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Abstract. Deep learning-based cryptanalysis is one of the emerging
trends in recent times. Differential cryptanalysis is one of the most po-
tent approaches to classical cryptanalysis. Researchers are now modeling
classical differential cryptanalysis by applying deep learning-based tech-
niques. In this paper, we report deep learning-based differential distin-
guishers for block cipher PRIDE and RC5, utilizing deep learning models:
CNN, LGBM and LSTM. We found distinguishers up to 23 rounds for
PRIDE and nine rounds for RC5. To the best of our knowledge this is
the first deep learning based differential classifier for cipher PRIDE and
RC5.
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1 Introduction

Researchers are using deep learning techniques to solve problems from a vari-
ety of domains. Nowadays, cryptology researchers are also applying deep learn-
ing(DL) mainly for cryptanalysis purposes. Rivest [13] first introduced the re-
lationship between the area of machine learning and cryptography. In the cryp-
tography domain, earlier DL was restricted only to side-channel analysis. In
2019, Aron Gohr [7] first showed a way to find deep learning-based distinguish-
ers. He tries to differentiate between the performance of the classical differential
distinguisher and the neural distinguisher. He reveals deep learning-based clas-
sifiers perform more efficiently for key recovery of round-reduced SPECK32/64.
In 2021, T Yadav et al. [15] use the Ghors approach and reports new neural
distinguishers for reduced rounds of SIMON-32 [4], SPECK-32 [4] and GIFT-
64 [3]. Baksi et al. [2] proposed a technique by utilizing multiple input differences
to generate an ML-based distinguisher. They successfully applied the technique
to reduced rounds of Ascon permutation, Chaskey permutation, Knot256/512
permutation, and Gimili permutation/hash/cipher to retrieve the correspond-
ing neural distinguishers. Pal et al. [12] proposes a generic tool for generating
deep learning-aided differential distinguishers and applies the strategy to reduced
rounds of HIGHT, LEA, SPARX, and SAND64/128. Liu et al. [17] uses Gohr’s
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approach and found improved distinguishers for PRESENT, DES, and Chaskey.
In 2022 Gohr et al. [8] report a new approach applying multiple ciphertext pairs.
They found new distinguishers for SKINNY, Katan, and ChaCha and improved
distinguishers for PRESENT, SIMON, and SPECK. Zezhou et al. [9] uses neural
distinguishers to recover the last subkey of 11 and 13 rounds of SIMON32. Here
our objectives are as follows,
– Searching deep learning based differential distinguishers for the cipher PRIDE

and RC5.
– Applying different different deep learning models to get more accuracy for

neural distinguishers.
– Increasing number of rounds for the neural distinguishers.

1.1 Our contribution

In this paper, we introduce differential distinguishers for block cipher PRIDE[1]
and RC5 [14] utilizing deep learning-based techniques. We found neural-based
classifiers up to 23 rounds for PRIDE and distinguishers up to nine rounds for
RC5.

1.2 Organization of the paper

We organize the rest of this paper in the following manner. Section 2 explains
the backgrounds and preliminaries. Here we describe the specifications of PRIDE
and RC5 in brief, the description of deep learning models used and a literature
review on differential cryptanalysis attacks on PRIDE and RC5. In Section 3,
we present our approach to finding neural classifiers. The experimental results
are shown in Section 4. Section 5 concludes the paper.

2 Background

In this subsection we describe the background and preliminaries of our work.

2.1 Short description of PRIDE

PRIDE follows SPN structure with block size 64 bits and 128 bits key size. The
128 bit master key K is divided into two parts, k0 and k1, each of 64 bits. The
first part, k0, is applied as a whitening key for both pre-whitening and post-
whitening. The last part, k1, is again divided into eight bytes, which are used
for generating the round keys. It iterates a total of 20 rounds. Each round of
PRIDE is mainly composed of three operations:
– AddRoundKey Exor the state with the round key.
– Substitution Operation After key Exoring the state is applied to 16 par-

allel SBox(see Table 1).
– Linear Layer PRIDE uses a linear layer L, which consists of three parts:

first, a permutation layer P is used, then a constant matrix M is multiplied
with the state and finally, the inverse of the first permutation P−1 is applied.
The values for M, P, P−1 is provided in specification of PRIDE [1].
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Table 1: PRIDE SBbox
x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 0 4 8 F 1 5 E 9 2 7 A C B D 6 3

