
Secure Floating-Point Training

Deevashwer Rathee1, Anwesh Bhattacharya2, Divya Gupta2, Rahul Sharma2, and Dawn Song1

1University of California, Berkeley
2Microsoft Research

Abstract
Secure 2-party computation (2PC) of floating-point arithmetic
is improving in performance and recent work runs deep learn-
ing algorithms with it, while being as numerically precise
as commonly used machine learning (ML) frameworks like
PyTorch. We find that the existing 2PC libraries for floating-
point support generic computations and lack specialized sup-
port for ML training. Hence, their latency and communication
costs for compound operations (e.g., dot products) are high.
We provide novel specialized 2PC protocols for compound
operations and prove their precision using numerical analysis.
Our implementation BEACON outperforms state-of-the-art
libraries for 2PC of floating-point by over 6×.

1 Introduction

Deep Neural networks (DNNs) are now being deployed in
domains with sensitive data, such as healthcare and finance.
The more diverse data a DNN is trained on, the more useful
it becomes. While diverse data can be obtained by pooling
data of multiple organizations, it is challenging to do so due
to privacy policies that restrict data sharing.

This motivates the problem of secure training that allows
many mutually distrustful parties to collaboratively learn a
DNN model of their secret data without revealing anything
about their data. At the end of secure training, each party
learns the model and nothing else1 about the data of the other
parties beyond what can be deduced from the model. The
seminal work of SecureML [55] showed that secure training
of DNNs can be solved by secure multi-party computation
(MPC) and specifically by secure 2-party computation (2PC)
in the client-server model [27,56,57] with two non-colluding
servers (Section 3.3). In general, 2PC protocols [29,73] allow
two mutually distrustful parties to compute functions over
their secret inputs with the guarantee that nothing beyond the
function output is revealed about the sensitive inputs.

1Approaches based on trusted hardware and federated learning suffer from
additional leakage and do not provide this cryptographic security guarantee.

Cleartext ML frameworks like PyTorch, when running on
CPUs, decompose a training algorithm into many floating-
point scalar operations or their SIMD2 (Single Instruction
Multiple Data) counterparts that are present in Intel’s libraries.
By running efficient and precise 2PC protocols for these
scalar/SIMD floating-point operations, one can get secure
training implementations that are as precise as PyTorch (see
Section 4.2 for definition of precision) and have tractable
latency, which is the approach taken by the recent work of
SECFLOAT [60]. Note that SECFLOAT [60] is the current
state-of-the-art in 2PC of floating-point that provably meets
the precision specified by Intel’s libraries and outperforms
all prior 2PC libraries for secure floating-point (ABY [22],
EMP [3], and MP-SPDZ [40]) by 3−230×. We observe that
while running ML training algorithms with SECFLOAT, over
99% of the execution time is spent in linear layers, i.e., in
convolutions and fully connected layers (Appendix A), which
evaluate compound operations such as matrix multiplications
or dot products3. Hence, to reduce the 2PC latency of ML
training, we focus on building specialized secure protocols
for these compound operations.

1.1 Our contributions

We provide novel specialized protocols for compound op-
erations occurring in ML training that are as precise as
SECFLOAT-based protocols while being much more efficient.
Note that, apart from SECFLOAT, all other prior works in se-
cure training use approximations that lack formal precision
guarantees [16, 17, 41, 43, 54, 55, 64, 66, 67]. Among these,
KS22 [41] is the state-of-the-art whose approximations have
high efficiency and have been shown to empirically match
the end-to-end training accuracy provided by floating-point
training on MNIST [46]/CIFAR [44] datasets. We show that
the latency overheads of our provably precise protocols are
< 6× over KS22. In particular,

2For example, a SIMD addition of two vectors (x1, . . . ,xn) and (y1, . . . ,yn)
gives (x1 + y1, . . . ,xn + yn).

3Also known as inner product.

1

• We provide the first specialized 2PC protocols for floating-
point compound operations (e.g., dot products) and formally
prove their accuracy using numerical error analysis.

• We implement our protocols in BEACON4 and design them
to be drop-in replacements for standard tensor operations
(Section 8). BEACON is the first PPML library to support
training over various floating-point representations, e.g.,
Google’s BFloat16, Nvidia’s TensorFloat FP19 and stan-
dard 32-bit floating-point FP32 (Appendix D).

• BEACON enables push button secure evaluation of PyTorch
training algorithms. We evaluate BEACON on multiple mod-
els for MNIST and CIFAR-10 datasets. BEACON improves
the latency of secure training by > 6× over the state-of-the-
art libraries for 2PC of floating-point (Figure 5) and has
< 6× overhead over KS22.

Note that BEACON enables secure n-party training in the
standard client-server model with two non-colluding semi-
honest servers [27, 55–57] (see Section 3.3). Researchers
that wish to use BEACON for floating-point tasks outside the
context of secure training should note that we have chosen
to omit support for special values like subnormals [28] in
BEACON as Intel’s libraries with default compilation and prior
2PC floating-point implementations, including SECFLOAT,
also don’t support them [47, 60]. Now, we explain the main
source of our efficiency gains at a high level.

1.1.1 Our protocols for precise compound operations

In addition to a sign-bit, a floating-point value consists of an
integer and a fixed-point number, corresponding to the expo-
nent and the mantissa, respectively. There are complex invari-
ants which the exponent and the mantissa need to maintain to
qualify as a valid floating-point value. During arithmetic oper-
ations, the intermediate results do not respect these invariants.
Hence, to return a valid floating-point output, these invariants
need to be restored through expensive rounding and normal-
ization steps (Section 4). These steps are core to floating-point
arithmetic, are necessary for precision, and are also the main
reason behind performance overheads associated with 2PC
of floating-point. In particular, for adding two floating-point
numbers using SECFLOAT, over 82% of the time is spent in
rounding and normalization (Appendix B). Now consider a
compound operation, e.g., a summation on an n+ 1-length
vector, i.e., given x = (x0,x1, . . . ,xn) compute ∑

n
i=0 xi. Decom-

posing a summation as n floating-point additions will require
n rounding and n normalization steps. In contrast, we design
our specialized protocols for compound operations to only
require a single normalization and rounding operation while
guaranteeing numerically precise results.

Every normalization that is not done is a threat to cor-
rectness and every rounding operation omitted increases the

4Implementation available at https://github.com/mpc-msri/EzPC.

bitwidth of intermediate values, and in turn, the cost of sub-
sequent operations. Reducing normalizations and rounding
operations while guaranteeing precision and performance is
challenging. We achieve our results by working over carefully
determined minimal bitwidths needed for intermediate com-
putations that balance precision and performance. We note
that even though protocols for all compound operations such
as summation and dot products are designed with the same
goal of minimizing these expensive steps, they require differ-
ent insights and numerical analyses to determine the exact
parameters for efficiency and to prove precision guarantees.

1.1.2 BFloat16 training

The cleartext training algorithms are adopting low bitwidth
floating-point representations such as the 16-bit BFloat16 or
BF16 format. Compared to standard 32-bit floating-point rep-
resentation, FP32, BF16 uses the same number of exponent
bits as FP32, i.e., 8, but reduces the number of bits in man-
tissa from 23 to 7. In BFloat16 training [37], BF16 numbers
are used to store activations and the arithmetic happens in
FP32. For example, the specification of a matrix multiplica-
tion in BFloat16 training says that given two input matrices
that are in BF16 format the output should be as precise as
the result of the following computation: convert the inputs to
FP32, then perform all the arithmetic in FP32, and then round
the result to BF16. Kalamkar et al. [37] evaluate on many
ML models and shows that BFloat16 training matches the
accuracy of standard FP32 training. In fact, hardware manu-
facturers are putting native support for BFloat16 training in
CPUs, GPUs, TPUs, etc. Note that the decomposition-based
mechanism is incompatible with the compound operations in
BFloat16 training. The compound operation is decomposed
into scalar/SIMD operations over either FP32 or BF16. The
former loses any performance advantage that secure BFloat16
training can provide over secure FP32 training and the latter
loses precision as the operations on BF16 are over 65000×
less precise5 than the operations over FP32, as required by
the above specification.

In our protocols for BF16 compound operations, interme-
diate values use impure representations that are neither FP32
nor BF16. The bitwidths of these represenatations are care-
fully chosen to ensure that the computations are exact. These
bitwidths are still lower than those required for FP32 compu-
tations and outperform BEACON’s protocols for FP32. The
impure representations do not satisfy the preconditions re-
quired by the protocols designed for pure representations.
Hence, as another technical contribution we generalize our
underlying protocols to handle impure representations.

Thus, BEACON provides two improvements over decom-

5A floating-point representation with q-bit matissa incurs a relative round-
ing error of 2−q−1 [28]. Since BF16 has 7 mantissa bits, it incurs a relative
rounding error of 2−7−1, while FP32 with 23-bit mantissa only incurs 2−23−1,
which is 65536× lower.

2

https://github.com/mpc-msri/EzPC

posing BF16 compound operations to scalar FP32 operations
and running them with SECFLOAT. For example, while sum-
ming 2000 BF16 values, we can either use BEACON’s sum-
mation over FP32 or BEACON’s specialized summation over
BF16. The former is 8× faster than SECFLOAT and the latter
is 2× faster than the former. Overall, our specialized protocol
in BEACON for BF16 is 16× faster than SECFLOAT for this
task. Finally, our protocols for BFloat16 training are parame-
terized on the number representation and directly generalize to
TensorFloat training, which is the same as BFloat16 training
except that it uses Nvidia’s 19-bit TensorFloat representation
(8-bit exponent and 10-bit mantissa), FP19, instead of BF16.

1.2 Organization
The rest of the paper is organized as follows. Section 2 de-
scribes our protocols at a high level. Section 3 provides back-
ground on 2PC, our threat model, and 2PC protocols over
integers. Section 4 provides background on floating-point
and 2PC of scalar/SIMD operations over floating-point. Sec-
tion 5 provides our protocols for compound operations over
a unique number representation, e.g., operations that arise in
FP32 training. Section 6 provides our protocols for compound
operations that switch number representations, e.g., operations
that arise in BFloat16 training. Section 7 argues security of
BEACON, Section 8 discusses implementation details, and
Section 9 evaluates BEACON on ML tasks. Section 10 dis-
cusses related work and Section 11 concludes with directions
for future research.

2 Technical overview

In this section, we provide a high level intuition of our
techniques. To ease exposition, we abstract out the actual
floating-point representation (Section 4) that uses exponents
and mantissas.

Novel protocol for summation. For secure training with
SECFLOAT, linear layers (i.e., matrix multiplications and con-
volutions) are the performance bottlenecks and consume 99%
of the runtime and communication (Appendix A). Here, over
85% (Appendix B) of matrix multiplication runtime is spent
in summations (i.e., computing ∑

n
i=0 xi), which makes sum-

mation the main performance bottleneck of secure training.
As summarized in Section 1.1.1, traditional approaches

for summation, including the ones used by PyTorch, require
n rounding and n normalization steps that are expensive in
2PC and are the main performance bottlenecks. However,
normalization and rounding are crucial for two reasons: (i)
preventing overflows while operating on finite bits, and (ii)
subsequent operations guarantee precision assuming a normal-
ized floating-point input. Repeated rounding also leads to ag-
gregation of rounding errors, and final relative error depends
on n, the length of the summation performed. In particular,

PyTorch can incur a relative error of εκn where ε is machine
epsilon [28] of the floating-point representation and κ is the
condition number [65] of the summation problem (see The-
orem 1 for exact definition), which is a real-valued quantity
that is independent of how summation is implemented in
finite-precision floating-point.

To address this performance bottleneck in summation,
our first idea is to perform intermediate computations in
large-enough bitwidths to replicate exact real arithmetic
followed by one final normalization and rounding step.
However, this approach requires the bitwidth to depend on
the difference in magnitudes of the largest and the smallest
values being added and could be as large as 276+ logn bits
for FP32. Hence, this turns out to be quite expensive in 2PC
and also wasteful. In light of this, we set our goal to have
smaller worst case relative error compared to traditional
approaches, say, close to εκ. With this error in mind, we
carefully determine a threshold such that we can pick a
reasonable bitwidth ℓ to ensure that (i) all values with
magnitude larger than the threshold are exactly summed
and (ii) ignoring all values with magnitude smaller than the
threshold leads to at most εκ error. After doing summation of
values that matter in ℓ bits, we perform one normalization
and rounding. The final rounding leads to additional ε error
and our overall relative error is at most ε(κ+1). We note that
unlike all traditional approaches, our error is independent of
n. Our approach also results in 5× fewer communication
rounds over SECFLOAT (Section 5.1) for n = 1000.

BFloat16 training. Recall from Section 1.1.2 that in
BFloat16 (or BF16) training, dot products (and matrix multi-
plications) multiply and sum BF16 values in FP32. However,
simply performing all arithmetic in FP32 is wasteful and we
miss out on any performance benefits of using BF16. Our
starting point is the observation that the precision of the exact
product of two BF16 values (14-bits) is smaller than the preci-
sion of FP32 (23-bits), and thus, we can compute over smaller
intermediate bitwidths than in FP32. However, our FP32 sum-
mation protocol expects a precision of 23-bits. Consequently,
it will pick a larger threshold leading to more values being
ignored, and a higher (and unacceptable) final error. Hence,
to provide the same guarantees as the underlying FP32 com-
putation, we artificially increase the precision of intermediate
products, which were computed exactly, to match that of FP32.
We also remove the normalization step used in multiplications.
Since this violates the input precondition of summation de-
scribed above, we need to further generalize our summation
protocol to accept unnormalized inputs without losing its ben-
efits. Overall, we meet the specified precision and obtain a
performance improvement of 1.7× over dot product (length-
1000 vectors) in FP32 (Table 7) that can be attributed to use
of lower bitwidths in both the multiplications for intermediate
products as well as the summation, and avoiding the use of
operations like rounding.

