
Four Attacks and a Proof for Telegram⋆

Martin R. Albrecht1, Lenka Mareková2, Kenneth G. Paterson3, and Igors Stepanovs3

1 King’s College London
martin.albrecht@kcl.ac.uk

2 Information Security Group, Royal Holloway, University of London
lenka.marekova.2018@rhul.ac.uk

3 Applied Cryptography Group, ETH Zurich
{kenny.paterson,istepanovs}@inf.ethz.ch

31 March 2023

Abstract We study the use of symmetric cryptography in the MTProto 2.0 protocol, Telegram’s
equivalent of the TLS record protocol. We give positive and negative results. On the one hand,
we formally and in detail model a slight variant of Telegram’s “record protocol” and prove that
it achieves security in a suitable bidirectional secure channel model, albeit under unstudied
assumptions; this model itself advances the state-of-the-art for secure channels. On the other
hand, we first motivate our modelling deviation from MTProto as deployed by giving two attacks
– one of practical, one of theoretical interest – against MTProto without our modifications. We
then also give a third attack exploiting timing side channels, of varying strength, in three official
Telegram clients. On its own this attack is thwarted by the secrecy of salt and id fields that
are established by Telegram’s key exchange protocol. We chain the third attack with a fourth
one against the implementation of the key exchange protocol on Telegram’s servers. This fourth
attack breaks the authentication properties of Telegram’s key exchange, allowing a MitM attack.
More mundanely, it also recovers the id field, reducing the cost of the plaintext recovery attack
to guessing the 64-bit salt field. In totality, our results provide the first comprehensive study of
MTProto’s use of symmetric cryptography, as well as highlight weaknesses in its key exchange.

⋆ This is the full version of a work that appeared at IEEE S&P 2022.

Contents

1 Introduction .. 4
1.1 Contributions. 4
1.2 Disclosure. 7

2 Preliminaries . 7
2.1 Notational conventions . 7
2.2 Standard definitions . 8

3 Bidirectional channels . 11
3.1 Our formal model in the context of prior work . 11
3.2 Syntax of channels . 13
3.3 Support transcripts and functions . 13
3.4 Correctness and security of channels . 17
3.5 Message encoding schemes . 19

4 Modelling MTProto 2.0 . 21
4.1 Telegram description. 22
4.2 Attacks against MTProto metadata validation . 24
4.3 Modelling differences . 26
4.4 MTProto-based channel . 28

5 Formal security analysis . 30
5.1 Security requirements on standard primitives . 31
5.2 Novel assumptions about SHACAL-2 . 33
5.3 Security requirements on message encoding . 35
5.4 Correctness of MTP-CH . 37
5.5 IND-security of MTP-CH . 37
5.6 INT-security of MTP-CH . 43
5.7 Instantiation and interpretation . 57

6 Timing side-channel attack .. 58
6.1 Manipulating IGE . 58
6.2 Leaky length field . 59
6.3 Practical experiments. 60

7 Attacking the key exchange .. 61
7.1 Recovering the salt . 61
7.2 Recovering the session id . 66
7.3 Breaking server authentication . 66

8 Discussion .. 67

A Correctness-style properties of a support function.. 72

B Combined security of bidirectional channels . 73

C Comparison to the robust channel framework of [FGJ20]. 76
C.1 Our definitions of unidirectional correctness and security . 77
C.2 The robust channel framework of [FGJ20] . 78
C.3 Relations between our framework and the framework of [FGJ20]. 81

D Message encoding scheme of MTProto .. 87

E Proofs for the underlying MTProto primitives . 87
E.1 OTWIND of MTP-HASH . 87
E.2 RKPRF of MTP-KDF . 91
E.3 UPRKPRF of MTP-MAC . 93
E.4 OTIND$ of IGE . 97
E.5 EINT of MTP-ME with respect to SUPP . 98
E.6 UNPRED of MTP-SE and MTP-ME . 99

F Concrete security of the novel SHACAL-2 assumptions in the ICM 101

G Implementation .. 107
G.1 Code for the attack in Section 6 . 107
G.2 Code for the attack in Section 7 . 110

3

1 Introduction

Telegram is a chat platform that in January 2021 reportedly had 500M monthly users [Tel21a]. It
provides a host of multimedia and chat features, such as one-on-one chats, public and private group
chats for up to 200,000 users as well as public channels with an unlimited number of subscribers.
Prior works establish the popularity of Telegram with higher-risk users such as activists [EHM17]
and participants of protests [ABJM21]. In particular, it is reported in [EHM17,ABJM21] that these
groups of users shun Signal in favour of Telegram, partly due to the absence of some key features, but
mostly due to Signal’s reliance on phone numbers as contact handles.

This heavy usage contrasts with the scant attention paid to Telegram’s bespoke cryptographic
design – MTProto – by the cryptographic community. To date, only four works treat Telegram.
In [JO16] an attack against the IND-CCA security of MTProto 1.0 was reported, in response to which
the protocol was updated. In [SK17] a replay attack based on improper validation in the Android
client was reported. Similarly, [Kob18] reports input validation bugs in Telegram’s Windows Phone
client. Recently, in [MV21] MTProto 2.0 (the current version) was proven secure in a symbolic model,
but assuming ideal building blocks and abstracting away all implementation/primitive details. In
short, the security that Telegram offers is not well understood.

Telegram uses its MTProto “record layer” – offering protection based on symmetric cryptographic
techniques – for two different types of chats. By default, messages are encrypted and authenticated
between a client and a server, but not end-to-end encrypted: such chats are referred to as cloud chats.
Here Telegram’s MTProto protocol plays the same role that TLS plays in e.g. Facebook Messenger. In
addition, Telegram offers optional end-to-end encryption for one-on-one chats which are referred to as
secret chats (these are tunnelled over cloud chats). So far, the focus in the cryptographic literature
has been on secret chats [JO16,Kob18] as opposed to cloud chats. In contrast, in [ABJM21] it is
established that the one-on-one chats played only a minor role for the protest participants interviewed
in the study; significant activity was reportedly coordinated using group chats secured by the MTProto
protocol between Telegram clients and the Telegram servers. For this reason, we focus here on cloud
chats. Given the similarities between the cryptography used in secret and cloud chats, our positive
results can be modified to apply to the case of secret chats (but we omit any detailed analysis).

1.1 Contributions

We provide an in-depth study of how Telegram uses symmetric cryptography inside MTProto for
cloud chats. We give four distinctive contributions: our security model for secure channels, the formal
model of our variant of MTProto, our attacks on the original protocol and our security proofs for the
formal model of MTProto.

Security model. Starting from the observation that MTProto entangles the keys of the two channel
directions, in Section 3 we develop a bidirectional security model for two-party secure channels that
allows an adversary full control over generating and delivering ciphertexts from/to either party (client
or server). The model assumes that the two parties start with a shared key and use stateful algorithms.
Our security definitions come in two flavours, one capturing confidentiality, the other integrity. We also
consider a combined security notion and its relationship to the individual notions. Our formalisation
is broad enough to consider a variety of different styles of secure channels – for example, allowing
channels where messages can be delivered out-of-order within some bounds, or where messages can be
dropped (neither of which we consider appropriate for secure messaging). This caters for situations
where the secure channel operates over an unreliable transport protocol, but where the channel is
designed to recover from accidental errors in message delivery as well as from certain permitted
adversarial behaviours.

This is done technically by introducing the concept of support functions, inspired by the support
predicates recently introduced by [FGJ20] but extending them to cater for a wider range of situations.
Here the core idea is that a support function operates on the transcript of messages and ciphertexts
sent and received (in both directions) and its output is used to decide whether an adversarial behaviour
– say, reordering or dropping messages – counts as a “win” in the security games. It is also used to
define a suitable correctness notion with respect to expected behaviours of the channel.

As a final feature, our secure channel definitions allow the adversary complete control over all
randomness used by the two parties, since we can achieve security against such a strong adversary in

4

the stateful setting. This decision reflects a concern about Telegram clients expressed by Telegram
developers [Tel21b].

Formal model of MTProto. In Section 4, we provide a detailed formal model of Telegram’s
symmetric encryption. Our model is computational and does not abstract away the building blocks
used in Telegram. This in itself is a non-trivial task as no formal specification exists and behaviour
can only be derived from official (but incomplete) documentation and from observation; moreover
different clients do not have the same behaviour.

Formally, we define an MTProto-based bidirectional channel MTP-CH as a composition of multiple
cryptographic primitives. This allows us to recover a variant of the real-world MTProto protocol by
instantiating the primitives with specific constructions, and to study whether each of them satisfies
the security notions that are required in order to achieve the desired security of MTP-CH. This allows
us to work at two different levels of abstraction, and significantly simplifies the analysis. However,
we emphasise that our goal is to be descriptive, not prescriptive, i.e. we do not suggest alternative
instantiations of MTP-CH.

To arrive at our model, we had to make several decisions on what behaviour to model and where
to draw the line of abstraction. Notably, there are various behaviours exhibited by (official) Telegram
implementations that lead to attacks.

In particular, we verified in practice that current implementations allow an attacker on the network
to reorder messages from a client to the server, with the transcript on the client being updated later
to reflect the attacker-altered server’s view. We stress, though, that this trivial yet practical attack
is not inherent in MTProto and can be avoided by updating the processing of message metadata in
Telegram’s servers. The consequences of such an attack can be quite severe, as we discuss further in
Section 4.2.

Further, if a message is not acknowledged within a certain time in MTProto, it is resent using
the same metadata and with fresh random padding. While this appears to be a useful feature and
a mitigation against message drops, it would actually enable an attack in our formal model if such
retransmissions were included. In particular, an adversary who also has control over the randomness
can break stateful IND-CPA security with 2 encryption queries, while an attacker without that control
could do so with about 264 encryption queries. We use these more theoretical attacks to motivate our
decision not to allow re-encryption with fixed metadata in our formal model of MTProto, i.e. we insist
that the state is evolving.

Proof of security. We then prove in Section 5 that our slight variant of MTProto achieves channel
confidentiality and integrity in our model, under certain assumptions on the components used in its
construction. As described in Section 1.2, Telegram has implemented our proposed alterations so that
there can be some assurances about MTProto as currently deployed.4

We use code-based game-hopping proofs in which the analysis is modularised into a sequence of
small steps that can be individually verified. As well as providing all details of the proofs, we also give
high-level intuitions. Significant complexity arises in the proofs from two sources: the entanglement of
keys used in the two channel directions, and the detailed nature of the model of MTProto that we use
(so that our proof rules out as many attacks as possible).

We eschew an asymptotic approach in favour of concrete security analysis. This results in security
theorems that quantitatively relate the confidentiality and integrity of MTProto as a secure channel to
the security of its underlying cryptographic components. Our main security results, Theorems 1 and 2
and Corollaries 1 and 2, provide confidentiality and integrity bounds containing terms equivalent to
≈ q/264 where q is the number of queries an attacker makes. We discuss this further in Section 5.

However, our security proofs rely on several assumptions about cryptographic primitives that,
while plausible, have not been considered in the literature. In more detail, due to the way Telegram
makes use of SHA-256 as a MAC algorithm and as a KDF, we have to rely on the novel assumption
that the block cipher SHACAL-2 underlying the SHA-256 compression function is a leakage-resilient
PRF under related-key attacks, where “leakage-resilient” means that the adversary can choose a part
of the key. Our proofs rely on two distinct variants of such an assumption. In Appendix F we show
that these assumptions hold in the ideal cipher model, but further cryptanalysis is needed to validate
4 Clients still differ in their implementation of the protocol and in particular in payload validation, which our

model does not capture.

5

them for SHACAL-2. For similar reasons, we also require a dual-PRF assumption of SHACAL-2. We
stress that such assumptions are likely necessary for our or any other computational security proofs
for MTProto. This is due to the specifics of how MTProto uses SHA-256 and how it constructs keys
and tags from public inputs and overlapping key bits of a master secret. Given the importance of
Telegram, these assumptions provide new, significant cryptanalysis targets as well as motivate further
research on related-key attacks.

Besides using SHA-256 as a MAC algorithm and a KDF, MTProto also uses SHA-1 to compute a
key identifier. This does not lead to length-extension attacks because in each use case either the input
is required to have a fixed length, or the output gets truncated. The latter technique was previously
studied as ChopMD [CDMP05] and employed to build AMAC [BBT16]. But rather than applying
these results to show that the design of the MAC algorithm prevents forgeries, our proofs rely on an
observation that even if length-extension attacks were possible, it would still not lead to breaking
the security of the overall scheme. This is true because the plaintext encoding format of MTProto
mandates the presence of certain metadata in the first block of the encrypted payload.

Attacks. We present further implementation attacks against Telegram in Sections 6 and 7. These
attacks highlight the limits of our formal modelling and the fragility of MTProto implementations.
The first of these, a timing attack against Telegram’s use of IGE mode encryption, can be avoided by
careful implementation, but we found multiple vulnerable clients.5 The attack takes inspiration from
an attack on SSH [APW09]. It exploits that Telegram encrypts a length field and checks integrity of
plaintexts rather than ciphertexts. If this process is not implemented whilst taking care to avoid a
timing side channel, it can be turned into an attack recovering up to 32 bits of plaintext. We give
examples from the official Desktop, Android and iOS Telegram clients, each exhibiting a different
timing side channel. However, we stress that the conditions of this attack are difficult to meet in
practice. In particular, to recover bits from a plaintext message block mi we assume knowledge of
message block mi−1 (we consider this a relatively mild assumption) and, critically, message block m1

which contains two 64-bit random values negotiated between client and server. Thus, confidentiality
hinges on the secrecy of two random strings – a salt and an id. Notably, these fields were not designated
for this purpose in the Telegram documentation.

In order to recover m1 and thereby enable our plaintext-recovery attack, in Section 7 we chain
it with another attack on the server-side implementation of Telegram’s key exchange protocol. This
attack exploits how Telegram servers process RSA ciphertexts. While the exploited behaviour was
confirmed by the Telegram developers, we did not verify it with an experiment.6 It uses a combination
of lattice reduction and Bleichenbacher-like techniques [Ble98]. This attack actually breaks server
authentication – allowing a MiTM attack – assuming the attack can be completed before a session
times out. But, more germanely, it also allows us to recover the id field. This essentially reduces
the overall security of Telegram to guessing the 64-bit salt field. Details can be found in Section 7.
We stress, though, that even if all the assumptions that we make in Section 7 are met, our exploit
chain (Section 6, Section 7) – while being considerably cheaper than breaking the underlying AES-256
encryption – is far from practical. Yet, it demonstrates the fragility of MTProto, which could be
avoided – along with unstudied assumptions – by relying on standard authenticated encryption or,
indeed, just using TLS.

We conclude with a broader discussion of Telegram security and with our recommendations in
Section 8.

Remark 1. This is the full version of the paper published at IEEE S&P 2022 [AMPS22]. The proofs
referred to in [AMPS22, Section V] are contained in full here, and can be found in Appendices E and F
and in Section 5 (in particular Sections 5.5 and 5.6). We have also expanded the content of several
other sections as follows. Section 3 defining bidirectional channels, orig. [AMPS22, Section III], was
expanded with more context and illustrating examples. Section 6.1 on the timing attack, orig. [AMPS22,
Section VI], contains the code samples for all affected Telegram clients. Section 7 on the key exchange
attack, orig. [AMPS22, Appendix A], was significantly expanded and contains an overview of the key
exchange protocol as well as the attack in detail. This work also contains several new appendices:

5 We note that Telegram’s TDLib [Tel20d] library manages to avoid this leak [Tel21g].
6 Verification would require sending a significant number of requests to the Telegram servers from a geograph-

ically close host.

6

Appendices A to C expand and help to position our new channels framework, while Appendices D
and G give more details about the Telegram protocol and the implementation of our attacks.

1.2 Disclosure

We notified Telegram’s developers about the vulnerabilities we found in MTProto on 16 April 2021.
They acknowledged receipt soon after and the behaviours we describe on 8 June 2021. They awarded a
bug bounty for the timing side channel and for the overall analysis. We were informed by the Telegram
developers that they do not do security or bugfix releases except for immediate post-release crash fixes.
The development team also informed us that they did not wish to issue security advisories at the time
of patching nor commit to release dates for specific fixes. Therefore, the fixes were rolled out as part of
regular Telegram updates. The Telegram developers informed us that as of version 7.8.1 for Android,
7.8.3 for iOS and 2.8.8 for Telegram Desktop all vulnerabilities reported here were addressed. When
we write “the current version of MTProto” or “current implementations”, we refer to the versions prior
to those version numbers, i.e. the versions we analysed.

2 Preliminaries

2.1 Notational conventions

Basic notation. Let N = {1, 2, . . .}. For i ∈ N let [i] be the set {1, . . . , i}. We denote the empty
string by ε, the empty set by ∅, and the empty list by []. We let x1 ← x2 ← v denote assigning the
value v to both x1 and x2. Let x ∈ {0, 1}∗ be any string; then |x| denotes its bit-length, x[i] denotes
its i-th bit for 0 ≤ i < |x|, and x[a : b] = x[a] . . . x[b− 1] for 0 ≤ a < b ≤ |x|. For any x ∈ {0, 1}∗ and
ℓ ∈ N such that |x| ≤ ℓ, we write ⟨x⟩ℓ to denote the bit-string of length ℓ that is built by padding x
with leading zeros. For any two strings x, y ∈ {0, 1}∗, x ∥ y denotes their concatenation. If X is a finite
set, we let x←$ X denote picking an element of X uniformly at random and assigning it to x. If T is
a table, T[i] denotes the element of the table that is indexed by i. If tr is a list then tr[i] denotes the
element of this list that is indexed by i, where the index is 0-based. We let ⊥ ̸∈ {0, 1}∗ be an error
code that indicates rejection, and we may also use ̸∈ {0, 1}∗ ∪ {⊥} when another distinct error code
is needed. Uninitialised integers are assumed to be initialised to 0, Booleans to false, strings to ε, sets
to ∅, and lists to []. Each element of a table is assumed to be initialised to ⊥, indicating that it is
empty. We use int64 as a shorthand for a 64-bit integer data type. We use 0x to prefix a hexadecimal
string in big-endian order. All variables are represented in big-endian unless specified otherwise.

Algorithms and adversaries. Algorithms may be randomised unless otherwise indicated. Running
time is worst case. If A is an algorithm, y ← A(x1, . . . ; r) denotes running A with random coins r
on inputs x1, . . . and assigning the output to y. We let y ←$ A(x1, . . .) be the result of picking r at
random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of
A when invoked with inputs x1, The instruction abort(x1, . . .) is used to immediately halt the
algorithm with output (x1, . . .). Adversaries are algorithms. Besides using ⊥ as an error code, we also
let oracles explicitly return ⊥ if they would have otherwise terminated with no output. We require
that adversaries never pass ⊥ as input to their oracles. If any of inputs taken by an adversary A is ⊥,
then all of its outputs are ⊥.

Security games and reductions. We use the code-based game-playing framework of [BR06]. (See
Fig. 2 for an example.) Pr [G] denotes the probability that game G returns true. Variables in each
game are shared with its oracles. In the security reductions, we omit specifying the running times
of the constructed adversaries when they are roughly the same as the running time of the initial
adversary. Let GD be any security game defining a decision-based problem that requires an adversary
D to guess a challenge bit d; let d′ denote the output of D, and let game GD return true iff d′ = d.
Depending on the context, we interchangeably use the two equivalent advantage definitions for such
games: Adv(D) = 2 · Pr [GD] − 1, and Adv(D) = Pr [d′ = 1 | d = 1] − Pr [d′ = 1 | d = 0]. As part
of our reductions, the intermediary games (e.g. Fig. 39) use the following colour-coding: grey for
equivalent but expanded code and green for the code added for the transitions between games; the
adversaries constructed for the transitions (e.g. Fig. 36) use orange to mark the changes in the code of
the simulated reduction games.

7

2.2 Standard definitions

Fundamental Lemma of Game Playing. In our game-hopping proofs, we frequently make use of
the Fundamental Lemma of Game Playing [BR06]. Suppose that the games Gi and Gi+1 are identical
until the flag bad is set. Then we have

Pr[Gi]− Pr[Gi+1] ≤ Pr[badGi] = Pr[badGi+1],

where Pr[badG] denotes the probability of setting the flag bad in game G.

Collision-resistant functions. Let f : Df → Rf be a function. Consider game Gcr of Fig. 1,
defined for f and an adversary F . The advantage of F in breaking the CR-security of f is defined as
Advcrf (F) = Pr

[
Gcr

f,F

]
. To win the game, adversary F has to find two distinct inputs x0, x1 ∈ Df such

that f(x0) = f(x1). Note that f is unkeyed, so there exists a trivial adversary F with Advcrf (F) = 1
whenever f is not injective. We will use this notion in a constructive way, to build a specific collision-
resistance adversary F (for f = SHA-256 with a truncated output) in a security reduction.

Game Gcr
f,F

(x0, x1)←$ F
Return (x0 ̸= x1) ∧ (f(x0) = f(x1))

Figure 1. Collision resistance of function f .

Function families. A family of functions F specifies a deterministic algorithm F.Ev, a key set F.Keys,
an input set F.In and an output length F.ol ∈ N. F.Ev takes a function key fk ∈ F.Keys and an input
x ∈ F.In to return an output y ∈ {0, 1}F.ol. We write y ← F.Ev(fk, x). The key length of F is F.kl ∈ N
if F.Keys = {0, 1}F.kl.

Block ciphers. Let E be a function family. We say that E is a block cipher if E.In = {0, 1}E.ol,
and if E specifies (in addition to E.Ev) an inverse algorithm E.Inv : {0, 1}E.ol → E.In such that
E.Inv(ek,E.Ev(ek, x)) = x for all ek ∈ E.Keys and all x ∈ E.In. We refer to E.ol as the block length of E.
Our pictures and attacks use EK and E−1

K as a shorthand for E.Ev(ek, ·) and E.Inv(ek, ·) respectively.

One-time PRF-security of function family. Consider game Gotprf
F,D of Fig. 2, defined for a function

family F and an adversary D. The advantage of D in breaking the OTPRF-security of F is defined
as AdvotprfF (D) = 2 · Pr

[
Gotprf

F,D

]
− 1. The game samples a uniformly random challenge bit b and runs

adversary D, providing it with access to oracle RoR. The oracle takes x ∈ F.In as input, and the
adversary is allowed to query the oracle arbitrarily many times. Each time RoR is queried on any
x, it samples a uniformly random key fk from F.Keys and returns either F.Ev(fk, x) (if b = 1) or a
uniformly random element from {0, 1}F.ol (if b = 0). D wins if it returns a bit b′ that is equal to the
challenge bit.

Game Gotprf
F,D

b←$ {0, 1}
b′ ←$ DRoR

Return b′ = b

RoR(x) // x ∈ F.In

fk ←$ F.Keys

y1 ← F.Ev(fk, x)

y0 ←$ {0, 1}F.ol

Return yb

Figure 2. One-time PRF-security of function family F.

8

Symmetric encryption schemes. A symmetric encryption scheme SE specifies algorithms SE.Enc
and SE.Dec, where SE.Dec is deterministic. Associated to SE is a key length SE.kl ∈ N, a message space
SE.MS ⊆ {0, 1}∗\{ε}, and a ciphertext length function SE.cl : N→ N. The encryption algorithm SE.Enc
takes a key k ∈ {0, 1}SE.kl and a message m ∈ SE.MS to return a ciphertext c ∈ {0, 1}SE.cl(|m|). We write
c←$ SE.Enc(k,m). The decryption algorithm SE.Dec takes k, c to return message m ∈ SE.MS ∪ {⊥},
where ⊥ denotes incorrect decryption. We write m← SE.Dec(k, c). Decryption correctness requires
that SE.Dec(k, c) = m for all k ∈ {0, 1}SE.kl, all m ∈ SE.MS, and all c ∈ [SE.Enc(k,m)]. We say that
SE is deterministic if SE.Enc is deterministic.

Game Gotind$
SE,D

b←$ {0, 1}
b′ ←$ DRoR

Return b′ = b

RoR(m) // m ∈ SE.MS

k ←$ {0, 1}SE.kl

c1 ← SE.Enc(k,m)

c0 ←$ {0, 1}SE.cl(|m|)

Return cb

Figure 3. One-time real-or-random indistinguishability of deterministic symmetric encryption scheme SE.

One-time indistinguishability of SE. Consider game Gotind$ of Fig. 3, defined for a deterministic
symmetric encryption scheme SE and an adversary D. We define the advantage of D in breaking
the OTIND$-security of SE as Advotind$SE (D) = 2 · Pr

[
Gotind$

SE,D

]
− 1. The game proceeds as the OTPRF

game.

CBC block cipher mode of operation. Let E be a block cipher. Define the Cipher Block Chaining
(CBC) mode of operation as a deterministic symmetric encryption scheme SE = CBC[E] shown in
Fig. 4, where key length is SE.kl = E.kl+ E.ol, the message space SE.MS =

⋃
t∈N{0, 1}E.ol·t consists of

messages whose lengths are multiples of the block length, and the ciphertext length function SE.cl
is the identity function. Note that Fig. 4 gives a somewhat non-standard definition for CBC, as it
includes the IV (c0) as part of the key material. However, in this work, we are only interested in
one-time security of SE, so keys and IVs are generated together and the IV is not included as part of
the ciphertext.

CBC[E].Enc(k,m)

K ← k[0 : E.kl]

c0 ← k[E.kl : SE.kl]

For i = 1, . . . , t do
ci ← E.Ev(K,mi ⊕ ci−1)

Return c1 ∥ . . . ∥ ct

CBC[E].Dec(k, c)

K ← k[0 : E.kl]

c0 ← k[E.kl : SE.kl]

For i = 1, . . . , t do
mi ← E.Inv(K, ci)⊕ ci−1

Return m1 ∥ . . . ∥mt

IGE[E].Enc(k,m)

K ← k[0 : E.kl]

c0 ← k[E.kl : E.kl+ E.ol]

m0 ← k[E.kl+ E.ol : SE.kl]

For i = 1, . . . , t do
ci ← E.Ev(K,mi ⊕ ci−1)⊕mi−1

Return c1 ∥ . . . ∥ ct
IGE[E].Dec(k, c)

K ← k[0 : E.kl]

c0 ← k[E.kl : E.kl+ E.ol]

m0 ← k[E.kl+ E.ol : SE.kl]

For i = 1, . . . , t do
mi ← E.Inv(K, ci ⊕mi−1)⊕ ci−1

Return m1 ∥ . . . ∥mt

Figure 4. Constructions of deterministic symmetric encryption schemes CBC[E] and IGE[E] from block cipher
E. Consider t as the number of blocks of m (or c), i.e. m = m1 ∥ . . . ∥mt.

IGE block cipher mode of operation. Let E be a block cipher. Define the Infinite Garble Extension
(IGE) mode of operation as SE = IGE[E] as in Fig. 4, with parameters as in the CBC mode except for

9

key length SE.kl = E.kl+ 2 · E.ol (since IGE has two IV blocks which we again include as part of the
key). We depict IGE decryption in Fig. 5 as we rely on this in Section 6.

IGE was first defined in [Cam78], which claims it has infinite error propagation and thus can
provide integrity. This claim was disproved in an attack on Free-MAC [Jut00], which has the same
specification as IGE. [Jut00] shows that given a plaintext-ciphertext pair it is possible to construct
another ciphertext that will correctly decrypt to a plaintext such that only two of its blocks differ from
the original plaintext, i.e. the “errors” introduced in the ciphertext do not propagate forever. IGE also
appears as a special case of the Accumulated Block Chaining (ABC) mode [Knu00]. A chosen-plaintext
attack on ABC that relied on IV reuse between encryptions was described in [BBKN12].

ct

E−1
K

mt

· · · · · ·

mt−1

ct−1

c2

E−1
K

m2

c1

E−1
K

m1

IVm

IV c

Figure 5. IGE mode decryption, where c0 = IV c and m0 = IVm are the initial values so decryption can be
expressed as mi = E−1

K (ci ⊕mi−1)⊕ ci−1.

MD transform. Fig. 6 defines the Merkle-Damgård transform as a function family MD[h] for a given
compression function h : {0, 1}ℓ × {0, 1}ℓ′ → {0, 1}ℓ, with MD.In =

⋃
t∈N{0, 1}ℓ

′·t, MD.Keys = {0, 1}ℓ
and MD.ol = ℓ.7

MD.Ev(k, x1 ∥ . . . ∥xt) // |xi| = ℓ′

H0 ← k

For i = 1, . . . , t do Hi ← h(Hi−1, xi)

Return Ht

SHA-pad(x) // |x| < 264

L← (447− |x|) mod 512

x′ ← x ∥ 1 ∥ 0L ∥ ⟨|x|⟩64
Return x′

Figure 6. Left pane: Construction of MD-transform MD = MD[h] from compression function h : {0, 1}ℓ ×
{0, 1}ℓ

′
→ {0, 1}ℓ. Right pane: SHA-pad pads SHA-1 or SHA-256 input x to a length that is a multiple of 512

bits.

SHA-1 and SHA-256. Let SHA-1 : {0, 1}∗ → {0, 1}160 and SHA-256 : {0, 1}∗ → {0, 1}256 be the hash
functions as defined in [NIS15]. We refer to their compression functions as h160 : {0, 1}160×{0, 1}512 →
{0, 1}160 and h256 : {0, 1}256 × {0, 1}512 → {0, 1}256, and to their initial states as IV160 and IV256. We
can write

SHA-1(x) = MD[h160].Ev(IV160,SHA-pad(x)), and
SHA-256(x) = MD[h256].Ev(IV256,SHA-pad(x))

where SHA-pad is defined in Fig. 6.

SHACAL-1 and SHACAL-2. Let +̂ be an addition operator over 32-bit words, meaning for any
x, y ∈

⋃
t∈N{0, 1}32·t with |x| = |y| the instruction z ← x +̂ y splits x and y into 32-bit words and

7 Traditionally, MD[h] is unkeyed, but it is convenient at points in our analysis to think of it as being keyed.
When creating a hash function like SHA-1 or SHA-256 from MD[h], the key is fixed to a specific IV value.

10

independently adds together words at the same positions, each modulo 232; it then computes z by
concatenating together the resulting 32-bit words. Let SHACAL-1 [HN00] be the block cipher defined
by SHACAL-1.kl = 512, SHACAL-1.ol = 160 such that h160(k, x) = k +̂ SHACAL-1.Ev(x, k). Similarly,
let SHACAL-2 be the block cipher defined by SHACAL-2.kl = 512, SHACAL-2.ol = 256 such that
h256(k, x) = k +̂ SHACAL-2.Ev(x, k). See Fig. 7.

⊕ Hi

Hi−1

xi block cipher
SHACAL-2.Ev(xi, Hi−1)

compression function
h256(Hi−1, xi) := Hi−1+̂SHACAL-2.Ev(xi, Hi−1)

Figure 7. SHA-256 compression function h256 and its underlying block cipher SHACAL-2.

3 Bidirectional channels

3.1 Our formal model in the context of prior work

The choice of a cryptographic primitive. We model Telegram’s MTProto protocol as a bidirec-
tional cryptographic channel. A channel provides a method for two users to exchange messages, and it
is called bidirectional [MP17] when each user can both send and receive messages. A unidirectional
channel provides an interface between two users where only a single user can send messages, and
only the opposite user can receive them. Two unidirectional channels can be composed to build a
bidirectional channel, but some care needs to be taken to establish what level of security is inherited
by the resulting channel [MP17]. A symmetric encryption scheme can be thought of as a special case
of a unidirectional channel; it allows to achieve security notions stronger than unforgeability once its
encryption and decryption algorithms are modelled as being stateful [BKN02,BKN04].

MTProto uses distinct but related secret keys to send messages in the opposite directions on the
channel, so it would not be sufficient to model it as a unidirectional channel. Such an analysis could
miss bad interactions between the two directions.

The choice of a security model. Cryptographic security models normally require that channels
provide strict in-order delivery of all messages. In the unidirectional setting, this means that the
receiver should only accept messages in the same order as they were dispatched by the sender. In
particular, the channel must prevent all attempts to forge, replay, reorder or drop messages.8 In
the bidirectional setting, the in-order delivery is required to hold separately in either direction of
communication.

The current version of MTProto 2.0 does not enforce strict in-order delivery. It determines whether
a successfully decrypted ciphertext should be accepted based on a complex set of rules. In particular,
it happens to allow message reordering, as we describe in Section 4.2. We consider that a vulnerability.
So in Section 4.4 we define a slight variant of MTProto 2.0 that enforces strict in-order delivery.
Our security analysis in Section 5 is then provided with respect to the fixed version of the protocol.
Nevertheless, we set out to choose a formal model for channels that could also potentially be used to
8 We note that any analysis of such cryptographic restrictions is orthogonal to whether a reliable transport

protocol such as TCP is used; we study the security of MTProto against an active, on-path attacker as is
standard in secure channel models.

11

analyse the current version of MTProto 2.0. In particular, we chose a model that could express both
strict in-order delivery and the message delivery rules that are used in the current version.9

No prior work on bidirectional channels defines correctness and security notions that could be used
to capture message delivery rules of varied strengths. In the unidirectional setting, [KPB03,BHMS16]
each define a hierarchy of multiple security notions where the weakest notion requires only unforgeability
and the strongest requires strict in-order delivery. [RZ18,FGJ20] define abstract definitional frameworks
for unidirectional channels with fully parametrisable security notions. In this work we extend the
robust channel framework of [FGJ20], lifting it to the bidirectional setting.

Extending the robust channel framework. The robust channel framework [FGJ20] defines
unidirectional correctness and security notions with respect to an arbitrary support predicate. When a
ciphertext is delivered to the receiver, the corresponding notion uses the support predicate to determine
whether the channel is expected to accept this ciphertext or to reject it, i.e. whether this ciphertext is
currently supported. For example, the notion of correctness in [FGJ20] requires that a channel accepts
and correctly decrypts all supported ciphertexts, whereas their notion of integrity requires that a
channel rejects all ciphertexts that are not supported. The correctness and security games in [FGJ20]
maintain a sequence of ciphertexts that were sent by the sender, and a sequence of ciphertexts that
were received and accepted by the receiver. A support predicate takes both sequences as input and it
can use them to decide on whether an incoming ciphertext is supported. For completeness, we provide
the core definitions of [FGJ20] in Appendix C.2.

We lift the robust channel framework [FGJ20] to the bidirectional setting, and we significantly
extend it in other ways. Most importantly, our framework uses more information to determine whether
an incoming ciphertext is supported. In particular, we define our correctness and security games to
maintain a support transcript for each of the two users; this extends the idea of using sequences of
sent and received ciphertexts in [FGJ20]. A user’s support transcript represents a sequence of events,
each entry describing an attempt to send or to receive a message. More precisely, each entry can
be thought of as describing one of the following events (stated in terms of some specific plaintext
m and/or ciphertext c): “sent c that encrypts m”, “failed to send m”, “received c, accepted it, and
decrypted it as m”, “received c and rejected it”. In our framework the support transcripts are used by
a support function; it extends the concept of the support predicate from [FGJ20]. Given the support
transcripts of both users as input, a support function in our framework is meant to prescribe the exact
behaviour of a channel when a new ciphertext is delivered to either user. Namely, a support function
either determines that the incoming ciphertext must be rejected, or it determines that the incoming
ciphertext must be accepted and a specific plaintext value must be obtained upon decrypting this
ciphertext. For example, our notion of correctness is similar in spirit to that of [FGJ20], requiring that
a channel accepts and correctly decrypts each plaintext that is not rejected by a support function.
The core difference between our correctness notion and that of [FGJ20] is in how these definitions
determine whether a specific ciphertext was decrypted “correctly”. In our framework the output of a
support function prescribes that a specific plaintext value must be obtained, whereas in [FGJ20] the
correctness game builds a lookup table to determine that value.

The above example provides an intuition that by defining our support transcripts to contain
plaintext messages, we obtain simpler correctness and security definitions when compared to [FGJ20].
But one could also see this as a trade-off between different parts of the formalism, because some
complexity that is removed from the correctness and security games might simply be relegated to the
step of specifying and analysing a support function. In order to better understand how our framework
relates to the robust channel framework, in Appendix C we provide a thorough comparison between
the unidirectional variants of our definitions and those of [FGJ20].

Relation to secure messaging models. A recent line of work uses channels to study the best
achievable security of instant messaging between two users. A limited, unidirectional case was first
considered by [BSJ+17]; follow-up work uses bidirectional channels [JS18,JMM19,ACD19,CDV21].
The focus is on achieving strong forward security and post-compromise security guarantees in the
presence of an attacker that can compromise secret states of the users. With the exception of [ACD19],
9 One could then modify our construction of the MTProto-based channel from Section 4.4 so that it precisely

models the current version of MTProto 2.0, and adjust our security analysis accordingly so that it holds
with respect to the relaxed set of message delivery rules that is used in practice.

12

all of this work models channels that are required to provide strict in-order message delivery. In contrast,
the immediate decryption-aware channel of [ACD19] effectively allows message drops but mandates
that the dropped messages can later be delivered and retroactively assigned to their correct positions
in the communication transcript. Any of these bidirectional models except [ACD19] could be simplified
(to not require advanced security properties) and used for a formal analysis of our MTProto-based
channel from Section 4.4. None of these models would be able to capture the correctness and security
properties of MTProto 2.0 as it is currently implemented.

3.2 Syntax of channels

We refer to the two users of a channel as I and R. These will map to client and server in the setting
of MTProto. We use u ∈ {I,R} as a variable to represent an arbitrary user and u to represent the
other user, meaning u denotes the sole element of {I,R} \ {u}. We use stu to represent the internal
state of user u. A channel uses an initialisation algorithm to abstract away the key agreement; this
matches the main focus of our work – to study the symmetric encryption of MTProto.

(stI , stR)←$ CH.Init()

(stu, c)← CH.Send(stu,m, aux; r)

(stu,m)← CH.Recv(stu, c, aux)

Figure 8. Syntax of the constituent algorithms of channel CH.

Definition 1. A channel CH specifies algorithms CH.Init, CH.Send and CH.Recv, where CH.Recv
is deterministic. The syntax used for the algorithms of CH is given in Fig. 8. Associated to CH
is a plaintext space CH.MS ⊆ {0, 1}∗ \ {ε} and a randomness space CH.SendRS of CH.Send. The
initialisation algorithm CH.Init returns I’s and R’s initial states stI and stR. The sending algorithm
CH.Send takes stu for some u ∈ {I,R}, a plaintext m ∈ CH.MS, and auxiliary information aux to
return the updated state stu and a ciphertext c, where c = ⊥ may be used to indicate a failure to
send. We may surface random coins r ∈ CH.SendRS as an additional input to CH.Send. The receiving
algorithm CH.Recv takes stu, c and auxiliary information aux to return the updated state stu and a
plaintext m ∈ CH.MS ∪ {⊥}, where ⊥ indicates a failure to recover a plaintext.

Our channel definition reflects some unusual choices that are necessary to model the MTProto
protocol. The abstract auxiliary information field aux will be used to associate timestamps to each
sent and received message.10 In this work we do not use the aux field to model associated data that
would need to be authenticated; but our definitions in principle allow to use it that way. Also note
that the sending algorithm CH.Send is randomised, but a stateful channel in general does not need
randomness to achieve basic security notions. We only use randomness to faithfully model MTProto;
it uses randomness to determine the length and contents of message padding. Our correctness and
security notions will let an attacker choose arbitrary random coins, so we surface it as an optional
input to the sending algorithm CH.Send.

3.3 Support transcripts and functions

In this section we extend the definitional framework for robust channels from [FGJ20]. In Section 3.1
we outlined the core differences between the two frameworks, and in Appendix C we provide a detailed
comparison between them.

Support transcripts. We define a support transcript to represent the communication record of a single
user. Each transcript entry describes an attempt to send or to receive a plaintext, ordered chronologically.
A support transcript tru of user u ∈ {I,R} contains two types of entries: (sent,m, label, aux) and
10 Our formal model of MTProto in Section 4 leaves the aux field unused. We only use the aux field in

Appendix D where we expand our model to use message encoding that captures the real-world MTProto
protocol more precisely.

13

(recv,m, label, aux) for an event of sending or receiving some plaintext m respectively. In either case
label is a support label whose purpose is to distinguish between different network messages each
encrypting or encoding a specific plaintext m, and aux is auxiliary information such as the timestamp
at the moment of sending or receiving the network message. Depending on the level of abstraction,
our model uses ciphertexts or message encodings as support labels.11

Definition 2. A support transcript tru for user u ∈ {I,R} is a list of entries of the form (op,m, label,
aux), where op ∈ {sent, recv}. An entry with op = sent indicates that user u attempted to send a
network message that encrypts or encodes plaintext m with auxiliary information aux. An entry with
op = recv indicates that user u received a network message with auxiliary information aux, and used
it to recover plaintext m. In either case the network message is identified by its support label label.

A support transcript is not intended to surface the implementation details of the primitive that is
used for communication. This is reflected in our abstract treatment of the support labels: an outside
observer with no knowledge of the internal states of the two communicating users might not be able
to interpret the (possibly encrypted) network messages that are being exchanged. So our framework
treats each network message as a mere label that can be observed to be sent by a user in response to
some plaintext input. One might subsequently observe the same label being taken as input by the
opposite user, resulting in some plaintext output. If the scheme used for the two-user communication
guarantees that all such labels are unique, an observer might be able to use the equality of exchanged
labels across both support transcripts to determine whether a message replay, reordering or drop
occurred. The MTProto-based scheme that we study in this paper produces distinct ciphertexts, and
our framework uses ciphertexts as support labels when analysing a channel; this will allow us to rely
on equality patterns that arise between them. In this work we use no information about support labels
beyond their equality patterns.

Support transcripts can include entries of the form (recv,m, label, aux) with the plaintext m = ⊥
to indicate that the received network message was rejected. Support transcripts can also include
entries of the form (sent,m, label, aux) with the support label value label = ⊥, e.g. to indicate that a
network message encrypting the plaintext m could not be sent over a terminated channel. Our support
transcripts are therefore suitable for two-user communication primitives that implement a wide range
of possible behaviours in the event of an error, from terminating after the first failure to full recovery.

CH.Init()

k ←$ {0, 1}SE.kl

stI ← (0, k)

stR ← (1, k)

Return (stI , stR)

CH.Send(stu,m, aux)

(b, k)← stu
p← b ∥m
c←$ SE.Enc(k, p)

Return (stu, c)

CH.Recv(stu, c, aux)

(b, k)← stu
p← SE.Dec(k, c)

If p = ⊥ then return (stu,⊥)
b′ ∥m← p // s.t. |b′| = 1

If b′ ̸= 1− b then return (stu,⊥)
Return (stu,m)

Figure 9. Construction of sample channel CH = SAMPLE-CH[SE] from symmetric encryption scheme SE. This
channel ignores the auxiliary information aux.

We now provide the construction of a sample channel, along with an example of how communication
over this channel can be captured using support transcripts. We will use this channel and its support
transcripts to showcase more examples throughout this section. Let SE be an arbitrary symmetric
encryption scheme that provides integrity and confidentiality (i.e. it provides authenticated encryption).
Consider a sample channel CH = SAMPLE-CH[SE] as defined in Fig. 9. In addition to the security
assurances inherited from SE, the channel CH is only designed to prevent forgeries that could
occur by mirroring a ciphertext back to its sender. Fig. 10 provides a step-by-step example of
communication between users I and R over CH. It shows I’s and R’s support transcripts at the end
of the communication between them, where the channel’s ciphertexts are used as labels. Note that the
ciphertext cI,2 was dropped and the ciphertext cI,0 was replayed in its place. As a result, each user’s
transcript shows that the other user endorsed crimes.
11 We use ciphertexts as support labels when channels are considered. We use message encodings as support

labels when properties of message encoding schemes are considered (as defined in Section 3.5).

14

Initialisation: (stI , stR)←$ CH.Init() ; aux ← ε

User I Network User R

mI,0 ← “I say yes to”
(stI , cI,0)←$ CH.Send(stI ,mI,0, aux)

cI,0 cI,0 (stR,m′
I,0)← CH.Recv(stR, cI,0, aux)

such that m′
I,0 = “I say yes to”

mI,1 ← “all the pizza”
(stI , cI,1)←$ CH.Send(stI ,mI,1, aux)

cI,1 cI,1 (stR,m′
I,1)← CH.Recv(stR, cI,1, aux)

such that m′
I,1 = “all the pizza”

mI,2 ← “I say no to”
(stI , cI,2)←$ CH.Send(stI ,mI,2, aux)

cI,2 cI,0 (stR,m′
I,2)← CH.Recv(stR, cI,0, aux)

such that m′
I,2 = “I say yes to”

mI,3 ← “all the crimes”
(stI , cI,3)←$ CH.Send(stI ,mI,3, aux)

cI,3 cI,3 (stR,m′
I,3)← CH.Recv(stR, cI,3, aux)

such that m′
I,3 = “all the crimes”

mR,0 ← “we’re at odds on crimes”
(stR, cR,0)←$ CH.Send(stR,mR,0, aux)

cR,0cR,0(stI ,m
′
R,0)← CH.Recv(stI , cR,0, aux)

such that m′
R,0 = “we’re at . . . ”

Support transcripts:
trI =

[
(sent, “I say yes to” , cI,0, ε), (sent, “all the pizza”, cI,1, ε), (sent, “I say no to”, cI,2, ε),

(sent, “all the crimes”, cI,3, ε), (recv, “we’re at odds on crimes” , cR,0, ε)
]

trR =
[
(recv, “I say yes to” , cI,0, ε), (recv, “all the pizza”, cI,1, ε), (recv, “I say yes to” , cI,0, ε),

(recv, “all the crimes”, cI,3, ε), (sent, “we’re at odds on crimes” , cR,0, ε)
]

Figure 10. Communication between users I and R over the sample channel CH defined in Fig. 9. The resulting
communication records of I and R are represented by support transcripts trI and trR respectively. The
transcripts contradict each other due to an adversarial behaviour on the network.

Support functions. We now define the notion of a support function. We use a support function to
prescribe the exact input-output behaviour of a receiver at any point in a two-user communication
process (i.e. we use it to specify the expected behaviour of a channel’s decryption algorithm or that of
a message encoding scheme’s decoding algorithm, the latter primitive defined in Section 3.5). More
specifically, a support function supp determines whether a user u ∈ {I,R} should accept an incoming
network message – that is associated to a support label label – from the opposite user u, based on
the support transcripts tru, tru of both users. If the network message should be accepted, then supp
must return a plaintext m∗ to indicate that u is expected to recover m∗ as a result of accepting it;
otherwise supp must return ⊥ to indicate that the network message must be rejected. We also let supp
take the auxiliary information aux as input so that timestamps can be captured in our definitions.

Definition 3. A support function supp is a deterministic function supp(u, tru, tru, label, aux)→ m∗,
where u ∈ {I,R}, and tru, tru are support transcripts for users u and u respectively. It indicates that,
according to the transcripts, user u is expected to recover plaintext m∗ from the incoming network
message with auxiliary information aux. Here the network message is identified by its support label
label.

In Section 3.4 we define the notions of channel correctness, integrity, and indistinguishability.
Our correctness and integrity notions jointly require that the channel’s receiving algorithm works
exactly as prescribed by a specific support function. More precisely, both notions require that the
channel’s receiving algorithm consistently returns the same output as that returned by the support
function, but each notion is defined with respect to an adversary that has different capabilities. In
the correctness game the adversary gets the channel’s state as input, and is only allowed to query
the receiving algorithm on supported ciphertexts (i.e. those that are not rejected by the support
function). In the integrity game the adversary does not get any secrets as input, and is allowed to
query the receiving algorithm on all possible inputs, including attempted ciphertext forgeries or any
gibberish inputs that aim to corrupt the channel’s state. This definitional approach is similar in spirit
to how correctness and integrity are defined for basic cryptographic primitives. For example, for a
symmetric encryption scheme one often considers the notions of decryption correctness and ciphertext
integrity, where the former should hold even when the adversary knows the secret key, whereas the
latter requires the adversary to produce ciphertext forgeries without knowing the key. In comparison,
a channel is a stateful primitive so its correctness and integrity conditions can be significantly more

15

complex, depending on how it should treat forgeries, replays, reordering and drops. A support function
allows us to capture these conditions in a modular way. Finally, the notion of indistinguishability
that we define for a channel requires that the output of the channel’s sending algorithm leaks no
information about the encrypted plaintext; this security notion makes no use of a support function.

SAMPLE-SUPP0(u, tru, tru, label, aux) / SAMPLE-SUPP1(u, tru, tru, label, aux)

forged↚ ∃m, aux′ : (sent,m, label, aux′) ∈ tru
If forged then return ⊥
replayed← ∃m, aux′ : (recv,m, label, aux′) ∈ tru
If replayed then return ⊥

For each (op,m, label′, aux′) ∈ tru do
If (op = sent) ∧ (label′ = label) then // aux′ can be arbitrary

Return m

Figure 11. Sample support functions SAMPLE-SUPP0 and SAMPLE-SUPP1. Support function SAMPLE-SUPP1
includes the boxed code, and support function SAMPLE-SUPP0 does not include it. Both support functions
allow arbitrary auxiliary information, never checking the values of aux and aux′.

Consider a sample support function SAMPLE-SUPP0 in Fig. 11. It does not contain the boxed code.
The support function prohibits forgeries by returning ⊥ if the opposite user’s support transcript tru
does not contain an entry indicating that u previously sent a network message associated to the
support label label. If a forgery is not detected then the support function finds and returns a plaintext
m such that (sent,m, label, aux′) belongs to tru with any aux′. For any symmetric encryption scheme
SE that provides authenticated encryption, recall algorithms CH.Init and CH.Send of the sample
channel CH = SAMPLE-CH[SE] defined in Fig. 9; let us treat ciphertexts produced by CH.Send as
support labels. Then the algorithm CH.Recv from Fig. 9 implements the functionality that is prescribed
by SAMPLE-SUPP0: it rejects forgeries and otherwise recovers and returns the originally encrypted
plaintext. Note that SAMPLE-SUPP0 grabs the first plaintext m that it finds associated to label in
tru, without checking whether any other plaintext values are also associated to label. This does not
produce ambiguity when used with algorithms CH.Init and CH.Send; implicit in our example is that
SE provides decryption correctness, and therefore two distinct plaintexts cannot be encrypted into
the same ciphertext (and hence be mapped to the same support label). This serves to show that it is
often beneficial to interpret a support function in the context of the properties that are known to be
true about the used support labels, because that might provide a better intuition regarding how a
receiver will behave.

Consider another sample support function SAMPLE-SUPP1 as defined in Fig. 11. In addition to
the code from SAMPLE-SUPP0, this support function also contains the boxed code. The added code
is designed to prevent replays by rejecting any network message associated to a support label label
that is already present in the one of the entries of the receiver’s support transcript tru. For example,
consider the following intermediate support transcripts of users I and R that could have arisen at
some point during the communication displayed in Fig. 10:

trI,3 =
[
(sent, “I say yes to” , cI,0, ε), (sent, “all the pizza” , cI,1, ε), (sent, “I say no to”, cI,2, ε)

]
trR,2 =

[
(recv, “I say yes to” , cI,0, ε), (recv, “all the pizza”, cI,1, ε)

]
These support transcripts represent the moment when I has already sent 3 network messages, but
so far R has only received 2 of them. Following Fig. 10, let us assume that a replay attack happens
next and R receives a network message containing the ciphertext cI,0 with auxiliary information
aux = ε. According to SAMPLE-SUPP0 this network message should be accepted (and should decrypt
to m∗ = “I say yes to”), but according to SAMPLE-SUPP1 this network message should be rejected:

SAMPLE-SUPP0(R, trR,2, trI,3, cI,0, ε) = “I say yes to”
SAMPLE-SUPP1(R, trR,2, trI,3, cI,0, ε) = ⊥

Note that the algorithm CH.Recv from Fig. 9 can be changed to simply reject duplicate ciphertexts in
order to accommodate the specification of SAMPLE-SUPP1, without having to change algorithms CH.Init
and CH.Send. That would result in a contrived channel where the same plaintext can be encrypted

16

and sent multiple times, but only the first of them is allowed to be received. A more appropriate
change would require to also concatenate a distinct counter to each plaintext processed by CH.Send,
so that the same plaintext can be sent and received many times while still preventing replay attacks
by a third party.

We now provide some observations about the power of support functions. This is irrelevant for
the purpose of analysing MTProto, but is useful to highlight the strengths and limitations of our
framework in general:

– A support function does not take as input any information about the internal state of the primitive
that is used for communication (i.e. that of a channel or a message encoding scheme). But a
communication primitive might use its internal state to interpret incoming network messages in a
non-trivial way. For example, in some channels the same ciphertext (in our framework associated
to the same support label) could be repeatedly decrypted to a different plaintext depending on
some shared secret that is being synchronously evolved by both users. A support function might
not be able to capture a receiver’s behaviour in cases like this. Support functions are best suited for
communication where the knowledge that “user u created a network message ξ to send a plaintext
m” uniquely determines that the opposite user u can only recover m from ξ (or otherwise produce
the error symbol ⊥).

– Due to having access to user support transcripts, a support function can prescribe a receiver’s
behaviour that is not achievable by any implementation. For example, if two channel ciphertexts
c0, c1 were sent by the user u prior to any of them being received by the user u, then a support
function can require u to recover both underlying plaintexts from the first ciphertext it receives.
This is impossible if each ciphertext encrypted an independently sampled and uniformly random
value.

– A support function prescribes a receiver’s behaviour with respect to a pair of existing support
transcripts. But our framework does not have a similar way to state complex requirements regarding
a sender’s behaviour. For example, our framework can require a channel user’s receiving algorithm
to perpetually return ⊥ once the channel is considered closed (e.g. due to repeated errors while
processing incoming ciphertexts), but it cannot require for the same user’s sending algorithm to
subsequently return ⊥ in response to all attempts to send new plaintexts.

In Section 5.3 we define the support function SUPP with respect to which we will analyse the
security of MTProto 2.0. In Appendix A we formalise two correctness-style properties of a support
function, but we do not mandate that they must always be met. Both properties were also considered
in [FGJ20]. The integrity of a support function requires that it always returns ⊥ if the queried support
label label does not appear in the opposite user’s support transcript tru. The order correctness of a
support function requires that it enforces in-order delivery for each direction between the two users
separately, assuming that each network message is associated to a distinct support label.

3.4 Correctness and security of channels

In Section 3.3 we provided a high-level intuition regarding how we define channel correctness and
security notions, here we formalise them. In all of the notions, we allow the adversary to control
the randomness used by the channel’s sending algorithm CH.Send. Channels are stateful, so they
can achieve strong notions of security even when the adversary can control the randomness used for
encryption.