Algorithm 1 Key Expansion of RC5
1: procedure key_expansion(K,S,rounds)
2: b ←− 16
3: w ←− 32
4: u = w/8
5: c = b/u
6: t = 2*(rounds + 1)
7: P ←− 0xb7e15163
8: Q ←− 0x9e3779b9
9: S[0] = P

10: for i = 1 to t do
11: S[i] = (S[i− 1] +Q) mod 232

12: end for
13: for i = b-1 to 0 do
14: L[i/u] = ((L[int(i/u)] << 8) +K[i]) mod 232

15: end for
16: i = j = X = Y = 0
17: for k = 0 to 3t - 1 do
18: X = S[i] = ROTL((S[i] + ((X + Y ) mod 232)) mod 232, 3)
19: Y = L[j] = ROTL((L[j]+((X+Y ) mod 232)) mod 232(X+Y ) mod 232)
20: i = int((i+ 1) mod t)
21: j = int((j + 1) mod c)
22: end for
23: end procedure

2.2 Short description of RC5

RC5 [14] is a symmetric key block cipher. The plaintext and ciphertext are
represented as a two-word block. For word size, the allowable values are 16, 32,
and 64. The design parameters of RC5 consist of word size w, number of rounds
r, the number of bytes in the secret key K is b, and the secret key K represented
as K = K[0],K[1],. . . ,K[b − 1]. The expanded key is stored in table S. The
encryption module of RC5 consists of two parts,

(a) Key Expansion The key expansion function helps to expand the main
key K, to form a table S. The process for key expansion is provided in
Algorithm 1. Here, P and Q are magic constants, Pw = Odd((e - 2)2w) and
Qw = Odd((ϕ - 1)2w), where e = 2.71828182 and ϕ = 1.618033988749. The
function ROTL(x,y), is the circular rotation of the word x by y bits.

(b) Encryption The encryption function works with the help of elements in the
key expansion table S. The encryption algorithm is as follows:

X = X + S[0]
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Y = Y + S[1]
for i = 1 to rounds,

X = (ROTL((X ⊕ Y ), Y ) + S[2 ∗ i]) mod 232

Y = (ROTL((Y ⊕X), X) + S[2 ∗ i+ 1]) mod 232

Here, X and Y are the w-bit words of the input plaintext. After r number of
rounds, the X and Y will be the two words of ciphertext i.e Z = [X,Y ].

2.3 Deep Learning Models

For finding the differential distinguishers, we use three models CNN, LSTM, and
LGBM. Now we describe about these three models in brief.

Fig. 1: CNN architecture

Convolutional Neural Network (CNN)

CNN is the most renowned and important Deep Neural Network. The CNN
architecture is comparable to the way the neurons are connected in the Human
Brain. The emergence of CNN was a motivation by the organization of the visual
cortex. Each neuron responds to impulses only in a confined portion of the visual
area called the receptive field. A set of such fields overlap to fill the whole visual
region. The architecture of a CNN mainly consists of the following layers,

– Convolution Layer: The convolution layer has following characteristics,
i) Unlike the feed-forward network, it follows sparse connectivity. The sparse
connectivity reduces the number of parameters in the model.
ii) Weight sharing is an important property of CNN. The kernel weight needs
to be the same for different portions of the same image.
The purpose of the convolution layer is to take out the high-level features,
like edges, from an image. The convolution layer in the first level helps to
find the low-level features like color, edges, etc. But as the level goes deeper,
it grabs a good knowledge of the high-level features and provides a network
with a wholesome perception of images in the dataset.
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– Pooling Layer: The objective of pooling is to decrease the dimension of
the feature map that we get from the convolution layer. By dimensionality
reduction, it reduces the learning parameters and the computational power
which is required to process the data. The pooling layer also helps to fetch
the dominant features, which are rotational and positional invariant. Max
pooling and average pooling are two types of pooling used in CNN. Max
pooling fetches the maximum value from that part that is covered by the
kernel. Average pooling computes and returns the average of all the values.

