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Abstract. With an anonymous reputation system one can realize the
process of rating sellers anonymously in an online shop. While raters can
stay anonymous, sellers still have the guarantee that they can only be
reviewed by raters who bought their product.
We present the first generic construction of a reputation system from ba-
sic building blocks, namely digital signatures, encryption schemes, non-
interactive zero-knowledge proofs, and linking indistinguishable tags. We
then show the security of the reputation system in a strong security
model. Among others, we instantiate the generic construction with build-
ing blocks based on lattice problems, leading to the first module lattice-
based reputation system in the random oracle model.

1 Introduction

Reputation systems are crucial for markets to function properly. They are usually
a user’s only indicator regarding the trustworthiness of a seller, or the quality
of a product. Right now, in real-world reputation systems, ratings are centrally
controlled (see, for example, Amazon or Yelp ratings) by the reputation system
provider (Amazon/Yelp). This means that the reputation system provider has
the ability to admit or deny users from the system, censor ratings, inject fake
ratings, and trace all raters’ identities. Of course, this allows a malicious provider
to unilaterally undermine the reputation system, e.g. by censoring inconvenient
ratings or by using knowledge of user identities to retaliate against bad ratings.

Cryptographic reputation systems. A cryptographic reputation system is a decen-
tralized system in which the roles and abilities of the reputation system provider
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are either fully replaced by cryptographic mechanisms or at least distributed
among multiple parties, with strong anonymity guarantees for users. First, a user
registers (once) with the group manager, who is tasked with admitting users to
the system (essentially to prevent Sybil attacks). Then, when the user buys a
product, he receives a rating token from an issuer (e.g., the seller), certifying
that the user is indeed allowed to rate the issuer (to prevent users from rating
issuers they have never interacted with). Given the membership certificate from
the group manager and the rating token from the issuer, the user can create
a rating signature. We imagine that the user posts this signature to a public
reputation board, enabling other users to view and verify the rating. The rating
signature is anonymous, meaning that it does not reveal who, of all users who are
allowed to rate that issuer, issued this particular rating (preventing retaliation
against negative ratings). However, the opener possesses a special key to inspect
signatures and reveal the user’s identity in case of misuse. Finally, even though
rating signatures are otherwise anonymous to the public, anyone can efficiently
check whether any two rating signatures have been created by the same user
(to prevent the same user from submitting multiple ratings for the same issuer).
In this setting, the role of the reputation system provider has been distributed
among group manager, issuers and reputation boards. User anonymity is cryp-
tographically guaranteed, but can be revoked by the opener. What we describe
here can be seen as (a special case of) the ticket-based approach identified by
[GG21].

Desirable construction types. There exists a wealth of constructions of such sys-
tem in the literature (as surveyed in [GG21]), but they all work in the discrete
logarithm setting. With the looming threat of quantum computers, there is a
need for constructions that do not rely on the hardness of discrete logarithms
and instead rely on some hardness assumption not likely broken by quantum
computers, such as lattice-based assumptions. We are aware of only a single
lattice-based reputation system in the literature, designed by El Kaafarani, Kat-
sumata, and Solomon [EKS18]. We can generally distinguish generic construc-
tions from non-generic constructions. A generic construction is a prescription
how to plug together (almost) arbitrary instantiations of several basic schemes
(e.g., signature schemes, encryption schemes, and non-interactive zero-knowledge
proofs (NIZKs)) into a secure reputation system. So far, reputation system con-
structions have been non-generic, i.e. there is no formally proven way to construct
reputation systems from arbitrarily instantiated basic building blocks. Even be-
yond the lack of an explicit generic construction, existing constructions are also
quite specific to their (discrete logarithm / lattice) setting. For example, a nat-
ural choice for rating tokens would be for the issuer to sign the buying user’s
public key (thereby giving that user the right to rate). However, in the discrete
logarithm setting (e.g., [BJK15; BEJ18]), rating tokens are typically (blind) sig-
natures on the user’s secret key, instead, because traditionally, it is easier to sign
secret keys (which live in Zp) than public keys (which live in the group G). In
the lattice setting, the only known construction [EKS18] accumulates all buyers’
public keys in a Merkle hash tree, which is (relatively) efficient in the lattice set-
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ting, but would be absurdly inefficient and borderline impossible to implement
in the discrete logarithm setting (considering the need to prove statements in
zero-knowledge about the hashes).

1.1 Our Contribution

In this paper, we give the first provably secure generic construction of a rep-
utation system from digital signatures, public-key encryption, linking indistin-
guishable tags (LITs), and NIZKs. We formally define security properties and
prove that the generic construction (and hence any concrete constructions built
from it) fulfills them. Furthermore, we show that this generic construction can
be reasonably instantiated in both the lattice setting and the discrete logarithm
setting, unifying and drawing parallels between the two settings. In particular,
this results in the first reputation system based on module lattices, i.e. on the
hardness of module lattice problems. Our construction compares favorably in
its privacy properties to the only other lattice-based construction [EKS18], as
discussed later.

Generic construction. The generic construction roughly follows a paradigm sim-
ilar to the sign-encrypt-prove paradigm [CS97] for group signatures, similar to
[BJK15; BEJ18] (but modified to apply to both the lattice and the discrete
logarithm setting). The user generates some secret key usk; his public key is
upk = f(usk) for some one-way function f . To join the system, the user obtains
a signature ρ on his public key under the public key gmpk of the group manager.
To enable rating an issuer, who we identify by his public key ipk, the user also
obtains a signature τ on his public key from the issuer. Given those two signa-
tures, the user composes a rating text rtng and encrypts his public key upk for
the opener (who holds the decryption key to reveal upk in case of misuse). For
technical reasons, the user also encrypts usk under a key that nobody knows the
secret key for (a trick comparable to the Naor-Yung paradigm). Furthermore,
the user computes a linking indistinguishable tag (LIT) using his secret key usk.
The LIT is the gadget that will allow anyone to check whether the user has rated
the same issuer twice. Then, the user uses the NIZK essentially as a signature
of knowledge [CL06] to create a non-interactive proof authenticating the rating
text rtng by proving, in zero-knowledge, that the ciphertexts and LIT have been
computed correctly, and that his public key upk has been signed by the group
manager and the issuer.

Instantiation in the discrete logarithm setting. In the discrete logarithm setting,
we can use LIT tags in the random oracle model of the form RO(ipk)usk (note
that this is a deterministic tag and hence enables detection of a user rating ipk
twice). Because the generic construction signs public keys, we use a structure-
preserving signature as the signature scheme. Unsurprisingly, encryption can be
accomplished with ElGamal and the NIZKs can be instantiated with Schnorr-
style protocols together with the Fiat-Shamir heuristic. More details can be
found in Section 5.1.
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Instantiation with lattices. The instantiation with lattices is more difficult given
that the ecosystem for privacy constructions is less mature than in the discrete
logarithm setting. We need to instantiate the encryption scheme, the signature
scheme, the NIZK, and the linking indistinguishable tag. For more efficiency and
flexibility when setting parameters, we generally consider the module lattice set-
ting. For the encryption scheme, the typical choice is between primal and dual
Regev encryption (i.e. between putting the LWE error into the public key or
into ciphertexts). Primal Regev is more suitable for proving statements about
encryptions in zero-knowledge, since there is no added error in the ciphertext,
which is why we choose it for the instantiation. In particular, we use the verifiable
encryption scheme described by [LNP22b]. For the NIZK, we choose [LNP22b],
which has the advantage of supporting efficient vector shortness proofs without
slack, but is in the random oracle model. We use this feature to efficiently prove
knowledge of, for example, a valid [DM14] signature. This NIZK also interfaces
well with the other schemes chosen to instantiate the generic construction. Fi-
nally, we require a linking indistinguishable tag. We use a tag similar to those
of [BE17; EKS18], which can be seen as the lattice equivalent of DLOG-based
tags mentioned above. To build a LIT tag t in the lattice setting, [EKS18] use
an LWE secret as the secret key, hash the message µ with the random oracle,
and choose an error e to build an LWE sample from it, i.e. tt = st ·RO(ipk)+et.
Linking works because if one tags the same message with the same secret key,
the difference of the two tags is the difference of the two errors. Thus, the dif-
ference of two tags is short, iff they should link. [EKS18] show the security of
their tag under the first-are-errorless LWE assumption, a variant of LWE where
the first few samples of an LWE oracle do not contain any error. When instan-
tiating the LIT, this costs them some efficiency, so we modify their construction
to show our tag secure under the Module LWE assumption. We also introduce
some new security notions for LITs in order to interface better with our generic
construction.

There are several signature schemes based on lattice assumptions. However,
we require one that plays nicely with zero-knowledge proofs, for example the
signature should not rely on random oracles. Thus, a first idea would be to use
the signatures of [Lib+16] or [JRS23], as they are designed to be compatible with
current lattice-based proof systems. However, [Lib+16] present a construction
based on unstructured lattices, which is too inefficient compared to a construc-
tion from structured lattices. Furthermore, their construction inherently uses
a chameleon hash to achieve adaptive security, which increases the complexity
of a proof of possession of a signature. On the other hand, [JRS23] construct
both a stateful ℓ-time signature and a stateless ℓ-time signature that are both
directly adaptively secure. However, the former does not fit our generic con-
struction, which requires a stateless signature scheme without a limit on the
signature queries. For the latter we can argue that we can use it in our generic
construction despite the ℓ-time restriction, but it suffers from a large reduction
loss. Another candidate is the stateless signature scheme of [DM14]. Like the
other two signatures, it is a tag-based signature scheme and a variant of sig-
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natures by [Boy10], but is based on ideal lattices. [DM14] show their signature
to be non-adaptively secure and transform it to adaptive security by employing
chameleon hashes. We instead show in Appendix B that the signature of [DM14]
is already adaptively secure by using a proof technique as in [LSS14]. However,
the signature scheme of [DM14] also suffers from a high reduction loss similar
to the stateless variant of [JRS23], since they use the same proof technique. An-
other possible signature scheme, especially when optimizing for signature size,
is the one by [Boo+23]. They design a credential system, which can be based on
one of several new lattice assumptions, such as Int-NTRU-ISISf . This credential
system implies a signature scheme that we can use in our generic construction.
For the signature schemes of [JRS23; Boo+23] we later give rough estimates of
the size of a signature of a rating. For details, see Section 5.

Stateful reputation system. We also discuss a stateful variant of our generic
construction of a reputation system in Section 5, which is limited to ℓ users.
The stateful variant works the same way as the stateless construction except for
using stateful signatures as building blocks instead and having a fixed maximum
number of users. The security proofs of the stateless generic construction can
easily be adapted to apply to the stateful variant. Then, we can instantiate the
stateful generic construction with the same schemes as discussed before, except
for using the stateful signature scheme of [JRS23]. Since their stateful scheme is
more efficient than their stateless variant, this also improves the efficency of the
reputation system instantiation.

1.2 Related Work

Reputation system constructions. Building reputation systems in the discrete
logarithm setting is well-understood, with a wealth of papers with a variety of
construction strategies and features. A good discussion can be found in the sur-
vey of Gurtler and Goldberg [GG21]. Closest to our generic construction are
[BJK15; BEJ18], they are not quite instantiations of our generic construction,
but they follow a similar paradigm (changes are mostly due to the fixed discrete
logarithm setting in those papers, such as the usage of blind signatures to avoid
signing public keys). Other papers, such as [LM19; BSS10], offer some form of
privacy for issuers. In our construction, the issuer is known to all parties. We
leave extensions, which offer some privacy to issuers, to future work and note
that the techniques used here carry over to more complex scenarios. Another line
of research considers reputation systems in a blockchain context, as surveyed by
Hasan, Brunie, and Bertino [HBB23]. Those systems usually aim for trustless-
ness, i.e. ideally no party has to be trusted, but trust is distributed and backed
by incentives throughout the blockchain network. Our system makes some trust
assumptions, e.g., if group manager and issuer collude, we cannot prevent Sybil
attacks. We do not model any reputation board party mentioned by [HBB23],
which stores the rating signatures, but note that it can be realized by a public
ledger, ensuring that ratings are not censored or deleted.
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Lattice-based group signatures and credential systems. One way to construct a
reputation system is to take some group signature as base and to modify it such
that linking is possible [EKS18; BJK15; BEJ18]. This works because the notion
of group signatures is closely related to anonymous reputation systems; one can
view reputation systems as a group of group signatures. Both want to protect
the anonymity of users inside a group or system, where the users authenticate
messages, while a privileged opener is able to de-anonymize users. Therefore,
we can explore existing lattice-based group signatures as potential bases for a
lattice-based reputation system. One example is the group signature of [Lin+17],
which [EKS18] used to construct their reputation system, as explained later in
more detail.

Another potential group signature to build a reputation system from is the
one of [Bos+20], which uses the sign-encrypt-proof paradigm. They employ the
Aurora SNARK [Ben+19] for their proofs, which has the advantage of no slack
and very small proofs. However, the computation time for the proofs required
by the group signature seems to be too high, as [Bos+20] explain.

In their paper on very efficient NIZKs with no slack, [Lyu+21] also present a
group signature scheme, which is based on the constructions of [PLS18; Lyu+21].
While this scheme promises very short signatures, their group signature is static,
i.e. the group does not change. This does not match our dynamic model of a
reputation system. Furthermore, [Lyu+21] model their user identities as single
ring elements of a special set, which they sign to let the user join the group.
However, in our construction we need to be able to sign the public keys of the
LIT scheme, which generally do not fall into this special set.

Another group signature on which one could base a reputation system is the
one by [Lin+18]. They also follow the sign-encrypt-proof paradigm, and con-
cretely use the signatures of [DM14], an encryption scheme by [LPR13b] trans-
formed to CCA security similar to the Naor-Yung paradigm and some Stern-like
proof system. This group signature uses the same signature scheme and a similar
encryption scheme as building blocks as we do in our first instantiation of the
reputation system (note that we use different NIZKs).

Instead of basing the construction of a reputation system on some group
signature, one can also look at credential system, as they are another privacy-
focused primitive related to reputation systems. Two possible constructions are
the systems from [JRS23] and [Boo+23]. The idea of both credential systems
is that they construct a blind signature, which they use to (blindly) sign some
attributes, i.e. create a credential over the attributes. To sign a message, they
prove possession of a credential in zero-knowledge. Thus, the idea of their con-
structions is different to our generic construction, which does not need a blind
signature.

Lattice-based reputation systems. To the best of our knowledge, the only other
construction of a reputation system that is based on lattices is the construction
of [EKS18]. The idea for their construction is to start with the group signature
from [Lin+17] and view the reputation system as a group of group signatures.
For each item that can be rated, the group manager sets up a separate group
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signature via a hash-based accumulator that is a Merkle-tree of all public keys
of users who may rate the item. To create a rating a user encrypts his identity,
creates a tag with a LIT and proves in zero-knowledge that he encrypted and
tagged correctly as well as that his public key, for which he knows the secret key,
is contained in the Merkle-tree.

A drawback of their model is that there are no issuers, instead there is a single
group manager who manages everything. This gives the single group manager
more power in a setting where there are different people to be rated, where these
people need to trust the single group manager to work honestly. By separating
the group manager from issuers, we can also split up their power, allowing for
a more fine-grained approach of modelling trust. This is reflected in our secu-
rity model. Additionally our security model offers a slightly stronger corruption
model, except for requiring the opener to be honest (cf. Section 4.1).