Correctness. Consider the correctness game Gcorr
CH,supp,F in Fig. 12, defined for a channel CH, a support

function supp and an adversary F . The advantage of F in breaking the correctness of CH with respect
to supp is defined as AdvcorrCH,supp(F) = Pr

[
Gcorr

CH,supp,F

]
. The game starts by calling the algorithm

CH.Init to initialise users I and R, and the adversary is given their initial states. The adversary
F gets access to a sending oracle Send and to a receiving oracle Recv. Calling Send(u,m, aux, r)
encrypts the plaintext m with auxiliary data aux and randomness r from the user u to the other
user u; the resulting tuple (sent,m, c, aux) is added to the sender’s transcript tru. Oracle Recv can
only be called on ciphertexts that should not produce a decryption error according to the behaviour
prescribed by the support function supp (when queried on the current support transcripts), meaning
Recv immediately exits with ⊥ when supp returns m∗ = ⊥. Calling Recv(u, c, aux) thus recovers

17

Game Gcorr
CH,supp,F

win← false

(stI , stR)←$ CH.Init()

FSend,Recv(stI , stR)

Return win

Send(u,m, aux, r)

(stu, c)← CH.Send(stu,m, aux; r)

tru ← tru ∥ (sent,m, c, aux)

Return c

Recv(u, c, aux)

m∗ ← supp(u, tru, tru, c, aux)

If m∗ = ⊥ then return ⊥
(stu,m)← CH.Recv(stu, c, aux)

tru ← tru ∥ (recv,m, c, aux)

If m ̸= m∗ then win← true

Return ⊥

Game Gint
CH,supp,F

win← false

(stI , stR)←$ CH.Init()

FSend,Recv

Return win

Send(u,m, aux, r)

(stu, c)← CH.Send(stu,m, aux; r)

tru ← tru ∥ (sent,m, c, aux)

Return c

Recv(u, c, aux)

m∗ ← supp(u, tru, tru, c, aux)

(stu,m)← CH.Recv(stu, c, aux)

tru ← tru ∥ (recv,m, c, aux)

If m ̸= m∗ then win← true

Return ⊥

Figure 12. Correctness of channel CH; integrity of channel CH. Both notions are defined with respect to
support function supp.

the plaintext m∗ from the support function, decrypts the queried ciphertext c into plaintext m and
adds (recv,m, c, aux) to the receiver’s transcript tru; the game verifies that the decrypted plaintext m
is equal to m∗. If the adversary can cause the channel to output a different m, then the adversary
wins. This game captures the minimal requirement one would expect from a communication channel:
that it succeeds to decrypt incoming ciphertexts in accordance to its specification, with only a limited
possible interference from an adversary. In particular, the adversary is not allowed to test that the
channel appropriately identifies and handles any errors.

Note that the Recv oracle always returns ⊥, but F can use the support function to compute the
value m on its own for as long as the condition m = m∗ has never been false yet.12 Based on the
same condition, F can also use the support function to distinguish whether ⊥ was returned because
m∗ = ⊥ or because the end of the code of Recv was reached (i.e. its last instruction “Return ⊥” was
evaluated).

Consider the sample channel CH = SAMPLE-CH[SE] from Fig. 9 for any symmetric encryption
scheme SE that has decryption correctness. Then CH provides correctness with respect to either
sample support function supp ∈ {SAMPLE-SUPP0, SAMPLE-SUPP1} from Fig. 11. In particular, for all
adversaries F we have AdvcorrCH,supp(F) = 0.

Integrity. Consider the integrity game Gint
CH,supp,F in Fig. 12, defined for a channel CH, a support

function supp and an adversary F . The advantage of F in breaking the INT-security of CH with
respect to supp is defined as AdvintCH,supp(F) = Pr

[
Gint

CH,supp,F

]
. We define the integrity game in a very

similar way to the correctness game above, but with two important distinctions. First, in the integrity
game the adversary F no longer gets the initial states of users I and R as input. Second, the receiving
oracle Recv now allows all inputs from the adversary F , including those that are meant to be rejected
according to the support function supp. These changes reflect the intuition that the adversary F is
now also allowed to win by producing an input such that the channel’s receiving algorithm returns
m ̸= ⊥ while the support function returned m∗ = ⊥, which is essentially a forgery. The adversary
does not get the channel’s initial states as input because that could trivialize its goal of producing a
forgery.

According to the examples discussed in Section 3.3, the sample channel CH = SAMPLE-CH[SE]
from Fig. 9 provides integrity with respect to the sample support function SAMPLE-SUPP0 from Fig. 11
if SE provides authenticated encryption. Here it is in fact sufficient for SE to only provide ciphertext
12 The initial version of this work defined Recv to always return m. This made the definition stronger, by

allowing the adversary to detect the moment it won the game. Switching between the two alternative
definitions does not affect our proofs, but returning m made it harder to reason about the joint security for
channels in Appendix B. So for simplicity we chose to always return ⊥.

18

integrity, without any assurances about the confidentiality of encrypted data. In contrast, no properties
of SE would be sufficient for CH to provide integrity with respect to the sample support function
SAMPLE-SUPP1 from Fig. 11; the construction of SAMPLE-CH itself would need to be changed to
prevent replay attacks like the one displayed in Fig. 10.

Prior work on symmetric encryption formalises the intuition that a decryption oracle is useless
to an adversary if all of its decryption queries can be simulated based on the live transcript of its
encryption queries. This is captured as PA1 in [ABL+14] (where “PA” stands for plaintext awareness)
and as decryption simulatability in [DF18]. An important distinction is that our definition of integrity
requires CH.Recv to behave exactly as prescribed by a specific support function, whereas the goal
of [ABL+14,DF18] is to draw implications from the existence of any algorithm that can simulate
CH.Recv.

Game Gind
CH,D

b←$ {0, 1}
(stI , stR)←$ CH.Init()

b′ ←$ DCh,Recv

Return b′ = b

Ch(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
(stu, c)← CH.Send(stu,mb, aux; r)

Return c

Recv(u, c, aux)

(stu,m)← CH.Recv(stu, c, aux)

Return ⊥

Figure 13. Indistinguishability of channel CH.

Confidentiality. Consider the indistinguishability game Gind
CH,D in Fig. 13, defined for a channel

CH and an adversary D. The advantage of D in breaking the IND-security of CH is defined as
AdvindCH(D) = 2 · Pr

[
Gind

CH,D

]
− 1. The game samples a challenge bit b, and the adversary is required

to guess it in order to win. The adversary D is provided with access to a challenge oracle Ch and a
receiving oracle Recv. The adversary can query the challenge oracle Ch on inputs u,m0,m1, aux, r to
obtain a ciphertext encrypting plaintext mb with random coins r from user u to user u, with auxiliary
information aux. Here the two plaintexts m0, m1 are required to have the same length. The adversary
can query the receiving oracle Recv on inputs u, c, aux to make the user u decrypt the incoming
ciphertext c from the user u with auxiliary information aux. The goal of this query is to update the
receiving user’s state stu; this is important because the updated state is then used to compute future
outputs of queries to the challenge oracle Ch when user u is the sender. The receiving oracle always
discards the decrypted plaintext m and returns ⊥. Note that if channel CH has integrity with respect
to any support function supp, then the indistinguishability adversary D can itself use supp to compute
all outputs of the receiving oracle Recv for either choice of the challenge bit b.

Consider the sample channel CH = SAMPLE-CH[SE] from Fig. 9 for any symmetric encryption
scheme SE that is IND-CPA secure. Then CH provides indistinguishability.

Authenticated encryption. In Appendix B we define the authenticated encryption security of a
channel, which simultaneously captures the integrity and indistinguishability notions from above. We
define the joint notion in the all-in-one style of [Shr04,RS06]. We prove that our two separate security
notions together are equivalent to the authenticated encryption security. This serves as a sanity check
for our definitional choices.

3.5 Message encoding schemes

We advocate for a modular approach when building cryptographic channels. At its core, a channel
can be expected to have a mechanism that handles the process of encoding plaintexts into payloads

19

and decoding payloads back into plaintexts. Such a mechanism might need to maintain counters that
store the number of previously encoded and decoded messages. It might add padding to plaintexts,
while possibly encoding their original lengths. It might also embed other metadata into the produced
payloads. This mechanism does not need to provide any security assurances, and can be intended for
use with a communication channel that already guarantees cryptographic integrity and confidentiality
of all relayed payloads. We formalise it as a separate primitive called a message encoding scheme.
Then a cryptographic channel can be built by composing a message encoding scheme with appropriate
cryptographic primitives that would provide integrity and confidentiality.

We now formally define a message encoding scheme. The modular approach suggested above
leads us to define syntax for message encoding that is similar to that of a cryptographic channel.
In particular, a message encoding scheme needs to have stateful encoding and decoding algorithms.
Auxiliary information can be used to relay and verify metadata such as timestamps. One could expect
all algorithms of a message encoding scheme to be deterministic; our definition uses randomness purely
because it is necessary when modelling Telegram (i.e. because in MTProto 2.0 the length of padding
used for payloads is randomised).

(stI , stR)←$ ME.Init()

(stu, p)← ME.Encode(stu,m, aux; ν)

(stu,m)← ME.Decode(stu, p, aux)

Figure 14. Syntax of message encoding scheme ME.

Definition 4. A message encoding scheme ME specifies algorithms ME.Init, ME.Encode, ME.Decode,
where ME.Decode is deterministic. Associated to ME is a message space ME.MS ⊆ {0, 1}∗ \ {ε}, a
payload space ME.Out, a randomness space ME.EncRS of ME.Encode, and a payload length function
ME.pl : N ×ME.EncRS → N. The initialisation algorithm ME.Init returns I’s and R’s initial states
stI and stR. The encoding algorithm ME.Encode takes stu for u ∈ {I,R}, a message m ∈ ME.MS,
and auxiliary information aux to return the updated state stu and a payload p ∈ ME.Out.13 We may
surface random coins ν ∈ ME.EncRS as an additional input to ME.Encode; then a message m should
be encoded into a payload p of length |p| = ME.pl(|m| , ν). The decoding algorithm ME.Decode takes
stu, p, and auxiliary information aux to return the updated state stu and a message m ∈ ME.MS∪{⊥}.
The syntax used for the algorithms of ME is given in Fig. 14.

We now define two properties of a message encoding scheme: encoding correctness and encoding
integrity. We formalise each property with respect to a support function, in a similar way to how we
formalised correctness and integrity for a channel in Section 3.4. The encoding correctness and integrity
notions both roughly require that the decoding algorithm of a message encoding scheme always returns
outputs that are consistent with the support function. The two notions differ in that the encoding
correctness only requires the outputs to be consistent until the first error occurs (i.e. until the support
function returns ⊥), whereas the encoding integrity also requires the decoding algorithm to recover
from errors and keep returning consistent outputs throughout. We formalise both notions in the setting
where the message encoding scheme is being run over an authenticated channel. This reflects the
intuition that the message encoding scheme does not have to provide any cryptographic properties,
but it is expected to be composed with a primitive that guarantees the integrity of communication.
In contrast, the message encoding scheme itself is responsible for providing all properties that are
required by a support function and are not implied by integrity. This may include the impossibility to
replay, reorder and drop messages.

We use the games in Fig. 15 to formalise the encoding correctness and integrity notions of a
message encoding scheme ME with respect to a support function supp. The advantage of an adversary
F in breaking the encoding correctness of ME with respect to supp is defined as AdvecorrME,supp(F) =
Pr[Gecorr

ME,supp,F]. The advantage of an adversary F in breaking the encoding integrity (EINT-security)

13 For full generality, the algorithm ME.Encode could also be allowed to return p = ⊥, denoting a failure to
encode a message. However, the message encoding schemes we define in this work never fail to encode
messages from each scheme’s corresponding message space ME.MS. So for simplicity we do not define p = ⊥
to be a valid output of ME.Encode.

20

Games Gecorr
ME,supp,F / Geint

ME,supp,F

win← false ; (stME,I , stME,R)←$ ME.Init()

FSend,Recv(stME,I , stME,R) ; Return win

Send(u,m, aux, r) // u ∈ {I,R}, m ∈ ME.MS, r ∈ ME.EncRS

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

tru ← tru ∥ (sent,m, p, aux) ; Return p

Recv(u, p, aux) // u ∈ {I,R}, p ∈ ME.Out

If ̸ ∃m′, aux′ : (sent,m′, p, aux′) ∈ tru then return ⊥
m∗ ← supp(u, tru, tru, p, aux)

If m∗ = ⊥ then return ⊥
(stME,u,m)← ME.Decode(stME,u, p, aux)

tru ← tru ∥ (recv,m, p, aux)

If m ̸= m∗ then win← true

Return ⊥

Figure 15. Encoding correctness and encoding integrity of message encoding scheme ME with respect to
support function supp. Game Gecorr

ME,supp,F includes the boxed code and game Geint
ME,supp,F does not.

of ME with respect to supp is defined as AdveintME,supp(F) = Pr[Geint
ME,supp,F]. The encoding correctness

game Gecorr
ME,supp,F contains the boxed code while the encoding integrity game Geint

ME,supp,F does not. The
encoding correctness requires that ME manages to “correctly” decode all payloads that are deemed
to be admissible by the support function supp, while the inadmissible payloads are ignored by the
game; here the support function itself is used to determine what constitutes a “correct” decoding.
The encoding integrity requires that ME rejects inadmissible payloads while maintaining its baseline
correctness; this in particular means that the processing of inadmissible payloads should not corrupt
the state of ME in unexpected ways. As a result of processing inadmissible payloads, the receiver’s
transcript will contain (recv,⊥, p, aux)-type entries. The support function supp might process various
conditions involving these entries (e.g. depending on the number of errors that occurred), and the
encoding scheme ME still has to provide outputs that are consistent with supp.

The two core differences from the corresponding channel notions in Section 3.4 are as follows. First,
the message encoding scheme is meant to be run within an integrity-protected communication channel,
so the Recv oracle in both games now starts by checking that the queried payload p was returned
by a prior call to the opposite user’s Send oracle (in response to some message m and auxiliary
information aux). Second, the message encoding is not meant to serve any cryptographic purpose, so
the initial states stME,I , stME,R should not contain any secret information and are given as inputs to
adversary F in both games. This means that the encoding integrity is a strictly stronger notion than
the encoding correctness, and the latter has limited value.14

In Section 5.3 we define three more properties of message encoding that will be necessary for our
security analysis of MTProto 2.0. None of these properties are defined with respect to a support
function. Our modular approach of building a channel from a message encoding scheme serves to
localise the number of times we need to consider the specifics of a support function: the integrity proof
(in Section 5.6) of the channel that we study is reduced to the encoding integrity of the underlying
message encoding scheme, and the latter is then proved in Appendix E.5.

4 Modelling MTProto 2.0

In this section, we describe our modelling of the MTProto 2.0 record protocol as a bidirectional channel.
First, in Section 4.1 we give an informal description of MTProto based on Telegram documentation
and client implementations. Next, in Section 4.2 we outline attacks that motivate protocol changes
required to achieve security. We list further modelling issues and points where we depart from Telegram
documentation in Section 4.3. We conclude with Section 4.4 where we give our formal model for a
fixed version of the protocol.

14 In Section 5.4, rather than arguing that a message encoding scheme has encoding correctness, we point out
that it is implied by the proof of its encoding integrity.

21

4.1 Telegram description

We studied MTProto 2.0 as described in the online documentation [Tel21c] and as implemented in the
official desktop15 and Android16 clients. We focus on cloud chats, i.e. chats that are only encrypted at
the transport layer between the clients and Telegram servers. The end-to-end encrypted secret chats
are implemented on top of this transport layer and only available for one-on-one chats. Figures 16
and 17 give a visual summary of the following description.

32 bits 96 bits 1088 bits

kkI,0 (288 bits) kkI,1 (288 bits) mkI (256 bits)

auth_key = raw gxy value (2048 bits)

kkR,0 (288 bits) kkR,1 (288 bits) mkR (256 bits)

64 bits 32 bits 96 bits 1024 bits

Figure 16. Parsing auth_key in MTProto 2.0. User u ∈ {I,R} derives a KDF key kku = (kku,0, kku,1) and a
MAC key mku.

auth_key
kk∥r0∥mk∥r1 server_salt session_id msg_idmsg_seq_nomsg_length msg_data padding

auth_key

kk

mk

HASH
SHA-1

KDF
SHA-256

MAC
SHA-256

SE
IGE[AES-256]

auth_key_id msg_key encrypted data

Figure 17. Overview of message processing in MTProto 2.0.

Key exchange. A Telegram client must first establish a symmetric 2048-bit auth_key with the server
via a version of the Diffie-Hellman key exchange. We defer the details of the key exchange to Section 7.
In practice, this key exchange first results in a permanent auth_key for each of the Telegram data
centres the client connects to. Thereafter, the client runs a new key exchange on a daily basis to
establish a temporary auth_key that is used instead of the permanent one.

“Record protocol”. Messages are protected as follows.

1. API calls are expressed as functions in the TL schema [Tel20c].
2. The API requests and responses are serialised according to the type language (TL) [Tel20e] and

embedded in the msg_data field of a payload p, shown in Table 1. The first two 128-bit blocks of p
have a fixed structure and contain various metadata. The maximum length of msg_data is 224

bytes.
15 https://github.com/telegramdesktop/tdesktop/, versions 2.3.2 to 2.7.1
16 https://github.com/DrKLO/Telegram/, versions 6.1.1 to 7.6.0

22

https://github.com/telegramdesktop/tdesktop/
https://github.com/DrKLO/Telegram/

3. The payload is encrypted using AES-256 in IGE mode. The ciphertext c is a part of an MTProto
ciphertext auth_key_id ∥msg_key ∥ c, where (recalling that z[a : b] denotes bits a to b−1, inclusive,
of string z):

auth_key_id := SHA-1 (auth_key) [96 : 160]

msg_key := SHA-256 (auth_key[704 + x : 960 + x] ∥ p) [64 : 192]

c := IGE[AES-256].Enc(key ∥ iv, p)

Here, the first two fields form an external header. The IGE[AES-256] keys and IVs are computed
via:

A := SHA-256 (msg_key ∥ auth_key[x : 288 + x])

B := SHA-256 (auth_key[320 + x : 608 + x] ∥msg_key)
key := A[0 : 64] ∥B[64 : 192] ∥A[192 : 256]

iv := B[0 : 64] ∥A[64 : 192] ∥B[192 : 256]

In the above steps, x = 0 for messages from the client and x = 64 from the server. Telegram clients
use the BoringSSL implementation [Goo18] of IGE, which has 2-block IVs.

4. MTProto ciphertexts are encapsulated in a “transport protocol”. The MTProto documentation
defines multiple such protocols [Tel20a], but the default is the abridged format that begins the
stream with a fixed value of 0xefefefef and then wraps each MTProto ciphertext cMTP in a
transport packet as:
– length ∥ cMTP where 1-byte length contains the cMTP length divided by 4, if the resulting packet

length is < 127, or
– 0x7f ∥ length ∥ cMTP where length is encoded in 3 bytes.

5. All the resulting packets are obfuscated by default using AES-128 in CTR mode. The key and
IV are transmitted at the beginning of the stream, so the obfuscation provides no cryptographic
protection and we ignore it henceforth.17

6. Communication is over TCP (port 443) or HTTP. Clients attempt to choose the best available
connection. There is support for TLS in the client code, but it does not seem to be used.

In combination, these operations mean that MTProto 2.0 at its core uses a “stateful Encrypt &
MAC” construction. Here the MAC tag msg_key is computed using SHA-256 with a prepended key
derived from (certain bits of) auth_key. The key and IV for IGE mode are derived on a per-message
basis using a KDF based on SHA-256, using certain bits of auth_key as the KDF key and the msg_key
as a diversifier. Note that the bit ranges of auth_key used by the client and the server to derive keys
in both operations overlap with one another. Any formal security analysis needs to take this into
account.

Table 1. MTProto payload format.

field type description

server_salt int64 Server-generated random number valid in a given time period.
session_id int64 Client-generated random identifier of a session under the same auth_key.

msg_id int64 Time-dependent identifier of a message within a session.
msg_seq_no int32 Message sequence number.
msg_length int32 Length of msg_data in bytes.

msg_data bytes Actual body of the message.
padding bytes 12-1024B of random padding.

17 This feature is meant to prevent ISP blocking. In addition to this, clients can route their connections through
a Telegram proxy. The obfuscation key is then derived from a shared secret (e.g. from proxy password)
between the client and the proxy.

23

4.2 Attacks against MTProto metadata validation

We describe adversarial behaviours that are permitted in current Telegram implementations and that
mostly depend on how clients and servers validate metadata information in the payload (especially
the second 128-bit block containing msg_id, msg_seq_no and msg_length).

We consider a network attacker that sits between the client and the Telegram servers, attempting
to manipulate the conversation transcript. We distinguish between two cases: when the client is the
sender of a message and when it is the receiver. By message we mean any msg_data exchanged via
MTProto, but we pay particular attention to when it contains a chat message.

Message reordering. By reordering we mean that an adversary can swap messages sent by one
party so that they are processed in the wrong order by the receiving party. Preventing such attacks is
a basic property that one would expect in a secure messaging protocol. The MTProto documentation
mentions reordering attacks as something to protect against in secret chats but does not discuss it for
cloud chats [Tel21f]. The implementation of cloud chats provides some protection, but not fully:

– When the client is the receiver, the order of displayed chat messages is determined by the date and
time values within the TL message object (which are set by the server), so adversarial reordering
of packets has no effect on the order of chat messages as seen by the client. On mobile clients
messages are also delivered via push notification systems which are typically secured with TLS.
Note that service messages of MTProto typically do not have such a timestamp so reordering
is theoretically possible, but it is unclear whether it would affect the client’s state since such
messages tend to be responses to particular requests or notices of errors, which are not expected
to arrive in a given order.

– When the client is the sender, the order of chat messages can be manipulated because the server
sets the date and time value for the Telegram user to whom the message was addressed based on
when the server itself receives the message, and because the server will accept a message with a
lower msg_id than that of a previous message as long as its msg_seq_no is also lower than that of
a previous message. The server does not take the timestamp implicit within msg_id into account
except to check whether it is at most 300s in the past or 30s in the future, so within this time
interval reordering is possible. A message outside of this time interval is not ignored, but a request
for time synchronisation is triggered, after receipt of which the client sends the message again
with a fresh msg_id. So an attacker can also simply delay a chosen message to cause messages to
be accepted out of order. In Telegram, the rotation of the server_salt every 30 to 60 minutes may
be an obstacle to carrying out this attack in longer time intervals.

We verified that reordering between a sending client and a receiving server is possible in prac-
tice using unmodified Android clients (v6.2.0) and a malicious WiFi access point running a TCP
proxy [Lud17] with custom rules to suppress and later release certain packets. Suppose an attacker
sits between Alice and a server, and Alice is in a chat with Bob. The attacker can reorder messages
that Alice is sending, so the server receives them in the wrong order and forwards them in the wrong
order to Bob. While Alice’s client will initially display her sent messages in the order she sent them,
once it fetches history from the server it will update to display the modified order that will match
that of Bob.

Note that such reordering attacks are not possible against e.g. Signal or MTProto’s closest
“competitor” TLS. TLS-like protocols over UDP such as DTLS [RTM21] or QUIC [IT21] either leave
it to the application to handle packet reordering (DTLS, i.e. reordering is possible against DTLS
itself) or have built-in mechanisms to handle these (QUIC, i.e. reordering is not possible against QUIC
itself).

Other types of reordering. A stronger form of reordering resistance can also be required from a protocol
if one considers the order in the transcript as a whole, so that the order of sent messages with respect
to received messages has to be preserved. This is sometimes referred to as global transcript in the
literature [UDB+15], and is generally considered to be more complex to achieve. In particular, the
following is possible in both Telegram and e.g. Signal. Alice sends a message “Let’s commit all the
crimes”. Then, simultaneously both Alice and Bob send a message. Alice: “Just kidding”; Bob: “Okay”.
Depending on the order in which these messages arrive, the transcript on either side might be (Alice:
“Let’s commit all the crimes”, Alice: “Just kidding”, Bob: “Okay”) or (Alice: “Let’s commit all the

24

crimes”, Bob: “Okay”, Alice: “Just kidding”). That is, the transcript will have Bob acknowledging a joke
or criminal activity. Note that in the context of group messaging, there is another related but weaker
property: the notion of causality preservation [EMP18]. However, when restricted to the two-party
case, the property becomes equivalent to in-order delivery (as exhibited by the support function SUPP
defined in Fig. 32).

Message drops. MTProto makes it possible to silently drop a message both when the client is the
sender18 and when it is the receiver, but it is difficult to exploit in practice. Clients and the server
attempt to resend messages for which they did not get acknowledgements. Such messages have the
same msg_ids but are enclosed in a fresh ciphertext with random padding so the attacker must be
able to distinguish the repeated encryptions to continue dropping the same payload. This is possible
e.g. with the desktop client as sender, since padding length is predictable based on the message
length [Tel21j]. When the client is a receiver, other message delivery mechanisms such as batching of
messages inside a container or API calls like messages.getHistory make it hard for an attacker to
identify repeated encryptions. So although MTProto does not prevent message drops in the latter
case, there is likely no practical attack.

Re-encryption. If a message is not acknowledged within a certain time in MTProto, it is re-encrypted
using the same msg_id and with fresh random padding. While this appears to be a useful feature and
a mitigation against message drops, it enables attacks in the IND-CPA setting, as we explain next.

As a motivation, consider a local passive adversary that tries to establish whether R responded to
I when looking at a transcript of three ciphertexts (cI,0, cR, cI,1), where cu represents a ciphertext
sent from u. In particular, it aims to establish whether cR encrypts an automatically generated
acknowledgement, denoted by “✓”, or a new message from R. If cI,1 is a re-encryption of the same
message as cI,0, re-using the state, this leaks that bit of information about cR.19

Suppose we have a channel CH that models the MTProto protocol as described in Section 4.1 and
uses the payload format given in Table 1.20 To sketch a model for acknowledgement messages for
the purpose of explaining this attack, we define a special plaintext symbol ✓ that, when received,
indicates acknowledgement for the last sent message. As in Telegram, ✓ messages are encrypted.
Further, we model re-encryptions by insisting that if the CH.Send algorithm is queried again on an
unacknowledged message m then CH.Send will produce another ciphertext c′ for m using the same
headers, including msg_id and msg_seq_no, as previously used. Critically, this means the same state
in the form of msg_id and msg_seq_no is used for two different encryptions. We use this behaviour to
break the indistinguishability of an encrypted ✓.

Consider the adversary given in Fig. 18. If b = 0, cR,i encrypts an ✓ and so cI,i+1 will not be a
re-encryption of m0 under the same msg_id and msg_seq_no that were used for cI,i. In contrast, if
b = 1, then we have c

(2)
I,j = c

(2)
I,k for some j, k, where c(i) denotes the i-th block of c, with probability 1

whenever msg_keyj = msg_keyk. This is true because the payloads of cI,j and cI,k share the same
header fields, in particular including the msg_id and msg_seq_no in the second block, encrypted under
the same key. In the setting where the adversary controls the randomness of the padding, the condition
msg_keyj = msg_keyk can be made to always hold and thus c(2)I,j = c

(2)
I,k holds with probability 1. As a

consequence two sets of queries (i.e. a total of six queries) to the oracles suffice. When the adversary
does not control the randomness, we can use the fact that msg_key is computed via SHA-256 truncated
to 128 bits and the birthday bound applies for finding collisions. Thus after 3 · 264 queries we expect
a collision with constant probability (note that the adversary can check when a collision is found).

18 There are scenarios where message drops can be impactful. Telegram offers its users the ability to delete
chat history for the other party (or all members of a group) – if such a request is dropped, severing the
connection, the chat history will appear to be cleared in the user’s app even though the request never made
it to the Telegram servers (cf. [ABJM21] for the significance of history deletion in some settings).

19 Note that here we are breaking the confidentiality of the ciphertext carrying “✓”. In addition to these
encrypted acknowledgement messages, the underlying transport layer, e.g. TCP, may also issue unencrypted
ACK messages or may resend ciphertexts as is. The difference between these two cases is that in the former
case the acknowledgement message is encrypted, in the latter it is not. For completeness, note that Telegram
clients do not resend cached ciphertext blobs when unacknowledged, but re-encrypt the underlying message
under the same state but with fresh random padding.

20 We give a formal definition of the channel in Section 4.4, but it is not necessary to outline the attack.

25

Adversary DCh,Recv
IND,q

Let aux = ε. Choose any m0,m1 ∈ CH.MS \ {✓}.
Require ∀i ∈ N : rI,i, rR,i ∈ CH.SendRS.
For i = 1, . . . , q do

cI,i ← Ch(I,m0,m0, aux, rI,i)

cR,i ← Ch(R,✓,m1, aux, rR,i) ; Recv(I, cR,i, aux)

If ∃j ̸= k : msg_keyj = msg_keyk then
If c(2)I,j = c

(2)
I,k then return 1 else return 0

Else return ⊥

Figure 18. Adversary against the IND-security of MTProto (modelled as channel CH) when permitting
re-encryption under reused msg_id and msg_seq_no. If the adversary controls the randomness, then set q = 2
and choose rI,0 = rI,1. Otherwise (i.e. all rI,i, rR,i values are uniformly random) set q = 264. In this figure,
let msg_keyi be the msg_key for cI,i and let c(i) be the i-th block of ciphertext c.

Finally, in either setting, when b = 0 we have c
(2)
I,j = c

(2)
I,k with probability 0 since the underlying

payloads differ, the key is the same and AES is a permutation for a fixed key.
To allow a security proof to go through, the cleanest solution is to remove the re-encryption

capability from the model. If a message resend facility is needed, applications can do this either by
resending the original ciphertext at the underlying transport level (without involvement of the channel)
or using the secure channel (in which case each resending would take place using an updated, unique
state of the channel).

4.3 Modelling differences

In general, we would like our formal model of MTProto 2.0 to stay as close as possible to the real
protocol, so that when we prove statements about the model, we obtain meaningful assurances about
the security of the real protocol. However, as the previous section demonstrates, the current protocol
has flaws. These prevent meaningful security analysis and can be removed by making small changes
to the protocol’s handling of metadata. Further, the protocol has certain features that make it less
amenable to formal analysis. Here we describe the modelling decisions we took that depart from the
current version of MTProto 2.0 and justify each change.

Inconsistency. There is no authoritative specification of the protocol. The Telegram documentation
often differs from the implementations and the clients are not consistent with each other.21 Where
possible, we chose a sensible “default” choice from the observed set of possibilities, but we stress that
it is in general impossible to create a formal specification of MTProto that would be valid for all
current implementations. For instance, the documentation defines server_salt as “A (random) 64-bit
number periodically (say, every 24 hours) changed (separately for each session) at the request of the
server” [Tel21d]. In practice the clients receive salts that change every hour and which overlap with
each other.22 For client differences, consider padding generation: on desktop [Tel21j], a given message
length will always result in the same padding length, whereas on Android [Tel21h], the padding length
is randomised.

Application layer. Similarly, there is no clear separation between the cryptographic protocol of
MTProto and the application data processing (expressed using the TL schema). However, to reason
succinctly about the protocol we require a certain level of abstraction. In concrete terms, this means
that we consider the msg_data field as “the message”, without interpreting its contents and in particular
without modelling TL constructors. However, this separation does not exist in implementations of
MTProto – for instance, message encoding behaves differently for some constructors (e.g. container
messages) – and so our model does not capture these details.

21 Since the server code was not available, we inferred its behaviour from observing the communication.
22 The documentation was updated in response to our paper.

26

Client/server roles. The client and the server are not considered equal in MTProto. For instance,
the server is trusted to timestamp TL messages for history, while the clients are not, which is why
our reordering attacks only work in the client to server direction. The client chooses the session_id,
the server generates the server_salt. The server accepts any session_id given in the first message and
then expects that value, while the client checks the session_id but may accept any server_salt given.23
Clients do not check the msg_seq_no field. The protocol implements elaborate measures to synchronise
“bad” client time with server time, which includes: checks on the timestamp within msg_id as well as
the salt, special service messages [Tel20b] and the resending of messages with regenerated headers.
Since much of this behaviour is not critical for security, we model both parties of the protocol as
equals. Expanding our model with this behaviour should be possible without affecting most of the
proofs.

Key exchange. We are concerned with the symmetric part of the protocol, and thus assume that
the shared auth_key is a uniformly random string rather than of the form gab mod p resulting from
the actual key exchange.

Bit mixing. MTProto uses specific bit ranges of auth_key as KDF and MAC inputs. These ranges
do not overlap for different primitives (i.e. the KDF key inputs are wholly distinct from the MAC
key inputs), and we model auth_key as a random value, so without loss of generality our model
generates the KDF and MAC key inputs as separate random values. The key input ranges for the
client and the server do overlap for KDF and MAC separately, however, so we model this in the form
of related-key-deriving functions.

Further, the KDF intermixes specific bit ranges of the outputs of two SHA-256 calls to derive
the encryption keys and IVs. We argue that this is unnecessary – the intermixed KDF output is
indistinguishable from random (the usual security requirement of a key derivation function) if and
only if the concatenation of the two SHA-256 outputs is indistinguishable from random. Hence in our
model the KDF just returns the concatenation.

Order. Given that MTProto operates over reliable transport channels, it is not necessary to allow
messages arriving out of order. Our model imposes stricter validation on metadata upon decryption
via a single sequence number that is checked by both sides and only the next expected value is
accepted. Enforcing strict ordering also automatically rules out message replay and drop attacks,
which the implementation of MTProto as studied avoided in some cases only due to application-level
processing.24

Re-encryption. Because of the attacks in Section 4.2, we insist in our formalisation that all sent
messages include a fresh value in the header. This is achieved via a stateful secure channel definition
in which either a client or server sequence number is incremented on each call to the CH.Send oracle.

Message encoding. Some of the previous points outline changes to message encoding. We simplify
the scheme, keeping to the format of Table 1 but not modelling diverging behaviours upon decoding.
The implemented MTProto message encoding scheme behaves differently depending on whether the
user is a client or a server, but each of them checks a 64-bit value in the first plaintext block, session_id
and server_salt respectively. To prove security of the channel, it is enough that there is a single
such value that both parties check, and it does not need to be randomised, so we model a constant
session_id and we leave the salt as an empty field. We also merge the msg_id and msg_seq_no fields
into a single sequence number field of corresponding size, reflecting that a simple counter suffices in
place of the original fields. Note that though we only prove security with respect to this particular
message encoding scheme, our modelling approach is flexible and can accommodate more complex
message encoding schemes.
23 The Android client accepts any value in the place of server_salt, and the desktop client [Tel21k] compares it

with a previously saved value and resends the message if they do not match and if the timestamp within
msg_id differs from the acceptable time window.

24 Secret chats implement more elaborate measures against replay/reordering [Tel21f], however this complexity
is not required when in-order delivery is required for each direction separately.

27

4.4 MTProto-based channel

Our model of the MTProto channel is given in Definition 5 and Fig. 19. The users I and R represent
the client and the server. We abstract the individual keyed primitives into function families.25

Definition 5. Let ME be a message encoding scheme. Let HASH be a function family such that
{0, 1}992 ⊆ HASH.In. Let MAC be a function family such that ME.Out ⊆ MAC.In. Let KDF be a
function family such that {0, 1}MAC.ol ⊆ KDF.In. Let ϕMAC : {0, 1}320 → MAC.Keys ×MAC.Keys and
ϕKDF : {0, 1}672 → KDF.Keys × KDF.Keys. Let SE be a deterministic symmetric encryption scheme
with SE.kl = KDF.ol and SE.MS = ME.Out. Then CH = MTP-CH[ME,HASH,MAC,KDF, ϕMAC, ϕKDF,
SE] is the channel as defined in Fig. 19, with CH.MS = ME.MS and CH.SendRS = ME.EncRS.

CH.Init()

hk ←$ {0, 1}HASH.kl

kk ←$ {0, 1}672 ; mk ←$ {0, 1}320

auth_key_id← HASH.Ev(hk, kk ∥mk)

(kkI , kkR)← ϕKDF(kk)

(mkI ,mkR)← ϕMAC(mk)

keyI ← (kkI ,mkI)

keyR ← (kkR,mkR)

(stME,I , stME,R)←$ ME.Init()

stI ← (auth_key_id, keyI , keyR, stME,I)

stR ← (auth_key_id, keyR, keyI , stME,R)

Return (stI , stR)

CH.Send(stu,m, aux; r)

(auth_key_id, keyu, keyu, stME)← stu
(kku,mku)← keyu
(stME, p)← ME.Encode(stME,m, aux; r)

msg_key← MAC.Ev(mku, p)

k ← KDF.Ev(kku,msg_key)

cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

stu ← (auth_key_id, keyu, keyu, stME)

Return (stu, c)

CH.Recv(stu, c, aux)

(auth_key_id, keyu, keyu, stME)← stu
(kku,mku)← keyu
(auth_key_id′,msg_key, cse)← c

If auth_key_id ̸= auth_key_id′ then
Return (stu,⊥)

k ← KDF.Ev(kku,msg_key)

p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

If msg_key′ ̸= msg_key then
Return (stu,⊥)

(stME,m)← ME.Decode(stME, p, aux)

stu ← (auth_key_id, keyu, keyu, stME)

Return (stu,m)

Figure 19. Construction of MTProto-based channel CH = MTP-CH[ME,HASH,MAC,KDF, ϕMAC, ϕKDF, SE]
from message encoding scheme ME, function families HASH, MAC and KDF, related-key-deriving functions
ϕMAC and ϕKDF, and from deterministic symmetric encryption scheme SE.

CH.Init generates the keys for both users and initialises the message encoding scheme. Note that
auth_key as described in Section 4.1 does not appear in the code in Fig. 19, since each part of auth_key
that is used for keying the primitives can be generated independently. These parts are denoted by hk,
kk and mk.26 The function ϕKDF (resp. ϕMAC) is then used to derive the (related) keys for each user
from kk (resp. mk).

CH.Send proceeds by first using ME to encode a message m into a payload p. The MAC is computed
on this payload to produce a msg_key, and the KDF is called on the msg_key to compute the key and
IV for symmetric encryption SE, here abstracted as k. The payload is encrypted with SE using this
key material, and the resulting ciphertext is called cse . The CH ciphertext c consists of auth_key_id,
msg_key and the symmetric ciphertext cse .
25 While the definition itself could admit many different implementations of the primitives, we are interested

in modelling MTProto and thus do not define our channel in a fully general way, e.g. we fix some key sizes.
26 The comments in Fig. 21 show how the exact 2048-bit value of auth_key can be reconstructed by combining

bits of hk, kk, mk. Note that the key hk used for HASH is deliberately chosen to contain all bits of auth_key
that are not used for KDF and MAC keys kk, mk.

28

CH.Recv reverses the steps by first computing k from the msg_key parsed from c, then decrypting
cse to the payload p, and recomputing the MAC of p to check whether it equals msg_key. If not, it
returns ⊥ (without changing the state) to signify failure. If the check passes, it uses ME to decode the
payload into a message m. It is important the MAC check is performed before ME.Decode is called,
otherwise this opens the channel to attacks – as we show later in Section 6.

The message encoding scheme MTP-ME is specified in Definition 6 and Fig. 20. It is a simplified
scheme for strict in-order delivery without replays (see Appendix D for the actual MTProto scheme
that permits reordering as outlined in Section 4.2).

Definition 6. Let session_id ∈ {0, 1}64 and let pb, bl ∈ N. Denote by ME = MTP-ME[session_id,
pb, bl] the message-encoding scheme given in Fig. 20, with ME.MS =

⋃224

i=1{0, 1}8·i, ME.Out =⋃
i∈N{0, 1}bl·i and ME.pl(ℓ, ν) = 256 + ℓ+ |GenPadding(ℓ; ν)|.27

ME.Init()

Nsent ← 0 ; Nrecv ← 0

stME,I ← (session_id, Nsent, Nrecv)

stME,R ← (session_id, Nsent, Nrecv)

Return (stME,I , stME,R)

ME.Encode(stME,u,m, aux)

(session_id, Nsent, Nrecv)← stME,u

salt← ⟨0⟩64 ; seq_no← ⟨Nsent⟩96
length← ⟨|m|/8⟩32
padding←$ GenPadding(|m|)
p0 ← salt ∥ session_id
p1 ← seq_no ∥ length
p2 ← m ∥ padding
p← p0 ∥ p1 ∥ p2
Nsent ← (Nsent + 1) mod 296

stME,u ← (session_id, Nsent, Nrecv)

Return (stME,u, p)

GenPadding(ℓ) // ℓ ∈
⋃224

i=1{0, 1}
8·i

ℓ′ ← bl− ℓ mod bl

bn ←$ {1, · · · , pb}
padding←$ {0, 1}ℓ

′+bn∗bl

Return padding

ME.Decode(stME,u, p, aux)

If |p| < 256 then return (stME,u,⊥)
(session_id, Nsent, Nrecv)← stME,u

ℓ← |p| − 256

salt← p[0 : 64]

session_id′ ← p[64 : 128]

seq_no← p[128 : 224]

length← p[224 : 256]

If (session_id′ ̸= session_id)∨
(seq_no ̸= Nrecv)∨
¬(0 < length ≤ |ℓ| /8) then

Return (stME,u,⊥)
m← p[256 : 256 + length · 8]
Nrecv ← (Nrecv + 1) mod 296

stME,u ← (session_id, Nsent, Nrecv)

Return (stME,u,m)

Figure 20. Construction of simplified message encoding scheme for strict in-order delivery ME =
MTP-ME[session_id, pb, bl] for session identifier session_id, maximum padding length (in full blocks) pb,
and output block length bl.

As justified in Section 4.3, MTP-ME follows the header format of Table 1, but it does not use
the server_salt field (we define salt as filled with zeros to preserve the field order) and we merge the
64-bit msg_id and 32-bit msg_seq_no fields into a single 96-bit seq_no field. Note that the internal
counters of MTP-ME wrap around when seq_no “overflows” modulo 296, and an attacker can start
replaying old payloads as soon as this happens. So when proving the encoding integrity of MTP-ME in
Appendix E.5 with respect to a support function that prohibits replays, we will consider adversaries
that make at most 296 message encoding queries.28

The following SHA-1 and SHA-256-based function families capture the MTProto primitives that
are used to derive auth_key_id, the message key msg_key and the symmetric encryption key k.
27 The definition of ME.pl assumes that GenPadding is invoked with the random coins of the corresponding

ME.Encode call. For simplicity, we chose to not surface these coins in Fig. 20 and instead handle this
implicitly.

28 A limitation on number of queries is inherent as long as fixed-length sequence numbers are used. There are
other ways to handle counters which could imply correctness for unbounded adversaries. MTP-ME wraps its
counters to stay close to the actual MTProto implementations.

29

Definition 7. MTP-HASH is the function family with MTP-HASH.Keys = {0, 1}1056, MTP-HASH.In
= {0, 1}992, MTP-HASH.ol = 128 and MTP-HASH.Ev given in Fig. 21.

MTP-HASH.Ev(hk, x) // |hk| = 1056, |x| = 992

kk ← x[0 : 672] // auth_key[0 : 672]

r0 ← hk[0 : 32] // auth_key[672 : 704]

mk ← x[672 : 992] // auth_key[704 : 1024]

r1 ← hk[32 : 1056] // auth_key[1024 : 2048]

auth_key← kk ∥ r0 ∥mk ∥ r1
auth_key_id← SHA-1(auth_key)[96 : 160]

Return auth_key_id

Figure 21. Construction of function family MTP-HASH.

Definition 8. MTP-MAC is the function family defined by MTP-MAC.Keys = {0, 1}256, MTP-MAC.In
= {0, 1}∗, MTP-MAC.ol = 128 and MTP-MAC.Ev given in Fig. 22.

MTP-MAC.Ev(mku, p) // |mku| = 256, p ∈ {0, 1}∗

msg_key← SHA-256(mku ∥ p)[64 : 192]

Return msg_key

Figure 22. Construction of function family MTP-MAC.

Definition 9. MTP-KDF is the function family defined by MTP-KDF.Keys = {0, 1}288 × {0, 1}288,
MTP-KDF.In = {0, 1}128, MTP-KDF.ol = 2 · SHA-256.ol and MTP-KDF.Ev given in Fig. 23.

MTP-KDF.Ev(kku,msg_key) // |msg_key| = 128

(kk0, kk1)← kku

k0 ← SHA-256(msg_key ∥ kk0)

k1 ← SHA-256(kk1 ∥msg_key)

k ← k0 ∥ k1
Return k

Figure 23. Construction of function family MTP-KDF.

Since the keys for KDF and MAC in MTProto are not independent for the two users, we have
to work in a related-key setting. We are inspired by the RKA framework of [BK03], but define our
related-key-deriving function ϕKDF (resp. ϕMAC) to output both keys at once, as a function of kk (resp.
mk). See Fig. 24 for precise details of ϕKDF and ϕMAC.

Finally, we define the deterministic symmetric encryption scheme.

Definition 10. Let AES-256 be the standard AES block cipher with AES-256.kl = 256 and AES-256.ol
= 128, and let IGE be the block cipher mode in Fig. 4. Let MTP-SE = IGE[AES-256].

5 Formal security analysis

In this section, we define the security notions that we require to hold for each of the underlying
primitives of MTP-CH, and then use these notions to justify its correctness and prove its security
properties.

30

ϕKDF(kk) // |kk| = 672

kkI,0 ← kk[0 : 288]

kkR,0 ← kk[64 : 352]

kkI,1 ← kk[320 : 608]

kkR,1 ← kk[384 : 672]

kkI ← (kkI,0, kkI,1)

kkR ← (kkR,0, kkR,1)

Return (kkI , kkR)

ϕMAC(mk) // |mk| = 320

mkI ← mk[0 : 256]

mkR ← mk[64 : 320]

Return (mkI ,mkR)

Figure 24. Related-key-deriving functions ϕKDF : {0, 1}672 → MTP-KDF.Keys × MTP-KDF.Keys and
ϕMAC : {0, 1}320 → MTP-MAC.Keys×MTP-MAC.Keys.

We start by defining the security notions we require from the standard primitives in Section 5.1
(i.e. from the MTProto-based instantiations of HASH, KDF, MAC, SE); in Section 5.2 we then define
two novel assumptions about SHACAL-2 that will be used in Appendix E to justify some of the
aforementioned security notions. In Section 5.3 we define the security notions that will be required
from the MTProto-based message encoding scheme; these notions are likewise justified in Appendix E.
We prove that channel MTP-CH satisfies correctness, indistinguishability and integrity in Sections
5.4,5.5 and 5.6 respectively. We conclude by providing an interpretation of our formal results in
Section 5.7.

Our proofs use games and hops between them. In our games, we annotate some lines with comments
of the form “Gi–Gj” to indicate that these lines belong only to games Gi through Gj (inclusive).
The lines not annotated with such comments are shared by all of the games that are shown in the
particular figure.

5.1 Security requirements on standard primitives

MTP-HASH is a one-time indistinguishable function family. We require that MTP-HASH
meets the one-time weak indistinguishability notion (OTWIND) defined in Fig. 25. The security
game Gotwind

HASH,D in Fig. 25 evaluates the function family HASH on a challenge input xb using a secret
uniformly random function key hk. Adversary D is given x0, x1 and the output of HASH; it is required
to guess the challenge bit b ∈ {0, 1}. The game samples inputs x0, x1 uniformly at random rather
than allowing D to choose them, so this security notion requires HASH to provide only a weak form
of one-time indistinguishability. The advantage of D in breaking the OTWIND-security of HASH

is defined as AdvotwindHASH (D) = 2 · Pr
[
Gotwind

HASH,D

]
− 1. Appendix E.1 provides a formal reduction from

the OTWIND-security of MTP-HASH to the one-time PRF-security of SHACAL-1 (as defined in
Section 2.2).

Game Gotwind
HASH,D

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl

x0 ←$ HASH.In ; x1 ←$ HASH.In

auth_key_id← HASH.Ev(hk, xb)

b′ ←$ D(x0, x1, auth_key_id)
Return b′ = b

Figure 25. One-time weak indistinguishability of function family HASH.

MTP-KDF is a PRF under related-key attacks. We require that MTP-KDF behaves like a
pseudorandom function in the RKA setting (RKPRF) as defined in Fig. 26. The security game
Grkprf

KDF,ϕKDF,D in Fig. 26 defines a variant of the standard PRF notion allowing the adversary D to use
its RoR oracle to evaluate the function family KDF on either of the two secret, related function keys
kkI , kkR (both computed using related-key-deriving function ϕKDF). The advantage ofD in breaking the
RKPRF-security of KDF with respect to ϕKDF is defined as AdvrkprfKDF,ϕKDF

(D) = 2 ·Pr
[
Grkprf

KDF,ϕKDF,D

]
− 1.

31

Game Grkprf
KDF,ϕKDF,D

b←$ {0, 1}
kk ←$ {0, 1}672

(kkI , kkR)← ϕKDF(kk)

b′ ←$ DRoR

Return b′ = b

RoR(u,msg_key)
k1 ← KDF.Ev(kku,msg_key)
If T[u,msg_key] = ⊥ then

T[u,msg_key]←$ {0, 1}KDF.ol

k0 ← T[u,msg_key]
Return kb

Figure 26. Related-key PRF-security of function family KDF with respect to related-key-deriving function
ϕKDF.

In Section 5.2 we define a novel security notion for SHACAL-2 that roughly requires it to be a
leakage-resilient PRF under related-key attacks; in Appendix E.2 we provide a formal reduction from
the RKPRF-security of MTP-KDF to the new security notion. In this context, “leakage resilience”
means that the adversary can adaptively choose a part of the SHACAL-2 key. However, we limit
the adversary to being able to evaluate SHACAL-2 only on a single known, constant input (which is
IV256, the initial state of SHA-256). The new security notion is formalised as the LRKPRF-security of
SHACAL-2 with respect to a pair of related-key-deriving functions ϕKDF and ϕSHACAL-2 (the latter is
defined in Section 5.2).

MTP-MAC is collision-resistant under RKA. We require that collisions in the outputs of MTP-MAC
under related keys are hard to find (RKCR), as defined in Fig. 27. The security game Grkcr

MAC,ϕMAC,F in
Fig. 27 gives the adversary F two related function keys mkI ,mkR (created by the related-key-deriving
function ϕMAC), and requires it to produce two payloads p0, p1 (for either user u) such that there is a
collision in the corresponding outputs msg_key0,msg_key1 of the function family MAC. The advantage
of F in breaking the RKCR-security of MAC with respect to ϕMAC is defined as AdvrkcrMAC,ϕMAC

(F) =
Pr
[
Grkcr

MAC,ϕMAC,F

]
. It is clear by inspection that the RKCR-security of MTP-MAC.Ev(mku, p) =

SHA-256(mku ∥ p)[64 : 192] (with respect to ϕMAC from Fig. 24) reduces to the collision resistance of
truncated-output SHA-256.

Game Grkcr
MAC,ϕMAC,F

mk ←$ {0, 1}320

(mkI ,mkR)← ϕMAC(mk)

(u, p0, p1)←$ F(mkI ,mkR)

msg_key0 ← MAC.Ev(mku, p0)

msg_key1 ← MAC.Ev(mku, p1)

dist_inp← (p0 ̸= p1)

eq_out← (msg_key0 = msg_key1)

Return dist_inp ∧ eq_out

Figure 27. Related-key collision resistance of function family MAC with respect to related-key-deriving
function ϕMAC.

MTP-MAC is a PRF under RKA for unique-prefix inputs. We require that MTP-MAC behaves
like a pseudorandom function in the RKA setting when it is evaluated on a set of inputs that have
unique 256-bit prefixes (UPRKPRF), as defined in Fig. 28. The security game Guprkprf

MAC,ϕMAC,D in Fig. 28
extends the standard PRF notion to use two related ϕMAC-derived function keys mkI ,mkR for the
function family MAC (similar to the RKPRF-security notion we defined above); but it also enforces
that the adversary D cannot query its oracle RoR on two inputs (u, p0) and (u, p1) for any u ∈ {I,R}
such that p0, p1 share the same 256-bit prefix. The unique-prefix condition means that the game
does not need to maintain a PRF table to achieve output consistency. Note that this security game
only allows to call the oracle RoR with inputs of length |p| ≥ 256; this is sufficient for our purposes,
because in MTP-CH the function family MTP-MAC is only used with payloads that are longer than

32

256 bits. The advantage of D in breaking the UPRKPRF-security of MAC with respect to ϕMAC is
defined as AdvuprkprfMAC,ϕMAC

(D) = 2 · Pr
[
Guprkprf

MAC,ϕMAC,D

]
− 1.

Game Guprkprf
MAC,ϕMAC,D

b←$ {0, 1}
mk ←$ {0, 1}320

(mkI ,mkR)← ϕMAC(mk)

XI ← XR ← ∅
b′ ←$ DRoR

Return b′ = b

RoR(u, p) // p ∈ {0, 1}∗

If |p| < 256 then return ⊥
p0 ← p[0 : 256]

If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
msg_key1 ← MAC.Ev(mku, p)

msg_key0 ←$ {0, 1}MAC.ol

Return msg_keyb

Figure 28. Related-key PRF-security of function family MAC for inputs with unique 256-bit prefixes, with
respect to key derivation function ϕMAC.

In Section 5.2 we define a novel security notion that requires SHACAL-2 to be a leakage-resilient,
related-key PRF when evaluated on a fixed input; in Appendix E.3 we show that the UPRKPRF-
security of MTP-MAC reduces to this security notion and to the one-time PRF-security (OTPRF) of
the SHA-256 compression function h256. The new security notion is similar to the notion discussed
in Section 5.1 and defined in Section 5.2, in that it only allows the adversary to evaluate SHACAL-2
on the fixed input IV256. However, the underlying security game derives the related SHACAL-2 keys
differently, partially based on the function ϕMAC defined in Fig. 24 (as opposed to ϕKDF). The new
notion is formalised as the HRKPRF-security of SHACAL-2 with respect to ϕMAC.

MTP-SE is a one-time indistinguishable SE scheme. For any block cipher E, Appendix E.4 shows
that IGE[E] as used in MTProto is OTIND$-secure (defined in Fig. 3) if CBC[E] is OTIND$-secure.
This enables us to use standard results [BDJR97,Rog04] on CBC in our analysis of MTProto.

5.2 Novel assumptions about SHACAL-2

In this section we define two novel assumptions about SHACAL-2. Both assumptions require SHACAL-2
to be a related-key PRF when evaluated on the fixed input IV256 (i.e. on the initial state of SHA-256),
meaning that the adversary can obtain the values of SHACAL-2.Ev(·, IV256) for a number of different
but related keys. We formalise the two assumptions as security notions, called LRKPRF and HRKPRF,
each defined with respect to different related-key-deriving functions; this reflects the fact that these
security notions allow the adversary to choose the keys in substantially different ways. The notion of
LRKPRF-security derives the SHACAL-2 keys partially based on the function ϕKDF, whereas the notion
of HRKPRF-security derives SHACAL-2 keys partially based on the function ϕMAC (both functions
are defined in Fig. 24). Both security notions also have different flavours of leakage resilience: (1) the
security game defining LRKPRF allows the adversary to directly choose 128 bits of the 512-bit long
SHACAL-2 key, with another 96 bits of this key fixed and known (due to being chosen by the SHA
padding function SHA-pad), and (2) the security game defining HRKPRF allows the adversary to
directly choose 256 bits of the 512-bit long SHACAL-2 key.

We use the notion of LRKPRF-security to justify the RKPRF-security of MTP-KDF with respect to
ϕKDF (as explained in Section 5.1, with the security reduction in Appendix E.2), which is needed in both
the IND-security and the INT-security proofs of MTP-CH. We use the notion of HRKPRF-security to
justify the UPRKPRF-security of MTP-MAC with respect to ϕMAC (as explained in Section 5.1, with
the security reduction in Appendix E.3), which is needed in the IND-security proof of MTP-CH.

We stress that we have to assume properties of SHACAL-2 that have not been studied in the
literature. Related-key attacks on reduced-round SHACAL-2 have been considered [KKL+04,LKKD06],
but they ordinarily work with a known difference relation between unknown keys. In contrast, our
LRKPRF-security notion uses keys that differ by random, unknown parts. Both of our security notions
consider keys that are partially chosen or known by the adversary. In Appendix F we show that
both the LRKPRF-security and the HRKPRF-security of SHACAL-2 hold in the ideal cipher model
(i.e. when SHACAL-2 is modelled as the ideal cipher); we provide concrete upper bounds for breaking

33

each of them. However, we cannot rule out the possibility of attacks on SHACAL-2 due to its internal
structure in the setting of related-key attacks combined with key leakage. We leave this as an open
question.