– Fully Connected Layer: This layer densely connects all the neurons of the
last layer with the next layer. The effect of this layer can be easily calculated
by using matrix multiplication and then adding a bias.

– Non-linear Layer: A vital layer called activation functions adds non-linearity
to the CNN architecture. Depending on the value of the activation function,
this layer predicts if the neuron of the next layer will be active or not. Pri-
marily used activation functions are sigmoid, ReLU, softmax, tanh, etc.

Figure 1 depicts a top-level view of CNN architecture. After adding a sequence
of convolution layer and pooling layer consecutively, the model is ready to under-
stand the features. The model will distinguish between dominating and certain
low-level features and classify them over a series of epochs.

Long Short-Term Memory (LSTM)

LSTM is a variant of RNN which reduces the problem of short-term memory.
In RNN, the state si records information from the earlier time steps. For each
new time instant, the past information gets morphed by the current information
as the size of the state is of finite dimension. On the one hand, the information
needs to get recorded from all the previous time steps. Still, on the other hand,
the memory amount is finite, so it is bound to get overridden. The information
will get morphed so much that it will be completely impossible to say the original
contribution at step 1 or 2 after 20 or 30-time steps. This is the main problem
of RNN, which the LSTM model partially resolves. Figure 2 narrates the archi-
tecture of the LSTM model. LSTM resolves the short-term memory problem of
RNN. To resolve the problem of short-term memory, three items were included:
selective read, selective write, and selective forget.

– Selective Write In case of RNN the information of st−1 is being used to
compute st , st = σ(Wst−1+Uxt). But here in LSTM, only some portion of
the information is passed from the previous state st−1 to the next state st.
A gate ot−1 is introduced, and it is an output gate. Then, an elementwise
product is performed between the output gate and the cell state st−1, and
the new product is written into ht−1. The output gate ot−1 is computed as
ot−1 = σ(Woht−1 +Uoxt−1 + bo) . Wo, Uo are the parameters, and bo is the
bias. The sigmoid function ensures that all the values are between 0 to 1.

– Selective Read By using ht−1, the new state at the next time step needs to
be computed. From the previously computed ht−1 and the new information
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Fig. 2: LSTM architecture

xt at the time step t, intermediate state s′t is computed. s′t captures all the
information from the last state ht−1 and the next input xt. A new gate is
introduced as it. it is computed as it = σ(Wiht−1 +Uixt + bi). it multiplied
by s′t is the selectively read information.

– Selective Forget In selective forget, st−1 and s′t are both combined to get
the new state st. Before combining, some part of st−1 needs to get forgotten.
So, the forget gate ft is being introduced. ft = σ(Wfht−1 + Ufxt + bf ).
Finally st is computed as st = ft

⊙
st−1 + it

⊙
s′t.

The whole architecture of LSTM using all three above-mentioned items is sketched
out in Figure 2.

Light Gradient Boosting Machine (LGBM)

LGBM is one of the boosting algorithms. Boosting algorithm is an ensemble
technique. When there are multiple models such as M1, M2, . . . , Mn and there
is a baseline model M0, at first M0 is made, the prediction on a finite set record
and whatever errors are achieved from that, the next model is trained with that
and so on and so forth it continues. In the end, all the models are combined, and
a final model is made. LGBM consists of the following characteristics,

– The training speed is really high. It is very much efficient.
– It can handle large-scale data.
– Memory usage is less.
– LGBM model provides parallel, distributed, and GPU learning.

