynomials Zi ∈ K<n[X] for each argument, with i ∈ [M +M ′+M ′′].
Importantly, some identity constraints induced by the constraints asserting the va-
lidity of the connection argument’s grand product polynomials might be of a de-
gree greater or equal to 4. Therefore, following Section 3.5, the prover split these
constraints into multiple constraints of degree at most 3 by the introduction of in-
termediate polynomials. Let K ′ ∈ Z≥0 be the number of introduced intermediate
polynomials, denoted as imK+i ∈ K[X], where i ∈ [K ′].
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The prover sets oracle functions [Z1],. . . ,[ZM+M ′+M ′′ ] and [im1],. . . ,[imK+K′ ] for
the verifier. The verifier answers with a uniformly sampled value a ∈ K.
At this point, the original eAIR eA = {C̃1, . . . , C̃T ′} has been reduced to an AIR
A = {C1, . . . , CT }, with T ≥ T ′, so we continue by executing the DEEP-ALI protocol
over A with the modifications mentioned in Sections 3.4 and 3.5.

Remark 3. Rounds 2 and 3 are skipped by both the prover and the verifier if the
eAIR instance eA is an AIR. In such case, Round 4 follows from Round 1.

4. Trace Quotient Oracles: The prover computes the polynomial Q(X) ∈ K[X]:

Q(X) :=
T∑

i=1
ai−1 (Ci ◦ P)(X)

ZG(X)
, (29)

where we have now used P to denote the sequence of polynomials containing tr1, . . . , trN ,
pre1, . . . , preR, h1,1, h1,2, . . . , hM,1, hM,2, Z1, . . . , ZM+M ′+M ′′ and finally im1, . . . , imK+K′ .
Therefore, (Ci ◦P)(X) is the (univariate) polynomial resulting from the composition
of the (multivariate) polynomial Ci and the non-shifted and shifted version of the
(univariate) polynomials in P. Then, the prover splits Q into two trace quotient
polynomials Q1 and Q2 of degree lower than n, and sets their oracles [Q1] and [Q2]
for the verifier. Polynomials Q1 and Q2 satisfy the following:

Q1(X) + Xn · Q2(X) =
T∑

i=1
ai−1 (Ci ◦ P)(X)

ZG(X)
. (30)

5. DEEP Query Answers: The verifier samples a uniformly sampled DEEP query
z ∈ K\(G ∪ H). Note that the verifier prohibits z ∈ G to enable evaluation of
the right-hand side of Eq. (30) and prohibits z ∈ H to enable evaluation of the
polynomial F , defined in Round 6, during the FRI protocol. Then, the verifier
queries either the oracles set by the prover in previous rounds or the oracles to the
preprocessed polynomials to obtain the evaluation sets Evals(z) and Evals(gz). Two
observations should be made: first, it is possible for a polynomial to have evaluations
in both Evals(z) and Evals(gz); and second, evaluations of preprocessed polynomials
are also included within Evals(z) and Evals(gz). The verifier then sends to the prover
uniformly sampled values ε1, ε2 ∈ K.

6. FRI Protocol: Among the set of polynomals in P, respectively denote by fi and
hi those whose evaluation respectively belong to Evals(z) and Evals(gz). The prover
computes the polynomials F1, F2 ∈ K[X]:

F1(X) :=
|Evals(z)|∑

i=1
εi−1

2
fi(X) − fi(z)

X − z

F2(X) :=
|Evals(gz)|∑

i=1
εi−1

2
hi(X) − hi(gz)

X − gz
,

after which he computes the polynomial F(X) := F1(X) + ε1 · F2(X). Finally, the
prover and the verifier run the FRI protocol to prove the low degree of F, which
starts by setting oracle access to F for the verifier.

7. Verification: Similar to the vanilla STARK verifier, the verifier proceeds as follows:

34



(a) ALI Consistency. Checks that the trace quotient polynomials Q1 and Q2
are consistent with the trace column polynomials tr1, . . . , trN , the prepro-
cessed polynomials pre1, . . . , preR, the inclusion-related polynomials h1,1,h1,2,
. . . , hM,1,hM,2, the grand product polynomials Z1, . . . , ZM+M ′+M ′′ and the in-
termediate polynomials im1, . . . , imK+K′ . The verifier achieves so by means of
Eq. (30) and the evaluations in Evals(z) and Evals(gz).

(b) Batched FRI Verification. It runs the batched FRI verification procedure
on the polynomial F.

If either (a) or (b) fails at any point, the verifier aborts and rejects. Otherwise, the
verifier accepts.