3

Finally, even for scalar/SIMD non-linear activations such
as Sigmoid and Tanh, the specification requires computations
over FP32 followed by rounding to BF16. We exploit the
lower bitwidth of BF16 and domain knowledge to provide
efficient protocols that beat the approach of computing inter-
mediate results over FP32 by 5×.

3 Preliminaries

We define notation, secret sharing, threat model for secure
training followed by 2PC building blocks over integers.

3.1 Notation
We denote the computational security parameter by λ and [n]
denotes the set {1, . . . ,n}. Variable names with Roman letters
(a, b, etc.) are integer-typed and those with Greek letters (α, β,
etc.) are floating-point. The indicator function 1{P} returns 1
if the predicate P is true and 0 otherwise; x||y concatenates
bit-strings x and y. An ℓ-bit integer x ∈ Z2ℓ can be interpreted
as an unsigned integer uint(x) = ζℓ(x), where ζℓ is a lossless
lifting operator from bitstrings in Z2ℓ to integers in Z. Using
the 2’s complement encoding, x can also be interpreted as a
signed integer int(x) = uint(x)−MSB(x) ·2ℓ, where MSB(x)
is the most-significant bit of x.
Fixed-point: An unsigned fixed-point number x ∈ Z2ℓ with
bitwidth ℓ and scale s represents the real number uint(x)

2s ∈Q.

3.2 Secret Sharing
Secret sharing [9, 63] is a technique of distributing a secret
among a group of parties by allocating each party a share of
the secret. In this work, we consider 2-out-of-2 additive secret
sharing where a secret x ∈ Z2ℓ is split into two shares ⟨x⟩ℓ =
(⟨x⟩ℓ0,⟨x⟩ℓ1)∈ (Z2ℓ)

2 and party Pi holds ⟨x⟩ℓi . Each secret share
⟨x⟩ℓi has the property that it reveals nothing about the secret x
in isolation but the shares can all be put together to reconstruct
the secret x as follows: x = ⟨x⟩ℓ0 + ⟨x⟩ℓ1 mod 2ℓ. We use the
superscript B to denote secret-shares of boolean values ∈ Z2.

3.3 2PC and Threat Model
Secure 2-party computation (2PC) introduced by [29, 73]
allows two parties P0 and P1 to compute an agreed upon
function f on their sensitive inputs x and y, respectively. It
provides an interactive protocol with the strong guarantee
that the interaction reveals nothing about the sensitive inputs
beyond what can be inferred from the output. A common
approach for 2PC is where parties begin by secret sharing
their inputs with the other party and run a protocol that takes
shares of (x,y) to securely generate shares of f (x,y). Then,
the parties exchange the shares of the output and reconstruct
the output. With this design in mind, it is sufficient to construct

2PC protocols, for operations in machine learning, that go
from shares of input to shares of output securely.
2PC threat model. Our threat model is same as SecureML [55]
and considers a static probabilistic polynomial-time (PPT)
semi-honest adversary. It corrupts one of the parties (P0 or P1)
at the beginning of the protocol and tries to learn information
about honest party’s sensitive input while following the pro-
tocol specification faithfully. We argue security against this
adversary in the standard simulation paradigm [13, 29, 48]
that argues indistinguishability of the views of the adversary
in the real execution and ideal execution in the presence of a
trusted third party that takes inputs and provides the function
outputs alone.
Client-Server Model for secure training of DNNs [55] consid-
ers n clients with sensitive training data (Ci has xi, i ∈ [n]) and
2 inputless servers, S0 and S1. The goal is for the clients to
learn the output of an ML training algorithm y= f (x1, . . . ,xn).
We consider an static semi-honest adversary that corrupts at
most one server and n−1 clients. For secure training in this
setting, the clients first secret share their inputs among two
servers S0 and S1, who run the 2PC protocol for training to ob-
tain shares of y that are sent to the clients. Clients reconstruct
y to learn the output of the training algorithm.

3.4 Integer Building Blocks
Table 1 describes the fixed-point or integer operations that
BEACON uses in its protocols for floating-point compound
operations. The communication and round costs6 of the cor-
responding protocols are given in Table 2. Improvement in
these costs will directly improve BEACON. All of these op-
erations except Round-Nearest (RN) have been considered
and discussed in detail in the cited works. RN rounds an ℓ-bit
value to a (ℓ− s)-bit value. Note that SECFLOAT [60] pro-
vided a more complex protocol that achieves round to nearest
and ties to even, which was required for its correctness guar-
antees. For our precision guarantees (Section 4.2), a simpler
function RN(x,s) = ⌊ x

2s ⌉, that does round to nearest and ties
are always rounded up suffices and is also cheaper in 2PC. It
is easy to see that ⌊ x

2s ⌉= ⌊ x+2s−1

2s ⌋, and hence, we implement
our protocol as Π

ℓ,s
RN(⟨x⟩

ℓ) = Π
ℓ,s
TR(⟨x⟩

ℓ+ 2s−1), where Π
ℓ,s
TR

is the truncate-reduce protocol from [61] that rounds down by
truncating the lower s bits of x.

4 Floating-point Background

We review the basics of floating-point representation and the
precision guarantees of floating-point implementations. Then
we define the secret sharing of floating-point values and the
helper protocols we use.

6The MSB-to-Wrap optimization from SIRNN [61] is applicable to all
instances of extension and multiplication, and thus, we report the optimized
costs for these building blocks.

4

Functionality
Notation

Description
Algorithm Protocol

Integer/Fixed-point Building Blocks

Multiplexer [62] z = c ? x : y ⟨z⟩ℓ = Πℓ
MUX(⟨c⟩

B ,⟨x⟩ℓ ,⟨y⟩ℓ) z = x if c = 1, else z = y

Less-Than [62] c = 1{x < y} ⟨c⟩B = Πℓ
LT(⟨x⟩

ℓ ,⟨y⟩ℓ) Checks if x < y, x,y ∈ Z2ℓ

LT&EQ [60]
c = 1{x < y}
e = 1{x = y} ⟨c⟩B ,⟨e⟩B = Πℓ

LT&EQ(⟨x⟩
ℓ ,⟨y⟩ℓ) Checks if x < y and if x = y,

x,y ∈ Z2ℓ

Zero-Extension [61] y = ZXt(x,n) ⟨y⟩n = Π
m,n
ZXt(⟨x⟩

m) ζn(y) = ζm(x) mod 2n,m ⩽ n

Round-Nearest (Section 3.4) y = RN(x,s) ⟨y⟩ℓ−s = Π
ℓ,s
RN(⟨x⟩

ℓ) Upper ℓ− s bits of (x+2s−1)

Most Significant
Non-Zero Bit [61, 72] k,K =MSNZB(x) ⟨k⟩ℓ ,⟨K⟩ℓ = Πℓ

MSNZB(⟨x⟩
ℓ)

k, s.t. xk = 1∧∀i > k,xi = 0,
K = 2ℓ−1−k

Lookup Table (LUT) [23] y = L(x),y ∈ Z2n ⟨y⟩n = Π
m,n
LUT(L,⟨x⟩

m) index x, LUT L, z ∈ Z2n

Unsigned Mixed-bitwidth
Multiplication [61] z = x∗ℓ y ⟨z⟩ℓ = Π

m,n,ℓ
UMult(⟨x⟩

m ,⟨y⟩n)
ζℓ(z) = ζm(x) ·ζn(y) mod 2ℓ,

ℓ⩾max(m,n)
Find Maximum [60] y =maxi∈[n]xi ⟨y⟩ℓ = Π

ℓ,n
max({⟨xi⟩ℓ}i∈[n]) Find the maximum xi

Floating-point Building Blocks

Normalize [60] m′,e′ =Normalizep,q,Q(m,e) ⟨m′⟩Q+1 ,⟨e′⟩p+2 = Π
p,q,Q
Normalize(⟨m⟩Q+1 ,⟨e⟩p+2) Section 4.4.1

Round&Check [60] m′,e′ = Round&Checkp,q,Q(m,e) ⟨m′⟩q+1 ,⟨e′⟩p+2 = Π
p,q,Q
Round&Check(⟨m⟩Q+1 ,⟨e⟩p+2) Section 4.4.2

Clip [60] α = Clipp,q(z,s,e,m) ⟨α⟩FP(p,q) = Π
p,q
Clip(⟨z⟩

B ,⟨s⟩B ,⟨e⟩p+2 ,⟨m⟩q+1) Section 4.4.3

Table 1: 2PC building blocks used by BEACON.

Protocol Communication Rounds

Πℓ
MUX [62] 2λ+2ℓ 2

Πℓ
LT [62] λℓ+14ℓ log(ℓ)

Πℓ
LT&EQ [60] λ(ℓ+3)+14ℓ+60 log(ℓ)+2

Π
m,n
ZXt [61] 2λ−m+n+2 4

Π
ℓ,s
RN (Section 3.4) λ(s+1)+ ℓ+13s log(s)+2

Πℓ
MSNZB [61, 72] λ(5ℓ−4)+ ℓ2 2

Π
m,n
LUT [23] 2λ+2mn 2

Π
m,n,ℓ
UMult [61]

λ(2µ+6)+µ(µ+2ν)
+3µ+2ν+4 4

Π
ℓ,n
max [60] (n−1) · (Πℓ

LT+Πℓ
MUX) log(n) · (Πℓ

LT+Πℓ
MUX)

Π
p,q,Q
Normalize [60] λ(7Q+3)+(Q+1)2 4

Π
p,q,Q
Round&Check [60]

λ(2Q−q+6)+28Q
−11q+2p+21 log(Q+1)+4

Π
p,q
Clip [60] λ(p+6)+2q+16p+34 log(p+2)+2

Table 2: Cost of 2PC building blocks used by BEACON. All
communication is in bits. µ =min(m,n),ν =max(m,n).

4.1 Floating-Point Representation

According to the IEEE-754 standard [4], a floating-point
value α = (−1)s ·2e−bias · (1+ m

2q) is represented as s||e||m ∈
{0,1}p+q+1, where s is the sign-bit, e is the (biased) p-bit
exponent, bias= 2p−1 −1, and m is the q-bit mantissa. There
are several floating-point representations defined by tuples
(p,q), which define the range and precision, respectively. For
instance, the representation tuple for FP32 is (8,23), for BF16
is (8,7), and for FP19 is (8,10). Rounding to (p,q) represen-
tation introduces a relative error of at most ε = 2−q−1, that is
referred to as the machine epsilon.

4.2 Precision of floating-point operations

The IEEE-754 standard precisely defines the output of FP32
scalar operations, and the handling of error conditions (under-
flows, overflows, etc.) using special values (infinities, NaNs,
and subnormals) and operations on these special values (e.g.,
∞−∞ is NaN). However, the IEEE standard makes no com-
ments about the compound operations, which is the subject
of our study here.

We make two remarks. First, in numerical analysis text-
books [65], the precision of compound operations is estab-
lished with pen-and-paper proofs that bound the relative error
between the output of a floating-point implementation and
the ideal Real result. Second, in ML training implementations
inside PyTorch, the floating-point implementations lack the
handlers for special values. Hence, to prove the precision of
our protocols, we prove bounds on the relative error between
the output α computed by the protocol and the ideal Real
result r, assuming that special values do not arise during the
computations. Recall that relative error between α and r is
|α−r

r |. We say that a protocol for a compound operation is
precise if the worst case relative error of the protocol output is
the same or lower than the worst case relative error of the out-
put produced by the standard textbook implementations of the
operator. Note that all floating-point implementations incur
numerical errors, including the implementations in PyTorch
and BEACON, and performing several operations in sequence
accumulates the worst case errors. Given two implementa-
tions, the one with the lower (or, same) worst case relative
error is said to be more precise.

5

4.3 Secret sharing of floating-point values
Identically to [60], we represent a floating-point value α

parameterized by p,q ∈ Z+ as a 4-tuple (α.z,α.s,α.e,α.m)
where α.z = 1{α = 0} is the zero-bit, α.s ∈ {0,1} is the
sign-bit (set if α ⩽ 0), α.e ∈ {0,1}p+2 is the (unbiased)
exponent7 taking values in [−2p−1 + 1,2p−1), and α.m ∈
{0,1}q+1 is the normalized fixed-point mantissa with scale
q taking values from [2q,2q+1 − 1]∪ {0}. Note that while
IEEE-754 standard stores just q bits of mantissa m′ as the
leading bit is always 1 (implicitly), we instead explicitly
store the mantissa in q+ 1 bits along with the leading bit,
i.e, α.m = 2q +m′. Consistent with this notation, a secret
shared floating-point value α is a tuple of shares ⟨α⟩FP(p,q) =

(⟨α.z⟩B ,⟨α.s⟩B ,⟨α.e⟩p+2 ,⟨α.m⟩q+1). Finally, the Real value
of α, i.e., JαK is zero if α.z = 1 and (−1)α.s ·2int(α.e) · uint(α.m)

2q

otherwise.

4.4 Floating-point Building Blocks
Here we discuss sub-operations that are used by scalar opera-
tions over floating-point in [60] and our compound operations.
2PC protocols for these can be built using the integer building
blocks in Table 1 (see Appendix G).