2.4 Differential Cryptanalysis of PRIDE and RC5

Differential cryptanalysis[5] is a chosen-plaintext attack that, by speculating on
a key establishes a probabilistic relationship between the second last round state
difference and the ciphertext difference.
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Algorithm 2 Generate Data for Neural Distinguisher
Inputs: An input differences(∆i) for the differential distinguisher
Outputs: The Training/Validation Dataset DATAT /DATAV

1: procedure GenerateDataset(∆i, Rnd, Itr )
2: DATA← {} ▷ Empty set
3: for i = 1 to Itr do
4: MK ←GenerateRandomKey()
5: PT1 ←GenerateRandomPlaintext()
6: if i mod 2 = 0 then
7: PT2 ←GenerateRandomPlaintext()
8: CT1 ← RANDOM_ORACLE(PT1,MK,Rnd) ▷ Encryption oracle of a

cipher
9: CT2 ← RANDOM_ORACLE(PT2,MK,Rnd)

10: DATA← DATA ∪ (CT1, CT2, CT1 ⊕ CT2, 0)
11: else
12: PT2 = PT1 ⊕∆i

13: CT1 ← RANDOM_ORACLE(PT1,MK,Rnd)
14: CT2 ← RANDOM_ORACLE(PT2,MK,Rnd)
15: DATA← DATA ∪ (CT1, CT2, CT1 ⊕ CT2, 1)
16: end if
17: end for
18: Return DATA
19: end procedure

Let (P, P ′) represent the plaintext pair and (Cm, C ′
m) represent the ciphertext

pair after mth round. The conditional probability Pr(∆Cm = β | ∆P = α)
is then used to calculate the differential likelihood of an m-round differential
α → β, where ∆P = P ⊕P ′ and ∆Cm = Cm⊕C ′

m and the sub-keys K1, . . . ,Km

are independent and uniformly random. The attacker determines the differential
probability for each round in preparation for mounting an attack.

PRIDE Utilizing the shortcomings of the SBox and linear layer of PRIDE [1],
Zhao [18] introduce 16 alternative two round differential trails and found multiple
15-round differential characteristics. They mount a differential attack on the 18-
round PRIDE based on one of these differentials. They use 260 chosen plaintexts.
Applying an automatic tool Yang et al. [16] reports 56 differential characteristics,
where also exists 24 one-round differential trails. With the help of three of them,
they create a 15-round differential before launching a differential attack on the
19-round PRIDE, with data complexity 262.

RC5 Kaliski Jr et al. [10] mount differential attack on nine-round RC5(64-bit
block size), using 245 chosen plaintext pairs. For 12-round RC5 they need 262

pairs. Alex Biryukov et al. [6] uses partial differential technique and improve the
12-round attack for RC5 with 32-bit block size. They needs only 244 chosen pairs.
Knudsen [11] demonstrates the shortcomings of Kaliski [10] proposed differential
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Algorithm 3 Training Algorithm for Neural Distinguisher
Inputs: Training Data DATAT

Outputs: Training accuracy ACT

1: procedure TrainNeuralDistinguisher(DATAT )
2: Generate the DL model DL∆i .
3: Perform training for DL∆i with dataset DATAT .
4: Let ACT be the training accuracy that the training algorithm returns.
5: if ACT > 0.5 then
6: Generate new dataset DATAV for validation algorithm.
7: Call V alidationNeuralDistinguisher(ML∆i ,DATAV )
8: else
9: Return "Distinguisher can’t be identified"

10: end if
11: Return ACT

12: end procedure

analysis. They improved the complexity of the differential attacks by a factor of
up to 512. Additionally, they demonstrate that RC5 has a lot of weak keys in
terms of differential attacks.