Another drawback of the construction of [EKS18] is that due to it relying
on public Merkle-trees, there exists a public record of all users who can rate an
item. While this does not contradict any formal security notion, in practice it is
undesirable that the whole purchase history of all users is publicly available and
a construction not exhibiting this issue is preferable. Our construction prevents
this drawback by using signatures instead of a Merkle-tree to add users to the
group. Obviously, even in our setting malicious issuers can always share the
purchase history of users who bought from them with other people, but this is
unpreventable. However, [EKS18] requires their group manager to publish this
information in order for the system to work. Furthermore, due to their usage
of first-are-errorless LWE for the LIT as mentioned before and their usage of
Stern-like proofs, the construction of [EKS18] is less efficient than ours.

The advantage that the construction of [EKS18] has over our construction
is that they can assume the opener to be corrupt in every security notion but
anonymity, while our construction needs the opener to be honest-but-curious.
[EKS18] achieve this requirement by introducing a Judge algorithm with which
one can publicly verify that the opener worked correctly. We note that it is
straight-forward to add Judge to our generic construction and our instantiations,
but we omit it for better readability.

2 Preliminaries

We denote drawing some x uniformly from a set S by x ← S. We overload
notation and denote by x ← D sampling x from a distribution D. If A(y) is a
(probabilistic polynomial time (ppt)) algorithm, x ← A(y) denotes sampling x
from the output distribution of A on input y. [A(y)] denotes the set of possible
outcomes of a ppt A on input y. We denote the random oracle as RO.

We denote scalars as lowercase letters a, column vectors as bold lowercase
letters a and matrices as bold uppercase letters A. By Ic we denote the identity
matrix of dimension c× c. If the dimensions are clear from the context, we may
only write I. The same holds for 0, by which we denote the vector or matrix
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consisting of only zeroes. For the norm ‖a‖ of a vector we use the euclidian norm
unless specified otherwise. We denote the infinity norm of a vector by ‖a‖∞.

Unless otherwise specified, let R = Z[X]/(Xn + 1) with n ≥ 16 being a
power of two and let q > 16 and q = 3, 5 mod 8. Let Rq = R/qR. With such
a q, Rq splits into Rq

∼= Fqn/2 × Fqn/2 , where Fqn/2 denotes the field with qn/2

elements, which we use for some results, e.g. Lemma 1. We represent elements of
Rq as vectors over Zn

q . In general, we use the coefficent embedding θ : Rq → Zn
q ,

since for the R we use the canonical embedding is the same as the coefficent
embedding up to a factor of

√
n [JRS23]. Define R2 = θ−1({0, 1}n) and R±1 =

θ−1({−1, 0, 1}n). By x̃ we refer to the constant term of some polynomial x ∈ R.
For CPA security of an encryption scheme and EUF-CMA security of a sig-

nature scheme we use the standard definitions. See Appendix E for definitions.

2.1 Problems on Lattices

Definition 1 (MLWE). Let q > 2 and k > 0. Let R be a ring and Rq = R/qR.
Let χ be a distribution over Rq. For a secret s ∈ Rk

q , the Module Learning With
Errors (MLWE) As distribution is defined as choosing a ← Rk

q and e ← χ,
computing b = sta+ e mod q, and outputting (a, b).

The MLWE problem MLWEq,R,k,χ is then defined as distinguishing between
As for a secret s←Rk

q and the uniform distribution over Rk+1
q .

It can be useful to group the ai from m samples together as the column
vectors of a matrix A ∈ Rk×m

q and the bi as the entries of a vector b ∈ Rm
q ,

such that we have stA+ et = bt for some error vector e ∈ Rm
q .

There exists an alternative version of the MLWE problem, where the secret
is not sampled uniformly from Rq, but instead sampled as s ← χk. This is
called the normal form of MLWE. The described MLWE problems are decisional
problems. There exist computational variants, where the goal is to compute the
secret s, given samples from the respective MLWE distribution. This is called
the (normal form) search MLWE problem sMLWEq,R,k,χ.

In some cases, we need to set the parameters of the normal form MLWE
problem in such a way that the secret used to create a set of m samples is
unique, meaning that with overwhelming probability there is no other secret
and error vector that could produce the samples.

Lemma 1 (Short MLWE secrets are unique). Let q 6= 2 be a prime with
q = 3, 5 mod 8 (or q = 1 mod 2n), k > 0, n > 16 be a power of 2, Rq =
Zq[X]/(Xn +1). Let Bβ = {e ∈ Rq : ‖e‖∞ ≤ β}. Let ∆ ≥ 0 such that 2β+∆ <
q1/4. Then, there exists an m and a negligible function negl such that

Pr

[
∃(s, s′, e, e′) ∈ (Bk

β)
2 × (Bm

β )2

with s 6= s′ ∧ ‖b‖∞ ≤ ∆
:
A←Rk×m

q

bt = (s− s′)tA+ (e− e′)t

]
≤ negl(n).

The proof can be found in Appendix A.
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2.2 NIZKs

We model non-interactive zero-knowledge proof systems in the random oracle
model. This is because when instantiating our generic construction of a repu-
tation system, the NIZKs we use are in the random oracle model. The generic
construction itself and the security proofs, however, do not make use of the ran-
dom oracle model. There, it would suffice to model NIZKs without a random
oracle by simply removing it from the syntax and security models.
Definition 2 (NIZK). A non-interactive proof system (NIZK) for a relation
R in the random oracle model is defined as a triple ΠNIZK = (Setup,P,V) of
ppt algorithms:

– Setup(1n) outputs a common reference string crs.
– PRO(·)(crs, x, w,m) given instance x, witness w, and a message m, outputs

a proof π.
– VRO(·)(crs, x,m, π) outputs a bit b.

To simplify notation, we sometimes omit the random oracle RO(·), but assume
implicitly that the prover and verifier have access to it. We say that the NIZK is
correct, if for all (x,w) ∈ R and m ∈ {0, 1}∗, we have that

Pr[V(crs, x,m,P(crs, x, w,m)) : crs← Setup(1n)] = 1.

For a relation R, LR = {x | ∃w : (x,w) ∈ R} is the language associated
with R. The message m is additional data bound to the proof (e.g., including m
in a Fiat-Shamir hash). Its role can be observed in Definition 6.

In order to display the relation R that is proven, we will use the following
notation for proofs.
Definition 3. We denote the generation of a proof π ← P(crs, x, w,m) by

π ← NIZK{x;w;R(x,w)}(m),

where P is from a non-interactive proof system ΠNIZK for the relation R. We
say “Verify π” to mean checking that V(crs, x,m, π) = 1 and we say “π verifies”
or “π is valid” if V(crs, x,m, π) = 1 holds.

With respect to security, we require the NIZK to be zero-knowledge (i.e.
proofs can be simulated without a witness), sound (i.e. one cannot prove false
statements), simulation-sound (i.e. one cannot prove false statements, even in
the presence of simulated proofs), and straight-line extractable (i.e. there exists
an extractor that can efficiently compute a witness from a valid proof without
rewinding). These definitions are standard, we list them below, starting with
zero-knowledge.

Definition 4 (Zero-Knowledge). A NIZK Π is zero-knowledge if there ex-
ists a simulator S consisting of three ppt algorithms S = (S.Setup,S.RO,S.Sim)
such that for all ppt A there exists a negligible function negl such that,

AdvZK
Π,A(n) =

∣∣∣∣ Pr[AP(crs,·,·,·),RO(·)(1n, crs) = 1 : crs← Setup(1n)]
− Pr[ASim(·,·,·),S.RO(·)(1n, crs) = 1 : crs← S.Setup(1n)]

∣∣∣∣ ≤ negl(n)
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where RO denotes a random oracle. The oracle Sim(x,w,m) checks if (x,w) ∈ R
and if so, runs S.Sim(x,m). We assume that S is stateful, i.e. it implicitly keeps
state between invocations of S.Setup, S.RO, and S.Sim.

We give the simulator two advantages beyond a regular prover that should
allow it to efficiently simulate proofs without a witness: (1) S.Setup generates
crs and that process can yield a trapdoor that S stores in its state. (2) S answers
the random oracle queries of A with S.RO(·), so S can program random oracle
answers.

The second requirement we have is soundness, which states it is hard for an
adversary to prove a false statement.

Definition 5 (Soundness). We say that a NIZK Π is sound if for all ppt A,
there is a negligible function negl such that

AdvSnd
Π,A(n) = Pr

[
VRO(·)(crs, x,m, π) = 1 ∧ x /∈ LR :
crs← Setup(1n), (x,m, π)← ARO(·)(1n, crs)

]
≤ negl(n)

Next, we require simulation soundness, i.e. even given access to an oracle
creating simulated proofs (potentially for false statements), it is hard to compute
an accepting proof for a wrong (not-queried) statement x.

Definition 6 (Simulation soundness). Let Π = (Setup,P,V) be a zero-
knowledge NIZK, with simulator S as in Definition 4. We say that a NIZK Π
is simulation-sound if for all ppt A, there exists a negligible function negl with

AdvSS
Π,A(n) =

Pr

 VS.RO(·)(crs, x,m, π) = 1
∧ x /∈ LR

∧ A has not queried S.Sim(x,m)
:
crs← S.Setup(1n),
(x,m, π)← AS.Sim(·,·),S.RO(·)(1n, crs)


≤ negl(n)

Note that, as usual, A may even query S.Sim(x,m) for x /∈ L. The simulation
soundness property is sometimes understood to imply non-malleability of the
proof π, i.e. defined with the condition “π has not been output by S.Sim(x,m)”
instead of “A has not queried S.Sim(x,m)”. We use the weaker condition here,
which corresponds to the fact that we do not consider immaterial changes to
rating signatures (e.g., re-randomization with no change to the rating text or
the rated party) an attack (see, for example, Definition 18).

Finally, we require straight-line extractability.

Definition 7 (Straight-line extractability). Let Π = (Setup,P,V) be a
NIZK. We say that Π is a straight-line extractable proof of knowledge if there
are ppt algorithms E0, E1 such that for all ppt A0,A1, there exist negligible func-
tions negl0, negl1 such that

AdvPoK0

Π,A0
(n) =

∣∣∣∣ Pr[A0(1
n, crs) = 1 : crs← Setup(1n)]

− Pr[A0(1
n, crs) = 1 : (crs, td)← E0(1n)]

∣∣∣∣ ≤ negl0(n)
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and

AdvPoK1

Π,A1
(n) = Pr

 VRO(crs, x,m, π) = 1
∧ (x,w) /∈ R

:
(crs, td)← E0(1n),
(x,m, π)← A1(1

n, crs),
w ← E1(td, x,m, π)

 ≤ negl1(n)

In the random oracle model, E1 gets the list of random oracle queries that A
made as additional input.

We give the extractor the advantage of setting up crs (allowing it to embed
a trapdoor td) and, in the random oracle model, of observing the random oracle
queries of A (as in [Fis05a]). The extractor does not have any ability to rewind
A, so extraction through rewinding is not an option. Note that in this security
definition, we do not give A access to simulated proofs.

Later on, to instantiate the reputation system based on lattices, we want to
use NIZKs over the following relation.

Definition 8. Let q > 0, R a ring, Rq = R/qR. Let ϕ, ϕeval, d, e, vd, ve,m1, ℓ
and kbin be non-negative. Let ψ : R→ R, x 7→ x(X−1) be an automorphism. Let

– fi : R2(m1+ℓ)
q →Rq be a quadratic function for i ∈ [ϕ],

– Fi : R2(m1+ℓ)
q →Rq be an evaluation function for i ∈ [ϕeval],

– Di ∈ Rki×2(m1+ℓ)
q ,ui ∈ Rki

q for i ∈ [vd],
– Ei ∈ Rpi×2(m1+ℓ)

q ,vi ∈ Rpi
q for i ∈ [ve],

– (β
(d)
i )i∈[vd], (β

(e)
i )i∈[ve] be some bounds,

– Ebin ∈ Rkbin×2(m1+ℓ)
q and vbin ∈ Rkbin

q .

Call the combination of these parameters pp. Define the relation RR to consist of
pairs (pp, s) with s = (s1, ψ(s1),m, ψ(m)) ∈ R2m1

q ×R2ℓ
q , such that the following

conditions hold:

∀1 ≤ i ≤ ϕ, fi(s) = 0

∀1 ≤ i ≤ ϕeval, F̃i(s) = 0

∀1 ≤ i ≤ vd, ‖Dis− ui‖∞ ≤ β
(d)
i

∀1 ≤ i ≤ ve, ‖Eis− vi‖ ≤ β(e)
i

Ebins− vbin ∈ {0, 1}dkbin

Recall that the notation F̃i(s) denotes the constant term of polynomial Fi(s).

Lemma 2 ([LNP22b]). There exists a NIZK for relation RR that is zero-
knowledge and simulation-sound in the random oracle model.

While [LNP22b] only claim soundness instead of simulation-soundness, their
analysis ([LNP22a, Appendix B], based on [AFK22]) applies verbatim to simulation-
soundness. This is because to argue soundness for a proof π for statement x and
messagem, one considers only random oracle queries of the formH(pp, x,m, · · · ).
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Simulated proofs for (x′,m′) 6= (x,m), in contrast, are only concerned with ran-
dom oracle queries of the form H(pp, x′,m′, · · · ). Hence programming the ran-
dom oracle for pp, x′,m′, · · · does not interfere with the soundness analysis at
all. We can effectively imagine that the simulator and the soundness proof use
two independent random oracles.

We also want the NIZK to be straight-line extractable. For this, we use
Katsumata’s transform [Kat21] as shown in [Boo+23]. Their notion of multi-
proof extractability implies our straight-line extractability.

Corollary 1 ([LNP22b],[Kat21],[Boo+23]). There exists a NIZK for re-
lation RR that is zero-knowledge and simulation-sound and straight-line ex-
tractable in the random oracle model.

3 Linking Indistinguishable Tags

A building block we need are linking indistinguishable tags (LIT). The idea of
such a scheme is that one can compute a tag for a given message with a secret
key. An adversary should not able to tell which secret key was used to create
the tag. However, if one tags the same message twice, i.e. with the same secret
key, anyone can discover this by linking the tags. There also exists a function
f from which we can compute a public key pk = f(sk). We typically require f
to be a one-way function implicitly. This public key is not used in the scheme
itself, but can be used in conjunction with other primitives. The formal model
looks as follows.

Definition 9. A linking indistinguishable tags scheme consists of a function f
and the following ppt algorithms:

– KeyGen(1n): On input a security parameter n, it outputs a secret sk.
– Tag(sk, µ): On input a secret key sk and a message µ, it outputs a tag t.
– Vrfy(sk, µ, t): On input a secret key sk, a message µ and a tag t, it outputs

a bit b.
– Link(µ, t0, t1): On input a message µ and two tags t0, t1, it outputs a bit b.

We require that a LIT is correct. This is the case if for all security parameters
n, all sk output by KeyGen(1n), all messages µ, all tags t0, t1 output by Tag(sk, µ),
we have that Vrfy(sk, µ, t0) = 1 and Link(µ, t0, t1) = 1.

The first security requirement is tag-indistinguishability. In this indistin-
guishability game an adversary has to decide which of two secrets was used
to create the challenge, while having access to tag oracle for these secrets. We
define the oracle Tg(c, µ) to return t if there exists some (c, µ, t) ∈ Q. Else, we
return t← Tag(skc, µ) and add (c, µ, t) to Q.
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AnonLIT
Π,A,b(n)

1 : sk0, sk1 ← KeyGen(1n)

2 : pki = f(ski), i ∈ {0, 1}
3 : µ∗ ← ATg(·,·)(pk0, pk1)

4 : t∗ ← Tag(skb, µ
∗)

5 : b′ ← ATg(·,·)(t∗)

6 : If µ∗ was queried, output 0, else output b′.

Definition 10. A LIT Π has tag-indistinguishability, if there exists a negligible
function negl such that for all ppt adversaries A it holds that

AdvLITAnon
Π,A (n) :=

∣∣∣Pr[AnonLIT
Π,A,0(n) = 1]− Pr[AnonLIT

π,A,1(n) = 1]
∣∣∣ ≤ negl(n).

The second security requirement is linkability. This asks that no adversary
can produce two secret key tag pairs and a message, such that the secret key
tag pairs are valid for the message, while the tags do not link. In comparison to
the security model of [EKS18], we generalize our security model for linkability
and allow the adversary to output two different secret keys, but they must map
to the same public key.

LinkableLIT
Π,A(n)

1 : (sk0, sk1, µ, t0, t1)← A(1n)
2 : If f(sk0) ̸= f(sk1) or ∃i ∈ {0, 1} : Vrfy(ski, µ, ti) = 0, return 0.
3 : If Link(µ, t0, t1) = 0, output 1.

Definition 11. A LIT Π has linkability if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[LinkableLIT
Π,A(n) = 1] ≤ negl(n).

Another security requirement, unforgeability, is similar to the requirement
for a one-way function. It requires that no adversary is able to produce a secret
key, message and valid tag, such that the tag links to another valid tag. For
that, we need a tag oracle QTg, that on input (sk, µ) returns t if there exists
(µ, t) ∈ Q. Else it computes t← Tag(sk, µ), adds (µ, t) to Q and returns t.

ForgeLIT
Π,A(n)

1 : Q = ∅
2 : sk← KeyGen(1n), pk = f(sk)

3 : (sk∗, µ, t∗)← AQTg(sk,·)(pk)

4 : If Vrfy(sk∗, µ, t∗) = 0, output 0.
5 : If ∃ (µ, t) ∈ Q such that Link(µ, t, t∗) = 1, output 1.
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Definition 12. A LIT Π is unforgeable, if there exists a negligible function negl
such that for all ppt adversaries A it holds that

Pr[ForgeLIT
Π,A(n) = 1] ≤ negl(n).

The last requirement for LIT schemes is non-invertability. This asks that an
adversary is not able to find a secret key to given public key, while having access
to a tag oracle.

InvertΠ,A(n)

1 : sk← KeyGen(1n)

2 : pk = f(sk)

3 : sk′ ← AQTg(sk,·)(pk)

4 : If pk = f(sk′), output 1.

Here QTg is defined as before.

Definition 13. A LIT Π has non-invertability, if there exists a negligible func-
tion negl such that for all ppt adversaries A it holds that

Pr[InvertΠ,A(n) = 1] ≤ negl(n).

Construction Based on Module Lattices Given the formal model of a LIT, we
now want to construct a LIT based on module lattices of rank k. When we later
use the LIT in our reputation system, we only need k = 1, in which case the
security assumption for the LIT reduces to ideal lattices. The LIT may be of
independent interest, so we construct it with general k.

The idea for the construction is that a public key is simply a batch of MLWE
samples for some secret s. A tag on a message µ is the second component of
another batch of MLWE samples, i.e. tt = stAµ + e′t, for the same secret s and
some different error e′, where we define Aµ = RO(µ). This way, if we tag the
same message twice, Aµ is the same for both tags, and the difference of the two
tags is equal to the difference of the two errors. Since this is short, we can detect
that the tags were created for the same message.

Construction 14. Let m, k > 0. Let β < 2−
n

mk+ n
2k log(q)−3. Let χ be a distribu-

tion over Rq. Construct the LIT ΠLIT consisting of the following algorithms:

– KeyGen(1n): Choose s← χk, e← χm. Set sk = (s, e).
– Tag(sk, µ): Compute Aµ = RO(µ) ∈ Rk×m

q and e′ ← χm. Output tt =
stAµ + e′t.

– Vrfy(sk, µ, t): Compute Aµ = RO(µ) ∈ Rk×m
q . If ‖t− (stAµ)

t‖∞ < β and
‖s‖∞ ≤ β, output 1.

– Link(µ, t0, t1): If ‖t0 − t1‖∞ < 2β, output 1.
– f = fA for A←Rk×m

q , fA(sk) = (stA+ et)t

The construction is correct, if we have that Pr[‖x‖∞ ≤ β : x ← χ] with
overwhelming probability.
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Lemma 3. The LIT ΠLIT has tag-indistinguishability (Definition 10) in the ran-
dom oracle model, if normal form MLWEq,R,k,χ is hard.

This can be proven by proving that AnonLIT
ΠLIT,A,0(n) is indistinguishable from

a game where the challenge tag t∗ is generated uniformly at random, which
is possible using the indistinguishability of the MLWE distribution from the
uniform distribution. Then, one does the same for AnonLIT

ΠLIT,A,1(n), from which
we can see that the two games are indistinguishable if normal form MLWE is
hard.

Lemma 4. The LIT ΠLIT has non-invertability (Definition 13) in the random
oracle model if normal form sMLWEq,R,k,χ is hard.

Proof. Let A be an adversary against the invertability of the LIT. We construct
an adversary B against normal form search-MLWE from it. B simulates A by
using batching m samples from his MLWE oracle into a public key pk. By the
definition of the MLWE oracle, there is some secret s that was used to generated
these samples. When A asks for a tag on a previously unqueried message µ, B
uses its MLWE oracle to get a batch of m samples (A,b), defines RO(µ) := A
and answers with b. If A asks for a tag on a previously queried µ, B answers
with the b it generated before. When A outputs some sk′ = (s′, e′), B returns
s′ to its challenger. Due to Lemma 1 we know that the secret s behind the tags
is unique, therefore we know s = s′ if A wins and thus s′ is a valid solution for
normal form search-MLWE.

Lemma 5. The LIT ΠLIT is linkable (Definition 11) in the random oracle model.

Proof. The adversary can only win, if f(sk0) = f(sk1). This means, that st0A+
et0 = st1A + et1, where ski = (si, ei). Due to Lemma 1 we know that the short
MLWE secrets are unique, meaning s0 = s1. Therefore we know that t0 − t1 =
st0Aµ + e′t0 − st1Aµ − e′t1 = e′t0 − e′t1 for some e′i, i ∈ {0, 1} with ‖e′i‖∞ ≤ β. Thus
we have ‖t0 − t1‖∞ ≤ 2β which is why the Link algorithm always outputs 1,
meaning an adversary cannot win the linking game.

Lemma 6. The LIT ΠLIT is unforgeable (Definition 12) in the random oracle
model if normal form sMLWEq,R,k,χ is hard.

Proof. Let A be an adversary against the unforgeability of the LIT and let Q
be the number of oracle queries of A. Construct an adversary B against normal
form search-MLWE. B uses the first m samples of its oracle as the pk and gives
that to A. Then, on tag-query µ, B asks its oracle for m samples batched as
(A,b), programs the random oracle as RO(µ) := A and returns b. This way,
there is a consistent s behind the pk and tags A sees, although B does not know
it. Then, A outputs some sk∗, µ and t∗. If the tag is valid and links to some tag
t, B outputs s∗, where sk∗ = (s∗, ·). Now, due to Lemma 1 and the choice of β
we know that the probability that s 6= s∗ is negligible. Therefore, if A finds a
forgery, B outputs a solution for normal form search-MWLE with overwhelming
probability.
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Other Constructions It is also possible to base similar constructions on the
security of Learning With Errors, Learning With Rounding or Module Learning
With Rounding [BPR12]. For the latter two, this simplifies all algorithms, as we
no longer have to consider the error or how to sample it and can, for example,
simply check for equality of tags when linking them.

4 Reputation System

The first step to our reputation system is a syntax model. We base our model
on [BJK15], but add some changes. In our model, we define four different (types
of) parties: the group manager, the opener, an issuer and a user. In contrast to
[BJK15], we identify a user by some user public key upk, which he can generate
himself and for which he possesses some user secret key usk. Then, he can join
the reputation system by interacting with the group manager, who knows some
group manager key pair (gmsk, gmpk), with which he generates a registration
token ρ to give to the user. Note that the joining of new users is dynamic and
the number of users is not limited. Then, the user interacts with the issuer. The
latter is identified by some issuer public key ipk, for which he knows some issuer
secret isk. The issuer gives the user some rating token τ enabling the user to rate
the issuer. Note that in contrast to [BJK15], the party to be rated is the issuer
and not a product of an issuer. The user rates the issuer by using his usk, ρ and
τ , where the latter was issued by the issuer to be rated, to create a signature for
the rating. Anybody can verify the signature to check that the rating is valid,
while not being able to see which user created the signature. Should the user
rate the same issuer twice, anybody can use the linking algorithm to detect that
two ratings were created by the same user. The last party is the opener, which
in contrast to [BJK15] is a separate party from the group manager. The opener
knows some opener secret key osk for some opener public key opk. In the case that
a user misbehaves, the opener open a signature to break anonymity of the user,
i.e. identify the user who created the signature. Note that the group manager
and opener generate their secret keys separately, which is why our model offers
a stronger security model than [BJK15]. We now give the formal definition of a
reputation system.

Definition 15. A reputation system consists of the following algorithms:

– Setup(1n): The ppt algorithm outputs some public parameters pp. We im-
plicitly assume that all algorithms have pp as additional input.

– KeyGenM (1n): The ppt algorithm outputs a pair of group manager secret and
public key (gmsk, gmpk).

– KeyGenO(1
n): The ppt algorithm outputs a pair of opening secret and public

key (osk, opk).
– KeyGenI(1

n): The ppt algorithm outputs a pair of issuer secret and public
key (isk, ipk).

– KeyGenU (1
n): The ppt algorithm outputs a pair of user secret and public key

(usk, upk).
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– Join(gmpk, usk),Register(gmsk, upk): At the end of their interaction of these
interactive ppt algorithms, Join outputs a registration token ρ.

– Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): At the end of the interaction
of these interactive ppt algorithms, Request outputs a rating token τ .

– Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): The ppt algorithm outputs a signature σ.
– Vrfy(gmpk, opk, ipk, rtng, σ). The ppt algorithm outputs a bit b.
– Open(gmpk, osk, ipk, rtng, σ): The ppt algorithm outputs some upk.
– Link(gmpk, opk, ipk, (rtng′, σ′), (rtng′′, σ′′)): The ppt algorithm outputs a bit
b.

Definition 16. A reputation system is correct if for all security parameters
n, all pp ∈ [Setup(1n)], all (gmsk, gmpk) ∈ [KeyGenM (1n)], all (osk, opk) ∈
[KeyGenO(1

n)], all (isk, ipk) ∈ [KeyGenI(1
n)], all (usk, upki) ∈ [KeyGenU (1

n)],
all ρ ∈ [Join(gmpk, uski)↔ Register(gmsk, upk)],
all τ ∈ [Request(gmpk, ipk, uski, ρi)↔ Issue(gmpk, isk, upk)], all ratings rtng,
all σ ∈ [Sign(gmpk, opk, ipk, uski, ρ, τ, rtng)], all ratings rtng′,
all σ′ ∈ [Sign(gmpk, opk, ipk, usk, ρ, τ, rtng′)] it holds that

– Vrfy(gmpk, opk, ipk, rtng, σi) = 1
– Open(gmpk, opk, ipk, rtng, σi) = upki
– Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)) = 1.

4.1 Security Model

Next we define the security model of a reputation system. We consider five dif-
ferent notions called anonymity, non-frameability, traceability, public-linkability
and joining security. These notions are inspired by the model of [BJK15], except
for non-frameability, which replaces strong-exculpability, and joining security,
which is new since we split the group manager and opener into two parties.

In our security games, we model corruption differently than [BJK15] and
[EKS18]. Instead of giving the adversary oracles to corrupt parties, we assume
that every participant is corrupted, except for the minimal set that is needed so
that the security experiment is not trivially solvable. We note that this model of
corruption does not change the security level, it simply makes it easier to argue
in proofs. Then, since we differentiate between the group manager and issuers,
we can corrupt only one of them if needed. More importantly, this allows us
model full corruption, meaning the adversary can choose the public keys freely
for corrupted parties,where in [EKS18] the adversary also has to output a valid
secret key for the public key he outputs. We also assume that the adversary
carries a state in between its calls. Note that we do not consider concurrency.

Before we define the security experiments, we define some oracles that an
adversary A may have access to.

Rg(gmsk, upk): Run A ↔ Register(gmsk, upk). Add upk to U .
Req(gmpk, ipk, u): If the input was queried before, output ⊥. Else, run

τu,ipk ← Request(gmpk, ipk, usku, ρu)↔ A and store the rating token τu,ipk.
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SigO(gmpk, opk, ipk, u, rtng): If τu,ipk is undefined or the input was queried be-
fore, output ⊥. Else, output σu,ipk ← Sign(gmpk, opk, ipk, usku, τu,ipk, rtng).
Add (ipk, rtng, σu,ipk) to Q.

Iss(gmpk, isk, upk): Add upk to I. Run A ↔ Issue(gmpk, isk, upk).

Note that in the security games, some of these parameters are fixed and
cannot be chosen by the adversary. For the Rg oracle, for example, we fix gmsk,
but leave upk open and thus write Rg(gmsk, ·) in the JoinSecurity game.

The first security requirement for users is that they stay anonymous. In the
anonymity experiment, we have two honest users that we try to protect. Except
for these two users and the opener, we assume that every other party is corrupted,
i.e. controlled by the adversary. In contrast to the notion of full-anonymity of
group signature we only have selfless anonymity, meaning it is possible for a user
to identify his own signatures. Thus, the usks of the honest users should stay
hidden to the adversary.

AnonΠ,A,b(n)

1 : pp← Setup(1n)

2 : (osk, opk)← KeyGenO(1
n)

3 : gmpk← A(opk)
4 : For u ∈ {0, 1}
5 : (usku, upku)← KeyGenU (1

n)

6 : ρu ← Join(gmpk, usku)↔ A(upku)
7 : If ρu =⊥, return 0.
8 : ipk∗ ← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,osk,·,·,·)

9 : τu ← Request(gmpk, ipk∗, usku, ρu)↔ A for u ∈ {0, 1}
10 : If τu =⊥ for any u ∈ {0, 1}, return 0.
11 : rtng← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,osk,·,·,·)

12 : σ ← Sign(gmpk, opk, ipk∗, uskb, ρb, τb, rtng)

13 : b′ ← AReq(gmpk,·,·),SigO(gmpk,opk,·,·,·),Open(gmpk,isk,·,·,·)(σ)

14 : If there was a query to Open with (gmpk, osk, ·, ·, σ) as argument, return 0.
15 : If there was a query to SigO with (gmpk, opk, ipk∗, ·, ·) as argument, return 0.
16 : Return b′.

Definition 17. A reputation system Π is anonymous, if there exists a negligible
function, such that for all ppt adversaries A it holds that

AdvanonΠ,A (n) := |Pr[AnonΠ,A,0(n) = 1]− Pr[AnonΠ,A,1(n) = 1]| ≤ negl(n).

Another security requirement for users is non-frameability. This expresses
that any adversary can neither create a signature that opens to an honest user
nor create a signature that links to one of an honest user, where the latter security
requirement was added by [EKS18]. In the security experiment, we have one user
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to be protected. In contrast to [EKS18], here and in all further security games,
we require that the keys of the opener are generated honestly. This is due to the
fact that we do not include a Judge algorithm as [EKS18] do.