4.4.1 Normalize

A mantissa is said to be normalized if its most significant bit
(MSB) is 1. During floating-point operations, the mantissa
can become unnormalized, i.e., its bit-representation will have
z zeros in the most-significant-bits. A normalization step
adjusts the exponent by decrementing it by z and left shifts
the mantissa by z to get rid of the leading zeros. Note that
computing z requires computing the location of the most
significant non-zero bit (MSNZB) of the mantissa, which is
an expensive operation in 2PC (Table 1). The normalization
protocol Π

p,q,Q
Normalize (Appendix G.1) takes as input a p+2-bit

exponent and a Q+ 1-bit mantissa with scale q. It returns
a normalized mantissa over Q+1 bits with scale Q and the
adjusted exponent.

4.4.2 Round&Check

We need to round a normalized mantissa m ∈ [2Q,2Q+1) in
higher precision Q to a normalized mantissa m′ ∈ [2q,2q+1) in
lower precision q, while incurring a relative error⩽ ε= 2−q−1.
However, simply using Π

Q+1,Q−q
RN can result in an unnormal-

ized mantissa (= 2q+1) and overflow q+ 1 bits if m is very
close to 2Q+1 (see Section V-B in [60] for details). Thus, we
use Round&Check protocol Π

p,q,Q
Round&Check that additionally

performs this check and adjusts the exponent accordingly
(Appendix G.2).

7The exponent is stored in p+2-bits like [60] to ensure that all exponent
related comparisons can be performed without overflowing the modulus.

4.4.3 Clip

Clipping is used to set results that have a smaller magnitude
than the smallest representable value to 0. For instance, FP32
can only represent normal values in the range [2−126,2128).
Thus, our clipping protocol Π

p,q
Clip sets inputs with exponent

<−126 to 0 (Appendix G.3). Note that handling subnormal
numbers, i.e., those with magnitude less than 2−126 is straight-
forward (subnormals are fixed-point numbers with scale 126),
but it leads to additional performance overheads and is neither
supported by BEACON nor by the SECFLOAT baseline. Some
GPUs don’t support subnormals at all and others provide the
“fast mode" that, like BEACON, clips subnormals to zero [70].

5 Compound Operations in ML

We describe our protocols for secure compound operations.
We begin by discussing our novel protocol for Summation
that sums up the values in a vector and is the backbone for all
linear layers. While the techniques from this section work for
general (p,q), it might be useful for a reader to keep in mind
the example of FP32, i.e., p = 8,q = 23. We defer the discus-
sion of non-linear operations to Appendix H (ReLU, Softmax,
etc.) and focus on linear layers where 99% of training time is
spent. Later, in Section 6, we will discuss the techniques and
further optimizations specific to BFloat16.

5.1 Summation
Given a floating-point vector ααα = (α1, . . . ,αn), where each αi
is a floating-point number, Summation computes γ = ∑

n
i=1 αi.

Before we discuss 2PC protocols for Summation for vectors
of length n > 2, we first recall the (high-level) steps involved
for the case of n = 2, i.e., the addition of 2 floating-point
values parameterized by (p,q):

1. Compare the exponents of the operands and compute their
difference, say d.

2. Left-shift the mantissa of the operand with larger exponent
by d. This step aligns both the mantissas with the corre-
sponding exponent as the smaller exponent.

3. Add/subtract the aligned mantissas based on the sign bits.

4. Use Normalize algorithm (Section 4.4) to normalize the
mantissa to lie in [1,2) and adjust the exponent (if needed).

5. Round the normalized mantissa, which is in higher precision,
to the required precision q (introducing error in computa-
tion) using Round&Check algorithm (Section 4.4).

6. Clip the values smaller than the smallest representable
floating-point number to 0 with Clip (Section 4.4).

Given the floating-point addition algorithm, the most
suitable8 option to compute floating-point Summation is

8Kahan summation [36] incurs worst-case error of 2εκ but requires O(n)
normalization and rounding steps, making it more expensive.

6

Algorithm FPSump,q,n({αi}i∈[n])

1: ñ = log(n); ℓ= 2q+2ñ+3
2: emax =maxi αi.e
3: ethr = emax−q− ñ−1
4: for i ∈ [n] do
5: mi = (αi.e < ethr) ? 0 : αi.m
6: m(align)

i = mi ≪ (αi.e− ethr)

7: m(s)
i = αi.s ? −m(align)

i : m(align)
i

8: M(s) = ∑i∈[n] m
(s)
i

9: (s,z) = LT&EQℓ(M(s),0)
10: M = s ? −M(s) : M(s)

11: (M1,e1) = Normalizep,q,ℓ−1(M,ethr)
12: (M2,e2) = Round&Checkp,q,ℓ−1(M1,e1)

13: Return Clipp,q(z,s,e2,M2)

Figure 1: Floating-Point Summation.

tree-sum (or pairwise summation), that recursively computes
γn = γ n

2 ,1
+ γ n

2 ,2
, where γ n

2 ,1
= ∑

n
2
i=1 αi and γ n

2 ,2
= ∑

n
2
i=1 α n

2+i.
However, keeping in mind the above blueprint, even tree-sum
has three drawbacks: (i) number of cryptographically
expensive operations like normalization (step 4) and rounding
(step 5), as well as clip (step 6), scale linearly with n, (ii)
the worst-case relative error compared to the computation
over reals is proportional to log(n), and (iii) the number of
communication rounds are log(n) times the round complexity
for a single floating-point addition.

Our Algorithm. We propose an algorithm for floating-point
Summation that addresses all three drawbacks. The key in-
sight in our algorithm is that the expensive steps, i.e., normal-
ization, rounding and clipping, can be performed only once
for the whole vector, as opposed to once per addition. This is
because we only require the final output to be a normalized
floating-point value and no such guarantees are required for
intermediate values. This not only reduces the cryptographic
cost greatly (by avoiding unnecessary normalization, rounding
and clips), but, as we formally prove, also makes the worst-
case error independent of n. Finally, the round complexity of
the resulting 2PC protocol is log(n) times the rounds for com-
parison and multiplexer on p+2 bits, plus a constant. Note
that this is much lower than the tree-sum discussed above. In
the remainder of this section, we first describe our algorithm
for Summation, then prove its worst case error bounds, and
finally describe a 2PC protocol for Summation over secret
shared floating-point.

Our Summation algorithm FPSump,q,n is described for-
mally in Figure 1 and has the following steps:

1. Compare the exponents of all vector elements to find the
largest exponent emax (Step 2). For ñ = log(n), define ethr =
emax−q− ñ−1 and threshold Γ= 2ethr such that only vector
elements with magnitude ⩾ Γ contribute to the sum (Step 3).

Thus, we set the mantissa of all values with exponent < ethr
to 0 (Step 5).

2. For all i, left-shift the mantissa of αi by (αi.e− ethr), essen-
tially setting the exponents of all elements to ethr (Step 6).
Note that a bitwidth of 2q+ ñ+2 suffices for all left-shifted
mantissas as (αi.e− ethr)⩽ q+ ñ+1.

3. To be able to simply add the mantissas now, we convert
the unsigned mantissas m(align)

i to signed mantissas m(s)
i by

multiplexing using the sign bit αi.s (Step 7).

4. Next, simply add the n aligned signed mantissas (Step 8).
This step requires additional ñ+1 bits, i.e., needs to be done
in ℓ= 2q+2ñ+3 bits to ensure no overflows.

5. Find the sign of the resulting signed mantissa M(s) and
whether it is equal to 0 by a (signed) comparison with 0 and
set the sign bit s and zero bit z accordingly (Step 9).

6. Use the sign bit to revert the mantissa M(s) to unsigned
value (Step 10).

7. Use Normalize algorithm (Section 4.4) to normalize the ℓ-
bit output mantissa (with scale q) to lie in [1,2) with scale
(ℓ−1) and adjust the exponent accordingly (Step 11).

8. Round the normalized mantissa which is in higher preci-
sion (ℓ− 1) to the required precision q (Step 12) using
Round&Check algorithm (Section 4.4).

9. Finally, clip the values smaller than the smallest repre-
sentable floating-point number with (p,q) to 0 (Step 13)
using Clip algorithm (Section 4.4).

The value of ethr has been carefully chosen to help obtain
low numerical error in Theorem 1. This algorithm assumes
a relation between p and n. In particular, ethr needs to fit in
(p+1) bits. Concretely, for p= 8 (that is true for FP32, BF16,
FP19), n needs to be smaller than 2105 that trivially holds for
any practical summation.

Observe that the algorithm invokes the expensive steps
of normalize, round and clip only once, instead of n times
in the tree sum algorithm. Next, we report the precision of
our algorithm and a description of the corresponding 2PC
protocol with its complexity.

Theorem 1. The relative error of Figure 1 is at most ε ·
(κ+ 1)+O(ε2κ), where ε = 2−q−1 is machine epsilon and

κ =
∑i∈[n] |αi|
∑i∈[n] αi

is the condition number of summation.

Proof. Let γ̂ and γ represent the output of FPSum and result
of summation over reals, respectively. Let αk be the element
with the largest exponent. Note that |αk|⩾ 2emax and up until
the rounding step (before Step 12), FPSum computes the sum
γ′ of all elements ⩾ 2ethr exactly. Thus, the total magnitude
of elements set to 0 in Step 5 that are ignored by FPSum
is at most n ·2ethr ⩽ 2emax ·2−q−1 ⩽ |αk| ·2−q−1. Hence, |γ−
γ′|⩽ |αk| ·ε, where ε = 2−q−1 is the machine epsilon, and the

relative error of γ′ is |∆|= |γ−γ′|
|γ| ⩽ |αk|·ε

∑i∈[n]αi
⩽

∑i∈[n] |αi|·ε
∑i∈[n]αi

= ε ·κ.

7

The final output γ̂ of FPSum is obtained after rounding γ′

to q mantissa bits. Thus, γ̂ = γ′(1+δ) [28], where |δ|⩽ ε, and
the absolute error of γ̂ w.r.t. γ is:

|γ− γ̂|= |γ− γ
′(1+δ)|= |γ− γ(1+∆)(1+δ)|

= |γ(δ+∆+δ∆)|⩽ |γ| · (ε+ εκ+ ε
2
κ).

Thus, the relative error of γ̂ is |γ−γ̂|
|γ| ⩽ ε(κ+1)+O(ε2κ).

Since our algorithm FPSum incurs lower worst-case error
than the linear summation, there is a potential optimization
opportunity that explores trading off precision for better
performance. For instance, to get the same worst-case error
bound as linear summation, we can set ethr = emax − q− 2
(instead of emax − q − ñ − 1) and ℓ = 2q + ñ + 4 (instead
of 2q + 2ñ + 3). This leads in reduction of bitwidth by
ñ − 1 in various steps, which could lead to a significant
improvement if n is large (e.g. 14% if n = 210). We do not
use this optimization and use FPSum as is.

Secure Protocol. Figure 2 describes the 2PC protocol cor-
responding to our Summation algorithm FPSum (Figure 1).
For each step of the algorithm in Figure 1, we invoke the
corresponding 2PC protocol that takes the shares of the inputs
and returns the shares of the outputs (see Section 3.4 for the
2PC building blocks used for this transformation). With this,
the transformation from the algorithm to the 2PC protocol is
straightforward for all steps except the left-shift step needed to
align the mantissas (Step 6, Figure 1) and additional extension
needed before adding the signed mantissas in Step 8, Figure 1.
In Figure 2, steps 7-9 implement the left-shift of mantissas.
Note that left-shift by r-bits can be implemented by multiply-
ing the value by 2r (in sufficient bitwidth). Also, since the
shift amount for a mantissa is secret-shared, we need to com-
pute the power-of-2 operation for a secret-shared input. Since
we have a bound on the shift amount, we can implement it effi-
ciently using a lookup table. In more detail, our algorithm left-
shifts the ith mantissa mi by ri = (αi.e− ethr) < (q+ ñ+2).
We store ri in k = ⌈log(q + ñ + 2)⌉ bits (using a modulo
by 2k in Step 7), which we assume is smaller than p+ 2,
as is the case for all floating-point representations used in
practice. Consider a lookup table pow2 with 2k entries over
{0,1}q+ñ+2 such that pow2[i] = 2i. We do a secret lookup
in pow2 at index ri to learn shares of 2ri . Then, we mul-
tiply with mi to obtain m(align)

i in 2q+ ñ+ 2 bits. Next, to
avoid overflows during addition of (aligned) mantissas and
to accommodate the sign-bit, we require additional ñ+1 bits.
Hence, in Step 10, we extend the mantissa to ℓ= 2q+2ñ+3
bits. This protocol computes the same result as FPSum and
we state security in Section 7.
Complexity. As can be observed, the round complexity of
our protocol is equal to the round complexity of Π

p+2,n
max (to

compute the maximum exponent) plus roughly the round

complexity of a single floating point addition. In contrast, the
round complexity of tree-sum based protocol is roughly logn
times the round complexity of a floating-point addition. Con-
cretely, for FP32, we require 6 logn+73 rounds compared to
69logn in SECFLOAT that uses tree sum. Moreover, commu-
nication complexity of our protocol for FP32 and n = 2000 is
4.4× lower than SECFLOAT (Figure 5).

5.2 Generalized Summation
Our Summation algorithm in Section 5.1 requires that the
inputs are normalized floating-point values with the same
(p,q) parameters as the desired output. We propose a gen-
eralized Summation that can sum up unnormalized floating-
point values. As we will see later, this generalized Summation
would play a crucial role in our protocols for dot products and
BFloat16 datatype as well.

First, we set up the problem statement. Input is ααα =
(α1, . . . ,αn), where each αi is an unnormalized floating-point
value with a (p + 2)-bit signed exponent αi.e ∈ [−2p−1 +
1,2p − 1) and an unnormalized (unsigned) mantissa αi.m
with bitwidth b, lower bound on MSNZB b′, and scale sc such
that αi.m ∈ [2b′ ,2b). That is, unlike a normalized mantissa,
αi.m can have at most (b−b′−1) leading 0’s. The result of
summation must be a normalized floating-point number with
parameters (p,q), where sc⩾ q.