SHACAL-2 is a PRF with ϕKDF-based related keys. Our LRKPRF-security notion for SHACAL-2
is defined with respect to related-key-deriving functions ϕKDF (from Fig. 24) and ϕSHACAL-2 from
Fig. 29. The latter mirrors the design of MTP-KDF that (in Definition 9) is defined to return
SHA-256(msg_key ∥ kk0) ∥ SHA-256(kk1 ∥msg_key) for the target key kku = (kk0, kk1), except that
ϕSHACAL-2 only needs to produce the corresponding SHA-padded inputs. We note that LRKPRF-
security of SHACAL-2 could instead be defined with respect to a single related-key-deriving function
that would merge ϕKDF and ϕSHACAL-2, which could lead to a cleaner formalisation of LRKPRF-security;
however, we chose to avoid introducing an additional abstraction level here.

ϕSHACAL-2(kku,msg_key) // |msg_key| = 128

(kk0, kk1)← kku

sk0 ← SHA-pad(msg_key ∥ kk0)

sk1 ← SHA-pad(kk1 ∥msg_key)
Return (sk0, sk1)

Figure 29. Related-key-deriving function ϕSHACAL-2 : (MTP-KDF.Keys × MTP-KDF.Keys) × {0, 1}128 →
{0, 1}512.

Consider the game Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,D in Fig. 30. Adversary D is given access to the RoR

oracle that takes u, i,msg_key as input; all inputs to the oracle serve as parameters for the SHACAL-2
key derivation, used to determine the challenge key ski. The adversary gets back either the output of
SHACAL-2.Ev(ski, IV256) (if b = 1), or a uniformly random value (if b = 0), and is required to guess
the challenge bit. The PRF table T is used to ensure consistency, so that a single random value is
sampled and remembered for each set of used key derivation parameters u, i,msg_key. The advantage
of D in breaking the LRKPRF-security of SHACAL-2 with respect to ϕKDF and ϕSHACAL-2 is defined
as AdvlrkprfSHACAL-2,ϕKDF,ϕSHACAL-2

(D) = 2 · Pr
[
Glrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2,D

]
− 1.

Game Glrkprf
SHACAL-2,ϕKDF,ϕSHACAL-2,D

b←$ {0, 1}
kk ←$ {0, 1}672

(kkI , kkR)← ϕKDF(kk)

b′ ←$ DRoR

Return b′ = b

RoR(u, i,msg_key)

// u ∈ {I,R}, i ∈ {0, 1}, |msg_key| = 128

(sk0, sk1)← ϕSHACAL-2(kku,msg_key)

y1 ← SHACAL-2.Ev(ski, IV256)

If T[u, i,msg_key] = ⊥ then
T[u, i,msg_key]←$ {0, 1}SHACAL-2.ol

y0 ← T[u, i,msg_key]

Return yb

Figure 30. Leakage-resilient, related-key PRF-security of function family SHACAL-2 on fixed input IV256 with
respect to related-key-deriving functions ϕKDF and ϕSHACAL-2.

SHACAL-2 is a PRF with ϕMAC-based related keys. Consider the game Ghrkprf
SHACAL-2,ϕMAC,D in Fig. 31.

AdversaryD is given access to RoR oracle, and is required to choose the 256-bit suffix p of each challenge
key used for evaluating SHACAL-2.Ev(·, IV256). The value of mku is then used to set the 256-bit prefix
of the challenge key, where u is also chosen by the adversary, but the mkI ,mkR values themselves are
related secrets that are not known to D. The advantage of D in breaking the HRKPRF-security of
SHACAL-2 with respect to ϕMAC is defined as AdvhrkprfSHACAL-2,ϕMAC

(D) = 2 · Pr
[
Ghrkprf

SHACAL-2,ϕMAC,D

]
− 1.

34

Game Ghrkprf
SHACAL-2,ϕMAC,D

b←$ {0, 1}
mk ←$ {0, 1}320

(mkI ,mkR)← ϕMAC(mk)

b′ ←$ DRoR

Return b′ = b

RoR(u, p) // u ∈ {I,R}, |p| = 256

y1 ← SHACAL-2.Ev(mku ∥ p, IV256)

If T[u, p] = ⊥ then
T[u, p]←$ {0, 1}SHACAL-2.ol

y0 ← T[u, p]

Return yb

Figure 31. Leakage-resilient, related-key PRF-security of function family SHACAL-2 on fixed input IV256 with
respect to related-key-deriving function ϕMAC.

5.3 Security requirements on message encoding

In Section 3.5 we defined encoding integrity of a message encoding scheme ME with respect to any
support function supp. We now define the support function supp = SUPP that will be used for our
security proofs. We also define three ad-hoc notions that must be met by the MTProto-based message
encoding scheme MTP-ME in order to be compatible with our security proofs.

MTP-ME ensures in-order delivery. We require that MTP-ME is EINT-secure (Fig. 15) with
respect to the support function SUPP defined in Fig. 32. We define SUPP to enforce strict in-order
delivery for each user’s sent messages, thus preventing message forgeries, replays, (unidirectional)
reordering and drops.

SUPP(u, tru, tru, label, aux)

(Nrecv,mrecv) ← find(recv, tru, label)

If mrecv ̸= ⊥ then return ⊥
(Nsent,msent) ← find(sent, tru, label)

If Nsent ̸= Nrecv + 1 then
Return ⊥

Return msent

find(op, tr, label)

Nop ← 0

For each (op′,m, label′, aux) ∈ tr do
If (op′ = op = recv ∧m ̸= ⊥)∨

(op′ = op = sent ∧ label′ ̸= ⊥) then
Nop ← Nop + 1

If label′ = label then
Return (Nop,m)

Return (Nop,⊥)

Figure 32. Support function SUPP for strict in-order delivery.

The formalisation of the support function SUPP uses a helper function find(op, tr, label) that
searches a transcript tr for an op-type entry (where op ∈ {sent, recv}) containing a specific label label.
This code relies on an assumption that all support labels are unique, which is true for payloads of
MTP-ME and for ciphertexts of MTP-CH as long as at most 296 plaintexts are sent.29 Function find
also determines the order number of the target entry among all valid entries (denoted Nop); if the entry
was not found then Nop is set to the number of all valid entries in the transcript. The support function
SUPP on inputs u, tru, tru, label requires that (i) an entry with label label is found in the sender’s
transcript tru, and (ii) an entry with label label is not found in the receiver’s transcript tru, and (iii)
the number of valid entries in the receiver’s transcript is one fewer than the order number of the
entry found in the sender’s transcript, i.e. Nsent = Nrecv + 1. Here the condition (i) prevents message
forgery, the condition (ii) prevents message replays, whereas the condition (iii) prevents message
reordering and drops. As outlined in Section 4.2, the message encoding scheme ME in MTProto we
studied (cf. Appendix D) allowed reordering so it was not EINT-secure with respect to SUPP; instead
we use the simplified message encoding scheme MTP-ME (cf. Definition 6) for our formal analysis of
MTProto.30 In Appendix E.5 we show that AdveintMTP-ME,SUPP(F) = 0 for any F making at most 296

queries to Send.
29 In MTP-CH the first 296 plaintexts are encoded into distinct payloads using MTP-ME, whereas distinct

payloads are then encrypted into distinct ciphertexts according to the RKCR-security of MAC with respect
to ϕMAC. The latter is used for transition from G5 to G6 of the integrity proof for MTP-CH in Section 5.6.

30 Note that aux is not used in SUPP or in MTP-ME. It would be possible to add time synchronisation using
the timestamp captured in the msg_id field just as the current MTProto ME implementation does.

35

Game Gupref
ME,F

win← false

(stME,I , stME,R)←$ ME.Init()

XI ← XR ← ∅
FSend

Return win

Send(u,m, aux, r)

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

If |p| < 256 then return ⊥
p0 ← p[0 : 256]

If p0 ∈ Xu then win← true

Xu ← Xu ∪ {p0}
Return p

Figure 33. Prefix uniqueness of message encoding scheme ME.

Prefix uniqueness of MTP-ME. We require that payloads produced by MTP-ME have distinct
prefixes of size 256 bits (independently for each user u ∈ {I,R}), as defined by the security game in
Fig. 33. The advantage of an adversary F in breaking the UPREF-security of a message encoding scheme
ME is defined as AdvuprefME (F) = Pr

[
Gupref

ME,F

]
. Given the fixed prefix size, this notion cannot be satisfied

against unbounded adversaries. Our MTP-ME scheme ensures unique prefixes using the 96-bit counter
seq_no that contains the number of messages sent by user u, so we have AdvuprefMTP-ME(F) = 0 for any F
making at most 296 queries, and otherwise there exists an adversary F such that AdvuprefMTP-ME(F) = 1.
Note that MTP-ME always has payloads larger than 256 bits. The MTProto implementation of message
encoding we analysed was not UPREF-secure as it allowed repeated msg_id (cf. Section 4.2).

Game Gencrob
ME,D

b←$ {0, 1}
(stME,I , stME,R)←$ ME.Init()

b′ ←$ DSend,Recv

Return b′ = b

Send(u,m, aux, r)

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

Return p

Recv(u, p, aux)

If b = 1 then
(stME,u,m)← ME.Decode(stME,u, p, aux)

Return ⊥

Figure 34. Encoding robustness of message encoding scheme ME.

Encoding robustness of MTP-ME. We require that decoding in MTP-ME should not affect its
state in such a way that would be visible in future encoded payloads, as defined by the security game
in Fig. 34. The advantage of an adversary D in breaking the ENCROB-security of a message encoding
scheme ME is defined as AdvencrobME (D) = 2 · Pr

[
Gencrob

ME,D

]
− 1. This advantage is trivially zero for both

MTP-ME and the original MTProto message encoding scheme (cf. Appendix D). Note, however, that
this property prevents a message encoding scheme from building payloads that include the number
of previously received messages. It is thus incompatible with stronger notions of resistance against
reordering attacks such as the global transcript (cf. Section 4.2).

Game Gunpred
SE,ME,F

win← false

FExpose,Ch

Return win

Expose(u,msg_key)

// msg_key ∈ {0, 1}∗

S[u,msg_key]← true

Return T[u,msg_key]

Ch(u,msg_key, cse , stME, aux)

// msg_key ∈ {0, 1}∗

If ¬S[u,msg_key] then
If T[u,msg_key] = ⊥ then

T[u,msg_key]←$ {0, 1}SE.kl

k ← T[u,msg_key]

p← SE.Dec(k, cse)

(stME,m)← ME.Decode(stME, p, aux)

If m ̸= ⊥ then win← true

Return ⊥

Figure 35. Unpredictability of deterministic symmetric encryption scheme SE with respect to message encoding
scheme ME.

36

Combined security of MTP-SE and MTP-ME. We require that decryption in MTP-SE with
uniformly random keys has unpredictable outputs with respect to MTP-ME, as defined in Fig. 35. The
security game Gunpred

SE,ME,F in Fig. 35 gives adversary F access to two oracles. For any user u ∈ {I,R} and
message key msg_key, oracle Ch decrypts a given ciphertext cse of deterministic symmetric encryption
scheme SE under a uniformly random key k ∈ {0, 1}SE.kl, and then decodes it using the given message
encoding state stME of message encoding scheme ME, returning no output. The adversary is allowed
to choose arbitrary values of cse and stME; it is allowed to repeatedly query oracle Ch on inputs that
contain the same values for u,msg_key in order to reuse a fixed, secret SE key k with different choices
of cse . Oracle Expose lets F learn the SE key corresponding to the given u and msg_key; the table
S is then used to disallow the adversary from querying Ch with this pair of u and msg_key values
again. F wins if it can cause ME.Decode to output a valid m ̸= ⊥. Note that msg_key in this game
merely serves as a label for the tables, so we allow it to be an arbitrary string msg_key ∈ {0, 1}∗.
The advantage of F in breaking the UNPRED-security of SE with respect to ME is defined as
AdvunpredSE,ME(F) = Pr

[
Gunpred

SE,ME,F

]
. In Appendix E.6 we show that AdvunpredMTP-SE,MTP-ME(F) ≤ qCh/2

64 for
any F making qCh queries.

5.4 Correctness of MTP-CH

We claim that our MTProto-based channel satisfies our correctness definition. Consider any adversary
F playing in the correctness game Gcorr

CH,supp,F (Fig. 12) for channel CH = MTP-CH (Fig. 19) and
support function supp = SUPP (Fig. 32). Due to the definition of SUPP, the Recv oracle in game
Gcorr

MTP-CH,SUPP,F rejects all CH ciphertexts that were not previously returned by the Send oracle. The
encryption and decryption algorithms of channel MTP-CH rely in a modular way on the message
encoding scheme MTP-ME, deterministic function families MTP-KDF,MTP-MAC, and deterministic
symmetric encryption scheme MTP-SE; the latter provides decryption correctness, so any valid
ciphertext processed by oracle Recv correctly yields the originally encrypted payload p. Thus we need
to show that MTP-ME always recovers the expected plaintext m from payload p, meaning m matches
the corresponding output of SUPP. In Section 3.5 we formalised this requirement as the encoding
correctness of MTP-ME with respect to SUPP, and discussed that it is also implied by the encoding
integrity of MTP-ME with respect to SUPP. We prove the latter in Appendix E.5 for adversaries that
make at most 296 queries.

5.5 IND-security of MTP-CH

We begin our IND-security reduction by considering an arbitrary adversary DIND playing in the
IND-security game against channel CH = MTP-CH (i.e. Gind

CH,DIND
in Fig. 13), and we gradually change

this game until we can show that DIND can no longer win. To this end, we make three key observations:

(1) Recall that oracle Recv always returns ⊥, and the only functionality of this oracle is to update
the state of receiver’s channel by calling CH.Recv. We assume that calls to CH.Recv never affect
the ciphertexts that are returned by future calls to CH.Send (more precisely, we use the ENCROB
property of ME that reasons about payloads rather than ciphertexts). This allows us to completely
disregard the Recv oracle, making it immediately return ⊥ without calling CH.Recv.

(2) We use the UPRKPRF-security of MAC to show that the ciphertexts returned by oracle Ch
contain msg_key values that look uniformly random and are independent of each other. Roughly,
this security notion requires that MAC can only be evaluated on a set of inputs with unique
prefixes. To ensure this, we assume that the payloads produced by ME meet this requirement (as
formalised by the UPREF property of ME).

(3) In order to prove that oracle Ch does not leak the challenge bit, it remains to show that ciphertexts
returned by Ch contain cse values that look uniformly random and independent of each other. This
follows from the OTIND$-security of SE. We invoke the OTWIND-security of HASH to show that
auth_key_id does not leak any information about the KDF keys; we then use the RKPRF-security
of KDF to show that the keys used for SE are uniformly random. Finally, we use the birthday
bound to argue that the uniformly random values of msg_key are unlikely to collide, and hence
the keys used for SE are also one-time.

Formally, we prove the following.

37

Theorem 1. Let ME, HASH, MAC, KDF, ϕMAC, ϕKDF, SE be any primitives that meet the requirements
stated in Definition 5 of channel MTP-CH. Let CH = MTP-CH[ME,HASH,MAC,KDF, ϕMAC, ϕKDF,SE].
Let DIND be any adversary against the IND-security of CH, making qCh queries to its Ch oracle. Then
we can build adversaries DOTWIND, DRKPRF, DENCROB, FUPREF, DUPRKPRF, DOTIND$ such that

AdvindCH(DIND) ≤ 2 ·
(
AdvotwindHASH (DOTWIND) + AdvrkprfKDF,ϕKDF

(DRKPRF)

+ AdvencrobME (DENCROB) + AdvuprefME (FUPREF)

+ AdvuprkprfMAC,ϕMAC
(DUPRKPRF) +

qCh · (qCh − 1)

2 · 2MAC.ol

+ Advotind$SE (DOTIND$)
)
.

Proof. This proof uses games G0–G3 in Fig. 39 and G4–G8 in Fig. 40, in which the code added for
the transitions between games is highlighted in green. The adversaries for transitions between games
are referenced throughout the proof. Each constructed adversary simulates one or two subsequent
games of the security reduction for adversary DIND. The highlighted instructions mark the changes in
the code of the simulated games.

G0. Game G0 is equivalent to game Gind
CH,DIND

. It expands the code of algorithms CH.Init, CH.Send
and CH.Recv; the expanded instructions are highlighted in grey. It follows that

AdvindCH(DIND) = 2 · Pr[G0]− 1.

G0 → G1. Note that the value of auth_key_id depends on the raw KDF and MAC keys (i.e. kk and
mk), and adversary DIND can learn it from any ciphertext returned by oracle Ch. To invoke PRF-style
security notions for either primitive in later steps, we appeal to the OTWIND-security of HASH
(Fig. 25), which essentially guarantees that auth_key_id leaks no information about KDF and MAC
keys. Game G1 is the same as game G0, except auth_key_id ← HASH.Ev(hk, ·) is evaluated on a
uniformly random string x rather than on kk ∥mk. We claim that DIND cannot distinguish between
these two games.

Adversary DOTWIND(x0, x1, auth_key_id)

kk ∥mk ← x1 // s.t. |kk| = 672, |mk| = 320

b←$ {0, 1}
(kkI , kkR)← ϕKDF(kk)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

b′ ←$ DChSim,RecvSim
IND

If b′ = b then return 1 else return 0

ChSim(u,m0,m1, aux, r),
RecvSim(u, c, aux)

// Identical to oracles Ch and Recv

in games G0, G1 of Fig. 39.

Figure 36. Adversary DOTWIND against the OTWIND-security of HASH for the transition between games
G0–G1.

More formally, given DIND, in Fig. 36 we define an adversary DOTWIND attacking the OTWIND-
security of HASH as follows. According to the definition of game Gotwind

HASH,DOTWIND
, adversary DOTWIND

takes (x0, x1, auth_key_id) as input. We define adversary DOTWIND to sample a challenge bit b, to
parse kk ∥mk ← x1, and to subsequently use the obtained values of b, kk,mk, auth_key_id in order to
simulate either of the games G0, G1 for adversary DIND (both games are equivalent from the moment
these 4 values are chosen). If DIND guesses the challenge bit b then we let adversary DOTWIND return
1; otherwise we let it return 0. Now let d be the challenge bit in game Gotwind

HASH,DOTWIND
, and let d′ be

the value returned by DOTWIND. If d = 1 then DOTWIND simulates game G0 for DIND (i.e. kk and
mk are derived from the input to HASH.Ev(hk, ·)), and otherwise it simulates game G1 (i.e. kk and
mk are independent from the input to HASH.Ev(hk, ·)). It follows that Pr[G0] = Pr [d′ = 1 | d = 1]
and Pr[G1] = Pr [d′ = 1 | d = 0], and hence

Pr[G0]− Pr[G1] = AdvotwindHASH (DOTWIND).

38

G1 → G2. In the transition between games G1 and G2 (Fig. 39), we use the RKPRF-security of KDF
(Fig. 26) with respect to ϕKDF in order to replace KDF.Ev(kku, msg_key) with a uniformly random
value from {0, 1}KDF.ol (and for consistency store the latter in T[u,msg_key]). Similarly to the above,
in Fig. 37 we build an adversary DRKPRF attacking the RKPRF-security of KDF that simulates G1 or
G2 for adversary DIND, depending on the challenge bit in game Grkprf

KDF,ϕKDF,DRKPRF
. We have

Pr[G1]− Pr[G2] = AdvrkprfKDF,ϕKDF
(DRKPRF).

Adversary DRoR
RKPRF

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl

mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

b′ ←$ DChSim,RecvSim
IND

If b′ = b then return 1 else return 0

ChSim(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
(stME,u, p)← ME.Encode(stME,u,mb, aux; r)

msg_key← MAC.Ev(mku, p)

k ← RoR(u,msg_key)

cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

(auth_key_id′,msg_key, cse)← c

k ← RoR(u,msg_key)

p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

If (msg_key′ = msg_key)

∧(auth_key_id = auth_key_id′) then
(stME,u,m)← ME.Decode(stME,u, p, aux)

Return ⊥

Figure 37. Adversary DRKPRF against the RKPRF-security of KDF for the transition between games G1–G2.

Adversary DSend,Recv
ENCROB

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl

mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

b′ ←$ DChSim,RecvSim
IND

If b′ = b then return 1 else return 0

ChSim(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
p← Send(u,mb, aux, r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

(auth_key_id′,msg_key, cse)← c

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

If (msg_key′ = msg_key)

∧(auth_key_id = auth_key_id′) then
Recv(u, p, aux)

Return ⊥

Figure 38. Adversary DENCROB against the ENCROB-security of ME for the transition between games G2–G3.

39

G2 → G3. We invoke the ENCROB property of ME (Fig. 34) to transition from G2 to G3 (Fig. 39).
This property states that calls to ME.Decode do not change ME’s state in a way that affects the
payloads returned by any future calls to ME.Encode, allowing us to remove the ME.Decode call from
inside the oracle Recv in game G3. In Fig. 38 we build an adversary DENCROB against ENCROB of
ME that simulates either G2 or G3 for DIND, depending on the challenge bit in game Gencrob

ME,DENCROB
,

such that
Pr[G2]− Pr[G3] = AdvencrobME (DENCROB).

Games G0–G3

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl ; kk ←$ {0, 1}672 ; mk ←$ {0, 1}320

x← kk ∥mk // G0

x←$ {0, 1}992 // G1–G3 (OTWIND of HASH)
auth_key_id← HASH.Ev(hk, x)

(kkI , kkR)← ϕKDF(kk) ; (mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

b′ ←$ DCh,Recv
IND

Return b′ = b

Ch(u,m0,m1, aux, r) // u ∈ {I,R}, m0,m1 ∈ CH.MS, r ∈ CH.SendRS

If |m0| ≠ |m1| then return ⊥
(stME,u, p)← ME.Encode(stME,u,mb, aux; r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← KDF.Ev(kku,msg_key) // G0–G1

k ← T[u,msg_key] // G2–G3 (RKPRF of KDF)
cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

Return c

Recv(u, c, aux) // u ∈ {I,R}
(auth_key_id′,msg_key, cse)← c

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← KDF.Ev(kku,msg_key) // G0–G1

k ← T[u,msg_key] // G2–G3 (RKPRF of KDF)
p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then
(stME,u,m)← ME.Decode(stME,u, p, aux) // G0–G2 (ENCROB of ME)

Return ⊥

Figure 39. Games G0–G3 for the proof of Theorem 1. The code added by expanding the algorithms of CH in
game Gind

CH,DIND
is highlighted in grey.

G3 → G4. Game G4 (Fig. 40) differs from G3 (Fig. 39) in the following ways:

(1) The KDF keys kk, kkI , kkR are no longer used in our reduction games starting from G3, so they
are not included in game G4 and onwards.

(2) The calls to oracle Recv in game G3 no longer change the receiver’s channel state, so game G4

immediately returns ⊥ on every call to Recv.
(3) Game G4 rewrites, in a functionally equivalent way, the initialisation and usage of values from the

PRF-table T inside oracle Ch.
(4) Game G4 adds a set Xu, for each u ∈ {I,R}, that stores 256-bit prefixes of payloads that were

produced by calling the specific user’s Ch oracle. Every time a new payload p is generated, the
added code inside oracle Ch checks whether its prefix p[0 : 256] is already contained inside Xu,
which would mean that another previously seen payload had the same prefix. Then, regardless of

40

Games G4–G8

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl ; mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

XI ← XR ← ∅
b′ ←$ DCh,Recv

IND

Return b′ = b

Ch(u,m0,m1, aux, r)

If |m0| ≠ |m1| then return ⊥
(stME,u, p)← ME.Encode(stME,u,mb, aux; r)

If p[0 : 256] ∈ Xu then
bad0 ← true

msg_key← MAC.Ev(mku, p) // G4

msg_key←$ {0, 1}MAC.ol // G5–G8 (UPREF of ME)
Else

msg_key← MAC.Ev(mku, p) // G4–G5

msg_key←$ {0, 1}MAC.ol // G6–G8 (UPRKPRF of MAC)
Xu ← Xu ∪ {p[0 : 256]}
k ←$ {0, 1}KDF.ol

If T[u,msg_key] ̸= ⊥ then
bad1 ← true

k ← T[u,msg_key] // G4–G6 (Birthday bound)
T[u,msg_key]← k

cse ← SE.Enc(k, p) // G4–G7

cse ←$ {0, 1}SE.cl(ME.pl(|mb|,r)) // G8 (OTIND$ of SE)
c← (auth_key_id,msg_key, cse)

Return c

Recv(u, c, aux)

Return ⊥

Figure 40. Games G4–G8 for the proof of Theorem 1. The code highlighted in grey was rewritten in a way
that is functionally equivalent to the corresponding code in G3.

whether this condition passes, the new prefix p[0 : 256] is added to Xu. We note that the output
of oracle Ch in game G4 does not change depending on whether this condition passes or fails.

(5) Game G4 adds Boolean flags bad0 and bad1 that are set to true when the corresponding conditions
inside oracle Ch are satisfied. These flags do not affect the functionality of the games, and will
only be used for the formal analysis that we provide below.

Both games are functionally equivalent, so

Pr[G4] = Pr[G3].

G4 → G5. The transition from game G4 to G5 replaces the value assigned to msg_key when the newly
added unique-prefixes condition is satisfied; the value of msg_key changes from MAC.Ev(mku, p) to a
uniformly random string from {0, 1}MAC.ol. Games G4 and G5 are identical until bad0 is set. We have

Pr[G4]− Pr[G5] ≤ Pr[badG4
0].

The UPREF property of ME (Fig. 33) states that it is hard to find two payloads returned by ME.Encode
such that their 256-bit prefixes are the same; we use this property to upper-bound the probability
of setting bad0 in game G4. In Fig. 41 we build an adversary FUPREF attacking the UPREF of ME
that simulates game G4 for adversary DIND. Every time bad0 is set in game G4, this corresponds to
adversary FUPREF setting flag win to true in its own game Gupref

ME,FUPREF
. It follows that

Pr[badG4
0] ≤ AdvuprefME (FUPREF).

41

Adversary FSend
UPREF

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl

mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

b′ ←$ DChSim,RecvSim
IND

ChSim(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
p← Send(u,mb, aux, r)

msg_key← MAC.Ev(mku, p)

k ←$ {0, 1}KDF.ol

If T[u,msg_key] ̸= ⊥ then
k ← T[u,msg_key]

T[u,msg_key]← k

cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

Return ⊥

Figure 41. Adversary FUPREF against the UPREF-security of ME for the transition between games G4–G5.

G5 → G6. We use the UPRKPRF-security of MAC (Fig. 28) with respect to ϕMAC in order to replace
the value of msg_key from MAC.Ev(mku, p) to a uniformly random value from {0, 1}MAC.ol in the
transition from G5 to G6 (Fig. 40). Note that the notion of UPRKPRF-security only guarantees the
indistinguishability from random when MAC is evaluated on inputs with unique prefixes, whereas
games G5,G6 ensure that this prerequisite is satisfied by only evaluating MAC if p[0 : 256] ̸∈ Xu. In
Fig. 42 we build an adversary DUPRKPRF attacking the UPRKPRF-security of MAC that simulates
G5 or G6 for adversary DIND, depending on the challenge bit in game Guprkprf

MAC,ϕMAC,DUPRKPRF
. It follows

that

Pr[G5]− Pr[G6] = AdvuprkprfMAC,ϕMAC
(DUPRKPRF).

Adversary DRoR
UPRKPRF

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(stME,I , stME,R)←$ ME.Init()

b′ ←$ DChSim,RecvSim
IND

If b′ = b then return 1 else return 0

ChSim(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
(stME,u, p)← ME.Encode(stME,u,mb, aux; r)

msg_key← RoR(u, p)

If msg_key = ⊥ then msg_key←$ {0, 1}MAC.ol

k ←$ {0, 1}KDF.ol

If T[u,msg_key] ̸= ⊥ then
k ← T[u,msg_key]

T[u,msg_key]← k

cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

Return ⊥

Figure 42. Adversary DUPRKPRF against the UPRKPRF-security of MAC for the transition between games
G5–G6.

G6 → G7. Games G6 and G7 are identical until bad1 is set; as above, we have

Pr[G6]− Pr[G7] ≤ Pr[badG6
1].

The values of msg_key ∈ {0, 1}MAC.ol in game G6 are sampled uniformly at random and independently
across the qCh different calls to oracle Send, so we can apply the birthday bound to claim the following:

Pr[badG6
1] ≤ qCh · (qCh − 1)

2 · 2MAC.ol
.

42

G7 → G8. In the transition from G7 to G8 (Fig. 40), we replace the value of ciphertext cse from
SE.Enc(k, p) to a uniformly random value from {0, 1}SE.cl(ME.pl(|mb|,r)) by appealing to the OTIND$-
security of SE (Fig. 3). Recall that ME.pl(|mb| , r) is the length of the payload p that is produced by
calling ME.Encode on any message of length |mb| and on random coins r, whereas SE.cl(·) maps the
payload length to the resulting ciphertext length when encrypted with SE. In Fig. 43 we build an
adversary DOTIND$ attacking the OTIND$-security of SE that simulates G7 or G8 for adversary DIND,
depending on the challenge bit in game Gotind$

SE,DOTIND$
. It follows that

Pr[G7]− Pr[G8] = Advotind$SE (DOTIND$).

Adversary DRoR
OTIND$

b←$ {0, 1}
hk ←$ {0, 1}HASH.kl

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(stME,I , stME,R)←$ ME.Init()

b′ ←$ DChSim,RecvSim
IND

If b′ = b then return 1 else return 0

ChSim(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
(stME,u, p)← ME.Encode(stME,u,mb, aux; r)

msg_key←$ {0, 1}MAC.ol

cse ← RoR(p)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

Return ⊥

Figure 43. Adversary DOTIND$ against the OTIND$-security of SE for the transition between games G7–G8.

Finally, the output of oracle Ch in game G8 no longer depends on the challenge bit b, so we have

Pr[G8] =
1

2
.

The theorem statement follows.

Proof alternatives. Our security reduction relies on the RKPRF-security of KDF with respect to
ϕKDF. We note that it would suffice to instead define and use a related-key weak -PRF notion here.
It could be used in the penultimate step of this security reduction: right before appealing to the
OTIND$-security of SE.

Further, in this security reduction we consider a generic function family MAC and rely on it
being related-key PRF-secure with respect to unique-prefix inputs. Recall that MTProto uses MAC =
MTP-MAC such that MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p)[64 : 192]. It discards half of the
SHA-256 output bits, so we could alternatively model it as an instance of Augmented MAC (AMAC)
and prove it to be related-key PRF-secure based on [BBT16]. However, using the results from [BBT16]
would have required us to show that the SHA-256 compression function is a secure PRF when half of
its key is leaked to the adversary. We achieve a simpler and tighter security reduction by relying on
the unique-prefix property of ME that is already guaranteed in MTProto.

5.6 INT-security of MTP-CH

The first half of our integrity proof shows that it is hard to forge ciphertexts; in order to justify this, we
rely on security properties of the cryptographic primitives that are used to build the channel MTP-CH
(i.e. HASH, KDF, SE, and MAC). Once ciphertext forgery is ruled out, we are guaranteed that MTP-CH
broadly matches an intuition of an authenticated channel : it prevents an attacker from modifying
or creating its own ciphertexts but still allows to intercept and subsequently replay, reorder or drop
honestly produced ciphertexts. So in the second part of the proof we show that the message encoding
scheme ME appropriately resolves all of the possible adversarial interaction with an authenticated
channel; formally, we require that it behaves according to the requirements that are specified by some
support function supp. Our main result is then:

Theorem 2. Let session_id ∈ {0, 1}64, pb ∈ N, and bl = 128. Let ME = MTP-ME[session_id, pb, bl]
be the message encoding scheme as defined in Definition 6. Let SE = MTP-SE be the deterministic

43

symmetric encryption scheme as defined in Definition 10. Let HASH, MAC, KDF, ϕMAC, ϕKDF be any
primitives that, together with ME and SE, meet the requirements stated in Definition 5 of channel
MTP-CH. Let CH = MTP-CH[ME,HASH,MAC,KDF, ϕMAC, ϕKDF,SE]. Let supp = SUPP be the support
function as defined in Fig. 32. Let FINT be any adversary against the INT-security of CH with respect
to supp. Then we can build adversaries DOTWIND, DRKPRF, FUNPRED, FRKCR, FEINT such that

AdvintCH,supp(FINT) ≤ AdvotwindHASH (DOTWIND) + AdvrkprfKDF,ϕKDF
(DRKPRF)

+ AdvunpredSE,ME(FUNPRED) + AdvrkcrMAC,ϕMAC
(FRKCR)

+ AdveintME,supp(FEINT).

Before providing the detailed proof, we provide some discussion of our approach and a high-level
overview of the different parts of the proof.

Invisible terms based on correctness of ME, SE, supp. We state and prove our INT-security claim
for channel MTP-CH with respect to fixed choices of MTProto-based constructions ME = MTP-ME
(Definition 6) and SE = MTP-SE (Definition 10), and with respect to the support function supp = SUPP
that is defined in Fig. 32. Our security reduction relies on six correctness-style properties of these
primitives: one for ME, two for SE, three for supp. Each of them can be observed to be always true
for the corresponding scheme, and hence does not contribute an additional term to the advantage
statement in Theorem 2. These properties are also simple enough that we chose not to define them
in a game-based style (the one we require from ME is distinct from, and simpler than, the encoding
correctness notion that we defined in Section 3.5). Our security reduction nonetheless introduces and
justifies a game hop for each of the these properties. This necessitates the use of 14 security reduction
games to prove Theorem 2, including some that are meant to be equivalent by observation (i.e. the
corresponding game transitions do not rely on any correctness or security properties). However, some
of the reduction steps require a detailed analysis.

Theorem 2 could be stated in a more general way, fully formalising the aforementioned correctness
notions and phrasing our claims with respect to any SE, ME, supp. We lose this generality by
instantiating these primitives. Our motivation is twofold. On the one hand, we state our claims in a
way that highlights the parts of MTProto (as captured by our model) that are critical for its security
analysis, and omit spending too much attention on parts of the reduction that can be “taken for
granted”. On the other hand, our work studies MTProto, and the abstractions that we use are meant
to simplify and aid this analysis. We discourage the reader from treating MTP-CH in a prescriptive
way, e.g. from trying to instantiate it with different primitives to build a secure channel since standard,
well-studied cryptographic protocols such as TLS already exist.

Proof phase I: Forging a ciphertext is hard. Let FINT be an adversary playing in the INT-security
game against channel MTP-CH. Consider an arbitrary call made by FINT to its oracle Recv on inputs
u, c, aux such that c = (auth_key_id′,msg_key, cse). The oracle evaluates MTP-CH.Recv(stu, c, aux).
Recall that MTP-CH.Recv attempts to verify msg_key by checking whether msg_key = MAC.Ev(mku, p)
for an appropriately recovered payload p (i.e. k ← KDF.Ev(kku,msg_key) and p← SE.Dec(k, cse)). If
this msg_key verification passes (and if auth_key_id′ = auth_key_id), then MTP-CH.Recv attempts to
decode the payload by computing (stME,u,m)← ME.Decode(stME,u, p, aux).

We consider two cases, and claim the following. (A) If msg_key was not previously returned by
oracle Send as a part of any ciphertext sent by user u, then with high probability an evaluation
of ME.Decode(stME,u, p, aux) would return m = ⊥ regardless of whether the msg_key verification
passed or failed ; so in this case we are not concerned with assessing the likelihood that the msg_key
verification passes. (B) If msg_key was previously returned by oracle Send as a part of some ciphertext
c′ = (auth_key_id,msg_key, c′se) sent by user u, and if auth_key_id = auth_key_id′, then with high
probability cse = c′se (and hence c = c′) whenever the msg_key verification passes. We now justify both
claims.

Case A. Assume msg_key is fresh. Our analysis of this case will rely on a property of the symmetric
encryption scheme SE, and will require that its key k is chosen uniformly at random. Thus we begin
by invoking the OTWIND-security of HASH and the RKPRF-security of KDF in order to claim that

44

the output of KDF.Ev(kku,msg_key) is indistinguishable from random; this mirrors the first two steps
of the IND-security reduction of MTP-CH. We formalise this by requiring that KDF.Ev(kku,msg_key)
is indistinguishable from a uniformly random value stored in the PRF table’s entry T[u,msg_key].

Our analysis of Case A now reduces roughly to the following: we need to show that it is hard
to find any SE ciphertext cse such that its decryption p under a uniformly random key k has a
non-negligible chance of being successfully decoded by ME.Decode (i.e. returning m ≠ ⊥). As a part of
this experiment, the adversary is allowed to query many different values of msg_key and cse (recall that
an MTP-CH ciphertext contains both). At this point the msg_key is only used to select a uniformly
random SE key k from T[u,msg_key], but the adversary can reuse the same key k in combination with
many different choices of cse . The Case A assumption that msg_key is “fresh” means that the msg_key
was not seen during previous calls to the Send oracle, so the adversary has no additional leakage on
key k. All of the above is captured by the notion of SE’s unpredictability (UNPRED) with respect to
ME (Section 5.3).

The UNPRED-security of SE,ME can be trivially broken if ME.Decode is defined in a way that it
successfully decodes every possible payload p ∈ ME.Out. It can also be trivially broken for contrived
examples of SE like the one defining ∀k ∈ {0, 1}SE.kl,∀x ∈ SE.MS : (SE.Enc(k, x) = x)∧(SE.Dec(k, x) =
x), assuming that ME.Decode can successfully decode even a single payload p from SE.MS. But the
more structure ME.Decode requires from its input p, and the more “unpredictable” is the decryption
algorithm SE.Dec(k, ·) for a uniformly random k, the harder it is to break the UNPRED-security of
SE,ME. We note that MTP-ME requires every p to contain a constant session_id ∈ {0, 1}64 in the
second half of its 128-bit block, whereas MTP-SE implements the IGE block cipher mode of operation.
In Appendix E.6 we show that the output p of MTP-SE.Dec is highly unlikely to contain session_id
at the necessary position, i.e. if FINT makes qSend queries to its Send oracle then it can find such p
with probability at most qSend/2

64. In Appendix E.6 we also discuss the possibility of improving this
bound.

Case B. Assume msg_key is reused. In this case, we know that adversary FINT previously
called its Send oracle on inputs u,m′, aux′, r′ for some m′, aux′, r′, and received back a ciphertext
c′ = (auth_key_id,msg_key′, c′se) such that msg_key′ = msg_key. Let p′ be the payload that was built
and used inside this oracle call. Recall that we are currently considering FINT’s ongoing call to its
oracle Recv on inputs u, c, aux such that c = (auth_key_id′,msg_key, cse); we are only interested in
the event that the msg_key verification passed (and that auth_key_id = auth_key_id′), meaning that
msg_key = MAC.Ev(mku, p) holds for an appropriately recovered p.

It follows that MAC.Ev(mku, p
′) = MAC.Ev(mku, p). If p′ ̸= p then this breaks the RKCR-security

of MAC. Recall that MTProto instantiates MAC with MTP-MAC where MTP-MAC.Ev(mku, p) =
SHA-256(mku ∥ p)[64 : 192]. So this attack against MAC reduces to breaking some variant of SHA-256’s
collision resistance that restricts the set of allowed inputs but only requires to find a collision in a
128-bit fragment of the output.

Based on the above, we obtain (msg_key′, p′) = (msg_key, p). Let k = KDF.Ev(kku,msg_key). Note
that c′se ← SE.Enc(k, p′) was computed during the Send call, and p← SE.Dec(k, cse) was computed
during the ongoing Recv call. The equality p′ = p implies c′se = cse if SE guarantees that for any
key k, the algorithms of SE match every message p ∈ SE.MS with a unique ciphertext cse . When this
condition holds, we say that SE has unique ciphertexts. We note that MTP-SE satisfies this property;
it follows that c′se = cse and therefore the MTP-CH ciphertext c that was queried to Recv (for user
u) is equal to the ciphertext c′ that was previously returned by Send (by user u). Implicit in this
argument is an assumption that SE has the decryption correctness property; MTP-SE satisfies this
property as well.

Proof phase II: MTP-CH acts as an authenticated channel. We can rewrite the claims we
stated and justified in the first phase of the proof as follows. When adversary FINT queries its oracle
Recv on inputs u, c, aux, the channel decrypts c to m = ⊥ with high probability, unless c was honestly
returned in response to FINT’s prior call to Send(u, . . .), meaning ∃m′, aux′ : (sent,m′, c, aux′) ∈ tru.
Furthermore, we claim that the channel’s state stu of user u does not change when FINT queries its
oracle Recv on inputs u, c, aux that get decrypted to m = ⊥. This could only happen in Case A above,
assuming that the msg_key verification succeeds but then the ME.Decode call returns m = ⊥ and
changes the message encoding scheme’s state stME,u of user u. We note that MTP-ME never updates
stME,u when decoding fails, and hence it satisfies this requirement.

45

We now know that oracle Recv accepts only honestly forwarded ciphertexts from the opposite user,
and that it never changes the channel’s state otherwise. This allows us to rewrite the INT-security
game to ignore all cryptographic algorithms in the Recv oracle. More specifically, oracle Recv can
use the opposite user’s transcript to check which ciphertexts were produced honestly, and simply reject
the ones that are not on this transcript. For each ciphertext c that is on the transcript, the game can
maintain a table that maps it to the payload p that was used to generate it; oracle Recv can fetch
this payload and immediately call ME.Decode to decode it.

Proof phase III: Interaction between ME and supp. By now, we have transformed our INT-
security game to an extent that it roughly captures the requirement that the behaviour of ME should
match that of supp (i.e. adversary FINT wins the game iff the message m recovered by ME.Decode
inside oracle Recv is not equal to the corresponding output m∗ of supp). However, the support
function supp uses the MTP-CH encryption c of payload p as its label, and it is not necessarily clear
what information about c can or should be used to define the behaviour of supp. In order the simplify
the security game we have arrived to, we will rely on three correctness-style notions as follows:

(1) Integrity of a support function requires that the support function returns m∗ = ⊥ when it is called
on a ciphertext that cannot be found in the opposite user’s transcript tru.31

(2) Robustness of a support function requires that adding failed decryption events (i.e. m = ⊥) to a
transcript does not affect the future outputs of supp on any inputs.

(3) We also rely on a property requiring that a support function uses no information about its labels
beyond their equality pattern, separately for either direction of communication (i.e. u→ u and
u→ u).

For the last property, we observe that in our game p0 = p1 iff the corresponding MTP-CH ciphertexts
are also equal. This allows us to switch from using ciphertexts to using payloads as the labels for the
supp, and simultaneously change the transcripts to also store payloads instead of ciphertexts. Our
theorem is stated with respect to supp = SUPP that satisfies all three of the above properties.

The introduced properties of a support function allow us to further simplify the INT-security game.
This helps us to remove the corner case that deals with Recv being queried on an invalid ciphertext
(i.e. one that was not honestly forwarded). And finally this lets us reduce our latest version of the
INT-security game for MTP-CH to the encoding integrity (EINT) property of ME, supp (see Fig. 15)
that is defined to match ME against supp in the presence of adversarial behaviour on an authenticated
channel that exchanges ME payloads between two users. In Appendix E.5 we show that this property
holds for MTP-ME with respect to SUPP.

Proof of Theorem 2. This proof uses games G0–G2 in Fig. 44, games G3–G8 in Fig. 46 and games
G9–G13 in Fig. 49. The code added for the transitions between games is highlighted in green. The
adversaries for transitions between games are provided throughout the proof. The instructions that are
highlighted inside adversaries mark the changes in the code of the simulated security reduction games.

Games G0–G2 and the transitions between them (G0 → G1 based on the OTWIND-security of
HASH, and G1 → G2 based on the RKPRF-security of KDF) are very similar to the corresponding
games and transitions in our IND-security reduction. We refer to the proof of Theorem 1 for a detailed
explanation of both transitions.

G0. Game G0 is equivalent to game Gint
CH,supp,FINT

. It expands the code of algorithms CH.Init, CH.Send
and CH.Recv. The expanded instructions are highlighted in grey. It follows that

AdvintCH,supp(FINT) = Pr[G0].

G0 → G1. The value of auth_key_id in game G0 depends on the initial KDF key kk and MAC key
mk. In contrast, game G1 computes auth_key_id by evaluating HASH on a uniformly random input x
that is independent of kk and mk. We invoke the OTWIND-security of HASH (Fig. 25) in order to
claim that adversary FINT cannot distinguish between playing in G0 and G1. In Fig. 45a we build
an adversary DOTWIND against the OTWIND-security of HASH. When adversary DOTWIND plays in
game Gotwind

HASH,DOTWIND
with challenge bit d ∈ {0, 1}, it simulates game G0 (when d = 1) or game G1

(when d = 0) for adversary FINT. Adversary DOTWIND returns d′ = 1 iff FINT sets win, so we have

Pr[G0]− Pr[G1] = AdvotwindHASH (DOTWIND).
31 Integrity of a support function is formalised in Appendix A.

46

Games G0–G2

win← false

hk ←$ {0, 1}HASH.kl ; kk ←$ {0, 1}672 ; mk ←$ {0, 1}320

x← kk ∥mk // G0

x←$ {0, 1}992 // G1–G2 (OTWIND of HASH)
auth_key_id← HASH.Ev(hk, x)

(kkI , kkR)← ϕKDF(kk)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

FSend,Recv
INT

Return win

Send(u,m, aux, r) // u ∈ {I,R}, m ∈ CH.MS, r ∈ CH.SendRS

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← KDF.Ev(kku,msg_key) // G0–G1

k ← T[u,msg_key] // G2 (RKPRF of KDF)
cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

tru ← tru ∥ (sent,m, c, aux)

Return c

Recv(u, c, aux) // u ∈ {I,R}
(auth_key_id′,msg_key, cse)← c

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← KDF.Ev(kku,msg_key) // G0–G1

k ← T[u,msg_key] // G2 (RKPRF of KDF)
p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

m← ⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then

(stME,u,m)← ME.Decode(stME,u, p, aux)

m∗ ← supp(u, tru, tru, c, aux)

If m ̸= m∗ then win← true

tru ← tru ∥ (recv,m, c, aux)

Return ⊥

Figure 44. Games G0–G2 for the proof of Theorem 2. The code added by expanding the algorithms of CH in
game Gint

CH,supp,FINT
is highlighted in grey.

47

G1 → G2. Going from G1 to G2, we switch the outputs of KDF.Ev to uniformly random values.
Since the adversary can call k ← KDF.Ev(kku,msg_key) on the same inputs multiple times, we use
a PRF table T to enforce the consistency between calls; the output of KDF.Ev(kku,msg_key) in G1

corresponds to a uniformly random value that is sampled and stored in the table entry T[u,msg_key].
In Fig. 45b we build an adversary DRKPRF against the RKPRF-security of KDF (Fig. 26) with respect
to ϕKDF. When adversary DRKPRF plays in game Grkprf

KDF,ϕKDF,DRKPRF
with challenge bit d ∈ {0, 1}, it

simulates game G1 (when d = 1) or game G2 (when d = 0) for adversary FINT. Adversary DRKPRF

returns d′ = 1 iff FINT sets win, so we have

Pr[G1]− Pr[G2] = AdvrkprfKDF,ϕKDF
(DRKPRF).

G2 → G3. Game G3 (Fig. 46) differs from G2 (Fig. 44) in the following ways:

(1) The KDF keys kk, kkI , kkR are no longer used in our reduction games starting from G2, so they
are not included in game G3 and onwards.

(2) Game G3 adds a table S that is updated during each call to oracle Send. We set S[u,msg_key]←
(p, cse) to remember that user u produced msg_key when sending (to user u) an SE ciphertext cse ,
that encrypts payload p.

Adversary DOTWIND(x0, x1, auth_key_id)

kk ∥mk ← x1 // s.t. |kk| = 672, |mk| = 320.
win← false

(kkI , kkR)← ϕKDF(kk)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

FSendSim,RecvSim
INT

If win then return 1 else return 0

SendSim(u,m, aux, r),
RecvSim(u, c, aux)

// Identical to oracles Send and Recv

in games G0, G1 of Fig. 44.

(a) Adversary DOTWIND against the OTWIND-security of HASH for the transition between
games G0–G1.

Adversary DRoR
RKPRF

win← false

hk ←$ {0, 1}HASH.kl

mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

FSendSim,RecvSim
INT

If win then return 1 else return 0

SendSim(u,m, aux, r)

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

k ← RoR(u,msg_key)

cse ← SE.Enc(k, p)

c← (auth_key_id,msg_key, cse)

tru ← tru ∥ (sent,m, c, aux)

Return c

RecvSim(u, c, aux)

(auth_key_id′,msg_key, cse)← c

k ← RoR(u,msg_key)

p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

m← ⊥
If (msg_key′ = msg_key)

∧(auth_key_id = auth_key_id′) then
(stME,u,m)← ME.Decode(stME,u, p, aux)

m∗ ← supp(u, tru, tru, c, aux)

If m ̸= m∗ then win← true

tru ← tru ∥ (recv,m, c, aux)

Return ⊥
(b) Adversary DRKPRF against the RKPRF-security of KDF for the transition between games
G1–G2.

Figure 45. The adversaries for games G0–G2 of the proof of Theorem 2. Each constructed adversary simulates
one or two subsequent games of the security reduction for adversary FINT.

48

Games G3–G8

win← false

hk ←$ {0, 1}HASH.kl ; mk ←$ {0, 1}320 ; x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x) ; (mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

FSend,Recv
INT ; Return win

Send(u,m, aux, r)

st∗ME,u ← stME,u

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key] ; cse ← SE.Enc(k, p)

If S[u,msg_key] ̸= ⊥ then
(p′, c′se)← S[u,msg_key]

If p ̸= p′ then
bad2 ← true

stME,u ← st∗ME,u ; Return ⊥ // G6–G8 (RKCR of MAC)
If SE.Dec(k, cse) ̸= p then

bad3 ← true

stME,u ← st∗ME,u ; Return ⊥ // G7–G8 (SE = MTP-SE)
S[u,msg_key]← (p, cse)

c← (auth_key_id,msg_key, cse) ; tru ← tru ∥ (sent,m, c, aux) ; Return c

Recv(u, c, aux)

(auth_key_id′,msg_key, cse)← c

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key] ; p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p) ; m← ⊥
If (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′) then

st∗ME,u ← stME,u ; (stME,u,m)← ME.Decode(stME,u, p, aux)

If S[u,msg_key] = ⊥ then
If (m = ⊥) ∧ (stME,u ̸= st∗ME,u) then

bad0 ← true

stME,u ← st∗ME,u // G4–G8 (ME = MTP-ME)
If m ̸= ⊥ then

bad1 ← true

(stME,u,m)← (st∗ME,u,⊥) // G5–G8 (UNPRED of SE,ME)
If S[u,msg_key] ̸= ⊥ then

(p′, c′se)← S[u,msg_key]

If p ̸= p′ then
bad2 ← true

(stME,u,m)← (st∗ME,u,⊥) // G6–G8 (RKCR of MAC)
Else if cse ̸= c′se then

bad4 ← true

(stME,u,m)← (st∗ME,u,⊥) // G8 (SE = MTP-SE)
m∗ ← supp(u, tru, tru, c, aux) ; If m ̸= m∗ then win← true

tru ← tru ∥ (recv,m, c, aux) ; Return ⊥

Figure 46. Games G3–G8 for the proof of Theorem 2.

49

(3) Oracle Recv in game G3, prior to calling ME.Decode, now saves a backup copy of stME,u in
variable st∗ME,u. It then adds four new conditional statements that do not serve any purpose in
game G3. Four of the future game transitions in our security reduction (G3 → G4, G4 → G5,
G5 → G6, G7 → G8) will do the following. Each of them will add an instruction, inside the
corresponding conditional statement, that reverts the pair of variables (stME,u,m) to their initial
values (st∗ME,u,⊥) that they had at the beginning of the ongoing Recv oracle call. Each of the
new conditional statements also contains its own bad flag; these flags are only used for the formal
analysis that we provide below.

(4) Similar to the above, game G3 adds two conditional statements to the Send oracle, and both
serve no purpose in game G3. In future games they will be used to roll back the message encoding
scheme’s state stME,u to its initial value that it had at the beginning of the ongoing Send oracle
call, followed by exiting this oracle call with ⊥ as output.

Games G3 and G2 are functionally equivalent, so

Pr[G3] = Pr[G2].

G3 → G4. Games G3 and G4 (Fig. 46) are identical until bad0 is set. We have

Pr[G3]− Pr[G4] ≤ Pr[badG3
0].

The bad0 flag can be set in G3 only when the instruction (stME,u,m) ← ME.Decode(stME,u, p, aux)
simultaneously changes the value of stME,u and returns m = ⊥. Recall that the statement of Theorem 2
restricts ME to an instantiation of MTP-ME. But the latter never modifies its state stME,u when the
decoding fails (i.e. m = ⊥), so

Pr[badG3
0] = 0.

Adversary FExpose,Ch
UNPRED

hk ←$ {0, 1}HASH.kl

mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

FSendSim,RecvSim
INT

SendSim(u,m, aux, r)

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

If S[u,msg_key] = ⊥ then
T[u,msg_key]← Expose(u,msg_key)

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

cse ← SE.Enc(k, p)

S[u,msg_key]← (p, cse)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

(auth_key_id′,msg_key, cse)← c

If S[u,msg_key] = ⊥ then
Ch(u,msg_key, cse , stME,u, aux)

If S[u,msg_key] ̸= ⊥ then
If T[u,msg_key] = ⊥ then

T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

If (msg_key′ = msg_key)

∧(auth_key_id = auth_key_id′) then
(stME,u,m)← ME.Decode(stME,u, p, aux)

Return ⊥

Figure 47. Adversary FUNPRED against the UNPRED-security of SE,ME for the transition between games
G4–G5.

50

G4 → G5. Games G4 and G5 (Fig. 46) are identical until bad1 is set. We have

Pr[G4]− Pr[G5] ≤ Pr[badG5
1].

When the bad1 flag is set in G5, we know that the SE key k = T[u,msg_key] was sampled uniformly at
random and never used inside the Send oracle before (because S[u,msg_key] = ⊥). Yet the adversary
FINT found an SE ciphertext cse such that the payload p← SE.Dec(k, cse) was successfully decoded
by ME.Decode (i.e. m ̸= ⊥). We note that FINT is allowed to query its Recv oracle on arbitrarily
many ciphertexts cse with respect to the same SE key k, by repeatedly using the same pair of values
for (u,msg_key). But it might nonetheless be hard for FINT to obtain a decodable payload p if (1) the
outputs of function SE.Dec(k, ·) are sufficiently “unpredictable” for an unknown uniformly random
k, and (2) the ME.Decode algorithm is sufficiently “restrictive” (e.g. designed to run some sanity
checks on its payloads, hence rejecting a fraction of them). We use the unpredictability notion of
SE with respect to ME, which captures this intuition. In Fig. 47 we build an adversary FUNPRED

against the UNPRED-security of SE,ME (Fig. 35) as follows. When adversary FUNPRED plays in
game Gunpred

SE,ME,FUNPRED
, it simulates game G5 for adversary FINT. Adversary FUNPRED wins in its own

game whenever FINT sets bad1, so we have

Pr[badG5
1] ≤ AdvunpredSE,ME(FUNPRED).

We now explain the ideas behind the construction of FUNPRED. Adversary FUNPRED does not maintain
its own transcripts tru, tru, and hence does not evaluate the support function supp at the end of the
simulated Recv oracle. This is because supp’s outputs do not affect the input-output behaviour of
the simulated oracles Send and Recv, and because this reduction step does not rely on whether
adversary FINT manages to win in the simulated game (but rather only whether it sets bad1). Some
of the adversaries we construct for the next reduction steps will likewise not maintain the transcripts.