It is very straightforward to give an upper bound for the soundness of Protocol 3.

Theorem 3 (STIK for eAIR). Protocol 3 constitutes a STIK for extended AIR sat-
isfiability, i.e., this protocol can be used to prove possession of a set of polynomials
p1, . . . , pN+R ∈ F<|G|[X] satisfying a given extended AIR instance eA =

{
C̃1, . . . , C̃T ′

}
.

In particular, denote by εeSTARK to the soundness error of the protocol. Then:

εeSTARK = εArgs + ℓ

(
T − 1
|K|

+ (D + |G| + 2) · ℓ

|K| − |H| − |G|

)
+ εFRI,

where ℓ = m/ρ, m ≥ 3 is an integer, D is the maximal degree of the polynomials involved
that are summed in the computation of the trace quotient polynomial Q (29), εArgs corre-
sponds to the soundness error for Protocol 2 and εFRI corresponds to the soundness error
of the batched FRI protocol over the FRI polynomial F.

Before starting with the proof, let us discuss the main differences between the common
part of this soundness bound and the bound of Theorem 2:

1. In the computation of the quotient polynomial Q we are using powers of a random
value ai−1 instead of a pair (ai, bi) for each constraint Ci. This leads to a polynomial
of degree T − 1 in the variable a and therefore the Schwartz-Zippel lemma increases
the bound from 1/|K| to (T − 1)/|K|.

2. Since we are splitting the quotient polynomial Q into polynomials Q1, Q2 that follow
a linear relation with Q (i.e., that Q1(X)+XnQ2(X) = Q(X)) instead of exponential
(i.e., that Q1(X2) + XQ2(X2) = Q(X)) we only need to restrict the sampling space
for z at K\(G ∪ H) instead of K\(G ∪ H̄).

Proof Sketch. We start the proof by restricting it to the case of eA being an AIR,
that is, we assume that no arguments are among the set of constraints. This means that
neither Round 2 nor Round 3 of the previous protocol are needed and are therefore skipped.
The resulting protocol turns out to be the (modified) vanilla STARK resulting from the
combination of the DEEP-ALI protocol and the batched version of the FRI protocol. A
proof that this combination results in a sound protocol is typically divided into two parts:
(1) first, the soundness analysis of the DEEP-ALI part can be found in Theorem 6.2 of
[BGKS19]; (2) second, the proof that the batched FRI as to applied in Section 4.4 is sound
can be found in Theorem 8.3 of [BCI+20]. The proof that the combination of these two
sound protocols leads to a secure protocol can be found in Corollary 2 of [Sta21]. Since
in this case εArgs = 0, we conclude that εSTARK = εeSTARK.

What remains to prove is the expression for the soundness of the protocol when there
are arguments present in eA. However, this is achieved by noticing that the first term of
εSTARK is the soundness error for the incorporated arguments and the rest of the terms
describe the soundness error of the DEEP-ALI part plus the batched FRI protocol. In
other words, we are accounting for a prover being “lucky” either in the former or in the
latter part of the protocol. ■
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4.4 From a STIK to a Non-Interactive STARK

As described in Definition 4, transforming the STIK of Section 4.3 to a STARK is very
straightforward. First, oracles sent from the prover to the verifier in each round are
substituted by a single Merkle tree root as explained in Section 3.1. So, for instance,
oracle access to [tr1], . . . , [trN ] set by the prover in the first round is substituted by the
Merkle tree root of the Merkle tree containing the evaluations of tr1, . . . , trN over the
domain H. Second, instead of letting the verifier ask a query to a set of polynomial oracles
[f1], . . . , [fN ] at the same point v, the verifier asks for these evaluations to the prover and
the prover answers with f1(v), . . . , fN (v) together with the Merkle path associated with
them. We do not specify the specific hash function used in the computation of each
Merkle tree, but we only state that this hash function does not have any relation to the
hash function used to render the protocol non-interactive, as long as its output space is
in the appropriate field.

To render the following protocol in a non-interactive manner, we use the Fiat-Shamir
heuristic [FS87]. To this end, let H : {0, 1}∗ → K denote the hash function, modeled as
a random oracle in the soundness analysis, that instantiates the heuristic. We emphasize
that H takes any number of inputs and returns elements of K.

We denote by seed to the concatenation of the initial eAIR instance eA =
{

C̃1, . . . , C̃T ′

}
,

all the public values and the Merkle tree’s root of preprocessed polynomials. This value
will act as the seed to the hash function H to simulate the first verifier’s message.