Our algorithm for generalized Summation follows the
blueprint of FPSum with the following modifications to deal
with unnormalized mantissas. First, after computing emax, we
set ethr = emax− sc− ñ− (b−b′) so that we can still safely
ignore the values smaller than the threshold Γ = 2ethr . With
this change, the maximum shift amount is sc+ ñ+(b−b′) (as
opposed to q+ ñ+1) and consequently, we need to increase
ℓ to 2b− b′ + sc+ 2ñ+ 1 to ensure exact summation of n
aligned and signed mantissas. Since normalization expects an
input with scale q and the sum of aligned mantissas M has
scale sc, we also change the scale of M to q and accordingly
add q− sc to the exponent.

We describe our algorithm for generalized Summation,
g-FPSum, parameterized by b,b′,sc, p,q,n in Figure 3 and
prove below that it achieves the same error bounds as be-
fore. Moreover, g-FPSum can easily be transformed to a 2PC
protocol Π

b,b′,sc,p,q,n
g-FPSum over secret shared input using the same

steps as in Section 5.1.

Theorem 2. The relative error of Figure 3 is at most ε+δκ+

O(εδκ), where ε = 2−q−1, δ = 2−sc−1, and κ =
∑i∈[n] |αi|
∑i∈[n] αi

is the
condition number of summation.

Proof. Let αk be the element with the largest exponent, and
let γ and γ′ represent the sum of all elements and sum of all
elements with exponent ⩾ ethr, respectively. We only need
to argue that |γ− γ′| ⩽ |αk| · δ, where δ = 2−sc−1, and the
rest of proof follows in the same way as the proof of The-
orem 1. It is easy to see that |αk| ⩾ 2b′−s+emax and each

8

Protocol Π
p,q,n
FPSum

Input: i ∈ [n],⟨αi⟩FP(p,q).
Output: ⟨γ⟩FP(p,q) s.t. γ = ∑

n
i=1 αi.

1: ñ = log(n); ℓ= 2q+2ñ+3
2: Call ⟨emax⟩p+2 = Π

p+2,n
max ({⟨αi.e⟩p+2}i∈[n]) ▷ Find max exponent emax

3: Set ⟨ethr⟩p+2 = ⟨emax⟩p+2 −q− ñ−1 ▷ Threshold exponent ethr = emax−q− ñ−1
// Steps 5-11 implement steps 5,6,7 of Figure 1

4: for i ∈ [n] do
5: Call ⟨ci⟩B = Π

p+2
LT (⟨αi.e⟩p+2 ,⟨ethr⟩p+2) ▷ Compare αi’s exponent with < ethr

6: Call ⟨mi⟩q+1 = Π
q+1
MUX(⟨ci⟩B ,0,⟨αi.m⟩q+1) ▷ Set mantissa of αi to 0 if αi.e < ethr

7: Set ⟨ri⟩k = (⟨αi.e⟩p+2 −⟨ethr⟩p+2) mod 2k, where k = ⌈log(q+ ñ+2)⌉ ▷ Compute shift amount ri ⩽ q+ ñ+1 in k bits

8: Call ⟨Ri⟩q+ñ+2 = Π
k,q+ñ+2
LUT (pow2,⟨ri⟩k) ▷ Ri = 2ri = pow2(ri)

9: Call
〈

m(align)
i

〉2q+ñ+2
= Π

q+1,q+ñ+2,2q+ñ+2
UMult (⟨mi⟩q+1 ,⟨Ri⟩q+ñ+2) ▷ Align the mantissa mi by left-shifting by ri

10: Call
〈

m(ext)
i

〉ℓ
= Π

2q+ñ+2,ℓ
ZXt

(〈
m(align)

i

〉2q+ñ+2
)

▷ Extend to make space for addition of n elements and sign-bit

11: Call
〈

m(s)
i

〉ℓ
= Πℓ

MUX(⟨αi.s⟩B ,−1 ·
〈

m(ext)
i

〉ℓ
,
〈

m(ext)
i

〉ℓ
) ▷ Set sign of mantissa same as input αi

12: Set
〈

M(s)
〉ℓ

= ∑i∈[n]

〈
m(s)

i

〉ℓ
▷ Add the aligned mantissas to get M(s)

13: Call (⟨s⟩B ,⟨z⟩B) = Πℓ
LT&EQ(

〈
M(s)

〉ℓ
,0) ▷ Set s = 1{M(s) < 0},z = 1{M(s) = 0}

14: Call ⟨M⟩ℓ = Πℓ
MUX(⟨s⟩

B ,−1 ·
〈

M(s)
〉ℓ

,
〈

M(s)
〉ℓ
) ▷ M = |M(s)|

15: Call (⟨M1⟩ℓ ,⟨e1⟩p+2) = Π
p,q,ℓ−1
Normalize(⟨M⟩ℓ ,⟨ethr⟩p+2) ▷ ethr is the exponent for unnormalized M

16: Call (⟨M2⟩q+1 ,⟨e2⟩p+2) = Π
p,q,ℓ−1
Round&Check(⟨M1⟩ℓ ,⟨e1⟩p+2) ▷ Reduce precision of mantissa from (ℓ−1) to q

17: Call and return ⟨γ⟩FP(p,q) = Π
p,q
Clip(⟨z⟩

B ,⟨s⟩B ,⟨e2⟩p+2 ,⟨M2⟩q+1) ▷ Clip smaller than smallest representable values to 0

Figure 2: Protocol for Floating-Point Summation.

omitted term ⩽ 2b−s+ethr−1. Thus, the sum of omitted terms
has a magnitude < n ·2b−s+ethr−1 = 2b−s+emax−sc−(b−b′)−1 =
2b′−s+emax−sc−1 ⩽ |αk| ·2−sc−1 and |γ− γ′|⩽ |αk| ·δ.

5.3 Dot product and matrix multiplication

Given floating-point vectors ααα = (α1, . . . ,αn) and βββ =
(β1, . . . ,βn), DotProduct is defined as γ = ∑i∈[n] αi ·βi. Thus,
dot product can be realized naively by first computing the
intermediate products γγγ = {αi ·βi}i∈[n] using floating-point
multiplication protocol for scalars, Π

p,q
FPMul, from [60], and

then calling our protocol for Summation, Π
p,q,n
FPSum (Figure 2)

on γγγ. We reduce the cost of this approach further by remov-
ing the normalization step in the floating-point multiplication
followed by using our protocol for generalized Summation
(Section 5.2). In our dot product protocol, the exponents of
αi and βi are added and the mantissas of αi and βi are mul-
tiplied. The latter creates unnormalized 2q+2-bit mantissas
with scale 2q and values in ∈ [1,4). We round these interme-
diate products to q+2 bits with scale q, perform clipping to
0 (to satisfy the constraints on exponents of inputs in general-
ized Summation in Section 5.2), and then invoke generalized

summation (Πq+2,q,q,p,q,n
g-FPSum) to get the output of the dot product.

Our protocol Π
p,q,n
FPDotProd for dot product is formally described

in Figure 7, Appendix E. For n = 1000, our approach has
1.2× lower communication than the naive approach and is
just as precise as proved below. The protocols for matrix
multiplication and convolutions build on top of dot product
(Appendix F).

Theorem 3. Our dot product protocol Π
p,q,n
FPDotProd is as pre-

cise as Π
p,q,n
FPSum({Π

p,q
FPMul(⟨αi⟩FP(p,q),⟨βi⟩FP(p,q))}i∈[n]).

Proof. We first look at the worst-case relative error of
Π

p,q,n
FPDotProd. This protocol first computes the product of man-

tissas mi exactly, and then rounds it to q + 2 bits. Impor-
tantly, q+2 bits suffice for the output of rounding m′

i as mi ∈
[22q,(2q+1 −1)2], and thus, m′

i = RN(mi,q) ∈ [2q,2q+2 −2].
Note that the rounding operation introduces a relative error
of |δ1| ⩽ 2q−1

|mi| ⩽ 2−q−1 to the intermediate product γi. Un-
less γi is smaller than the smallest representable value, i.e.,
αi.e+βi.e < 1− 2p−1, it is then input as is to Π

q+2,q,q,p,q,n
g-FPSum ,

which adds a relative error of |δ2| ⩽ ε(κ+ 1) +O(ε2κ) to
its output where ε = 2−q−1 (Theorem 2). Thus, the ab-
solute error of Π

p,q,n
FPDotProd is |∑i(γi · (1 + δ2) − αiβi)| =

9

Algorithm g-FPSumb,b′,sc,p,q,n({αi}i∈[n]),sc⩾ q
1: ñ = log(n); ℓ= 2b−b′+ sc+2ñ+1
2: emax =maxi αi.e
3: ethr = emax− sc− ñ− (b−b′)
4: for i ∈ [n] do
5: mi = (αi.e < ethr) ? 0 : αi.m
6: m(align)

i = mi ≪ (αi.e− ethr)

7: m(s)
i = αi.s ? −m(align)

i : m(align)
i

8: M(s) = ∑i∈[n] m
(s)
i

9: (s,z) = LT&EQℓ(M(s),0)
10: M = s ? −M(s) : M(s)

11: (e,M′) = Normalizep,q,ℓ−1(ethr+q− sc,M)

12: (e1,M1) = Round&Checkp,q,ℓ−1(e,M′)

13: Return Clipp,q(z,s,e1,M1)

Figure 3: Generalized Floating-Point Summation.

|∑i αiβi · (1 + δ1)(1 + δ2)− αiβi| ⩽ |∑i αiβi · (ε(κ + 2) +
O(ε2(κ+1)))|, which implies a worst-care relative error of
ε(κ+2)+O(ε2(κ+1)).

Now, we look at the worst-case error of the naïve solution.
Π

p,q
FPMul introduces a worst-case relative error of ε to the inter-

mediate products, the same as Π
p,q,n
FPDotProd. It also clips inter-

mediate products when αi.e+βi.e < 1−2p−1. The interme-
diate products in the naïve solution are then input to Π

p,q,n
FPSum

which has the worst-case relative error of ε(κ+1)+O(ε2κ),
the same as Π

q+2,q,q,p,q,n
g-FPSum . Thus, Π

p,q,n
FPDotProd is as precise as

the naïve solution.

6 BFloat16 training

BFloat16 or BF16 is essentially a lower-precision version
of FP32 with the same dynamic range: mantissa bits q are
reduced from 23 to 7 and exponent bits p = 8 are the same.
In this section, we discuss our techniques for secure imple-
mentation of BF16 that give performance improvements over
BEACON’s FP32 while being more precise than standard plat-
forms for BF16. Recall that in all platforms, BF16 is used just
as a data-storage format, i.e., the inputs and outputs to each
layer of the model are stored as BF16, and the arithmetic is
performed in higher precision FP32 (Section 1.1). Although
we focus on BF16, our techniques generalize in a straight-
forward manner to other representations, e.g., TensorFloat
which uses q = 10. Below, we discuss linear layers and defer
non-linear layers to Appendix I.

6.1 Linear Layers

As discussed in Section 5, our protocols for linear layers build
upon the protocol for dot product. Hence, we discuss our
techniques for secure dot product over BF16. For vectors of

size n, the naïve approach for dot product that converts to
FP32 before computing works as follows:

1. Left-shift the mantissas of the BF16 input vectors by 16 bits
to convert them into FP32 representation.

2. Invoke the dot-product protocol Π
8,23,n
FPDotProd (Section 5.3)

on FP32 vectors.

3. Round the output mantissa obtained above by 16 bits using
Π

8,7,23
Round&Check to get the final BF16 output.

As can be seen easily, this protocol is at least as expensive as
Π

8,23,n
FPDotProd, i.e., dot product of length n over FP32. Another

approach to compute a dot product over BF16, which is much
more efficient, is to directly invoke Π

8,7,n
FPDotProd and return

its output as the final output. However, this has much worse
error compared to the first approach that works over higher
precision (Section 1.1.2). We now describe our protocol that
achieves the best of both worlds: it is only < 30% more ex-
pensive than Π

8,7,n
FPDotProd, and has the same precision as the

standard BF16.
If we look closely at the naïve solution, it is first left-shifting

input mantissas by 16 bits each, then multiplying them, and
finally, rounding the multiplication result by 23 bits to get the
mantissas for the intermediate products, the least significant
9 bits of which are always 0. It is easy to see that this is quite
wasteful, and we can instead simply multiply the input mantis-
sas to get 16-bit mantissas with scale 14 for the intermediate
products without losing precision. However, there is an issue
with this change. Since the mantissas being added only have
scale 14 instead of scale 23 in the naïve approach, the follow-
ing generalized Summation would ignore more values than
the naïve approach (ethr depends on the scale sc and lower
scale leads to higher ethr and larger magnitude values being
dropped from the sum). Hence, we fix this in the second step,
by increasing the scale of mantissa (but not the bitwidth) by
9-bits and accordingly adding 9 to the exponent to account
for the scale change, thereby obtaining an exact intermediate
product in 16 bits and scale 23. These mantissas with higher
scale are now fed into the generalized Summation protocol by
invoking Π

16,14,23,8,7,n
g-FPSum . Our approach is much more efficient

as it avoids the expensive steps of multiplication on 24-bit in-
puts (Step 3) and rounding by 23-bits (Step 6) in Π

8,23,n
FPDotProd,

as well as operates on mantissas of 16-bits as opposed to 25
bits in generalized summation. Our BF16 dot-product proto-
col Πn

FPDotProdBF16 is described in Figure 4 and its precision
is proved below. For secure matrix multiplications over BF16
we use the COT-optimization discussed in Appendix F in
conjunction with our protocol for dot product over BF16.