Adversary FUNPRED splits the simulation of game G5’s Recv oracle into two cases:

(1) If S[u,msg_key] = ⊥, then FUNPRED does not modify stME,u; this is consistent with the behaviour of
oracle Recv in game G5. In addition, adversary FUNPRED also makes a call to its oracle Ch. The Ch
oracle simulates all instructions that would have been evaluated by Recv when S[u,msg_key] = ⊥,
except it omits the condition checking (msg_key′ = msg_key) ∧ (auth_key_id = auth_key_id′). The
omitted condition is a prerequisite to setting flag bad1 in game G5; this change is fine because
adversary FUNPRED will nonetheless set the win flag in its game Gunpred

SE,ME,FUNPRED
whenever the

simulated adversary FINT would have set the bad1 flag in G5.
(2) If S[u,msg_key] ̸= ⊥, then FUNPRED honestly simulates all instructions that would have been

evaluated by Recv.

Finally, adversary FUNPRED uses its Expose oracle to learn the values from the PRF table that is
maintained by the UNPRED-security game, and synchronises them with its own PRF table T inside
the simulated oracle Send (intuitively, this appears unnecessary, but it helps us avoid further analysis
to show that FUNPRED perfectly simulates game G5).

G5 → G6. Games G5 and G6 (Fig. 46) are identical until bad2 is set. We have

Pr[G5]− Pr[G6] ≤ Pr[badG5
2].

Game G5 sets the bad2 flag in two different places: one inside oracle Send, and one inside oracle
Recv. In either case, this happens when the table entry S[w,msg_key] = (p′, c′se), for some w ∈ {I,R},
indicates that a prior call to oracle Send obtained msg_key← MAC.Ev(mkw, p

′), and now we found p
such that p ̸= p′ and msg_key = MAC.Ev(mkw, p). This results in a collision for MAC under related
keys, and hence breaks its RKCR-security (Fig. 27) with respect to ϕMAC. In Fig. 48 we build an
adversary FRKCR against the RKCR-security of MAC with respect to ϕMAC as follows. When adversary
FRKCR plays in game Grkcr

MAC,ϕMAC,FRKCR
, it simulates game G5 for adversary FINT. Adversary FRKCR

wins in its own game whenever FINT sets bad2, so we have

Pr[badG5
2] ≤ AdvrkcrMAC,ϕMAC

(FRKCR).

51

G6 → G7. Games G6 and G7 (Fig. 46) are identical until bad3 is set. We have

Pr[G6]− Pr[G7] ≤ Pr[badG6
3].

If bad3 is set in G6, it means that adversary FINT found a payload p and an SE key k ∈ {0, 1}SE.kl
such that SE.Dec(k, SE.Enc(k, p)) ̸= p. This violates the decryption correctness of SE. Recall that the
statement of Theorem 2 considers SE = MTP-SE. The MTP-SE scheme satisfies decryption correctness,
so

Pr[badG6
3] = 0.

G7 → G8. Games G7 and G8 (Fig. 46) are identical until bad4 is set. We have

Pr[G7]− Pr[G8] ≤ Pr[badG7
4].

Whenever bad4 is set in game G7, we know that (1) p ← SE.Dec(k, cse) was computed during the
ongoing Recv call, and (2) c′se ← SE.Enc(k, p) was computed during an earlier call to Send, which
also verified that SE.Dec(k, c′se) = p. Importantly, we also know that cse ̸= c′se . The statement of
Theorem 2 considers SE = MTP-SE. The latter is a deterministic symmetric encryption scheme that is
based on the IGE block cipher mode of operation. For each key k ∈ {0, 1}SE.kl and each length ℓ ∈ N
such that {0, 1}ℓ ⊆ SE.MS, this scheme specifies a permutation between all plaintexts from {0, 1}ℓ and
all ciphertexts from {0, 1}ℓ. In particular, this means that MTP-SE has unique ciphertexts, meaning it
is impossible to find cse ̸= c′se that, under any fixed choice of key k, decrypt to the same payload p. It
follows that bad4 can never be set when SE = MTP-SE, so we have

Pr[badG7
4] = 0.

Adversary FRKCR(mkI ,mkR)

hk ←$ {0, 1}HASH.kl

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(stME,I , stME,R)←$ ME.Init()

FSendSim,RecvSim
INT

Return out

SendSim(u,m, aux, r)

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

cse ← SE.Enc(k, p)

If S[u,msg_key] ̸= ⊥ then
(p′, c′se)← S[u,msg_key]

If p ̸= p′ then out← (u, p, p′)

S[u,msg_key]← (p, cse)

c← (auth_key_id,msg_key, cse)

Return c

RecvSim(u, c, aux)

(auth_key_id′,msg_key, cse)← c

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

p← SE.Dec(k, cse)

msg_key′ ← MAC.Ev(mku, p)

If (msg_key′ = msg_key)

∧(auth_key_id = auth_key_id′) then
st∗ME,u ← stME,u

(stME,u,m)← ME.Decode(stME,u, p, aux)

If S[u,msg_key] = ⊥ then
(stME,u,m)← (st∗ME,u,⊥)

If S[u,msg_key] ̸= ⊥ then
(p′, c′se)← S[u,msg_key]

If p ̸= p′ then out← (u, p, p′)

Return ⊥

Figure 48. Adversary FRKCR against the RKCR-security of MAC for the transition between games G5–G6.

52

Games G9–G13

win← false

hk ←$ {0, 1}HASH.kl ; mk ←$ {0, 1}320 ; x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x) ; (mkI ,mkR)← ϕMAC(mk)

(stME,I , stME,R)←$ ME.Init()

FSend,Recv
INT ; Return win

Send(u,m, aux, r)

st∗ME,u ← stME,u

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

cse ← SE.Enc(k, p)

If (S[u,msg_key] ̸= ⊥) ∧ (S[u,msg_key] ̸= (p, cse)) then
stME,u ← st∗ME,u ; Return ⊥

If SE.Dec(k, cse) ̸= p then
stME,u ← st∗ME,u ; Return ⊥

S[u,msg_key]← (p, cse)

c← (auth_key_id,msg_key, cse)

tru ← tru ∥ (sent,m, c, aux) // G9–G11

tru ← tru ∥ (sent,m, p, aux) // G12–G13 (supp = SUPP)
P[u, c]← p

Return c

Recv(u, c, aux)

If P[u, c] ̸= ⊥ then // ∃m′, aux′ : (sent,m′, c, aux′) ∈ tru
p← P[u, c]

(stME,u,m)← ME.Decode(stME,u, p, aux)

m∗ ← supp(u, tru, tru, c, aux)

tru ← tru ∥ (recv,m, c, aux)

}
// G9–G11

m∗ ← supp(u, tru, tru, p, aux)

tru ← tru ∥ (recv,m, p, aux)

}
// G12–G13 (supp = SUPP)

Else
m← ⊥ ; m∗ ← supp(u, tru, tru, c, aux)

If m∗ ̸= ⊥ then
bad5 ← true

m∗ ← ⊥ // G10–G13 (supp = SUPP)
tru ← tru ∥ (recv,m, c, aux) // G9–G10 (supp = SUPP)

If m ̸= m∗ then
bad6 ← true

win← true // G9–G12 (EINT of ME, supp)
Return ⊥

Figure 49. Games G9–G13 for the proof of Theorem 2. The code highlighted in grey is functionally equivalent
to the corresponding code in G8.

53

G8 → G9. While discussing this and subsequent transitions, we say that a ciphertext c belongs to (or
appears in) a support transcript tr if and only if ∃m′, aux′ : (sent,m′, c, aux′) ∈ tr.

Consider oracle Recv in game G8 (Fig. 46). Let st∗ME,u contain the value of variable stME,u at the
start of the ongoing call to Recv on inputs (u, c, aux). We start by showing that Recv evaluates
(stME,u,m) ← ME.Decode(stME,u, p, aux) and does not subsequently roll back the values of (stME,u,m)
to (st∗ME,u,⊥) iff c belongs to tru:

(1) If oracle Recv evaluates (stME,u,m)← ME.Decode(stME,u, p, aux) and does not restore the values
of (stME,u,m), then auth_key_id = auth_key_id′ and S[u,msg_key] = (p, cse) (the latter implies
msg_key′ = msg_key). According to the construction of oracle Send, this means that the ciphertext
c = (auth_key_id′,msg_key, cse) appears in transcript tru.

(2) Let c = (auth_key_id′,msg_key, cse) be any MTP-CH ciphertext, and let u ∈ {I,R}. If c be-
longs to tru, then by construction of oracle Send we know that auth_key_id = auth_key_id′ and
S[u,msg_key] = (p, cse) for the payload p such that k = T[u,msg_key], and cse = SE.Enc(k, p), and
p = SE.Dec(k, cse). The latter equality is guaranteed by the decryption correctness of SE = MTP-SE
that we used for transition G6 → G7. The RKCR-security of MAC guarantees that once
S[u,msg_key] is populated, a future call to oracle Send cannot overwrite S[u,msg_key] with a differ-
ent pair of values. All of the above implies that if c belongs to tru at the beginning of a call to oracle
Recv, then this oracle will successfully verify that auth_key_id = auth_key_id′ and S[u,msg_key] =
(p, cse) for p← SE.Dec(k, cse) (whereas msg_key′ = msg_key follows from S[u,msg_key] containing
the payload p). It means that the instruction (stME,u,m) ← ME.Decode(stME,u, p, aux) will be
evaluated, and the variables (stME,u,m) will not be subsequently rolled back to (st∗ME,u,⊥).

Game G9 (Fig. 49) differs from game G8 (Fig. 46) in the following ways:

(1) Game G9 adds a payload table P that is updated during each call to oracle Send. We set P[u, c]← p
to indicate that the MTP-CH ciphertext c, which was sent from user u to user u, encrypts the
payload p. Observe that any pair (u, c) with c = (auth_key_id,msg_key, cse) corresponds to a
unique payload that can be recovered as p← SE.Dec(T[u,msg_key], cse). This relies on decryption
correctness of SE, which is guaranteed to hold for ciphertexts inside table P due to the changes
that we introduced in the transition between games G6 → G7.

(2) Game G9 rewrites the code of game G8’s oracle Recv to run ME.Decode iff the ciphertext c
belongs to the transcript tru; otherwise, the Recv oracle does not change stME,u and simply sets
m ← ⊥. This follows from the analysis of G8 that we provided above. We note that checking
whether c belongs to tru is equivalent to checking P[u, c] ̸= ⊥. For simplicity, we do the latter;
and if the condition is satisfied, then we set p← P[u, c] and run ME.Decode with this payload as
input. As discussed above, the MTP-CH ciphertext c that is issued by user u always encrypts a
unique payload p, and hence we can rely on the fact that the table entry P[u, c] stores this unique
payload value.

(3) Game G9 also rewrites one condition inside oracle Send, in a more compact but equivalent way
(here we rely on the fact that values u,msg_key, p uniquely determine cse). It also adds one new
conditional statement to oracle Recv (checking m∗ ̸= ⊥), but it serves no purpose in G9.

Games G9 and G8 are functionally equivalent, so

Pr[G9] = Pr[G8].

G9 → G10. Game G10 (Fig. 49) enforces that m∗ = ⊥ whenever oracle Recv is called on a ciphertext
that cannot be found in the appropriate user’s transcript. Games G9 and G10 are identical until bad5
is set. We have

Pr[G9]− Pr[G10] ≤ Pr[badG9
5].

If bad5 is set in game G9 then the support function supp returned m∗ ̸= ⊥ in response to an MTP-CH
ciphertext c that does not belong to the opposite user’s transcript tru. The statement of Theorem 2
considers supp = SUPP. The latter is defined to always return m∗ = ⊥ when its input label does not
appear in tru, so

Pr[badG9
5] = 0.

We refer to this property as the integrity of support function supp. We formalise it in Appendix A.

54

G10 → G11. Game G11 (Fig. 49) stops adding entries of the form (recv,⊥, c, aux) to the transcripts
of both users. Once this is done, it becomes pointless for adversary FINT to call its Recv oracle on
any ciphertext that does not appear in the appropriate user’s transcript. This is because such a call
will never set the win flag (due to the change introduced in transition G9 → G10) and will never
affect the transcript of either user (due to the change introduced in this transition). The statement of
Theorem 2 considers supp = SUPP. The latter is defined to ignore all transcript entries of the form
(recv,⊥, c, aux), so removing the instruction tru ← tru ∥ (recv,m, c, aux) for m = ⊥ will not affect the
outputs of any future calls to this support function. We have

Pr[G11] = Pr[G10].

Earlier in this section we referred to this property as the robustness of support function supp.

G11 → G12. When discussing the differences between games G8 and G9, we showed that for each
pair of sender u ∈ {I,R} and MTP-CH ciphertext c, the encrypted payload p is unique. It is also
true that for each pair of u ∈ {I,R} and payload p, there is a unique MTP-CH ciphertext c that
encrypts p in the direction from u to u. It follows that in games G11 and G12 (Fig. 49) for any fixed
user u ∈ {I,R} there is a 1-to-1 correspondence between payloads and MTP-CH ciphertexts that
could be successfully sent from u to u (note that this property does not hold if SE does not have
decryption correctness, but the code added for the transition G6 → G7 already identifies and discards
the corresponding ciphertexts). The statement of Theorem 2 considers supp = SUPP. Observe that
for any label z sent from u to u, the support function SUPP checks only its equality with every z∗

such that (sent,m, z∗, aux) ∈ tru or (recv,m, z∗, aux) ∈ tru across all values of m, aux. In other words,
this support function only looks at the equality pattern of the labels, and it does this independently
in each of the two directions between the users. The 1-to-1 correspondence between c and p, with
respect to any fixed user u, means we can replace the labels used in support transcripts from c to p,
and replace the label inputs to the support function SUPP in the same way; this does not change the
outputs of the support function. We have

Pr[G12] = Pr[G11].

G12 → G13. Games G12 and G13 are identical until bad6 is set. We have

Pr[G12]− Pr[G13] ≤ Pr[badG13
6].

Games G12 and G13 (Fig. 49) can be thought of as simulating a bidirectional authenticated channel
that allows the two users to exchange ME payloads. The adversary FINT is allowed to forward, replay,
reorder and drop the payloads; but it is not allowed to forge them. This description roughly corresponds
to the definition of EINT-security of ME with respect to supp (Fig. 15). In games G12–G13 the oracle
Send still runs cryptographic algorithms in order to generate and return MTP-CH ciphertexts, but
we will build an EINT-security adversary that simulates these instructions for FINT. In Fig. 50 we
build an adversary FEINT against the EINT-security of ME, supp as follows. When adversary FEINT

plays in game Geint
ME,supp,FEINT

, it simulates game G13 for adversary FINT. Adversary FEINT wins in its
own game whenever FINT sets bad6, so we have

Pr[badG13
6] ≤ AdveintME,supp(FEINT).

Observe that FEINT takes I’s andR’s initial ME states as input, and repeatedly calls the ME algorithms
to manually update these states (as opposed to relying on its Send and Recv oracles). This allows
FEINT to correctly identify the two conditional statements inside the simulated oracle SendSim that
require to roll back the most recent update to stME,u and to exit the oracle with ⊥ as output.

Adversary FINT can no longer win in game G13, because the only instruction that sets the win flag
in games G0–G12 was removed in transition to game G13. It follows that

Pr[G13] = 0.

The theorem statement follows.

55

Adversary FSend,Recv
EINT (stME,I , stME,R)

hk ←$ {0, 1}HASH.kl

mk ←$ {0, 1}320

x←$ {0, 1}992

auth_key_id← HASH.Ev(hk, x)

(mkI ,mkR)← ϕMAC(mk)

FSendSim,RecvSim
INT

SendSim(u,m, aux, r)

st∗ME,u ← stME,u

(stME,u, p)← ME.Encode(stME,u,m, aux; r)

msg_key← MAC.Ev(mku, p)

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}KDF.ol

k ← T[u,msg_key]

cse ← SE.Enc(k, p)

If (S[u,msg_key] ̸= ⊥)
∧(S[u,msg_key] ̸= (p, cse)) then

stME,u ← st∗ME,u

Return ⊥
If SE.Dec(k, cse) ̸= p then

stME,u ← st∗ME,u

Return ⊥
S[u,msg_key]← (p, cse)

c← (auth_key_id,msg_key, cse)

Send(u,m, aux, r)

P[u, c]← p

Return c

RecvSim(u, c, aux)

If P[u, c] ̸= ⊥ then
p← P[u, c]

(stME,u,m)← ME.Decode(stME,u, p, aux)

Recv(u, p, aux)

Return ⊥

Figure 50. Adversary FEINT against the EINT-security of ME, supp for the transition between games G12–G13

in the proof of Theorem 2.

Proof alternatives. In the earlier analysis of Case A, we relied on a certain property of the message
encoding scheme ME. Roughly speaking, we reasoned that the algorithm ME.Decode should not be
able to successfully decode random-looking strings, meaning it should require that decodable payloads
are structured in a certain way. We now briefly outline a proof strategy that does not rely on such a
property of ME.

In Case A adversary FINT calls its oracle Recv(u, c, aux) on c = (auth_key_id′,msg_key, cse) with
a msg_key value that was never previously returned by oracle Send as a part of a ciphertext produced
by user u. Let us modify our initial goal for Case A as follows: we want to show that evaluating
k ← KDF.Ev(kku,msg_key), p← SE.Dec(k, cse) and msg_key′ ← MAC.Ev(mku, p) is very unlikely to
result in msg_key′ = msg_key. In fact, it is sufficient to focus on the last instruction here: we require
that it is hard to forge any input-output pair (p,msg_key) such that msg_key = MAC.Ev(mku, p). This
property is guaranteed if MAC is related-key PRF-secure.

Theorem 2 is currently stated for a generic function family MAC, but it could be narrowed down
to use MAC = MTP-MAC where MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p)[64 : 192]. Crucially, the
algorithm MTP-MAC.Ev is defined to drop half of the output bits of SHA-256; this prevents length
extension attacks. We could model MTP-MAC as the Augmented MAC (AMAC), and use the results
from [BBT16] to show that it is related-key PRF-secure. Technically, this would require proving three
claims as follows:

(1) Output of the first compression function within SHA-256(mku ∥ p)[64 : 192] looks uniformly random
when used with related keys; we already formalise and analyse this property in Section 5.2, phrased
as the HRKPRF-security of SHACAL-2 with respect to ϕMAC.

(2) The SHA-256 compression function h256 is OTPRF-secure.
(3) The SHA-256 compression function is (roughly) PRF-secure even in the presence of some leakage

on its key, i.e. an attacker receives k[64 : 192] when trying to break the PRF-security of h256(k, ·);
we do not formalise or analyse this property in our work.

56

Here (1) and (2) could be chained together to show that MTP-MAC is a secure PRF even for
variable-length inputs; then (3) would suffice to show that MTP-MAC is resistant to length extension
attacks.

Adopting the above proof strategy would have allowed us to omit the following two steps from
the current security reduction. The UNPRED-security of SE,ME would get directly replaced with a
new related-key PRF-security assumption for MAC = MTP-MAC, following the results for AMAC
from [BBT16]. The RKPRF-security of KDF (with respect to ϕKDF) would no longer be needed, because
currently its only use is to transform the security game prior to appealing to the UNPRED-security of
SE,ME.

5.7 Instantiation and interpretation

We are now ready to combine the theorems from the previous two sections with the notions defined in
Section 5.1 and Section 5.3 and the proofs in Appendix E. This is meant to allow interpretation of our
main results: qualitatively (what security assumptions are made) and quantitatively (what security
level is achieved). Note that in both of the following corollaries, the adversary is limited to making 296

queries. This is due to the wrapping of counters in MTP-ME, since beyond this limit the advantage in
breaking UPREF-security and EINT-security of MTP-ME becomes 1.

Corollary 1. Let session_id ∈ {0, 1}64, pb ∈ N and bl = 128. Let ME = MTP-ME[session_id, pb, bl],
MTP-HASH, MTP-MAC, MTP-KDF, ϕMAC, ϕKDF, MTP-SE be the primitives of MTProto defined in
Section 4.4. Let CH = MTP-CH[ME,MTP-HASH,MTP-MAC,MTP-KDF, ϕMAC, ϕKDF,MTP-SE]. Let
ϕSHACAL-2 be the related-key-deriving function defined in Fig. 29. Let h256 be the SHA-256 compression
function, and let H be the corresponding function family with H.Ev = h256, H.kl = H.ol = 256 and
H.In = {0, 1}512. Let ℓ ∈ N. Let DIND be any adversary against the IND-security of CH, making
qCh ≤ 296 queries to its Ch oracle, each query made for a message of length at most ℓ ≤ 227 bits.32
Then we can build adversaries Dshacal

OTPRF, DLRKPRF, DHRKPRF, Dcompr
OTPRF, DOTIND$ such that

AdvindCH(DIND) ≤ 4 ·
(
AdvotprfSHACAL-1(D

shacal
OTPRF)

+ AdvlrkprfSHACAL-2,ϕKDF,ϕSHACAL-2
(DLRKPRF)

+ AdvhrkprfSHACAL-2,ϕMAC
(DHRKPRF)

+

⌊
ℓ+ 256

512
+
pb+ 1

4

⌋
· AdvotprfH (Dcompr

OTPRF)
)

+
qCh · (qCh − 1)

2128

+ 2 · Advotind$CBC[AES-256](DOTIND$).

Corollary 1 follows from Theorem 1 together with Proposition 5, Proposition 6, Proposition 7 with
Lemma 1 and Proposition 8. The two terms in Theorem 1 related to ME are zero for ME = MTP-ME
when an adversary is restricted to making qCh ≤ 296 queries. Qualitatively, Corollary 1 shows that the
confidentiality of the MTProto-based channel depends on whether SHACAL-1 and SHACAL-2 can be
considered as pseudorandom functions in a variety of modes: with keys used only once, related keys,
partially chosen-keys when evaluated on fixed inputs and when the key and input switch positions.
Especially the related-key assumptions (LRKPRF and HRKPRF given in Section 5.2) are highly
unusual; in Appendix F we show that both assumptions hold in the ideal cipher model, but both of
them require further study in the standard model. Quantitatively, a limiting term in the advantage,
which implies security only if qCh < 264, is a result of the birthday bound on the MAC output, though
we note that we do not have a corresponding attack in this setting and thus the bound may not be
tight.

32 The length of plaintext m in MTProto is ℓ := |m| ≤ 227 bits. To build a payload p, algorithm ME.Encode
prepends a 256-bit header, and appends at most bl · (pb+ 1)-bit padding. Further evaluation of MAC on
p might append at most 512 additional bits of SHA padding. So this corollary uses Lemma 1 with the
maximum number of blocks T = ⌊(256 + ℓ+ bl · (pb+ 1) + 512) /512⌋ minus the first 512-bit block that is
processed separately in Proposition 7.

57

Corollary 2. Let session_id ∈ {0, 1}64, pb ∈ N and bl = 128. Let ME = MTP-ME[session_id, pb, bl],
MTP-HASH, MTP-MAC, MTP-KDF, ϕMAC, ϕKDF, MTP-SE be the primitives of MTProto defined in
Section 4.4. Let CH = MTP-CH[ME,MTP-HASH,MTP-MAC,MTP-KDF, ϕMAC, ϕKDF,MTP-SE]. Let
ϕSHACAL-2 be the related-key-deriving function defined in Fig. 29. Let SHA-256′ be SHA-256 with its
output truncated to the middle 128 bits. Let supp = SUPP be the support function as defined in Fig. 32.
Let FINT be any adversary against the INT-security of CH with respect to supp, making qSend ≤ 296

queries to its Send oracle. Then we can build adversaries DOTPRF, DLRKPRF, FCR such that

AdvintCH,supp(FINT) ≤ 2 ·
(
AdvotprfSHACAL-1(DOTPRF)

+ AdvlrkprfSHACAL-2,ϕKDF,ϕSHACAL-2
(DLRKPRF)

)
+

qSend
264

+ AdvcrSHA-256′(FCR).

Corollary 2 follows from Theorem 2 together with Proposition 5, Proposition 6 and Proposition 11.
The term AdveintMTP-ME,SUPP(FEINT) from Theorem 2 resolves to 0 for adversaries making qSend ≤ 296

queries according to Proposition 9. Qualitatively, Corollary 2 shows that also the integrity of the
MTProto-based channel depends on SHACAL-1 and SHACAL-2 behaving as PRFs. Due to the way
MTP-MAC is constructed, the result also depends on the collision resistance of truncated-output
SHA-256 (as discussed in Section 5.1). Quantitatively, the advantage is again bounded by qSend < 264.
This bound follows from the fact that the first block of payload contains a 64-bit constant session_id
which has to match upon decoding. If the MTProto message encoding scheme consistently checked
more fields during decoding (especially in the first block), the bound could be improved.

6 Timing side-channel attack

The formal model and proof we gave in the previous sections do not provide full guarantees about
the security of MTProto, which we illustrate in this section. Going beyond the model, we present a
timing side-channel attack against implementations of MTProto. The attack arises from MTProto’s
reliance on an Encrypt & MAC construction, the malleability of IGE mode, and specific weaknesses
in implementations. The attack proceeds in the spirit of [APW09]: move a target ciphertext block to
a position where the underlying plaintext will be interpreted as a length field and use the resulting
behaviour to learn some information. The attack is complicated by Telegram using IGE mode instead
of CBC mode analysed in [APW09]. We begin by describing a generic way to overcome this obstacle
in Section 6.1. We describe the side channels found in the implementations of several Telegram clients
in Section 6.2 and experimentally demonstrate the existence of a timing side channel in the desktop
client in Section 6.3.

6.1 Manipulating IGE

Suppose we intercept an IGE ciphertext c consisting of t blocks (for any block cipher E): c1 | c2 | . . . | ct
where | denotes a block boundary. Further, suppose we have a side channel that enables us to learn
some bits of m2, the second plaintext block.33 In IGE mode, we have ci = EK(mi ⊕ ci−1)⊕mi−1 for
i = 1, 2, . . . , t (see Section 2). Fix a target block number i for which we are interested in learning a
portion of mi that is encrypted in ci. Assume we know the plaintext blocks m1 and mi−1.

We construct a ciphertext c1 | c⋆ where c⋆ := ci ⊕mi−1 ⊕m1. This is decrypted in IGE mode as
follows:

m1 = E−1
K (c1 ⊕ IVm)⊕ IV c

m⋆ = E−1
K (c⋆ ⊕m1)⊕ c1 = E−1

K (ci ⊕mi−1)⊕ c1

= mi ⊕ ci−1 ⊕ c1

Since we know c1 and ci−1, we can recover some bits of mi if we can obtain the corresponding bits of
m⋆ (e.g. through a side channel leak).

33 The attack is easy to adapt to a different block.

58

To motivate our known plaintext assumption, consider a message where mi−1 = “Today’s password”
and mi = “is SECRET”. Here mi−1 is known, while learning bytes of mi is valuable. On another hand,
the requirement of knowing m1 may not be easy to fulfil in MTProto. The first plaintext block of
an MTProto payload always contains server_salt ∥ session_id, both of which are random values. It is
unclear whether they were intended to be secret, but in effect they are, limiting the applicability of
this attack. Section 7 gives an attack to recover these values. Note that these values are the same for
all ciphertexts within a single session, so if they were recovered, then we could carry out the attack
on each of the ciphertexts in turn. This allows the basic attack above to be iterated when the target
mi is fixed across all the ciphertexts, e.g. in order to amplify the total information learned about mi

when a single ciphertext allows to infer only a partial or noisy information about it (cf. [APW09]).

6.2 Leaky length field

The preceding attack assumes we have a side channel that enables us to learn part of m2. We now
show how such side channels arise in implementations.

The msg_length field occupies the last four bytes of the second block of every MTProto cloud
message plaintext (see Section 4.1). After decryption, the field is checked for validity in Telegram
clients. Crucially, in several implementations this check is performed before the MAC check, i.e. before
msg_key is recomputed from the decrypted plaintext. If either of those checks fails, the client closes
the connection without outputting a specific error message. However, if an implementation is not
constant time, an attacker who submits modified ciphertexts of the form described above may be able
to distinguish between an error arising from validity checking of msg_length and a MAC error, and
thus learn something about the bits of plaintext in the position of the msg_length field.

Since different Telegram clients implement different checks on the msg_length field, we now proceed
to a case-by-case analysis, showing relevant code excerpts in each case.

Android. The field msg_length is referred to as messageLength here. The check is performed in
decryptServerResponse of Datacenter.cpp [Tel21i], which compares messageLength with another
length field (see code below). If the messageLength check fails, the MAC check is still performed. The
timing difference thus consists only of two conditional jumps, which would be small in practice. The
length field is taken from the first four bytes of the transport protocol format and is not checked
against the actual packet size, so an attacker can substitute arbitrary values. Using multiple queries
with different length values could thus enable extraction of up to 32 bits of plaintext from the
messageLength field.
if (messageLength > length - 32) {

error = true;
} else if (paddingLength < 12 || paddingLength > 1024) {

error = true;
}
messageLength += 32;
if (messageLength > length) {

messageLength = length;
}
// compute messageKey [redacted due to space]
return memcmp(messageKey + 8, key , 16) == 0 && !error;

Desktop. The method handleReceived of session_private.cpp [Tel21l] performs the length check,
comparing the messageLength field with a fixed value of kMaxMessageLength = 224. When this check
fails, the connection is closed and no MAC check is performed, providing a potentially large timing
difference. Because of the fixed value 224, this check would leak the 8 most significant bits of the target
block mi with probability 2−8, i.e. the eight most significant bits of the 32-bit length field, allowing
those bits to be recovered after about 28 attempts on average.34

if (messageLength > kMaxMessageLength) {
LOG(("TCP Error: bad messageLength %1").arg(messageLength));
TCP_LOG (("TCP Error: bad message %1").arg(

Logs::mb(ints , intsCount * kIntSize).str ()));

return restart ();
}
// ...
// MAC computation and check follow

34 Note that this beats random guessing as the correct value can be recognised.

59

iOS. The field msg_length is referred to as messageDataLength here. The check is performed in
_decryptIncomingTransportData of MTProto.m [Tel21m], which compares messageDataLength with
the length of the decrypted data first in a padding length check and then directly, see code below.
If either check fails, it hashes the complete decrypted payload. A timing side channel arises because
sometimes this countermeasure hashes fewer bytes than a genuine MAC check (the latter also hashes
32 bytes of auth_key, here effectiveAuthKey.authKey; hence one more 512-bit block will be hashed
unless the length of the decrypted payload in bits modulo 512 is 184 or less35, this condition being due
to padding). If an attacker can change the value of decryptedData.length directly or by attaching
additional ciphertext blocks, this could leak up to 32 bits of plaintext as in the Android client.

int32_t paddingLength = ((int32_t)decryptedData.length) - messageDataLength;
if (paddingLength < 12 || paddingLength > 1024) {

__unused NSData *result = MTSha256(decryptedData);
return nil;

}

if (messageDataLength < 0 || messageDataLength > (int32_t)decryptedData.length) {
__unused NSData *result = MTSha256(decryptedData);
return nil;

}

int xValue = 8;
NSMutableData *msgKeyLargeData = [[NSMutableData alloc] init];
[msgKeyLargeData appendBytes:effectiveAuthKey.authKey.bytes

+ 88 + xValue length :32];
[msgKeyLargeData appendData:decryptedData];

NSData *msgKeyLarge = MTSha256(msgKeyLargeData);
NSData *messageKey = [msgKeyLarge subdataWithRange:NSMakeRange (8, 16)];

if (![messageKey isEqualToData:embeddedMessageKey])
return nil;

Discussion. Note that all three of the above implementations were in violation of Telegram’s own
security guidelines [Tel21e] which state: “If an error is encountered before this check could be performed,
the client must perform the msg_key check anyway before returning any result. Note that the response
to any error encountered before the msg_key check must be the same as the response to a failed
msg_key check.” In contrast, TDLib [Tel21g], the cross-platform library for building Telegram clients,
does avoid timing leaks by running the MAC check first.

Remark 2. Recall that in Section 4.4, we define a simplified message encoding scheme which uses
a constant in place of session_id and server_salt. This change would make the above attack more
practical. However, the attack is enabled by a misplaced msg_key check and the mitigation offered by
those values being secret in the implementations is accidental. Put differently, the attacks described in
this section do not justify their secrecy; our proofs of security do not rely on them being secret.

6.3 Practical experiments

We ran experiments to verify whether the side channel present in the desktop client code is exploitable.
We measured the time difference between processing a message with a wrong msg_length and processing
a message with a correct msg_length but a wrong MAC. This was done using the Linux desktop client,
modified to process messages generated on the client side without engaging the network. The code
can be found in Appendix G.1. We collected data for 108 trials for each case under ideal conditions,
i.e. with hyper-threading, Turbo Boost etc. disabled. After removing outliers, the difference in means
was about 3 microseconds, see Fig. 51. This should be sufficiently large for a remote attacker to detect,
even with network and other noise sources (cf. [AP13], where sub-microsecond timing differences were
successfully resolved over a LAN).

35 This condition holds for payloads of length 191 bits or less modulo 512, but interface to hash functions in
OpenSSL and derived libraries only accepts inputs in multiples of bytes not bits.

60

Figure 51. Processing time of SessionPrivate::handleReceived in microseconds.

29 30 31 32 33 34 35

0
20

00
00

0
40

00
00

0

length
MAC

error type # trials mean st. dev. median

msg_length 97820883 30.330652 0.267439 30.308
MAC 96908852 33.603296 0.190341 33.589

7 Attacking the key exchange

Recall that our attack in Section 6 relies on knowledge of m1 which in MTProto contains a 64-bit salt
and a 64-bit session ID. In Section 7.1, we present a strategy for recovering the 64-bit salt. We then
use it in a simple guess and confirm approach to recover the session ID in Section 7.2.

We stress, however, that the attack in Section 7.1 only applies in a short period after a key
exchange between a client and a server.36 Furthermore, the attack critically relies on observing small
timing differences which is unrealistic in practice, especially over a wide network. That is, our attack
relies on a timing side channel when Telegram’s servers decrypt RSA ciphertexts and verify their
integrity. While – in response to our disclosure – the Telegram developers confirmed the presence of
non-constant code in that part of their implementation and hence confirmed our attack, they did not
share source code or other details with us. That is, since Telegram does not publish source code for
its servers in contrast to its clients the only option to verify the precise server behaviour is to test it.
This would entail sending millions if not billions of requests to Telegram’s servers, from a host that
is geographically and topologically close to one of Telegram’s data centres, observing the response
time. Such an experiment would have been at the edge of our capabilities but is clearly feasible for a
dedicated, well-resourced attacker.

In Section 7.3, we then discuss how the attack in Section 7.1 enables to break server authentication
and thus enables an attacker-in-the-middle (MitM) attack on the Diffie-Hellman key exchange.

7.1 Recovering the salt

At a high level, our strategy exploits the fact that during the initial key exchange, Telegram integrity-
protects RSA ciphertexts by including a hash of the underlying message contents in the encrypted
payload except for the random padding which necessitates parsing the data which in turn establishes
the potential for a timing side-channel.37 In what follows, we assume the presence of such a side
channel and show how it enables the recovery of the encrypted message, solving noisy linear equations
via lattice reduction. We refer the reader to [MH20,AH21] for an introduction to the application of
lattice reduction in side-channel attacks and the state of the art respectively.

In Fig. 52 we show Telegram’s instantiation of the Diffie-Hellman key exchange [Tel21n] at the
level of detail required for our attack, omitting TL schema encoding. In Fig. 52, we let n := nonce,
s := server_nonce, n′ := new_nonce be nonces; S be the set of public server fingerprints, F ∈ S be
the fingerprint of the key selected by the client, ts := server_time be a timestamp for the server;
let F(·, ·) be some function used to derive keys;38 let pr, ps, pc be random padding of appropriate
36 Telegram will perform roughly one key exchange per day, aiming for forward secrecy.
37 We note that this issue mirrors the one reported in [JO16].
38 This consists of SHA-1 calls but we omit the details here.

61

length; and ak := auth_key be the final key. The initial salt used by Telegram is then computed as
server_salt := n′[0 : 64] ⊕ s[0 : 64]. Since s is sent in the clear during the key exchange protocol,
recovering the salt is equivalent to recovering n′[0 : 64]. We let N ′, e denote the public RSA key
(modulus and exponent) used to perform RSA encryption by the client in the key exchange and we let
d denote the private RSA exponent used by the server to perform RSA decryption.39 We assume N ′

has exactly 2048 bits which holds for the values used by Telegram.

Client Server

n←$ {0, 1}128 n s←$ {0, 1}128

n, s,N,S N ← p · q

n′ ←$ {0, 1}256 n, s, p, q, F,RSA (hr, N, p, q, n, s, n′, pr)

key, iv← F(n′, s) n, s, IGE(key, iv, hs, n, s, g, p
′, ga, ts, ps) key, iv← F(n′, s)

b←$ {0, 1}2048 n, s, IGE(key, iv, hc, n, s, retry_id, gb, pc)

ak ← (ga)b ak ← (gb)a

n, s, hn′

Figure 52. Telegram Key Exchange, where IGE = IGE[AES-256].

Further, we have

hn′ := SHA-1 (n′∥0x0i∥SHA-1 (ak) [0 : 64]) [32 : 160]

in Fig. 52 where i = 1, 2 or 3 depending on whether the key exchange terminated successfully and
hr, hs, hc are SHA-1 hashes over the corresponding payloads except for the padding pr, ps, pc. In
particular, we have

hr := SHA-1 (N, p, q, n, s, n′) .

The critical observation in this section is that while n, s and n′ have fixed lengths of 128, 128 and
256 bits respectively, the same is not true for N , p and q. This implies that the content to be fed to
SHA-1 after RSA decryption and during verification must first be parsed by the server. This opens up
the possibility of a timing side channel. In particular, at a byte level SHA-1 is called on

hd ∥ L(N)∥N∥P(N) ∥ L(p)∥p∥P(p) ∥ L(q)∥q∥P(q) ∥ n∥s∥n′

where L(x) encodes the length of x in one byte;40 x is stored in big endian byte order and P(x) is up
to three zero bytes so that length of L(x)∥x∥P(x) is divisible by 4; hd = 0xec5ac983.

We verified the following behaviour of the Telegram server, where “is checked” and “expects” means
the key exchange aborts if the payload deviates from the expectation.

– The header hd = 0xec5ac983 is checked;
– the server expects 1 ≤ L(N) ≤ 16 and L(p), L(q) = 4 (different valid encodings, e.g. by prefixing

zeroes, of valid values are not accepted);
– the value of N is not checked, p, q are checked against the value of N stored on the server and the

server expects p < q;
– the contents of P(·) are not checked;
– both n, s are checked.

39 Note that N ′ is distinct from the proof-of-work value N that is sent by the server during the protocol and
whose factors p, q are returned by the client.

40 Longer inputs are supported by L(·) but would not fit into ≤ 255 bytes of RSA payload.

62

While we do not know in what order the Telegram server performs these checks, we recall that the
payload must be parsed before being integrity checked and that the number of bytes being fed to
SHA-1 depends on this parsing. This is because the random padding must be removed from the
payload before calling SHA-1.

Recall that the Telegram developers acknowledged the attack presented here but did not provide
further details on their implementation. Therefore, below we will assume that the Telegram server
code follows a similar pattern to Telegram’s flagship TDLib library, which is used e.g. to implement
the Telegram Bot API [Tel20d]. While TDLib does not implement RSA decryption, it does implement
message parsing during the handshake. In particular, the library returns early when the header does
not match its expected value. In our case the header is 0xec5ac983 but we stress that this behaviour
does not seem to be problematic in TDLib and we do not know if the Telegram servers follow the same
pattern also for RSA decryption. We will discuss other leakage patterns below, but for now we will
assume the Telegram servers return early whenever there is a header mismatch, skipping the SHA-1
call in this case. This produces a timing side channel.

Thus, we consider a textbook RSA ciphertext c = me mod N ′ with

m = hr∥hd∥L(N)∥N∥P(N)∥L(p)∥p∥P(p)∥L(q)∥q∥P(q)∥n∥s∥n′∥pr

of length 255 bytes. First, observe that an attacker knows all contents of the payload (including their
encodings) except for hr, n′ and pr and we can write:

x = 2ℓ(pr) · n′ + pr < 2256+ℓ(pr)

m = (21880 · hr + 2256+ℓ(pr) · γ + x)

where γ is a known constant derived from n, s, p, q,N and where ℓ(pr) is the known length of pr. This
relies on knowing that |n′| = 256 and |m| − |hr| = 1880.

Under our assumption on header checking, we can detect whether the bits in positions 8·255−160−32
to 8 · 255− 160− 1 (big endian, SHA-1 returns 160 bits) of m′ := (c′)

d match 0xec5ac983 for any c′

we submit to the Telegram servers. Thus, inspired by [Ble98], we submit sei · c, for several chosen si to
the server and receive back an answer whether the bits 1848 to 1879 of si ·m match the expected
header. If the si are chosen sufficiently randomly, this event will have probability ≈ 2−32. Writing
ζ = 0xec5ac983, we consider

ei =
(
(si ·m mod N ′)− ζ · 21848

)
mod 21880

=
((

si ·
(
21880 · hr + 2256+ℓ(pr) · γ + x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(((

si · 21880 · hr + si · 2256+ℓ(pr) · γ + si · x
)
mod N ′

)
− ζ · 21848

)
mod 21880.

That is, we pick random si (we will discuss how to pick those below) and submit sei · c to the Telegram
servers. Using the timing side channel we then detect when the bits in the header position match
ζ. When this happens, we store si. Overall, we find µ such si (we discuss below how to pick µ) and
suppose the event happens for some set of si, with i = 0, . . . , µ− 1.

Recovering hr. Note that ei < 21880−32 by construction and x < 2256+ℓ(pr) ≪ 21848. Thus, picking
sufficiently small si an attacker can make e′i := (ei − si · x) mod 21880 < 21848, i.e.

e′i =
(((

si · 21880 · hr + si · 2256+ℓ(pr) · γ
)
mod N ′

)
− ζ · 21848

)
mod 21880 < 21848.

We rewrite e′i as

e′i =
(
si · 21880 · hr + si · 2256+ℓ(pr) · γ − ζ · 21848 − σi · 21880

)
mod N ′

for σi < 2160 and use lattice reduction to recover hr. Writing

ti =
(
si · 2256+ℓ(pr) · γ − ζ · 21848

)
mod N ′,

63

we consider the lattice spanned by the rows of L1 with

L1 :=

21688 0 0 0 21880 · s0 · · · 21880 · sµ−1 0
0 21688 0 0 21880 · · · 0 0

0 0
. . . 0 0

. . . 0 0
0 0 0 21688 0 · · · 21880 0
0 0 0 0 N ′ · · · 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 · · · N ′ 0
0 0 0 0 t0 · · · tµ−1 21848

.

Multiplying L1 from the left by

(hr, −σ0, . . . , −σµ−1, ∗, . . . , ∗, 1)

where ∗ stands for modular reduction by N ′, shows that this lattice contains a vector

(21688 · hr, −21688 σ0, . . . , −21688 σµ−1, e′0, . . . , e′µ−1, 21848) (1)

where all entries are bounded by 21848 = 21688+160. Thus that vector has Euclidean norm ≤
√
2µ+ 2 ·

21848.41 On the other hand, the Gaussian heuristic predicts the shortest vector in the lattice to have
norm

≈
√

2µ+ 2

2π e
·
(
21688·(µ+1) · (N ′)

µ · 21848
)1/(2µ+2)

. (2)

Finding a shortest vector in the lattice spanned by the rows of L1 is expected to recover our target
vector and thus hr when the norm of expression (1) is smaller than the expression (2) which is satisfied
for µ = 6.

We experimentally verified that LLL on a (2 · 6 + 2)-dimensional lattice constructed as L1 indeed
succeeds (cf. Appendix G.2). Thus, under our assumptions, recovering hr requires about 6 · 232 queries
to Telegram’s servers and a trivial amount of computation.

Recovering n′. Once we have recovered hr, we can target n′. Writing γ′ = 21880−256−ℓ(pr) · hr + γ, we
obtain

di =
(
(s′i ·m mod N ′)− ζ · 21848

)
mod 21880

=
((

s′i ·
(
2256+ℓ(pr) · γ′ + x

)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(((

s′i · 2256+ℓ(pr) · γ′ + s′i · x
)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(((

s′i · 2256+ℓ(pr) · γ′ + s′i · (2ℓ(pr) · n′ + pr)
)
mod N ′

)
− ζ · 21848

)
mod 21880

where the s′i are again chosen randomly and we collect s′i for i = 0, . . . , µ′ − 1 where the bits in the
header position match ζ. We discuss how to choose s′i and µ′ below. Thus, we assume that di < 21848

for s′i. Information theoretically, each such inequality leaks 32 bits. Considering that x = 2ℓ(pr)n′ + pr
has 256 + ℓ(pr) bits, we thus require at least (256 + ℓ(pr))/32 such inequalities to recover x.42 Yet,
ℓ(pr)≫ 256 and the content of pr is of no interest to us, i.e. we seek to recover n′ without “wasting
entropy” on pr.43 In other words, we wish to pick s′i sufficiently large so that all bits of s′i · 2ℓ(pr) · n′

affect the 32 bits starting at 21848 but sufficiently small to still allow us to consider “most of” s′i · pr as

41 This estimate is pessimistic for the attacker. Applying the techniques summarised in [AH21] for constructing
such lattices, we can save a factor of roughly two. We forgo these improvements here to keep the presentation
simple.

42 Technically, given the knowledge of hr and that it is a hash of the remaining inputs save pr the information
theory limit does not apply and algorithms exist to exploit this additional information [AH21]. However, for
simplicity we forgo a discussion of this variant here.

43 Indeed, we are only interested in 64 bits of n′: n′[0 : 64].

64

part of the lower-order bit noise. Thus, we pick random s′i ≈ 21848−ℓ(pr) and consider d′i := di − s′i · pr
with

d′i =
(((

s′i · 2256+ℓ(pr) · γ′ + s′i · 2ℓ(pr) · n′
)
mod N ′

)
− ζ · 21848

)
mod 21880

=
(
s′i · 2256+ℓ(pr) · γ′ + s′i · 2ℓ(pr) · n′ − ζ · 21848 − σ′

i · 21880
)
mod N ′.

Writing
t′i =

(
s′i · 2256+ℓ(pr) · γ′ − ζ · 21848

)
mod N ′,

we consider the lattice spanned by the rows of L2 with

L2 :=

21592 0 0 0 2ℓ(pr) · s′0 · · · 2ℓ(pr) · s′µ′−1 0

0 21688 0 0 21880 · · · 0 0

0 0
. . . 0 0

. . . 0 0
0 0 0 21688 0 · · · 21880 0
0 0 0 0 N ′ · · · 0 0

0 0 0 0 0
. . . 0 0

0 0 0 0 0 · · · N ′ 0
0 0 0 0 t′0 · · · t′µ′−1 21848

.

As before, multiplying L2 from the left by

(n′, −σ′
0, . . . , −σ′

µ′−1, ∗, . . . , ∗, 1)

shows that this lattice contains a vector

(21592 · n′, −21688 σ′
0, . . . , −21688 σ′

µ′−1, d′0, . . . , d′µ′−1, 21848)

where all entries are ≈ 21848 and thus has Euclidean norm ≈
√
2µ′ + 2 · 21848. We write “≈” instead

of “≤” because s′i · pr may overflow 21848. Picking µ′ = 256/32 + 1 = 9 gives an instance where the
target vector is expected to be shorter than the Gaussian heuristic predicts. However, due to our
choice of s′i, finding a shortest vector might not recover n′ exactly but only the top 256− ε bits for
some small ε. We verified this behaviour with our proof of concept implementation which consistently
recovers all but ε ≈ 4 bits. To recover the remaining bits, we simply perform exhaustive search by
computing SHA-1(N, p, q, n, s, n′ +∆n′) for all candidates for ∆n′ and comparing against hr. Overall,
under our assumptions, using ≈ (6 + 9) · 232 noise-free queries and a trivial amount of computation
we can recover n′ from Telegram’s key exchange. This in turn allows to compute the initial salt. Of
course, timing side channels are noisy, suggesting a potentially significantly larger number of queries
would be needed to recover sufficiently clean signals for the lattice reduction stage.

Extension to other leakage patterns. Our approach can be adapted to check other leakage patterns,
e.g. targeting the values in the L(·) fields. For example, recall that the Telegram servers require
1 ≤ L(N) ≤ 16. We do not know what the servers do when this condition is violated, but discuss
possible behaviours:

– Assume the code terminates early, skipping the SHA-1 call. This would result in a timing side
channel leaking that the three most significant bits of L(N) are zero when the SHA-1 call is triggered.

– Assume the code does not terminate early but the Telegram servers feed between 88 and 104
bytes to SHA-1. This would not produce a timing leak. That is, SHA-1 hashes data in blocks with
its running time depending on the number of blocks processed. It has a block size of 64 bytes, and
its padding algorithm (i.e. see algorithm SHA-pad in Section 2.2) insists on adding at least 8 bytes
of length and 1 byte of padding. Thus up to 55 full bytes are hashed as one block, then 119, 183,
and 247, cf. [AP13,MBA+20] for works exploiting this. Telegram’s format checking restricts accepted
length to between 88 and 104 bytes, i.e. all valid payloads lead to calls to the SHA-1 compression
function on two blocks.

65

– Assume the code performs a dummy SHA-1 call on all data received, say, minus the received
digest. This would lead to calls to the SHA-1 compression function on three blocks and a timing side
channel leaking the three most significant bits of L(N), by distinguishing between L(N) > 16 and
L(N) ≤ 16.

Now, suppose Telegram’s servers do leak whether the three most significant bits of L(N) are zero
without first checking the header. On the one hand, this would reduce the query complexity because
the target event is now expected to happen with probability 2−3. On the other hand, this increases
the cost of lattice reduction, as we now need to find shortest vectors in lattices of larger dimension.
Information theoretically, we need at least m = 160/3 samples to recover hr and thus need to consider
finding shortest vectors in a lattice of dimension 110, which is feasible [AH21]. For n′ we can use the
same tactic as above for “slicing up” x into n′ and pr to slice up n′ into sufficiently small chunks.
Alternatively, noting that we only need to recover 64 bits of n′ we can simply consider a lattice of
dimension ≈ 45, where finding shortest vectors is easy.

7.2 Recovering the session id

Given the salt, we can recover the session ID using a simple guess and verify approach exploiting the
same timing side channel as in Section 6. Here, we simply run our attack from Section 6 but this time
we use a known plaintext block mi in order to validate our guesses about the value of m1 (which is
now partially unknown). That is, for all 264 choices of the session ID, and given the recovered salt
value, we can construct a candidate for m1. Then for known mi−1,mi, we construct c1 | c⋆ as before,
with c⋆ = mi−1 ⊕ ci ⊕m1. If our guess for the session ID was correct, then decrypting c1 | c⋆ results
in a plaintext having a second block of the form:

m⋆ = E−1
K (c⋆ ⊕m1)⊕ c1 = E−1

K (mi−1 ⊕ ci)⊕ c1 = mi ⊕ ci−1 ⊕ c1.

We can then check if the observed behaviour on processing the ciphertext is consistent with the known
value mi ⊕ ci−1 ⊕ c1. If our choice of the session ID (and therefore m1) is correct, this will always be
the case. If our guess is incorrect then m⋆ can be assumed to be uniformly random.

In more detail, assume our timing side channel leaks 32 bits of plaintext from the length field
check. Let m

(j)
i and c

(j)
i be the i-th block in the j-th plaintext and ciphertext respectively. Collect

three plaintext-ciphertext pairs such that

m
(j)
i ⊕ c

(j)
i−1 ⊕ c

(j)
1 , (0 ≤ j < 3)

passes the length check.44 For each guess of the session ID submit three ciphertexts containing
c⋆,(j) = m

(j)
i−1 ⊕ c

(j)
i ⊕m

(j)
1 as the second block. If our guess for m1 was correct then all three will pass

the length check which is leaked to us by the timing side channel. If our guess for m1 was incorrect
then E−1

K (c⋆,(j) ⊕m1) will output a random block, i.e. such that E−1
K (c⋆,(j) ⊕m1) ⊕ c1 passes the

length check with probability 2−32. Thus, all three length checks will pass with probability 2−96. In
other words, the probability of a false positive is upper-bounded by 264 · 2−96 = 2−32 (i.e. in the worst
case we will check and discard 264 − 1 possible values of session ID before finding the correct one).

7.3 Breaking server authentication

Recall from Fig. 52 that the key, iv pair used to encrypt ga and gb are derived from s (sent in the
clear) and n′. Since the attack in Section 7.1 recovers n′, it can be immediately extended into an
attacker-in-the-middle (MitM) attack on the Diffie-Hellman key exchange. That is, knowing n′ the
attacker can compose the appropriate IGE ciphertext containing some ga

′
of its choice where it knows

a′ (and similarly replace gb coming from the client with gb
′
for some b′ it knows). Both client and

server will thus complete their respective key exchanges with the adversary rather than each other,
allowing the adversary to break confidentiality and integrity of their communication. However, even
in the presence of the side channel that enabled the attack in Section 7.1, the MitM attack is more
complicated due to the need to complete it before the session between client and server times out.
This may be feasible under some of the alternative leakage patterns discussed earlier but unlikely to
be realistic when > 232 requests are required to recover n′.
44 A different index i can be used within each ciphertext.

66

8 Discussion

The central result of this work is a proof that the use of symmetric encryption in Telegram’s MTProto 2.0
can provide the basic security expected from a bidirectional channel if small modifications are made.
The Telegram developers have indicated that they implemented most of these changes. Thus, our work
can give some assurance to those reliant on Telegram providing confidential and integrity-protected
cloud chats – at a comparable level to chat protocols that run over TLS’s record protocol. However,
our work comes with a host of caveats.

Attacks. Our work also presents attacks against the symmetric encryption in Telegram. These highlight
the gap between the variant of MTProto 2.0 that we model and Telegram’s implementations. While
the reordering attack in Section 4.2 and the attack on IND-CPA security in Section 4.2 were possible
against implementations that we studied, they can easily be avoided without making changes to the
on-the-wire format of MTProto, i.e. by only changing processing in clients and servers. After disclosing
our findings, Telegram informed us that they have changed this processing accordingly.

Our attacks in Section 6 are attacks on the implementation. As such, they can be considered
outside the model: our model only shows that there can be secure instantiations of MTProto but
does not cover the actual implementations; in particular, we do not model timing differences. That
said, protocol design has a significant impact on the ease with which secure implementations can
be achieved. Here, the decision in MTProto to adopt Encrypt & MAC results in the potential for a
leak that we can exploit in specific implementations. This “brittleness” of MTProto is of particular
relevance due to the surfeit of implementations of the protocol, and the fact that security advice may
not be heeded by all authors, as we showed with our msg_length attack in Section 6. Here Telegram’s
apparent ambition to provide TDLib as a one-stop solution for clients across platforms will allow
security researchers to focus their efforts. We thus recommend that Telegram replaces the low-level
cryptographic processing in all official clients with a carefully vetted library.

Note that the security of the Telegram ecosystem does not stop with official clients. As the recent
work of [vAP22] shows, many third-party client implementations are also vulnerable to attacks.

Tightness. On the other hand, our proofs are not necessarily tight. That is, our theorem statements
contain terms bounding the advantage by ≈ q/264 where q is the number of queries sent by the
adversary. Yet, we have no attacks matching these bounds (our attacks with complexity 264 are outside
the model). Thus, it is possible that a refined analysis would yield tighter bounds.