Moreover, to simulate subsequent verifier’s messages we use a technique called hash
chaining:

Definition 10 (Hash Chain). Let H : {0, 1}∗ → K be a hash function and let a1, . . . , ar

be the messages sent from the prover to the verifier in an interactive protocol, where each
ai represent a set of K elements. A hash chain is the set of field elements β1, β2, . . . , βr

obtained as follows:

β1 = H(seed, a1),
β2 = H(β1, a2),
β3 = H(β2, a3),

...
βr = H(βr−1, ar).

A proof that the resulting non-interactive protocol is sound after applying the Fiat-
Shamir using hash chaining can be found, for example, in Theorem 4 of [AFK21].

Remark 4. In Definition 10 we have avoided writing the generalization of having multiple
verifier’s messages sent at the same round. In such case, we compute them as βi,j =
H(βi−1, ai, j) for i ∈ [r] and j = 1, 2, . . . . As a consequence, in round i+1 we must include
every generated βi,j to compute the verifier’ messages, i.e., βi+1,j = H({βi,j}j , ai+1, j)
with k = 1, 2, . . .

4.5 Full Protocol Description

We split the protocol’s description between the prover algorithm and verifier algorithm
and compose each round in the prover algorithm of the computation of the verifier’s
challenges (via Fiat-Shamir) and the actual messages computed by the prover. We reuse
the notation and assumptions from Section 4.3.
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PROVER ALGORITHM

Round 1: Trace Column Polynomials

Given the trace column polynomials tr1, tr2, . . . , trN ∈ F<n[X], the prover commits to
them, as explained in Section 3.1, computing their associated Merkle root.

During this step, the prover also computes the intermediate polynomials im1, . . . , imK

resulting from the subset of identity constraints.
The first prover output is MTR(tr1, . . . , trN ).

Round 2: Icnlusion Polynomials

The prover computes the reducing challenges α, β ∈ K:

α = H(seed, MTR ({tri}i) , 1), β = H(seed, MTR ({tri}i) , 2).

Using α and β, the prover computes the inclusion polynomials hi,1, hi,2 ∈ K<n[X] for
each inclusion argument, with i ∈ [M ], and commits to them.

The second prover output is MTR(h1,1, h1,2, . . . , hM,1, hM,2).

Round 3: Grand Product and Intermediate Polynomials

The prover computes the permutation challenges γ, δ ∈ K:

γ = H(α, β, MTR ({hi,j}i,j) , 1), δ = H(α, β, MTR ({hi,j}i,j) , 2).

The prover uses γ, δ to compute the grand product polynomials Zi ∈ K<n[X] for each
argument, with i ∈ [M +M ′ +M ′′]. The prover also computes the remaining intermediate
polynomials imK+1, . . . , imK+K′ .

In this round, the prover commits to both the grand product polynomials and all the
intermediate polynomials. To save one element in the proof, the prover uses the same
Merkle tree for both the grand product and the intermediate polynomials.

The third prover output is MTR(Z1, . . . , ZM+M ′+M ′′ , im1, . . . , imK+K′).

Round 4: Trace Quotient Polynomials

The prover computes the combination challenge a ∈ K:

a = H(γ, δ, MTR ({Zi}i)), MTR ({imi}i)).

The prover uses a to compute the quotient polynomial Q ∈ K<2n[X]:

Q(X) :=
T∑

i=1
ai−1 (Ci ◦ P)(X)

ZG(X)
,

and splits it into two polynomials Q1 and Q2 of degree lower than n as in Eq. (27). Then,
the prover commits to these two polynomials.

Recall that Q1, Q2 satisfy the following relation with Q:

Q1(X) + Xn · Q2(X) =
T∑

i=1
ai−1 (Ci ◦ P)(X)

ZG(X)
. (31)

The fourth prover output is MTR(Q1, Q2).
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Round 5: DEEP Query Answers

The prover computes the evaluation challenge z ∈ K:

z = H(a, MTR(Q1, Q2)). (32)

If z falls either in G or H, then we introduce a counter as an extra input to the hash
function H in Eq. (32) and keep incrementing it until z ∈ K\(G ∪ H). The probability
that z is not of the expected form is proportional to (|G| + |H|)/|K|, which is sufficiently
small for all practical purposes.

The prover computes the evaluation sets Evals(z) and Evals(gz).
The fifth prover output is (Evals(z), Evals(gz)).

Round 6: FRI Protocol

The prover computes the combination challenges ε1, ε2 ∈ K:

ε1 = H(z, Evals(z), Evals(gz), 1), ε2 = H(z, Evals(z), Evals(gz), 2).

Among the set of polynomials in P, respectively denote by fi and hi those whose evalu-
ation respectively belong to Evals(z) and Evals(gz). The prover computes the polynomials
F1, F2 ∈ K[X]:

F1(X) :=
|Evals(z)|∑

i=1
εi−1

2
fi(X) − fi(z)

X − z

F2(X) :=
|Evals(gz)|∑

i=1
εi−1

2
hi(X) − hi(gz)

X − gz
,

after which he computes the polynomial F(X) := F1(X) + ε1 · F2(X). Finally, the prover
executes the (non-interactive version of the) FRI protocol to prove the low degree of the
F polynomials, after which he obtains a FRI proof πFRI.

The sixth prover output is πFRI.

P(pp)
MTR(tr1, . . . , trN )

{α, β}

MTR(h1,1, h1,2, . . . , hM,1, hM,2)

{γ, δ}

MTR(Z1, . . . , ZM+M′+M′′ , im1, . . . , imK+K′ )

a

MTR(Q1, Q2)

z

{Evals(z), Evals(gz)}

ε1, ε2

πFRI

Figure 6: Skeleton description of the eSTARK protocol.
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The prover returns:

πeSTARK =


MTR(tr1, . . . , trN ), MTR(h1,1, h1,2, . . . , hM,1, hM,2),

MTR(Z1, . . . , ZM+M ′+M ′′ , im1, . . . , imK+K′),

MTR(Q1, Q2), Evals(z), Evals(gz), πFRI


VERIFIER ALGORITHM

To verify the STARK, the verifier performs the following steps:

1. Checks that MTR(tr1, . . . , trN ), MTR(h1,1, h1,2, . . . , hM,1, hM,2), MTR(Z1, . . . , ZM+M ′+M ′′ ,
im1, . . . , imK+K′), MTR(Q1, Q2) are all in K.

2. Checks that every element in both Evals(z) and Evals(gz) is from K.

3. Computes the challenges α, β, γ, δ, a, z, ε1, ε2 ∈ K from the elements in seed and
πeSTARK (except for πFRI, which is used to compute the challenges within FRI).

4. ALI Consistency. Checks that the trace quotient polynomials Q1 and Q2 are
consistent with the trace column polynomials tr1, . . . , trN , the preprocessed polyno-
mials pre1, . . . , preR, the inclusion-related polynomials h1,1,h1,2, . . . , hM,1,hM,2, the
grand product polynomials Z1, . . . , ZM+M ′+M ′′ and the intermediate polynomials
im1, . . . , imK+K′ . The verifier achieves so by means of Eq. (31) and the evaluations
contained in Evals(z) and Evals(gz).

5. Batched FRI Verification. Using πFRI, it runs the batched FRI verification
procedure on the polynomial F.

If either of the previous steps fails at any point, the verifier aborts and rejects. Other-
wise, the verifier accepts.

5 Conclusions
In this paper, we have presented a probabilistic proof that generalizes the STARK family
by introducing a more generic intermediate representation that we have called eAIR. We
first explained multiple techniques that enhance the vanilla STARK complexity in both
proof size and verification time. In particular, we demonstrated many optimizations
applied to some polynomial computations in vanilla STARK. Additionally, we showed the
tradeoffs arising from controlling the constraint degree either at the representation of the
AIR or inside the eSTARK itself, offering a rule to decide whether to choose the first
option or the second one. We anticipate these techniques to be useful for other types of
SNARKs.

Secondly, we described our protocol in the polynomial IOP model as a combination
of the optimized version of the vanilla STARK and the addition of rounds concerning the
incorporation of three arguments into the protocol. Following the description, we proved
that the protocol is sound in the polynomial IOP model.

Lastly, we provided a full description of the protocol by replacing the oracle access
to polynomials via Merkle trees and turning it non-interactive through the Fiat-Shamir
heuristic. We expect this protocol to be further expanded with the addition of more types
of arguments that could fit a wider range of applications.
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A Vanilla STARK Description
In this section, we will outline the STARK protocol step by step. The following definitions
will be employed in the protocol:

• We call prover parameters, and denote them by pp, to the finite field F, the domains
G and H, the field extension K, the set of constraints, and the set of polynomial
evaluations that the prover has access to.

• We call verifier parameters, and denote them by vp, to the finite field F, the domains
G and H, the field extension K, the set of constraints, and the set of polynomial
evaluations that the verifier has access to.