Theorem 4. The relative error of Πn
FPDotProdBF16 is at most

δκ+ ε+O(εδκ), where ε = 2−8, δ = 2−24, and κ is the con-
dition number.

Proof. We first calculate the relative error of our protocol
Πn

FPDotProdBF16. We note that the intermediate products are

10

Protocol Πn
FPDotProdBF16({αi,βi}i∈[n])

Input: i ∈ [n],⟨αi⟩FP(8,7),⟨βi⟩FP(8,7).
Output: ⟨γ⟩FP(8,7) s.t. γ = ∑i∈[n] αi ·βi.

1: for i ∈ [n] do
2: Set ⟨ei⟩10 = ⟨αi.e⟩10 + ⟨βi.e⟩10 +9
3: Call ⟨mi⟩16 = Π

8,8,16
UMult(⟨αi.m⟩8 ,⟨βi.m⟩8)

4: Set ⟨si⟩B = ⟨αi.s⟩B ⊕⟨βi.s⟩B

5: Call ⟨zi⟩B = ΠOR(⟨αi.z⟩B ,⟨βi.z⟩B)
6: Call ⟨c⟩B = Π10

LT(⟨ei⟩10 ,−127)

7: Call
〈
m′

i
〉16

= Π16
MUX(⟨c⟩

B ,0,⟨mi⟩16)

8: Call
〈
e′i
〉10

= Π10
MUX(⟨c⟩

B ,−127,⟨ei⟩10)

9: Set ⟨δi⟩FP
′
= (⟨zi⟩B ,⟨si⟩B ,

〈
e′i
〉10

,
〈
m′

i
〉15

)

10: Return ⟨γ⟩FP(8,7) = Π
16,14,23,8,7,n
g-FPSum ({⟨δi⟩FP

′})

Figure 4: Protocol for BF16 Dot Product.

calculated exactly, unless they are much smaller than the
smallest representable exponent, i.e., αi.e+βi.e+9 <−127.
Hence, the relative error of our scheme is same as relative
error introduced by generalized summation Π

16,14,23,8,7,n
g-FPSum , i.e.,

δκ+ ε+O(εδκ) for ε = 2−8,δ = 2−24 by Theorem 2.

Corollary 1. Πn
FPDotProdBF16 is more precise than the naïve

solution that left-shifts input mantissas, performs Π
8,23,n
FPDotProd

and rounds by Π
8,7,23
Round&Check.

Proof. For comparing our error with the naïve solution, we
first observe that it also computes products exactly modulo
clipping small values to 0. However, the naïve solution clips
values for which αi.e+βi.e < −127. That is, our approach
clips less number of elements before summation. Next, the
relative error of the the naïve solution depends on relative
errors of Π

25,23,23,8,23,n
g-FPSum and Π

8,7,23
Round&Check. Again by Theo-

rem 2, relative error of Π
25,23,23,8,23,n
g-FPSum is δ(κ+ 1)+O(δ2κ).

Next, since Π
8,7,23
Round&Check introduces worst-case relative er-

ror of ε, the final relative error of the naïve solution is
δ(κ+1)+ ε+O((ε+δ)δκ) using similar argument on com-
bining relative errors as in proof of Theorem 3. This clearly
shows that the relative error of the naïve solution is more than
our protocol Πn

FPDotProdBF16.

7 2PC for training and security proofs

We note that all our protocols for linear layers (Section 5,6)
and non-linear layers (Appendix H, I)satisfy the condition
that parties/servers P0 and P1 start with secret shares of inputs
and end up with secret shares of outputs. Using this, our 2-
party protocol for end-to-end secure training works by putting
together protocols for linear layers and non-linear layers as
specified by the training algorithm for both the forward and

the backward passes. As is standard, the security of our train-
ing algorithms can be argued in the hybrid model [13] by
composing the building blocks and we defer the complete
security proof to Appendix J.

8 Implementation

We have implemented BEACON as a library in C++ on top
of SECFLOAT with 5k LOC. This library’s API provides
operators arising in secure training, e.g., matrix multiplica-
tions, convolutions with various paddings and strides, ReLU
and Maxpool, softmax, loss functions like mean squared er-
ror (MSE) and cross-entropy, etc. For other operators, e.g.,
trigonometric sine, we use SECFLOAT [60] as is.

9 Evaluation

We provide empirical evidence for the claims in Section 1.1,
i.e., BEACON outperforms state-of-the-art in secure floating-
point by over 6× (Section 9.1), and achieves secure floating-
point training with < 6× the latency of secure fixed-point
training with KS22 [41] (Section 9.2).
Evaluation Setup. We perform our experiments in the LAN
setup between two 2.35 GHz AMD processor 16-core ma-
chines with 64 GiB memory that are connected through a net-
work with 10 Gbps bandwidth and 73 µs latency (measured
through netperf). We measure both end-to-end runtime and
communication, without assuming an offline phase (similar
to prior works [5, 33, 43, 45, 60–62, 64]). All experiments use
16 threads for BEACON as well as all the baselines.
Benchmarks. We use the MNIST-10 dataset that has 60,000
28×28 monochrome images and the CIFAR-10 dataset that
has 50,000 32×32 colored RGB images. We consider the fol-
lowing training benchmarks: MNIST-Logistic [55] (a single-
layer logistic classifier for MNIST), MNIST-FFNN [41,43,55]
(a 3-layer feed forward neural network for MNIST), CIFAR-
LeNet [43] (a CNN with 2 convolutions), and CIFAR-
HiNet [31] (a CNN with three convolutions). The description
of these models is present in [1, 2].

We also use the following microbenchmarks (designed to
have similar runtimes) which are commonly occurring compu-
tations in ML: Summation-2k (2000 summations over vectors
of length 2000 each), DotProduct-1k (1000 inner products be-
tween vectors of length 1000), and MatMul-100 (multiplying
a 100×100 matrix with another 100×100 matrix).

9.1 Secure training with BEACON

Figure 5 compares the time and communication of BEACON
with SECFLOAT [60], the state-of-the-art in secure floating-
point, on the microbenchmarks for linear layers (Figure 5(a)-
5(c)) and the training benchmarks for a batch iteration (Fig-
ure 5(d)-5(g)). We relegate the evaluation of non-linear mi-

11

20
40
60
80

100

8.
1×

16
.1
×

Ti
m

e
(s

)

9
18
27
36
45

4.
4×

9.
5×

C
om

m
(G

iB
.)

(a) Summation-2k

5
10
15
20
25

5.
1×

8.
8×Ti

m
e

(s
)

3
6
9
12
15

3.
1×

5.
4×

C
om

m
(G

iB
.)

(b) DotProduct-1k

7.5

15

22.5

30

4.
9×

7.
9×Ti

m
e

(s
)

3
6
9
12
15

3.
7×

6.
4×

C
om

m
(G

iB
.)

(c) MatMul-100

10

20

30

40

50

4.
9×

6.
3×Ti

m
e

(s
)

6
12
18
24
30

3.
8×

6.
2×

C
om

m
(G

iB
.)

(d) MNIST-Logistic

1.25
2.5

3.75
5

6.25

5.
0×

7.
0×

Ti
m

e
(s
×

10
0)

1
2
3
4
5

3.
9×

6.
5×

C
om

m
(G

iB
.×

100)

(e) MNIST-FFNN

0.75
1.5

2.25
3

3.75

4.
9×

6.
9×

Ti
m

e
(s
×

10
00

)

6
12
18
24
30

3.
8×

6.
4×

C
om

m
(G

iB
.×

100)

(f) CIFAR-LeNet

2.4
4.8
7.2
9.6
12

3.
4×

6.
8×

Ti
m

e
(s
×

10
00

0)

2
4
6
8
10

4.
0×

6.
5×

C
om

m
(G

iB
.×

10000)

(g) CIFAR-HiNet

1

2

3

4

5

5.
0×

7.
4×

Ti
m

e
(s
×

10
0)

1
2
3
4
5

3.
8×

6.
2×

C
om

m
(G

iB
.×

100)

(h) Relevance

Figure 5: Performance comparison of SECFLOAT (time - , comm -) with BEACON FP32 (time - , comm -) and
BEACON BF16 (time - , comm -). The left bar group compares latency and the right group compares communication.
Improvement factors of BEACON (both FP32 and BF16) are also shown.

crobenchmarks to Appendix C as 99% of secure training cost
in SECFLOAT comes from linear layers (Appendix A). In
addition to our training benchmarks, we also consider the
Relevance model (Figure 7(h)), a benchmark proposed by
SECFLOAT [60]. We observe that BEACON has 3.4−8.1×
lower latency and 3.1 − 4.4× lower communication than
SECFLOAT over FP32 tasks. The SECFLOAT baseline de-
composes a compound operation into individual scalar op-
erations that suffer from performance overheads caused by
many normalization and rounding steps. When compared with
SECFLOAT over BF16 tasks, BEACON improves latency by
6.3−16.1× and the communication by 5.4−9.5×. Our fur-
ther improvements with BF16 are again due to SECFLOAT’s
use of scalar operations which require that all arithmetic be
performed in FP32 (Section 1.1.2).

Similar to KS22, we set the mini-batch size to 128 for all
benchmarks except for Relevance, where SECFLOAT sets the
mini-batch size to 32. Our evaluation in Figure 5 is for one
training iteration with these mini-batch sizes. We observe that
BEACON has 6.3−7.4× lower latency and 6.2−6.5× lower
communication than the baseline on training tasks over BF16,
thus demonstrating the performance benefits of our protocols.

9.2 Cost of BEACON vs. KS22

A curious reader might wonder about the overheads of running
secure floating-point w.r.t. secure training with fixed-point ap-
proximations. In this section, we compare the training cost of
one epoch of BEACON (over BF16) with the state-of-the-art
secure fixed-point training framework KS22 [41]. We instan-
tiated KS22 with the configuration from the paper, i.e., using
64-bit fixed-point and the default semi-honest secure 2PC
backend (semi-homomorphic encryption or hemi-party.x).

Benchmark Time (minutes) Comm. (GiB)
BEACON KS22 BEACON KS22

MNIST
Logistic 56

16
(3.3×)

2,011
58

(34.8×)
MNIST
FFNN 626

106
(5.9×)

30,820
316

(97.5×)
CIFAR
LeNet∗ 3,285

1,065
(3.1×)

165,594
7,881
(21×)

CIFAR
HiNet∗ 100,827

32,137
(3.1×)

5,280,375
214,061
(24.7×)

Table 3: Time (in minutes) and communication (in GiB) per
epoch of BEACON vs KS22 [41]. Numbers in parentheses
represent the overhead of BEACON over KS22.
∗: extrapolated from 10 iterations

Sometimes KS22 goes out of memory9 when running a full
epoch and in these cases we have extrapolated the time per
epoch based on iterations that can run on our current set up.
Table 3 summarizes the results. We found that the latency of
BEACON is within 3− 6× of KS22 for our training bench-
marks. The communication of BEACON, on the other hand,
is 21−100× higher than that of KS22. This is due to BEA-
CON’s use of oblivious transfers (OT) that are known to be
communication heavy compared to homomorphic encryption
based protocols used in KS22. Techniques such as Silent
OT [11] can significantly reduce communication overheads
of BEACON.

10 Related Work

Training algorithms. We have focused on FP32 and BF16
training. Other ML training algorithms include hybrid al-

9KS22 generates and stores pre-processing material that can overflow
memory for large number of iterations.

12

gorithms that mix floating-point and integers. In quantized
training, performance critical operations like matrix multipli-
cations are performed on 8-bit/16-bit integers and precision
critical operations like softmax or weight updates are per-
formed in floating-point [8, 18, 20, 21, 34, 59, 71, 75, 76]. In
block floating-point training, different layers use different
scales and these scales are updated dynamically depending on
the magnitudes of the runtime values [24, 68]. The advantage
of this approach is that all weights of a layer share a common
exponent and hence all matrix multiplications can be done
over integers. Recently, 8-bit floating-point training is gaining
traction [7, 52].

Defense against attacks like data poisoning [19] and tech-
niques like differential privacy [25] are orthogonal to BEA-
CON. These mitigations involve changing the training algo-
rithms and BEACON is expressive enough to run the modified
algorithms as well.

The techniques for training in the security literature can be
classified as centralized, federated, and MPC-based.
Centralized. A centralized approach to secure training is
for all the parties to give all their sensitive training data to
a trusted hardware that does the floating-point computation
in a trusted execution environment (TEE) and returns the
result. However, the TEEs are susceptible to side-channel
attacks [12, 30] and the use of secure 2PC makes BEACON
provably resistant to them.
Federated. A well-known decentralized approach to multi-
party training is through federated learning [50]. Here, multi-
ple parties iteratively train in floating-point, aggregate their
gradients, and update their models with the aggregated gra-
dient. However, these leaked aggregated gradients have been
used in various attacks to reveal information about the sensi-
tive datasets [32, 51, 77].
MPC-based works. Kelkar et al. [39] run fixed-point training
of poisson regression models with 2PC. Helen [74] provides
stronger malicious security but is limited to the fixed-point
training of linear classifiers. There are many works that use
2PC for the related problem of secure inference [10, 33, 35,
49, 53, 55, 58, 61, 62]. Prior works on secure floating-point in
the honest majority setting include [6, 14, 15, 38, 42]. Other
secure training works use threat models different from 2PC,
e.g., honest majority [54, 64, 66, 67] and dealer-based [43, 69].

11 Conclusion

BEACON beats prior secure floating-point arithmetic work on
ML tasks by over 6× while providing formal precision guar-
antees. There are three primary directions, orthogonal to this
work, in which future research can extend BEACON, building
upon our novel algorithms for precise compound operations.
a) ImageNet-scale training is currently out of reach. Secure
training on datasets with millions of images will require GPU
support that BEACON lacks. b) Like all prior works on se-
cure 2-party training, we have focused on security against

semi-honest adversaries and would like to extend BEACON
to provide security against active adversaries. One way to
achieve this is by running our algorithms with MP-SPDZ as
all our building blocks are easily supported by edabits [26].
c) Finally, we will like to improve the performance of BEA-
CON by introducing a trusted dealer that provides correlated
randomness, e.g., oblivious transfers.

References

[1] Deep learning training with multi-party computation.
https://github.com/csiro-mlai/deep-mpc.

[2] Deep learning training with multi-party computa-
tion. https://github.com/csiro-mlai/deep-mpc/
tree/more-models.

[3] EMP-toolkit: Efficient MultiParty computation toolkit.
https://github.com/emp-toolkit, 2016.

[4] IEEE standard for floating-point arithmetic. IEEE STD
754-2019 (Revision of IEEE 754-2008), 2019.

[5] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner,
and Adrià Gascón. QUOTIENT: two-party secure neural
network training and prediction. In CCS, 2019.

[6] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and
Aaron Steele. Secure computation on floating point
numbers. In NDSS, 2013.

[7] Michael Andersch, Greg Palmer, Ronny Krashinsky,
Nick Stam, Vishal Mehta, Gonzalo Brito, and Srid-
har Ramaswamy. NVIDIA Hopper Architecture
In-Depth. https://developer.nvidia.com/blog/
nvidia-hopper-architecture-in-depth/, 2022.

[8] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel
Soudry. Scalable methods for 8-bit training of neural
networks. In NIPS, 2018.

[9] G. R. Blakley. Safeguarding cryptographic keys. In
International Workshop on Managing Requirements
Knowledge, 1979.

[10] Fabian Boemer, Rosario Cammarota, Daniel Demmler,
Thomas Schneider, and Hossein Yalame. MP2ML: a
mixed-protocol machine learning framework for private
inference. In ARES, 2020.

[11] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai,
Lisa Kohl, Peter Rindal, and Peter Scholl. Efficient two-
round OT extension and silent non-interactive secure
computation. In CCS, 2019.

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In USENIX WOOT, 2017.

13

https://github.com/csiro-mlai/deep-mpc
https://github.com/csiro-mlai/deep-mpc/tree/more-models
https://github.com/csiro-mlai/deep-mpc/tree/more-models
https://github.com/emp-toolkit
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

[13] Ran Canetti. Security and Composition of Multiparty
Cryptographic Protocols. J. Cryptology, 2000.

[14] Octavian Catrina. Evaluation of floating-point arith-
metic protocols based on shamir secret sharing. In
ICETE (Selected Papers), 2019.

[15] Octavian Catrina. Performance analysis of secure
floating-point sums and dot products. In COMM, 2020.

[16] Harsh Chaudhari, Arpita Patra, Rahul Rachuri, and Ajith
Suresh. Tetrad: Actively secure 4pc for secure training
and inference. In NDSS, 2022.

[17] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Tri-
dent: Efficient 4pc framework for privacy preserving
machine learning. In NDSS, 2020.

[18] Xi Chen, Xiaolin Hu, Hucheng Zhou, and Ningyi Xu.
Fxpnet: Training a deep convolutional neural network
in fixed-point representation. IJCNN, 2017.

[19] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and
Dawn Song. Targeted backdoor attacks on deep learning
systems using data poisoning. CoRR, abs/1712.05526,
2017.

[20] Matthieu Courbariaux and Yoshua Bengio. Binarynet:
Training deep neural networks with weights and activa-
tions constrained to +1 or -1. ArXiv, abs/1602.02830,
2016.

[21] Dipankar Das, Naveen Mellempudi, Dheevatsa Mudi-
gere, Dhiraj Kalamkar, Sasikanth Avancha, Kunal
Banerjee, Srinivas Sridharan, Karthik Vaidyanathan,
Bharat Kaul, Evangelos Georganas, Alexander Hei-
necke, Pradeep Dubey, Jesus Corbal, Nikita Shustrov,
Roma Dubtsov, Evarist Fomenko, and Vadim Pirogov.
Mixed Precision Training of Convolutional Neural Net-
works using Integer Operations, 2018.

[22] Daniel Demmler, Ghada Dessouky, Farinaz Koushanfar,
Ahmad-Reza Sadeghi, Thomas Schneider, and Shaza
Zeitouni. Automated synthesis of optimized circuits for
secure computation. In CCS, 2015.

[23] Ghada Dessouky, Farinaz Koushanfar, Ahmad-Reza
Sadeghi, Thomas Schneider, Shaza Zeitouni, and
Michael Zohner. Pushing the Communication Barrier
in Secure Computation using Lookup Tables. In NDSS,
2017.

[24] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Fal-
safi. Training dnns with hybrid block floating point. In
NIPS, 2018.

[25] Cynthia Dwork. Differential privacy: A survey of results.
In TAMC, 2009.

[26] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul
Rachuri, and Peter Scholl. Improved primitives for
MPC over mixed arithmetic-binary circuits. In CRYPTO,
2020.

[27] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mar-
iana Raykova, Jack Doerner, Samee Zahur, and David
Evans. Secure linear regression on vertically partitioned
datasets. IACR Cryptol. ePrint Arch., 2016.

[28] David Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM Comput.
Surv., 1991.

[29] Oded Goldreich, Silvio Micali, and Avi Wigderson. How
to Play any Mental Game or A Completeness Theorem
for Protocols with Honest Majority. In STOC, 1987.

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on intel SGX. In EU-
ROSEC, 2017.

[31] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature
detectors, 2012.

[32] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-
Cruz. Deep models under the GAN: information leakage
from collaborative deep learning. In CCS, 2017.

[33] Zhicong Huang, Wen jie Lu, Cheng Hong, and Jian-
sheng Ding. Cheetah: Lean and fast secure two-party
deep neural network inference. In USENIX Security
Symposium, 2022.

[34] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training
of neural networks for efficient integer-arithmetic-only
inference. In CVPR, 2018.

[35] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha
Chandrakasan. Gazelle: A low latency framework for
secure neural network inference. In USENIX Security
Symposium, 2018.

[36] William M. Kahan. Further remarks on reducing trunca-
tion errors. Communications of the ACM, 1965.

[37] Dhiraj D. Kalamkar, Dheevatsa Mudigere, Naveen
Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth
Avancha, Dharma Teja Vooturi, Nataraj Jammala-
madaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jong-
soo Park, Alexander Heinecke, Evangelos Georganas,
Sudarshan Srinivasan, Abhisek Kundu, Misha Smelyan-
skiy, Bharat Kaul, and Pradeep Dubey. A study
of BFLOAT16 for deep learning training. CoRR,
abs/1905.12322, 2019.

14

[38] Liina Kamm and Jan Willemson. Secure floating point
arithmetic and private satellite collision analysis. Int. J.
Inf. Sec., 2015.

[39] Mahimna Kelkar, Phi Hung Le, Mariana Raykova, and
Karn Seth. Secure poisson regression. In USENIX
Security Symposium, 2022.

[40] Marcel Keller. MP-SPDZ: A versatile framework for
multi-party computation. In CCS, 2020.

[41] Marcel Keller and Ke Sun. Secure quantized training
for deep learning. In ICML, 2022.

[42] Liisi Kerik, Peeter Laud, and Jaak Randmets. Optimiz-
ing MPC for robust and scalable integer and floating-
point arithmetic. In FC, 2016.

[43] Brian Knott, Shobha Venkataraman, Awni Hannun,
Shubhabrata Sengupta, Mark Ibrahim, and Laurens
van der Maaten. CrypTen: Secure multi-party com-
putation meets machine learning. In NIPS, 2021.

[44] Alex Krizhevsky. Learning multiple layers of features
from tiny images. 2009.

[45] Nishant Kumar, Mayank Rathee, Nishanth Chandran,
Divya Gupta, Aseem Rastogi, and Rahul Sharma. Crypt-
flow: Secure tensorflow inference. In IEEE S&P, 2020.

[46] Yann LeCun and Corinna Cortes. MNIST handwritten
digit database. 2010.

[47] Jay P. Lim and Santosh Nagarakatte. RLIBM-32: high
performance correctly rounded math libraries for 32-bit
floating point representations. In PLDI, 2021.

[48] Yehuda Lindell. How to simulate it – a tutorial on the
simulation proof technique. Tutorials on the Founda-
tions of Cryptography, 2017.

[49] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious
Neural Network Predictions via MiniONN Transforma-
tions. In CCS, 2017.

[50] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Agüera y Arcas. Communication-
efficient learning of deep networks from decentralized
data. In AISTATS, 2017.

[51] Luca Melis, Congzheng Song, Emiliano De Cristofaro,
and Vitaly Shmatikov. Exploiting unintended feature
leakage in collaborative learning. In IEEE S&P, 2019.

[52] Paulius Micikevicius, Dusan Stosic, Neil Burgess, Mar-
ius Cornea, Pradeep Dubey, Richard Grisenthwaite,
Sangwon Ha, Alexander Heinecke, Patrick Judd, John
Kamalu, Naveen Mellempudi, Stuart F. Oberman, Mo-
hammad Shoeybi, Michael Y. Siu, and Hao Wu. FP8
formats for deep learning. CoRR, abs/2209.05433, 2022.

[53] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi:
A cryptographic inference service for neural networks.
In USENIX Security Symposium, 2020.

[54] Payman Mohassel and Peter Rindal. ABY3: A Mixed
Protocol Framework for Machine Learning. In CCS,
2018.

[55] Payman Mohassel and Yupeng Zhang. SecureML: A
System for Scalable Privacy-Preserving Machine Learn-
ing. In IEEE S&P, 2017.

[56] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg,
Marc Joye, Nina Taft, and Dan Boneh. Privacy-
preserving matrix factorization. In CCS, 2013.

[57] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis,
Marc Joye, Dan Boneh, and Nina Taft. Privacy-
preserving ridge regression on hundreds of millions of
records. In IEEE S&P, 2013.

[58] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hos-
sein Yalame. ABY2.0: Improved Mixed-Protocol secure
Two-Party computation. In USENIX Security Sympo-
sium, 2021.

[59] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. In ECCV,
2016.

[60] Deevashwer Rathee, Anwesh Bhattacharya, Rahul
Sharma, Divya Gupta, Nishanth Chandran, and Aseem
Rastogi. SecFloat: Accurate Floating-Point meets Se-
cure 2-Party Computation. In IEEE S&P, 2022. https:
//ia.cr/2022/322.

[61] Deevashwer Rathee, Mayank Rathee, Rahul Kranti Ki-
ran Goli, Divya Gupta, Rahul Sharma, Nishanth Chan-
dran, and Aseem Rastogi. SIRNN: A math library for
secure inference of RNNs. In IEEE S&P, 2021.

[62] Deevashwer Rathee, Mayank Rathee, Nishant Kumar,
Nishanth Chandran, Divya Gupta, Aseem Rastogi, and
Rahul Sharma. CrypTFlow2: Practical 2-Party Secure
Inference. In CCS, 2020.

[63] Adi Shamir. How to share a secret. CACM, 1979.

[64] Sijun Tan, Brian Knott, Yuan Tian, and David J. Wu.
Cryptgpu: Fast privacy-preserving machine learning on
the GPU. In IEEE S&P, 2021.

[65] Lloyd N Trefethen and David Bau III. Numerical linear
algebra. Siam, 1997.

15

https://ia.cr/2022/322
https://ia.cr/2022/322

[66] Sameer Wagh, Divya Gupta, and Nishanth Chandran.
SecureNN: 3-party secure computation for neural net-
work training. PoPETs, 2019.

[67] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal
Kushilevitz, Prateek Mittal, and Tal Rabin. Falcon:
Honest-majority maliciously secure framework for pri-
vate deep learning. PoPETs, 2021.

[68] Maolin Wang, Seyedramin Rasoulinezhad, Philip H. W.
Leong, and Hayden Kwok-Hay So. NITI: training inte-
ger neural networks using integer-only arithmetic. IEEE
TPDS, 2022.

[69] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa.
Piranha: A GPU platform for secure computation. In
USENIX Security Symposium, 2022.

[70] N. Whitehead and A. Fit-Florea. Precision & perfor-
mance: Floating point and ieee 754 compliance for
nvidia gpus. nVidia technical white paper, 2011.

[71] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi.
Training and inference with integers in deep neural net-
works. In ICLR, 2018.

[72] Andrew Yao. How to Generate and Exchange Secrets
(Extended Abstract). In FOCS, 1986.

[73] Andrew C. Yao. Protocols for secure computations. In
FOCS, 1982.

[74] Wenting Zheng, Raluca Ada Popa, Joseph E. Gonzalez,
and Ion Stoica. Helen: Maliciously secure coopetitive
learning for linear models. In IEEE S&P, 2019.

[75] Shuchang Zhou, Zekun Ni, Xinyu Zhou, He Wen, Yuxin
Wu, and Yuheng Zou. Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradi-
ents. ArXiv, abs/1606.06160, 2016.

[76] Chenzhuo Zhu, Song Han, Huizi Mao, and William J.
Dally. Trained ternary quantization. In ICLR, 2017.

[77] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage
from gradients. In NIPS, 2019.

A Cost split between linear and non-linear lay-
ers with SECFLOAT

In Table 4, we show how the total runtime/communications
of the training benchmark is divided between linear and non-
linear layers for the prior state-of-the-art SECFLOAT. It is
clearly seen that linear layers dominate in all DNNs consum-
ing > 99% of both runtime/communications. Even for single
layered MNIST-Logistic, linear layers contribute 96% to the
runtime.

B Profiling of SECFLOAT’s operations

In (Section 1.1), we claimed that over 82% of the runtime in
SECFLOAT’s addition operation was spent in normalization
and rounding. To obtain this split (Table 5), we measured the
runtime/communication for 10,000 instances of addition. A
large number of instances (10,000) was chosen because the
design of SECFLOAT is inherently SIMD. Similarly, it was
also claimed in (Section 2) that 85% of the runtime in matrix
multiplication was spent in summations. This split (Table 6)
is obtained by multiplying a 100 × 100-sized matrix with
another 100×100-sized matrix, one of the microbenchmarks
considered in Section 9.

C Evaluation on non-linear layers

Figure 6 shows empirical improvements of BEACON over
SECFLOAT for Softmax-100 (1000 softmax over vectors of
length 100 each) and Sigmoid-1m (pointwise sigmoid of a
vector of 1 million elements). For ReLUs, BEACON’s perfor-
mance is similar to SECFLOAT. For sigmoid, BEACON’s spe-
cialized BF16 protocol improves the performance by over 5×
compared to SECFLOAT. The improvement is much smaller
for FP32 as BEACON uses SIMD FP32 exponentiations in this
case. For Softmax-100, FP32 exponentiations are again the
bottleneck for BEACON and SECFLOAT over both BF16 and
FP32, and thus, the improvements from compound operations
in BEACON lead to comparatively modest benefits. In fact,
BF16 performance is even worse than FP32 in this case due
to the FP32 to BF16 conversion required at the end.

D Multiple number representations

Table 7 shows how the performance of BEACON changes with
the number representation used for data storage. We evaluate
FP32 (IEEE’s representation with 8-bit exponent and 23-bit
mantissa supported in most CPUs), FP19 (NVIDIA’s repre-
sentation with 8-bit exponent and 10-bit mantissa supported in
the latest GPUs), and BF16 (Google’s representation with 8-
bit exponent and 7-bit mantissa supported on the latest TPUs,
some GPUs, and some CPUs). Our novel protocols ensure
that the representations that require lower number of bits have
better performance even though the underlying computation
in each of these cases is required to be as precise as FP32. In
particular, the performance of BF16 is about 2× better than
standard 32-bit floating-point.

E Dot Product Protocol Π
p,q,n
FPDotProd

Our protocol for dot product is formally described in Figure 7.

16

Time (s) Comm (GiB)
Linear Non-Linear % Linear Linear Non-Linear % Linear

MNIST-Logistic 44.2 1.8 95.96% 26.48 0.13 99.47%
MNIST-FFNN 558 1.97 99.65% 424.86 0.14 99.97%

Relevance 448 1.57 99.65% 325.03 0.07 99.98%
CIFAR-LeNet 3484 5.5 99.84% 2710.67 0.86 99.97%
CIFAR-HiNet 103572 899 99.14% 87787 122.8 99.86%

Table 4: Split in cost between linear and non-linear layers for SECFLOAT.

2.5
5

7.5
10

12.5

1.
27
×

1.
24
×

Ti
m

e
(s

)

2
4
6
8
10

1.
25
×

1.
23

× C
om

m
(G

iB
)

(a) Softmax-100
12

24

36

48

60

3.
4×Ti

m
e

(s
)

12
24
36
48
60

5.
23
×

C
om

m
(G

iB
.)

(b) Sigmoid-1m

SECFLOAT-time

BEACON-time (FP32)

BEACON-time (BF16)

SECFLOAT-comm

BEACON-comm (FP32)

BEACON-comm (BF16)

Figure 6: Comparing the performance of SECFLOAT (dotted) with BEACON (striped, both FP32 and BF16) on non-linear
functions. The left group of bars compares latency and the right compares communication (comm). The improvement factor of
BEACON is also shown.

Total Norm. % Norm.
Time (s) 0.384 0.316 82.3%

Comm (MiB) 105.58 81.28 76.9%

Table 5: Split of SECFLOAT’s Addition. Norm. refers to nor-
malization and rounding steps.

Total Summ. % Summ.
Time (s) 20.24 17.35 85.7%

Comm (MiB) 13668 10784 78.9%

Table 6: Split of SECFLOAT’s Matrix Multiplication. Summ.
refers to Summation step.

F Matrix Multiplication

Matrix multiplication is a fundamental operation of ML train-
ing. Fully connected layers when operating on a mini-batch of
images need to multiply a weight matrix with a matrix of im-
ages. Similarly, matrix multiplications are used to implement
convolutions where a filter matrix is convolved with an input
image. Finally, the implementations of transposed convolu-
tions in PyTorch used for backpropagation over convolution
layers also require matrix multiplication. We build these oper-
ators on top of dot product with additional optimizations.

The matrix multiplications arising from convolutions and
transposed convolutions can have many entries that are stat-
ically known to be zeros (which arise because of padding).
Matrix multiplications can be implemented using batched
instances of many dot products that can use our proto-
col ΠFPDotProd. Below, we discuss optimizations over this

Microbenchmark Time (s) Comm. (GiB)

Summation-2k
FP32 10.29 9.05
FP19 5.83 (1.77×) 4.9 (1.85×)
BF16 5.18 (1.99×) 4.15 (2.18×)

DotProduct-1k
FP32 4.65 4.17
FP19 3.47 (1.34×) 2.94 (1.42×)
BF16 2.74 (1.7×) 2.38 (1.75×)

MatMul-100
FP32 4.34 3.53
FP19 2.94 (1.47×) 2.51 (1.41×)
BF16 2.72 (1.59×) 2.1 (1.68×)

Table 7: Comparing cost of BEACON for various number
representations. Improvement factor of FP19/BF16 over FP32
shown in parentheses.

straightforward approach as well as how we can avoid multi-
plications with zeros by a careful decomposition.

Given floating-point matrices ααα and βββ of dimensions
n1 ×n2 and n2 ×n3, matrix multiplication is defined as γγγ =
ααα×βββ, where γi, j =∑k∈[n2] αi,k ·βk, j and i∈ [n1], j ∈ [n3]. Thus,
matrix multiplication is equivalent to n1n3 dot products on
vectors of size n2. We further optimize the cost of matrix
multiplication by taking advantage of the fact that each value
in ααα is being multiplied by n3 values in βββ. Thus, we can use
the COT-batching trick [55] from the matrix-multiplication
protocol of [61] to compute the product of mantissas of the
input matrices. An important detail to note here is that we
need to just compute the n1n2n3 intermediate products and do
not need to add them up. Thus, we do not extend one of the
input integer matrices by log(n2) bits before multiplication as
in [61] to prevent overflows while adding these products. This
optimization leads to great improvements in the computation

17

Protocol Π
p,q,n
FPDotProd

Input: i ∈ [n],⟨αi⟩FP(p,q),⟨βi⟩FP(p,q).
Output: ⟨γ⟩FP(p,q) s.t. γ = ∑i∈[n] αi ·βi.

1: for i ∈ [n] do
2: Set ⟨ei⟩p+2 = ⟨αi.e⟩p+2 + ⟨βi.e⟩p+2

3: Call ⟨mi⟩2q+2 = Π
q+1,q+1,2q+2
UMult (⟨αi.m⟩q+1 ,⟨βi.m⟩q+1)

4: Set ⟨si⟩B = ⟨αi.s⟩B ⊕⟨βi.s⟩B

5: Call ⟨zi⟩B = ΠOR(⟨αi.z⟩B ,⟨βi.z⟩B)

6: Call
〈
m′

i
〉q+2

= Π
2q+2,q
RN (⟨m.i⟩2q+2)

7: Call ⟨c⟩B = Π
p+2
LT (⟨ei⟩p+2 ,1−2p−1)

8: Call
〈
m′′

i
〉q+2

= Π
q+2
MUX(⟨c⟩

B ,0,
〈
m′

i
〉q+1

)

9: Call
〈
e′i
〉p+2

= Π
p+2
MUX(⟨c⟩

B ,1−2p−1,⟨ei⟩p+2)

10: Set ⟨δi⟩FP
′
= (⟨zi⟩B ,⟨si⟩B ,

〈
e′i
〉p+2

,
〈
m′′

i
〉q+2

)

11: Return ⟨γ⟩FP(p,q) = Π
q+2,q,q,p,q,n
g-FPSum ({⟨δi⟩FP

′})

Figure 7: Protocol for Dot Product.

of this step [55,61,62] and leads to an overall improvement in
communication of 1.22× over naïve dot-product based solu-
tion for a matrix multiplication on matrices with dimensions
100×1000 and 1000×10.

Next, both convolutions as well transposed convolutions
when converted to matrix multiplication can lead to vary-
ing number of entries that are statically 0 depending on the
padding parameters. Intuitively, computing convolutions in-
volves sliding filter over the padded image. To avoid multi-
plications with zeros, we divide the positioning of filter into
2 cases. First, where the entire filter is over the image (thus,
no multiplications with zeros) and second, where the filter is
put at the image boundary and involves a padding of zeros.
We directly translate the first case as a matrix multiplication
and implement it as described above. For the second case, we
decompose the computation as a collection of dot products of
varying sizes depending on the number of non-zero entries.

G Helper Protocols

G.1 Normalization
For a fixed-point value x ∈ Z2ℓ with scale s, we use JxKℓ,s to
denote the corresponding real value. Normalization takes an
unnormalized mantissa m of Q+1 bits with scale q and an
exponent e in p+2 bits, and outputs a normalized mantissa
m′ in Q+ 1 bits with scale Q and an adjusted exponent e′

such that 2e′ · Jm′KQ+1,Q = 2e · JmKQ+1,q. Let m ∈ [2k,2k+1)
for some k ∈ [0,Q]. The normalization works as follows: first
compute m′ = m ≪ (Q− k) ∈ [2Q,2Q+1) and set its scale to
Q. As a result, we get a normalized mantissa with scale Q
as expected from the output. To account for these changes to
mantissa, the exponent needs to be adjusted. We add Q−q to
exponent and subtract Q−k from it to account for the increase
in scale and the left-shift, respectively. Combining the two

Protocol Π
p,q,Q
Normalize

Input: Unnormalized
(
⟨m⟩Q+1 ,⟨e⟩p+2

)
, scale of m is q.

Output: Normalized
(
⟨m′⟩Q+1 ,⟨e′⟩p+2

)
.

1: Call ⟨k⟩Q+1 ,⟨K⟩Q+1 = Π
Q+1
MSNZB(⟨m⟩Q+1)

2: Call ⟨m′⟩Q+1 = Π
Q+1,Q+1,Q+1
UMult (⟨m⟩Q+1 ,⟨K⟩Q+1)

3: Set ⟨e′⟩p+2 = ⟨e⟩p+2 +(⟨k⟩Q+1 mod 2p+2)−q

4: Return (⟨m′⟩Q+1 ,⟨e′⟩p+2)

Figure 8: Normalize mantissa and adjust exponent accord-
ingly

Protocol Π
p,q,Q
Round&Check

Input: High-precision ⟨m⟩Q+1 and ⟨e⟩p+2.
Output: Low-precision ⟨m′⟩q+1 and ⟨e′⟩p+2.

1: Call ⟨c⟩B = Π
Q+1
LT (⟨m⟩Q+1 ,2Q+1 −2Q−q−1).

2: Call ⟨mc⟩q+1 = Π
Q+1,Q−q
RN (⟨m⟩Q+1)

3: Call ⟨m′⟩q+1 = Π
q+1
MUX(⟨c⟩

B ,⟨mc⟩q+1 ,2q).

4: Call ⟨e′⟩p+2 = Π
p+2
MUX(⟨c⟩

B ,⟨e⟩p+2 ,⟨e⟩p+2 +1).

5: Return (⟨m′⟩q+1 ,⟨e′⟩p+2)

Figure 9: Round mantissa and check for its overflow

operations, we get our output exponent e′ = e+ k−q. From
these steps, it is easy to see that 2e′ ·Jm′KQ+1,Q = 2e ·JmKQ+1,q.
The normalization protocol is described in Figure 8.

G.2 Round and Check
The protocol for Round&Check is described in Figure 9. The
normalization check is quite simple: since we know that the
only m ∈ [2Q+1 − 2Q−q−1,2Q+1) lead to the one and only
unnormalized output m′ = 2q+1, we can simply check for
this condition and set the output accordingly. In particular,
instead of outputting m′ = 2q+1,e′ = e in this case, we output
m′ = 2q,e′ = e+1 which doesn’t introduce any error and thus,
the final output has relative error ⩽ ε.

G.3 Clip details
For target representation (p,q) and input α, the clipping
protocol Π

p,q
Clip is easily realized by first performing a com-

parison ⟨c⟩B = Π
p+2
LT (⟨α.e⟩p+2 ,−2p−1 + 2) of p+ 2 bits to

check if exponent is less than or equal to the smallest repre-
sentable exponent, and then setting mantissa to 0 and expo-
nent to −2p−1 + 1 in case c = 1 using two multiplexer op-
erations: Π

q+1
MUX(⟨c⟩

B ,0,⟨α.m⟩q+1) and Π
p+2
MUX(⟨c⟩

B ,−2p−1 +

1,⟨α.e⟩p+2), respectively. Since the comparison operation is
signed, we require |α.e|< 2p+1 for its correctness.

18

H Non-Linear Layers for FP32

Non-linear layers require both compound operations and
SIMD operations. BEACON provides novel protocols for com-
pound operations. For SIMD operations, we use the exist-
ing state-of-the-art protocols given by SECFLOAT [60] for
pointwise multiplication, addition, division, comparison and
exponentiation.

H.1 ReLU

ReLU(x) = max(x,0) can simply be computed as a multi-
plexer over the sign bit.

H.2 Softmax

Given vector ααα ∈Rn as input, softmax outputs a vector δδδ such
that δi =

eαi

∑ j∈[n] e
α j . In practice to avoid overflows in exponenti-

ation, the maximum element is subtracted from every element
of the array to create βββ, i.e., βi = αi−α′, where α′ =max j α j.
At a high level, softmax has the following steps:

1. Compute maximum element α′ and subtract it from ev-
ery vector element to get the vector βββ (with all negative
entries).

2. Compute exponentiation on βββ to get γγγ.

3. Sum the elements of γγγ to get θ.

4. Divide γγγ by θ and output the resulting vector.

All the above steps can be implemented using operations
provided in SECFLOAT [60].

We improve upon this solution by optimizing steps 3 and
4. First, we use vector sum (Section 5.1) in step 3, which not
only improves the efficiency, but also the accuracy of this
step. Next, we observe that in step 4, all vector elements are
being divided by the same value θ and we can get better amor-
tization cost for this operation. In more detail, computation
of output mantissa in the division functionality from [60] in-
volves first approximating the reciprocal of divisor, followed
by a multiplication with dividend and a rounding operation.
Since the divisor is the same in all of the division operations,
the reciprocal computation can be done just once.

H.3 Sigmoid/Tanh

For α ∈ R, sigmoid is defined as Sigmoid(α) = 1
1+e−α .

Clearly, this is equivalent to a softmax on vector of length 2,
i.e., softmax on βββ = [0,α].

We use Tanh(α) = eα−e−α

eα+e−α = 2 ·Sigmoid(2α)−1.

I Non-Linear Layers for BF16

The naïve approach to compute non-linear layers is also to first
convert to FP32, then perform the operation, and finally round
the output to BF16. In this section, we propose protocols that
greatly improve upon this approach for some layers.

I.1 Sigmoid/Tanh

We observe that for layers with single-input operations like
sigmoid and tanh, we can avoid all expensive computation
while guaranteeing the correct output by simply using a
lookup table. However, using a lookup table with 216 en-
tries of 16-bits each is not an efficient solution, as it requires
communicating 128 KiB per operation which is even much
more expensive than the naïve solution. Instead, we take ad-
vantage of the domain knowledge of the operation to greatly
reduce the size of the lookup table needed. In particular, for
functions like sigmoid and tanh, and in general for activation
functions used in machine learning, the output only varies
significantly for a small domain D of inputs, and in the rest of
the domain, the difference in real outputs is small enough that
it leads to the same output over BF16. Thus, we can handle
inputs ∈ D using a lookup table, and the rest of the inputs
can be easily handled as a special case. Applying this strategy
to sigmoid, we found that D = {α : |α| ∈ [2−8,93)}, which
requires just 4 bits of exponent to represent. Thus, it allows us
to use a lookup table of size 212 to handle all inputs in D , and
the output of lookup table can be 15-bits long as the sign-bit
of output is always 0. Correct BF16 output for |α|< 2−8 is
0.5, for α ⩾ 93 is 1 and for α ⩽−93, is 0. We handle these
cases separately with multiplexers and use the floating-point
comparison protocol from [60] for checking if |α|< 93. Com-
parison of |α| with 2−8 can be done using the exponent alone
and does not require a full fledged floating-point comparison.
Our BF16 sigmoid protocol is given in Figure 10. Note that
the Π

8,7
FPLT protocol compares two BF16 numbers and returns

a boolean which is true iff the first argument is smaller [60].
Similar to sigmoid, we can also get the tanh BF16 protocol,
which also uses a lookup table of size 212. Compared to the
naïve approach, our lookup table based solution is around 6×
more communication efficient.

I.2 Softmax

For softmax, we simply use our softmax over FP32 (Ap-
pendix H.2). The lookup table based approach can’t be used
to reduce costs as even the first operation in softmax, i.e. sub-
tracting all vector elements by the maximum, is a two-input
operation which would require a lookup table with 232 entries
which is very inefficient. We can’t use lookup tables at any
subsequent step as well because all intermediate values will
be in 32-bits.

19

Protocol ΠFPSigmoidBF16

Input: ⟨α⟩FP(8,7).
Output: ⟨γ⟩FP(8,7) s.t. γ = Sigmoid(α).

1: Set ⟨idx1⟩5 = ⟨α.s⟩B || ((⟨α.e⟩10 +8) mod 24).
2: Set ⟨idx2⟩7 = ⟨α.m⟩8 mod 27.
3: Set ⟨idx⟩12 = ⟨idx1⟩5 || ⟨idx2⟩7.

4: Call (⟨e⟩8 ,⟨m⟩7) = Π
12,15
LUT (LSigmoid,⟨idx⟩12).

5: Call ⟨e⟩10 = Π
8,10
ZXt(⟨e⟩

8).

6: Call ⟨m⟩8 = Π
7,8
ZXt(⟨m⟩7)+27.

7: Set ⟨γ′′⟩FP(8,7) = (0,0,⟨e⟩10 ,⟨m⟩7).
8: Set ⟨β⟩FP(8,7) = (⟨α.z⟩B ,0,⟨α.e⟩10 ,⟨α.m⟩8)

9: Call ⟨c1⟩B = Π
8,7
FPLT(⟨β⟩

FP(8,7),93).

10: Call ⟨c2⟩B = Π10
LT(⟨α.e⟩

10 ,−8).

11: Call ⟨η⟩FP(8,7) = Π20
MUX(⟨α.s⟩

B ,0.0,1.0).

12: Call ⟨γ′⟩FP(8,7) = Π20
MUX(⟨c1⟩B ,⟨γ′′⟩FP(8,7),⟨η⟩FP(8,7)).

13: Call ⟨γ⟩FP(8,7) = Π20
MUX(⟨c2⟩B ,0.5,⟨γ′⟩FP(8,7)).

14: Return ⟨γ⟩FP(8,7).

Figure 10: Protocol for BF16 Sigmoid.

J Security proofs

Since all our protocols are symmetric, let P0/S0 be the cor-
rupted party without loss of generality. As is standard, we
first argue the security of our protocols against a semi-honest
adversary in the hybrid model [13] starting with compound
operations, and then with similar arguments, we will prove the
security of our overall protocol for secure training in the two-
party (Appendix J.1) and client-server setting (Appendix J.2).

In particular, we first prove the security of our compound
operation protocols in the FBB-hybrid model, where FBB is
a collection of ideal functionalities for the building blocks
(Table 1) and helper algorithms (Section 4.4). Note that the
functionalities of all building blocks and helper algorithms
maintain the invariant that both inputs and output are 2-out-
of-2 secret shares. Now, we first look at our protocol for sum-
mation Π

p,q,n
FPSum (Figure 2). The ideal functionality F p,q,n

FPSum for
summation is as follows: it takes 2-out-of-2 secret shares of
the vector ⟨α⟩FP(p,q) = {⟨αi⟩FP(p,q)}i of floating-point values
from P0 and P1, reconstructs α, computes the summation func-
tion on it to get γ, and finally, secret shares γ and sends the
corresponding shares ⟨γ⟩FP(p,q) to the two parties. To prove
the security of Π

p,q,n
FPSum in the FBB-hybrid model w.r.t. F p,q,n

FPSum,
we first replace all calls to the building blocks in this protocol
with their corresponding ideal functionalities to get ∗Π

p,q,n
FPSum.

It is easy to see that ∗Π
p,q,n
FPSum only has local computations

and calls to ideal functionalities in FBB. Thus, only outputs
of these ideal functionalities make the adversary’s view. Now,
we describe the simulator S for ∗Π

p,q,n
FPSum: S sends the inputs

of corrupted P0 to F p,q,n
FPSum and sets the output of calls to func-

tionalities in FBB as random values from appropriate domains,

except the final call whose output is set such that P0’s out-
put would be the same as the output received from F p,q,n

FPSum,
i.e., S sets the output of F p,q

Clip to ⟨γ⟩FP(p,q)
0 . It is easy to see

that the environment can’t distinguish the joint distribution of
P0’s view and the outputs of both parties in the ideal and real
world. It follows directly from the security of secret sharing
that the view of P0 in this simulation is indistinguishable from
its view in ∗Π

p,q,n
FPSum. The output distributions are independent

of P0’s view and are also identical as they consists of two
random sets of shares that have the same correlation owing
to the correctness of ∗Π

p,q,n
FPSum, i.e., they represent γ on recon-

struction. Thus, ∗Π
p,q,n
FPSum is secure in the FBB-hybrid model

w.r.t. F p,q,n
FPSum, and so is Π

p,q,n
FPSum by instantiating the function-

alities in FBB with the corresponding secure protocols from
Section 3.4 [13].

We can use the same argument to argue the security of all
our protocols for compound operations for linear layers (Sec-
tion 5,6) and non-linear layers (Appendix H, I). Let FLayers

denote the ideal functionalities for all layers involved in the
training protocol.

J.1 Two-party Setting.
Our two-party setting training protocol Π2PC proceeds as fol-
lows: P0 and P1 secret-share their inputs, sequentially make
calls to protocols for functionalities in FLayers according to
the training algorithm M, and at the end of the protocol, ex-
change their output shares to learn the trained model. It is
easy to argue the security of this protocol in the FLayers-hybrid
model w.r.t. the training ideal functionality F2PC, which takes
inputs x0 and x1 from P0 and P1, respectively, and outputs the
trained model y = M(x0,x1) to both parties. Note that after
replacing the calls to protocols in Π2PC with ideal functional-
ities in FLayers, the only interaction between P0 and P1 is for
input sharing at the beginning and at the end to reconstruct
the training output. Thus, the simulator S can just send P0’s
input to F2PC, give random values as shares from P1, provide
random values from appropriate domains as the output of all
functionalities in FLayers, and adjust the final message sent
to P0 at the end to ensure P0’s output is y, which S learns
as output from F2PC. S can do so because it knows the final
shares of P0, which are only a function of P0’s input and the
outputs it receives from functionalities in FLayers that are set
by S . Using similar arguments as before, it is easy to show
that the joint distribution of P0’s view and P1’s output is in-
distinguishable in the ideal and real world, and thus, Π2PC is
secure w.r.t. F2PC.

J.2 Client-Server model.
We have n clients {Ci}i∈[n] and two servers S0 and S1 in our
training protocol ΠCSM in the client-server model. In this
protocol, each client Ci first secret-shares its input xi between
the two servers. Then, the servers sequentially make calls

20

to protocols for functionalities in FLayers according to the
training algorithm M, and then send their output shares to
the clients. Finally, the clients reconstruct the shares received
from the servers to learn the trained model. In this section, we
prove the security of this protocol w.r.t. the following ideal
functionality FCSM: ∀i ∈ [n], takes input xi from Ci, computes
y = M(x1, . . . ,xn) and sends it to all clients Ci.

We consider the general case where the adversary can cor-
rupt any strict subset of clients (this includes no corrupted
clients) and one of the servers, say S0. There are two cases:

No client is corrupt: In this case, only S0 is corrupt who
has no input and no output in the ideal world. Hence, the
simulation is straightforward by providing random values as
shares of client’s inputs and outputs of functionalities.

At least one client is corrupt: For this case, the simula-
tion strategy is as follows: the simulator S sends the inputs
from corrupted clients to FCSM, receives S1’s share for all
corrupted clients from the adversary, sends random shares
to S0 for honest clients inputs, provides random values from
appropriate domains as the output of all functionalities in
FLayers, and finally, adjusts the final message sent to all cor-
rupted clients at the end to ensure their output is y, which S
learns as output from FCSM. S can adjust the final message
because it knows S0’s final shares which are only a function
of client’s input shares for S0

10 and outputs of functionalities
in FLayers, all of which are known by S . It is easy to show that
the joint distribution of the view of the adversary and honest
clients’ output in this simulation is indistinguishable from
ΠCSM. The corrupted server sees uniformly random elements
in both worlds, and corrupted client’s view only consists of
random shares with the correlation that they reconstruct to
y, which is the same in both cases owing to the correctness
of our training protocol. Thus, our training protocol ΠCSM is
secure w.r.t. FCSM.

10Since S knows the inputs for corrupted clients as well as their input
shares for S1, it can determine the input shares for S0 from corrupted clients.

21

	Introduction
	Our contributions
	Our protocols for precise compound operations
	BFloat16 training

	Organization

	Technical overview
	Preliminaries
	Notation
	Secret Sharing
	2PC and Threat Model
	Integer Building Blocks

	Floating-point Background
	Floating-Point Representation
	Precision of floating-point operations
	Secret sharing of floating-point values
	Floating-point Building Blocks
	Normalize
	Round&Check
	Clip

	Compound Operations in ML
	Summation
	Generalized Summation
	Dot product and matrix multiplication

	BFloat16 training
	Linear Layers

	2PC for training and security proofs
	Implementation
	Evaluation
	Secure training with Beacon
	Cost of Beacon vs. KS22

	Related Work
	Conclusion
	Cost split between linear and non-linear layers with SecFloat
	Profiling of SecFloat's operations
	Evaluation on non-linear layers
	Multiple number representations
	Dot Product Protocol FPDotProdp,q,n
	Matrix Multiplication
	Helper Protocols
	Normalization
	Round and Check
	Clip details

	Non-Linear Layers for FP32
	ReLU
	Softmax
	Sigmoid/Tanh

	Non-Linear Layers for BF16
	Sigmoid/Tanh
	Softmax

	Security proofs
	Two-party Setting.
	Client-Server model.