Future work. Our attack in Section 7 is against the implementation of Telegram’s key exchange and
is thus outside of our model for two reasons: as before, we do not consider timing side channels in
our model and, critically, we only model the symmetric part of MTProto. This highlights a second
significant caveat for our results that large parts of Telegram’s design remain unstudied: multi-user
security, the key exchange, the higher-level message processing, secret chats, forward secrecy, control
messages, bot APIs, CDNs, cloud storage, the Passport feature, to name but a few. These are pressing
topics for future work.

Assumptions. In our proofs we are forced to rely on unstudied assumptions about the underlying
primitives used in MTProto. In particular, we have to make related-key assumptions about the
compression function of SHA-256 which could be easily avoided by tweaking the use of these primitives in
MTProto. In the meantime, these assumptions represent interesting targets for symmetric cryptography
research. Similarly, the complexity of our proofs and assumptions largely derives from MTProto
deploying hash functions in place of (domain-separated) PRFs such as HMAC. We recommend that
Telegram either adopts well-studied primitives for future versions of MTProto to ease analysis and
thus to increase confidence in the design, or adopts TLS.

Telegram. While we prove security of the symmetric part of MTProto at a protocol level, we recall that
by default communication via Telegram must trust the Telegram servers, i.e. end-to-end encryption is
optional and not available for group chats. We thus, on the one hand, (a) recommend that Telegram
open-sources the cryptographic processing on their servers and (b) recommend to avoid referencing
Telegram as an “encrypted messenger” which – post-Snowden – has come to mean end-to-end encryption.
On the other hand, discussions about end-to-end encryption aside, echoing [EHM17,ABJM21] we note
that many higher-risk users do rely on MTProto and Telegram and shun Signal. This emphasises the
need to study these technologies and how they serve those who rely on them.

67

Acknowledgements

We thank Mihir Bellare for discussions and insights. The research of Mareková was supported by the
EPSRC and the UK Government as part of the Centre for Doctoral Training in Cyber Security at
Royal Holloway, University of London (EP/P009301/1). The research of Paterson was supported in
part by a gift from VMware. The bulk of this work was done while Albrecht was at Royal Holloway,
University of London.

References

ABJM21. Martin R. Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and Lenka Mareková. Collective information
security in large-scale urban protests: the case of hong kong. In Michael Bailey and Rachel
Greenstadt, editors, USENIX Security 2021, pages 3363–3380. USENIX Association, August 2021.

ABL+14. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda.
How to securely release unverified plaintext in authenticated encryption. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 105–125. Springer,
Heidelberg, December 2014.

ACD19. Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In Ishai and Rijmen [IR19], pages 129–158.

AH21. Martin R. Albrecht and Nadia Heninger. On bounded distance decoding with predicate: Breaking
the “lattice barrier” for the hidden number problem. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 528–558. Springer,
Heidelberg, October 2021.

AMPS22. Martin R. Albrecht, Lenka Mareková, Kenneth G. Paterson, and Igors Stepanovs. Four attacks
and a proof for telegram. In 2022 IEEE Symposium on Security and Privacy, pages 87–106. IEEE
Computer Society Press, May 2022.

AP13. Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record
protocols. In 2013 IEEE Symposium on Security and Privacy, pages 526–540. IEEE Computer
Society Press, May 2013.

APW09. Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery attacks against
SSH. In 2009 IEEE Symposium on Security and Privacy, pages 16–26. IEEE Computer Society
Press, May 2009.

BBKN12. Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Namprempre. On-line
ciphers and the hash-CBC constructions. Journal of Cryptology, 25(4):640–679, October 2012.

BBT16. Mihir Bellare, Daniel J. Bernstein, and Stefano Tessaro. Hash-function based PRFs: AMAC and
its multi-user security. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 566–595. Springer, Heidelberg, May 2016.

BCK96. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom functions revisited: The cascade
construction and its concrete security. In 37th FOCS, pages 514–523. IEEE Computer Society
Press, October 1996.

BDJR97. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment of
symmetric encryption. In 38th FOCS, pages 394–403. IEEE Computer Society Press, October 1997.

BHMS16. Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Douglas Stebila. From stateless to stateful:
Generic authentication and authenticated encryption constructions with application to TLS. In
Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 55–71. Springer, Heidelberg,
February / March 2016.

BK03. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 491–506. Springer, Heidelberg, May 2003.

BKN02. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryption in SSH:
Provably fixing the SSH binary packet protocol. In Vijayalakshmi Atluri, editor, ACM CCS 2002,
pages 1–11. ACM Press, November 2002.

BKN04. Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repairing the
ssh authenticated encryption scheme: A case study of the encode-then-encrypt-and-mac paradigm.
ACM Transactions on Information and System Security (TISSEC), 7(2):206–241, 2004.

Ble98. Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 1–12.
Springer, Heidelberg, August 1998.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In Vaudenay [Vau06], pages 409–426.

68

BSJ+17. Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. Ratcheted
encryption and key exchange: The security of messaging. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part III, volume 10403 of LNCS, pages 619–650. Springer, Heidelberg,
August 2017.

Cam78. C. Campbell. Design and specification of cryptographic capabilities. IEEE Communications Society
Magazine, 16(6):15–19, 1978.

CDMP05. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-Damgård
revisited: How to construct a hash function. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 430–448. Springer, Heidelberg, August 2005.

CDV21. Andrea Caforio, F. Betül Durak, and Serge Vaudenay. Beyond security and efficiency: On-demand
ratcheting with security awareness. In Juan Garay, editor, PKC 2021, Part II, volume 12711 of
LNCS, pages 649–677. Springer, Heidelberg, May 2021.

DF18. Jean Paul Degabriele and Marc Fischlin. Simulatable channels: Extended security that is universally
composable and easier to prove. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 519–550. Springer, Heidelberg, December 2018.

EHM17. Ksenia Ermoshina, Harry Halpin, and Francesca Musiani. Can Johnny build a protocol? co-
ordinating developer and user intentions for privacy-enhanced secure messaging protocols. In
European Workshop on Usable Security, 2017.

EMP18. Patrick Eugster, Giorgia Azzurra Marson, and Bertram Poettering. A cryptographic look at
multi-party channels. In Steve Chong and Stephanie Delaune, editors, CSF 2018 Computer Security
Foundations Symposium, pages 31–45. IEEE Computer Society Press, 2018.

FGJ20. Marc Fischlin, Felix Günther, and Christian Janson. Robust channels: Handling unreliable networks
in the record layers of QUIC and DTLS 1.3. Cryptology ePrint Archive, Report 2020/718, 2020.
https://eprint.iacr.org/2020/718.

Goo18. Google. BoringSSL AES IGE implementation. https://github.com/DrKLO/Telegram/blob/
d073b80063c568f31d81cc88c927b47c01a1dbf4/TMessagesProj/jni/boringssl/crypto/fipsmodule/
aes/aes_ige.c, Jul 2018.

HN00. Helena Handschuh and David Naccache. SHACAL (-submission to NESSIE-). Proceedings of First
Open NESSIE Workshop, 2000. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.
4066&rep=rep1&type=pdf.

IR19. Yuval Ishai and Vincent Rijmen, editors. EUROCRYPT 2019, Part I, volume 11476 of LNCS.
Springer, Heidelberg, May 2019.

IT21. Jana Iyengar and Martin Thomson. QUIC: A UDP-based multiplexed and secure transport.
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/, March 2021. Draft Version 34.

JMM19. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting: Almost-optimal guarantees
for secure messaging. In Ishai and Rijmen [IR19], pages 159–188.

JO16. Jakob Jakobsen and Claudio Orlandi. On the CCA (in)security of MTProto. Proceedings of the
6th Workshop on Security and Privacy in Smartphones and Mobile Devices - SPSM’16, 2016.

JS18. Joseph Jaeger and Igors Stepanovs. Optimal channel security against fine-grained state compromise:
The safety of messaging. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

Jut00. Charanjit Jutla. Attack on free-mac, sci.crypt. https://groups.google.com/forum/#!topic/sci.
crypt/4bkzm_n7UGA, Sep 2000.

KKL+04. Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim, and Jung Hwan Song. Related-key attacks
on reduced rounds of SHACAL-2. In Anne Canteaut and Kapalee Viswanathan, editors, INDO-
CRYPT 2004, volume 3348 of LNCS, pages 175–190. Springer, Heidelberg, December 2004.

Knu00. Lars R Knudsen. Block chaining modes of operation. 2000.
Kob18. Nadim Kobeissi. Formal Verification for Real-World Cryptographic Protocols and Implementations.

Theses, INRIA Paris ; Ecole Normale Supérieure de Paris - ENS Paris, December 2018. https:
//hal.inria.fr/tel-01950884.

KPB03. Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure cryptographic transforms, or
how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177, 2003. https://eprint.
iacr.org/2003/177.

LKKD06. Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Related-key rectangle attack on
42-round SHACAL-2. In Sokratis K. Katsikas, Javier Lopez, Michael Backes, Stefanos Gritzalis,
and Bart Preneel, editors, ISC 2006, volume 4176 of LNCS, pages 85–100. Springer, Heidelberg,
August / September 2006.

Lud17. Kelby Ludwig. Trudy - Transparent TCP proxy, 2017. https://github.com/praetorian-inc/trudy.
MBA+20. Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky, Johannes Mittmann, and

Jörg Schwenk. Raccoon Attack: Finding and exploiting most-significant-bit-oracles in TLS-DH(E).
https://raccoon-attack.com/RacoonAttack.pdf, September 2020. accessed 11 September 2020.

69

https://eprint.iacr.org/2020/718
https://github.com/DrKLO/Telegram/blob/d073b80063c568f31d81cc88c927b47c01a1dbf4/TMessagesProj/jni/boringssl/crypto/fipsmodule/aes/aes_ige.c
https://github.com/DrKLO/Telegram/blob/d073b80063c568f31d81cc88c927b47c01a1dbf4/TMessagesProj/jni/boringssl/crypto/fipsmodule/aes/aes_ige.c
https://github.com/DrKLO/Telegram/blob/d073b80063c568f31d81cc88c927b47c01a1dbf4/TMessagesProj/jni/boringssl/crypto/fipsmodule/aes/aes_ige.c
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.4066&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.4066&rep=rep1&type=pdf
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://groups.google.com/forum/#!topic/sci.crypt/4bkzm_n7UGA
https://groups.google.com/forum/#!topic/sci.crypt/4bkzm_n7UGA
https://hal.inria.fr/tel-01950884
https://hal.inria.fr/tel-01950884
https://eprint.iacr.org/2003/177
https://eprint.iacr.org/2003/177
https://github.com/praetorian-inc/trudy
https://raccoon-attack.com/RacoonAttack.pdf

MH20. Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys from partial information,
by example. Cryptology ePrint Archive, Report 2020/1506, 2020. https://eprint.iacr.org/2020/
1506.

MP17. Giorgia Azzurra Marson and Bertram Poettering. Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol., 2017(1):405–426, 2017.

MV21. Marino Miculan and Nicola Vitacolonna. Automated symbolic verification of Telegram’s MT-
Proto 2.0. In Sabrina De Capitani di Vimercati and Pierangela Samarati, editors, Proceedings of
the 18th International Conference on Security and Cryptography, SECRYPT 2021, pages 185–197.
SciTePress, 2021.

NIS15. NIST. FIPS 180-4: Secure Hash Standard. 2015. http://dx.doi.org/10.6028/NIST.FIPS.180-4.
Rog04. Phillip Rogaway. Nonce-based symmetric encryption. In Bimal K. Roy and Willi Meier, editors,

FSE 2004, volume 3017 of LNCS, pages 348–359. Springer, Heidelberg, February 2004.
RS06. Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-wrap problem.

In Vaudenay [Vau06], pages 373–390.
RTM21. Eric Rescorla, Hannes Tschofenig, and Nagendra Modadugu. The Datagram Transport Layer Se-

curity (DTLS) protocol version 1.3. https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/,
February 2021. Draft Version 41.

RZ18. Phillip Rogaway and Yusi Zhang. Simplifying game-based definitions - indistinguishability up to
correctness and its application to stateful AE. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 3–32. Springer, Heidelberg, August 2018.

Sha49. Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

Shr04. Tom Shrimpton. A characterization of authenticated-encryption as a form of chosen-ciphertext
security. Cryptology ePrint Archive, Report 2004/272, 2004. https://eprint.iacr.org/2004/272.

SK17. Tomáš Sušánka and Josef Kokeš. Security analysis of the Telegram IM. In Proceedings of the 1st
Reversing and Offensive-oriented Trends Symposium, pages 1–8, 2017.

Tel20a. Telegram. MTProto transports. http://web.archive.org/web/20200527124125/https://core.
telegram.org/mtproto/mtproto-transports, May 2020.

Tel20b. Telegram. Notice of ignored error message. http://web.archive.org/web/
20200527121939/https://core.telegram.org/mtproto/service_messages_about_messages#
notice-of-ignored-error-message, May 2020.

Tel20c. Telegram. Schema. https://core.telegram.org/schema, Sep 2020.
Tel20d. Telegram. tdlib. https://github.com/tdlib/td, Sep 2020.
Tel20e. Telegram. TL language. https://core.telegram.org/mtproto/TL, Sep 2020.
Tel21a. Telegram. 500 million users. https://t.me/durov/147, Feb 2021.
Tel21b. Telegram. End-to-end encryption, secret chats – sending a request. http://web.archive.org/web/

20210126013030/https://core.telegram.org/api/end-to-end#sending-a-request, Feb 2021.
Tel21c. Telegram. Mobile protocol: Detailed description. http://web.archive.org/web/20210126200309/

https://core.telegram.org/mtproto/description, Jan 2021.
Tel21d. Telegram. Mobile protocol: Detailed description – server salt. http://web.archive.org/web/

20210221134408/https://core.telegram.org/mtproto/description#server-salt, Feb 2021.
Tel21e. Telegram. Security guidelines for client developers. http://web.archive.org/web/20210203134436/

https://core.telegram.org/mtproto/security_guidelines#mtproto-encrypted-messages, Feb
2021.

Tel21f. Telegram. Sequence numbers in secret chats. http://web.archive.org/web/20201031115541/https:
//core.telegram.org/api/end-to-end/seq_no, Jan 2021.

Tel21g. Telegram. tdlib – Transport.cpp. https://github.com/tdlib/td/blob/v1.7.0/td/mtproto/
Transport.cpp#L272, Apr 2021.

Tel21h. Telegram. Telegram Android – Datacenter.cpp. https://github.com/DrKLO/Telegram/blob/
release-7.4.0_2223/TMessagesProj/jni/tgnet/Datacenter.cpp#L1171, Feb 2021.

Tel21i. Telegram. Telegram Android – Datacenter.cpp. https://github.com/DrKLO/Telegram/blob/
release-7.6.0_2264/TMessagesProj/jni/tgnet/Datacenter.cpp#L1250, Apr 2021.

Tel21j. Telegram. Telegram Desktop – mtproto_serialized_request.cpp. https://github.com/
telegramdesktop/tdesktop/blob/v2.5.8/Telegram/SourceFiles/mtproto/details/mtproto_
serialized_request.cpp#L15, Feb 2021.

Tel21k. Telegram. Telegram Desktop – session_private.cpp. https://github.com/telegramdesktop/
tdesktop/blob/v2.6.1/Telegram/SourceFiles/mtproto/session_private.cpp#L1338, Mar 2021.

Tel21l. Telegram. Telegram Desktop – session_private.cpp. https://github.com/telegramdesktop/
tdesktop/blob/v2.7.1/Telegram/SourceFiles/mtproto/session_private.cpp#L1258, Apr 2021.

Tel21m. Telegram. Telegram iOS – MTProto.m. https://github.com/TelegramMessenger/Telegram-iOS/
blob/release-7.6.2/submodules/MtProtoKit/Sources/MTProto.m#L2144, Apr 2021.

Tel21n. Telegram. Telegram MTProto – creating an authorization key. http://web.archive.org/web/
20210112084225/https://core.telegram.org/mtproto/auth_key, Jan 2021.

70

https://eprint.iacr.org/2020/1506
https://eprint.iacr.org/2020/1506
http://dx.doi.org/10.6028/NIST.FIPS.180-4
https://datatracker.ietf.org/doc/draft-ietf-tls-dtls13/
https://eprint.iacr.org/2004/272
http://web.archive.org/web/20200527124125/https://core.telegram.org/mtproto/mtproto-transports
http://web.archive.org/web/20200527124125/https://core.telegram.org/mtproto/mtproto-transports
http://web.archive.org/web/20200527121939/https://core.telegram.org/mtproto/service_messages_about_messages#notice-of-ignored-error-message
http://web.archive.org/web/20200527121939/https://core.telegram.org/mtproto/service_messages_about_messages#notice-of-ignored-error-message
http://web.archive.org/web/20200527121939/https://core.telegram.org/mtproto/service_messages_about_messages#notice-of-ignored-error-message
https://core.telegram.org/schema
https://github.com/tdlib/td
https://core.telegram.org/mtproto/TL
https://t.me/durov/147
http://web.archive.org/web/20210126013030/https://core.telegram.org/api/end-to-end#sending-a-request
http://web.archive.org/web/20210126013030/https://core.telegram.org/api/end-to-end#sending-a-request
http://web.archive.org/web/20210126200309/https://core.telegram.org/mtproto/description
http://web.archive.org/web/20210126200309/https://core.telegram.org/mtproto/description
http://web.archive.org/web/20210221134408/https://core.telegram.org/mtproto/description#server-salt
http://web.archive.org/web/20210221134408/https://core.telegram.org/mtproto/description#server-salt
http://web.archive.org/web/20210203134436/https://core.telegram.org/mtproto/security_guidelines#mtproto-encrypted-messages
http://web.archive.org/web/20210203134436/https://core.telegram.org/mtproto/security_guidelines#mtproto-encrypted-messages
http://web.archive.org/web/20201031115541/https://core.telegram.org/api/end-to-end/seq_no
http://web.archive.org/web/20201031115541/https://core.telegram.org/api/end-to-end/seq_no
https://github.com/tdlib/td/blob/v1.7.0/td/mtproto/Transport.cpp#L272
https://github.com/tdlib/td/blob/v1.7.0/td/mtproto/Transport.cpp#L272
https://github.com/DrKLO/Telegram/blob/release-7.4.0_2223/TMessagesProj/jni/tgnet/Datacenter.cpp#L1171
https://github.com/DrKLO/Telegram/blob/release-7.4.0_2223/TMessagesProj/jni/tgnet/Datacenter.cpp#L1171
https://github.com/DrKLO/Telegram/blob/release-7.6.0_2264/TMessagesProj/jni/tgnet/Datacenter.cpp#L1250
https://github.com/DrKLO/Telegram/blob/release-7.6.0_2264/TMessagesProj/jni/tgnet/Datacenter.cpp#L1250
https://github.com/telegramdesktop/tdesktop/blob/v2.5.8/Telegram/SourceFiles/mtproto/details/mtproto_serialized_request.cpp#L15
https://github.com/telegramdesktop/tdesktop/blob/v2.5.8/Telegram/SourceFiles/mtproto/details/mtproto_serialized_request.cpp#L15
https://github.com/telegramdesktop/tdesktop/blob/v2.5.8/Telegram/SourceFiles/mtproto/details/mtproto_serialized_request.cpp#L15
https://github.com/telegramdesktop/tdesktop/blob/v2.6.1/Telegram/SourceFiles/mtproto/session_private.cpp#L1338
https://github.com/telegramdesktop/tdesktop/blob/v2.6.1/Telegram/SourceFiles/mtproto/session_private.cpp#L1338
https://github.com/telegramdesktop/tdesktop/blob/v2.7.1/Telegram/SourceFiles/mtproto/session_private.cpp#L1258
https://github.com/telegramdesktop/tdesktop/blob/v2.7.1/Telegram/SourceFiles/mtproto/session_private.cpp#L1258
https://github.com/TelegramMessenger/Telegram-iOS/blob/release-7.6.2/submodules/MtProtoKit/Sources/MTProto.m#L2144
https://github.com/TelegramMessenger/Telegram-iOS/blob/release-7.6.2/submodules/MtProtoKit/Sources/MTProto.m#L2144
http://web.archive.org/web/20210112084225/https://core.telegram.org/mtproto/auth_key
http://web.archive.org/web/20210112084225/https://core.telegram.org/mtproto/auth_key

UDB+15. Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Goldberg, and
Matthew Smith. SoK: Secure messaging. In 2015 IEEE Symposium on Security and Privacy, pages
232–249. IEEE Computer Society Press, May 2015.

vAP22. Theo von Arx and Kenneth G. Paterson. On the cryptographic fragility of the Telegram ecosystem.
Cryptology ePrint Archive, Paper 2022/595, 2022. to appear at AsiaCCS 2023.

Vau06. Serge Vaudenay, editor. EUROCRYPT 2006, volume 4004 of LNCS. Springer, Heidelberg,
May / June 2006.

71

A Correctness-style properties of a support function

In this section we formalise two basic correctness-style properties of a support function that we call
integrity and order correctness. Both properties were specified and required (but not named) in the
robust channel framework of [FGJ20]. For our formal analysis of the MTProto protocol in Section 5
we use the support function SUPP defined in Fig. 32 that mandates strict in-order delivery; it happens
to satisfy both of the properties formalised in this section. However, we do not mandate that every
support function must satisfy these properties so as not to constrain the range of possible channel
behaviours. We provide formalisations of these two properties to better clarify the relation to prior
work.

The INT-security proof of our MTProto-based channel MTP-CH in Section 5.6 relied on the
integrity property, which we formalise here, and on two other basic properties of SUPP. The two latter
properties were informally introduced in Section 5.6. We do not formalise them in this work in order
to avoid introducing additional complexity.

Recall that any support function supp can be interpreted as a specification regarding how a channel
should behave. In particular, the correctness definition for channels from Section 3.4 matches the
implementation of any channel CH against its desired functionality as specified by supp. However,
there can be many different channel implementations that adhere to a fixed specification defined by
supp. Therefore, in this work all definitions of support functions and all formalisations of support
function properties are agnostic to (i.e. not parametrised with) any specific channel implementation
CH.

Integrity of a support function. This property roughly requires that only the messages that were
genuinely sent by another user on the channel are delivered. In particular, the support function should
return ⊥ whenever it is evaluated on an input tuple (u, tru, tru, label, aux) such that the label label
does not appear in the opposite user’s transcript tru. The game in Fig. 53 captures this requirement
by allowing an adversary F to choose an arbitrary input tuple for the support function supp. The
advantage of F in breaking the integrity of supp is defined as Advsintsupp(F) = Pr

[
Gsint

supp,F
]
.

Game Gsint
supp,F

(u, tru, tru, label, aux)←$ F
forge← (̸ ∃m′, aux′ : (sent,m′, label, aux′) ∈ tru)

m∗ ← supp(u, tru, tru, label, aux)

Return forge ∧ (m∗ ̸= ⊥)

Figure 53. Integrity of support function supp.

Order correctness of a support function. This property roughly requires that in-order delivery
is enforced separately in each direction on the channel, assuming that a distinct label is assigned
to each network message. In particular, when evaluated on an input tuple (u, tru, tru, label, aux), we
require that the support function should return m if the opposite user’s transcript tru contains a tuple
(sent,m, label, aux) and if all prior messages from u to u were delivered and accepted strictly in-order.

The notion of order correctness is captured by the game in Fig. 54. It provides an adversary F
with an access to oracles Send and Recv. The oracles can be used to send and receive messages in
either direction between the two users. When querying the Send oracle, the adversary is allowed to
associate any plaintext m with an arbitrary label of its choice, as long as all labels are distinct. The
adversary controls the network, and can call its Recv oracle to deliver an arbitrary plaintext and
label pair to either user of its choice; the support function is used to determine how to resolve the
delivered network message. The adversary wins if it manages to create a situation that the support
function fails to recover a plaintext that was delivered strictly in-order in either direction. The game in
Fig. 54 uses an auxiliary function buildList to build a list of messages sent or received by a particular
user, and it uses L0 ≼ L1 to denote that a list L0 is a prefix of another list L1. The advantage of F in
breaking the order correctness of supp is defined as Advordsupp(F) = Pr

[
Gord

supp,F
]
.

72

Game Gord
supp,F

win← false

X ← ∅
FSend,Recv

Return win

Send(u,m, label, aux)

// u ∈ {I,R}
If label ∈ X then return ⊥
X ← X ∪ {label}
tru ← tru ∥ (sent,m, label, aux)

Return ⊥

Recv(u,m, label, aux) // u ∈ {I,R}
m∗ ← supp(u, tru, tru, label, aux)

tru ← tru ∥ (recv,m, label, aux)

inOrder← buildList(u, recv) ≼ buildList(u, sent)

If inOrder ∧ (m ̸= m∗) then win← true

Return ⊥

buildList(u, op)

// u ∈ {I,R}, op ∈ {sent, recv}
list← []

For each (op′,m, label, aux) ∈ tru do
If op′ = op then

list← list ∥ (m, label, aux)

Return list

Figure 54. Order correctness of support function supp.

Recall that our definition of a support transcript allows entries of the form (sent,m,⊥, aux) and
(recv,⊥, label, aux), denoting a failure to send and receive a message respectively. Such entries cannot
appear in the user transcripts of our order correctness game because we require that adversaries never
pass ⊥ as input to their oracles (cf. Section 2.1). This conveniently provides us with a weak notion of
order correctness that does not prescribe the behaviour of the support function in the presence of
channel errors. Our definition can be strengthened by giving the adversary a choice to create support
transcript entries that contain ⊥; the updated game could then mandate whether the in-order delivery
should still be required after an error is encountered.

The order correctness property is defined implicitly in [FGJ20]; it is required to hold as a part of
their channel correctness game. In our framework, the channel correctness game (cf. Section 3.4) is
defined with respect to an arbitrary support function, without mandating order correctness. Thus,
expressing order correctness is delegated to the support function itself: if the property is required to
hold in some setting, the support function must be required to satisfy the game in Fig. 54 (or some
stronger variant of it).

B Combined security of bidirectional channels

In this section we define a security notion for channels that simultaneously captures the integrity
and indistinguishability definitions from Section 3. We call it authenticated encryption. It follows
the all-in-one definitional style of [Shr04,RS06]. We will prove that integrity and indistinguishability
together are equivalent to authenticated encryption.

Security definition. Consider the authenticated encryption game Gae
CH,supp,A in Fig. 55, defined

for a channel CH, a support function supp and an adversary A. The advantage of A in breaking the
AE-security of CH with respect to supp is defined as AdvaeCH,supp(A) = 2 ·Pr

[
Gae

CH,supp,A

]
−1. Adversary

A is given access to the challenge encryption oracle Ch and to the receiving oracle Recv. The Ch
oracle is a copy of the Send oracle from the channel integrity game Gint

CH,supp,F (Fig. 12), except
it is amended for the left-or-right setting. Note that the Ch oracle can be queried with m0 = m1

in order to recover the functionality of the Send oracle. The Recv oracle is likewise based on the
corresponding oracle of Gint

CH,supp,F , but it is amended as follows. Instead of always returning ⊥, the
Recv oracle can now alternatively return another error code (here ̸= ⊥ as per Section 2.1). In
the spirit of [Shr04,RS06], oracle Recv returns ⊥ whenever the challenge bit b is equal to 0. If b = 1
and adversary A violated the integrity of the channel (i.e. m ̸= m∗ is true), then the Recv oracle
returns . Returning here signals that b = 1, and the adversary can immediately use this to win the
game.45 Finally, if b = 1 and m = m∗, then Recv returns ⊥; this ensures that the adversary cannot
trivially win by requesting the decryption of a challenge ciphertext. Note that adversary A can use the

45 We emphasise that it is sufficient to return any non-⊥ value when A violates the integrity of CH. For
example, one could instead return an arbitrary constant string.

73

Game Gae
CH,supp,A

b←$ {0, 1}
(stI , stR)←$ CH.Init()

b′ ←$ACh,Recv

Return b′ = b

Ch(u,m0,m1, aux, r) // u ∈ {I,R}, mi ∈ CH.MS, r ∈ CH.SendRS

If |m0| ≠ |m1| then return ⊥
(stu, c)← CH.Send(stu,mb, aux; r)

tru ← tru ∥ (sent,mb, c, aux)

Return c

Recv(u, c, aux) // u ∈ {I,R}
m∗ ← supp(u, tru, tru, c, aux)

(stu,m)← CH.Recv(stu, c, aux)

tru ← tru ∥ (recv,m, c, aux)

If (m ̸= m∗) ∧ (b = 1) then return
Return ⊥

Figure 55. Authenticated encryption security of channel CH with respect to support function supp.

support function supp to itself compute each plaintext value m that is obtained in the Recv oracle
(separately for either possible challenge bit b ∈ {0, 1}) for as long as m = m∗ has never been false yet.

AE is equivalent to INT + IND. In the following two propositions, we show that our notions of
channel integrity and indistinguishability from Section 3 together are equivalent to the above notion
of authenticated encryption security.

Proposition 1. Let CH be a channel. Let supp be a support function. Let A be any adversary against
the AE-security of CH with respect to supp. Then we can build an adversary F against the INT-security
of CH with respect to supp, and an adversary D against the IND-security of CH such that

AdvaeCH,supp(A) ≤ 2 · AdvintCH,supp(F) + AdvindCH(D).

Proof. This proof uses games G0–G1 in Fig. 56. Game G0 is functionally equivalent to the authenticated
encryption game Gae

CH,supp,A, only adding a single instruction that sets the bad flag, so by definition we
have

AdvaeCH,supp(A) = 2 · Pr [G0]− 1.

We obtain game G1 by removing the only instruction from game G0 that could have returned the
non-⊥ output; we denote this part of the code by setting bad← true. In this proof we will first use the
IND-security of CH to show that A cannot win if the bad flag is never set (i.e. as captured by game
G1, which does not contain the line commented with G0). And we will then show that the bad flag
cannot be set if CH has INT-security with respect to supp.

We build the adversaries F for Gint
CH,supp,F (Fig. 12) and D for Gind

CH,D (Fig. 13) as shown in Fig. 57.
First, consider the IND-security adversary D. By inspection, it perfectly simulates the oracles of game
G1 for the AE-security adversary A, so we can write

Pr [G1] = Pr
[
Gind

CH,D
]
=

1

2
· AdvindCH(D) +

1

2
.

Second, we have
Pr [G0]− Pr [G1] ≤ Pr

[
badG1

]
.

Now consider the INT-security adversary F . It perfectly simulates the oracles of game G1 for the
AE-security adversary A, sampling its own challenge bit b ∈ {0, 1} and using it to consistently encrypt
the appropriate challenge plaintext when simulating the challenge oracle Ch of game G1. Whenever
the bad flag is set in game G1, the Gint

CH,supp,F game likewise sets win = true, so we have

Pr [bad] ≤ Pr
[
Gint

CH,supp,F
]
= AdvintCH,supp(F).

74

Games G0–G1

b←$ {0, 1}
(stI , stR)←$ CH.Init()

b′ ←$ACh,Recv

Return b′ = b

Ch(u,m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
(stu, c)← CH.Send(stu,mb, aux; r)

tru ← tru ∥ (sent,mb, c, aux)

Return c

Recv(u, c, aux)

m∗ ← supp(u, tru, tru, c, aux)

(stu,m)← CH.Recv(stu, c, aux)

tru ← tru ∥ (recv,m, c, aux)

If (m ̸= m∗) ∧ (b = 1) then
bad← true

Return // G0

Return ⊥

Figure 56. Games G0–G1 for the proof of Proposition 1. The code added for the transition between games is
highlighted in green.

Adversary DCh,Recv

b′ ←$AChSim,RecvSim

Return b′

ChSim(u,m0,m1, aux, r)

c← Ch(u,m0,m1, aux, r)

Return c

RecvSim(u, c, aux)

Recv(u, c, aux)

Return ⊥

Adversary FSend,Recv

b←$ {0, 1}
b′ ←$AChSim,RecvSim

ChSim(u,m0,m1, aux, r)

If |m0| ≠ |m1| then return ⊥
c← Send(u,mb, aux, r)

Return c

RecvSim(u, c, aux)

Recv(u, c, aux)

Return ⊥

Figure 57. Adversaries D and F for the proof of Proposition 1.

Combining all of the above, we can write

AdvaeCH,supp(A) = 2 · (Pr [G1] + (Pr [G0]− Pr [G1]))− 1

≤ 2 ·
(
1

2
· AdvindCH(D) +

1

2
+ AdvintCH,supp(F)

)
− 1 =

= AdvindCH(D) + 2 · AdvintCH,supp(F).

This concludes the proof.

Proposition 2. Let CH be a channel. Let supp be a support function. Let F be any adversary against
the INT-security of CH with respect to supp. Let D be any adversary against the IND-security of CH.
Then we can build adversaries AINT and AIND against the AE-security of CH with respect to supp
such that

AdvintCH,supp(F) ≤ AdvaeCH,supp(AINT) and

AdvindCH(D) ≤ AdvaeCH,supp(AIND).

Proof. We build adversaries AINT and AIND as shown in Fig. 58.
First, let us consider the AE-security adversary AINT. It perfectly simulates the integrity game

Gint
CH,supp,F for the INT-security adversary F . When adversary F queries its oracle Send with plaintext

m as input, adversary AINT calls its Ch oracle with challenge plaintexts m0 = m1 = m as input,
and forwards the response back to F . When F queries its oracle Recv, adversary AINT first calls its
own Recv oracle on the same inputs and receives back an error code err ∈ {⊥, }. If err = then
b = 1 in the AE-security game where AINT is playing, so it calls abort(1) (defined in Section 2.1) to
immediately halt with the return value 1, causing AINT to win the game. Alternatively, if F terminates
without triggering this condition, then AINT returns 0. We now derive the advantage of AINT. Let b be
the challenge bit in game Gae

CH,supp,AINT
. If b = 1 then AINT returns b′ = 1 whenever F sets win = true

75

Adversary ACh,Recv
INT

FSendSim,RecvSim

Return 0

SendSim(u,m, aux, r)

c← Ch(u,m,m, aux, r)

Return c

RecvSim(u, c, aux)

err← Recv(u, c, aux)

If err ̸= ⊥ then abort(1)

Return ⊥

Adversary ACh,Recv
IND

b′ ←$ DChSim,RecvSim

Return b′

ChSim(u,m0,m1, aux, r)

c← Ch(u,m0,m1, aux, r)

Return c

RecvSim(u, c, aux)

err← Recv(u, c, aux)

If err ̸= ⊥ then abort(1)

Return ⊥

Figure 58. Adversaries AINT and AIND for the proof of Proposition 2.

in the simulated game Gint
CH,supp,F . If b = 0 then AINT never returns b′ = 1. We can write

AdvaeCH,supp(AINT) = Pr [b′ = 1 | b = 1]− Pr [b′ = 1 | b = 0]

≥ Pr
[
Gint

CH,supp,F
]
− 0

= AdvintCH,supp(F).

Next, consider the AE-security adversary AIND as shown in Fig. 58. It perfectly simulates the
indistinguishability game Gind

CH,D for the IND-security adversary D. In particular, AIND’s oracles run
the same code that D would expect from its own oracles, except for the additional processing of
transcripts and the support function that happens in the oracles of the AE-security game. The latter
does not affect the state of the channel, and can only cause AIND’s Recv oracle to occasionally return
a non-⊥ output (i.e. err =). Adversary AIND checks the error code err obtained from its Recv oracle;
it calls abort(1) to halt with the return value b′ = 1 whenever err ̸= ⊥, causing it to immediately
win in the AE-security game. However, our formal statement below does not reflect the potential
improvement in the advantage that AIND might gain by doing this. Overall, if D returns the correct
challenge bit, then so does AIND. Therefore, we can write

AdvaeCH,supp(AIND) = 2 · Pr
[
Gae

CH,supp,AIND

]
− 1

≥ 2 · Pr
[
Gind

CH,D
]
− 1

= AdvindCH(D).

This concludes the proof.

C Comparison to the robust channel framework of [FGJ20]

Our definitional framework in Section 3 is designed to analyse the correctness and security of
bidirectional channels with respect to relaxed requirements for message delivery. The robust channel
framework of [FGJ20] aims to capture the same goal, but it is defined only for unidirectional channels.
Even though our definitions are more general in this sense, the support functions in our framework
can be clearly seen as extending and strengthening the concept of support predicates from [FGJ20].
Beyond that, it is not necessarily obvious that the correctness and security notions defined across the
two frameworks capture the same – or even a comparable – intuition.

In order to be able to make meaningful claims about how the two frameworks compare to each other,
in Appendix C.1 we define unidirectional variants of our notions for correctness and authenticated
encryption security. We obtain them by simplifying our bidirectional definitions from Section 3.4 and
Appendix B in a straightforward way. Then in Appendix C.2 we define the notions of correctness
and combined security from [FGJ20] in the syntax of this work; we minimally modify the definitions
of [FGJ20] in order to make them comparable to ours. Finally, in Appendix C.3 we state and prove
formal claims showing roughly that correctness and security in our framework implies correctness and
security in the framework of [FGJ20]. We also provide some informal discussion. The main takeaway
is that our frameworks capture the same intuition. But our support transcripts are defined to contain
more information than the support transcripts used by [FGJ20]; this allows us to capture a broader
channel functionality in a somewhat simpler way.

76

C.1 Our definitions of unidirectional correctness and security

Consider the definitions of channel, support transcript, and support function from Section 3. These
definitions specify syntax for bidirectional communication, meaning they allow to capture the case
where the users I and R are both able to send and receive messages. Without loss of generality, in
this section we will use the same definitions to formalise the unidirectional notions of correctness and
authenticated encryption. Even though syntactically the definitions from Section 3 allow to model
bidirectional communication, the notions we state in this section only guarantee correctness and
security when messages are sent from I to R and never in the opposite direction.

We do not provide any high-level intuition for the unidirectional notions that are defined below.
We instead refer the reader to Section 3 and Appendix B for detailed discussion on the bidirectional
variants of these notions.

Game Gucorr
CH,supp,F

win← false

(stI , stR)←$ CH.Init()

FSend,Recv(stI , stR)

Return win

Send(m, aux, r)

(stI , c)← CH.Send(stI ,m, aux; r)

trI ← trI ∥ (sent,m, c, aux)

Return c

Recv(c, aux)

m∗ ← supp(R, trR, trI , c, aux)

If m∗ = ⊥ then return ⊥
(stR,m)← CH.Recv(stR, c, aux)

trR ← trR ∥ (recv,m, c, aux)

If m ̸= m∗ then win← true

Return ⊥

Game Guae
CH,supp,A

b←$ {0, 1}
(stI , stR)←$ CH.Init()

b′ ←$ACh,Recv

Return b′ = b

Ch(m0,m1, aux, r)

If |m0| ≠ |m1| then return ⊥
(stI , c)← CH.Send(stI ,mb, aux; r)

trI ← trI ∥ (sent,mb, c, aux)

Return c

Recv(c, aux)

m∗ ← supp(R, trR, trI , c, aux)

(stR,m)← CH.Recv(stR, c, aux)

trR ← trR ∥ (recv,m, c, aux)

If (m ̸= m∗) ∧ (b = 1) then return
Return ⊥

Figure 59. Unidirectional correctness of channel CH and unidirectional authenticated encryption security of
channel CH, both with respect to support function supp.

Unidirectional correctness. Consider the unidirectional correctness game Gucorr
CH,supp,F in Fig. 59,

defined for a channel CH, a support function supp and an adversary F . The advantage of F in breaking
the unidirectional correctness of CH with respect to supp is defined as AdvucorrCH,supp(F) = Pr

[
Gucorr

CH,supp,F

]
.

The UCORR game closely mirrors the bidirectional correctness game from Fig. 12, except it allows
only I to send messages and only R to receive them. This means that oracles Send and Recv no
longer take a user variable u ∈ {I,R} as input. Instead, I is hardcoded as the user that sends messages
in Send (i.e. this oracle is defined to always use the channel state stI and the support transcript trI),
and R is similarly hardcoded as the user that receives messages in Recv.

Unidirectional authenticated encryption. Consider the unidirectional authenticated encryption
game Guae

CH,supp,A in Fig. 59, defined for a channel CH, a support function supp and an adversary
A. The advantage of A in breaking the UAE-security of CH with respect to supp is defined as
AdvuaeCH,supp(A) = 2 ·Pr

[
Guae

CH,supp,A

]
−1. The UAE game closely mirrors the bidirectional authenticated

encryption game from Fig. 55, except I is now hardcoded as the sender in oracle Ch and R is now
hardcoded as the receiver in oracle Recv.

77

C.2 The robust channel framework of [FGJ20]

In this section we specify the core definitions from [FGJ20]. We formalise these definitions using our
channel syntax from Section 3.46 This syntax allows to model bidirectional communication, but in
Appendix C.1 we explain that we can also use it to study unidirectional notions. The syntax used
by [FGJ20] treats the auxiliary information differently: it is required to be recoverable from ciphertexts,
so their receiving algorithm CH.Recv does not take aux as input. In particular, [FGJ20] define a helper
algorithm aux(·) that takes a ciphertext c as input and returns the auxiliary information aux that is
recovered from c. Note that channels with recoverable auxiliary information can also be captured using
our syntax, e.g. by considering a receiving algorithm CH.Recv(stR, c, aux) that extracts aux′ ← aux(c)
and then overwrites aux ← aux′. So we do not lose generality by using our syntax to state the
definitions of [FGJ20].

Predicate-based support transcripts and functions. The robust channel framework [FGJ20]
uses deterministic support predicates as the counterpart of our support functions. A support predicate
suppPred (when adjusted to our syntax) takes the following inputs: receiver’s identity R, receiver’s
support transcript trpredR , sender’s support transcript trpredI , ciphertext c, and auxiliary information
aux. It returns a support decision d. We write d ← suppPred(R, trpredR , trpredI , c, aux). We will define
the exact format of the support transcripts trpredI , trpredR below. A Boolean support predicate returns
d ∈ {true, false} to indicate whether c, aux should be accepted (i.e. whether it is supported). An
index-recovering support predicate returns d ∈ {false} ∪ {0, 1, . . .}. Here d = false indicates that c, aux
should be rejected, whereas d ∈ {0, 1, . . .} indicates that it should be accepted and that d is the index
of the entry containing c, aux in the sender’s transcript trpredI . In the latter case the correctness of
suppPred guarantees that trpredI [d] indeed contains c, aux.

The robust channel framework uses support transcripts that are defined as follows (again adjusted
to use our syntax). The sender’s support transcript trpredI is a list of (sent, c, aux)-type entries, each
indicating that the sender I sent a ciphertext c with auxiliary information aux. The receiver’s support
transcript trpredR is a list of (recv, d, c, aux)-type entries, each indicating that c, aux was delivered to the
receiver R, and that R subsequently accepted them based on obtaining a positive support decision d.
We emphasise that the receiver’s support transcript in [FGJ20] is defined to only contain information
about supported ciphertexts, i.e. trpredR should never contain an entry with d = false.

Summary of the notions defined in [FGJ20]. The robust channel framework [FGJ20] defines
correctness and multiple security notions for a channel, each of them with respect to an arbitrary
support predicate suppPred. These notions capture roughly the following intuition. Correctness requires
that for any sequence of ciphertexts that was sent by the sender I on an authenticated channel, and
for any way – that is supported by suppPred – in which these ciphertexts could have been replayed,
reordered or dropped (while in transit), each of them is correctly decrypted upon arriving to the
receiver R. Integrity (INT) requires that if suppPred requires to reject a ciphertext, then R rejects it.
Robustness (ROB) requires that if suppPred requires to accept a ciphertext, then R correctly decrypts
it; this should happen even if R previously rejected other ciphertexts, meaning R’s channel state
should not get corrupted regardless of what ciphertexts R attempts to decrypt. Robust integrity
(ROB-INT) combines ROB and INT essentially requiring that the channel behaves exactly as specified
by suppPred (likewise correctly decrypting the supported ciphertexts even after rejecting maliciously
formed ciphertexts). Finally, the master notion ROB-INT-IND-CCA combines ROB-INT with the
standard notion of IND-CCA security; it is recognized by [FGJ20] as the “ultimate target” to be
achieved by real-world protocols. In this section we will state formal definitions for the correctness and
the ROB-INT-IND-CCA security notions of [FGJ20] in the syntax of our work, minimally strengthening
both of them. For simplicity and consistency with other definitions in this paper, we will refer to
ROB-INT-IND-CCA as the unidirectional predicate-based authenticated encryption.

Unidirectional predicate-based correctness. Consider the unidirectional predicate-based correct-
ness game Gpredcorr

CH,suppPred,F in Fig. 60, defined for a channel CH, a support predicate suppPred and an

46 We need both frameworks to study the same object so that in Appendix C.3 we can state and prove relations
between their correctness and security notions.

78

Game Gpredcorr
CH,suppPred,F

win← false

(stI , stR)←$ CH.Init()

i← 0 // Number of messages sent.
FSend,Recv(stI , stR)

Return win

Send(m, aux, r)

(stI , c)← CH.Send(stI ,m, aux; r)

trpredI ← trpredI ∥ (sent, c, aux)
T[i]← (m, c, aux) ; i← i+ 1

Return c

Recv(j)

If ¬(0 ≤ j < i) then return ⊥
(m, c, aux)← T[j]

d← suppPred(R, trpredR , trpredI , c, aux)

If (d = false) ∨(d ̸= j) then return ⊥
trpredR ← trpredR ∥ (recv, d, c, aux)
(stR,mc)← CH.Recv(stR, c, aux)

If mc ̸= m then win← true

Return mc

Game Gpredae
CH,suppPred,A

b←$ {0, 1}
(stI , stR)←$ CH.Init()

strR ← stcR ← stR
b′ ←$ACh,Recv

Return b′ = b

Ch(m0,m1, aux, r)

If |m0| ≠ |m1| then return ⊥
(stI , c)← CH.Send(stI ,mb, aux; r)

trpredI ← trpredI ∥ (sent, c, aux)
Return c

Recv(c, aux)

(strR,mr)← CH.Recv(strR, c, aux)

mc ← ⊥
If b = 0 then

mr ← ⊥
Else

d← suppPred(R, trpredR , trpredI , c, aux)

If d ̸= false then
(stcR,mc)← CH.Recv(stcR, c, aux)

trpredR ← trpredR ∥ (recv, d, c, aux)
If mr = mc then

mr ← ⊥
Else // Set mr to non-⊥ so A can win.

mr ←
Return mr

Figure 60. Unidirectional predicate-based correctness of channel CH and unidirectional predicate-based
authenticated encryption security of channel CH (called ROB-INT-IND-CCA in [FGJ20], both with respect
to support predicate suppPred. The boxed code is used only when suppPred is an index-recovering support
predicate. Marked in grey are the main differences from the corresponding definitions in [FGJ20].

adversary F . The boxed code is used only when suppPred is an index-recovering support predicate.
The advantage of F in breaking the unidirectional predicate-based correctness of CH with respect to
suppPred is defined as AdvpredcorrCH,suppPred(F) = Pr[Gpredcorr

CH,suppPred,F]. The game allows adversary F to relay
arbitrary messages from user I to user R, calling oracles Send and Recv to respectively send and
receive them. The Recv oracle takes an integer j as input, instructing it to receive the j-th ciphertext
that was produced by the oracle Send. This effectively models an authenticated channel where
adversary F cannot forge messages but it can replay, reorder and drop them. The game maintains two
ordered transcripts: trpredI is a list that contains ciphertexts (and is passed to the support predicate),
and T is a table that contains plaintext-ciphertext pairs. More precisely, the table contains entries of
the form T[j] = (m, c, aux) to indicate that the j-th call to oracle Send encrypted (m, aux) into c.
When adversary queries Recv(j) and the support predicate suppPred determines that c, aux from
T[j] is a supported input, then the channel should decrypt it as m. Otherwise, the adversary wins the
game.

We now discuss the intuition behind the index-recovering support predicates, and explain the
purpose of the boxed code in the correctness game. We will roughly show that if a channel CH can
encrypt two distinct plaintexts into the same ciphertext (e.g. with respect to different sender’s states),
then there exists an adversary that can break the correctness of CH with respect to any Boolean
support predicate suppPred. We note that the output of CH.Send depends on the continuously evolving
state of the sender I, so even some real-world channels display such behaviour (this includes QUIC
and DTLS 1.3, which motivated the authors of [FGJ20] to define their framework).

More precisely, consider any hypothetical sequence of oracle queries made by adversary F in
game Gpredcorr

CH,suppPred,F that resulted in creating (intermediate) transcripts trpredR , trpredI ,T[·] that satisfy
the following conditions:

79

(1) There exist distinct indices j0, j1 and distinct plaintexts m0,m1 such that T[j0] = (m0, c, aux)
and T[j1] = (m1, c, aux) for some c, aux.

(2) d← suppPred(R, trpredR , trpredI , c, aux) returns d = true when queried on c, aux from T[j0],T[j1] .47

At this point F can choose to query either Recv(j0) or Recv(j1) in order to make the game check
that CH.Recv decrypts (c, aux) into m0 or m1 respectively. But CH.Recv would in both cases take the
same pair (c, aux) as input so it would fail to correctly recover at least one of these plaintexts. This
illustrates a limitation in the correctness game when it is considered with respect to a Boolean support
predicate. The use of an index-recovering support predicate resolves this definitional issue with the
help of the boxed code in the correctness game. In particular, an index-recovering support predicate
returns j to instruct the correctness game that the supported input pair (c, aux) corresponds to the
j-th ciphertext that was produced by Send. So at any point in time there is a unique value j for
which Recv(j) would be expected to test the correctness of CH.Recv, because otherwise the condition
checking d ̸= j would cause the oracle to exit early.

The original correctness game defined in [FGJ20] is called Expt
correct(suppPred)
CH,F . Our definition of

Gpredcorr
CH,suppPred,F closely resembles it. The differences we introduced are as follows. The original game

does not provide the initial channel states as input to its adversary, and it does not allow the adversary
to choose random coins when calling its oracle Send. Our game strengthens their definition in both
ways; this is necessary for our analysis in Appendix C.3. Beyond that, the original game also verifies
that the support predicate suppPred allows to deliver messages strictly in-order. We suggest to instead
formalise it as a stand-alone property of a support predicate (e.g. in the bidirectional setting we
formalise this property as the order correctness of a support function in Appendix A).

Unidirectional predicate-based authenticated encryption. We now define the notion of
ROB-INT-IND-CCA-security from [FGJ20], referring to it as unidirectional predicate-based authenticated
encryption. Consider the unidirectional predicate-based authenticated encryption game Gpredae

CH,suppPred,A in
Fig. 60, defined for a channel CH, a support predicate suppPred and an adversary A. The advantage of
A in breaking the PREDAE-security of CH with respect to suppPred is defined as AdvpredaeCH,suppPred(A) =
2 ·Pr[Gpredae

CH,suppPred,A]−1. The game allows adversary A to relay arbitrary messages from the sender I to
the receiver R by calling its oracles Send and Recv. The sending oracle Send presents a left-or-right
style challenge, encrypting one of the two provided plaintexts. For the receiving oracle Recv, the
game creates a “real” receiver’s channel state strR and a “correct” receiver’s channel state stcR that are
initially equal. When adversary calls Recv, the “real” state is always updated by running CH.Recv on
the received input, whereas the “correct” state is only updated if the oracle’s input is determined to be
supported according to suppPred (and only if the challenge bit is b = 1). So the “real” state strR could in
principle get corrupted by maliciously formed ciphertexts, causing the channel to malfunction; whereas
the same cannot happen to the “correct” state stcR. If the challenge bit is b = 0 then Recv always
returns ⊥. If the challenge bit is b = 1 then Recv will also return ⊥ unless the “real” and the “correct”
states produce different outcomes (including the case when both of them accept the ciphertext, but
the decrypted plaintexts mr and mc are distinct). If the latter occurs, then Recv returns instead of
⊥, which unambiguously signals to A that b = 1 and thus enables it to immediately win the game by
halting with output value b′ = 1.

The original game defining the ROB-INT-IND-CCA-security of CH within the robust channel frame-
work [FGJ20] is called Expt

ROB-INT-IND-CCA(suppPred)
CH,A . Our definition of Gpredae

CH,suppPred,A closely resembles
it. The differences we introduced are as follows. Similarly to the correctness notion above, the original
game did not let its adversary choose random coins for encrypting challenge plaintexts; our definition
allows that. In the original game, if the challenge bit is b = 1 and the adversary queries its receiving
oracle Recv on inputs that produce mr ̸= mc then the game returns the first of the two values mr,mc

that is non-⊥. We simplified this by instead making Recv immediately return ; these behaviours
are equivalent, because both of them unambiguously indicate to A that b = 1. Finally, in the original
game the Recv oracle does not take aux as input. In general, our definition gives more power to the
adversary by allowing it to independently choose both c and aux. But this change can be negated
by defining both CH.Recv and suppPred to ignore the aux value they receive as input, and instead
recover the auxiliary information from c.
47 Note that this attack fails for contrived support predicates that would never recognize (c, aux) as being

supported.

80

C.3 Relations between our framework and the framework of [FGJ20]

Richer support transcripts help capturing more functionality. The robust channel frame-
work [FGJ20] explicitly defines the receiver’s support transcript to contain only those ciphertexts that
were determined to be supported (according to the support predicate suppPred that is used in the
corresponding correctness or security game). If a ciphertext is rejected, then it is done silently, without
modifying the receiver’s support transcript. In contrast, in our framework every attempt to receive a
ciphertext is documented in the receiver’s transcript. This includes rejected ciphertexts, i.e. if (c, aux)
is delivered to the receiver and subsequently rejected by it then the entry (recv,⊥, c, aux) should be
added to the receiver’s support transcript. It is possible to define support functions that use this
information in order to determine when the channel should be permanently closed, e.g. upon rejecting
a specific number of delivered ciphertexts. Such functionality cannot be captured by the correctness
and security games of [FGJ20] because they keep no record of rejected ciphertexts. We emphasise that
this difference arises only due to the support transcripts of [FGJ20] containing less information, and
not due to our framework using support functions instead of support predicates (or having stronger
correctness or security notions).

Note that our framework also requires the sender’s transcript to contain information about all
failed encryption events (i.e. when CH.Send returns ⊥), each described by a transcript entry of the
type (sent,m,⊥, aux). In comparison, the channel’s sending algorithm in [FGJ20] is likewise allowed
to return ⊥, but their correctness and security definitions do not explicitly consider the possibility of
encryption failures (and so it is not obvious whether their definitions are well-defined in this respect).
However, it is also not clear whether such entries could serve any purpose in either framework, so the
difference here is moot.

Support functions aid in reducing the definitional complexity. We now argue that our
correctness definition captures the same intuition as that of [FGJ20], except that the use of a support
function in our definition allows us to remove some of the complexity that appeared in the definition
of [FGJ20]. But the syntax of a function on its own would not be sufficient to achieve that. In this
regard, it is again crucial that our definitions use support transcripts that are richer than those
of [FGJ20], i.e. that our support transcripts in addition contain plaintext messages.

Consider the unidirectional (function-based) correctness definition in Fig. 59 and the unidirectional
predicate-based correctness definition in Fig. 60. The predicate-based definition essentially maintains
two different transcripts: trpredI and T[·] (the latter defined as a table with sequential integer indices).
Here trpredI is the sender’s support transcript that is used as an input to the support predicate suppPred
in order to determine whether (c, aux) is supported. If suppPred determines this to be true, then
the game implicitly uses T[·] to map (c, aux) to the corresponding plaintext m. If such a mapping
cannot be unambiguously inferred based just on the pair (c, aux) (as we discussed in Appendix C.2),
then suppPred is required to be index-recovering so that it can point the correctness game to the
appropriate index j inside table T. The process of mapping (c, aux) to j and then to m – that is done
jointly by suppPred and the correctness game itself – is arguably complicated and counter-intuitive.48
Having observed this, now consider our function-based correctness definition. One can think of it as
having essentially delegated the task of mapping (c, aux) to m entirely to its support function. In order
to be able to do this, the support function now needs to take some information about the encrypted
plaintexts as input. This is accomplished by having our support transcript itself contain the plaintexts.
Finally, note that even though our function-based correctness definition could potentially allow its
adversary to forge ciphertexts, this entirely depends on what support function is considered. Outside
of some exotic applications, one would expect any support function to return m∗ = ⊥ whenever c was
not previously produced by the sender (in the bidirectional setting we formalise this property as the
integrity of a support function in Appendix A).