Algorithm 4 Validation Algorithm for Neural Distinguisher
Inputs: Validation Data DATAV and the pre-trained model DL∆i

Outputs: Validation Accuracy ACV

1: procedure ValidationNeuralDistinguisher(DL∆i ,DATAV )
2: Run the pretrained model DL∆i .
3: Perform validation for DLδi by applying the validation data DATAV .
4: Let ACV be the validation accuracy.
5: if ACV > 0.5 then
6: Distinguisher identified.
7: else
8: Return "Distinguisher can’t identified"
9: end if

10: Return ACV

11: end procedure

3 Deep Learning to Model Classical Differential
Cryptanalysis

In Gohr’s algorithm, the input is a plaintext difference ∆i. Let (PT1, PT2) be a
plaintext pair, and the corresponding ciphertext pair after Rnd rounds is (CT1,
CT2). Now for each plaintext and ciphertext pair, create an output label L such
that,
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{
L = 0 if PT1 ⊕ PT2 ̸= ∆i

L = 1 if PT1 ⊕ PT2 = ∆i

Classifying the real ciphertext pairs from random ciphertext pairs is the pri-
mary intention behind this. Following this idea, we create the dataset by choos-
ing the appropriate plaintext difference for a cipher with a predetermined round.
Next, we construct a deep learning model and train the model by applying the
dataset. Check the training accuracy if it exceeds 50%, then generate the valida-
tion dataset applying the same plaintext difference. If the validation accuracy is
greater than 50% then we conclude that a differential classifier is found for the
corresponding cipher with given rounds.

Table 2: Performance of DL-based distinguishers for cipher PRIDE

DL
Technique

No of
Rounds ACT ACV TPR TNR

CNN

3 84.23 84.29 0.822 0.810
4 54.07 54.51 0.267 0.728
5 50.21 50.53 0.479 0.520
6 50.31 50.45 0.181 0.811

LGBM
3 63.6 54.62 0.482 0.611
4 63.59 50.13 0.584 0.418
5 63.69 50.00 0.493 0.504

LSTM 3 51.08 50.53 0.813 0.195
4 50.62 50.67 0.745 0.267

Algorithm 2 explains the process of data generation for training and testing.
The input is the plaintext difference ∆i, the number of data elements Itr(number
of iterations), and the round number Rnd up to which we want to find the neural
classifier for the given cipher. Take two plaintexts PT1 and PT2 is selected in
such a way that ∆i = PT1 ⊕ PT2. The pair (PT1, PT2) is called real pair. Also
consider one random plaintext pair (PT ′

1, PT ′
2). Now encryption is performed

using random oracle (with the round number Rnd) to get the ciphertext pair
(CT1, CT2) from (PT1, PT2) and (CT ′

1, CT ′
2) from (PT ′

1, PT ′
2). Next store the

real ciphertext pair (CT1, CT2) with label 1 and the random ciphertext pair
(CT ′

1, CT ′
2) with label 0. We also store the corresponding ciphertext differences

along with the ciphertexts. Repeat this process for random keys for each iteration
to generate a training dataset DATAT or validation dataset DATAV .

Algorithm 3 explains the training process. The input for training is the train-
ing data DATAT , and the output is the training accuracy ACT . We first construct
the DL model DL∆i

and train applying DATAT . Check the training accuracy
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ACT . If ACT is less than 50% distinguisher is not found for the current dataset
else, create the validation data DATAV and call the validation algorithm.

Algorithm 4 describes the validation process after training. The input for
the validation algorithm is validation data DATAV , and the output is validation
accuracy ACV . During validation, load the pre-trained model DL∆i

and run
this for validation data DATAV . If validation accuracy ACV is greater than 50%
distinguisher found for DATAT and DATAV corresponding to input difference
∆i. Save the model DL∆i

. But if ACV is less than 50%, distinguisher is not
possible.

Table 3: Performance of DL based distinguishers for cipher RC5

DL
Technique

No of
Rounds ACT ACV TPR TNR

CNN

2 81.48 81.36 0.629 0.998
3 62.96 58.64 0.425 0.704
4 56.46 51.2 0.513 0.508
5 59.14 50.33 0.489 0.509
6 56.30 50.16 0.499 0.504
7 53.61 50.18 0.463 0.533

LGBM

2 75.48 74.14 0.558 0.922
3 62.18 54.02 0.290 0.788
4 64.57 50.02 0.573 0.427
5 64.95 50.00 0.496 0.498
6 64.73 50.15 0.585 0.416

LSTM 2 68.30 67.48 0.518 0.833
3 50.80 51.30 0.324 0.695
4 50.35 51.33 0.390 0.609

We use the concept of a generic neural classifier proposed by Pal et al. [12]. We
search an x round differential trail for the given cipher and use the corresponding
output difference as an input difference for the neural classifier. In this context,
if the classifier achieves good accuracy up to y rounds, then we found a new
neural classifier with (x+ y) rounds.