NFrameΠ,A(n)

1 : pp← Setup(1n)

2 : Q = ∅
3 : (osk, opk)← KeyGenO(1

n)

4 : gmpk← A(osk)
5 : (usk0, upk0)← KeyGenU (1

n)

6 : ρ0 ← Join(gmpk, usk0)↔ A(upk0)
7 : (ipk, rtng, σ)← AReq(gmpk,·,0),SigO(gmpk,opk,·,0,·)()

8 : upk← Open(gmpk, osk, ipk, rtng, σ)

9 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0
10 : If (ipk, rtng, ·) ∈ Q, return 0
11 : If upk = upk0, return 1
12 : If ∃(ipk, rtng′, σ′) ∈ Q : Link(gmpk, opk, ipk, (rtng, σ), (rtng′, σ′)) = 1, return 1

Definition 18. A reputation system Π has non-frameability, if there exists a
negligible function negl, such that for all ppt adversaries A it holds that

Pr[NFrameΠ,A(n) = 1] ≤ negl(n).

An issuers requires traceability from the reputation system, which means
that it is not possible to create a signature that does not open to some user or
that opens to a user that was not given a rating token by an honest issuer. Here,
we create one honest issuer that we want to protect.

TraceΠ,A(n)

1 : pp← Setup(1n)

2 : I = ∅
3 : (osk, opk)← KeyGenO(1

n)

4 : (isk, ipk)← KeyGenI(1
n)

5 : gmpk← A(osk, ipk)
6 : (σ, rtng)← AIss(gmpk,isk,·)()

7 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0
8 : upk← Open(gmpk, osk, ipk, rtng, σ)

9 : If upk =⊥ ∨ upk /∈ I, return 1

Definition 19. A reputation system Π has traceability, if there exists a negli-
gible function negl, such that for all ppt adversaries A it holds that

Pr[TraceΠ,A(n) = 1] ≤ negl(n).
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A security guarantee for the whole system is public-linkability. This requires
that the outputs of Open and Link are consistent to each other, meaning it is not
possible for an adversary to create two ratings for the same issuer that open to
the same user, but do not link.

PLinkableΠ,A(n)

1 : pp← Setup(1n)

2 : (osk, opk)← KeyGenO(1
n)

3 : (gmpk, ipk, (σj , rtngj)j∈{0,1})← A(osk)
4 : If ∃j ∈ {0, 1} : Vrfy(gmpk, opk, ipk, rtngj , σj) = 0, return 0.
5 : If Open(gmpk, osk, ipk, rtng0, σ0) ̸= Open(gmpk, osk, ipk, rtng1, σ1), return 0.
6 : If Link(gmpk, opk, ipk, (rtng0, σ0), (rtng1, σ1)) = 0, return 1.

Definition 20. A reputation system Π has public-linkability, if there exists a
negligible function negl, such that for all ppt adversaries A it holds that

Pr[PLinkableΠ,A(n) = 1] ≤ negl(n).

The group manager also has a security requirement. He wants that every
user who wants to join the system must register with him and does not circum-
vent him. Else, issuers can invent non-existent users to rate themselves or their
products.

JoinSecurityΠ,A(n)

1 : pp← Setup(1n)

2 : U = ∅
3 : (gmsk, gmpk)← KeyGenM (1n)

4 : (osk, opk)← KeyGenO(1
n)

5 : (ipk, rtng, σ)← ARg(gmsk,·)(gmpk, osk)

6 : If Vrfy(gmpk, opk, ipk, rtng, σ) = 0, return 0.
7 : upk← Open(gmpk, osk, ipk, rtng, σ)

8 : If upk /∈ U , output 1.

Definition 21. A reputation system Π has join-security, if there exists a neg-
ligible function negl, such that for all ppt adversaries A it holds that

Pr[JoinSecurityΠ,A(n) = 1] ≤ negl(n).

4.2 Generic Construction

We construct a reputation system from a signature scheme, an encryption scheme,
a LIT, and a NIZK.
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Construction 22. Let Σ = (KeyGenΣ , SignΣ ,VrfyΣ) be a signature scheme. Let
ΠEnc = (KeyGenEnc,Enc,Dec) be an encryption scheme. Let ΠLIT = (KeyGenLIT,
Tag,VrfyLIT, LinkLIT, f) be a LIT scheme. Let ΠNIZK be a non-interactive proof
system for the relation listed in the “NIZK” expression below.

– Setup(1n): Run pp← ΠNIZK.Setup(1
n).

– KeyGenM (1n): Run (gmsk, gmpk)← KeyGenΣ(1
n).

– KeyGenO(1
n): Run (skEnc, pkEnc)← KeyGenEnc(1

n)
and (sk′Enc, pk

′
Enc) ← KeyGenEnc(1

n). Set (osk, opk) = (skEnc, (pkEnc, pk
′
Enc))

and forget sk′Enc.
– KeyGenI(1

n): Run (isk, ipk)← KeyGenΣ(1
n).

– KeyGenU (1
n): Choose usk← KeyGenLIT(1

n) and compute upk = f(usk).
– Join(gmpk, usk),Register(gmsk, upk): The group manager signs
ρ ← SignΣ(gmsk, upk) and sends ρ to the user. If VrfyΣ(gmpk, upk, ρ), the
user outputs it.

– Request(gmpk, ipk, usk, ρ), Issue(gmpk, isk, upk): The issuer signs
τ ← SignΣ(isk, upk) and sends τ to the user. If VrfyΣ(ipk, upk, τ), the user
outputs it.

– Sign(gmpk, opk, ipk, usk, ρ, τ, rtng): Compute c = Enc(pkEnc, upk; r). Compute
c′ = Enc(pk′Enc, usk; r

′). Compute l = Tag(usk, ipk; rt). Output σ = (c, c′, l, π),
where

π = NIZK{gmpk, opk, ipk, pkEnc, pk
′
Enc, c, c

′, l;

upk, usk, ρ, τ, r, r′ ;upk = f(usk)∧
VrfyΣ(gmpk, upk, ρ) = 1∧
VrfyΣ(ipk, upk, τ) = 1∧
c = Enc(pkEnc, upk; r)∧
c′ = Enc(pk′Enc, usk; r

′)∧
VrfyLIT(usk, ipk, l) = 1}(rtng)

– Vrfy(gmpk, opk, ipk, rtng, σ): Verify π for the corresponding statement.
– Open(gmpk, osk, ipk, rtng, σ): Verify π for the corresponding statement. If π

is valid, output upk = Dec(osk, c).
– Link(gmpk, opk, ipk, (rtng′, σ′), (rtng′′, σ′′)): Verify π′, π′′ for the correspond-

ing statements. If π′, π′′ are valid, output LinkLIT(ipk, l′, l′′).

The correctness of the construction follows directly from the correctness of
its building blocks.

4.3 Security of the Generic Construction

The encryption of usk with pk′Enc in a rating is not necessary for functionality,
but a crucial component for the security proof. This is similar to the Naor-
Yung paradigm to get CCA security of an encryption scheme from CPA secu-
rity. Without the encryption of usk we would have to assume online simulation-
extractability (we use the terminology found in [Don+22])– that it is hard for
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an adversary to create a valid proof from which an extractor cannot extract,
even if the adversary sees simulated proofs for possibly wrong statements not
in the language, and the extractor needs to be able to extract during protocol
execution, not just at the end – instead of simulation soundness from the NIZK.
This is a significantly stronger assumption on the proof system, so we choose to
encrypt the usk and to require simulation-soundness.

Theorem 1. If ΠEnc is CPA secure (Definition 35) , the LIT has indistinguish-
able tags (Definition 10) and ΠNIZK has zero-knowledgeness and simulation-
soundness (Definitions 4 and 6), the reputation system is anonymous (Defini-
tion 17).

Note that by our modelling of NIZKs, this theorem and the other security
theorems of the generic construction hold in the random oracle model. However,
as stated in Section 2.2, they can be adapted to hold in the standard model.

Proof. We prove this by a series of games. An overview can be found in Table 1.

π Challenge Query Tag Opening

Game0 P
c ≡ upk0
c′ ≡ usk0

c ≡ upku
c′ ≡ usku

usk0 Dec(skEnc, c)

Game1 S
c ≡ upk0
c′ ≡ usk0

c ≡ upku
c′ ≡ usku

usk0 Dec(skEnc, c)

Game2 S
c ≡ upk0

c′ ≡ 1|usk0|
c ≡ upku

c′ ≡ 1|usku| usk0 Dec(skEnc, c)

Game3 S
c ≡ upk0
c′ ≡ 1|usk0|

c ≡ upku
c′ ≡ 1|usku| usk1 Dec(skEnc, c)

Game4 S
c ≡ upk0

c′ ≡ usk1

c ≡ upku

c′ ≡ usku
usk1 Dec(skEnc, c)

Game5 S
c ≡ upk0
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 f(Dec(sk′Enc, c
′))

Game6 S
c ≡ upk1
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 f(Dec(sk′Enc, c
′))

Game7 S
c ≡ upk1
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 Dec(skEnc, c)

Game8 P
c ≡ upk1
c′ ≡ usk1

c ≡ upku
c′ ≡ usku

usk1 Dec(skEnc, c)

Table 1. An overview of the sequence of games for the anonymity proof. The column
π states whether proofs are done honestly (P) or simulated (S). The columns Chal-
lenge and Query state what messages are encrypted in the ciphertexts c, c′ during the
generation of the challenge or the signature query answer. Tag states which secret is
used to generate a tag. Opening states how opening is done.

Define ϵD,a,b(n) to be the advantage of some ppt D distinguishing Gamea(n)
from Gameb(n). Let Game0 be the Anon0 game. Define Game1 to be the same
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game as Game0, except that the challenger uses the simulator S of ΠNIZK (Def-
inition 4) to generate all proofs, including the challenge. We immediately see
that an adversary cannot distinguish between these games, as the difference of
the distribution of the proofs is negligible due to the zero-knowledge property of
the proof system. Thus, we have that for all ppt distinguishers D, there exists a
ppt A0 such that

AdvZK
ΠNIZK,A0

(n) = ϵD,0,1(n).

Define Game2 to be the same game as Game1 except that c′ in the signa-
ture queries is generated as c′ ← Enc(pk′Enc, 1

|usku|), i.e. we encrypt a string
of ones instead of usku. Furthermore, c′ in the challenge is generated as c′ ←
Enc(pk′Enc, 1

|usk0|), i.e. we encrypt a string of ones instead of usk0. This is in-
distinguishable by the CPA security of the encryption scheme. By a standard
hybrid argument we can construct a ppt A against the CPA security of ΠEnc

from a distinguisher D such that

AdvCPA
ΠEnc,A1

(n) =
1

Q+ 1
ϵD,1,2(n).

Define Game3 to be the same game as Game2 except that tags l in the signa-
ture queries and the challenge are computed as l← Tag(usk1, ipk; rt), i.e. we use
usk1 instead of usk0. This is indistinguishable by the tag-indistinguishability of
ΠLIT (Definition 10). Let D be distinguisher distinguishing Game2 and Game3.
Construct an adversary A2 against the tag-indistinguishability of the LIT.

– On input (pk0, pk1) set up the reputation system as in Game2, except for
setting upk0 := pk0, upk1 := pk1.

– Simulate D.
– Whenever D asks for a signature, query the oracle for a tag l and use that

to create the signature. Do the same for the challenge.
– If D returns a bit b, return b.

We can easily see that if A2’s challenger is in experiment b = 0, the view of
D is the same as in Game2, else the view is the same as in Game3. Thus, we have
the following.

AdvLITAnon
ΠLIT,A2

(n) = ϵD,2,3(n)

Define Game4 to be the same game as Game3 except that c′ in the signature
queries is generated as c′ ← Enc(pk′Enc, usku; r

′), i.e. we again encrypt usku in-
stead of 1|usku|, and c′ in the challenge is generated as c′ ← Enc(pk′Enc, upk1; r

′),
i.e. we encrypt usk1 instead of 1|usk0|. By the CPA security of the encryption
scheme we immediately have the following for an adversary A3 that simulates a
distinguisher D as in Game3, by a similar argument as above:

AdvCPA
ΠEnc,A3

(n) =
1

Q+ 1
ϵD,3,4(n)
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Define Game5 to be the same game as Game4 except that opening is done
by remembering sk′Enc during key generation, decrypting c′ to some usk and out-
putting f(usk) instead of outputting the decryption of c. An adversary can only
distinguish between these games if he can submit an opening query (ipk, rtng, σ)
with σ = (c, c′, l, π) such that π is valid but Dec(skEnc, c) 6= f(Dec(sk′Enc, c

′))
and such that σ is not an answer he received from the signature oracle. Call the
event that an adversary outputs such a query Fake. However, if an adversary
could submit such a query, this would break the simulation-soundness of ΠNIZK

(Definition 6). To show this, from a distinguisher D between Game4 and Game5
we construct an adversary A4 against the simulation-soundness of ΠNIZK.

– On input some ppNIZK, set up Game4 while remembering skEnc, sk
′
Enc and

setting pp = ppNIZK.
– Simulate D. To simulate proofs, A uses its simulator oracle.
– Whenever D makes an opening query on (ipk, rtng, σ), answer as in Game4.

Additionally, if σ = (c, c′, l, π) is not an answer from a previous signing query
and upk 6= upk′, where upk← Dec(skEnc, c) and upk′ ← f(Dec(sk′Enc, c

′)), stop
and output the statement from σ together with π.

– If D stops, output a faliure symbol ⊥.

If A4 finds a query such that upk 6= upk′ and the σ is not from a signature
query, we know that, while π is valid and is not a response from the simulator
oracle, the statement is not in the language. Therefore, this σ together with the
corresponding statement is a proof that breaks the simulation-soundness. Thus,
we have that

AdvSS
ΠNIZK,A4

(n) = Pr[Fake] ≥ ϵD,4,5(n).

Define Game6 to be the same game as Game5 except that c in the challenge
σ is generated as c ← Enc(pkEnc, upk1; r), i.e. we encrypt upk1 instead of upk0.
This is again indistinguishable by the CPA security of the encryption scheme,
thus for a distinguisher D and an adversary A5 constructed similarly to above
we have

AdvCPA
ΠEnc,A5

(n) = ϵD,5,6(n)

Define Game7 to be the same game as Game6 except that opening is done
honestly again, i.e. by decrypting c. Again, from a distinguisher D we can con-
struct an adversary A6 against the simulation-soundness of ΠNIZK similar to
above and we get

AdvSS
ΠNIZK,A6

(n) ≥ ϵD,6,7(n)

Define Game8 to be the same game as Game7 except that the proofs are
generated honestly again, thus we have that Game8 is the same as Anon1. This
is again indistinguishable due to the zero-knowledge property of ΠNIZK. Thus,
we have that for all distinguishers D, there exists an A7 such that

AdvZK
ΠNIZK,A7

(n) = ϵD,7,8(n).
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Therefore, in total for any ppt distinguishers Di for i ∈ {0, . . . , 7} we have
that

AdvanonΠ,A (n) ≤
7∑

i=0

ϵDi,i,i+1(n)

≤ 2AdvZK
ΠNIZK,A0

(n) + AdvLITAnon
ΠLIT,A2

(n)

+ (2Q+ 3)AdvCPA
ΠEnc,A1

(n)

+ 2AdvSS
ΠNIZK,A4,S(n) = 1]

Theorem 2. If ΠLIT is non-invertible and unforgeable (Definitions 12 and 13)
and ΠNIZK has zero-knowledgeness and simulation-soundness (Definition 4 and
6), the reputation system has non-frameability (Definition 18).

Proof. When an adversary against non-frameability wins, we have that the
forgery either opens to the honest user or it links to a rating of the honest
user. From these cases, we construct an adversary that targets either the non-
invertability or the unforgeability of ΠLIT. We also need to analyze the probabil-
ity of some failure event, for which we use the simulation-soundness of ΠNIZK.

Let A be an adversary against the non-frameability (Definition 18) of the
reputation scheme that does at most q queries to the signing oracle. Let Fail be
the event that in the non-frameability game the statement of the proof contained
in the forgery ofA is wrong, i.e. it is not in the language of the relation. Construct
an adversary B against the non-invertability (Definition 13) of ΠLIT as follows:

– On input pk, simulate NFrameΠ,A(n), except for setting upk0 = pk and
remembering sk′Enc.

– When A queries the request oracle, use the simulator of ΠNIZK (cf. Defini-
tion 4) to answer the query. If it queries the signature oracle, use the tag
oracle to generate a tag, generate c, c′ honestly, then use the simulator of
ΠNIZK to generate the proof.

– Eventually, A outputs some forgery (ipk, rtng, σ) with σ = (c, c′, l, π). If
Vrfy(gmpk, opk, ipk, rtng, σ) = 1 and u := Open(gmpk, osk, ipk, rtng, σ) =
upk0, then usk← Dec(sk′Enc, c

′).
– Output usk.

We can easily see that the view of A is perfectly simulated, except for negligi-
ble error from simulating the proofs. If A could distinguish the views, we could
immediately construct C that breaks the zero-knowledgeness of ΠNIZK. Then,
we know that if A manages to output a valid signature that opens to upk0, and
Fail does not happen, it holds that pk = f(usk). Thus, we have the following.

Pr[InvertΠLIT,B = 1] ≥ Pr[NFrameΠ,A = 1 ∧ u = upk0 ∧ ¬Fail] + AdvZK
ΠNIZK,C(n)

We also construct a C against the unforgeability of ΠLIT (Definition 12).
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– On input pk, simulate NFrameΠ,A(n) except for setting upk0 = pk. Also save
sk′Enc.

– When A queries the request oracle, use ΠNIZK simulator to answer the query.
If A queries the signature oracle, use the tag oracle to generate a tag, then
use the simulator of ΠNIZK to answer the query with the corresponding
statement.

– A outputs (ipk, rtng, σ) with σ = (c, c′, π, l). If Vrfy(gmpk, opk, ipk, rtng, σ) =
1 and u := Open(gmpk, osk, ipk, rtng, σ) 6= upk0 and ∃(ipk, ˆrtng, σ̂) ∈ Q with
σ̂ = (ĉ, ĉ′, π̂, l̂) such that Link(gmpk, opk, ipk, (rtng, σ), ( ˆrtng, σ̂)) = 1 and
rtng 6= ˆrtng, then decrypt usk← Dec(sk′Enc, c

′) and output (usk, ipk, l).

Again, we can easily see that the view of A is perfectly simulated. If A
outputs a forgery (ipk, rtng, σ) such that

Vrfy(gmpk, opk, ipk, rtng, σ) = 1

and u := Open(gmpk, osk, ipk, rtng, σ) 6= upk0
and ∃(ipk, ˆrtng) ∈ Q : Link(gmpk, opk, ipk, (rtng, σ), ( ˆrtng, σ̂)) = 1

and Fail does not happen,

we know that by definition we have VrfyLIT(usk, ipk, l) = 1 and LinkLIT(ipk, l, l̂) =
1. Therefore we have the following.

Pr[NFrameΠ,A = 1|¬Fail ∧ u 6= upk0] = Pr[ForgeLIT
ΠLIT,C

= 1]

Lastly, we want to analyze the probability Pr[Fail]. For this, we construct an
adversary D against the simulation-soundness of ΠNIZK (Definition 6):

– On input crs, simulate NFrameΠ,A(n) except for using the provided crs.
– Simulate A. Whenever A makes an oracle query such that the answer would

contain a NIZK, use the simulator oracle to generate the proof.
– A outputs some forgery (ipk, rtng, σ). If Vrfy(gmpk, opk, ipk, rtng, σ) = 1, re-

turn σ and the corresponding statement.

We can easily see that A is perfectly simulated and that if Fail happens, D
wins. Therefore we can bound the non-frameability advantage of A.

Pr[NFrameΠ,A] ≤Pr[NFrameΠ,A ∧ ¬Fail] + Pr[Fail]

=Pr[NFrameΠ,A = 1 ∧ ¬Fail ∧ u = upk0]

+ Pr[NFrameΠ,A = 1 ∧ ¬Fail ∧ u 6= upk0] + Pr[Fail]

≤Pr[NFrameΠ,A = 1|¬Fail ∧ u = upk0]

+ Pr[NFrameΠ,A = 1|¬Fail ∧ u 6= upk0] + Pr[Fail]

=Pr[InvertΠLIT,B = 1] + Pr[ForgeLIT
ΠLIT,C = 1]

+ Pr[SimSoundΠNIZK,D,S = 1]
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Theorem 3. If Σ is EUF-CMA (Definition 37) and ΠNIZK is straight-line ex-
tractable (Definition 7), the reputation system is traceable (Definition 19).

Proof. Let E0, E1 be the extractor for ΠNIZK (cf. Definition 7). Let A be a ppt
adversary against traceability. First, we define Trace′ΠNIZK,A(n) to work like
TraceΠNIZK,A(n), except that the public parameters pp are generated by the
extractor, i.e. (pp, td) ← E0(1n). From the guarantees of the extractor (Defi-
nition 7) and a straight-forward reduction, we get that |Pr[Trace′ΠNIZK,A(n) =
1]− Pr[TraceΠNIZK,A(n) = 1]| ≤ negl0(n) for some negligible function negl0.

We construct an adversary B against the unforgeability of Σ. BSign(sk,·)(pk)
runs Trace′ΠNIZK,A(n), except that it sets ipk = pk and whenever A makes a
Iss(gmpk, isk, upk) query, B answers by querying its own oracle Sign(sk, upk) for
the signature. Eventually, A outputs (σ, rtng), where σ = (c, c′, l, π). B runs
E1(td, x, rtng, π) (where x is set appropriately to the proven statement) to receive
a witness w = (upk, usk, ρ, τ, r, r′). B outputs (upk, τ) as a candidate forgery.

Let failE be the event that Trace′ΠNIZK,A(n) = 1, but E1 outputs an invalid
witness (i.e. (x,w) /∈ R). With a straight-forward reduction to straight-line
extractability, we can show that Pr[failE ] ≤ negl1(n) for some negligible function
negl1. If Trace′ΠNIZK,A(n) = 1 and ¬failE , B outputs a valid forgery. This is
because the Trace′ winning condition “upk /∈ I” (together with (x,w) ∈ R
and correctness of the encryption scheme guarantees that B has not queried
its signing oracle for upk with overwhelming probability. Hence there exists a
negligible function negl2 such that

AdvEUFCMA
Σ,A (n)

≥Pr[Trace′ΠNIZK,A(n) = 1 ∧ ¬failE ]− negl2(n)

=Pr[Trace′ΠNIZK,A(n) = 1]− Pr[Trace′ΠNIZK,A(n) = 1 ∧ failE ]− negl2(n)

≥Pr[Trace′ΠNIZK,A(n) = 1]− negl1(n)− negl2(n)

Theorem 4. If Σ is EUF-CMA (Definition 37) and ΠNIZK is straight-line
extractable (Definition 7), the reputation system has joining security (Defini-
tion 21).

The proof is analogous to the proof of Theorem 3.

Theorem 5. If ΠLIT is linkable (Definition 11) and ΠNIZK has soundness, the
reputation system is publicly linkable (Definition 20).

Proof. Let A be an adversary against the public linkability of the reputation
system. We construct an adversary B against the linkability of ΠLIT from it:

– Simulate PLinkableΠ,A(n).
– A outputs some gmpk and ipk and forgery-rating pairs (σj , rtngj)j∈{0,1},

where σj = (cj , c
′
j , lj , πj).
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– If both σj are valid signatures in the simulated public-linkability game and
do not link, decrypt c′0, c′1 to get usk0, usk1 and output (usk0, usk1, ipk, l0, l1).

If A outputs gmpk, ipk with two forgeries σ0, σ1 that are valid for these keys
and the opk, due to soundness of ΠNIZK we have that VrfyLIT(uskj , ipk, lj) = 1 for
j ∈ {0, 1}. Then, again due to the soundness of ΠNIZK, we have that f(usk0) =
f(usk1). Call Sound the event that A outputs such tags or such ciphertexts that
the above conditions do not hold. Then, we can construct an adversary C against
the soundness of ΠNIZK, by simply outputting the proof that A outputs. Thus,
we know that Pr[Sound] ≤ AdvSnd

Π,A(n). If the σj do not link, it follows that
(usk0, usk1, ipk, l0, l1) is a tuple of two valid tags for the same message created
with usk0, usk1 respectively, which do not link. Therefore, we have that

Pr[LinkableLIT
ΠLIT,C(n) = 1] = Pr[PLinkableΠ,A(n) = 1] + AdvSnd

Π,A(n).

The Role of Straight-Line Extraction For the proof of traceability (The-
orem 3) and joining security (Theorem 4), we require ΠNIZK to be straight-
line extractable, i.e. the proof system must not rely on rewinding for extraction
(which, for example, Fiat-Shamir-based proofs usually do). In our security proofs
for Theorems 3 and 4, the reduction algorithm has access to a signature oracle.
Similarly to what was noted in [FN16], this represents an issue for an extractor:
when rewinding the reduction algorithm B, the extractor needs to answer B’s
signing oracle queries. However, in standard definitions, the extractor does not
have access to the signing oracle. Even if we grant access, the extractor querying
the signing oracle may actually cause an extracted forgery to become invalid.
This happens in case a signature on the forgery message is being requested by B
during rewinding. There are potential ways to circumvent this issue for specific
proof systems, but standard definitions of (rewinding-based) soundness are in-
compatible with signing oracle access in security proofs. Straight-line extraction
does not suffer from this issue, as the extractor can be used without rewinding.

One can always implement straight-line extractable proofs by encrypting the
witness for some honestly generated publicly known public key and proving, with
a sound zero-knowledge proof, that the encrypted witness is valid. Note that in
our security proofs for Theorems 3 and 4, the only value we need to extract
from the proof is the membership certificate τ or ρ (upk is also used, but can
be computed by decrypting c). For this reason, when implementing straight-line
extractability, it suffices to additionally encrypt τ and ρ, there is no need to
encrypt the full witness of the rating NIZK.

Alternatively, one can use a NIZK that is inherently straight-line extractable
(e.g., using Fischlin’s transform [Fis05a] or Katsumata’s transform [Kat21]). In
these cases, it also suffices to extract only a part of the witness, namely ρ, τ . In
practice, one can arguably even use a standard Fiat-Shamir-based construction,
for which one cannot prove straight-line extractability (cf. [BNW17]). However,
to the best of our knowledge, there is no attack against Fiat-Shamir in practice
that targets schemes using it in place of a straight-line extractable proof.
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5 A Reputation System from Module Lattices

We now want to instantiate the generic construction with building blocks based
on module lattices. Since we only used generally common concepts, we are rela-
tively free in choosing which actual building blocks we want to use. However, we
need to make sure they fit together, especially with the NIZK, meaning that we
can prove the statements defined by our other building blocks. The NIZK of our
choice is, as mentioned previously in Corollary 1, the proof system of [LNP22b]
transformed into a straight-line extractable NIZK by Katsumata’s transform
[Kat21]. With it, we can create proofs for the relation RR (cf. Definition 8), so
we have to argue that we can express our statements to prove via this relation.

For the LIT, we choose the scheme presented in Construction 14. To instan-
tiate Construction 22 with it, we need to prove possession of a secret usk and
secret upk, such that f(usk) = upk. Since this boils down to showing possession
of an MLWE secret for a secret b, this can be realized as shown in Table 2.
Due to our choice of the encryption scheme, we use the bit-decomposition of
the upk. Thus, we also need to prove that one knows upk,BitD(upk) such that
upk = G · BitD(upk) and BitD(upk) is a bit vector, which is also possible. Since
this works similar to showing possession of an MLWE secret for public b as
shown in [LNP22b], we roughly estimate the proof for the former to be of size
30KB.

variable description instantiation
ϕ # of equations to prove 1

ϕeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 2
υd # of non-exact norm proofs 0
kbin length of the binary vector to prove mU log q

s1 committed message in the Ajtai part (tt, et,BitD(upk)t)t

m committed message in the BDLOP part ∅ (no message)
f1 equation to prove A′s1 = 0

D1 public matrix for proving ∥E1s− u1∥∞ ≤ β
(e)
1

[
I 0 0

]
u1 public vector for proving ∥E1s− u1∥∞ ≤ β

(e)
1 0

β
(d)
1 upper bound on ∥E1s− u1∥∞ ≤ β

(e)
1 β

D2 public matrix for proving ∥E2s− u2∥∞ ≤ β
(e)
2

[
0 I 0

]
u2 public vector for proving ∥E2s− u2∥∞ ≤ β

(e)
2 0

β
(d)
2 upper bound on ∥E2s− u2∥∞ ≤ β

(e)
2 β

Ebin matrix for proving binary
[
0 0 I

]
vbin vector for proving binary 0

Table 2. Proving possession of a usk for secret upk. Define A′ = [At
T | I | −G].

For the encryption scheme, we use the MLWE variant of the primal Regev
encryption scheme that is presented in [LNP22b] as their verifiable encryption
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scheme. There they also show that one can create a proof showing the valid-
ness of a ciphertext, which we need in our generic construction. However, their
scheme has a message space of {0, 1}n, while we want to encrypt a upk ∈ Rm

q .
Thus, we instead encrypt the bit-decomposition BitD(upk) of the upk in mul-
tiple ciphertexts. Based on the parameters in [LNP22b], we estimate the proof
size showing the ciphertext to be valid to be 4762KB. We expect other lattice-
based encryption schemes such as Kyber [Bos+18], Saber [DAn+18] and NTRU
[HPS98] to also work for our generic construction, as [LNP22b] claim they work
in their proof system.

To instantiate the siganture scheme, we need it to be compatible with our
NIZK. Signature schemes that use the random oracle, such as Fiat-Shamir-with-
aborts signature scheme [Lyu09] or hash-then-sign signatures [GPV08; MP12],
are not suitable. Instead, we use signature schemes in the standard model, such
as [DM14], and we focus on signatures that are either specifically designed for use
in combination with proofs of knowledge, such as [JRS23], or are very efficient
[Boo+23]. An overview comparing the schemes can be found in Table 3.

Scheme State Assumption Proof Size
[DM14] and our adaption stateless RSIS –

[JRS23][JRS22, Appendix H] stateless MSIS –
[JRS23] and our adaptions stateful MSIS 163584 KB

[Boo+23] stateless Int-NTRU-ISISf 59392 KB
Table 3. Overview over different candidate signature schemes to instantiate the repu-
tation system with. For the definition of the Int-NTRU-ISISf problem, see [Boo+23].
Proof size refers to size of a NIZK in kilobytes in the framework of [LNP22b] proving
possession of a secret message-signature pair for 128-bit security. These are conserva-
tive estimates for message space {0, 1}nm·log q.

The signature scheme of [DM14] is shown to be secure for non-adaptive
queries, to be converted to adaptive security via chameleon hash. However, one
can show that using a technique similar to [LSS14] using the Rényi divergence,
that the scheme has adaptive security without the chameleon hash. For de-
tails, see Appendix B, which also describes how to prove possession of a secret
message-signature pair in the framework of [LNP22b]. However, the signature
scheme has reduction loss dependent on the success probability of the adver-
sary, which leads to large parameters. The stateless signature scheme of [JRS23;
JRS22] is designed in such a way that the verification equation works well with
relations that can be proven by lattice-based proofs of knowledge. In particular,
[JRS23] already show that one can show possession of a message-signature pair
of their scheme in the framework of [LNP22b]. This signature scheme suffers
from the same reduction loss drawback as [DM14] though, since they use the
same proof technique of prefix-guessing of a tag.

In [Boo+23] they introduce a credential system based on novel security as-
sumptions that are related to ISIS. Their credential system can also be seen as
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a (blind) signature, of which one proves possession, thus we can instantiate our
signature scheme and the proof with it. The most efficient credential system they
design is based on the so-called Int-NTRU-ISISf problem and achieves a proof
size of 29KB (under some heuristics) for a message space of {0, 1}16. If we use
the construction of [Boo+23] and the other aforementioned building blocks, we
arrive at a total proof size for the instantiation of the generic construction of
30KB+4762KB+59392KB = 64184KB. Note that this is a very rough estimate
and we expect careful analysis to yield a much better proof size.

Stateful reputation system Parallel to the stateless variant, [JRS23] also con-
struct a stateful ℓ-time signature scheme based on MSIS. They show the size of
a proof showing possession of a secret message-signature pair to be 693KB for
a message in {0, 1}128, also using the proof system of [LNP22b]. It is possible
to use stateful signatures in our generic construction, by changing the model
of the reputation system such that the group manager and issuers are stateful,
i.e. the Join and Issue algorithms get some state as input. We also allow only a
fixed number ℓ of users to join the system. The correctness and security model
have to be changed accordingly, which is straight-forward. Both are not unrea-
sonable assumptions to make in practice, as group managers have to keep track
how many members there are in the system anyways and issuers have to store
information about their sales, making both inherently stateful. Furthermore, for
large enough ℓ, e.g. 240, this amount of users will likely not be reached in prac-
tice. The security proofs for the stateful reputation system basically work as for
the stateless reputation system, except for using stateful and ℓ-time signatures
instead of stateless ones.

Instead of the stateful signatures of [JRS23], one can use an adaption (cf. Ap-
pendix C.1), which is a slightly simplified version of the former getting rid of the
commitment in the signing process. There is a second adaption, which can be
more efficient than the signature of [JRS23] depending on the degree of the ring,
since its security relies on RLWE, NTRU and RSIS instead of MSIS. Details can
be found in Appendix C.2.

5.1 Instantiation with Pairing-Based Cryptography

To instantiate the generic construction based on pairing-based cryptography, we
use the following constructions for the building blocks:

– The linking indistinguishable tags are t = RO(ipk)usk with f(usk) = gusk.
Two tags t0, t1 link if t0 = t1.

– The signature scheme to sign the user’s public key gusk is a simplified version
of the structure-preserving signature [Gro15], namely σ = (R̃, S, T ) = (g̃r, (y·
gw)1/r, (yw ·M)1/r) (as in [Bob+21]), where signatures are valid iff they are
of that form (can be checked using the pairing).

– The encryption scheme for the user’s public key is ElGamal, the encryption
scheme for usk ∈ Zp is bitwise raised ElGamal.

– The NIZK is a simple Schnorr-like protocol made straight-line extractable
with Fischlin’s transform [Fis05b; KS22].
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We leave the details of the instantiation to the reader.
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A Uniqueness of (M)LWE Secrets

In Lemma 1, we claimed that for certain parameters, the secret of an MLWE
sample is unique. We now want to prove this lemma.

Definition 23. Let R be a finite ring. For s ∈ R \ {0} set

Zs := {a ∈ R \ {0} : a · s = 0}

and define
zmax := max{|Zs‖ : s ∈ R \ {0}}.

Equivalently, 1+zmax is the maximal number of solutions in R of an equation
x · s = c, for s, c ∈ R.

Theorem 6. Let m, k ∈ N, D ⊆ Rk, B ⊆ Rm. Then

Pr
[
∃(s, e) ∈ D ×B : s 6= 0 ∧A · s = e;A←Rm×k

]
≤

(
1 + zmax

|R|

)m

· |D| · |B|.

Proof. Fix (s, e), e = (e1, . . . , em) as in the theorem. By definition of zmax

Pr
[
Ai · s = ei;Ai ←R1×k

]
≤ 1 + zmax

|R|
.

Hence for fixed (s, e)

Pr
[
A · s = e;A←Rm×k

]
≤

(
1 + zmax

|R|

)m

.

By the union bound the theorem follows.

We now restate Lemma 1 with a bit more detail in order to prove it.

Lemma 7 (Short MLWE secrets are unique). Let q 6= 2 be a prime with
q = 3, 5 mod 8 (or q = 1 mod 2n), k > 0, n > 16 be a power of 2, Rq =
Zq[X]/(Xn +1). Let Bβ = {e ∈ Rq : ‖e‖∞ ≤ β}. Let ∆ ≥ 0 such that 2β+∆ <
q1/4. Then there exists some d < n such that

ϵ(n) := Pr

[
∃(s, s′, e, e′) ∈ (Bk

β)
2 × (Bm

β )2

with s 6= s′ ∧ ‖b‖∞ ≤ ∆
:
A←Rk×m

q

bt = (s− s′)tA+ (e− e′)t

]
≤ (4β + 2∆+ 1)n(m+k)

qmd
.

Furthermore, there exists an m and a negligible function negl such that ϵ(n) ≤
negl(n).



40 J. Blömer et al.

Proof. Assume there are some s, s′, e, e′ with the conditions mentioned in the
theorem. We define ŝ = s− s′ 6= 0 with ‖ŝ‖∞ ≤ 2β and ê = e− e′ with ‖ê‖∞ ≤
2β. Then, since ‖Aŝ+ ê‖∞ ≤ ∆ holds, there exists some ẽ with ‖ẽ‖∞ ≤ ∆ such
that Aŝ+ ê− ẽ = 0. Thus we can use Theorem 6 to show that

ϵ(n) :=Pr

[
∃(s, s′, e, e′) ∈ (Bk

β)
2 × (Bm

β )2

with s 6= s′ ∧ ‖b‖∞ ≤ ∆
:
A←Rk×m

q

bt = (s− s′)tA+ (e− e′)t

]
=Pr[∃(ŝ, ê− ẽ) ∈ Bk

2β ×Bm
2β+∆ : ŝ 6= 0,Aŝ+ ê− ẽ = 0;A←Rm×k

q ]

≤
(
1 + zmax

|Rq|

)m ∣∣Bk
2β

∣∣ · ∣∣Bm
2β+∆

∣∣

By the choice of q and n we know the polynomial Xn + 1 is irreducible over
Q[X] and splits over Zq[X] into factors of equal degree. Let this degree be d and,
accordingly, the number of factors is n/d. Then it holds that

Rq
∼= Fqd × · · · × Fqd︸ ︷︷ ︸

n/d

,

where Fqd denotes the field with qd elements. From this one sees that an element
s maximizing |Zs| is (1, 0, . . . , 0) with

zmax = |Zs| = (qd)n/d−1 − 1 = qn−d − 1.

This together with the fact that |Rq| = qn, results in

ϵ(n) ≤ (4β + 1)nk · (4β + 2∆+ 1)nm

qmd
≤ (4β + 2∆+ 1)n(m+k)

qmd

If n ≥ 16, q = 3, 5 mod 8, then one can show that d = n/2. In this case, the
probability above can be made negligibly small in n for q polynomially large in
n and β = qγ , γ < 1/4, even with m = 1. If q = 1 mod 2n, then d = 1. In this
case, for q polynomially in n, one has to pick m > 1 to make the probability
above negligibly small in n.

One can also show that uniform secrets of the standard LWE problem are
unique, if one chooses m correctly depending on n, q, β.

Corollary 2 (LWE secrets are unique). Let q be a prime and β > 0. Set
B := {e ∈ Zm

q : ‖e‖∞ ≤ β}. Then

Pr
[
∃(s, e) ∈ Zn

q ×Bm : s 6= 0 ∧A · s = e;A← Zm×n
q

]
≤

(
2β + 1

q

)m

· qn.
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B Adaptive Ducas-Micciancio Signatures

Before describing the signature scheme of [DM14], we need to define RSIS, Gaus-
sian distributions and a notion of trapdoors.

Definition 24 (RSIS). Let q > 2 and m,β > 0. Let R be a ring and Rq =
R/qR. The RSIS problem RSISq,R,m,β is given a uniform vector a←Rm

q to find
a non-trivial vector x ∈ Rm

q \{0} such that atx = 0 and ‖x‖ ≤ β.

Definition 25. Define the Gaussian function ρs,c(x) = exp(−π ‖x− c‖ /s2).
Define the discrete Gaussian distribution DΛ+t,s,c on a lattice coset Λ + t with
center c and parameter s as

DΛ+t,s,c(x) =

{
ρs,c(x)

ρs,c(Λ+t) if x ∈ Λ+ t

0 else

Define the discrete Gaussian distribution DR,s,c = θ−1(Dθ(R),s,θ(c)) for a
ring R. If center c = 0, we omit it.

Definition 26 (G-trapdoor [MP12]). For a matrix at ∈ R1×m
q , a G-trapdoor

is a matrix R ∈ Rm×ζ
q such that atR = gt for a gadget matrix gt ∈ R1×ζ

q .

We can generate such trapdoors with an algorithm called GenTrap and use
them to sample preimages of some function for a given image with PreSample.

Theorem 7 ([MP12]). Let ζ ∈ N and m = O(n log q) large enough. Let
g = dq1/ζc ∈ Rq and gt = [1 | g | . . . | gζ−1]. There exist ppt algorithms
GenTrap,PreSample such that

– GenTrap(1n, 1m, q) outputs at ∈ R1×2m
q and R ∈ R2m×ζ

q such that atR = gt

and R ∈ R2m×ζ
q and the distribution of at is statistically indistinguishable

from uniform;
– PreSample(at,R, u, s) on input a matrix at ∈ R1×2m

q , a matrix R ∈ R2m×ζ
q

output by GenTrap, a syndrome u ∈ Rq and a standard deviation s ≥

ηϵ(Z)
√
g2 + 1

√
‖R‖2 outputs v that is statistically close to DR2m

q ,s condi-
tioned on atv = u mod q.

We now state the signature of [DM14] which can be used to instantiate our
reputation system. We claim that it is (adaptively) EUF-CMA secure without
any changes, while the original theorem by [DM14] only claims security for non-
adaptive queries. [DM14] achieve adaptive security by a standard transformation
of first hashing the message with a chameleon hash before signing it. However,
one can adapt their security proof to directly show adaptive security by applying
a technique similar to [LSS14] using the Rényi divergence.

The idea of the construction of [DM14] is that the public key contains some
uniformly generated at, while the secret key is a trapdoor for that a. To sign
a message m, we first choose a random tag κ. Based on κ,at and some public
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matrices ati we define some atκ in such a way that we can adapt the trapdoor
for at to a trapdoor for atκ. We hash the message using some dt and add some
public u to get v = u+dtm. Then, we use PreSample to sample a short preimage
σ of v under atκ. Signature verification is done by simply checking whether σ is
indeed a short preimage of v and whether κ is in the tag space.

Construction 27. Let the message space be Rm2
2 . Let g = dq

1
ζ c and gt = [1 |

g | . . . | gζ−1] ∈ R1×ζ
q . Let the tag space be T = {0, 1}d. Let s = n3/2 ·ω(log n)3/2

such that s2 ≥ (
√
nm1 +

√
nm2 + t)

√
nm2 for some t. Let β = s

√
n(m1 + ζ).

– KeyGen(1n): Choose (at,R)← GenTrap(1n, 1m1 , q) such that at ∈ R1×m1
q ,R ∈

Rm1×ζ
q and atR = gt. Choose ati ← R1×m1

q for i ∈ {0, . . . , d}. Choose
dt ←R1×m2

q , u←Rq. Set pk = (at,at0, . . . , a
t
d,d

t, u) and sk = R.
– Sign(sk,m): Choose κ← T . Set atκ = [at | at0+

∑d
i=1 κia

t
i], where κi denotes

the ith bit of κ. Compute σ ← PreSample(atκ, (R
t,0)t, u + dtm, s). Output

(κ, σ).
– Vrfy(pk,m, (κ, σ)): If atκσ = u+ dtm and ‖σ‖ ≤ β and κ ∈ T , output 1.

We claim security of the signature scheme as follows.

Theorem 8. For every ppt adversary A that makes at most Q ≤ 2o(n) signa-
ture queries and has EUF-CMA advantage ϵ, there exists an adversary B against
RSISRq,m,q,β′ with advantage

(
ϵ

4Q2

)c

(ϵ(n)/2− negl(n))α/(α−1)·exp(−πα)−2−Ω(n),
where β′ = n7/2 · log n · ω(log n)5/2, for any α > 1.

We now describe how one can change the proof of [DM14] in order to get
adaptive security directly. In their proof, [DM14] can already answer all signature
queries adaptively, except for at most one, since they know a trapdoor for the
corresponding atκ. Only if there exists a query j such that κ(j)≤i∗ = κ∗≤i∗ , i.e. if
there exists a query j where the i∗ bit long prefix of the jth tag κ(j) is the
same as the guessed prefix κ∗≤i∗ , there is no trapdoor. Thus [DM14] generate the
signature answer σ∗ not with a trapdoor but through other means, for which
they need the non-adaptiveness. We change how we generate σ∗ in this case and
some other public values and analyse the changes. In the beginning, when given
an RSIS instance at ∈ R1×m1

q , we choose the tags κ(1), . . . , κ(Q) to be used in the
signature queries. Then, we generate dt by choosing U ← Rm1×m2

±1 and setting
dt = atU. We define an index i∗ and guess a prefix κ∗≤i∗ ← Ti∗ as in [DM14].
Furthermore, if a j exists such that κ(j)≤i∗ = κ∗≤i∗ , we generate u by choosing
e← Dm1+ζ

R,s and setting u = at
κ(j)e. Then, in the jth query, if κ(j)≤i∗ = κ∗≤i∗ holds,

we answer with e′ = e+d, where d =

[
Um
0

]
. If no such j exists, we proceed as

in [DM14], so we only look at the case where such a j exists.
We now want to argue that these changes are indistinguishable to a ppt

adversary. From [Bou+23, Lemma 2.8] we know that the distribution of (at,atU)
is statistically close to uniform. Due to Lemma 8 we know that there exists a
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transformation of at to its normal form with probability 1 − 4qn/2. Then, with
Corollary 7.4 of [LPR13b; LPR13a] we know that (at,ate) is statistically close
to uniform since s > 2nq1/m1+2/(nm1). Thus, we lastly have to argue about
the distribution of e′. We will argue that the distribution of e′ is statistically
indistinguishable from the signature in the real game, when both are conditioned
on the respective values of at,dt, u. Then, we know that the joint distribution
of pk together with e′ is statistically indistinguishable. Let z be some solution
to at

κ(j)z = u. Then, we know that in the original game the distribution of the
jth signature σj conditioned on pk is DΛ⊥(at

κ(j)
)+z+d,s = DΛ⊥(at

κ(j)
),s,−z−d +

z + d. If we look at the distribution of e conditioned on the pk generated by
B, we see that its distribution is DΛ⊥(at

κ(j)
)+z,s. Thus, the distribution of e′ is

DΛ⊥(at

κ(j)
)+z,s+d = DΛ⊥(at

κ(j)
),s,−z+z+d and the distributions of σj and e′ only

differ in their center. Therefore, from [LSS14, Lemma 4.2] we know that the Rényi
difference of the two distributions is smaller than exp(απ ‖d‖22 /s2) ≤ exp(απ)
for any α > 0, where the latter holds by construction. Then, it holds that
Pr[Wi∗ ]

α/(α−1) ≤ exp(απ ‖d‖2 /s2) Pr[We′ ] by [LSS14, Lemma 4.1], where Wi∗

is the event that the signature adversary outputs a valid forgery when given
σi∗ in the simulation (with changed public keys) and We′ is the event that the
signature adversary outputs a valid forgery when given e′. The rest of the proof
works as in [DM14]. Thus, together with the analysis from [DM14] we know that
the probability γ(n) that the RSIS adversary outputs a valid solution is

γ(n) ≥ 1

|Ti∗ |
(ϵ(n)/2− negl(n))α/(α−1) · exp(−πα)− 2−Ω(n)

≥
(

ϵ

4Q2

)c

(ϵ(n)/2− negl(n))α/(α−1) · exp(−πα)− 2−Ω(n),

where negl is a negligible function and c is defined as in [DM14]. Thus, we get
adaptive security without having to use chameleon hashes at the cost of some
reduction loss introduced by the Rényi divergence.

To prove the possession of a secret message-signature pair, we first rewrite
the equation from the signature verification to

[
at | at0 +

d∑
i=1

κia
t
i

]
σ = u+ dtm⇔

[
at | at0 | at1 | . . . | atd | −dt

]


σ1
σ2
κ1σ2

...
κdσ2
m


= u,

where σ = (σt
1, σ

t
2)

t. Therefore, we have an equation that is quadratic in the
secret and can thus be proven in the framework of [LNP22b]. To finish proving
possession of a secret message-signature pair we additionally need to prove that
σ is short and that κ,m are bit vectors, which is also possible in the framework,
thus we can instantiate the proof as shown in Table 4.
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variable description instantiation
ϕ # of equations to prove 1

ϕeval # of evaluations with const. coeff. zero 0
υe # of exact norm proofs 1
υd # of non-exact norm proofs 0
kbin length of the binary vector to prove d+mµ

s1 committed message in the Ajtai part (κ, σ,m)
m committed message in the BDLOP part ∅ (no message)
f1 equation to prove at

κσ = u+ dtm

E1 public matrix for proving ∥E1s− v1∥ ≤ β
(e)
1

[
0 I 0

]
v1 public vector for proving ∥E1s− v1∥ ≤ β

(e)
1 0

β
(e)
1 upper bound on ∥E1s− v1∥ ≤ β

(e)
1 β

Ebin matrix for proving binary diag(I,0, I)
vbin vector for proving binary 0

Table 4. Proving possession of a Ducas-Micciancio signature (κ, σ) of a message m.

C Stateful Lattice Signatures

Before constructing stateful lattice signatures, we first need some additional
preliminiaries.

Definition 28 (MSIS). Let q > 2 and d,m, β > 0. Let R be a ring and Rq =
R/qR. The MSIS problem MSISq,R,d,m,β is given a uniform matrix A←Rd×m

q

to find a non-trivial vector x ∈ Rm
q \{0} such that Ax = 0 and ‖x‖ ≤ β.

For the MSIS problem there exists a so-called normal-form variant, where if
m > d the first d columns of A form the identity matrix.

We can analyze the probability that we can transform an MSIS instance into
a normal-form instance and vice-versa.

Lemma 8. Let n, q and ring Rq be as in the previous lemma. If matrix A =

[A1|A2],A1 ∈ Rk×k
q ,A2 ∈ Rk×(n−k)

q , is chosen uniformly at random from
Rk×n

q , n ≥ k, then with probability at least 1 − 4k · q−n/2, there is a matrix
A′

2 such that for A′ = [Ik|A′
2]

Λ⊥(A) = Λ⊥(A′).

The proof for this lemma can be found in Appendix D.
To present our construction of a stateful ℓ-time reputation system, we need

stateful ℓ-time signatures, as we use them as a building block. We first define
the formal model of such a signature.

Definition 29 (Stateful Signature Scheme). A stateful ℓ-time signature
scheme Σ consists of the following ppt algorithms:

– KeyGen(1n) outputs secret key and public key pair (sk, pk) and a state st .
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– Sign(sk,m, st) outputs signature σ and state st ′.
– Vrfy(pk,m, σ) is deterministic and outputs a bit.

We say that Σ is correct if for all n ∈ N, all (sk, pk, st1) output by KeyGen(1n),
all messages m1, . . . ,mℓ, all 1 ≤ i ≤ ℓ, and all (st i+1, σi) output by Sign(sk,mi, st i),
we have Vrfy(pk,mi, σi) = 1. We additionally require that for all 1 ≤ i ≤ ℓ we
have that |st i| ≤ p(n) for some polynomial p.

To define the EUF-CMA security of a stateful scheme in comparison to a
standard stateless EUF-CMA definition, we simply define the signature oracle
to remember the (updated) state in between its calls.

Definition 30 (Stateful EUF-CMA). A stateful ℓ-time signature scheme Σ
is existentially unforgeable under chosen-message attacks (stateful-EUF-CMA)
if for all ppt A that make at most ℓ oracle queries,

AdvsEUFCMA
Π,A (n) = Pr[Vrfy(pk,m∗, σ∗) = 1 ∧ A has not queried m :

(sk, pk, st1)← KeyGen(1n), (m∗, σ∗)← ASigO(sk,·)(pk)] ≤ negl(n),

where SigO(sk,mi) is an oracle that computes (σi, st i+1) ← Sign(sk,mi, st i) on
the ith query, and returns σi.

C.1 Stateful Signatures Based on Module SIS

The first construction of a stateful ℓ-time signature scheme is based on Module
SIS and works similar to the construction of [JRS23]. In comparison to their
construction, we do not commit to the message before signing it, which allows
us to simplify the construction and the security proof.

Construction 31. Let q ≥ 2 with q = 5 mod 8 be an odd prime and let ζ,m3 >
0. Let m1 = k log q + ω(log n) and m2 = kζ. Let R = Z[X]/(Xn + 1) and Rq =

R/qR. Let the message space be Rm3
2 \{0}. Let g = dq

1
ζ c, g = [1 | g | . . . | gζ−1],

and G = Id ⊗ g ∈ Rk×m2
q . Let s = ηϵ(Z)

√
1 + g2

√
1 + (

√
nm1 +

√
nm2 + t)2 >

2nqk/m1+2/(nm1) large enough and β = s
√
n(m1 +m2) such that s2 ≥ (

√
nm1+√

nm3+ t)
√
nm3. Let β = s

√
n(m1 +m2). Let w > 0 and Tw = {e ∈ R2 : ‖e‖ =√

w}. Assume there is some order on the elements of Tw. Call κi the ith element
of Tw in this order.

– KeyGen(1n): Choose A ← Rk×m1
q . Choose R ← Rm1×m2

±1 . Choose D ←
Rk×m3

q , u←Rn
q . Set pk = (A,B = AR,D,u) and sk = R. Set st = κ1.

– Sign(sk, st ,m): Set Aκi
= [A | B+ κiG] and compute σ ← PreSample(Aκi

,
−R,u+Dm, s). Set st ′ = κi+1. Output ((κ, σ), st ′).

– Vrfy(pk,m, (κ, σ)): If Aκσ = u+Dm and ‖σ‖ ≤ β and κ ∈ Tw, output 1.
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Lemma 9. For every ppt adversary that makes at most |Tw| signature queries
and wins the stateful-EUF-CMA game with advantage γ(n) against Construc-
tion 31, there exists a ppt adversary against MSISRq,k,m1,q,β′ , where

β′ =
√

1 + (
√
nm1 +

√
nm2 + t)2·(β+s

√
n(m1 +m2))+(

√
nm1+

√
nm3+t)

√
nm3,

with advantage 1
|Tw|γ(n)− negl(n).

Proof. Since the construction is similar to the one of [JRS23], the proof is similar
as well. However, our proof differs in some details.

Let A be an adversary against the stateful-EUF-CMA security of the signa-
ture. From this we construct an adversary B against MSIS as follows:

– On input A ∈ Rk×m1
q , B chooses i∗ ← |Tw|. It then chooses R ← Rm1×m2

±1

and U ← Dm1×m3

R±1
and e ← Dm1+m2

R,s . It then sets u = Aκ∗e and B =

AR− κi∗G and D = AU and pk = (A,B,D,u).
– B simulates A on input pk. On the ith signature query with message m, B

does the following:
• If i 6= i∗, answer with (κi, Sign(−R, κi,m)).

• If i = i∗, answer with (κi∗ , e
′ = e+

[
Um
0

]
).

– A outputs some forgery (m∗, κ∗, σ∗). If κ∗ 6= κi∗ , abort.
– B returns w = [I | R] (σ∗ − e)−Um∗.

First, we want to argue that the view of A is correct. For that, we see that
A and the oracle answers in the case i 6= i∗ have the same distribution as in
the original game. For B,D,u and the oracle answer in the case i = i∗ we
see that they are computed differently. From [Bou+23, Lemma 2.8] we know
that the distribution of (A,AR,AU) is statistically close to uniform. Due to
Lemma 8 we know that there exists a transformation of A to its normal form
with probability 1− 4kqn/2. Then, with Corollary 7.4 of [LPR13b; LPR13a] we
know that (A,Ae) is statistically close to uniform since s > 2nqk/m1+2/(nm1).
Thus, we lastly have to argue about the distribution of the i∗th query an-
swer. We will argue that the distribution of e′ is statistically indistinguish-
able from the signature in the real game, when both are conditioned on the
respective values of A,B,D,u. Then, we know that the joint distribution of
pk together with e′ is statistically indistinguishable. Let z be some solution

to Aκi∗z = u. Let c be some solution to Aκi∗c = Dm. Let d =

[
Um
0

]
.

Then, we know that in the original game the distribution of the i∗th signa-
ture σi∗ conditioned on pk is DΛ⊥(Aκi∗ )+z+d,s = DΛ⊥(Aκi∗ ),s,−z−d + z + d.
If we look at the distribution of e conditioned on the pk generated by B,
we see that its distribution is DΛ⊥(Aκi∗ )+z,s. Thus, the distribution of e′ is
DΛ⊥(Aκi∗ )+z,s + d = DΛ⊥(Aκi∗ ),s,−z + z+ d and the distributions of σi∗ and e′

only differ in their center. Therefore, from [LSS14, Lemma 4.2] we know that the
Rényi difference of the two distributions is smaller than exp(απ ‖d‖22 /s2). Then,
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it holds that Pr[Wi∗ ]
α/(α−1) ≤ exp(απ ‖d‖2 /s2) Pr[We′ ] by [JRS23, Lemma

B.1], where Wi∗ is the event that A outputs a valid forgery when given σi∗

in the simulation (with changed public keys) and We′ is the event that A out-
puts a valid forgery when given e′. Thus, we know that the probability γ(n)
that A outputs a valid forgery in the stateful-EUF-CMA game is smaller than

γ(n) ≤
(
exp(απ ‖d‖2 /s2) Pr[W ′

e]
)(α−1)/α

+ negl(n).

What is left to argue is that w is a valid MSIS solution if A outputs a valid
forgery. From the following equation we can see that w is indeed a vector that
maps to 0 for the MSIS challenge.

Aκ∗σ∗ = u+Dm∗ ∧Aκ∗

(
e+

[
Umi∗

0

])
= u+Dmi∗

⇒Aκ∗σ∗ −Dm∗ = Aκ∗

(
e+

[
Umi∗

0

])
−Dmi∗

⇔[A | AR]σ∗ −AUm∗ = [A | AR]

(
e+

[
Umi∗

0

])
−AUmi∗

⇔A · ([I | R](σ∗ − e)−Um∗) = 0

Now, for w to be a valid MSIS solution, it also must be non-zero and short.
We follow the heuristic of [JRS23] for the spectral norms of R and U and bound
them by s1(R) ≤ √nm1 +

√
nm2 + t and s1(U) ≤ √nm1 +

√
nm3 + t for

some small t. If one wants to use provable bounds, see [JRS23, Section 6.2] for
details. For the norm of e one can show that using [MP12, Lemma 2.9] that
‖e‖ ≤ s

√
n(m1 +m2) with overwhelming probability. Therefore, we know that

‖[I | R](σ∗ − e)−Um‖ ≤s1([I | R]) (‖σ∗‖+ ‖e‖) + s1(U) ‖m‖

≤
√
1 + (

√
nm1 +

√
nm2 + t)2 ·

(
β + s

√
n(m1 +m2)

)
+ (
√
nm1 +

√
nm3 + t)

√
nm3

To show that w is non-zero, we rewrite w = y − Um for some y. Since
we restricted the message space to Rm3

q \{0}, we know that there is at least
one column of U that influences w. Therefore, the adversary has to predict at
least one column u′ of U in order to somehow produce y,m such that w = 0.
The only places where the adversary might get information about U from are

D = AU and e′ = e+

(
Um
0

)
= e+d. However, in a hypothetical game where

an unbounded adversary C tries to predict u′ from information obtained in the
stateful-EUF-CMA game, we can gamehop the information about U in e′ away
by replacing e′ by a Gaussian sampled vector and analyze the probability of
predicting a column u′ of U given D = AU. Let V denote the view of C in the
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stateful-EUF-CMA game without D, e′.

Pr [u∗ = u′ : u∗ ← C(V,D, e′), e′ = e+ d]

≤
(
Pr[u∗ = u′ : u∗ ← C(V,D, e′′), e′′ ← DRq,s] · exp(απ ‖d‖

2
/s2)

)α−1
α · 1 + ϵ

1− ϵ

≤
(
negl′(n) · exp(απ ‖d‖2 /s2)

)α−1
α · 1 + ϵ

1− ϵ
≤negl(n)

Here, the first inequality follows from [LSS14, Lemma 4.2]. Note that we
need the other direction than before, since here we go from a shifted Gaussian
to a non-shifted Gaussian. The second inequality follows from [DRS04, Lemma
2.2]: Since there is one column in D influenced by u′, which has qkn = 2kn log q

possible values, and u′ has Shannon entropy H∞(u′) = log(3m1) = m1 log2(3),
we have

H̃∞(u′ | D) ≥ H∞(u′)− kn log q
= (kn log q + ω(log n)) log2(3)− kn log q
= (log2(3)− 1)kn log q + log2(3)ω(log n).

Therefore, the probability of guessing a column of U and thus the probability of
w = 0 are negligible. Thus, together with the analysis about the view of A, we
know that the probability that B outputs a valid MSIS solution is greater than

Pr[B wins] ≥ (γ(n)− negl(n))α/(α−1) · exp(−απ ‖d‖ /s2)− negl(n)

≥ (γ(n)− negl(n))α/(α−1) · exp(−απ)− negl(n)

where the last equation follows since ‖d‖ ≤ (
√
nm1+

√
nm3+ t)

√
nm3 < s2.

C.2 Stateful Signatures Based on RSIS, RLWE and NTRU

Our second construction of a stateful ℓ-time signature works similar to Construc-
tion 31 and thus to the construction of [JRS23], but is instead based on RSIS,
RLWE and NTRU. Depending on whether it is advantageous to be based on
MSIS instead of RSIS (i.e. depending on the required degree n of the underlying
ring), this signature scheme can achieve greater efficiency than Construction 31.
This is because the former signatures use a regularity lemma for hiding, while
the latter signatures use RLWE to hide, which comes at the cost of also needing
the NTRU assumption. We start with defining the NTRU problem.

Definition 32 (NTRU). Let q > 2 and s > 0 and n be a power of two. Let
R = Z[X]/(Xn + 1) and Rq = R/qR. The NTRU problem NTRUq,R,s is to
distinguish between a uniform h ← Rq and h = gf−1, where f, g ← DR,s such
that f is invertible.

We now construct the signature scheme. Note that apart from some param-
eters and dimensions, the scheme is the same as Construction 31.
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Construction 33. Let q ≥ 2 be odd with q = 5 mod 8 and ζ,m3 > 0. Let
R = Z[X]/(Xn+1) and Rq = R/qR. Let the message space be Rm3

2 \{0}. Let g =

dq
1
ζ c and g = [1 | g | . . . | gζ−1]. Let s = ηϵ(Z)

√
1 + g2

√
1 + (

√
2n+

√
ζn+ t)2 >

2nq1/2+n large enough such that s2 ≥ (
√
2n +

√
nm3 + t)

√
nm3. Let β =

s
√
n(2 + ζ). Let w > 0 and Tw = {e ∈ R2 : ‖e‖ =

√
w}. Assume there is

some order on the elements of Tw. Call κi the ith element of Tw in this order.

– KeyGen(1n): Choose a′ ← Rq. Choose R ← R2×ζ
±1 . Choose d ← R1×m3

q ,
u ← Rq. Set a = [1 | a′] ∈ R1×2

q . Set pk = (a,b = aR,d, u) and sk = R.
Set st = κ1.

– Sign(sk, st ,m): Set aκi
= [a | b+κig] and compute σ ← PreSample(aκi

,−R,
u+ dm, s). Set st ′ = κi+1. Output (κ, σ, st ′).

– Vrfy(pk,m, (κ, σ)): If aκσ = u+ dm and ‖σ‖ ≤ β and κ ∈ Tw, output 1.

Lemma 10. For every ppt adversary that makes at most |Tw| signature queries
and wins the stateful-EUF-CMA game with advantage γ(n) against Construc-
tion 33, there exists a ppt adversary against RSISq,R,2,β′ , where

β′ =

√
1 + (

√
2n+

√
ζn+ t)2·

(
β + s

√
n(2 + ζ)

)
+s

(√
2n+

√
nm3 + t

)√
nm3,

with advantage greater than 1
|Tw| exp(−απ) (γ(n)− negl(n))α/(α−1) − negl(n), if

RLWEq,R,s and NTRUq,R,s′ are hard.

Proof. The proof works similarly to the one in the construction based on Module
SIS by first puncturing the public key at a random tag τ∗, generating d and
u differently with secret information, such that the secret information helps
with answering the signature query for τ∗. However, similar to the proof in
[Che+19], we show that puncturing the key is indistinguishable to the adversary
not by some regularity lemma, but by the RLWE assumption. To show this, we
temporarily lose the R, with which we generate the signature query answers.
Instead we temporarily introduce an NTRU trapdoor to generate the answers.

We prove this formally with the following game hops. Let Game0 be the
original stateful-EUF-CMA game. Let γ(n) be the probability that A wins in
this game. Let γ̂i(n) be the probability that A wins in Gamei.

Game1 is the same game as Game0, except that a′ is instead set to a′ = gf−1,
where g, f ← DRq,s′ . This is indistinguishable by the NTRUq,R,s′ assumption.
Let γNTRU (n) be the advantage of some ppt adversary against NTRUq,R,s′ .
Then, we have that |γ̂0(n)− γ̂1(n)| = γNTRU (n).

Game2 is the same game as Game1, except that the signature query answers are
generated with the NTRU trapdoor instead of R. In particular, by knowing f, g
we can construct a basis of the lattice defined by a′ such that the norm of its
orthogonalization is 1.17

√
q [DLP14]. Since s ≥ 1.17

√
q · ω(

√
log n), we can use

the GPV preimage sampler [GPV08] to generate the signature query answers
with a distribution that is statistically close to the distribution of the scheme.
Therefore, we have that |γ̂1(n)− γ̂2(n)| = negl(n)
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Game3 is the same game as Game2, except that b ← Rζ
q . Immediately, this is

indistinguishable by the hardness of normal form RLWEq,R,s. Let γRLWE(n)
be the advantage of some ppt adversary against RLWEq,R,s Then, we have
|γ̂2(n)− γ̂3(n)| = γRLWE(n).

Game4 is the same game as Game3, except that b = b′ − κi∗g, where b′ ← Rζ
q

and i∗ ← |Tw|. This is indistinguishable since adding a constant to a uniform
value does not change the distribution. Thus, we have |γ̂3(n)− γ̂4(n)| = 0.

Game5 is the same game as Game4, except that b = b′ − κi∗g, where b′ =
aR ∈ Rζ

q and R←R2×ζ
±1 . This is again indistinguishable due to the hardness of

normal form RLWEq,R,s and we have |γ̂4(n)− γ̂5(n)| = γRLWE(n).

Game6 is the same game as Game5, except that u = [a | b]e and d = aR′, where
e← D2+ζ

R,s and R′ ← Dm3×m3

R,s . Since s > 2nq1/2+n we know from Corollary 7.4
of [LPR13b; LPR13a] that this is statistically indistinguishable. Thus, we have
that |γ̂5(n)− γ̂6(n)| = negl(n).

Game7 is the same game as Game6, except the i∗th signature query is instead

answered with (κi∗ , e
′), where e′ = e +

(
Rm
0

)
. With a similar argument as

in the proof for Lemma 9, we have γ̂6(n) ≤
(
exp(απ ‖d‖ /s2)γ̂7(n)

)(α−1)/α ≤
(exp(απ)γ̂7(n))

(α−1)/α, since s2 ≥ (
√
2n+

√
nm3 + t)

√
nm3.

Game8 is the same game as Game7, except that on the ith signature query, if
i 6= i∗, the answer is generated as in the original stateful-EUF-CMA game. With
a similar argument as before, this is statistically indistinguishable. Thus, we have
that |γ̂7(n)− γ̂8(n)| = negl(n).

Game9 is the same game as Game8, except that a′ ← Rq is chosen uniformly
random instead. This is again indistinguishable by the NTRUq,R,s′ assumption
and we have |γ̂8(n)− γ̂9(n)| = γNTRU (n).

Therefore, we know that we can simulate A while having a public key punc-
tured at κi∗ . In total, we have the following.

γ(n) =γ̂0(n) = γ̂0(n)

6∑
i=1

−γ̂i(n) + γ̂i(n)

≤γNTRU (n) + 2γRLWE(n) + negl(n) + γ̂6(n)

≤γNTRU (n) + 2γRLWE(n) + negl(n) + (exp(απ)γ̂7(n))
(α−1)/α

≤γNTRU (n) + 2γRLWE(n) + negl(n)+

(exp(απ) (γNTRU (n) + γ̂9(n) + negl(n)))(α−1)/α



A Generic Construction of an Anonymous Reputation System 51

Now we can construct an adversary B against RSIS that simulates A in
Game9: On input â = [â1 | â2] ∈ R2

q, it computes a = â−1
1 â, which is possible

with probability 1−qn/2 due to Lemma 8. It then simulates A in Game9 with that
a. WhenA outputs a forgery (m∗, κ∗, σ∗), B outputs w = [I2 | R](σ∗−e)−R′m∗.

Having defined this, we can show that with the same arguments as in the
proof of Lemma 9, but with k = 1, that if A outputs a valid forgery and the
guess of i∗ was correct, w is an RSIS solution that is indeed valid, short and
non-zero for a with overwhelming probability. Then, we know that w is also a
valid, short, non-zero RSIS solution for â, since âw = â1aw = 0. Thus we have
Pr[B wins] = 1

|Tw| γ̂9 − negl(n), where the negligible part is influenced by the
probability that â1 is invertible and w being non-zero and short.

In total this means B solves RSISR,q,2,β′ with probability greater than

Pr[B wins] ≥ 1

|Tw|
exp(−απ) (γ(n)− γNTRU (n)− 2γRLWE(n)− negl(n))α/(α−1)

− γNTRU (n)− negl(n)

D Normal-Form Module SIS

To prove security of the stateful signatures we construct in Appendix C, we need
to be able to transform MSIS instances to normal-form instances. We present
some technical lemmas that show us when this is possible. This may be of inde-
pendent interest.

Lemma 11. Let R be a finite ring. We denote by

η := Pr[a not invertible : a← R]

the probability that an element chosen uniformly at random from R is not in-
vertible. Then

Pr[A has a right-inverse : A←Rk×k] ≥ 1− k · η.

Proof. We prove the lemma by induction on k. For k = 1 the lemma is immediate
from the definition of η. For the induction step, assume

A = (aij)1≤i,j≤k, where aij ←R for all i, j.

By A′ denote the (k − 1) × (k − 1) submatrix of A consisting of the last k − 1
rows and columns of A. By induction hypothesis applied to A′ with probability
at least 1− (k − 1)η there exists a matrix T′ such that

A ·T′ =


a11 ∗ · · · ∗
a21
...
ak1

Ik−1

 .
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By further column operations, i.e. another matrix T′′, we can further modify A
to obtain

A ·T′ ·T′′ =


a11 + γ(A \ {a11}) ∗ · · · ∗

0
...
0

Ik−1

 ,
where γ(A \ {a11}) is a term that depends on the entries in A except a11. Since
a11 is chosen uniformly and independently (from entries in A\{a11}) at random,

Pr[a11 + γ(A \ {a11}) is not invertible : a11 ←R] ≤ η.

If a11 + γ(A \ {a11}) is invertible, then there exists a matrix T′′′ with

A ·T′ ·T′′ ·T′′′ =


1 0 · · · 0
0
...
0

Ik−1

 ,
i.e. T = T′ ·T′′ ·T′′′ is a right-inverse for A. Summarizing,

Pr[A does not have a right-inverse : A←Rk×k] ≤
Pr[A′ does not have a right-inverse : A′ ←R(k−1)×(k−1)]+

Pr[a11 + γ(A \ {a11}) is not invertible : a11 ←R] ≤ k · η,

which proves the lemma.

The same arguments as in the previous proof can be applied to left-inverses
and row operations, we obtain

Corollary 3. With the assumptions and notation as in the previous lemma,

Pr[A has a right- and a left-inverse : A←Rk×k] ≥ 1− 2k · η.

Lemma 12. Let R and η be as above. Assume matrix A = [A1 | A2],A1 ∈
Rk×k,A2 ∈ Rk×(n−k), is chosen uniformly at random from Rk×n, n ≥ k. Then
with probability at least 1−2k·η, there is a matrix A′

2 such that for A′ = [Ik | A′
2]

Λ⊥(A) = Λ⊥(A′).

Proof. By the previous corollary, over the choice of A with probability 1− 2kη
matrix A1 has a left- and a right-inverse. As is well-known, if left- and right-
inverses exist, then they are identical. Denote this inverse of A1 by A−1

1 and
set

A′ = A−1
1 ·A = [A−1

1 ·A1 | A−1
1 ·A2] = [Ik | A−1

1 ·A2].
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We claim that Λ⊥(A) = Λ⊥(A′). Since A ·v = 0 implies A′ ·v = 0, the inclusion
Λ⊥(A) ⊆ Λ⊥(A′) follows. The other inclusion follows analogously by observing
that

A−1
1 ·A′ = A1 ·A−1

1 ·A = A.

Next we apply this result to rings Zq[X]/(Xn + 1) for relevant choices of n
and q. To do so we use the following lemma.

Lemma 13. Let n be a power of 2 and q ≥ 16 a prime with q = 3, 5 mod 8.
For the ring Rq = R/qR with R := Z[X]/(Xn + 1) we have

η := Pr[a not invertible : a←Rq] ≤
2

qn/2
.

Proof. For n, q as in the lemma, the polynomial Xn + 1 is irreducible over Q
and splits into two irreducible polynomials of degree n/2 modulo q. Hence

Rq
∼= Fqn/2 × Fqn/2 ,

where Fqn/2 denotes the field with qn/2 elements. Therefore non-invertible ele-
ments (zero-divisors and 0) in Rq are of the form (0, z) or (z, 0) for z ∈ Fqn/2 .
Hence the number of non-invertible elements is 2qn/2 − 1 and the lemma fol-
lows.

Combining this lemma together with Lemma 12 then proves Lemma 8.

E Standard Security Definitions

E.1 Encryption Schemes

To construct our reputation system, we need a CPA secure encryption scheme
as a building block. For this, we consider a standard syntax definition.

Definition 34. An encryption scheme Π consists of the following three ppt al-
gorithms.

– KeyGen(1n): The key generation algorithm on input a security parameter n
outputs a tuple of a secret key and a public key (sk, pk).

– Enc(pk,m): The encryption algorithm on input a public key pk and a message
m outputs a ciphertext c.

– Dec(sk, c): The decryption algorithm on input a secret key sk and a ciphertext
c outputs a message m.

We say that Π is correct, if for all security parameters n, all (sk, pk) output by
KeyGen(1n), and all messages m, it holds that Pr[Dec(sk,Enc(pk,m)) = m] is
overwhelming in n.
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We define CPA security with a standard definition as well.

IND-CPAΠ,A,b(n)

1 : (sk, pk)← KeyGen(1n)

2 : (m0,m1)← A(pk)
3 : c← Enc(pk,mb)

4 : b′ ← A(c)

Definition 35. We define the advantage of an adversary A against an encryp-
tion scheme Π as

AdvCPA
Π,A (n) = |Pr[IND-CPAΠ,A,0(n) = 1]− Pr[IND-CPAΠ,A,1](n) = 1| .

We say that the scheme Π is IND-CPA secure if for all ppt adversaries AdvCPA
Π,A (n)

is negligible.

E.2 Signature Schemes

Another building block we need for the reputation system is an EUF-CMA secure
signature scheme.

Definition 36 (Signature scheme). A signature scheme Σ consists of the
following ppt algorithms:

– KeyGen(1n) outputs secret key and public key pair (sk, pk).
– Sign(sk,m) outputs signature σ.
– Vrfy(pk,m, σ) is deterministic and outputs a bit.

We say that Σ is correct if for all n ∈ N, all (sk, pk) output by KeyGen(1n), all
messages m in the message space (which is implicitly defined by the pk), and all
σ output by Sign(sk,m), we have Vrfy(pk,m, σ) = 1.

The standard EUF-CMA security notion is defined as follows.

Definition 37 (EUF-CMA). A signature scheme Σ is existentially unforge-
able under chosen-message attacks (EUF-CMA) if for all ppt A,

AdvEUFCMA
Π,A (n) = Pr[Vrfy(pk,m∗, σ∗) = 1 ∧ A has not queried m∗ :

(sk, pk)← KeyGen(1n), (m∗, σ∗)← ASign(sk,·)(pk)] ≤ negl(n).
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