Is our framework at least as expressive as the framework of [FGJ20]? We now make partial
progress towards showing the following: any channel that is correct and secure in the robust channel
48 For example, the first two instructions of oracle Recv in the predicate-based correctness game (enforcing

0 ≤ j < i and then fetching (m, c, aux)← T[j]) only serve the goal of implicitly mapping (c, aux) directly
to the corresponding plaintext m. Later on, this mapping could still be determined invalid if d ̸= j. This
condition is actually not inherently necessary for the purpose of disallowing the adversary from forging
ciphertexts because the support predicate could itself have enforced that.

81

framework of [FGJ20] is also correct and secure in our framework. When trying to prove such claim,
ideally for any support predicate suppPred one would like to build a support function supp such that
the following is true: any channel CH that is correct and secure with respect to suppPred in the [FGJ20]
framework is also correct and secure with respect to supp in our framework. The result we provide
below is weaker in two ways: (1) we only consider an index-recovering support predicate suppPred
as the starting point49, and (2) the support function supp that we build is simultaneously based
on suppPred and CH, and not all combinations of suppPred,CH are permitted. It is not necessarily
obvious why it is valuable to prove any implications between the two frameworks. In our opinion,
formalising and proving at least some relations between these frameworks serves as a sanity check for
both of them.

Building a support function. As outlined above, our goal is to build a support function supp from
an arbitrary index-recovering support predicate suppPred such that unidirectional predicate-based
correctness and security of a channel CH with respect to suppPred would imply unidirectional (function-
based) correctness and security of CH with respect to supp. This inevitably requires to build supp
from suppPred in a black-box way, and so the support function supp also needs to be able to convert
its own supports transcripts into the format that is used by suppPred. For this purpose we will assume
there exists a transcript conversion algorithm convertTr that takes the support transcripts trI , trR
of our format (i.e. as defined in Definition 2) and converts them into support transcripts trpredI , trpredR
that adhere to the format used by the robust channel framework (i.e. as defined in Appendix C.2).
This essentially requires to convert (sent,m, c, aux)-type entries into (sent, c, aux)-type entries, and
(recv,m, c, aux)-type entries into (recv, d, c, aux)-type entries. Here d ∈ {0, 1, . . .} is the support decision
that would have been returned by suppPred; it should point at the entry of the sender’s transcript
that documents the event of sending c, aux. We emphasise that the transcript conversion algorithm
convertTr takes trI , trR as input. So for any (recv,m, c, aux) ∈ trR it can trivially determine d by
searching trI for the unique entry containing (sent,m, c, ·)50 – unless trI could contain more than one
such entry. This problem does not arise if CH is guaranteed to produce unique plaintext-ciphertext
pairs; below we will define a correctness condition describing what exactly is required from convertTr.
If a “correct” transcript conversion algorithm convertTr exists, then we define a support function supp
based on suppPred and convertTr as defined in Fig. 61. It calls convertTr to convert the transcripts
and uses them to evaluate suppPred on c, aux. If d ̸= false then supp simply gets its output m∗ from
the d-th entry of the sender’s support transcript trI .

supp(R, trR, trI , c, aux)

// Convert both support transcripts from our format to the format of [FGJ20].
(trpredI , trpredR)← convertTr(trI , trR)

// Evaluate the support predicate, and return m∗ = ⊥ if (c, aux) is not supported.
d← suppPred(R, trpredR , trpredI , c, aux)

If d = false then return ⊥
// Index d points at the entry in the sender’s transcript trI that contains (c, aux).
(sent,m∗, c∗, aux∗)← trI [d]

Return m∗

Figure 61. Construction of supp = SUPP-FUNC-FROM-PRED[suppPred, convertTr] building support function
supp from index-recovering support predicate suppPred and transcript conversion algorithm convertTr.

Correctness of a transcript conversion algorithm. Consider the correctness game Gcorr
CH,suppPred,convertTr,D

in Fig. 62, defined for a channel CH, an index-recovering support predicate suppPred, a transcript
49 The analysis of QUIC and DTLS 1.3 in [FGJ20] required to use index-recovering support predicates. As we

discuss in Appendix C.2, only such predicates can be used to analyse channels with non-unique ciphertexts.
So we focus on them here.

50 We allow the sender and the receiver to use distinct aux values with respect to the same m, c, e.g. when aux
contains a timestamp for the event of creating or delivering a ciphertext. So in general we cannot require
aux values to be equal. This detail is only relevant because we extended the syntax of [FGJ20] to surface
aux.

82

Game Gcorr
CH,suppPred,convertTr,D

b←$ {0, 1}
(stI , stR)←$ CH.Init()

b′ ←$ DSend,Recv(stI , stR)

Return b′ = b

Send(m, aux, r)

(stI , c)← CH.Send(stI ,m, aux; r)

If b = 1 then
trpredI ← trpredI ∥ (sent, c, aux)

Else
trI ← trI ∥ (sent,m, c, aux)

Return c

Recv(c, aux)

If b = 1 then
d← suppPred(R, trpredR , trpredI , c, aux)

If d = false then return false

trpredR ← trpredR ∥ (recv, d, c, aux)
Else

(trpredI , trpredR)← convertTr(trI , trR)

d← suppPred(R, trpredR , trpredI , c, aux)

If d = false then m∗ ← ⊥
Else (sent,m∗, c∗, aux∗)← trI [d]

trR ← trR ∥ (recv,m∗, c, aux)

Return d

Figure 62. Correctness of transcript conversion algorithm convertTr with respect to channel CH and index-
recovering support predicate suppPred.

conversion algorithm convertTr and an adversary D. The advantage of D in breaking the correctness
of convertTr with respect to CH, suppPred is defined as

AdvcorrCH,suppPred,convertTr(D) = 2 · Pr[Gcorr
CH,suppPred,convertTr,D]− 1.

We say that convertTr is correct with respect to CH, suppPred if

AdvcorrCH,suppPred,convertTr(D) = 0

for all adversaries D. The correctness game captures the intuition that convertTr must be able to
perfectly reconstruct support transcripts for the robust channel framework based on the support
transcripts used in our framework. Here the benchmark that we use for “perfect reconstruction” is that
suppPred would never return different support decisions based on whether it is run on real support
transcripts of [FGJ20] or those that are converted from the support transcripts used in our framework.
In particular, the game uses real transcripts when its challenge bit is b = 1, and it uses converted
transcripts when b = 0. The sender’s support transcript trI is populated with ciphertexts that can
be created by CH.Send, whereas the receiver’s support transcript trR is formed based on the support
decisions that can be returned by suppPred. Here the use of CH.Send means that a simpler algorithm
convertTr would be able to satisfy the correctness requirement when CH has, for example, unique
ciphertexts. Note that if b = 1 then the receiver’s transcript contains only the entries for supported
c, aux; but if b = 0 then the receiver’s transcript can also contain the entries with c, aux that were
rejected. This reflects the observation that our support transcripts contain more information than the
transcripts in the robust channel framework; this information might help when trying to convert them.
Finally, observe that the b = 0 branch in the Recv oracle could be replaced with the following two
instructions (for supp = SUPP-FUNC-FROM-PRED[suppPred, convertTr] as defined in Fig. 61):

m∗ ← supp(R, trR, trI , c, aux),

trR ← trR ∥ (recv,m∗, c, aux).

So the correctness of convertTr can be interpreted as requiring that suppPred and supp can be used
interchangeably (each using support transcripts of a different format).

Proposition 3. Let CH be a channel. Let suppPred be an index-recovering support predicate. Let
convertTr be a transcript conversion algorithm that is correct with respect to CH, suppPred. Let supp =
SUPP-FUNC-FROM-PRED[suppPred, convertTr] be the support function as defined in Fig. 61. Let
FPREDCORR be any adversary against the unidirectional predicate-based correctness of CH with respect
to suppPred. Then we can build an adversary FUCORR against the unidirectional (function-based)
correctness of CH with respect to supp such that

AdvpredcorrCH,suppPred(FPREDCORR) ≤ AdvucorrCH,supp(FUCORR).

Proof. This proof uses games G0–G2 in Fig. 63. Game G0 is equivalent to game Gpredcorr
CH,suppPred,FPREDCORR

so we have
AdvpredcorrCH,suppPred(FPREDCORR) = Pr[G0].

83

Games G0–G2

win← false

(stI , stR)←$ CH.Init()

i← 0

FSend,Recv
PREDCORR(stI , stR)

Return win

Send(m, aux, r)

(stI , c)← CH.Send(stI ,m, aux; r)

trpredI ← trpredI ∥ (sent, c, aux) // G0

trI ← trI ∥ (sent,m, c, aux) // G1–G2

T[i]← (m, c, aux) ; i← i+ 1

Return c

Recv(j)

If ¬(0 ≤ j < i) then return ⊥
(m, c, aux)← T[j]

(trpredI , trpredR)← convertTr(trI , trR) // G1–G2

d← suppPred(R, trpredR , trpredI , c, aux)

If (d = false) ∨ (d ̸= j) then return ⊥
trpredR ← trpredR ∥ (recv, d, c, aux) // G0

(sent,m∗, c∗, aux∗)← trI [d] // G1–G2

trR ← trR ∥ (recv,m∗, c, aux) // G1–G2

(stR,mc)← CH.Recv(stR, c, aux)

If mc ̸= m then win← true // G0-G1

If mc ̸= m∗ then win← true // G2

Return mc

Figure 63. Games G0–G2 for the proof of Proposition 3. The code added for the transitions between games is
highlighted in green.

Game G1 is obtained from game G0 by replacing the support transcripts of the robust channel
framework [FGJ20] with the support transcripts of our framework. The transcript conversion algorithm
convertTr is used to convert the transcripts, and its assumed correctness with respect to CH, suppPred
guarantees that the two games are equivalent. It follows that

Pr[G0] = Pr[G1].

We do not provide an adversary against the correctness of convertTr, but one could in principle do
that as follows. Such an adversary gets both channel states as input, whereas the oracles Send and
Recv are fully deterministic in both G0 and G1. So the adversary against the correctness of convertTr
could simultaneously simulate both games for FPREDCORR and only use its own oracles to accordingly
update the support transcripts in the game it is playing in. If it ever detects that the support decisions
differ between G0 and G1, it can immediately query its own Recv oracle and use the knowledge of
the d values in the simulated games in order to trivially determine the challenge bit.

Game G2 is obtained from game G1 by changing the win condition from mc ≠ m to mc ̸= m∗.
Here the plaintext m it taken from T[j], whereas m∗ is taken from trI [d]. But j = d is guaranteed to
be true, so m = m∗ and the two win conditions are equivalent. We have

Pr[G1] = Pr[G2].

In Fig. 64 we build adversary FUCORR against the unidirectional (function-based) correctness of
CH with respect to supp. This adversary perfectly simulates game G2 for adversary FPREDCORR. The
simulation is trivial, because both oracles in game G2 are deterministic and because FUCORR gets the
initial channel states as input. Adversary FUCORR also calls its own oracles Send and Recv during
the simulation of the corresponding oracles of G2, but the responses from these calls are ignored
(i.e. these calls do not affect the simulation of G2). We claim that at the end of each oracle call that
is simulated by FUCORR, the values of trI , trR, stI , stR in game Gucorr

CH,supp,FUCORR
are the same as the

corresponding values in the simulated game G2. More precisely, this is true at least until the win flag
is set in game G2; we will justify this below. Based on this claim, it follows that setting the win flag in
the simulated game G2 also results in setting it in game Gucorr

CH,supp,FUCORR
. We have

Pr[G2] ≤ Pr[Gucorr
CH,supp,FUCORR

].

The above claim is trivially true with respect to trI , stI . For the analysis of trR, stR consider what
happens when FUCORR calls its own oracle Recv from the simulated oracle RecvSim. Observe

84

Adversary FSend,Recv
UCORR (stI , stR)

i← 0

FSendSim,RecvSim
PREDCORR (stI , stR)

SendSim(m, aux, r)

Send(m, aux, r)

(stI , c)← CH.Send(stI ,m, aux; r)

trI ← trI ∥ (sent,m, c, aux)

T[i]← (m, c, aux) ; i← i+ 1

Return c

RecvSim(j)

If ¬(0 ≤ j < i) then return ⊥
(m, c, aux)← T[j]

(trpredI , trpredR)← convertTr(trI , trR)

d← suppPred(R, trpredR , trpredI , c, aux)

If (d = false) ∨ (d ̸= j) then return ⊥
Recv(c, aux)

(sent,m∗, c∗, aux∗)← trI [d]

trR ← trR ∥ (recv,m∗, c, aux)

(stR,mc)← CH.Recv(stR, c, aux)

If mc ̸= m∗ then win← true

Return mc

Figure 64. Adversary FUCORR for the proof of Proposition 3. Highlighted are the locations in the pseudocode
where adversary FUCORR calls its own oracles.

that the value of m∗ derived in Recv is equal to the corresponding value in RecvSim. This is
true because RecvSim can be thought of as expanding and evaluating the code of the construction
supp = SUPP-FUNC-FROM-PRED[suppPred, convertTr] from Fig. 61. However, note that RecvSim
adds m∗ to trR whereas Recv instead adds the real output of CH.Recv(stR, ·) to trR. It follows that
the receiver’s transcript and state will remain consistent across Gucorr

CH,supp,FUCORR
and G2 for as long as

win is not set.
The inequality stated in the proposition follows from the above steps. This concludes the proof.

Proposition 4. Let CH be a channel. Let suppPred be an index-recovering support predicate. Let
convertTr be a transcript conversion algorithm that is correct with respect to CH, suppPred. Let supp =
SUPP-FUNC-FROM-PRED[suppPred, convertTr] be the support function as defined in Fig. 61. Let
APREDAE be any adversary against the PREDAE-security of CH with respect to suppPred. Then we
can build an adversary FPREDCORR against the unidirectional predicate-based correctness of CH with
respect to suppPred, and an adversary AUAE against the UAE-security of CH with respect to supp such
that

AdvpredaeCH,suppPred(APREDAE) ≤ 2 · AdvpredcorrCH,suppPred(FPREDCORR)

+ AdvuaeCH,supp(AUAE).

Proof. This proof uses games G0–G2 in Fig. 65. Game G0 is designed to be equivalent to game
Gpredae

CH,suppPred,APREDAE
. It rewrites the code of oracle Recv as follows. Consider the original definition of

oracle Recv in game Gpredae
CH,suppPred,APREDAE

from Fig. 60. First, observe that the original oracle always
returns ⊥ or , and the latter is returned iff (mr ̸= mc) ∧ (b = 1). The last two lines of the rewritten
oracle reflect this observation. Next, observe in the original oracle that the block of code computing
suppPred and checking d ̸= false could in principle be evaluated regardless of the challenge bit’s value.
So in the rewritten oracle we move these instructions up, to the very beginning of the oracle’s code.
Game G0 also contains code marked in green that builds a table T[·] in the same way as in the
unidirectional (predicate-based) correctness game, but this code does not affect the functionality of
G0. We can conclude that the games are equivalent and hence

AdvpredaeCH,suppPred(APREDAE) = 2 · Pr[G0]− 1.

Game G1 is obtained by adding a single instruction to oracle Recv in game G0 that sets mc ← m
whenever mc ̸= m. This basically ensures that mc is always equal to the plaintext value from T[d]. We
argue that adversary A is unlikely to cause mc ≠ m, and hence it would not be able to distinguish
between G0 and G1. In particular, observe that the “correct” instance of the channel (represented
by state stcR) is evaluated only on supported ciphertexts, so the correctness of CH with respect to
suppPred would require its output mc to be equal to the plaintext from T[d]. Formally, games G0 and
G1 are identical until bad is set. We have

Pr[G0]− Pr[G1] ≤ Pr[badG0].

85

Games G0–G2

b←$ {0, 1}
(stI , stR)←$ CH.Init()

strR ← stcR ← stR
i← 0

b′ ←$ACh,Recv
PREDAE

Return b′ = b

Ch(m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
(stI , c)← CH.Send(stI ,mb, aux; r)

T[i]← (mb, c, aux) ; i← i+ 1

trpredI ← trpredI ∥ (sent, c, aux) // G0–G1

trI ← trI ∥ (sent,mb, c, aux) // G2

Return c

Recv(c, aux)

(trpredI , trpredR)← convertTr(trI , trR) // G2

d← suppPred(R, trpredR , trpredI , c, aux)

If d ̸= false then
(stcR,mc)← CH.Recv(stcR, c, aux)

(m, c, aux)← T[d]

If mc ̸= m then
bad← true

mc ← m // G1–G2

trpredR ← trpredR ∥ (recv, d, c, aux) // G0–G1

(sent,m∗, c∗, aux∗)← trI [d] // G2

Else
mc ← ⊥
m∗ ← ⊥ // G2

trR ← trR ∥ (recv,m∗, c, aux) // G2

(strR,mr)← CH.Recv(strR, c, aux)

If (mr ̸= mc) ∧ (b = 1) then return
Return ⊥

Figure 65. Games G0–G2 for the proof of Proposition 4. The code added for the transitions between games is
highlighted in green.

We bound the probability of Pr[badG0] by building adversary FPREDCORR in Fig. 66 against the
unidirectional predicate-based correctness of CH with respect to suppPred such that

Pr[badG0] ≤ AdvpredcorrCH,suppPred(FPREDCORR).

This adversary perfectly simulates game G0 for APREDAE and wins in game Gpredcorr
CH,suppPred,FPREDCORR

whenever APREDAE sets the bad flag in game G0.

Adversary FSend,Recv
PREDCORR(stI , st

r
R)

b←$ {0, 1}
b′ ←$AChSim,RecvSim

PREDAE

ChSim(m0,m1, aux, r)

If |m0| ̸= |m1| then return ⊥
c← Send(mb, aux, r)

trpredI ← trpredI ∥ (sent, c, aux)
Return c

RecvSim(c, aux)

d← suppPred(R, trpredR , trpredI , c, aux)

If d ̸= false then
mc ← Recv(d)

trpredR ← trpredR ∥ (recv, d, c, aux)
Else mc ← ⊥
(strR,mr)← CH.Recv(strR, c, aux)

If (mr ̸= mc) ∧ (b = 1) then return
Return ⊥

Adversary ACh,Recv
UAE

b′ ←$AChSim,RecvSim
PREDAE

Return b′

ChSim(m0,m1, aux, r)

c← Ch(m0,m1, aux, r)

Return c

RecvSim(c, aux)

err← Recv(c, aux)

If err = then abort(1)

Return err

Figure 66. Adversaries FPREDCORR and AUAE for the proof of Proposition 4. The highlighted instructions of
FPREDCORR mark the changes in the code of the simulated game G0.

Game G2 is obtained from game G1 by replacing the support transcripts of the robust channel
framework [FGJ20] with the support transcripts of our framework. The transcript conversion algorithm
convertTr is used to convert the transcripts, and its assumed correctness with respect to CH, suppPred
guarantees that the two games are equivalent. It follows that

Pr[G1] = Pr[G2].

86

We do not provide an adversary against the correctness of convertTr; its construction is straightforward.
Finally, we argue that game G2 is equivalent to game Guae

CH,supp,APREDAE
with only one minor

difference, namely until (mr ̸= mc) ∧ (b = 1) becomes true in G2. First, observe that in game
G2 the table entry T[d] and the transcript entry trI [d] contain the same plaintext, i.e. mc = m∗.
Next, the Recv oracle in G2 can be thought of having been obtained by expanding the code of
supp = SUPP-FUNC-FROM-PRED[suppPred, convertTr] from Fig. 61 inside the Recv oracle of game
Guae

CH,supp,APREDAE
. The only distinction is that G2 populates the receiver’s transcript trpredR with entries

containing m∗ whereas Guae
CH,supp,APREDAE

instead uses the plaintexts returned by algorithm CH.Recv.
This does not affect the input-output distribution of either oracle when the challenge bit is b = 0.
In contrast, if b = 1 then the input-output distribution of Recv in games G2 and Guae

CH,supp,APREDAE

is only identical until (mr ̸= mc) ∧ (b = 1) becomes true for the first time. We define adversary
AUAE in Fig. 66 against the UAE-security of CH with respect to supp that simulates game G2 for
adversary APREDAE by calling its own corresponding oracles and returning the received responses
back to APREDAE without any additional processing, except it uses abort(1) to halt with output 1 as
soon as it detects that APREDAE triggered the aforementioned condition in G2. We have

Pr[G2] ≤ Pr
[
Guae

CH,supp,AUAE

]
.

Combining all of the above steps, we can write

AdvpredaeCH,suppPred(APREDAE) = 2 ·

(
1∑

i=0

(Pr[Gi]− Pr[Gi+1]) + Pr[G2]

)
− 1

≤ 2 · AdvpredcorrCH,suppPred(FPREDCORR) + AdvuaeCH,supp(AUAE).

This concludes the proof.

D Message encoding scheme of MTProto

Fig. 67 defines an approximation of the current ME construction in MTProto, where header fields
have encodings of fixed size as in Section 4.1. Salt generation is modelled as an abstract call within
ME.Init. Table S contains 64-bit server_salt values, each associated to some time period; algorithm
GenerateSalts generates this table; algorithms GetSalt and ValidSalts are used to choose and validate
salt values depending on the current timestamp. M is a fixed-size set that stores (msg_id,msg_seq_no)
for each of recently received messages; when M reaches its maximum size, the entries with the smallest
msg_id are removed first. M.IDs is the set of msg_ids in M. Time constants tp and tf determine the
range of timestamps (from the past or future) that should be accepted; these constants are in the
same encoding as aux. We assume all strings are byte-aligned.

We omit modelling containers or acknowledgement messages, though they are not properly separated
from the main protocol logic in implementations. We stress that because implementations of MTProto
differ even in protocol details, it would be impossible to define a single ME scheme, so Fig. 67 shows
an approximation. For instance, the GenPadding function in Android has randomised padding length
which is at most 240 bytes, whereas the same function on desktop does not randomise the padding
length. Different client/server behaviour is captured by u = I representing the client and u = R
representing the server, and we assume that I always sends the first message.

E Proofs for the underlying MTProto primitives

In this appendix we provide the reductions referred to in Sections 5.1 and 5.3. The code added for the
transition between games is highlighted in green. In the adversaries, the highlighted instructions mark
the changes in the code of the simulated games.

E.1 OTWIND of MTP-HASH

Proposition 5 shows that MTP-HASH is a one-time weak indistinguishable function (Fig. 25) if
SHACAL-1 is a one-time pseudorandom function (Fig. 2). At a high level, our proof uses the fact that

87

ME.Init()

Nsent ← 0

session_id← 0

last_sent_msg_id← 0

S←$ GenerateSalts()

M← ∅
For each u ∈ {I,R} do

stME,u ← (Nsent, session_id, last_sent_msg_id, S,M)
Return (stME,I , stME,R)

ME.Encode(stME,u,m, aux)

(Nsent, session_id, last_sent_msg_id, S,M)← stME,u

If u = I ∧Nsent = 0 then
session_id←$ {0, 1}64

server_salt← GetSalt(S, aux)
msg_id← GetMsgId(u, aux, last_sent_msg_id)
msg_seq_no← ⟨2 ·Nsent + 1⟩32
msg_length← ⟨|m|/8⟩32
padding←$ GenPadding(|m|)
p0 ← server_salt ∥ session_id
p1 ← msg_id ∥msg_seq_no ∥msg_length
p2 ← m ∥ padding
p← p0 ∥ p1 ∥ p2
Nsent ← Nsent + 1

last_sent_msg_id← msg_id
stME,u ← (Nsent, session_id, last_sent_msg_id, S,M)
Return (stME,u, p)

GetMsgId(u, aux, last_sent_msg_id)
msg_id← aux ≪ 32

If msg_id ≤ last_sent_msg_id then
msg_id← last_sent_msg_id+ 1

iI ← 0

iR ← 1

t← (iu −msg_id) mod 4

Return ⟨msg_id+ t⟩64

GenPadding(ℓ) // ℓ ∈
⋃224

i=1{0, 1}
8·i

ℓ′ ← 128− ℓ mod 128

bn ←$ {2, 3, · · · , 63}
padding←$ {0, 1}ℓ

′+bn∗128

Return padding

(a) ME.Init and ME.Encode.

Figure 67. Construction of MTProto’s message encoding scheme ME, where aux is a 32-bit timestamp.

88

ME.Decode(stME,u, p, aux)

(Nsent, session_id, last_sent_msg_id, S,M)← stME,u

server_salt← p[0 : 64]

session_id′ ← p[64 : 128]

msg_id← p[128 : 192]

msg_seq_no← p[192 : 224]

msg_length← p[224 : 256]

ℓ← |p| − 256

If (u = R) ∧ (server_salt ̸∈ ValidSalts(S, aux)) then
Return (stME,u,⊥)

If (u = R) ∧ (Nrecv = 0) then
session_id← session_id′

Else if session_id′ ̸= session_id then
Return (stME,u,⊥)

If ¬(aux − tp ≤ (msg_id≫ 32) ≤ aux + tf)∨
(msg_id ∈ M.IDs) ∨ (msg_id < min(M.IDs)) then

Return (stME,u,⊥)
If (u = R) ∧ (∃(i, s) ∈ M :

((msg_seq_no ≤ s) ∧ (msg_id > i))∨
((msg_seq_no ≥ s) ∧ (msg_id < i))) then

Return (stME,u,⊥)
If ((u = I) ∧ (msg_id mod 4 ̸= 1))∨

((u = R) ∧ (msg_id mod 4 ̸= 0)) then
Return (stME,u,⊥)

padding_length← ℓ/8−msg_length
If ¬(0 < msg_length ≤ ℓ/8)∨
¬(12 ≤ padding_length ≤ 1024) then

Return (stME,u,⊥)
m← p[256 : 256 +msg_length · 8]
M← M.add(msg_id,msg_seq_no)
stME,u ← (Nsent, session_id, last_sent_msg_id, S,M)
Return (stME,u,m)

(b) ME.Decode.

Figure 67. Construction of MTProto’s message encoding scheme ME, where aux is a 32-bit timestamp.

89

the construction of MTP-HASH evaluates SHACAL-1 using uniformly random independent keys, and
hence produces random-looking outputs if SHACAL-1 is a PRF. The final SHACAL-1 call on a known
constant (the padding) cannot improve the distinguishing advantage; this is a special case of the data
processing inequality.

Proposition 5. Let DOTWIND be an adversary against the OTWIND-security of the function family
MTP-HASH from Definition 7. Then we can build an adversary DOTPRF against the OTPRF-security
of the block cipher SHACAL-1 such that

AdvotwindMTP-HASH(DOTWIND) ≤ 2 · AdvotprfSHACAL-1(DOTPRF).

Proof. Recall that SHA-1 operates on 512-bit input blocks. Padding is appended at the end of the
last input block. If the message size is already a multiple of the block size (as it is in MTP-HASH), a
new input block is added. For a message of length 2048, we denote the added block of padding by
xp. Define P as the public function P (Hi) := h160(Hi, xp), i.e. the last iteration of SHA-1 over the
padding block.

Consider games G0–G1 in Fig. 68. Game G0 expands the code of algorithm MTP-HASH.Ev in
game Gotwind

MTP-HASH,DOTWIND
. The evaluation of function family MTP-HASH (on 2048-bit long inputs)

can be expanded into five calls to the compression function h160 of SHA-1. The third and fourth calls
to the compression function h160 would take as input two blocks that are formed from the function key
of MTP-HASH, i.e. hk[32 : 1056]. Game G0 rewrites these calls to use two invocations of SHACAL-1.Ev
accordingly, using uniformly random and independent keys hk[32 : 544] and hk[544 : 1056]. Game G0

is functionally equivalent to game Gotwind
MTP-HASH,DOTWIND

, so Pr[G0] = Pr[Gotwind
MTP-HASH,DOTWIND

]. We then
construct game G1 in which the outputs of the aforementioned SHACAL-1.Ev calls are replaced with
random values. In this game, the adversary DOTWIND is given auth_key_id = P (H3 +̂ r1)[96 : 160]
for a uniformly random value r1 that does not depend on the challenge bit b, so the probability of
DOTWIND winning in this game is Pr[G1] =

1
2 .

Games G0–G1

b←$ {0, 1} ; hk ←$ {0, 1}MTP-HASH.kl

x0 ←$ MTP-HASH.In ; x1 ←$ MTP-HASH.In
H0 ← IV160

H1 ← h160(H0, xb[0 : 512])

H2 ← h160(H1, xb[512 : 672] ∥hk[0 : 32] ∥xb[672 : 992])

r0 ← SHACAL-1.Ev(hk[32 : 544], H2) // G0

r0 ←$ {0, 1}SHACAL-1.ol // G1

H3 ← H2 +̂ r0
r1 ← SHACAL-1.Ev(hk[544 : 1056], H3) // G0

r1 ←$ {0, 1}SHACAL-1.ol // G1

H4 ← H3 +̂ r1
auth_key_id← P (H4)[96 : 160]

b′ ←$ DOTWIND(x0, x1, auth_key_id)
Return b′ = b

Figure 68. Games G0–G1 for the proof of Proposition 5. The code added by expanding the algorithm
MTP-HASH.Ev in game Gotwind

MTP-HASH,DOTWIND
is highlighted in grey; here MTP-HASH.Ev is expressed using the

underlying calls to the compression function h160 and the block cipher SHACAL-1 of SHA-1.

We construct an adversary DOTPRF against the OTPRF-security of SHACAL-1 as shown in
Fig. 69 such that Pr [G0] − Pr [G1] = AdvotprfSHACAL-1(DOTPRF). Let d be the challenge bit in game
Gotprf

SHACAL-1,DOTPRF
and d′ be the output of the adversary in that game. If d = 1 then queries to RoR

made by DOTPRF return the output of evaluating function SHACAL-1 with random keys. If d = 0
then each call to RoR returns a uniformly random value from {0, 1}SHACAL-1.ol.

90

We can write:

AdvotprfSHACAL-1(DOTPRF)

= Pr [d′ = 1 | d = 1]− Pr [d′ = 1 | d = 0]

= Pr [G0]− Pr [G1]

=
1

2
·
(
AdvotwindMTP-HASH(DOTWIND) + 1

)
− 1

2

=
1

2
· AdvotwindMTP-HASH(DOTWIND).

The inequality follows.

E.2 RKPRF of MTP-KDF

We now reduce the related-key PRF security of MTP-KDF to the leakage-resilient, related-key PRF
security of SHACAL-2. Recall that MTP-KDF is defined in Definition 9 to return concatenated outputs
of two SHA-256 calls, when evaluated on inputs msg_key ∥ kk0 and kk0 ∥msg_key respectively. The
key observation here is that these two strings are both only 416 bits long, so the resulting SHA-padded
payloads sk0 = SHA-pad(msg_key ∥ kk0) and sk1 = SHA-pad(kk0 ∥msg_key) each consist of a single
512-bit block. So for SHA-256 compression function h256 and initial state IV256 we need to show that
h256(IV256, sk0) ∥h256(IV256, sk1) is indistinguishable from a uniformly random string. When this is
expressed through the underlying block cipher SHACAL-2, it is sufficient that SHACAL-2.Ev(sk0, IV256)
and SHACAL-2.Ev(sk1, IV256) both look independent and uniformly random (even while an adversary
can choose the values of msg_key that are used to build sk0, sk1). This requirement is exactly satisfied
if SHACAL-2 is assumed to be a related-key PRF for appropriate related-key-deriving functions, which
in Section 5.2 was formalised as the notion of LRKPRF-security with respect to ϕKDF, ϕSHACAL-2. We
capture this claim in Proposition 6.

Proposition 6. Let DRKPRF be an adversary against the RKPRF-security of the function family
MTP-KDF from Definition 9 with respect to the related-key-deriving function ϕKDF from Fig. 24. Let
ϕSHACAL-2 be the related-key-deriving function as defined in Fig. 29. Then we can build an adversary
DLRKPRF against the LRKPRF-security of the block cipher SHACAL-2 with respect to related-key-
deriving functions ϕKDF, ϕSHACAL-2 (abbrev. with ϕ) such that

AdvrkprfMTP-KDF,ϕKDF
(DRKPRF) ≤ 2 · AdvlrkprfSHACAL-2,ϕ(DLRKPRF).

Proof. Consider game Grkprf
MTP-KDF,ϕKDF,DRKPRF

(Fig. 26) defining the RKPRF-security experiment in
which the adversary DRKPRF plays against the function family MTP-KDF with respect to the related-
key-deriving function ϕKDF. We first rewrite the game in a functionally equivalent way as G0 in Fig. 70

Adversary DRoR
OTPRF

b←$ {0, 1} ; hk′ ←$ {0, 1}32

x0 ←$ MTP-HASH.In ; x1 ←$ MTP-HASH.In
H0 ← IV160

H1 ← h160(H0, xb[0 : 512])

H2 ← h160(H1, xb[512 : 672] ∥ hk′ ∥xb[672 : 992])

r0 ← RoR(H2)

H3 ← H2 +̂ r0
r1 ← RoR(H3)

H4 ← H3 +̂ r1
auth_key_id← P (H4)[96 : 160]

b′ ←$ DOTWIND(x0, x1, auth_key_id)
If b′ = b then return 1 else return 0

Figure 69. Adversary DOTPRF against the OTPRF-security of SHACAL-1 for the proof of Proposition 5.
Depending on the challenge bit in game Gotprf

SHACAL-1,DOTPRF
, adversary DOTPRF simulates game G0 or G1 for

adversary DOTWIND.

91

using the definition of algorithm MTP-KDF.Ev, expanded to SHA-256 and then expressed through the
underlying block cipher SHACAL-2, which is called twice on related keys, each built by appending SHA
padding to msg_key ∥ kk0 or kk1 ∥msg_key. We have AdvrkprfMTP-KDF,ϕKDF

(DRKPRF) = 2 ·Pr[G0]− 1. Then
G1 rewrites the derivation of sk0, sk1 in G0 in terms of the related-key-deriving function ϕSHACAL-2

(Fig. 29). Game G1 is functionally equivalent to game G0, so Pr[G1] = Pr[G0]. Finally, game G2

replaces both SHACAL-2 outputs with uniformly random values that are independent of the challenge
bit. In this game DRKPRF can have no advantage better than simply guessing the challenge bit, so
Pr[G2] =

1
2 .

Games G0–G2

b←$ {0, 1} ; kk ←$ {0, 1}672 ; (kkI , kkR)← ϕKDF(kk)

b′ ←$ DRoR
RKPRF ; Return b′ = b

RoR(u,msg_key) // u ∈ {I,R}, |msg_key| = 128

(kk0, kk1)← kku // G0

sk0 ← SHA-pad(msg_key ∥ kk0) // G0

sk1 ← SHA-pad(kk1 ∥msg_key) // G0

(sk0, sk1)← ϕSHACAL-2(kku,msg_key) // G1–G2

r0 ← SHACAL-2.Ev(sk0, IV256) // G0–G1

If R[u, 0,msg_key] = ⊥ then // G2

R[u, 0,msg_key]←$ {0, 1}SHACAL-2.ol // G2

r0 ← R[u, 0,msg_key] // G2

r1 ← SHACAL-2.Ev(sk1, IV256) // G0–G1

If R[u, 1,msg_key] = ⊥ then // G2

R[u, 1,msg_key]←$ {0, 1}SHACAL-2.ol // G2

r1 ← R[u, 1,msg_key] // G2

k
(0)
1 ← IV256 +̂ r0 ; k

(1)
1 ← IV256 +̂ r1

k1 ← k
(0)
1 ∥ k

(1)
1

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}MTP-KDF.ol

k0 ← T[u,msg_key] ; Return kb

Figure 70. Games G0–G2 for the proof of Proposition 6. The code added by expanding the algorithm
MTP-KDF.Ev in game Grkprf

MTP-KDF,ϕKDF,DRKPRF
is highlighted in grey; here MTP-KDF.Ev is expressed using the

underlying calls to the block cipher SHACAL-2 of SHA-256.

Here we construct an adversary DLRKPRF against the LRKPRF-security of SHACAL-2 with respect
to ϕKDF, ϕSHACAL-2 as shown in Fig. 71 such that Pr [G1]− Pr [G2] = AdvlrkprfSHACAL-2,ϕ(DLRKPRF). Let
d be the challenge bit in Glrkprf

SHACAL-2,ϕ,DLRKPRF
and d′ be the output of the adversary in that game.

If d = 1 then calls to oracle RoR made by DLRKPRF are SHACAL-2 invocations with related and
partially-chosen keys; we have Pr [d′ = 1 | d = 1] = Pr[G1]. If d = 0 then each call to oracle RoR
draws a uniformly random value ri and so k1 = (IV256 +̂ r0) ∥ (IV256 +̂ r1) is a uniformly random
string; we have Pr [d′ = 1 | d = 0] = Pr[G2].

Adversary DRoR
LRKPRF

b←$ {0, 1}
b′ ←$ DRoRSim

RKPRF

If b′ = b then return 1

Else return 0

RoRSim(u,msg_key)
r0 ← RoR(u, 0,msg_key)
r1 ← RoR(u, 1,msg_key)
k
(0)
1 ← IV256 +̂ r0 ; k

(1)
1 ← IV256 +̂ r1

k1 ← k
(0)
1 ∥ k

(1)
1

If T[u,msg_key] = ⊥ then
T[u,msg_key]←$ {0, 1}MTP-KDF.ol

k0 ← T[u,msg_key] ; Return kb

Figure 71. Adversary DLRKPRF against the LRKPRF-security of SHACAL-2 with respect to ϕKDF, ϕSHACAL-2

(abbrev. with ϕ) for the proof of Proposition 6. Depending on the challenge bit in game Glrkprf
SHACAL-2,ϕ,DLRKPRF

,
adversary DLRKPRF simulates game G1 or G2 for adversary DRKPRF.

92

We can use the above to write:

AdvlrkprfSHACAL-2,ϕ(DLRKPRF)

= Pr [d′ = 1 | d = 1]− Pr [d′ = 1 | d = 0]

= Pr [G1]− Pr [G2]

= Pr [G0]− Pr [G2]

=
1

2

(
AdvrkprfMTP-KDF,ϕKDF

(DRKPRF) + 1
)
− 1

2

=
1

2
AdvrkprfMTP-KDF,ϕKDF

(DRKPRF).

The inequality follows.

E.3 UPRKPRF of MTP-MAC

The UPRKPRF-security (Fig. 28) of MTP-MAC roughly requires that the function MTP-MAC.Ev(mku, ·)
is a related-key PRF (simultaneously for both u ∈ {I,R}) if the adversary is only allowed to evaluate
this function on inputs that have distinct 256-bit prefixes.

Recall that MTP-MAC.Ev(mku, p) is defined to return a truncated output of SHA-256(mku ∥ p)
where the key mku is 256-bit long for any u ∈ {I,R}, and the payload p is guaranteed (according
to the definition of MTP-ME) to be longer than 256 bits. Furthermore, the construction of MTP-ME
ensures that the 256-bit prefix of p will be unique (as long as the number of total produced payloads
is upper-bounded by some large constant) because this prefix of p encodes various counters. This
enables us to consider the output of the first SHA-256 compression function h256 while evaluating
SHA-256(mku ∥ p); we can assume that this output is uniformly random by assuming the HRKPRF-
security of SHACAL-2 (as defined in Section 5.2). Now it remains to show that every next h256 call
that is made to evaluate SHA-256(mku ∥ p) will return a uniformly random output as well, which is
true when h256 is assumed to be a PRF.

We start with the latter step, showing that the Merkle-Damgård construction is a secure PRF as
long as the underlying compression function is a secure PRF. This claim about the Merkle-Damgård
transform is analogous to the basic cascade PRF security proved in [BCK96], except that we only
prove one-time security and hence we do not require prefix-free inputs.

Lemma 1. Consider the compression function h256 of SHA-256. Let H be the corresponding function
family with H.Ev = h256, H.kl = H.ol = 256, H.In = {0, 1}512. Let Dmd be an adversary against the
OTPRF-security of the function family MD[h256] from Section 2.2 that makes queries of length at most
T blocks (i.e. at most T ·512 bits). Then we can build an adversary Dcompr against the OTPRF-security
of H such that

AdvotprfMD[h256]
(Dmd) ≤ T · AdvotprfH (Dcompr).

Proof. This proof uses games G0–GT in Fig. 72. The oracle RoR on input x returns MD[h256].Ev(H0, x)
for a uniformly random key H0 ∈ H.Keys in game G0, and it returns a uniformly random value from
{0, 1}H.ol in game GT .

Game Gj // 0 ≤ j ≤ T

b′ ←$ DRoR
md

Return b′ = 1

RoR(x1 ∥ . . . ∥xt) // |xi| = 512, t ≤ T

H0 ←$ H.Keys

For i = 1, . . . , t do
If i ≤ j then Hi ←$ {0, 1}H.ol

If i > j then Hi ← H.Ev(Hi−1, xi)

Return Ht

Figure 72. Games G0–GT for the proof of Lemma 1.

93

Let b be the challenge bit in game Gotprf
MD[h256],Dmd

, and let b′ be the output of Dmd in that game.
Then we have

AdvotprfMD[h256]
(Dmd) = Pr [b′ = 1 | b = 1]− Pr [b′ = 1 | b = 0]

= Pr[G0]− Pr[GT]

=

T∑
q=1

(Pr[Gq−1]− Pr[Gq]) . (3)

Consider adversary Dcompr in Fig. 73. Let h be the value sampled in the first step of Dcompr. For
any choice of h ∈ {1, . . . , T}, adversary Dcompr (playing in game Gotprf

H) perfectly simulates the view of
Dmd in either Gh−1 or Gh, depending on whether Dcompr’s oracle RoR is returning real evaluations of
H.Ev or uniformly random values from {0, 1}H.ol.

Adversary DRoR
compr

j ←$ {1, . . . , T}
b′ ←$ DRoRSim

md

Return b′

RoRSim(x1 ∥ . . . ∥xt) // |xi| = 512, t ≤ T

H0 ←$ H.Keys

For i = 1, . . . , t do
If i < j then Hi ←$ {0, 1}H.ol

If i = j then Hi ←$ RoR(xi)

If i > j then Hi ← H.Ev(Hi−1, xi)

Return Ht

Figure 73. Adversary Dcompr against the OTPRF-security of H for the proof of Lemma 1.

Let d be the challenge bit in game Gotprf
H,Dcompr

, and let d′ be the output of Dcompr in that game. It
follows that for any j ∈ {1, . . . , T} we have

Pr[Gj−1] = Pr [d′ = 1 | d = 1, h = j] ,

Pr[Gj] = Pr [d′ = 1 | d = 0, h = j] .

Let us express Pr [d′ = 1 | d = 1] and Pr [d′ = 1 | d = 0] using the above:

Pr
[
d′ = 1 | d = 1

]
=

T∑
q=1

Pr[h = j] · Pr
[
d′ = 1 | d = 1, h = j

]
=

1

T

T∑
q=1

Pr
[
d′ = 1 | d = 1, h = j

]
.

Pr
[
d′ = 1 | d = 0

]
=

T∑
q=1

Pr[h = j] · Pr
[
d′ = 1 | d = 0, h = j

]
=

1

T

T∑
q=1

Pr
[
d′ = 1 | d = 0, h = j

]
.

We can now rewrite Eq. (3) as follows:

AdvotprfMD[h256]
(Dmd)

=

T∑
q=1

(Pr [d′ = 1 | d = 1, h = j]− Pr [d′ = 1 | d = 0, h = j])

= T · (Pr [d′ = 1 | d = 1]− Pr [d′ = 1 | d = 0])

= T · AdvotprfH (Dcompr).

This concludes the proof.

94

Security reduction for MTP-MAC. We are ready to state the main result about the security of
MTP-MAC, which we reduce to two assumptions in Proposition 7: (a) that SHACAL-2.Ev(k,m) is a
PRF under known fixed m, partially known k and related-key-deriving function ϕMAC and (b) that
h256(k, ·) is a one-time PRF. Concretely, h256(a, b) := a +̂ SHACAL-2.Ev(b, a) and thus we require both
assumptions to hold for SHACAL-2.51 The former assumption is captured by the HRKPRF-security
of SHACAL-2, whereas the latter was used in Lemma 1 in order to show that the MD-transform
inherits the PRF-security of its underlying compression function (given that the initial state of the
MD-transform is already uniformly random).

Proposition 7. Let DUPRKPRF be an adversary against the UPRKPRF-security of MTP-MAC from
Definition 8 under the related-key-deriving function ϕMAC from Fig. 24, for inputs whose 256-bit prefixes
are distinct from each other. Then we can build an adversary DHRKPRF against the HRKPRF-security
of SHACAL-2 with respect to ϕMAC, and an adversary DOTPRF against the OTPRF-security of the
Merkle–Damgård transform of SHA-256, captured as function family MD[h256] in Section 2.2, such
that

AdvuprkprfMTP-MAC,ϕMAC
(DUPRKPRF) ≤ 2 · AdvhrkprfSHACAL-2,ϕMAC

(DHRKPRF)

+ 2 · AdvotprfMD[h256]
(DOTPRF).

Proof. Consider game Guprkprf
MTP-MAC,ϕMAC,DUPRKPRF

(Fig. 28).

Games G0–G3

b←$ {0, 1} ; mk ←$ {0, 1}320 ; (mkI ,mkR)← ϕMAC(mk)

XI ← XR ← ∅ ; b′ ←$ DRoR
UPRKPRF ; Return b′ = b

RoR(u, p) // u ∈ {I,R}, p ∈ {0, 1}∗

If |p| < 256 then return ⊥
p0 ← p[0 : 256]

If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
p← SHA-pad(0|mku| ∥ p) ; p1 ← p[512 : |p|]
r ← SHACAL-2.Ev(mku ∥ p0, IV256) // G0

r ←$ {0, 1}SHACAL-2.ol // G1

H1 ← IV256 +̂ r // G0–G1

H1 ←$ {0, 1}256 // G2

If |p1| > 0 then
z ← MD[h256].Ev(H1, p1) // G0–G2

z ←$ {0, 1}SHACAL-2.ol // G3

Else z ← H1

msg_key1 ← z[64 : 192]

msg_key0 ←$ {0, 1}MTP-MAC.ol

Return msg_keyb

Figure 74. Games G0–G3 for the proof of Proposition 7. The code added by expanding the algorithm
MTP-MAC.Ev in game Guprkprf

MTP-MAC,ϕMAC,DUPRKPRF
is highlighted in grey; here MTP-HASH.Ev is expressed by

recursively expanding the underlying MD-transform, where only the first call to the SHA-256 block cipher
SHACAL-2 is singled out.

Recall that

MTP-MAC.Ev(mku, p) = SHA-256(mku ∥ p)[64 : 192]

= MD[h256].Ev(IV256,SHA-pad(mku ∥ p))[64 : 192].

51 Note that SHACAL-2.Ev(m, k) for chosen m and random secret k is not a PRF since it comes endowed with
a decryption function revealing k given y = SHACAL-2.Ev(m, k) and the chosen m. This does not rule out
the “masked” construction k +̂ SHACAL-2.Ev(m, k) being a PRF.

95

We first rewrite the game in a functionally equivalent way as G0 in Fig. 74, splitting the MD[h256].Ev
call based on what happens to the first block of input. Since the first block contains a secret mku,
it can be interpreted as providing security guarantees for a SHACAL-2 call keyed with the first
block. G1 thus captures that the output of the first SHACAL-2 call should be indistinguishable from
random if SHACAL-2 is a leakage-resilient PRF under related keys, and G2 extends it to the output
of the first compression function call h256; games G1 and G2 are functionally equivalent so we have
Pr[G1] = Pr[G2]. Then G3 replaces the MD-transform call on the remaining input (if there is any) with
a uniformly random value. This is the final reduction game, and it returns a random value regardless of
the challenge bit, so DUPRKPRF cannot have a better than guessing advantage to win, i.e. Pr[G3] =

1
2 .

Adversary DRoR
HRKPRF

b←$ {0, 1}
XI ← XR ← ∅
b′ ←$ DRoRSim

UPRKPRF

If b′ = b then return 1

Else return 0

RoRSim(u, p)

If |p| < 256 then return ⊥
p0 ← p[0 : 256]

If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
p← SHA-pad(0256 ∥ p)
p1 ← p[512 : |p|]
r ← RoR(u, p0)

H1 ← IV256 +̂ r

If |p1| > 0 then
z ← MD[h256].Ev(H1, p1)

Else z ← H1

msg_key1 ← z[64 : 192]

msg_key0 ←$ {0, 1}MTP-MAC.ol

Return msg_keyb

Figure 75. Adversary DHRKPRF against the HRKPRF-security of SHACAL-2 with respect to ϕMAC for the
proof of Proposition 7. Depending on the challenge bit in game Ghrkprf

SHACAL-2,ϕMAC,DHRKPRF
, adversary DHRKPRF

simulates game G0 or G1 for adversary DUPRKPRF.

Adversary DRoR
OTPRF

b←$ {0, 1}
XI ← XR ← ∅
b′ ←$ DRoRSim

UPRKPRF

If b′ = b then return 1

Else return 0

RoRSim(u, p)

If |p| < 256 then return ⊥
p0 ← p[0 : 256]

If p0 ∈ Xu then return ⊥
Xu ← Xu ∪ {p0}
p← SHA-pad(0256 ∥ p)
p1 ← p[512 : |p|]
H1 ←$ {0, 1}256

If |p1| > 0 then
z ← RoR(p1)

Else z ← H1

msg_key1 ← z[64 : 192]

msg_key0 ←$ {0, 1}MTP-MAC.ol

Return msg_keyb

Figure 76. Adversary DOTPRF against the OTPRF-security of MD[h256] for the proof of Proposition 7.
Depending on the challenge bit in game Gotprf

MD[h256],DOTPRF
, adversary DOTPRF simulates game G2 or G3 for

adversary DUPRKPRF.

We first build an adversary DHRKPRF against the HRKPRF-security of SHACAL-2 with respect
to ϕMAC as shown in Fig. 75, such that we obtain Pr [G0]− Pr [G1] = AdvhrkprfSHACAL-2,ϕMAC

(DHRKPRF).
Next, we build an adversary DOTPRF against the OTPRF-security of MD[h256] as shown in Fig. 76,
such that Pr [G1]− Pr [G2] = AdvotprfMD[h256]

(DOTPRF). Note that DOTPRF calls its oracle RoR only if
DUPRKPRF calls RoRSim on large enough inputs. However, adversary DUPRKPRF does not benefit

96

from calling its own RoR oracle on smaller inputs because at this point in the security reduction we
already swapped out the output of the first call to compression function h256 with a uniformly random
value.
We have the following:

AdvuprkprfMTP-MAC,ϕMAC
(DUPRKPRF)

= 2 · Pr[G0]− 1

= 2 ·

(
3∑

i=1

(Pr[Gi−1]− Pr[Gi]) + Pr[G3]

)
− 1

= 2 · (AdvhrkprfSHACAL-2,ϕMAC
(DHRKPRF) + AdvotprfMD[h256]

(DOTPRF)).

The inequality follows.

E.4 OTIND$ of IGE

Recall that the deterministic symmetric encryption scheme MTP-SE is defined in Definition 10 as the
IGE block cipher mode of operation, parametrised with the block cipher E = AES-256. We now show
that IGE mode with any block cipher E is one-time indistinguishable (i.e. OTIND$-secure; defined in
Fig. 3) if the CBC mode, based on the same E, is one-time indistinguishable. This follows from an
observation that the IGE encryption algorithm IGE[E].Enc, for any block cipher E, can be expressed in
terms of the CBC encryption algorithm CBC[E].Enc as shown in Fig. 77.

IGE[E].Enc(K ∥ c0 ∥m0,m1 ∥ . . . ∥mt) // |K| = E.kl, |c0| = |mi| = E.ol

m−1 ← 0E.ol

For i = 1, . . . , t do m′
i ← mi ⊕mi−2

c′1 ∥ . . . ∥ c′t ← CBC[E].Enc(K ∥ c0,m′
1 ∥ . . . ∥m′

t)

For i = 1, . . . , t do ci ← c′i ⊕mi−1

Return c1 ∥ . . . ∥ ct

Figure 77. Construction of algorithm IGE[E].Enc from algorithm CBC[E].Enc, where E is any block cipher.

Proposition 8. Let E be a block cipher. Consider the deterministic symmetric encryption schemes
SEIGE = IGE[E] and SECBC = CBC[E] as defined in Fig. 4. Let DIGE be an adversary against the
OTIND$-security of SEIGE. Then we can build an adversary DCBC against the OTIND$-security of
SECBC such that

Advotind$SEIGE
(DIGE) ≤ Advotind$SECBC

(DCBC).

Proof. Consider adversary DCBC in Fig. 78. We now show that when this adversary plays in game
Gotind$

SECBC,DCBC
for any challenge bit b ∈ {0, 1}, it simulates game Gotind$

SEIGE,DIGE
for adversary DIGE with

respect to the same challenge bit.

Adversary DRoR
CBC

b′ ←$ DRoRSim
IGE

Return b′

RoRSim(m1 ∥ . . . ∥mt) // |mi| = E.ol

m−1 ← 0E.ol ; m0 ←$ {0, 1}E.ol

For i = 1, . . . , t do
m′

i ← mi ⊕mi−2

c′ ← RoR(m′
1 ∥ . . . ∥m′

t)

For i = 1, . . . , t do
ci ← c′i ⊕mi−1

Return c1 ∥ . . . ∥ ct

Figure 78. Adversary DCBC against the OTIND$-security of CBC[E] for the proof of Proposition 8.

If b = 0 in Gotind$
SECBC,DCBC

, then RoR(m′) returns a uniformly random value as c′, which is preserved under
XOR. If b = 1, we get c′ = SECBC.Enc(k,m

′) for a uniformly random SECBC challenge key k = K ∥ c′0.

97

Here c′i = E.Ev(K,mi ⊕mi−2 ⊕ c′i−1). Since ci = c′i ⊕mi−1, we get ci = E.Ev(K,mi ⊕ ci−1) ⊕mi−1

and so c = SEIGE.Enc(k ∥m0,m). In both cases adversary DCBC perfectly simulates the RoR oracle
for adversary DIGE, so Advotind$SECBC

(DCBC) = Advotind$SEIGE
(DIGE).

E.5 EINT of MTP-ME with respect to SUPP

In this section we prove that the message encoding scheme MTP-ME provides encoding integrity with
respect to the support function SUPP for adversaries that request at most 296 encoded payloads.
As discussed in Section 3.5, this means that MTP-ME manages to prevent an attacker from silently
replaying, reordering or dropping payloads in a channel that otherwise provides integrity (i.e. ensures
that each received payload was at some point honestly produced by the opposite user). We note that
if an adversary requests a single user to encode more than 296 payloads, then this user’s MTP-ME
counter Nsent wraps modulo 296, allowing a trivial attack; below we will define an EINT-security
adversary that in such case wins with advantage 1.

Proposition 9. Let session_id ∈ {0, 1}64 and pb, bl ∈ N. Denote by ME = MTP-ME[session_id, pb,
bl] the message encoding scheme defined in Definition 6. Let supp = SUPP be the support function
defined in Fig. 32. Let F be any adversary against the EINT-security of ME with respect to supp
making q ≤ 296 queries to its oracle Send. Then

AdveintME,supp(F) = 0.