4 Experiments and Observations

We use CNN, LGBM, and LSTM models to generate deep learning-based dis-
tinguishers. For all our experiments, we use google colab with installed GPU
(Nvidia T4, 16GB of memory, clock size 1.59GHz). For checking each distin-
guisher we create a total of 105 data elements, out of which 50000 are applied
for training, and the rest for validation.
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During the training of the models setting up the value of the batch size and
number of epochs was a challenging task for us to get the appropriate validation
accuracy. We use batch size 30, and the number of epochs is set to nine for both
CNN and LSTM models.

Fig. 3: Epoch Vs Loss for PRIDE (CNN) Fig. 4: Epoch Vs Accuracy for PRIDE (CNN)

4.1 PRIDE

Zaho et al. [18] reports differential characteristics of 15 and 18 for PRIDE. We
take the input difference of 18 round distinguisher (08000000) as input to our
neural classifier. We achieve good accuracy in up to six rounds, which results
in a distinguisher for 23 rounds. The training and validation accuracy with the
true positive rate(TPR) and true negative rate(TNR) of these distinguishers for
different models are enlisted in Table 2. We are getting distinguishers up to six
rounds for CNN, up to five rounds for LGBM, and up to four rounds for LSTM.
The change of training and validation accuracy with increasing epochs for CNN
and LSTM is depicted in Figure 4 and 6. The change of training and validation
loss with increasing epochs for CNN and LSTM is depicted in Figure 3 and 5.

Fig. 5: Epoch Vs Loss for PRIDE (LSTM) Fig. 6: Epoch Vs Accuracy for PRIDE (LSTM)
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Fig. 7: Epoch Vs Loss for RC5 (CNN) Fig. 8: Epoch Vs accuracy for RC5 (CNN)

4.2 RC5

Birukov et al.[6] propose eight rounds of differential characteristics for RC5. We
take the input difference of third round distinguisher (0000080000000000) as in-
put to our neural classifier and achieve good accuracy up to seven rounds, which
provides a distinguisher for nine rounds. The training and validation accuracy
with the corresponding TPR and TNR of these distinguishers for different mod-
els are provided in Table 3. We are getting distinguishers up to seven rounds
for CNN, up to six rounds for LGBM, and up to four rounds for LSTM. The
training and validation accuracy change with increasing epochs for CNN and
LSTM is depicted in Figure 8 and 10. The change of training and validation loss
with increasing epochs for CNN and LSTM is depicted in Figure 7 and 9.

Fig. 9: Epoch Vs Loss for RC5 (LSTM) Fig. 10: Epoch Vs Accuracy for RC5 (LSTM)

5 Conclusion

This paper reports the deep learning-based differential classifiers for PRIDE
and RC5. To our knowledge, this is the first deep learning-based distinguisher
for PRIDE and RC5. We have applied three deep learning models: CNN, LGBM,
and LSTM, for searching neural classifiers. For PRIDE, the classifier works up to
23 rounds; for RC5, it works up to nine rounds, which is better than the existing
reported results. CNN performs better with accuracy and distinguishers (with
higher rounds) when compared with LGBM and LSTM. In future work, we
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want to apply partial key recovery attacks for PRIDE and RC5. One can use the
techniques for searching neural classifiers to other lightweight block ciphers.

References

1. Albrecht, M.R., Driessen, B., Kavun, E.B., Leander, G., Paar, C., Yalçin, T.: Block
ciphers - focus on the linear layer (feat. PRIDE). In: Garay, J.A., Gennaro, R. (eds.)
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 8616, pp. 57–76. Springer (2014). https://doi.org/10.
1007/978-3-662-44371-2_4, https://doi.org/10.1007/978-3-662-44371-2_4

2. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential
distinguishers for lightweight ciphers. In: Design, Automation & Test in Europe
Conference & Exhibition, DATE 2021, Grenoble, France, February 1-5, 2021. pp.
176–181 (2021). https://doi.org/10.23919/DATE51398.2021.9474092, https://
doi.org/10.23919/DATE51398.2021.9474092

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer,
W., Homma, N. (eds.) Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Pro-
ceedings. Lecture Notes in Computer Science, vol. 10529, pp. 321–345 (2017).
https://doi.org/10.1007/978-3-319-66787-4_16, https://doi.org/10.1007/
978-3-319-66787-4_16

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference, San Francisco, CA, USA, June 7-11, 2015. pp.
175:1–175:6. ACM (2015). https://doi.org/10.1145/2744769.2747946, https:
//doi.org/10.1145/2744769.2747946

5. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Stan-
dard (1993). https://doi.org/10.1007/978-1-4613-9314-6, https://doi.org/
10.1007/978-1-4613-9314-6

6. Biryukov, A., Kushilevitz, E.: Improved cryptanalysis of RC5. In: Nyberg, K. (ed.)
Advances in Cryptology - EUROCRYPT ’98, International Conference on the
Theory and Application of Cryptographic Techniques, Espoo, Finland, May 31
- June 4, 1998, Proceeding. Lecture Notes in Computer Science, vol. 1403, pp. 85–
99. Springer (1998). https://doi.org/10.1007/BFb0054119, https://doi.org/
10.1007/BFb0054119

7. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2019, Proceedings, Part II. Lecture Notes in Computer Science,
vol. 11693, pp. 150–179 (2019). https://doi.org/10.1007/978-3-030-26951-7_
6, https://doi.org/10.1007/978-3-030-26951-7_6

8. Gohr, A., Leander, G., Neumann, P.: An assessment of differential-neural distin-
guishers. Cryptology ePrint Archive, Paper 2022/1521 (2022), https://eprint.
iacr.org/2022/1521, https://eprint.iacr.org/2022/1521

9. Hou, Z., Ren, J., Chen, S.: Cryptanalysis of round-reduced simon32 based on deep
learning. Cryptology ePrint Archive, Paper 2021/362 (2021), https://eprint.
iacr.org/2021/362, https://eprint.iacr.org/2021/362

https://doi.org/10.1007/978-3-662-44371-2\_4
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-44371-2\_4
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.1007/978-3-662-44371-2_4
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.23919/DATE51398.2021.9474092
https://doi.org/10.1007/978-3-319-66787-4\_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/978-1-4613-9314-6
https://doi.org/10.1007/BFb0054119
https://doi.org/10.1007/BFb0054119
https://doi.org/10.1007/BFb0054119
https://doi.org/10.1007/BFb0054119
https://doi.org/10.1007/978-3-030-26951-7\_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7\_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://doi.org/10.1007/978-3-030-26951-7_6
https://eprint.iacr.org/2022/1521
https://eprint.iacr.org/2022/1521
https://eprint.iacr.org/2022/1521
https://eprint.iacr.org/2021/362
https://eprint.iacr.org/2021/362
https://eprint.iacr.org/2021/362


14 Debranjan Pal et al.

10. Kaliski, B.S., Yin, Y.L.: On differential and linear cryptanalysis of the rc5 encryp-
tion algorithm. In: Coppersmith, D. (ed.) Advances in Cryptology — CRYPT0’
95. pp. 171–184. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

11. Knudsen, L.R., Meier, W.: Differential cryptanalysis of RC5. Eur. Trans. Telecom-
mun. 8(5), 445–454 (1997). https://doi.org/10.1002/ett.4460080503, https:
//doi.org/10.1002/ett.4460080503

12. Pal, D., Mandal, U., Chaudhury, M., Das, A., Chowdhury, D.R.: A deep neural
differential distinguisher for ARX based block cipher. IACR Cryptol. ePrint Arch.
p. 1195 (2022), https://eprint.iacr.org/2022/1195

13. Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Mat-
sumoto, T. (eds.) Advances in Cryptology - ASIACRYPT ’91, International Confer-
ence on the Theory and Applications of Cryptology, Fujiyoshida, Japan, Novem-
ber 11-14, 1991, Proceedings. Lecture Notes in Computer Science, vol. 739, pp.
427–439. Springer (1991). https://doi.org/10.1007/3-540-57332-1_36, https:
//doi.org/10.1007/3-540-57332-1_36

14. Rivest, R.L.: The RC5 encryption algorithm. In: Preneel, B. (ed.) Fast Soft-
ware Encryption: Second International Workshop. Leuven, Belgium, 14-16 Decem-
ber 1994, Proceedings. Lecture Notes in Computer Science, vol. 1008, pp. 86–
96. Springer (1994). https://doi.org/10.1007/3-540-60590-8_7, https://doi.
org/10.1007/3-540-60590-8_7

15. Yadav, T., Kumar, M.: Differential-ml distinguisher: Machine learning based
generic extension for differential cryptanalysis. In: Longa, P., Ràfols, C. (eds.)
Progress in Cryptology - LATINCRYPT 2021 - 7th International Conference on
Cryptology and Information Security in Latin America, Bogotá, Colombia, Oc-
tober 6-8, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12912,
pp. 191–212 (2021). https://doi.org/10.1007/978-3-030-88238-9_10, https:
//doi.org/10.1007/978-3-030-88238-9_10

16. Yang, Q., Hu, L., Sun, S., Qiao, K., Song, L., Shan, J., Ma, X.: Improved differential
analysis of block cipher PRIDE. In: López, J., Wu, Y. (eds.) Information Security
Practice and Experience - 11th International Conference, ISPEC 2015, Beijing,
China, May 5-8, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9065,
pp. 209–219. Springer (2015). https://doi.org/10.1007/978-3-319-17533-1_
15, https://doi.org/10.1007/978-3-319-17533-1_15

17. Zhang, L., Wang, Z.: Improving differential-neural distinguisher model for des,
chaskey, and PRESENT. CoRR abs/2204.06341 (2022). https://doi.org/10.
48550/arXiv.2204.06341, https://doi.org/10.48550/arXiv.2204.06341

18. Zhao, J., Wang, X., Wang, M., Dong, X.: Differential analysis on block cipher
PRIDE. IACR Cryptol. ePrint Arch. p. 525 (2014), http://eprint.iacr.org/
2014/525

https://doi.org/10.1002/ett.4460080503
https://doi.org/10.1002/ett.4460080503
https://doi.org/10.1002/ett.4460080503
https://doi.org/10.1002/ett.4460080503
https://eprint.iacr.org/2022/1195
https://doi.org/10.1007/3-540-57332-1\_36
https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/3-540-57332-1_36
https://doi.org/10.1007/3-540-60590-8\_7
https://doi.org/10.1007/3-540-60590-8_7
https://doi.org/10.1007/3-540-60590-8_7
https://doi.org/10.1007/3-540-60590-8_7
https://doi.org/10.1007/978-3-030-88238-9\_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-030-88238-9_10
https://doi.org/10.1007/978-3-319-17533-1\_15
https://doi.org/10.1007/978-3-319-17533-1_15
https://doi.org/10.1007/978-3-319-17533-1\_15
https://doi.org/10.1007/978-3-319-17533-1_15
https://doi.org/10.1007/978-3-319-17533-1_15
https://doi.org/10.48550/arXiv.2204.06341
https://doi.org/10.48550/arXiv.2204.06341
https://doi.org/10.48550/arXiv.2204.06341
https://doi.org/10.48550/arXiv.2204.06341
https://doi.org/10.48550/arXiv.2204.06341
http://eprint.iacr.org/2014/525
http://eprint.iacr.org/2014/525

	Deep Learning based Differential Classifier of PRIDE and RC5