Protocol 4. The protocol starts with a set of constraints C = {C1, . . . , CT } and a set
of polynomials tr1, . . . , trN ∈ F[X] (presumably) satisfying them. The prover and verifier
proceed as follows:

1. The prover sends oracle functions [tr1], . . . , [trN ] for tr1,. . . ,trN to the verifier:

P(pp) V(vp)
[tr1], . . . , [trN ]

2. The verifier samples uniformly random values a1, b1, . . . , aT , bT ∈ K and sends them
to the prover:

P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

3. The prover computes the quotient polynomial Q, after which he computes the trace
quotient polynomials Q1, . . . , QS and sends their oracle representatives [Q1], . . . , [QS ]
to the verifier.

P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

[Q1], . . . , [QS ]

4. The verifier samples a uniformly random value z ∈ K\(G ∪ H̄) and sends it to the
prover:

P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

[Q1], . . . , [QS ]

z
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5. The prover computes the sets Evals(z) and Evals(gz) of trace column polynomials
evaluations. Then, he sends Evals(z), Evals(gz) and Qi(zS) for all i ∈ [S] to the
verifier:

P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

[Q1], . . . , [QS ]

z

{Evals(z), Evals(gz), Q1(zS), . . . , QS(zS)}

6. Recalling that I1 = {i ∈ [N ] : tri(z) ∈ Evals(z)} and I2 = {i ∈ [N ] : tri(gz) ∈
Evals(gz)}, the verifier sends uniformly random values ε

(1)
i , ε

(2)
j , ε

(3)
k ∈ K, where

i ∈ I1, j ∈ I2, k ∈ [S], to the prover:

P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

[Q1], . . . , [QS ]

z

{Evals(z), Evals(gz), Q1(zS), . . . , QS(zS)}

{{ε
(1)
i }i∈I1 , {ε

(2)
j }j∈I2 , {ε

(3)
k }k∈[S]}

7. The prover computes the F polynomial. Then, the prover initiates the FRI message
exchange along with the verifier to prove the low degree of the F polynomial to the
verifier. The prover sends the resulting FRI proof πFRI to the verifier:

P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

[Q1], . . . , [QS ]

z

{Evals(z), Evals(gz), Q1(zS), . . . , QS(zS)}

{{ε
(1)
i }i∈I1 , {ε

(2)
j }j∈I2 , {ε

(3)
k }k∈[S]}

πFRI

8. The verifier runs the three checks commented in Section 2.4: trace consistency, FRI
consistency and batch consistency. If any of the checks fail, the verifier rejects them.
Otherwise, the verifier accepts.
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P(pp) V(vp)
[tr1], . . . , [trN ]

{a1, b1, . . . , aT , bT }

[Q1], . . . , [QS ]

z

{Evals(z), Evals(gz), Q1(zS), . . . , QS(zS)}

{{ε
(1)
i }i∈I1 , {ε

(2)
j }j∈I2 , {ε

(3)
k }k∈[S]}

. . . . . . . . . . . . . . . . . . . FRI: Commit Phase . . . . . . . . . . . . . . . . . . .

MTR(F = p0)

v0

MTR(p1)

v1

...
vk−1

pk

. . . . . . . . . . . . . . . . . . . . FRI: Query Phase . . . . . . . . . . . . . . . . . . . .

h1

{p0(h1), . . . , pk−1(h2k−1
1 )}

{MTP(p0(h1)), . . . , MTP(pk−1(h2k−1
1 ))}

{p0(−h1), . . . , pk−1(−h2k−1
1 )}

{MTP(p0(−h1)), . . . , MTP(pk−1(−h2k−1
1 ))}

{Evals(h1), Q1(hS
1 ), . . . , QS(hS

1 )}

{MTP(Evals(h1)) . . . , MTP(QS(hS
1 ))}

{Evals(−h1), Q1((−h1)S), . . . , QS((−h1)S)}

{MTP(Evals(−h1)) . . . , MTP(QS((−h1)S))}

hs

{p0(hs), . . . , pk−1(h2k−1
s )}

{MTP(p0(hs)), . . . , MTP(pk−1(h2k−1
s ))}

{p0(−hs), . . . , pk−1(−h2k−1
s )}

{MTP(p0(−hs)), . . . , MTP(pk−1(−h2k−1
s ))}

{Evals(hs), Q1(hS
s ), . . . , QS(hS

s )}

{MTP(Evals(hs)) . . . , MTP(QS(hS
s ))}

{Evals(−hs), Q1((−hs)S), . . . , QS((−hs)S)}

{MTP(Evals(−hs)) . . . , MTP(QS((−hs)S))}

Figure 7: Full STARK transcript of Section 2.4
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