Proof. Consider game Geint
ME,supp,F (Fig. 15). For any receiver u ∈ {I,R}, the security game only allows

oracle Recv queries on inputs u, p, aux such that the payload p was previously honestly produced
by the opposite user u (i.e. p was produced in response to a prior oracle call Send(u,m′, aux′, r′) for
some values m′, aux′, r′). Thus it is sufficient to consider the following two cases, and show that the
win flag cannot be set true in either of them: a) the payload p was successfully decoded by a prior
call to Recv(u, p, ·) (i.e. for an arbitrary auxiliary information value), and b) the payload p was not
successfully decoded by a prior call to Recv(u, p, ·).

In both cases, we will rely on the fact that the first q = 296 calls to oracle Send(u, ·, ·, ·) produce
distinct payloads p. This is true because the algorithm ME.Encode ensures that every payload p
returned by Send(u, ·, ·, ·) includes a 96-bit counter seq_no (in a fixed position of p) that starts at 096

and is incremented modulo 296 after each time a message is encoded.
We now consider the two cases listed above. Let

p = salt ∥ session_id ∥ seq_no ∥ length ∥m′ ∥ padding.

Let stME,u = (session_id, ·, Nrecv,u) be the ME state of the user u at the beginning of the current call
to Recv(u, p, aux), where aux is an arbitrary auxiliary information string.

Payload p is reused. There was a prior call to oracle Recv(u, p, aux′′) that successfully decoded p,
meaning the transcript tru now contains (recv,m′, p, aux′′) for m′ ≠ ⊥. We know that the condition
seq_no = Nrecv evaluated to true inside algorithm ME.Decode during the prior call (where seq_no was
parsed from p[128: 224], and Nrecv < Nrecv,u is a prerequisite to the prior decoding having succeeded).
This means that the condition seq_no = Nrecv,u will evaluate to false during the current call, and the
decoding will fail (i.e. return ⊥). But the support function supp(u, tru, tru, p, aux) likewise returns
m∗ = ⊥, because find(recv, tru, p) iterates over all recv-type entries in tru and finds a match for p that
corresponds to the decoded message m′ ̸= ⊥. We are guaranteed that m = m∗, and hence F cannot
set the win flag in this case.

Payload p is fresh. Either there was no Recv(u, p, aux′′) call in the past for any aux′′, or each entry
(recv,m, p, ·) in the transcript tru has m = ⊥. The support function supp(u, tru, tru, p, aux) first makes
a call to find(recv, tru, p) which returns (nu,⊥) where nu is the number of entries of tru of the form
(recv,m, p′, ·) for m ̸= ⊥ and p′ ̸= p. Next, it calls find(sent, tru, p) which returns (nu,m

′) because tru
contains the entry (sent,m′, p, aux′), where nu is the number of entries of tru that were sent before
and including the target entry. Then the support function checks whether nu = nu + 1.

Let us consider both nu and nu. Whenever an entry (recv,m, p′, ·) for m ̸= ⊥ is added to tru,
it means that the output of ME.Decode included a changed state that incremented the number of

98

received messages by one. Hence nu = Nrecv,u. Similarly, an entry (sent,m, ·, ·) is only added to tru
when ME.Encode was called, saving the prior number of sent messages Nsent,u in the sequence number
field seq_no, then incrementing it by one and including it in the updated state of ME. It follows that
nu = seq_no+ 1 as long as nu ≤ 296, which we assumed at the beginning. Then the support function
and the algorithm ME.Decode(stME,u, p, aux) both evaluate the same condition, checking whether
seq_no+ 1 = Nrecv,u + 1. Hence the support function returns m′ if and only if ME.Decode does, and
F cannot win in this case either. This concludes the proof.

Counter overflows. For completeness, let us now deal with the case of an overflow (modulo 296)
happening in the Nsent and Nrecv counters of MTP-ME. In this case, we show that there exists an
adversary that can trivially win with advantage 1.

Adversary FSend,Recv(stME,I , stME,R)

// Let aux = ε. Choose any m ∈ ME.MS and r ∈ ME.EncRS.
For i = 1, . . . , 296 + 1 do

pi ← Send(I,m, aux, r)

Recv(R, pi, aux)

Figure 79. Adversary F against the EINT-security of MTP-ME with respect to SUPP for the proof of
Proposition 10.

Proposition 10. Let session_id ∈ {0, 1}64 and pb, bl ∈ N. Denote by ME = MTP-ME[session_id, pb,
bl] the message encoding scheme defined in Definition 6. Let supp = SUPP be the support function
defined in Fig. 32. Let F be an adversary against the EINT-security of ME with respect to supp as
defined in Fig. 79, making q = 296 + 1 queries to its oracle Send. Then

AdveintME,supp(F) = 1.

Proof. Adversary F repeatedly queries its oracles Send and Recv in order to exhaust all possible
values of the 96-bit field seq_no. When user I sends the 296-th payload, its counter overflows (modulo
296) to become Nsent = 0; after user R accepts this payload, its counter likewise overflows to become
Nrecv = 0. It follows that the next payload will be equal to the first payload, i.e. p0 = p296+1.

This causes a mismatch: in ME.Decode the seq_no check passes because the counter wrapped
around, and so it returns m. But the corresponding evaluation of supp in game Geint

ME,supp,F determines
that the label p296+1 = p0 was already received before (i.e. find(recv, trR, p0)→ m ≠ ⊥) so the support
function returns ⊥. This triggers the win flag in game Geint

ME,supp,F .

E.6 UNPRED of MTP-SE and MTP-ME

We now prove unpredictability of the deterministic symmetric encryption scheme SE = MTP-SE
(Definition 10) with respect to the message encoding scheme ME = MTP-ME (Definition 6). In our
proof, we show that it is hard for any adversary F to find an SE ciphertext cse such that its decryption
under a uniformly random key k ∈ {0, 1}SE.kl begins with p1 = salt ∥ session_id, where session_id is a
value chosen by the adversary via stME and salt is arbitrary.

Recall that Definition 10 specifies MTP-SE = IGE[AES-256]. We state and prove our result for a
more general case of SE = IGE[E], where E is an arbitrary block cipher with block length E.ol = 128
(that matches the output block length bl of ME).

Note that our proof is not tight, i.e. the advantage could potentially be lower if we also considered
the seq_no and length fields in the second block. However, this would complicate analysis and possibly
overstate the security of MTProto as implemented, given that we made the modelling choice to check
more fields in MTP-ME upon decoding. The bound could also be improved if MTP-ME checked the salt
in the first block, however this would deviate even further from the current MTProto implementation
and so we did not include this in our definition.

99

Proposition 11. Let session_id ∈ {0, 1}64, pb ∈ N and bl = 128. Denote by ME = MTP-ME[session_id,
pb, bl] the message encoding scheme defined in Definition 6. Let E be a block cipher with block length
E.ol = 128. Let SE = IGE[E] be the deterministic symmetric encryption scheme defined in Section 2.2.
Let F be any adversary against the UNPRED-security of SE,ME making qCh queries to its oracle Ch.
Then

AdvunpredSE,ME(F) ≤
qCh

264
.

Proof. We rewrite game Gunpred
SE,ME,F (Fig. 35) as game G in Fig. 80 by expanding algorithms SE.Dec

and ME.Decode with the following relaxations. Algorithm SE.Dec is partially expanded to only
decrypt the first block of ciphertext cse into a 128-bit long payload block p1. Algorithm ME.Decode is
partially expanded to only surface the sanity-check of p1, which (as per Fig. 20) should consist of two
concatenated 64-bit values salt ∥ session_id, where session_id should match the fixed constant that is
stored inside the ME’s state stME. Since game G does not implement all of the checks from algorithm
ME.Decode, adversary F is more likely to win in G than in the original game Gunpred

SE,ME,F , but F is not
able to detect these changes because Ch always returns ⊥. We have

AdvunpredSE,ME(F) ≤ Pr [G] .

Game G

win← false

FExpose,Ch

Return win

Expose(u,msg_key)

// msg_key ∈ {0, 1}∗

S[u,msg_key]← true

Return T[u,msg_key]

Ch(u,msg_key, cse , stME, aux)

// msg_key ∈ {0, 1}∗

If ¬S[u,msg_key] then
If T[u,msg_key] = ⊥ then

T[u,msg_key]←$ {0, 1}SE.kl

k ← T[u,msg_key]

K ∥ c0 ∥ p0 ← k // s.t. |K| = E.kl, |c0| = |p0| = 128

c1 ← cse [0 : 128]

p1 ← E.Inv(K, c1 ⊕ p0)⊕ c0
(session_id, Nsent, Nrecv)← stME

session_id′ ← p1[64 : 128]

If session_id′ = session_id then
win← true

Return ⊥

Figure 80. Game G for the proof of Proposition 11. Game G is built from game Gunpred
SE,ME,F by partially

expanding the algorithms SE.Dec and ME.Decode to recover the first 128-bit block of payload p and then
verify the 64-bit value of session_id inside this block. The expanded code is highlighted in grey.

The adversary F can only win in game G if p1[64 : 128] = session_id for some p1 that is defined
by the equation p1 = E.Inv(K, c1 ⊕ p0)⊕ c0. We can rewrite this winning condition as

E.Inv(K, c1 ⊕ p0)[64 : 128]⊕ session_id = c0[64 : 128].

Here c0[64 : 128] is a bit string that is sampled uniformly at random for each pair (u,msg_key) and
that is unknown to the adversary.

Consider for a moment a particular pair (u,msg_key); suppose that F makes qu,msg_key queries to Ch
relating to this pair. These queries result in some specific set of values Xu,msg_key for E.Inv(K, c1⊕p0)[64 :
128]⊕ session_id arising in the game. Moreover, F wins for one of these queries if and only if some
element of the set Xu,msg_key matches c0[64 : 128]. Note also that F learns nothing about c0[64 : 128]
from each such query (since the Ch oracle always returns ⊥). Combining these facts, we see that
F ’s winning probability for this set of qu,msg_key queries is no larger than qu,msg_key/2

64 (in essence, F
can do no better than random guessing of distinct values for the unknown 64 bits). Moreover, while
the adversary can learn c0 for any (u,msg_key) pair after-the-fact using Expose, it cannot continue
querying Ch for this value once the query is made, which makes the output of that oracle useless in
winning the game.

Considering all pairs (u,msg_key) involved in F ’s queries and using the union bound, we obtain
that

Pr [G] ≤ qCh · 2−64.

The inequality follows.

100

F Concrete security of the novel SHACAL-2 assumptions in the ICM

In Section 5.2 we defined the LRKPRF-security and the HRKPRF-security of the block cipher
SHACAL-2 (with respect to some related-key-deriving functions). Both assumptions roughly require
SHACAL-2 to be related-key PRF-secure when evaluated on the fixed input IV256. As discussed in
Section 5.2, these assumptions construct the SHACAL-2 challenge keys in significantly different ways,
but both of them allow the attacker to directly choose certain bits of the challenge keys.

The notions of LRKPRF and HRKPRF security are novel, and hence further analysis is needed
to determine whether they hold for SHACAL-2 in the standard model. We leave this task as an open
problem. Here we justify both assumptions in the ideal cipher model [Sha49], where a block cipher is
modelled as a random (and independently chosen) permutation for every key in its key space. More
formally, our analysis will assume that SHACAL-2.Ev(sk, ·) is a random permutation for every choice
of sk ∈ {0, 1}SHACAL-2.kl. This will allow us to derive an upper bound for any adversary attacking either
of the two assumptions.

In this section, for any ℓ ∈ N we use P(ℓ) to denote the set of all bit-string permutations with
domain and range {0, 1}ℓ. For any permutation π ∈ P(ℓ) and any x, y ∈ {0, 1}ℓ we write π(x) to
denote the result of evaluating π on x, and we write π−1(y) to denote the result of evaluating the
inverse of π on y. A basic correctness condition stipulates that π−1(π(x)) = x for all x ∈ {0, 1}ℓ.

Proposition 12. Let ϕKDF be the related-key-deriving function as defined in Fig. 24. Let ϕSHACAL-2 be
the related-key-deriving function as defined in Fig. 29. Let the block cipher SHACAL-2 from Section 2.2
be modelled as the ideal cipher with key length SHACAL-2.kl and block length SHACAL-2.ol. Let D be
any adversary against the LRKPRF-security of SHACAL-2 with respect to ϕKDF, ϕSHACAL-2. Assume
that D makes a total of q queries to its ideal cipher oracles. Then the advantage of D is upper-bounded
as follows:

AdvlrkprfSHACAL-2,ϕKDF,ϕSHACAL-2
(D) < 2−156 + q · 2−285.

Proof. This proof uses games G0–G3 in Fig. 81, and games G4–G5 in Fig. 82. Game G0 is designed
to be equivalent to game Glrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2,D in the ideal cipher model. In particular, game
G0 gives its adversary D access to oracles IC and IC−1 that evaluate the direct and inverse calls
to the ideal cipher respectively. The evaluation of SHACAL-2.Ev(ski, IV256) inside oracle RoR of
game Glrkprf

SHACAL-2,ϕKDF,ϕSHACAL-2,D is replaced with a call to IC(ski, IV256) in game G0. Oracles IC and
IC−1 assign a random permutation π : {0, 1}SHACAL-2.ol → {0, 1}SHACAL-2.ol to any block cipher key
sk ∈ {0, 1}SHACAL-2.kl that is seen for the first time, and store it in the table entry P[sk]. On input
(sk, x) oracle IC evaluates the permutation π ← P[sk] on input x and returns the result π(x); on input
(sk, y) oracle IC evaluates the inverse of the permutation π ← P[sk] on input y and returns the result
π−1(y). Game G0 also expands the code of the related-key-deriving functions ϕKDF and ϕSHACAL-2. We
have

AdvlrkprfSHACAL-2,ϕKDF,ϕSHACAL-2
(D) = 2 · Pr[G0]− 1.

Game G0 adds some bookkeeping code highlighted in green to its oracle RoR. This code does not
affect the input-output behaviour of RoR.

Throughout transitions from G0 to G3, the code highlighted in green is used to gradually eliminate
the possibility that the adversary D calls its oracle RoR on two distinct input tuples (u′, i′,msg_key′)
and (u, i,msg_key) that both lead to the same block cipher key ski. If this was not true, then D could
trivially win the game by comparing the equality of outputs returned by RoR(u′, i′,msg_key′) and
RoR(u, i,msg_key). Depending on the values of i′, i ∈ {0, 1} used in (u′, i′,msg_key′) ̸= (u, i,msg_key),
the block cipher keys produced across the two corresponding calls to RoR can be the equal if the
intersection of sets {msg_key′ ∥ kku′,0, kku′,1 ∥msg_key′} and {msg_key ∥ kku,0, kku,1 ∥msg_key} is not
empty. We now show that it will be empty with high probability.

Let i ∈ {0, 1, 2}. Games Gi and Gi+1 are identical until badi is set. We have

Pr[Gi]− Pr[Gi+1] ≤ Pr[badGi
i].

Note that whenever the badi flag is set in game Gi+1, we use the abort(false) instruction (as introduced
in Section 2.1) to immediately halt the game with output false, meaning D loses the game right after
setting the flag. In order for it to be possible to set each of the flags, certain bit segments in kk
need to be equal; this is a necessary, but not a sufficient condition. We use that to upper bound the

101

Games G0–G3

b←$ {0, 1} ; kk ←$ {0, 1}672

kkI,0 ← kk[0 : 288] ; kkR,0 ← kk[64 : 352]

kkI,1 ← kk[320 : 608] ; kkR,1 ← kk[384 : 672]

kkI ← (kkI,0, kkI,1) ; kkR ← (kkR,0, kkR,1)

b′ ←$ DRoR,IC,IC−1

; Return b′ = b

RoR(u, i,msg_key) // u ∈ {I,R}, i ∈ {0, 1}, |msg_key| = 128

(kku,0, kku,1)← kku

sk0 ← SHA-pad(msg_key ∥ kku,0)

sk1 ← SHA-pad(kku,1 ∥msg_key)
If (K[ski] ̸= ⊥) ∧ (K[ski] ̸= (u, i,msg_key)) then

(u′, i′,msg_key′)← K[ski]

If (i′ = 0) ∧ (i = 0) then
// msg_key′ ∥ kku′,0 = msg_key ∥ kku,0

// i.e. kkI,0 = kkR,0

bad0 ← true

abort(false) // G1–G3

Else if (i′ = 1) ∧ (i = 1) then
// kku′,1 ∥msg_key′ = kku,1 ∥msg_key
// i.e. kkI,1 = kkR,1

bad1 ← true

abort(false) // G2–G3

Else // i′ ̸= i

// msg_key′ ∥ kku′,0 = kku,1 ∥msg_key if (i′ = 0) ∧ (i = 1)

// kku′,1 ∥msg_key′ = msg_key ∥ kku,0 if (i′ = 1) ∧ (i = 0)

// i.e. kka,0[0 : 160] = kkb,1[128 : 288] for a, b ∈ {I,R}
bad2 ← true

abort(false) // G3

K[ski]← (u, i,msg_key)

y1 ← IC(ski, IV256)

If T[u, i,msg_key] = ⊥ then
T[u, i,msg_key]←$ {0, 1}SHACAL-2.ol

y0 ← T[u, i,msg_key] ; Return yb

IC(sk, x) // |sk| = SHACAL-2.kl, |x| = SHACAL-2.ol

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol)
π ← P[sk] ; Return π(x)

IC−1(sk, y) // |sk| = SHACAL-2.kl, |y| = SHACAL-2.ol

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol)
π ← P[sk] ; Return π−1(y)

Figure 81. Games G0–G3 for the proof of Proposition 12. The code added by expanding the related-key-
deriving functions ϕKDF and ϕSHACAL-2 in game G0 is highlighted in grey.

102

corresponding probabilities as follows, when measured over the randomness of sampling kk ←$ {0, 1}672
(here kk is implicitly parsed into kkI,0, kkI,1, kkR,0, kkR,1 as specified by the related-key-deriving
function ϕKDF):

Pr[badG0
0] ≤ Pr[kkI,0 = kkR,0] = 2−288.

Pr[badG1
1] ≤ Pr[kkI,1 = kkR,1] = 2−288.

Pr[badG2
2] ≤ Pr[∃a, b ∈ {I,R} : kka,0[0 : 160] = kkb,1[128 : 288]]

≤
∑

a,b∈{I,R}

Pr[kka,0[0 : 160] = kkb,1[128 : 288]]

= Pr[kk[0 : 160] = kk[448 : 608]]

+ Pr[kk[0 : 160] = kk[512 : 672]]

+ Pr[kk[64 : 224] = kk[448 : 608]]

+ Pr[kk[64 : 224] = kk[512 : 672]]

= 4 · 2−160

= 2−158.

We used the union bound in order to upper-bound Pr[badG2
2]. The upper bound on Pr[badG2

2] could
be significantly lowered by capturing the idea that the adversary D also needs to match both msg_key
and msg_key′ to the corresponding bits of kk. Adversary D cannot efficiently learn kk based on the
responses from its oracles; the best it could do in an attempt to set bad2 is to repeatedly try guessing
the bits of kk by supplying different values of msg_key,msg_key′ ∈ {0, 1}128.52 The upper bound
would then depend on the number of calls that D makes to its oracle RoR. We omit this analysis,
and settle for a less precise lower-bound.

Game G4 in Fig. 82 rewrites game G3 in an equivalent way. The calls to SHA-pad are expanded
according to its definition in Fig. 6. The three conditional statements that inevitably lead to abort(false)
are replaced with an immediate call to abort(false). The code of the IC oracle is expanded in place of
the single call to IC from within oracle RoR. These changes are marked in grey. We have

Pr[G4] = Pr[G3].

Game G4 also adds some code highlighted in green to its ideal cipher oracles IC and IC−1; this does
not affect the input-output behaviour of the oracles.

By now, we have determined that in game G4 each query to the RoR oracle uses a distinct block
cipher key sk (except in the trivial case when RoR is queried twice with the same input tuple). In
the ideal cipher model, this key is mapped to a random permutation, which is then stored in P[sk].
We want to show that the adversary D cannot distinguish between this permutation evaluated on
input IV256 and a uniformly random value from {0, 1}SHACAL-2.ol. The only way it could distinguish
between the two cases is if D managed to guess sk and query one of its ideal cipher oracles with sk
as input. This requires D to guess the corresponding 288-bit segment of kk that is used to build sk
inside oracle RoR: either sk[128 : 416] should be equal to one of {kkI,0, kkR,0}, or sk[0 : 288] should
be equal to one of {kkI,1, kkR,1}. We show that this is hard to achieve.

Formally, games G4 and G5 are identical until bad3 is set. We have

Pr[G4]− Pr[G5] ≤ Pr[badG5
3].

Note that kk can take a total of 2672 different values. Each query to an ideal cipher oracle IC or IC−1

either sets bad3, or silently rejects at most 4 · 2384 candidate kk values. In particular, if bad3 was not
set, then kk cannot contain sk[128 : 416] in one of the positions that correspond to kkI,0 or kkR,0,
and it cannot contain sk[0 : 288] in one of the positions that correspond to kkI,1 or kkR,1. Here we
use the fact that for any fixed 288-bit string, there are 2672−288 = 2384 different ways to choose the
remaining bits of kk. Beyond eliminating some candidate keys as per above, the ideal cipher oracles

52 Note that the 256 total bits of msg_key,msg_key′ ∈ {0, 1}128 should not always be independent. For example,
when trying to match msg_key′ ∥ kkR,0 = kkI,1 ∥msg_key, the 32-bit long bit-string kk[320 : 352] should
appear both in the prefix of msg_key′ and in the suffix of msg_key.

103

do not return any useful information about the contents of kk. So we can upper-bound the probability
of setting bad3 in game G5 after making q queries to oracles IC and IC−1 as follows:

Pr[badG5
3] ≤ q · 4 · 2

384

2672
= q · 2−286.

Finally, in game G5 the ideal cipher oracles can no longer help D learn any information about the bits
of kk, or about the corresponding random permutations. So we have

Pr[G5] =
1

2
.

Combining all of the above, we get

Pr[G0] =
∑

0≤i≤4

(Pr[Gi]− Pr[Gi+1]) + Pr[G5]

= (2−288 + 2−288 + 2−158 + 0 + q · 2−286) +
1

2

< 2−157 + q · 2−286 +
1

2
.

The inequality follows.

Games G4–G5

b←$ {0, 1} ; kk ←$ {0, 1}672

kkI,0 ← kk[0 : 288] ; kkR,0 ← kk[64 : 352]

kkI,1 ← kk[320 : 608] ; kkR,1 ← kk[384 : 672]

kkI ← (kkI,0, kkI,1) ; kkR ← (kkR,0, kkR,1)

b′ ←$ DRoR,IC,IC−1

; Return b′ = b

RoR(u, i,msg_key) // u ∈ {I,R}, i ∈ {0, 1}, |msg_key| = 128

(kku,0, kku,1)← kku

sk0 ← msg_key ∥ kku,0 ∥ 1 ∥ 031 ∥ ⟨|416|⟩64
sk1 ← kku,1 ∥msg_key ∥ 1 ∥ 031 ∥ ⟨|416|⟩64
If (K[ski] ̸= ⊥) ∧ (K[ski] ̸= (u, i,msg_key)) then abort(false)

K[ski]← (u, i,msg_key)

If P[ski] = ⊥ then P[ski]←$ P(SHACAL-2.ol)
π ← P[ski] ; y1 ← π(IV256)

If T[u, i,msg_key] = ⊥ then
T[u, i,msg_key]←$ {0, 1}SHACAL-2.ol

y0 ← T[u, i,msg_key] ; Return yb

IC(sk, x) // |sk| = SHACAL-2.kl, |x| = SHACAL-2.ol

If (sk[128 : 416] ∈ {kkI,0, kkR,0})∨
(sk[0 : 288] ∈ {kkI,1, kkR,1}) then

bad3 ← true

abort(false) // G5

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol)
π ← P[sk] ; Return π(x)

IC−1(sk, y) // |sk| = SHACAL-2.kl, |y| = SHACAL-2.ol

If (sk[128 : 416] ∈ {kkI,0, kkR,0})∨
(sk[0 : 288] ∈ {kkI,1, kkR,1}) then

bad3 ← true

abort(false) // G5

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol)
π ← P[sk] ; Return π−1(y)

Figure 82. Games G4–G5 for the proof of Proposition 12. The code highlighted in grey is functionally
equivalent to the corresponding code in G3.

104

Proposition 13. Let ϕMAC be the related-key-deriving function as defined in Fig. 24. Let the block
cipher SHACAL-2 from Section 2.2 be modelled as the ideal cipher with key length SHACAL-2.kl and
block length SHACAL-2.ol. Let D be any adversary against the HRKPRF-security of SHACAL-2 with
respect to ϕMAC. Assume that D makes a total of q queries to its ideal cipher oracles. Then the
advantage of D is upper-bounded as follows:

AdvhrkprfSHACAL-2,ϕMAC
(D) ≤ 2−255 + q · 2−254.

Proof. This proof presents a very similar (but simpler) argument compared to the one used for the
proof of Proposition 12. So we provide the games and only the core analysis here, with a minimal
amount of justification for each of the steps.

Games G0–G3

b←$ {0, 1} ; mk ←$ {0, 1}320

mkI ← mk[0 : 256]

mkR ← mk[64 : 320]

If mkI = mkR then
bad0 ← true

Return false // G1–G3

b′ ←$ DRoR,IC,IC−1

; Return b′ = b

RoR(u, p) // u ∈ {I,R}, |p| = 256

sk ← mku ∥ p
y1 ← IC(sk, IV256) // G0–G1

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol) // G2–G3

π ← P[sk] ; y1 ← π(IV256) // G2–G3

If T[u, p] = ⊥ then T[u, p]←$ {0, 1}SHACAL-2.ol

y0 ← T[u, p] ; Return yb

IC(sk, x) // |sk| = SHACAL-2.kl, |x| = SHACAL-2.ol

If sk[0 : 256] ∈ {mkI ,mkR} then
bad1 ← true

Return ⊥ // G3

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol)
π ← P[sk] ; Return π(x)

IC−1(sk, y) // |sk| = SHACAL-2.kl, |y| = SHACAL-2.ol

If sk[0 : 256] ∈ {mkI ,mkR} then
bad1 ← true

Return ⊥ // G3

If P[sk] = ⊥ then P[sk]←$ P(SHACAL-2.ol)
π ← P[sk] ; Return π−1(y)

Figure 83. Games G0–G3 for the proof of Proposition 13. The code added by expanding the related-key-
deriving function ϕMAC in game G0 is highlighted in grey. The code added for the transitions between games is
highlighted in green.

This proof uses games G0–G3 in Fig. 83. Game G0 is equivalent to game Ghrkprf
SHACAL-2,ϕMAC,D in the

ideal cipher model, so
AdvhrkprfSHACAL-2,ϕMAC

(D) = 2 · Pr[G0]− 1.

For the transition from G0 to G1 we upper-bound the probability of mkI = mkR as follows:

Pr[G0]− Pr[G1] ≤ Pr[badG0
0] ≤ Pr[mkI = mkR] = 2−256.

Game G2 differs from game G1 by expanding the code of the oracle IC in place of the corresponding
call to IC(sk, IV256) inside the RoR oracle, so both games are equivalent:

Pr[G1]− Pr[G2] = 0.

105

For the transition from G2 to G3 we upper-bound the probability that adversary D calls one of its
ideal cipher oracles IC or IC−1 with a block cipher key sk that contains mkI or mkR as its prefix:

Pr[G2]− Pr[G3] ≤ Pr[badG2
1] ≤ q · 2 · 2

256

2512
= q · 2−255.

In game G3 the ideal cipher oracles IC and IC−1 no longer work with any keys that might be used inside
oracle RoR. So the adversary D cannot distinguish between an evaluation of a random permutation
on input IV256 and a uniformly random output value from the range of such permutation. We have

Pr[G3] =
1

2
.

We now combine all of the above steps:

AdvhrkprfSHACAL-2,ϕMAC
(D) = 2 · Pr[G0]− 1

= 2 ·

 ∑
0≤i≤2

(Pr[Gi]− Pr[Gi+1]) + Pr[G3]

− 1

≤ 2 · (2−256 + 0 + q · 2−255 +
1

2
)− 1.

The inequality follows.

106

G Implementation

G.1 Code for the attack in Section 6

Assume Telegram desktop version 2.4.11.53 The experiment code (experiment.h and experiment.cpp,
also attached to the electronic version of the document) was added to Telegram/SourceFiles/core/
and called from Application::run() inside application.cpp. We use cpucycles54 to measure the
running time.
//
// experiment.cpp
// not part of Telegram codebase
//

#include "experiment.h"

#include <chrono >
#include "base/bytes.h"
#include <openssl/rand.h>
#include <iostream >
#include <fstream >
#include "cpucycles.h"

#include "mtproto/session_private.h"
#include "mtproto/details/mtproto_bound_key_creator.h"
#include "mtproto/details/mtproto_dcenter.h"
#include "mtproto/details/mtproto_dump_to_text.h"
#include "mtproto/details/mtproto_rsa_public_key.h"
#include "mtproto/session.h"
#include "mtproto/mtproto_rpc_sender.h"
#include "mtproto/mtproto_dc_options.h"
#include "mtproto/connection_abstract.h"
#include "base/openssl_help.h"
#include "base/qthelp_url.h"
#include "base/unixtime.h"
#include "zlib.h"

int _numTrials = 10000;
int _msgLength = 1024;
bool _samePacket = true;
bool _runOnInit = false;
bool _cpucycles = false;

namespace MTP {
namespace details {

constexpr auto kMaxMessageLength = 16 * 1024 * 1024;
constexpr auto kIntSize = static_cast <int >(sizeof(mtpPrime));
AuthKeyPtr _encryptionKey;
MTP:: AuthKey ::Data _authKey;
uint64 _keyId;
ConnectionPointer _connection;

// adapted from DcKeyCreator :: dhClientParamsSend
/* generate random authKey and set corresponding encryption key and id */
void generateEncryptionKey () {

auto key = bytes:: vector (256);
bytes:: set_random(key);
AuthKey :: FillData(_authKey , bytes:: make_span(key));
_encryptionKey = std:: make_shared <AuthKey >(_authKey);
_keyId = _encryptionKey ->keyId();

}

// plain copy of SessionPrivate :: ConstTimeIsDifferent
/* used for SHA checks */
[[nodiscard]] bool ConstTimeIsDifferent(

const void *a,
const void *b,
size_t size) {

auto ca = reinterpret_cast <const char*>(a);
auto cb = reinterpret_cast <const char*>(b);
volatile auto different = false;
for (const auto ce = ca + size; ca != ce; ++ca, ++cb) {

different = different | (*ca != *cb);
}
return different;

}

// copy from SerializedRequest , only MTProto version 2.0 and version 0 of transport protocol
/* generate padding size in units (1U = 4B) */
uint32 CountPaddingPrimesCount(uint32 requestSize) {

auto result = ((8 + requestSize) & 0x03)
? (4 - ((8 + requestSize) & 0x03))
: 0;

// At least 12 bytes of random padding.
if (result < 3) {

result += 4;
}

return result;
}

// next 3 methods adapted from SessionPrivate :: sendSecureRequest , only MTProto version 2.0

/* helper method to generate random plaintext w/ padding */
bytes::span preparePlaintext(uint32_t msgLength) {

Expects(msgLength >= 4 && msgLength % 4 == 0);

auto padLength = CountPaddingPrimesCount(msgLength /4) * 4;
// 24B external header = 8B auth_key_id + 16B msg_key
// 32B internal header = 8B salt + 8B session_id + 8B msg_id + 4B seq_no + 4B msg_length

53 https://github.com/telegramdesktop/tdesktop/tree/v2.4.11
54 https://www.ecrypt.eu.org/ebats/cpucycles.html

107

https://github.com/telegramdesktop/tdesktop/tree/v2.4.11
https://www.ecrypt.eu.org/ebats/cpucycles.html

auto length = 24 + 32 + msgLength + padLength;
//LOG((" Generated msgLength = %1, padLength = %2, length = %3.").arg(msgLength).arg(padLength).arg(length));

// random plaintext = internal header + message + padding
auto plaintext = bytes:: vector (32 + msgLength + padLength);
bytes:: set_random(plaintext);
return plaintext;

}

/* helper method to prepare packet from given plaintext
msgLength field will be overriden according to valid value */

mtpBuffer preparePacket(bool valid , uint32_t msgLength , bytes::span plaintext) {
int plaintextLength = plaintext.size();
Expects(plaintextLength >= 48 && plaintextLength % 16 == 0);

// msg_key = SHA -256(auth_key [96:128] || message)[8:24]

uchar encryptedSHA256 [32];
MTPint128 &msgKey (*(MTPint128 *)(encryptedSHA256 + 8));

SHA256_CTX msgKeyLargeContext;
SHA256_Init (& msgKeyLargeContext);
SHA256_Update (& msgKeyLargeContext , _encryptionKey ->partForMsgKey(false), 32); // encrypt to self
SHA256_Update (& msgKeyLargeContext , plaintext.data(), plaintext.size());
SHA256_Final(encryptedSHA256 , &msgKeyLargeContext);

if (!valid) {
msgLength = kMaxMessageLength + 1; // over the limit

}
memcpy(plaintext.data() + 28, &msgLength , 4);

auto fullSize = plaintext.size() / sizeof(mtpPrime); // should equal length /4 - 6
auto packet = _connection ->prepareSecurePacket(_encryptionKey ->keyId(), msgKey , fullSize);
const auto prefix = packet.size(); // 8 due to tcp prefix and resizing
packet.resize(prefix + fullSize);

// adapted from aesIgeEncrypt(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime), _encryptionKey , msgKey) call
MTPint256 aesKey , aesIV;
_encryptionKey ->prepareAES(msgKey , aesKey , aesIV , false); // encrypt to self
aesIgeEncryptRaw(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime),

static_cast <const void*>(& aesKey), static_cast <const void*>(&aesIV));

return packet;
}

/* generate packet with given msgLength (w/o TCP prefix) that can be processed client -side
2 cases to distinguish:
valid = msgLength check passes but SHA check fails
!valid = msgLength check doesn't pass */

mtpBuffer preparePacket(bool valid , uint32_t msgLength) {
return preparePacket(valid , msgLength , preparePlaintext(msgLength));

}

// copy of SessionPrivate :: handleReceived , only MTProto version 2.0, network connection calls commented out
/* process received packet */
void handlePacket(mtpBuffer intsBuffer) {

Expects(_encryptionKey != nullptr);

/* network connection management */
// onReceivedSome ();

/* assume packets come in one by one (usually the case) */
//while (! _connection ->received ().empty()) {
// auto intsBuffer = std::move(_connection ->received ().front());
// _connection ->received ().pop_front ();

constexpr auto kExternalHeaderIntsCount = 6U; // 2 auth_key_id , 4 msg_key
constexpr auto kEncryptedHeaderIntsCount = 8U; // 2 salt , 2 session , 2 msg_id , 1 seq_no , 1 length
constexpr auto kMinimalEncryptedIntsCount = kEncryptedHeaderIntsCount + 4U; // + 1 data + 3 padding
constexpr auto kMinimalIntsCount = kExternalHeaderIntsCount + kMinimalEncryptedIntsCount;
auto intsCount = uint32(intsBuffer.size());
auto ints = intsBuffer.constData ();
if ((intsCount < kMinimalIntsCount) || (intsCount > kMaxMessageLength / kIntSize)) {

LOG(("TCP Error: bad message received , len %1").arg(intsCount * kIntSize));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount * kIntSize).str()));

// return restart ();
return;

}
if (_keyId != *(uint64 *)ints) {

LOG(("TCP Error: bad auth_key_id %1 instead of %2 received").arg(_keyId).arg(*(uint64 *)ints));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount * kIntSize).str()));

// return restart ();
return;

}

auto encryptedInts = ints + kExternalHeaderIntsCount;
auto encryptedIntsCount = (intsCount - kExternalHeaderIntsCount) & ~0x03U;
auto encryptedBytesCount = encryptedIntsCount * kIntSize;
auto decryptedBuffer = QByteArray(encryptedBytesCount , Qt:: Uninitialized);
auto msgKey = *(MTPint128 *)(ints + 2);

// version 2.0 only
aesIgeDecrypt(encryptedInts , decryptedBuffer.data(), encryptedBytesCount , _encryptionKey , msgKey);

auto decryptedInts = reinterpret_cast <const mtpPrime*>(decryptedBuffer.constData ());
auto serverSalt = *(uint64 *)&decryptedInts [0];
auto session = *(uint64 *)&decryptedInts [2];
auto msgId = *(uint64 *)&decryptedInts [4];
auto seqNo = *(uint32 *)&decryptedInts [6];
auto needAck = ((seqNo & 0x01) != 0);

auto messageLength = *(uint32 *)&decryptedInts [7];
if (messageLength > kMaxMessageLength) {

LOG(("TCP Error: bad messageLength %1").arg(messageLength));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(ints , intsCount * kIntSize).str()));

// return restart ();
return;

}
auto fullDataLength = kEncryptedHeaderIntsCount * kIntSize + messageLength; // Without padding.

108

// Can underflow , but it is an unsigned type , so we just check the range later.
auto paddingSize = static_cast <uint32 >(encryptedBytesCount) - static_cast <uint32 >(fullDataLength);

constexpr auto kMinPaddingSize = 12U;
constexpr auto kMaxPaddingSize = 1024U;
auto badMessageLength = (paddingSize < kMinPaddingSize || paddingSize > kMaxPaddingSize);

std::array <uchar , 32> sha256Buffer = { { 0 } };

SHA256_CTX msgKeyLargeContext;
SHA256_Init (& msgKeyLargeContext);
SHA256_Update (& msgKeyLargeContext , _encryptionKey ->partForMsgKey(false), 32);
SHA256_Update (& msgKeyLargeContext , decryptedInts , encryptedBytesCount);
SHA256_Final(sha256Buffer.data(), &msgKeyLargeContext);

constexpr auto kMsgKeyShift = 8U;
if (ConstTimeIsDifferent (&msgKey , sha256Buffer.data() + kMsgKeyShift , sizeof(msgKey))) {

LOG(("TCP Error: bad SHA256 hash after aesDecrypt in message"));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(encryptedInts , encryptedBytesCount).str()));

// return restart ();
return;

}

if (badMessageLength || (messageLength & 0x03)) {
LOG(("TCP Error: bad msg_len received %1, data size: %2").arg(messageLength).arg(encryptedBytesCount));
TCP_LOG (("TCP Error: bad message %1").arg(Logs::mb(encryptedInts , encryptedBytesCount).str()));

// return restart ();
return;

}

// rest of code cut , should never reach here
LOG(("EXP: Something went wrong."));

}

}
} // namespace MTP:: details

/* write the timing data to log file
settings -> typing "viewlogs" shows the folder */

void writeToFile(std:: string createTime , std:: string msg) {
std:: ofstream timeFile;
std:: string c_string;
if (getCpucycles ()) {

c_string = "_c";
} else {

c_string = "";
}
std:: string path = cWorkingDir ().toStdString () + createTime + "_" + std:: to_string(_msgLength)

+ "_" + std:: to_string(_samePacket) + "_" + std:: to_string(_numTrials) + c_string + ".csv";
timeFile.open(path.data(), std:: ios_base ::app);
timeFile << msg.data();
timeFile.close();

}

/* set experiment parameters */
void setNumTrials(int numTrials) {

_numTrials = numTrials;
}

void setMsgLength(int msgLength) {
_msgLength = msgLength;

}

void setSamePacket(bool samePacket) {
_samePacket = samePacket;

}

void setRunOnInit(bool runOnInit) {
_runOnInit = runOnInit;

}

void setCpucycles(bool cpucycles) {
_cpucycles = cpucycles;

}

int getNumTrials () {
return _numTrials;

}

int getMsgLength () {
return _msgLength;

}

bool getSamePacket () {
return _samePacket;

}

bool getRunOnInit () {
return _runOnInit;

}

bool getCpucycles () {
return _cpucycles;

}

/* generate a number of packets to process client -side
and time processing to first error (in microseconds) */

std:: string doExperiment () {
const auto createTime = QDateTime :: currentDateTime ();
auto timeFile = createTime.toString("yyyy -MM-dd_hh -mm-ss-zzz");
LOG(("EXP: %1: Do %2 trials with message length %3B.").arg(timeFile).arg(_numTrials).arg(_msgLength));

MTP:: details :: generateEncryptionKey ();
bytes::span plaintext;
mtpBuffer packet;

if (_samePacket) {
//LOG(("EXP: Using a single plaintext ."));
plaintext = MTP:: details :: preparePlaintext(_msgLength);

}

109

for (int i = 0; i < 2 * _numTrials; i++) {
bool valid = i < _numTrials;
if (_samePacket) {

if (i == 0 || i == _numTrials) {
packet = MTP:: details :: preparePacket(valid , _msgLength , plaintext);

}
} else {

packet = MTP:: details :: preparePacket(valid , _msgLength);
}

// shuffling data around between the two methods
auto bufferSize = packet.size() - 2; // w/o tcp prefix
auto buffer = mtpBuffer(bufferSize);
memcpy(buffer.data(), packet.data() + 2, bufferSize * sizeof(mtpPrime));

std:: string diff_str;
if (getCpucycles ()) {

auto t1 = cpucycles ();
MTP:: details :: handlePacket(buffer);
auto t2 = cpucycles ();
auto diff = t2 - t1;
diff_str = std:: to_string(diff);

} else {
auto t1 = std:: chrono :: steady_clock ::now();
MTP:: details :: handlePacket(buffer);
auto t2 = std:: chrono :: steady_clock ::now();
std:: chrono ::duration <double , std::micro > diff = t2 - t1;
diff_str = std:: to_string(diff.count());

}

writeToFile(timeFile.toStdString (), std:: to_string(valid)+","+diff_str+"\n");
}

if (getRunOnInit ()) {
exit (0);

}

return timeFile.toStdString ();
}

G.2 Code for the attack in Section 7

#!/usr/bin/env sage
"""
"""
from sage.all import ZZ, matrix , set_random_seed , log , pi, e, sqrt , RR, ceil
from fpylll import IntegerMatrix , BKZ , FPLLL
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

"""
Configuration
"""

header_len = 32 # 0xec5ac983
N_len = 16 * 8 + 8 # length field
p_len = 8 * 8 + 8 # length field
q_len = 8 * 8 + 8 # length field
nonce_len = 128
server_nonce_len = 128
new_nonce_len = 256
sha1_len = 20 * 8
total_len = 255 * 8
pad_len = total_len - (

sha1_len + header_len + N_len + p_len + q_len + nonce_len + server_nonce_len + new_nonce_len
)
leak_bits = 32
leak_pos = total_len - sha1_len - leak_bits

https :// github.com/DrKLO/Telegram/blob/f41b228a111e304c2505a86c7cc8b448eaecaf6f/TMessagesProj/jni/tgnet/Handshake.cpp#L398
import rsa ## pip install rsa
for pubkey in pubkeys:
N = ZZ(rsa.PublicKey.load_pkcs1(pubkey).n)
print(hex(N))

N_ = ZZ(
"0xaeec36c8ffc109cb099624685b9781"
"5415657 bd76d8c9c3e398103d7ad16c9"
"bba6f525ed0412d7ae2c2de2b44e77d7"
"2cbf4b7438709a4e646a05c43427c7f1"
"84 debf72947519680e651500890c6832"
"796 dd11f772c25ff8f576755afe055b0"
"a3752c696eb7d8da0d8be1faf38c9bdd"
"97 ce0a77d3916230c4032167100edd0f"
"9e7a3a9b602d04367b689536af0d64b6"
"13 ccba7962939d3b57682beb6dae5b60"
"8130 b2e52aca78ba023cf6ce806b1dc4"
"9c72cf928a7199d22e3d7ac84e47bc94"
"27 d0236945d10dbd15177bab413fbf0e"
"dfda09f014c7a7da088dde9759702ca7"
"60 af2b8e4e97cc055c617bd74c3d9700"
"8635 b98dc4d621b4891da9fb04730479"
"27"

)

N_ = ZZ(
"0xbdf2c77d81f6afd47bd30f29ac76e5"
"5adfe70e487e5e48297e5a9055c9c07d"
"2b93b4ed3994d3eca5098bf18d978d54"
"f8b7c713eb10247607e69af9ef44f38e"
"28 f8b439f257a11572945cc0406fe3f3"
"7bb92b79112db69eedf2dc71584a6616"
"38 ea5becb9e23585074b80d57d9f5710"
"dd30d2da940e0ada2f1b878397dc1a72"
"b5ce2531b6f7dd158e09c828d03450ca"
"0ff8a174deacebcaa22dde84ef66ad37"
"0f259d18af806638012da0ca4a70baa8"
"3d9c158f3552bc9158e69bf332a45809"
"e1c36905a5caa12348dd57941a482131"

110

"be7b2355a5f4635374f3bd3ddf5ff925"
"bf4809ee27c1e67d9120c5fe08a9de45"
"8b1b4a3c5d0a428437f2beca81f4e2d5"
"ff"

)

N_ = ZZ(
"0xb3f762b739be98f343eb1921cf0148"
"cfa27ff7af02b6471213fed9daa00989"
"76 e667750324f1abcea4c31e43b7d11f"
"1579133 f2b3d9fe27474e462058884e5"
"e1b123be9cbbc6a443b2925c08520e73"
"25 e6f1a6d50e117eb61ea49d2534c8bb"
"4d2ae4153fabe832b9edf4c5755fdd8b"
"19940 b81d1d96cf433d19e6a22968a85"
"dc80f0312f596bd2530c1cfb28b5fe01"
"9ac9bc25cd9c2a5d8a0f3a1c0c79bcca"
"524 d315b5e21b5c26b46babe3d75d06d"
"1cd33329ec782a0f22891ed1db42a1d6"
"c0dea431428bc4d7aabdcf3e0eb6fda4"
"e23eb7733e7727e9a1915580796c5518"
"8d2596d2665ad1182ba7abf15aaa5a8b"
"779 ea996317a20ae044b820bff35b6e8"
"a1"

)

N_ = ZZ(
"0xbe6a71558ee577ff03023cfa17aab4e"
"6c86383cff8a7ad38edb9fafe6f323f2"
"d5106cbc8cafb83b869cffd1ccf121cd"
"743 d509e589e68765c96601e813dc5b9"
"dfc4be415c7a6526132d0035ca33d6d6"
"075 d4f535122a1cdfe017041f1088d14"
"19 f65c8e5490ee613e16dbf662698c0f"
"54870 f0475fa893fc41eb55b08ff1ac2"
"11 bc045ded31be27d12c96d8d3cfc6a7"
"ae8aa50bf2ee0f30ed507cc2581e3dec"
"56 de94f5dc0a7abee0be990b893f2887"
"bd2c6310a1e0a9e3e38bd34fded25415"
"08 dc102a9c9b4c95effd9dd2dfe96c29"
"be647d6c69d66ca500843cfaed6e4401"
"96 f1dbe0e2e22163c61ca48c79116fa7"
"7216726749 a976a1c4b0944b5121e8c0"
"1"

)

def sample_c(stage =1):
"""
Sample a fresh challenge ciphertext and return private and public part.
"""
header = 0xEC5AC983
N = ZZ.random_element (2 ** N_len)
p = ZZ.random_element (2 ** p_len)
q = ZZ.random_element (2 ** q_len)
nonce = ZZ.random_element (2 ** nonce_len)
server_nonce = ZZ.random_element (2 ** server_nonce_len)
new_nonce = ZZ.random_element (2 ** new_nonce_len)
pad = ZZ.random_element (2 ** pad_len)
sha1 = ZZ.random_element (2 ** sha1_len)

x = new_nonce * 2 ** pad_len + pad
x_len = new_nonce_len + pad_len
y = sha1
y_len = sha1_len

gamma , gamma_len = 0, 0
for v, s in (

(server_nonce , server_nonce_len),
(nonce , nonce_len),
(q, q_len),
(p, p_len),
(N, N_len),
(header , header_len),

):
gamma += v * 2 ** gamma_len
gamma_len += s

if stage == 2:
gamma += 2 ** (total_len - y_len - x_len) * y
y = 0

c = 2 ** (total_len - y_len) * y + 2 ** x_len * gamma + x

return c, gamma

def leak(c, s_len):
"""
Simulate RSA decryption leak
"""
s = ZZ.random_element (2 ** s_len)
d = s * c % N_
d = (d // 2 ** leak_pos) % 2 ** leak_bits
return s, d

def instancef(s_len , nleaks =(160 // leak_bits) + 1, stage =1):
c, gamma = sample_c(stage=stage)
leaks = []

for _ in range(nleaks):
s, d = leak(c, s_len=s_len)
leaks.append ((s, d))

return c, (gamma , tuple(leaks))

def latticef(gamma , leaks , stage =1):
m = len(leaks)
d = 2 * m + 2
A = matrix(ZZ, d, d)
if stage == 1:

111

A[0, 0] = 2 ** (leak_pos - sha1_len)
else:

A[0, 0] = 2 ** (leak_pos - new_nonce_len)
A[-1, -1] = 2 ** (leak_pos - 2)
for i, (si, li) in enumerate(leaks):

if stage == 1:
A[0, m + i + 1] = (si * 2 ** (total_len - sha1_len)) % N_ # noqa: E201

else:
A[0, m + i + 1] = (si * 2 ** pad_len) % N_ # noqa: E201

A[i + 1, i + 1] = 2 ** (2 * leak_pos + leak_bits - ceil(log(N_, 2))) # noqa: E201
A[i + 1, m + i + 1] = 2 ** (leak_pos + leak_bits) # noqa: E201
A[m + i + 1, m + i + 1] = N_
A[-1, m + i + 1] = (

si * 2 ** (new_nonce_len + pad_len) * gamma % N_ # noqa: E201
- 2 ** leak_pos * li
- 2 ** (leak_pos - 1)

) % N_ # balance mod 2** leak_pos

return A

def cut(A, log_factor):
for i in range(A.nrows()):

for j in range(A.ncols()):
A[i, j] = A[i, j] // 2 ** log_factor

return A

def estimate(gamma , leaks , stage =1):
logN_ = log(N_, 2)
m = len(leaks)
d = 2 * m + 2
if stage == 1:

log_vol = (
(leak_pos - sha1_len)
+ m * (2 * leak_pos + leak_bits - logN_)
+ m * logN_
+ (leak_pos - 2)

)
else:

log_vol = (
(leak_pos - new_nonce_len)
+ m * (2 * leak_pos + leak_bits - logN_)
+ m * logN_
+ (leak_pos - 2)

)

gh = RR(log(sqrt(d / 2 / pi / e), 2) + (log_vol / d))
nm = RR(log(sqrt(d), 2) + leak_pos - 1)

return (gh, nm, gh - nm)

def extract_y(c):
return c // 2 ** (total_len - sha1_len)

def extract_x(c):
return (c // 2 ** (pad_len)) % 2 ** new_nonce_len

def benchmark(seed , nleaks , block_size =2, stage =1):
set_random_seed(seed)

if stage == 1:
s_len = 256

else:
s_len = leak_pos - pad_len

print(s_len)

c, (gamma , leaks) = instancef(s_len=s_len , nleaks=nleaks , stage=stage)
gh, nm, df = estimate(gamma , leaks , stage=stage)
A = latticef(gamma , leaks , stage=stage)

if stage == 1:
log_factor = leak_pos - sha1_len - 64
A = cut(A, log_factor)

else:
log_factor = leak_pos - new_nonce_len - 64
A = cut(A, log_factor)

scale = A[0, 0]
target = A[-1, -1]

L = A.LLL()
if block_size > 2:

FPLLL.set_random_seed(ZZ.random_element (2 ** 64))
L = IntegerMatrix.from_matrix(L)
BKZ2(L)(BKZ.EasyParam(block_size , flags=BKZ.VERBOSE))
L = L.to_matrix(matrix(A.nrows(), A.ncols()))

print(
(

"nrows: {nrows:3d}, lf: {lf:3d}, tv: {tv:4d}, GH: 2^{gh:.1f}, E[|v|]: 2^{nm:.1f}, "
"|v|: 2^{rs:.1f}, GH/E[|v|]: 2^{df:.1f}"

).format(
tv=log(target , 2),
gh=float(gh),
nm=float(nm),
df=float(df),
lf=log_factor ,
nrows=A.nrows (),
rs=float(log_factor + log(L[0]. norm(), 2)),

)
)

if stage == 1:
extract = extract_y

else:
extract = extract_x

for i in range(L.nrows()):
print(hex(abs(L[i][-1])), hex(abs(target)), hex(abs(L[i][0] // scale)), hex(extract_y(c)))

112

if abs(L[i][-1]) == target:
return hex(abs(L[i][0] // scale)), hex(extract(c)), L

print("Not found")
return L[0][0] // scale , extract(c), L

Local Variables:
conda -project -env -path: "sagemath"
fill -column: 100
End:

113

	Four Attacks and a Proof for Telegram
	Introduction
	Contributions
	Disclosure

	Preliminaries
	Notational conventions
	Standard definitions

	Bidirectional channels
	Our formal model in the context of prior work
	Syntax of channels
	Support transcripts and functions
	Correctness and security of channels
	Message encoding schemes

	Modelling MTProto 2.0
	Telegram description
	Attacks against MTProto metadata validation
	Modelling differences
	MTProto-based channel

	Formal security analysis
	Security requirements on standard primitives
	Novel assumptions about SHACAL-2
	Security requirements on message encoding
	Correctness of MTP-CH
	IND-security of MTP-CH
	INT-security of MTP-CH
	Instantiation and interpretation

	Timing side-channel attack
	Manipulating IGE
	Leaky length field
	Practical experiments

	Attacking the key exchange
	Recovering the salt
	Recovering the session id
	Breaking server authentication

	Discussion
	Correctness-style properties of a support function
	Combined security of bidirectional channels
	Comparison to the robust channel framework of FGJ20
	Our definitions of unidirectional correctness and security
	The robust channel framework of FGJ20
	Relations between our framework and the framework of FGJ20

	Message encoding scheme of MTProto
	Proofs for the underlying MTProto primitives
	OTWIND of MTP-HASH
	RKPRF of MTP-KDF
	UPRKPRF of MTP-MAC
	OTIND$ of IGE
	EINT of MTP-ME with respect to SUPP
	UNPRED of MTP-SE and MTP-ME

	Concrete security of the novel SHA-256 assumptions in the ICM
	Implementation
	Code for the attack in Section 6
	Code for the attack in Section 7

//
// experiment.h
// not part of Telegram codebase
//

#ifndef experiment_h
#define experiment_h

void writeToFile(char* createTime, char* msg);
void setNumTrials(int numTrials);
void setMsgLength(int msgLength);
void setSamePacket(bool samePacket);
void setRunOnInit(bool runOnInit);
void setCpucycles(bool setCpucycles);
int getNumTrials();
int getMsgLength();
bool getSamePacket();
bool getRunOnInit();
bool getCpucycles();
std::string doExperiment();

namespace MTP {
namespace details {

void generateEncryptionKey();
bytes::span preparePlaintext(bool valid, uint32_t length);
mtpBuffer preparePacket(bool valid, uint32_t length, bytes::span plaintext);
mtpBuffer preparePacket(bool valid, uint32_t length);
void handlePacket(mtpBuffer buffer);

}}

#endif /* experiment_h */

experiment.cpp
//

// experiment.cpp

// not part of Telegram codebase

//

#include "experiment.h"

#include <chrono>

#include "base/bytes.h"

#include <openssl/rand.h>

#include <iostream>

#include <fstream>

#include "cpucycles.h"

#include "mtproto/session_private.h"

#include "mtproto/details/mtproto_bound_key_creator.h"

#include "mtproto/details/mtproto_dcenter.h"

#include "mtproto/details/mtproto_dump_to_text.h"

#include "mtproto/details/mtproto_rsa_public_key.h"

#include "mtproto/session.h"

#include "mtproto/mtproto_rpc_sender.h"

#include "mtproto/mtproto_dc_options.h"

#include "mtproto/connection_abstract.h"

#include "base/openssl_help.h"

#include "base/qthelp_url.h"

#include "base/unixtime.h"

#include "zlib.h"

int _numTrials = 10000;

int _msgLength = 1024;

bool _samePacket = true;

bool _runOnInit = false;

bool _cpucycles = false;

namespace MTP {

namespace details {

constexpr auto kMaxMessageLength = 16 * 1024 * 1024;

constexpr auto kIntSize = static_cast<int>(sizeof(mtpPrime));

AuthKeyPtr _encryptionKey;

MTP::AuthKey::Data _authKey;

uint64 _keyId;

ConnectionPointer _connection;

// adapted from DcKeyCreator::dhClientParamsSend

/* generate random authKey and set corresponding encryption key and id */

void generateEncryptionKey() {

 auto key = bytes::vector(256);

 bytes::set_random(key);

 AuthKey::FillData(_authKey, bytes::make_span(key));

 _encryptionKey = std::make_shared<AuthKey>(_authKey);

 _keyId = _encryptionKey->keyId();

}

// plain copy of SessionPrivate::ConstTimeIsDifferent

/* used for SHA checks */

[[nodiscard]] bool ConstTimeIsDifferent(

 const void *a,

 const void *b,

 size_t size) {

 auto ca = reinterpret_cast<const char*>(a);

 auto cb = reinterpret_cast<const char*>(b);

 volatile auto different = false;

 for (const auto ce = ca + size; ca != ce; ++ca, ++cb) {

 different = different | (*ca != *cb);

 }

 return different;

}

// copy from SerializedRequest, only MTProto version 2.0 and version 0 of transport protocol

/* generate padding size in units (1U = 4B) */

uint32 CountPaddingPrimesCount(uint32 requestSize) {

 auto result = ((8 + requestSize) & 0x03)

 ? (4 - ((8 + requestSize) & 0x03))

 : 0;

 // At least 12 bytes of random padding.

 if (result < 3) {

 result += 4;

 }

 return result;

}

// next 3 methods adapted from SessionPrivate::sendSecureRequest, only MTProto version 2.0

/* helper method to generate random plaintext w/ padding */

bytes::span preparePlaintext(uint32_t msgLength) {

 Expects(msgLength >= 4 && msgLength % 4 == 0);

 auto padLength = CountPaddingPrimesCount(msgLength/4) * 4;

 // 24B external header = 8B auth_key_id + 16B msg_key

 // 32B internal header = 8B salt + 8B session_id + 8B msg_id + 4B seq_no + 4B msg_length

 auto length = 24 + 32 + msgLength + padLength;

 //LOG(("Generated msgLength = %1, padLength = %2, length = %3.").arg(msgLength).arg(padLength).arg(length));

 // random plaintext = internal header + message + padding

 auto plaintext = bytes::vector(32 + msgLength + padLength);

 bytes::set_random(plaintext);

 return plaintext;

}

/* helper method to prepare packet from given plaintext

 msgLength field will be overriden according to valid value */

mtpBuffer preparePacket(bool valid, uint32_t msgLength, bytes::span plaintext) {

 int plaintextLength = plaintext.size();

 Expects(plaintextLength >= 48 && plaintextLength % 16 == 0);

 // msg_key = SHA-256(auth_key[96:128] || message)[8:24]

 uchar encryptedSHA256[32];

 MTPint128 &msgKey(*(MTPint128*)(encryptedSHA256 + 8));

 SHA256_CTX msgKeyLargeContext;

 SHA256_Init(&msgKeyLargeContext);

 SHA256_Update(&msgKeyLargeContext, _encryptionKey->partForMsgKey(false), 32); // encrypt to self

 SHA256_Update(&msgKeyLargeContext, plaintext.data(), plaintext.size());

 SHA256_Final(encryptedSHA256, &msgKeyLargeContext);

 if (!valid) {

 msgLength = kMaxMessageLength + 1; // over the limit

 }

 memcpy(plaintext.data() + 28, &msgLength, 4);

 auto fullSize = plaintext.size() / sizeof(mtpPrime); // should equal length/4 - 6

 auto packet = _connection->prepareSecurePacket(_encryptionKey->keyId(), msgKey, fullSize);

 const auto prefix = packet.size(); // 8 due to tcp prefix and resizing

 packet.resize(prefix + fullSize);

 // adapted from aesIgeEncrypt(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime), _encryptionKey, msgKey) call

 MTPint256 aesKey, aesIV;

 _encryptionKey->prepareAES(msgKey, aesKey, aesIV, false); // encrypt to self

 aesIgeEncryptRaw(plaintext.data(), &packet[prefix], fullSize * sizeof(mtpPrime),

 static_cast<const void*>(&aesKey), static_cast<const void*>(&aesIV));

 return packet;

}

/* generate packet with given msgLength (w/o TCP prefix) that can be processed client-side

 2 cases to distinguish:

 valid = msgLength check passes but SHA check fails

 !valid = msgLength check doesn't pass */

mtpBuffer preparePacket(bool valid, uint32_t msgLength) {

 return preparePacket(valid, msgLength, preparePlaintext(msgLength));

}

// copy of SessionPrivate::handleReceived, only MTProto version 2.0, network connection calls commented out

/* process received packet */

void handlePacket(mtpBuffer intsBuffer) {

 Expects(_encryptionKey != nullptr);

 /* network connection management */

 //onReceivedSome();

 /* assume packets come in one by one (usually the case) */

 //while (!_connection->received().empty()) {

 // auto intsBuffer = std::move(_connection->received().front());

 // _connection->received().pop_front();

 constexpr auto kExternalHeaderIntsCount = 6U; // 2 auth_key_id, 4 msg_key

 constexpr auto kEncryptedHeaderIntsCount = 8U; // 2 salt, 2 session, 2 msg_id, 1 seq_no, 1 length

 constexpr auto kMinimalEncryptedIntsCount = kEncryptedHeaderIntsCount + 4U; // + 1 data + 3 padding

 constexpr auto kMinimalIntsCount = kExternalHeaderIntsCount + kMinimalEncryptedIntsCount;

 auto intsCount = uint32(intsBuffer.size());

 auto ints = intsBuffer.constData();

 if ((intsCount < kMinimalIntsCount) || (intsCount > kMaxMessageLength / kIntSize)) {

 LOG(("TCP Error: bad message received, len %1").arg(intsCount * kIntSize));

 TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));

 // return restart();

 return;

 }

 if (_keyId != *(uint64*)ints) {

 LOG(("TCP Error: bad auth_key_id %1 instead of %2 received").arg(_keyId).arg(*(uint64*)ints));

 TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));

 // return restart();

 return;

 }

 auto encryptedInts = ints + kExternalHeaderIntsCount;

 auto encryptedIntsCount = (intsCount - kExternalHeaderIntsCount) & ~0x03U;

 auto encryptedBytesCount = encryptedIntsCount * kIntSize;

 auto decryptedBuffer = QByteArray(encryptedBytesCount, Qt::Uninitialized);

 auto msgKey = *(MTPint128*)(ints + 2);

 // version 2.0 only

 aesIgeDecrypt(encryptedInts, decryptedBuffer.data(), encryptedBytesCount, _encryptionKey, msgKey);

 auto decryptedInts = reinterpret_cast<const mtpPrime*>(decryptedBuffer.constData());

 auto serverSalt = *(uint64*)&decryptedInts[0];

 auto session = *(uint64*)&decryptedInts[2];

 auto msgId = *(uint64*)&decryptedInts[4];

 auto seqNo = *(uint32*)&decryptedInts[6];

 auto needAck = ((seqNo & 0x01) != 0);

 auto messageLength = *(uint32*)&decryptedInts[7];

 if (messageLength > kMaxMessageLength) {

 LOG(("TCP Error: bad messageLength %1").arg(messageLength));

 TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(ints, intsCount * kIntSize).str()));

 // return restart();

 return;

 }

 auto fullDataLength = kEncryptedHeaderIntsCount * kIntSize + messageLength; // Without padding.

 // Can underflow, but it is an unsigned type, so we just check the range later.

 auto paddingSize = static_cast<uint32>(encryptedBytesCount) - static_cast<uint32>(fullDataLength);

 constexpr auto kMinPaddingSize = 12U;

 constexpr auto kMaxPaddingSize = 1024U;

 auto badMessageLength = (paddingSize < kMinPaddingSize || paddingSize > kMaxPaddingSize);

 std::array<uchar, 32> sha256Buffer = { { 0 } };

 SHA256_CTX msgKeyLargeContext;

 SHA256_Init(&msgKeyLargeContext);

 SHA256_Update(&msgKeyLargeContext, _encryptionKey->partForMsgKey(false), 32);

 SHA256_Update(&msgKeyLargeContext, decryptedInts, encryptedBytesCount);

 SHA256_Final(sha256Buffer.data(), &msgKeyLargeContext);

 constexpr auto kMsgKeyShift = 8U;

 if (ConstTimeIsDifferent(&msgKey, sha256Buffer.data() + kMsgKeyShift, sizeof(msgKey))) {

 LOG(("TCP Error: bad SHA256 hash after aesDecrypt in message"));

 TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(encryptedInts, encryptedBytesCount).str()));

 // return restart();

 return;

 }

 if (badMessageLength || (messageLength & 0x03)) {

 LOG(("TCP Error: bad msg_len received %1, data size: %2").arg(messageLength).arg(encryptedBytesCount));

 TCP_LOG(("TCP Error: bad message %1").arg(Logs::mb(encryptedInts, encryptedBytesCount).str()));

 // return restart();

 return;

 }

 // rest of code cut, should never reach here

 LOG(("EXP: Something went wrong."));

}

}

} // namespace MTP::details

/* write the timing data to log file

 settings -> typing "viewlogs" shows the folder */

void writeToFile(std::string createTime, std::string msg) {

 std::ofstream timeFile;

 std::string c_string;

 if (getCpucycles()) {

 c_string = "_c";

 } else {

 c_string = "";

 }

 std::string path = cWorkingDir().toStdString() + createTime + "_" + std::to_string(_msgLength)

 + "_" + std::to_string(_samePacket) + "_" + std::to_string(_numTrials) + c_string + ".csv";

 timeFile.open(path.data(), std::ios_base::app);

 timeFile << msg.data();

 timeFile.close();

}

/* set experiment parameters */

void setNumTrials(int numTrials) {

 _numTrials = numTrials;

}

void setMsgLength(int msgLength) {

 _msgLength = msgLength;

}

void setSamePacket(bool samePacket) {

 _samePacket = samePacket;

}

void setRunOnInit(bool runOnInit) {

 _runOnInit = runOnInit;

}

void setCpucycles(bool cpucycles) {

 _cpucycles = cpucycles;

}

int getNumTrials() {

 return _numTrials;

}

int getMsgLength() {

 return _msgLength;

}

bool getSamePacket() {

 return _samePacket;

}

bool getRunOnInit() {

 return _runOnInit;

}

bool getCpucycles() {

 return _cpucycles;

}

/* generate a number of packets to process client-side

 and time processing to first error (in microseconds) */

std::string doExperiment() {

 const auto createTime = QDateTime::currentDateTime();

 auto timeFile = createTime.toString("yyyy-MM-dd_hh-mm-ss-zzz");

 LOG(("EXP: %1: Do %2 trials with message length %3B.").arg(timeFile).arg(_numTrials).arg(_msgLength));

 MTP::details::generateEncryptionKey();

 bytes::span plaintext;

 mtpBuffer packet;

 if (_samePacket) {

 //LOG(("EXP: Using a single plaintext."));

 plaintext = MTP::details::preparePlaintext(_msgLength);

 }

 for (int i = 0; i < 2 * _numTrials; i++) {

 bool valid = i < _numTrials;

 if (_samePacket) {

 if (i == 0 || i == _numTrials) {

 packet = MTP::details::preparePacket(valid, _msgLength, plaintext);

 }

 } else {

 packet = MTP::details::preparePacket(valid, _msgLength);

 }

 // shuffling data around between the two methods

 auto bufferSize = packet.size() - 2; // w/o tcp prefix

 auto buffer = mtpBuffer(bufferSize);

 memcpy(buffer.data(), packet.data() + 2, bufferSize * sizeof(mtpPrime));

 std::string diff_str;

 if (getCpucycles()) {

 auto t1 = cpucycles();

 MTP::details::handlePacket(buffer);

 auto t2 = cpucycles();

 auto diff = t2 - t1;

 diff_str = std::to_string(diff);

 } else {

 auto t1 = std::chrono::steady_clock::now();

 MTP::details::handlePacket(buffer);

 auto t2 = std::chrono::steady_clock::now();

 std::chrono::duration<double, std::micro> diff = t2 - t1;

 diff_str = std::to_string(diff.count());

 }

 writeToFile(timeFile.toStdString(), std::to_string(valid)+","+diff_str+"\n");

 }

 if (getRunOnInit()) {

 exit(0);

 }

 return timeFile.toStdString();

}

application.cpp
/*

This file is part of Telegram Desktop,

the official desktop application for the Telegram messaging service.

For license and copyright information please follow this link:

https://github.com/telegramdesktop/tdesktop/blob/master/LEGAL

*/

#include "core/application.h"

#include "data/data_photo.h"

#include "data/data_document.h"

#include "data/data_session.h"

#include "data/data_user.h"

#include "base/timer.h"

#include "base/concurrent_timer.h"

#include "base/unixtime.h"

#include "core/update_checker.h"

#include "core/shortcuts.h"

#include "core/sandbox.h"

#include "core/local_url_handlers.h"

#include "core/launcher.h"

#include "core/ui_integration.h"

#include "core/core_settings.h"

#include "chat_helpers/emoji_keywords.h"

#include "chat_helpers/stickers_emoji_image_loader.h"

#include "base/platform/base_platform_info.h"

#include "base/platform/base_platform_last_input.h"

#include "platform/platform_specific.h"

#include "mainwindow.h"

#include "dialogs/dialogs_entry.h"

#include "history/history.h"

#include "apiwrap.h"

#include "api/api_updates.h"

#include "calls/calls_instance.h"

#include "lang/lang_file_parser.h"

#include "lang/lang_translator.h"

#include "lang/lang_cloud_manager.h"

#include "lang/lang_hardcoded.h"

#include "lang/lang_instance.h"

#include "mainwidget.h"

#include "core/file_utilities.h"

#include "main/main_account.h"

#include "main/main_domain.h"

#include "main/main_session.h"

#include "media/view/media_view_overlay_widget.h"

#include "mtproto/mtproto_dc_options.h"

#include "mtproto/mtproto_config.h"

#include "mtproto/mtp_instance.h"

#include "media/audio/media_audio.h"

#include "media/audio/media_audio_track.h"

#include "media/player/media_player_instance.h"

#include "media/player/media_player_float.h"

#include "media/clip/media_clip_reader.h" // For Media::Clip::Finish().

#include "window/notifications_manager.h"

#include "window/themes/window_theme.h"

#include "window/window_lock_widgets.h"

#include "history/history_location_manager.h"

#include "ui/widgets/tooltip.h"

#include "ui/image/image.h"

#include "ui/text/text_options.h"

#include "ui/emoji_config.h"

#include "ui/effects/animations.h"

#include "storage/serialize_common.h"

#include "storage/storage_domain.h"

#include "storage/storage_databases.h"

#include "storage/localstorage.h"

#include "export/export_manager.h"

#include "window/window_session_controller.h"

#include "window/window_controller.h"

#include "base/qthelp_regex.h"

#include "base/qthelp_url.h"

#include "boxes/connection_box.h"

#include "boxes/confirm_phone_box.h"

#include "boxes/confirm_box.h"

#include "boxes/share_box.h"

#include "facades.h"

#include "app.h"

#include <QtWidgets/QDesktopWidget>

#include <QtCore/QMimeDatabase>

#include <QtGui/QGuiApplication>

#include <QtGui/QScreen>

#include "core/experiment.h" // EXP

namespace Core {

namespace {

constexpr auto kQuitPreventTimeoutMs = crl::time(1500);

constexpr auto kAutoLockTimeoutLateMs = crl::time(3000);

constexpr auto kClearEmojiImageSourceTimeout = 10 * crl::time(1000);

} // namespace

Application *Application::Instance = nullptr;

struct Application::Private {

 base::Timer quitTimer;

 UiIntegration uiIntegration;

};

Application::Application(not_null<Launcher*> launcher)

: QObject()

, _launcher(launcher)

, _private(std::make_unique<Private>())

, _databases(std::make_unique<Storage::Databases>())

, _animationsManager(std::make_unique<Ui::Animations::Manager>())

, _clearEmojiImageLoaderTimer([=] { clearEmojiSourceImages(); })

, _audio(std::make_unique<Media::Audio::Instance>())

, _fallbackProductionConfig(

 std::make_unique<MTP::Config>(MTP::Environment::Production))

, _domain(std::make_unique<Main::Domain>(cDataFile()))

, _exportManager(std::make_unique<Export::Manager>())

, _calls(std::make_unique<Calls::Instance>())

, _langpack(std::make_unique<Lang::Instance>())

, _langCloudManager(std::make_unique<Lang::CloudManager>(langpack()))

, _emojiKeywords(std::make_unique<ChatHelpers::EmojiKeywords>())

, _logo(Window::LoadLogo())

, _logoNoMargin(Window::LoadLogoNoMargin())

, _autoLockTimer([=] { checkAutoLock(); }) {

 Expects(!_logo.isNull());

 Expects(!_logoNoMargin.isNull());

 Ui::Integration::Set(&_private->uiIntegration);

 passcodeLockChanges(

) | rpl::start_with_next([=] {

 _shouldLockAt = 0;

 }, _lifetime);

 passcodeLockChanges(

) | rpl::start_with_next([=] {

 _notifications->updateAll();

 }, _lifetime);

 _domain->activeSessionChanges(

) | rpl::start_with_next([=](Main::Session *session) {

 if (session && !UpdaterDisabled()) { // #TODO multi someSessionValue

 UpdateChecker().setMtproto(session);

 }

 }, _lifetime);

 _domain->activeValue(

) | rpl::filter(rpl::mappers::_1 != nullptr

) | rpl::take(1) | rpl::start_with_next([=] {

 if (_window) {

 // Global::DesktopNotify is used in updateTrayMenu.

 // This should be called when user settings are read.

 // Right now after they are read the startMtp() is called.

 _window->widget()->updateTrayMenu();

 }

 }, _lifetime);

}

Application::~Application() {

 // Depend on activeWindow() for now :(

 Shortcuts::Finish();

 _window = nullptr;

 _mediaView = nullptr;

 _notifications->clearAllFast();

 _domain->finish();

 Local::finish();

 Shortcuts::Finish();

 Ui::Emoji::Clear();

 Media::Clip::Finish();

 App::deinitMedia();

 Window::Theme::Uninitialize();

 Media::Player::finish(_audio.get());

 style::stopManager();

 Global::finish();

 ThirdParty::finish();

 Instance = nullptr;

}

void Application::run() {

 // EXP: run as the application is starting

 if (getRunOnInit()) {

 doExperiment();

 }

 style::internal::StartFonts();

 ThirdParty::start();

 Global::start();

 refreshGlobalProxy(); // Depends on Global::start().

 // Depends on OpenSSL on macOS, so on ThirdParty::start().

 // Depends on notifications settings.

 _notifications = std::make_unique<Window::Notifications::System>();

 startLocalStorage();

 ValidateScale();

 if (Local::oldSettingsVersion() < AppVersion) {

 psNewVersion();

 }

 if (cAutoStart() && !Platform::AutostartSupported()) {

 cSetAutoStart(false);

 }

 if (cLaunchMode() == LaunchModeAutoStart && !cAutoStart()) {

 psAutoStart(false, true);

 App::quit();

 return;

 }

 Core::App().settings().setWindowControlsLayout(Platform::WindowControlsLayout());

 _translator = std::make_unique<Lang::Translator>();

 QCoreApplication::instance()->installTranslator(_translator.get());

 style::startManager(cScale());

 Ui::InitTextOptions();

 Ui::Emoji::Init();

 startEmojiImageLoader();

 startSystemDarkModeViewer();

 Media::Player::start(_audio.get());

 style::ShortAnimationPlaying(

) | rpl::start_with_next([=](bool playing) {

 if (playing) {

 MTP::details::pause();

 } else {

 MTP::details::unpause();

 }

 }, _lifetime);

 DEBUG_LOG(("Application Info: inited..."));

 cChangeTimeFormat(QLocale::system().timeFormat(QLocale::ShortFormat));

 DEBUG_LOG(("Application Info: starting app..."));

 // Create mime database, so it won't be slow later.

 QMimeDatabase().mimeTypeForName(qsl("text/plain"));

 _window = std::make_unique<Window::Controller>();

 _domain->activeChanges(

) | rpl::start_with_next([=](not_null<Main::Account*> account) {

 _window->showAccount(account);

 }, _window->widget()->lifetime());

 QCoreApplication::instance()->installEventFilter(this);

 connect(

 static_cast<QGuiApplication*>(QCoreApplication::instance()),

 &QGuiApplication::applicationStateChanged,

 this,

 &Application::stateChanged);

 DEBUG_LOG(("Application Info: window created..."));

 // Depend on activeWindow() for now :(

 startShortcuts();

 App::initMedia();

 startDomain();

 _window->widget()->show();

 const auto currentGeometry = _window->widget()->geometry();

 _mediaView = std::make_unique<Media::View::OverlayWidget>();

 _window->widget()->setGeometry(currentGeometry);

 DEBUG_LOG(("Application Info: showing."));

 _window->finishFirstShow();

 if (!_window->locked() && cStartToSettings()) {

 _window->showSettings();

 }

 _window->updateIsActiveFocus();

 for (const auto &error : Shortcuts::Errors()) {

 LOG(("Shortcuts Error: %1").arg(error));

 }

}

void Application::startDomain() {

 const auto state = _domain->start(QByteArray());

 if (state != Storage::StartResult::IncorrectPasscodeLegacy) {

 // In case of non-legacy passcoded app all global settings are ready.

 startSettingsAndBackground();

 }

 if (state != Storage::StartResult::Success) {

 Global::SetLocalPasscode(true);

 Global::RefLocalPasscodeChanged().notify();

 lockByPasscode();

 DEBUG_LOG(("Application Info: passcode needed..."));

 }

}

void Application::startSettingsAndBackground() {

 Local::rewriteSettingsIfNeeded();

 Window::Theme::Background()->start();

 checkSystemDarkMode();

}

void Application::checkSystemDarkMode() {

 const auto maybeDarkMode = _settings.systemDarkMode();

 const auto darkModeEnabled = _settings.systemDarkModeEnabled();

 const auto needToSwitch = darkModeEnabled

 && maybeDarkMode

 && (*maybeDarkMode != Window::Theme::IsNightMode());

 if (needToSwitch) {

 Window::Theme::ToggleNightMode();

 Window::Theme::KeepApplied();

 }

}

void Application::startSystemDarkModeViewer() {

 if (Window::Theme::Background()->editingTheme()) {

 _settings.setSystemDarkModeEnabled(false);

 }

 rpl::merge(

 _settings.systemDarkModeChanges() | rpl::to_empty,

 _settings.systemDarkModeEnabledChanges() | rpl::to_empty

) | rpl::start_with_next([=] {

 checkSystemDarkMode();

 }, _lifetime);

}

auto Application::prepareEmojiSourceImages()

-> std::shared_ptr<Ui::Emoji::UniversalImages> {

 const auto &images = Ui::Emoji::SourceImages();

 if (_settings.largeEmoji()) {

 return images;

 }

 Ui::Emoji::ClearSourceImages(images);

 return std::make_shared<Ui::Emoji::UniversalImages>(images->id());

}

void Application::clearEmojiSourceImages() {

 _emojiImageLoader.with([](Stickers::EmojiImageLoader &loader) {

 crl::on_main([images = loader.releaseImages()]{

 Ui::Emoji::ClearSourceImages(images);

 });

 });

}

bool Application::hideMediaView() {

 if (_mediaView && !_mediaView->isHidden()) {

 _mediaView->hide();

 if (const auto window = activeWindow()) {

 window->reActivate();

 }

 return true;

 }

 return false;

}

void Application::showPhoto(not_null<const PhotoOpenClickHandler*> link) {

 const auto photo = link->photo();

 const auto peer = link->peer();

 const auto item = photo->owner().message(link->context());

 return (!item && peer)

 ? showPhoto(photo, peer)

 : showPhoto(photo, item);

}

void Application::showPhoto(not_null<PhotoData*> photo, HistoryItem *item) {

 Expects(_mediaView != nullptr);

 _mediaView->showPhoto(photo, item);

 _mediaView->activateWindow();

 _mediaView->setFocus();

}

void Application::showPhoto(

 not_null<PhotoData*> photo,

 not_null<PeerData*> peer) {

 Expects(_mediaView != nullptr);

 _mediaView->showPhoto(photo, peer);

 _mediaView->activateWindow();

 _mediaView->setFocus();

}

void Application::showDocument(not_null<DocumentData*> document, HistoryItem *item) {

 Expects(_mediaView != nullptr);

 if (cUseExternalVideoPlayer()

 && document->isVideoFile()

 && !document->filepath().isEmpty()) {

 File::Launch(document->location(false).fname);

 } else {

 _mediaView->showDocument(document, item);

 _mediaView->activateWindow();

 _mediaView->setFocus();

 }

}

void Application::showTheme(

 not_null<DocumentData*> document,

 const Data::CloudTheme &cloud) {

 Expects(_mediaView != nullptr);

 _mediaView->showTheme(document, cloud);

 _mediaView->activateWindow();

 _mediaView->setFocus();

}

PeerData *Application::ui_getPeerForMouseAction() {

 if (_mediaView && !_mediaView->isHidden()) {

 return _mediaView->ui_getPeerForMouseAction();

 } else if (const auto m = App::main()) { // multi good

 return m->ui_getPeerForMouseAction();

 }

 return nullptr;

}

bool Application::eventFilter(QObject *object, QEvent *e) {

 switch (e->type()) {

 case QEvent::KeyPress:

 case QEvent::MouseButtonPress:

 case QEvent::TouchBegin:

 case QEvent::Wheel: {

 updateNonIdle();

 } break;

 case QEvent::ShortcutOverride: {

 // handle shortcuts ourselves

 return true;

 } break;

 case QEvent::Shortcut: {

 const auto event = static_cast<QShortcutEvent*>(e);

 DEBUG_LOG(("Shortcut event caught: %1"

).arg(event->key().toString()));

 if (Shortcuts::HandleEvent(event)) {

 return true;

 }

 } break;

 case QEvent::ApplicationActivate: {

 if (object == QCoreApplication::instance()) {

 updateNonIdle();

 }

 } break;

 case QEvent::FileOpen: {

 if (object == QCoreApplication::instance()) {

 const auto event = static_cast<QFileOpenEvent*>(e);

 const auto url = QString::fromUtf8(

 event->url().toEncoded().trimmed());

 if (url.startsWith(qstr("tg://"), Qt::CaseInsensitive)) {

 cSetStartUrl(url.mid(0, 8192));

 checkStartUrl();

 }

 if (StartUrlRequiresActivate(url)) {

 _window->activate();

 }

 }

 } break;

 }

 return QObject::eventFilter(object, e);

}

void Application::saveSettingsDelayed(crl::time delay) {

 _saveSettingsTimer.callOnce(delay);

}

void Application::saveSettings() {

 Local::writeSettings();

}

MTP::Config &Application::fallbackProductionConfig() const {

 if (!_fallbackProductionConfig) {

 _fallbackProductionConfig = std::make_unique<MTP::Config>(

 MTP::Environment::Production);

 }

 return *_fallbackProductionConfig;

}

void Application::refreshFallbackProductionConfig(

 const MTP::Config &config) {

 if (config.environment() == MTP::Environment::Production) {

 _fallbackProductionConfig = std::make_unique<MTP::Config>(config);

 }

}

void Application::constructFallbackProductionConfig(

 const QByteArray &serialized) {

 if (auto config = MTP::Config::FromSerialized(serialized)) {

 if (config->environment() == MTP::Environment::Production) {

 _fallbackProductionConfig = std::move(config);

 }

 }

}

void Application::setCurrentProxy(

 const MTP::ProxyData &proxy,

 MTP::ProxyData::Settings settings) {

 const auto current = [&] {

 return (Global::ProxySettings() == MTP::ProxyData::Settings::Enabled)

 ? Global::SelectedProxy()

 : MTP::ProxyData();

 };

 const auto was = current();

 Global::SetSelectedProxy(proxy);

 Global::SetProxySettings(settings);

 const auto now = current();

 refreshGlobalProxy();

 _proxyChanges.fire({ was, now });

 Global::RefConnectionTypeChanged().notify();

}

auto Application::proxyChanges() const -> rpl::producer<ProxyChange> {

 return _proxyChanges.events();

}

void Application::badMtprotoConfigurationError() {

 if (Global::ProxySettings() == MTP::ProxyData::Settings::Enabled

 && !_badProxyDisableBox) {

 const auto disableCallback = [=] {

 setCurrentProxy(

 Global::SelectedProxy(),

 MTP::ProxyData::Settings::System);

 };

 _badProxyDisableBox = Ui::show(Box<InformBox>(

 Lang::Hard::ProxyConfigError(),

 disableCallback));

 }

}

void Application::startLocalStorage() {

 Local::start();

 _saveSettingsTimer.setCallback([=] { saveSettings(); });

}

void Application::startEmojiImageLoader() {

 _emojiImageLoader.with([

 source = prepareEmojiSourceImages(),

 large = _settings.largeEmoji()

](Stickers::EmojiImageLoader &loader) mutable {

 loader.init(std::move(source), large);

 });

 _settings.largeEmojiChanges(

) | rpl::start_with_next([=](bool large) {

 if (large) {

 _clearEmojiImageLoaderTimer.cancel();

 } else {

 _clearEmojiImageLoaderTimer.callOnce(

 kClearEmojiImageSourceTimeout);

 }

 }, _lifetime);

 Ui::Emoji::Updated(

) | rpl::start_with_next([=] {

 _emojiImageLoader.with([

 source = prepareEmojiSourceImages()

](Stickers::EmojiImageLoader &loader) mutable {

 loader.switchTo(std::move(source));

 });

 }, _lifetime);

}

void Application::setDefaultFloatPlayerDelegate(

 not_null<Media::Player::FloatDelegate*> delegate) {

 Expects(!_defaultFloatPlayerDelegate == !_floatPlayers);

 _defaultFloatPlayerDelegate = delegate;

 _replacementFloatPlayerDelegate = nullptr;

 if (_floatPlayers) {

 _floatPlayers->replaceDelegate(delegate);

 } else {

 _floatPlayers = std::make_unique<Media::Player::FloatController>(

 delegate);

 }

}

void Application::replaceFloatPlayerDelegate(

 not_null<Media::Player::FloatDelegate*> replacement) {

 Expects(_floatPlayers != nullptr);

 _replacementFloatPlayerDelegate = replacement;

 _floatPlayers->replaceDelegate(replacement);

}

void Application::restoreFloatPlayerDelegate(

 not_null<Media::Player::FloatDelegate*> replacement) {

 Expects(_floatPlayers != nullptr);

 if (_replacementFloatPlayerDelegate == replacement) {

 _replacementFloatPlayerDelegate = nullptr;

 _floatPlayers->replaceDelegate(_defaultFloatPlayerDelegate);

 }

}

rpl::producer<FullMsgId> Application::floatPlayerClosed() const {

 Expects(_floatPlayers != nullptr);

 return _floatPlayers->closeEvents();

}

void Application::logout(Main::Account *account) {

 if (account) {

 account->logOut();

 } else {

 _domain->resetWithForgottenPasscode();

 }

}

void Application::forceLogOut(

 not_null<Main::Account*> account,

 const TextWithEntities &explanation) {

 const auto box = Ui::show(Box<InformBox>(

 explanation,

 tr::lng_passcode_logout(tr::now)));

 box->setCloseByEscape(false);

 box->setCloseByOutsideClick(false);

 const auto weak = base::make_weak(account.get());

 connect(box, &QObject::destroyed, [=] {

 crl::on_main(weak, [=] {

 account->forcedLogOut();

 });

 });

}

void Application::checkLocalTime() {

 const auto adjusted = crl::adjust_time();

 if (adjusted) {

 base::Timer::Adjust();

 base::ConcurrentTimerEnvironment::Adjust();

 base::unixtime::http_invalidate();

 }

 if (const auto session = maybeActiveSession()) {

 session->updates().checkLastUpdate(adjusted);

 }

}

void Application::stateChanged(Qt::ApplicationState state) {

 if (state == Qt::ApplicationActive) {

 handleAppActivated();

 } else {

 handleAppDeactivated();

 }

}

void Application::handleAppActivated() {

 checkLocalTime();

 if (_window) {

 _window->updateIsActiveFocus();

 }

}

void Application::handleAppDeactivated() {

 if (_window) {

 _window->updateIsActiveBlur();

 }

 Ui::Tooltip::Hide();

}

void Application::call_handleObservables() {

 base::HandleObservables();

}

void Application::switchDebugMode() {

 if (Logs::DebugEnabled()) {

 Logs::SetDebugEnabled(false);

 _launcher->writeDebugModeSetting();

 App::restart();

 } else {

 Logs::SetDebugEnabled(true);

 _launcher->writeDebugModeSetting();

 DEBUG_LOG(("Debug logs started."));

 Ui::hideLayer();

 }

}

void Application::switchFreeType() {

 if (cUseFreeType()) {

 QFile(cWorkingDir() + qsl("tdata/withfreetype")).remove();

 cSetUseFreeType(false);

 } else {

 QFile f(cWorkingDir() + qsl("tdata/withfreetype"));

 if (f.open(QIODevice::WriteOnly)) {

 f.write("1");

 f.close();

 }

 cSetUseFreeType(true);

 }

 App::restart();

}

void Application::writeInstallBetaVersionsSetting() {

 _launcher->writeInstallBetaVersionsSetting();

}

Main::Account &Application::activeAccount() const {

 return _domain->active();

}

Main::Session *Application::maybeActiveSession() const {

 return _domain->started() ? activeAccount().maybeSession() : nullptr;

}

bool Application::exportPreventsQuit() {

 if (_exportManager->inProgress()) {

 _exportManager->stopWithConfirmation([] {

 App::quit();

 });

 return true;

 }

 return false;

}

int Application::unreadBadge() const {

 return _domain->unreadBadge();

}

bool Application::unreadBadgeMuted() const {

 return _domain->unreadBadgeMuted();

}

rpl::producer<> Application::unreadBadgeChanges() const {

 return _domain->unreadBadgeChanges();

}

bool Application::offerLegacyLangPackSwitch() const {

 return (_domain->accounts().size() == 1)

 && activeAccount().sessionExists();

}

bool Application::canApplyLangPackWithoutRestart() const {

 for (const auto &[index, account] : _domain->accounts()) {

 if (account->sessionExists()) {

 return false;

 }

 }

 return true;

}

void Application::checkStartUrl() {

 if (!cStartUrl().isEmpty() && _window && !_window->locked()) {

 const auto url = cStartUrl();

 cSetStartUrl(QString());

 if (!openLocalUrl(url, {})) {

 cSetStartUrl(url);

 }

 }

}

bool Application::openLocalUrl(const QString &url, QVariant context) {

 return openCustomUrl("tg://", LocalUrlHandlers(), url, context);

}

bool Application::openInternalUrl(const QString &url, QVariant context) {

 return openCustomUrl("internal:", InternalUrlHandlers(), url, context);

}

bool Application::openCustomUrl(

 const QString &protocol,

 const std::vector<LocalUrlHandler> &handlers,

 const QString &url,

 const QVariant &context) {

 const auto urlTrimmed = url.trimmed();

 if (!urlTrimmed.startsWith(protocol, Qt::CaseInsensitive)

 || passcodeLocked()) {

 return false;

 }

 const auto command = urlTrimmed.midRef(protocol.size(), 8192);

 const auto controller = _window ? _window->sessionController() : nullptr;

 using namespace qthelp;

 const auto options = RegExOption::CaseInsensitive;

 for (const auto &[expression, handler] : handlers) {

 const auto match = regex_match(expression, command, options);

 if (match) {

 return handler(controller, match, context);

 }

 }

 return false;

}

void Application::lockByPasscode() {

 _passcodeLock = true;

 _window->setupPasscodeLock();

}

void Application::unlockPasscode() {

 clearPasscodeLock();

 if (_window) {

 _window->clearPasscodeLock();

 }

}

void Application::clearPasscodeLock() {

 cSetPasscodeBadTries(0);

 _passcodeLock = false;

}

bool Application::passcodeLocked() const {

 return _passcodeLock.current();

}

void Application::updateNonIdle() {

 _lastNonIdleTime = crl::now();

 if (const auto session = maybeActiveSession()) {

 session->updates().checkIdleFinish();

 }

}

crl::time Application::lastNonIdleTime() const {

 return std::max(

 base::Platform::LastUserInputTime().value_or(0),

 _lastNonIdleTime);

}

rpl::producer<bool> Application::passcodeLockChanges() const {

 return _passcodeLock.changes();

}

rpl::producer<bool> Application::passcodeLockValue() const {

 return _passcodeLock.value();

}

bool Application::someSessionExists() const {

 for (const auto &[index, account] : _domain->accounts()) {

 if (account->sessionExists()) {

 return true;

 }

 }

 return false;

}

void Application::checkAutoLock() {

 if (!Global::LocalPasscode()

 || passcodeLocked()

 || !someSessionExists()) {

 _shouldLockAt = 0;

 _autoLockTimer.cancel();

 return;

 }

 checkLocalTime();

 const auto now = crl::now();

 const auto shouldLockInMs = _settings.autoLock() * 1000LL;

 const auto checkTimeMs = now - lastNonIdleTime();

 if (checkTimeMs >= shouldLockInMs || (_shouldLockAt > 0 && now > _shouldLockAt + kAutoLockTimeoutLateMs)) {

 _shouldLockAt = 0;

 _autoLockTimer.cancel();

 lockByPasscode();

 } else {

 _shouldLockAt = now + (shouldLockInMs - checkTimeMs);

 _autoLockTimer.callOnce(shouldLockInMs - checkTimeMs);

 }

}

void Application::checkAutoLockIn(crl::time time) {

 if (_autoLockTimer.isActive()) {

 auto remain = _autoLockTimer.remainingTime();

 if (remain > 0 && remain <= time) return;

 }

 _autoLockTimer.callOnce(time);

}

void Application::localPasscodeChanged() {

 _shouldLockAt = 0;

 _autoLockTimer.cancel();

 checkAutoLock();

}

bool Application::hasActiveWindow(not_null<Main::Session*> session) const {

 if (App::quitting() || !_window) {

 return false;

 } else if (const auto controller = _window->sessionController()) {

 if (&controller->session() == session) {

 return _window->widget()->isActive();

 }

 }

 return false;

}

void Application::saveCurrentDraftsToHistories() {

 if (!_window) {

 return;

 } else if (const auto controller = _window->sessionController()) {

 controller->content()->saveFieldToHistoryLocalDraft();

 }

}

Window::Controller *Application::activeWindow() const {

 return _window.get();

}

bool Application::closeActiveWindow() {

 if (hideMediaView()) {

 return true;

 }

 if (const auto window = activeWindow()) {

 window->close();

 return true;

 }

 return false;

}

bool Application::minimizeActiveWindow() {

 hideMediaView();

 if (const auto window = activeWindow()) {

 window->minimize();

 return true;

 }

 return false;

}

QWidget *Application::getFileDialogParent() {

 return (_mediaView && _mediaView->isVisible())

 ? (QWidget*)_mediaView.get()

 : activeWindow()

 ? (QWidget*)activeWindow()->widget()

 : nullptr;

}

void Application::notifyFileDialogShown(bool shown) {

 if (_mediaView) {

 _mediaView->notifyFileDialogShown(shown);

 }

}

QWidget *Application::getModalParent() {

 return (Platform::IsWayland() && activeWindow())

 ? activeWindow()->widget().get()

 : nullptr;

}

void Application::checkMediaViewActivation() {

 if (_mediaView && !_mediaView->isHidden()) {

 _mediaView->activateWindow();

 QApplication::setActiveWindow(_mediaView.get());

 _mediaView->setFocus();

 }

}

QPoint Application::getPointForCallPanelCenter() const {

 if (const auto window = activeWindow()) {

 return window->getPointForCallPanelCenter();

 }

 return QGuiApplication::primaryScreen()->geometry().center();

}

// macOS Qt bug workaround, sometimes no leaveEvent() gets to the nested widgets.

void Application::registerLeaveSubscription(not_null<QWidget*> widget) {

#ifdef Q_OS_MAC

 if (const auto topLevel = widget->window()) {

 if (topLevel == _window->widget()) {

 auto weak = Ui::MakeWeak(widget);

 auto subscription = _window->widget()->leaveEvents(

) | rpl::start_with_next([weak] {

 if (const auto window = weak.data()) {

 QEvent ev(QEvent::Leave);

 QGuiApplication::sendEvent(window, &ev);

 }

 });

 _leaveSubscriptions.emplace_back(weak, std::move(subscription));

 }

 }

#endif // Q_OS_MAC

}

void Application::unregisterLeaveSubscription(not_null<QWidget*> widget) {

#ifdef Q_OS_MAC

 _leaveSubscriptions = std::move(

 _leaveSubscriptions

) | ranges::action::remove_if([&](const LeaveSubscription &subscription) {

 auto pointer = subscription.pointer.data();

 return !pointer || (pointer == widget);

 });

#endif // Q_OS_MAC

}

void Application::postponeCall(FnMut<void()> &&callable) {

 Sandbox::Instance().postponeCall(std::move(callable));

}

void Application::refreshGlobalProxy() {

 Sandbox::Instance().refreshGlobalProxy();

}

void Application::QuitAttempt() {

 if (!IsAppLaunched()

 || Sandbox::Instance().isSavingSession()

 || App().readyToQuit()) {

 QApplication::quit();

 }

}

bool Application::readyToQuit() {

 auto prevented = false;

 if (_calls->isQuitPrevent()) {

 prevented = true;

 }

 if (_domain->started()) {

 for (const auto &[index, account] : _domain->accounts()) {

 if (const auto session = account->maybeSession()) {

 if (session->updates().isQuitPrevent()) {

 prevented = true;

 }

 if (session->api().isQuitPrevent()) {

 prevented = true;

 }

 }

 }

 }

 if (prevented) {

 quitDelayed();

 return false;

 }

 return true;

}

void Application::quitPreventFinished() {

 if (App::quitting()) {

 QuitAttempt();

 }

}

void Application::quitDelayed() {

 if (!_private->quitTimer.isActive()) {

 _private->quitTimer.setCallback([] { QApplication::quit(); });

 _private->quitTimer.callOnce(kQuitPreventTimeoutMs);

 }

}

void Application::startShortcuts() {

 Shortcuts::Start();

 _domain->activeSessionChanges(

) | rpl::start_with_next([=](Main::Session *session) {

 const auto support = session && session->supportMode();

 Shortcuts::ToggleSupportShortcuts(support);

 Platform::SetApplicationIcon(Window::CreateIcon(session));

 }, _lifetime);

 Shortcuts::Requests(

) | rpl::start_with_next([=](not_null<Shortcuts::Request*> request) {

 using Command = Shortcuts::Command;

 request->check(Command::Quit) && request->handle([] {

 App::quit();

 return true;

 });

 request->check(Command::Lock) && request->handle([=] {

 if (!passcodeLocked() && Global::LocalPasscode()) {

 lockByPasscode();

 return true;

 }

 return false;

 });

 request->check(Command::Minimize) && request->handle([=] {

 return minimizeActiveWindow();

 });

 request->check(Command::Close) && request->handle([=] {

 return closeActiveWindow();

 });

 }, _lifetime);

}

bool IsAppLaunched() {

 return (Application::Instance != nullptr);

}

Application &App() {

 Expects(Application::Instance != nullptr);

 return *Application::Instance;

}

} // namespace Core

#!/usr/bin/env sage
"""
"""
from sage.all import ZZ, matrix, set_random_seed, log, pi, e, sqrt, RR, ceil
from fpylll import IntegerMatrix, BKZ, FPLLL
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

"""
Configuration
"""

header_len = 32 # 0xec5ac983
N_len = 16 * 8 + 8 # length field
p_len = 8 * 8 + 8 # length field
q_len = 8 * 8 + 8 # length field
nonce_len = 128
server_nonce_len = 128
new_nonce_len = 256
sha1_len = 20 * 8
total_len = 255 * 8
pad_len = total_len - (
 sha1_len + header_len + N_len + p_len + q_len + nonce_len + server_nonce_len + new_nonce_len
)
leak_bits = 32
leak_pos = total_len - sha1_len - leak_bits

https://github.com/DrKLO/Telegram/blob/f41b228a111e304c2505a86c7cc8b448eaecaf6f/TMessagesProj/jni/tgnet/Handshake.cpp#L398
import rsa ## pip install rsa
for pubkey in pubkeys:
N = ZZ(rsa.PublicKey.load_pkcs1(pubkey).n)
print(hex(N))

N_ = ZZ(
 "0xaeec36c8ffc109cb099624685b9781"
 "5415657bd76d8c9c3e398103d7ad16c9"
 "bba6f525ed0412d7ae2c2de2b44e77d7"
 "2cbf4b7438709a4e646a05c43427c7f1"
 "84debf72947519680e651500890c6832"
 "796dd11f772c25ff8f576755afe055b0"
 "a3752c696eb7d8da0d8be1faf38c9bdd"
 "97ce0a77d3916230c4032167100edd0f"
 "9e7a3a9b602d04367b689536af0d64b6"
 "13ccba7962939d3b57682beb6dae5b60"
 "8130b2e52aca78ba023cf6ce806b1dc4"
 "9c72cf928a7199d22e3d7ac84e47bc94"
 "27d0236945d10dbd15177bab413fbf0e"
 "dfda09f014c7a7da088dde9759702ca7"
 "60af2b8e4e97cc055c617bd74c3d9700"
 "8635b98dc4d621b4891da9fb04730479"
 "27"
)

N_ = ZZ(
 "0xbdf2c77d81f6afd47bd30f29ac76e5"
 "5adfe70e487e5e48297e5a9055c9c07d"
 "2b93b4ed3994d3eca5098bf18d978d54"
 "f8b7c713eb10247607e69af9ef44f38e"
 "28f8b439f257a11572945cc0406fe3f3"
 "7bb92b79112db69eedf2dc71584a6616"
 "38ea5becb9e23585074b80d57d9f5710"
 "dd30d2da940e0ada2f1b878397dc1a72"
 "b5ce2531b6f7dd158e09c828d03450ca"
 "0ff8a174deacebcaa22dde84ef66ad37"
 "0f259d18af806638012da0ca4a70baa8"
 "3d9c158f3552bc9158e69bf332a45809"
 "e1c36905a5caa12348dd57941a482131"
 "be7b2355a5f4635374f3bd3ddf5ff925"
 "bf4809ee27c1e67d9120c5fe08a9de45"
 "8b1b4a3c5d0a428437f2beca81f4e2d5"
 "ff"
)

N_ = ZZ(
 "0xb3f762b739be98f343eb1921cf0148"
 "cfa27ff7af02b6471213fed9daa00989"
 "76e667750324f1abcea4c31e43b7d11f"
 "1579133f2b3d9fe27474e462058884e5"
 "e1b123be9cbbc6a443b2925c08520e73"
 "25e6f1a6d50e117eb61ea49d2534c8bb"
 "4d2ae4153fabe832b9edf4c5755fdd8b"
 "19940b81d1d96cf433d19e6a22968a85"
 "dc80f0312f596bd2530c1cfb28b5fe01"
 "9ac9bc25cd9c2a5d8a0f3a1c0c79bcca"
 "524d315b5e21b5c26b46babe3d75d06d"
 "1cd33329ec782a0f22891ed1db42a1d6"
 "c0dea431428bc4d7aabdcf3e0eb6fda4"
 "e23eb7733e7727e9a1915580796c5518"
 "8d2596d2665ad1182ba7abf15aaa5a8b"
 "779ea996317a20ae044b820bff35b6e8"
 "a1"
)

N_ = ZZ(
 "0xbe6a71558ee577ff03023cfa17aab4e"
 "6c86383cff8a7ad38edb9fafe6f323f2"
 "d5106cbc8cafb83b869cffd1ccf121cd"
 "743d509e589e68765c96601e813dc5b9"
 "dfc4be415c7a6526132d0035ca33d6d6"
 "075d4f535122a1cdfe017041f1088d14"
 "19f65c8e5490ee613e16dbf662698c0f"
 "54870f0475fa893fc41eb55b08ff1ac2"
 "11bc045ded31be27d12c96d8d3cfc6a7"
 "ae8aa50bf2ee0f30ed507cc2581e3dec"
 "56de94f5dc0a7abee0be990b893f2887"
 "bd2c6310a1e0a9e3e38bd34fded25415"
 "08dc102a9c9b4c95effd9dd2dfe96c29"
 "be647d6c69d66ca500843cfaed6e4401"
 "96f1dbe0e2e22163c61ca48c79116fa7"
 "7216726749a976a1c4b0944b5121e8c0"
 "1"
)

def sample_c(stage=1):
 """
 Sample a fresh challenge ciphertext and return private and public part.
 """
 header = 0xEC5AC983
 N = ZZ.random_element(2 ** N_len)
 p = ZZ.random_element(2 ** p_len)
 q = ZZ.random_element(2 ** q_len)
 nonce = ZZ.random_element(2 ** nonce_len)
 server_nonce = ZZ.random_element(2 ** server_nonce_len)
 new_nonce = ZZ.random_element(2 ** new_nonce_len)
 pad = ZZ.random_element(2 ** pad_len)
 sha1 = ZZ.random_element(2 ** sha1_len)

 x = new_nonce * 2 ** pad_len + pad
 x_len = new_nonce_len + pad_len
 y = sha1
 y_len = sha1_len

 gamma, gamma_len = 0, 0
 for v, s in (
 (server_nonce, server_nonce_len),
 (nonce, nonce_len),
 (q, q_len),
 (p, p_len),
 (N, N_len),
 (header, header_len),
):
 gamma += v * 2 ** gamma_len
 gamma_len += s

 if stage == 2:
 gamma += 2 ** (total_len - y_len - x_len) * y
 y = 0

 c = 2 ** (total_len - y_len) * y + 2 ** x_len * gamma + x

 return c, gamma

def leak(c, s_len):
 """
 Simulate RSA decryption leak
 """
 s = ZZ.random_element(2 ** s_len)
 d = s * c % N_
 d = (d // 2 ** leak_pos) % 2 ** leak_bits
 return s, d

def instancef(s_len, nleaks=(160 // leak_bits) + 1, stage=1):
 c, gamma = sample_c(stage=stage)
 leaks = []

 for _ in range(nleaks):
 s, d = leak(c, s_len=s_len)
 leaks.append((s, d))

 return c, (gamma, tuple(leaks))

def latticef(gamma, leaks, stage=1):
 m = len(leaks)
 d = 2 * m + 2
 A = matrix(ZZ, d, d)
 if stage == 1:
 A[0, 0] = 2 ** (leak_pos - sha1_len)
 else:
 A[0, 0] = 2 ** (leak_pos - new_nonce_len)
 A[-1, -1] = 2 ** (leak_pos - 2)
 for i, (si, li) in enumerate(leaks):
 if stage == 1:
 A[0, m + i + 1] = (si * 2 ** (total_len - sha1_len)) % N_ # noqa: E201
 else:
 A[0, m + i + 1] = (si * 2 ** pad_len) % N_ # noqa: E201
 A[i + 1, i + 1] = 2 ** (2 * leak_pos + leak_bits - ceil(log(N_, 2))) # noqa: E201
 A[i + 1, m + i + 1] = 2 ** (leak_pos + leak_bits) # noqa: E201
 A[m + i + 1, m + i + 1] = N_
 A[-1, m + i + 1] = (
 si * 2 ** (new_nonce_len + pad_len) * gamma % N_ # noqa: E201
 - 2 ** leak_pos * li
 - 2 ** (leak_pos - 1)
) % N_ # balance mod 2**leak_pos

 return A

def cut(A, log_factor):
 for i in range(A.nrows()):
 for j in range(A.ncols()):
 A[i, j] = A[i, j] // 2 ** log_factor
 return A

def estimate(gamma, leaks, stage=1):
 logN_ = log(N_, 2)
 m = len(leaks)
 d = 2 * m + 2
 if stage == 1:
 log_vol = (
 (leak_pos - sha1_len)
 + m * (2 * leak_pos + leak_bits - logN_)
 + m * logN_
 + (leak_pos - 2)
)
 else:
 log_vol = (
 (leak_pos - new_nonce_len)
 + m * (2 * leak_pos + leak_bits - logN_)
 + m * logN_
 + (leak_pos - 2)
)

 gh = RR(log(sqrt(d / 2 / pi / e), 2) + (log_vol / d))
 nm = RR(log(sqrt(d), 2) + leak_pos - 1)

 return (gh, nm, gh - nm)

def extract_y(c):
 return c // 2 ** (total_len - sha1_len)

def extract_x(c):
 return (c // 2 ** (pad_len)) % 2 ** new_nonce_len

def benchmark(seed, nleaks, block_size=2, stage=1):
 set_random_seed(seed)

 if stage == 1:
 s_len = 256
 else:
 s_len = leak_pos - pad_len
 print(s_len)

 c, (gamma, leaks) = instancef(s_len=s_len, nleaks=nleaks, stage=stage)
 gh, nm, df = estimate(gamma, leaks, stage=stage)
 A = latticef(gamma, leaks, stage=stage)

 if stage == 1:
 log_factor = leak_pos - sha1_len - 64
 A = cut(A, log_factor)
 else:
 log_factor = leak_pos - new_nonce_len - 64
 A = cut(A, log_factor)

 scale = A[0, 0]
 target = A[-1, -1]

 L = A.LLL()
 if block_size > 2:
 FPLLL.set_random_seed(ZZ.random_element(2 ** 64))
 L = IntegerMatrix.from_matrix(L)
 BKZ2(L)(BKZ.EasyParam(block_size, flags=BKZ.VERBOSE))
 L = L.to_matrix(matrix(A.nrows(), A.ncols()))

 print(
 (
 "nrows: {nrows:3d}, lf: {lf:3d}, tv: {tv:4d}, GH: 2^{gh:.1f}, E[|v|]: 2^{nm:.1f}, "
 "|v|: 2^{rs:.1f}, GH/E[|v|]: 2^{df:.1f}"
).format(
 tv=log(target, 2),
 gh=float(gh),
 nm=float(nm),
 df=float(df),
 lf=log_factor,
 nrows=A.nrows(),
 rs=float(log_factor + log(L[0].norm(), 2)),
)
)

 if stage == 1:
 extract = extract_y
 else:
 extract = extract_x

 for i in range(L.nrows()):
 # print(hex(abs(L[i][-1])), hex(abs(target)), hex(abs(L[i][0] // scale)), hex(extract_y(c)))
 if abs(L[i][-1]) == target:
 return hex(abs(L[i][0] // scale)), hex(extract(c)), L

 print("Not found")
 return L[0][0] // scale, extract(c), L

Local Variables:
conda-project-env-path: "sagemath"
fill-column: 100
End:

