
Non-interactive Universal Arguments∗

Nir Bitansky Omer Paneth Dana Shamir Tomer Solomon

December 2022

Abstract

In 2002, Barak and Goldreich introduced the notion of a universal argument and constructed an
interactive universal argument for non-deterministic computations based on polynomially hard collision-
resistant hash functions. Since then, and especially in recent years, there have been tremendous devel-
opments in the construction of non-interactive succinct arguments for deterministic computations under
standard hardness assumptions. However, the constructed succinct arguments can be proven universal
only under sub-exponential assumptions.

Assuming polynomially hard fully homomorphic encryption and a widely believed worst-case com-
plexity assumption, we prove a general lifting theorem showing that all existing non-interactive succinct
arguments can be made universal. The required complexity assumption is that non-uniformity does not
allow arbitrary polynomial speedup. In the setting of uniform adversaries, this extra assumption is not
needed.

∗Tel Aviv University.Email: {nirbitan, omerpa, danashamir1, tomersolomon}@mail.tau.ac.il .
Nir Bitansky and Omer Paneth are members of the checkpoint institute of information security. Omer Paneth is supported by
an Azrieli Faculty Fellowship, and ISF grant 1789/19. Nir Bitansky, Dana Shamir, and Tomer Solomon are supported by the
European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme (grant
agreement No. 101042417, acronym SPP).

1 Introduction

A succinct argument for a language L (in P or NP) allows proving membership in L so that verification
is only polylogarithmic in the time T needed to decide L (deterministically or non-deterministically). Since
the pioneering works of Kilian [Kil92] and Micali [Mic94], succinct arguments have become a central concept
in cryptography, with far reaching applications. As such, different notions of succinct arguments have been
(and are still being) studied.

One influential notion in this context is that of universal arguments, put forth by Barak and Goldreich
[BG08]. A universal argument allows proving membership in any language in NP. More generally, such
an argument system enables proving statements y = (M,x, T) in the universal language LU attesting that
“M non-deterministically accepts x in time T”. Unlike a succinct argument for a specific language L ∈
NP, here T is not bounded by any specific polynomial and may be, in fact, as large as 2λ, where λ is a
security parameter. The prover complexity is accordingly polynomial in T . Soundness of universal arguments
is guaranteed against provers that are polynomially bounded in the security parameter λ. Analogously
to universal arguments for non-deterministic computations, one may consider a universal argument for
deterministic computations, which will be the focus of this work.

The need for universal arguments arises in different scenarios where we are required to verify the correct-
ness of arbitrary computations and do not have a guarantee on the time it will take for them to terminate.
In some scenarios, even the honest prover may not know apriori when the computation will terminate. Such
is the scenario of incrementally verifiable computation [Val08], where the prover gradually computes and
updates its proofs as it progresses along the computation. Another salient use case, expressed in the work
of Barak and Goldreich, is diagonalization. Following the work of Barak [Bar01], universal arguments have
been repeatedly used in non-black-box proofs of security in order to prove assertions pertaining to the code
of the adversary, whose running time is not known in advance (c.f. [BG08, PR08, DGS09, BKP18]).

Universal Arguments Based on Polynomial Assumptions. The challenge in constructing universal
arguments is in basing them on standard polynomial assumptions. Indeed, existing non-universal succinct
arguments, deterministic and non-deterministic alike, can be made universal by relying on sub-exponential
assumptions, or assuming super-polynomial security ℓ(λ) = λ−ω(1), and restricting the universal language to
computations of time T ≤ ℓ(λ). Here the complexity of the security reduction does not scale polynomially in
that of the adversary as we usually aim for, but rather scales with the complexity of computations that the
adversary asserts about, which may be super-polynomially larger. In the regime of polynomial assumptions,
this yields a weaker notion that we call semi-universal arguments where soundness is only guaranteed when
the computation time T is polynomially bounded.

In the interactive setting, Barak and Goldreich overcome this challenge. Assuming polynomially secure
collision-resistant hash functions, they prove the existence of a four-message argument for non-deterministic
computations that is fully universal (namely, sound for super-polynomial computation time T ≤ 2λ).

Non-interactive Universal Arguments. In this work, we aim to base non-interactive universal arguments
on polynomial assumptions. In the non-interactive setting, the verifier generates a short public key (sometime
referred to as a common reference string) once and for all, and this public key can be then used to generate
the proofs non-interactively. Faced with known barriers on non-interactive succinct arguments [GW11] and
focusing on standard assumptions, we follow the common restriction to deterministic computations. Here
non-interactive succinct arguments have tremendously developed over recent years and can now be based
on standard polynomial assumptions, with strong features like public verification as well and incremental
proof updatability (c.f. [KPY19, CJJ21b, PP22, DGKV22]). While these recent constructions can too
be made universal under sub-exponential assumptions, or semi universal under polynomial assumptions,
non-interactive (fully) universal arguments, based on polynomial assumptions, remain out of reach.

2

1.1 Results

Our main result is a general lifting theorem from semi universal arguments to universal arguments, based
on polynomial security assumptions.

Theorem 1.1 (Informal). Assuming polynomially-secure fully-homomorphic encryption, any non-interactive
semi-universal argument can be lifted to a universal argument. The resulting universal argument is secure
against polynomial-time uniform adversaries. Assuming that for any c ∈ N, P ̸⊂ ioSIZE(nc), it is secure
against polynomial-size non-uniform adversaries.

The theorem holds both in the setting of public verification (maintaining public verifiability) and of private
verification. It also holds both for deterministic and non-deterministic computations, as well as interactive
arguments, without increasing round complexity. We shall keep our focus on the setting of non-interactive
publicly-verifiable arguments for deterministic computations, where new results under standard assumptions
are obtained. For instance, relying on recent constructions of SNARGs for P from polynomial assumptions
[CJJ21b, WW22, KLVW22], we obtain the following corollary.

Corollary 1.2 (of Theorem 1.1). Assuming fully homomorphic encryption and either LWE or DLIN, there
exists a universal argument for deterministic computations. (Non-uniform security additionally requires the
same complexity assumption as in the theorem.)

The assumption that for all c ∈ N, P ̸⊂ ioSIZE(nc), required in the non-uniform setting, essentially says
that circuits of a fixed polynomial size nc, cannot decide all of P in the worst case. (Formally, there is a
language Lc in P, which they fail to decide in the worst-case for all large enough instances.) This can be
viewed as a natural generalization of the time hierarchy theorem, which holds unconditionally. It further
follows from widely believed worst-case assumptions such as the non-uniform exponential time hypothesis
(nuETH). In fact, relying on this assumption has a certain win-win flavour. Morally, if the assumption does
not hold, then any language in P can already be verified in fixed polynomial time, making succinct arguments
somewhat obsolete. (This connection is not precise because verification is guaranteed infinitely often and
requires non-uniform advice, similarly to other constructions in the literature that use the adversary’s circuit
[KY18, RV22].)

Universal Incrementally Verifiable Computation. We prove an analogous lifting theorem for the case
of incrementally verifiable computation. Here we need an extra complexity assumption in both the uniform
and non-uniform settings, for simplicity we focus on the latter.

Theorem 1.3 (Informal). Assuming polynomially-secure fully-homomorphic encryption and that there exists
d ∈ N such that for any c ∈ N, P∩DSPACE(nd) ̸⊂ ioSIZE(nc), any incrementally verifiable semi-universal
argument can be lifted to an incrementally verifiable universal argument. (The universal argument is secure
against polynomial-size non-uniform adversaries.)

Relying on recent constructions of incrementally verifiable arguments from polynomial assumptions [PP22,
DGKV22], we obtain the following corollary.

Corollary 1.4 (of Theorem 1.3). Assuming fully homomorphic encryption, LWE, and the same complexity
assumption as in the theorem, there exists an incrementally verifiable universal argument.

The complexity assumption required here is stronger (leading to a stronger end result), however, we still
view it as rather mild; in particular it is still a worst-case assumption and follows from nuETH.

A General Approach Based on Cryptographic Puzzles. Behind our lifting theorems is a general
approach based on certain average-case cryptographic puzzles. The statements above reflect standard as-
sumptions from which we manage to construct these puzzles. There are in fact other conceivable ways to
construct the corresponding puzzles, as well as potential for future constructions under different assumptions.
This is further discussed in the technical overview in the next section.

3

1.2 Technical Overview

We start with an overview of our main lifting theorem from semi-universal arguments to universal ones. We
shall focus on the case of deterministic computations and public verification.

Recall that our starting point is a semi-universal argument for the language

LU = {(M,x, T) : M(x) deterministically accepts in time T} .

In such an argument, it is possible to generate public verification and proving keys (vk, pk), corresponding to
a given security parameter λ. The prover can use pk to generate a proof for statement y = (M,x, T) ∈ LU
in time poly(T), which the verifier can verify in time polylog(T).1 Soundness is guaranteed against efficient
provers that only ever cheat on statements y = (M,x, T) /∈ LU such that T is bounded by some polynomial
in the security parameter λ. In contrast, for statements where T is super-polynomial, soundness is no longer
guaranteed, even though the prover itself is efficient.

Put Your Money Where Your Mouth Is. Our approach toward lifting is natural: if the prover wishes
to convince the verifier that (M,x, T) ∈ LU , then it should:

a. Provide a semi-universal argument for this fact, and

b. Prove that it actually performed a T -long computation.

The honest prover that anyhow runs in time poly(T) should have no trouble doing so. In contrast, a malicious
prover that runs in time poly(λ), should now only be able to prove that it performed a computation of length
T ≤ poly(λ), in which case the soundness of the semi-universal argument kicks in. A similar idea was used
in [BCC+17] to construct universal SNARKs for NP from extractable collision resistant hash functions.
There it is used to enable efficient extraction, rather than to avoid super-polynomial assumption (see further
comparison below).

Cryptographic Puzzles. Realizing the above idea requires an appropriate notion of cryptographic puzzles.
For such puzzles, a mildly hard instance can be generated fast, but cannot be solved without the investment of
some prescribed amount of resources. Starting from the seminal work of Dwork and Naor [DN92], different
notions of cryptographic puzzles have been studied in the literature, with different interpretations of the
above requirements. For our purpose, we need a rather weak form of puzzles satisfying the following:

• Fast Sampling: Given a difficulty parameter T and security parameter λ, it is possible to sample a
puzzle Z in time poly(λ, log T).

• Completeness: The puzzle Z can be solved in time ≈ T .

• Fast Verification: A solution to the puzzle Z, can be verified in time poly(λ, log T).

• Soundness: An adversary running in time t, should fail to solve puzzles Z of difficulty T ≫ tC for
some constant C > 1. In fact, we rely on a relaxed soundness requirement, where the above holds only
for polynomially bounded T (analogously to soundness of semi-universal arguments).

Given such puzzles, we realize the previously described strategy as follows. On top of the verification and
proving keys (vk, pk) for the semi-universal argument, we add puzzles Z1, . . . , Zλ, where Zi is generated with
difficulty Ti = 2i. To prove a statement of the form (M,x, T) ∈ LU , with the sole restriction that T ≤ 2λ,
the prover must provide solutions for all puzzles Z1, . . . , Zlog T (in addition to the semi-universal argument).

The completeness of puzzles guarantees that the honest prover can generate a proof in time polynomial
in T . As for soundness, a cheating adversary of running time t = poly(λ) that cheats on statements
(M,x, T) /∈ LU must violate the soundness of either the semi-universal argument or the underlying puzzles:

• If T = O(tC), the soundness of the semi-universal arguments is violated.

1Formally, these polynomials also depend on λ, we suppress this dependence to simplify exposition.

4

• If T ≫ tC , the soundness of the puzzle Zlog tC is broken. (The adversary also solves allegedly more
difficult puzzles like Zlog T , but if T is super-polynomial, this does not constitute an attack according
to our relaxed definition.)

Puzzles from FHE and Semi-Universal Arguments. There are several conceivable ways to construct
puzzles satisfying the properties that we need. One simple approach taken in [BCC+17] is to require the
inversion of a one-way function with domain of size ≈ T for the difficulty parameter T . The downside is that
this requires assuming exponential hardness of the one-way function. Another approach from [BGJ+16] is
to combine worst-case mild hardness, for instance based on appropriate hierarchy theorems, together with
succinct randomized encodings [BCG+18], which can be obtained assuming indistinguishability obfuscation
or (polynomially secure) functional encryption [AL18, GS18, KNTY19]. In our setting, resorting to succinct
randomized encodings seems to be an overkill. Indeed the puzzles in [BCG+18] are also required to enable
sampling of solved puzzles, which we do not need.

We provide relatively simple constructions of the required puzzles by combining hierarchy theorems, fully
homomorphic encryption, and semi-universal arguments. In a nutshell, our approach is the following: Start
from puzzles that are only hard in the worst case, based on appropriate hierarchy theorems. Then, lift
their hardness to the average case using fully-homomorphic encryption (alla [CKV10]). Finally, make the
puzzles verifiable using semi-universal arguments. We next explain these steps in more detail, addressing
the different subtleties that arise in the process.

Hierarchy Theorems and Worst-Case Puzzles. Generally speaking, hierarchy theorems are statements
of the form there exist languages that can be decided in the worst case with a certain amount T of resources,
but not with significantly smaller amount t≪ T . Basic examples of such theorems are unconditional hierarchy
theorems for (uniform) time and space and (non-uniform) circuit size. The specific type of hierarchy theorem
needed to carry out our approach depends on whether we consider uniform or non-uniform adversaries. For
the first, we can rely on an unconditional hierarchy theorem for probabilistic time by Barak [Bar02], whereas
for the latter we need the complexity assumption, mentioned earlier, that for any c ∈ N, P ̸⊂ ioSIZE(nc).

In this overview, we will focus on the non-uniform case, which is simpler, yet conveys the main ideas. Here
the previously mentioned complexity assumption directly yields worst case puzzles Z = (M,x, T), where T is
the difficulty parameter and the solution is MT (x), the result of running M on x for T steps. The complexity
assumption exactly says that for any polynomial t = λc, there exists a language L and polynomial T = tC ,
such that L can be decided in the worst-case by a T -time Turing machine M , but not by circuits of size t
(for all large enough inputs).

Average-Case Hardness from FHE. To turn worst-case hardness to average-case hardness, puzzles will

now include encrypted pairs (M,x), namely Z = (Encpk(M,x), T), and the solution is Êncpk(MT (x)) =
Eval(UT ,Encpk(M,x)), the result of homomorphically computing the universal circuit UT that emulates T
steps of the underlying computation. The actual puzzle sampler will in fact sample encryptions of some
arbitrary pair (M,x), say the all-zero string. The basic idea, inspired by [CKV10], is that if an adversary
can solve the puzzles on average, namely compute Eval(UT , ·), on zero-encryptions, then it also does so on
encryptions of any pair (M,x). This gives a worst case to average case reduction, namely we can use the
average-case adversary to obtain a worst-case adversary of roughly the same size.

A subtlety with the above argument is that the adversary might only solve the average case puzzle with
some noticeable probability δ, say 1/λ, rather than with probability ≈ 1. The reduction, however, should
solve the underlying worst-case decision problem with probability noticeably larger than 1/2. Accordingly,
the reduction has to make ≈ δ−1 attempts to solve the average case puzzle to make sure it succeeds. The
problem is that the reduction cannot test in which of the attempts the adversary actually succeeds, namely
computes Eval(UT , ·), as testing this requires time ≈ T rather than t ≪ T .2 For exactly the same reason,
currently verification of solutions is not fast, but rather requires time ≈ T .

Adding Semi-Universal Arguments. We remedy both issues raised in the last paragraph in one-shot.

2This difficulty does not arise in [CKV10], who use this technique to construct delegation with preprocessing, where the
reduction could run for as long as the preprocessing time T .

5

We require as part of the solution a semi-universal argument that the claimed result (ciphertext) is actually
the result of applying Eval(UT , ·) to the ciphertext given by the puzzle Z. Relying on the soundness of
the universal arguments, we now get fast verification. At the same time, the worst case to average case
reduction can now also rely on fast verification to check which of the repeated attempts succeeds. Since
we use semi-universal arguments, the puzzles are only sound provided a polynomial bound on T , which as
argued before is sufficient for our purpose.

Under the Hood. The reductions should deal with additional details, such as accounting for the overhead
of encryption, the repeated solving attempts, and verification of the semi-universal arguments. Overall, the
overhead is a fixed polynomial in the adversary size t, the inverse breaking probability δ−1, and the security
parameter, so this does not present a problem.

We also note that in the actual paper, we define an intermediate notion of puzzle soundness against
non-faulty solvers, which do not err in solving the puzzle, but sometimes identifiably fail. This is meant to
capture the minimal notion of puzzles sufficient for universal lifting. We refer the reader to the body for the
details.

Incremental Verification. The setting of incrementally verifiable universal arguments generalizes the one
of universal arguments. Here we think of the universal relation as

LU =
{
(M, cf, cf ′, T) : M transitions from cf to cf ′ in time T

}
.

Universal (and semi-universal) arguments are defined exactly the same, but now there is an additional
proof update algorithm that allows to take a proof for (M, cf0, cfT , T) ∈ LU and update it to a proof of
(M, cf0, cfT+1, T + 1) ∈ LU in time independent of T . As already mentioned also here there exists semi-
universal constructions [PP22, DGKV22]. Our lifting theorem essentially works a similar way to the non-
incremental case, only that solutions for the puzzles Z1, . . . , Zλ are now computed incrementally. That is
the proof for step T also includes the T -th state in the computation of each of the puzzles Z1, . . . , Zλ.

To keep the incremental nature of the computation it is important though that the puzzles can be
computed with a fixed amount of space (independent of T). For this purpose we need to strengthen our
complexity theoretic assumption. We now assume that there exists a constant d ∈ N such that for any c ∈ N,
P∩DSPACE(nd) ̸⊂ ioSIZE(nc). This is arguably still a rather mild worst-case assumption (in particular,
it still follows from nuETH). Using the fact that homomorphically evaluating a space-efficient computation
can be done roughly in the same space, computing the corresponding puzzle solution is space efficient.

Future Direction: Polynomial Hardness of PPAD, Generically. One appealing application of in-
crementally verifiable proofs has been in the context of proving hardness in the complexity class CLS =
PPAD ∩PLS (which implies the hardness of finding Nash equilibria and more) [JPY88, Pap94, FGHS21].
While by now there are hardness results based on subexponentially hard LWE [JKKZ21], hardness results
based on polynomial assumptions have been harder to achieve [GPS16, BCH+22]. In particular, results
based on polynomial LWE, or in fact any post-quantum assumption, are not known.

Incrementally-verifiable universal arguments give a generic way of proving hardness in CLS, assuming
that they also satisfy uniqueness, namely that ambiguous proofs (even for true statements) are hard to
find (c.f. [KPY20]). In the body, we prove a stronger lifting theorem then the one described above that
also preserves uniqueness. That is, if the underlying semi-universal incrementally-verifiable argument has
uniqueness, so will the lifted one. (In a nutshell, this is done by also adding incremental proofs for the
computation of the puzzles themselves.)

At this point, semi-universal incrementally-verifiable arguments from polynomial LWE [PP22, DGKV22]
do not satisfy uniqueness, and achieving this remains an open problem. Solving it will imply, combined with
our results, PPAD hardness from polynomial LWE and the worst-case complexity assumption discussed
above. Our lifting theorem does imply under these assumptions average-case hardness in PLS following
[BG20].

Comparison to [BCC+17] and [BS23]. The idea of using cryptographic puzzles to prove the prover’s
capability of performing the computation (M,x, T) it asserts about is used in [BCC+17] for the construction
of universal SNARKs from extractable collision resistant hash functions. There the goal is not to avoid

6

super-polynomial assumptions, but rather to guarantee that the witness extraction procedure, which runs
in time proportional T , does not blow up. In particular, the construction of puzzles used there relies on
exponentially-secure one-way functions.

The work of [BS23] also relies on a form of cryptographic puzzles to reduce super-polynomial assumptions
to polynomial ones in the context of constructing fully-homomorphic encryption. They rely on a stronger
form of puzzles that can be sampled together with solutions (similarly to time-lock puzzles [RSW96], but
with no depth considerations). Such puzzles are constructed in [BGJ+16] based on succinct randomized
encodings, which can in turn be based on inditinguishability obfuscation (with small input space). Indeed,
the use of puzzles in [BS23] is quite different from the one in this work: it is meant to reduce the number of
hybrids in a certain reduction.

We view finding additional settings where cryptographic puzzles can be used to avoid super-polynomial
loss as an appealing research direction for future work.

2 Preliminaries

Languages: Given a language L ⊆ {0, 1}∗, we define L(·) to be its characteristic function.

Efficient Adversaries:

• PPT stands for probabilistic polynomial-time.

• For a PPT algorithm M , we denote by M(x; r) the output of M on input x and random coins r, and
by M(x) the random variable, given by sampling the coins r uniformly at random.

• A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that each circuit Cλ is

of polynomial size λO(1). We also consider probabilistic circuits that may toss random coins.

2.1 Homomorphic Encryption

In this section we define a fully homomorphic encryption scheme.

Definition 2.1 (Fully Homomorphic Encryption). A (public key) fully homomorphic encryption scheme
FHE consists of four PPT algorithms (Gen, Enc, Dec, Eval) satisfying:

Correctness. For any polynomial ℓ, large enough λ ∈ N, circuit C of size at most ℓ(λ), and message m,

Pr
[
Decsk(Eval(C, Encpk(m))) = C(m)

∣∣ (sk, pk)← Gen(1λ)
]
= 1 .

Semantic Security. For any pair of equal-length messages m0,m1 ∈ {0, 1}∗,

pk,Encpk(m0) ≈c pk,Encpk(m1) ,

where (sk, pk)← Gen(1λ).

Compactness. There exists a polynomial p(·), such that for any λ ∈ N,
(sk, pk)← Gen(1λ), message m ∈ {0, 1}∗, and circuit C with input size |m|,

|Eval(C,Encpk(m))| = |C(m)| · p(λ) .

Complexity Preservation. There exists a polynomial q such that any circuit of size t and width w, can
be homomorphically evaluated in time t · q(λ) and space w · (λ).

7

On Complexity Preservation and Homomorphic Evaluation of Turing Machines. The complexity
preservation property defined above is typically not required in applications and accordingly not explicitly
defined. It is satisfied though by typical FHE schemes, such as any gate-by-gate FHE.

We also note that complexity preservation implies, by standard reductions, that we can homomorphically
evaluate any time-t(n), space-s(n) Turing machine in time t ·poly(log t, n, λ) and space s ·poly(log t, n, λ) for
an appropriate polynomial poly. Accordingly, in our construction of puzzles, it will be convenient to directly
address homomorphic evaluation of Turing machines.

2.2 Non-Interactive Arguments for Deterministic Computations

In this section we define non-interactive arguments for deterministic computations. Such arguments allow a
prover to convince a verifier of the outcome of a long computation. For a T -time computation, the prover
should run in time poly(T) while the verifier runs in time significantly less than T .

The Universal Language. Let LU be the language of all quadruplets (M, cf, cf ′, T) such that M is a
deterministic Turing machine that starting from configuration cf transitions to configuration cf ′ in T steps.
A Turing machine configuration includes the machine’s state and its entire memory.

A non-interactive argument for LU consists of algorithms (Gen,Prove,Verify) with the following syntax:

Setup: The probabilistic setup algorithm Gen takes as input a security parameter λ ∈ N. It outputs a
prover key pk and a verifier key vk.

Prover: The deterministic prover algorithm Prove takes as input a prover key pk and an instance y ∈ LU .
It outputs a proof π.

Verifier: The deterministic verifier algorithm Verify takes as input a verifier key vk, an instance y and a
proof π. It outputs a bit indicating if it accepts or rejects.

We next define the formal requirements from non-interactive arguments for LU . The definition distinguishes
between plain soundness and universal soundness. The former only guarantees soundness for computations
that are polynomially bounded (this corresponds to the semi-universal arguments discussed in the introduc-
tion), while the later guarantees soundness also for super-polynomial computations.

Definition 2.2. A non-interactive argument for LU satisfies the following requirements:

Completeness. For every λ ∈ N and y = (M, cf, cf ′, T) ∈ LU such that |y|, T ≤ 2λ:

Pr

[
Verify(vk, y, π) = 1

∣∣∣∣ (pk, vk)← Gen(λ)
π ← Prove(pk, y)

]
= 1 .

Efficiency. In the completeness experiment above:

• The setup algorithm runs in time poly(λ).

• The prover algorithm runs in time poly(λ, |y|, T) and outputs a proof π of length poly(λ).

• The verifier algorithm runs in time poly(λ, |y|).

Soundness. For every polynomial T̄ = T̄ (λ) and poly(λ)-size adversary A there exists a negligible function
µ such that for every λ ∈ N:

Pr

 Verify(vk, y, π) = 1
T ≤ T̄ (λ)
y /∈ LM

∣∣∣∣∣∣ (pk, vk)← Gen(λ)(
y =

(
M, cf, cf ′, T

)
, π

)
← A(pk, vk)

 ≤ µ(λ) .

We say that:

8

• The scheme has universal soundness if we set T̄ to be 2λ instead of polynomial in λ. Schemes satisfying
universal soundness are called universal arguments. Schemes satisfying (plain) soundness are called
semi-universal arguments.

• The scheme is privately verifiable if it satisfies a weaker notion of soundness where A is only given pk
but not vk.

• The scheme is sound against uniform adversaries, if the adversary in the soundness requirement is
restricted to be a uniform PPT algorithm.

Below we state existing results on non-interactive arguments for LU based on polynomial assumptions. These
constructions are semi-universal, meaning that they satisfy soundness but are not known to satisfy universal
soundness.

Theorem 2.3 ([CJJ21a, WW22, KLVW22]). Assuming the hardness of either the Learning with Errors
(LWE) problem or the Decisional Linear (DLIN) problem in bilinear groups, there exist semi-universal non-
interactive arguments for LU .

Theorem 2.4 ([KRR14, BHK17]). Assuming PIR schemes exist, there exist semi-universal privately-
verifiable non-interactive arguments for LU .

2.3 Incrementally Verifiable Computation

In this section we define incrementally verifiable computation. An incrementally verifiable computation
scheme is a non-interactive argument for LU that is equipped with an additional update algorithm with the
following syntax: The deterministic algorithm Update takes as input the public key pk, a statement y ∈ LU
and a proof π. It outputs a proof π′.

Definition 2.5. A non-interactive argument (Gen,Prove,Verify) for LU together with an update algorithm
Update is called incremental if it satisfies the following requirements:

Incremental Completeness. For every λ ∈ N and machine M :

• For every configuration cf:

Pr [Verify (vk, (M, cf, cf, 0) , E) = 1 | (pk, vk)← Gen(λ)] = 1 .

Where E is the empty proof.

• For every T < 2λ, pair of statements y, y′ ∈ LU of the form y = (M, cf, cf ′, T) and y′ =
(M, cf, cf ′′, T + 1) and a proof π:

Pr

[
Verify(vk, y, π) = 1
Verify(vk, y′, π′) = 0

∣∣∣∣ (pk, vk)← Gen(λ)
π′ ← Update(pk, y, π)

]
= 0 .

Update Efficiency. In the incremental completeness experiments above, the update algorithm runs in time
|y| · poly(λ), and outputs a proof π of length poly(λ).

2.4 Average-Case Puzzles

In this section we define hard on average puzzles.

Syntax. A puzzle is given by a deterministic uniform algorithm F that takes as input a difficulty parameter
t ∈ N and x ∈ {0, 1}∗ and outputs y ∈ {0, 1}m(|x|), for some polynomial m(·). An average-case puzzle is also
given by a probabilistic uniform sampler D that takes as input a difficulty parameter t ∈ N and a security
parameter λ ∈ N and outputs x ∈ {0, 1}n(λ), for some polynomial n(·). For a function t(·), we denote by
Ft,λ(x) the function F(t(λ), x), and by Ft the function ensemble {Ft,λ}λ∈N. Similarly, we denote by Dt,λ the
distribution D(t(λ), λ), and by Dt the distribution ensemble {D(t(λ), λ)}λ∈N.

Before defining puzzle average-case we define the notion of non-faulty solver:

9

Definition 2.6 ((δ, D)-Faulty Solver). Let F = {Fλ}λ∈N be a function ensemble, and let D = {Dλ}λ∈N be
a distribution ensemble, and δ : N→ [0, 1]. An algorithm A is a (δ,D)-faulty F -solver if for all large enough
λ ∈ N, Pr [A(x) /∈ {⊥, Fλ(x)} | x← Dλ] ≤ δ(λ), where the probability is also over the random coins tosses
of A.

Definition 2.7 (Average-Case Puzzle Against Non-Faulty Solvers). An average-case puzzle against non-
faulty solvers satisfies the following requirements:

Efficiency.

• F(t, x) runs in time t · poly(log t, |x|).
• D(t, λ) runs in time poly(log t, λ).

We further say that the puzzle is space efficient if F(t, x) runs in space poly(log t, |x|).

Average-case hardness against non-faulty solvers. For every polynomial p, there exists a constant c,
such that for any polynomially bounded t ≥ pc, δ ≤ 0.9

p , any (δ,Dt)-faulty Ft-solver A with size at most
p, and any large enough λ ∈ N,

Pr [A(x) = Ft,λ(x) | x← Dt,λ] ≤
1

p(λ)
.

Such a puzzle is called Average-Case Puzzle Against Uniform Non-Faulty Solvers (denoted ACPU) if
it is secure against uniform PPT adversaries with running time at most p.

3 Universal Lifting

In this section we show how to lift any semi-universal non-interactive argument to a universal one, based on
average case puzzles.

Theorem 3.1. Assume there exists a (semi-universal) non-interactive argument for LU . Additionally,
assume there exists an average-case puzzle against non-faulty solvers. Then there exists a non-interactive
universal argument for LU , namely one with universal soundness.

If the original argument is only privately verifiable then so is the resulting universal argument.
If the the puzzle is only sound against uniform adversaries then so is the resulting universal argument.

In the rest of this section we prove theorem 3.1.

Construction. Let (Gen,Prove,Verify) be the semi-universal argument. Let D be the algorithm sampling
puzzle instances and let F be the puzzle solver. We construct a universal argument (Gen′,Prove′,Verify′).

We start with a high level overview of the construction. The setup algorithm generates the keys of the
original argument and also generates puzzles Z0,Z1, . . . ,Zλ with increasing difficulty levels 1, 2, . . . , 2λ that
the prover is challenged to solve. Given a statement y = (M, cf, cf ′, T), the prover creates a proof that
y ∈ LU using the semi-universal argument. In addition, it attaches a solution to all puzzles up to difficulty
level T together with a proof that it is indeed the solution.

More precisely, let ī ≤ λ be the largest such that 2ī ≤ T . Let cf [t,Z] be the starting configuration of
F containing (t,Z) as input and cf ′ [S] the ending configuration of F containing S as output. Let Ti be the
running time of F on puzzles with security parameter λ and difficulty 2i. For every 0 ≤ i ≤ ī, the prover
attaches the solution Si of Zi and the proof that

(
F, cf

[
2i,Zi

]
, cf ′ [Si] , Ti

)
∈ LU .

We now fully describe (Gen′,Prove′,Verify′).

Setup: Given a security parameter λ:

• Sample (pk, vk)← Gen(λ).

10

• Sample Zi ← D(2i, λ), for every 0 ≤ i ≤ λ.

• Output pk′ =
(
pk, (Zi)0≤i≤λ

)
, vk′ =

(
vk, (Zi)0≤i≤λ

)
.

Prover: Given a key pk′ =
(
pk, (Zi)0≤i≤λ

)
and an instance y = (M, cf, cf ′, T):

• Compute π ← Prove(pk, y).

• Solve Si ← F(2i,Zi) , for every 0 ≤ i ≤ ī.

• Compute πi ← Prove
(
pk,

(
F, cf

[
2i,Zi

]
, cf ′ [Si] , Ti

))
, for every 0 ≤ i ≤ ī.

• Output the proof π′ =
(
π, (Si, πi)0≤i≤ī

)
.

Verifier: Given a key vk′ =
(
vk, (Zi)0≤i≤λ

)
, an instance y = (M, cf, cf ′, T) and a proof π′ =

(
π, (Si, πi)0≤i≤ī

)
:

• Run Verify(vk, y, π).

• Run Verify
(
vk,

(
F, cf

[
2i,Zi

]
, cf ′ [Si] , Ti

)
, πi

)
, for every 0 ≤ i ≤ ī.

• Accept iff all of the verifiers accept.

Completeness and efficiency follow readily from the completeness and efficiency of the underlying argument
and the puzzle. We focus on proving universal soundness.

Universal Soundness. We prove soundness against non-uniform adversaries, assuming the puzzle is sound
against non-uniform adversaries. The uniform case is analogous.

Assume by contradiction that there exists a poly(λ)-size adversary A′ and a function δ(λ) = 1/poly(λ)
such that for infinitely many λ, for

(pk′, vk′)← Gen′(λ)(
y =

(
M, cf, cf ′, T

)
, π′)← A′(pk′, vk′) ,

it holds that:

Pr

 Verify′(vk′, y, π′) = 1
T ≤ 2λ

y /∈ LU

 ≥ δ . (1)

Denote this experiment by Exp and say that A′ succeeds in Exp if the event in equation 1 occurs.
First we describe the general idea of the reduction. We consider different cases, where in some, we show

a reduction to the soundness of the underlying semi-universal argument, and in the others, a reduction to
the average-case hardness of the puzzle:

• If A′ proves a false statement with a small number of steps T , i.e. number of steps that A′ is capable
of computing, we can use it to construct an adversary for the semi-universal argument that proves a
false statement corresponding to a polynomial number of steps T , and hence breaks soundness.

• If A′ proves a false statement with a large number of steps T , it has to give a solution and a proof to
all puzzles up to difficulty level T . We focus on puzzle number i that is not too difficult but difficult
enough. i.e., its difficulty parameter 2i is bounded by a polynomial, but it is too big for A′ to compute.

Now, if A′ solves the puzzle correctly, we can use it to construct a solver breaking the average case
puzzle. If A′ doesn’t solve the puzzle correctly, it convinces the verifier with a false statement. In this
case we use A′ to construct an adversary that breaks the semi-universal argument.

We now describe the reduction in detail. Let p = poly(λ) be a polynomial such that p ≥ 3
δ . The polynomial

p will in fact satisfy more constraints that depend polynomially on the size of the adversary. We will specify
how to exactly fix it later on (see dedicated paragraph within Case 2.a below).

11

By our choice of p,

Pr[A′ succeeds] ≥ 3

p
.

Let c be the parameter of the puzzle (D,F) such that for any t ≥ pc, δ′ ≤ 0.9
p , and (δ′,Dt)-faulty Ft-solver

Apuz with size at most p, and any large enough λ ∈ N,

Pr [Apuz(Z) = Ft,λ(Z) | Z← Dt,λ] ≤
1

p
.

Let T be the number of steps in the statement that A′ outputs. We consider several cases according to the
value of Pr[A′ succeeds ∧ T/2 ≤ pc].

Case 1. Reduction to Semi-Universal Arguments. For infinitely many λ,

Pr [A′ succeeds ∧ T/2 ≤ pc] ≥ 3

2p
.

Let T̄ = 2pc. We define a polynomial adversary A against the semi-universal argument, proving false
statements with number of steps ≤ T̄ .
A(pk, vk) simulates the experiment Exp, only the inner keys are replaced with (pk, vk). It outputs the

main statement y and its proof π that A′ outputs. When (pk, vk) are generated by Gen, we get the same
probability space as in Exp and therefore

Pr

 Verify(vk, y, π) = 1
T ≤ T̄
y /∈ LU

 ≥ Pr[A′ succeeds ∧ T/2 ≤ pc] ≥ 3

2p
,

in contradiction to plain soundness.

Case 2. Assume that for infinitely many λ,

Pr[A′ succeeds ∧ T/2 > pc] ≥ 3

2p
.

Then for such λ, ∃i ≤ ī such that 2i−1 ≤ pc ≤ 2i. Again we split into cases:

Case 2.a. Reduction to Puzzles. Assume that for infinitely many λ,

Pr[A′ succeeds ∧ T/2 > pc ∧ F(2i,Zi) ̸= Si] <
1

3
· 3
2p

.

Let t = 2i and δ′ = 1
2p . Note that t ≥ pc and δ′ ≤ 0.9

p . We define a (δ′,Dt)-faulty Ft-solver Apuz, with size

at most p that solves puzzles of difficulty t w.p. > 1
p .

Apuz(Z) simulates the experiment Exp, only the i’th puzzle in the key is replaced with Z. It then passes
the output of A′ to Verify′. If Verify′ doesn’t accept or pc ≥ T/2, it outputs ⊥. Otherwise, it outputs A′’s
solution to the i’th puzzle: Si.

When Z is generated by Dt, we get the same probability space as in Exp and so

Pr[Apuz(Z) /∈ {⊥,F(t,Z)}] =

= Pr
[
A′ succeeds ∧ T/2 > pc ∧ F(2i,Zi) ̸= Si

]
<

1

2p
= δ′ ,

and

Pr[Apuz(Z) = F(t,Z)] =

= Pr
[
A′ succeeds ∧ T/2 > pc ∧ F(2i,Zi) = Si

]
>

2

3
· 3
2p

=
1

p
.

12

This contradicts the average-case hardness of the puzzle provided that the size of Apuz is at most p.

Apuz’s Size, Choice of p, and the Uniform Case. Note that Apuz’s size is a polynomial in the size of
A′ and running times of Gen′ and Verify′, and all together it is a fixed polynomial in λ. We take p to be the
maximum of this polynomial and 3

δ , and so the solver runs in time ≤ p. Also note that this is the only place
in the proof where relying on uniform (as opposed to non-uniform) puzzles makes a difference. Here we note
that if the adversary A′ is uniform then so is the solver Apuz.

Case 2.b. Reduction to Semi-Universal Arguments. For infinitely λ,

Pr[A′ succeeds ∧ T/2 > pc ∧ F(2i,Zi) ̸= Si] ≥
1

3
· 3
2p

.

Recall that A′ outputs, amongst others, a proof πi that
(
F, cf

[
2i,Zi

]
, cf ′ [Si] , Ti

)
∈ LU . In the case that

A′ succeeds and F(2i,Zi) ̸= Si, we get that
(
F, cf

[
2i,Zi

]
, cf ′ [Si] , Ti

)
/∈ LU and Verify accepts πi. This

means that Verify is convinced by a proof of a wrong statement. In addition, the running time Ti of F(2
i,Zi)

satisfies Ti = 2i ·poly(λ) ≤ 2pc ·poly(λ) and so there exists a polynomial T̄ (λ) such that Ti ≤ T̄ . We use this
to construct an adversary A against the semi-universal argument, proving false statements with number of
steps ≤ T̄ .
A(pk, vk) simulates the experiment Exp, only the inner keys are replaced with (pk, vk). It outputs the

instance yi =
(
F, cf

[
2i,Zi

]
, cf ′ [Si] , Ti

)
and its proof πi, both generated by A′. When (pk, vk) are generated

by Gen, we get the same probability space as in Exp and therefore:

Pr

 Verify(vk, yi, πi) = 1
Ti ≤ T̄
yi /∈ LU

 ≥ Pr[A′ succeeds ∧ pc < T/2 ∧ F(2i,Zi) ̸= Si] ≥
1

2p
,

contradicting soundness.

On the Security Loss of the Reduction. Most cryptographic reductions in the literature have a fixed
security loss — there is a universal constant c, such that if the adversary breaks a given scheme in time t
and probability 1/t, then the reduction breaks the underlying assumption in time tc and probability 1/tc.
We note that as is, our reduction does not have such a fixed loss, due to the fact that we assume a very
weak form of puzzles that do not have a fixed gap (namely for any polynomial p there exists a constant c
such that there is no (p, 1/p)-solver for puzzles of difficulty pc). If we assume a stronger form of puzzles that
switches the quantifiers and has a universal gap c (independent of p), then our reduction has a fixed loss as
well. Puzzles with a universal gap indeed follow in the uniform case (with no additional assumptions) or in
the non-uniform case assuming nuETH (see Section 4 for the corresponding constructions).

3.1 Incrementally Verifiable Computation Lifting

In this section we extend the universal non-interactive argument construction and construct a universal IVC
based on a semi-universal IVC.

Theorem 3.2. Assume that there exists an incrementally verifiable computation for LU . Additionally,
assume that there exists a space-efficient average-case puzzle against non-faulty solvers. Then there exists
an incrementally verifiable computation for LU with universal soundness.

If the original IVC is only privately verifiable then the resulting universal IVC is also privately verifiable.
If the puzzle is only sound against uniform adversaries then the resulting universal IVC is also sound

against uniform adversaries.

In the rest of this section, we prove theorem 3.2. We use the construction from theorem 3.1, only we add
to the proof partial computation data, allowing us to define the Update algorithm.

Construction. Let (Gen,Prove,Update,Verify) be the semi-universal IVC. Let (D,F) be the puzzle. We
construct a universal IVC (Gen′,Prove′,Update′,Verify′).

13

We use the same setup algorithm Gen′ as in theorem 3.1. i.e., the keys (pk′, vk′) contain the keys of the
underlying IVC (pk, vk), and puzzle instances Z0,Z1, . . . ,Zλ with increasing difficulty levels 20, 21, . . . , 2λ.

The proof π′ includes the proof of the main statement using the underlying IVC, and partial computations
of all the puzzles including proofs of these partial computations (again, using the underlying IVC). More
precisely, let q be the polynomial such that F(t,Z) runs in time t · q(λ) (there is an extra factor of poly log t
in F’s running time, but log t ≤ λ). The proof π′ of a statement with number of steps T , contains for every
0 ≤ i ≤ λ, a configuration cfi of the machine F, which is the result of computing T · q(λ) steps starting from
the configuration cf

[
2i,Zi

]
. In addition, for every 0 ≤ i ≤ λ we attach a proof πi that cfi is indeed the

result of this partial computation.
Note that for every i such that 2i ≤ T , cfi is the final configuration of the computation and so it contains

the puzzle solution. It is similar to the non-interactive argument proof in 3.1 where we have a solution (and
a proof) to puzzle i for every i such that 2i ≤ T .

We now describe Update′,Prove′,Verify′ in detail.

Update: Given a key pk′ =
(
pk, (Zi)0≤i≤λ

)
, an instance y =

(
M, cf, cf ′, T

)
and a proof π′ =

(
π, (cfi, πi)0≤i≤λ

)
:

• Update the inner proof π+ ← Update(pk, y, π).

• For every 0 ≤ i ≤ λ, advance the ith puzzle computation and update the proof:

– Let cf0i = cfi, π
0
i = πi. If T = 1 (i.e., all the components in π′ are empty), take cf0i = cf

[
2i,Zi

]
.

– For every 1 ≤ j ≤ q(λ), compute one step of F from cfj−1
i to cfji . Then update the proof:

πj
i ← Update

(
pk,

(
F, cf

[
2i,Zi

]
, cfji , (T − 1) q + j

)
, πj−1

i

)
.

– Set cf+i ← cfqi , π
+
i ← πq

i .

• Output the proof π′+ =
(
π+,

(
cf+i , π

+
i

)
0≤i≤λ

)
.

Prover: To prove a statement with number of steps T , we run the update algorithm Update′ for T times
one after the other, starting from an empty proof.

Verifier: Given a key vk′ =
(
vk, (Zi)0≤i≤λ

)
, an instance y =

(
M, cf, cf ′, T

)
and a proof π′ =

(
π, (cfi, πi)0≤i≤λ

)
,

the verifier simply verifies all the inner proofs:

• Verify: Verify (vk, y, π).

• For every 0 ≤ i ≤ λ, verify: Verify
(
vk,

(
F, cf

[
2i,Zi

]
, cfi, T · q

)
, πi

)
.

Incremental Completeness. Since the verifier verifies all the inner proofs π, (πi)0≤i≤λ using the underlying
IVC, and the update algorithm updates these inner proofs with the underlying IVC, incremental completeness
follows from incremental completeness of the underlying IVC.

Efficiency. The update algorithm computes q(λ) steps of F for all the puzzles and the proof includes the
configuration of F after this computation. Since F is space efficient, the configuration is of size poly(λ). This,
together with update efficiency of the underlying IVC implies update efficiency of the universal IVC.

Universal Soundness. As mentioned above, for every i such that the non-interactive argument proof
contains the solution to the ith puzzle, also the IVC proof contains the solution, since it contains the final
configuration of the puzzle computation. Therefore, universal soundness can be proved analogously to the
proof in theorem 3.1.

4 Constructing Average-Case Puzzles

In this section we construct hard-on-average puzzles (definition 2.7). Our construction is based on FHE com-
bined with appropriate hierarchy theorems/assumptions, where different hierarchy theorems/assumptions

14

yield different efficiency and security guarantees. For security against uniform adversaries, we rely on a
probabilistic time hierarchy theorem for slightly non-uniform computations (theorem 4.6) by Barak [Bar02].
For puzzles against non-uniform adversaries, and for space efficient puzzles we make mild hierarchy assump-
tions for space bounded computations (4.1 and 4.2). Both assumptions follow from nuETH (see assumption
4.3 and theorem 4.1).

4.1 Worst-Case Hardness Assumptions

In this section we define complexity worst-case assumptions for instantiating average-case puzzles.

Assumption 4.1. For any polynomial q(·) there exists a polynomial Q(·) and a language L ∈ DTIME(Q)
such that any family C = {Cλ} of size-q(λ) circuits fails to decide Lλ = L ∩ {0, 1}λ for all large enough λ.

Assumption 4.2. There exists a polynomial s(·) such that for any polynomial q(·) there exists a polynomial
Q and a language L ∈ DTIME(Q) ∩DSPACE(s) such that any family C = {Cλ} of size-q(λ) circuits fails
to decide Lλ = L ∩ {0, 1}λ for all large enough λ.

Non-Uniform ETH. For a, b ∈ N, let 3SAT [a, b] be the language of satisfiable 3-CNF formulas with a
variables and b clauses.

Assumption 4.3 (nuETH [IP01, IPZ01]). There exists constants c, d > 0 such that any family C = {Cλ}
of size-2λ/d circuits fails to decide 3SAT [λ, c · λ] for all large enough λ.

Theorem 4.1. Assuming nuETH (assumption 4.3), assumptions 4.1 and 4.2 hold.

Proof Sketch. Let c, d be the constants given by nuETH. Let q(λ) = λk be a polynomial. For λ ∈ N, let
n = d · k · log(λ) and consider the language 3SAT [n, cn, λ] that consists of satisfiable 3-CNF formulas with
n variables and cn clauses, padded to size λ.

By nuETH, for large enough λ any family of circuits of size λk fails to decide 3SAT [n, cn, λ]. On
the other hand, a SAT solver can enumerate through all λd·k possible assignments. The algorithm runs
(deterministically) in time Q(λ) = λd·k · polylog(λ), implying assumption 4.1. Moreover, the algorithm runs
in O(log(λ)) space, which also implies assumption 4.2.

4.2 Average-Case Puzzles from FHE

In this section we prove the following three theorems.

Theorem 4.2. Assuming FHE, there exists an Average-Case Puzzle Against Uniform Non-Faulty Solvers.

Theorem 4.3. Assuming FHE and assumption 4.1, there exists an Average-Case Puzzle Against Non-Faulty
Solvers.

Theorem 4.4. Assuming FHE and assumption 4.2, there exists a space-efficient Average-Case Puzzle
Against Non-Faulty Solvers.

The constructions behind all of the above follow a common blueprint. We next describe this blueprint, and
then address the proof for each one of the theorems.

At a high level, the construction is as follows. The sampler samples an encryption of garbage. The
associated puzzle algorithm evaluates the universal machine for t steps on the ciphertext. To prove security,
the reduction switches the ciphertext to an encryption of an instance of an underlying worst-case language.
In this case, a correct answer of the non-faulty solver decrypts to a correct decision about the input. Finally,
the success probability is amplified.

Construction. For the formal definition, we fix some encoding such that x ∈ {0, 1}∗ is viewed as x = (M,x′)
where M is a Turing machine and x′ is an input for M . Let Ut,s be the universal Turing machine, which on
input x = (M,x′) ∈ {0, 1}n outputs M(x′) provided that M halts after at most t steps, using at most space

15

s, and outputs a single bit. Let Ut = Ut,t (where there is no space restriction). By known constructions Ut,s

runs in time at most t · poly(log t, n) and uses space at most s · poly(log t, n).
We next define a puzzle sampler D and puzzle solvers F and Fs. In what follows, let (Gen, Enc, Dec, Eval)

be an FHE scheme.

D - Puzzle Sampler: Given a difficulty parameter t and a security parameter λ:

• Samples pk, sk← Gen(1λ)

• Returns ct← Encpk(0
3λ)

F - Average-Case Puzzle: Given a difficulty parameter t and input x:

• Homomorphically evaluates Ut on x

Fs - Space-Efficient Average-Case Puzzle: Given a difficulty parameter t and input x:

• Homomorphically evaluates Ut,s on x

We start by proving theorem 4.3, and then extend the proof to account for theorem 4.2 and theorem 4.4.

Proof of theorem 4.3. We show that (D,F) is an Average-Case Puzzle Against Non-Faulty Solvers under
Assumption 4.1.

First note that the efficiency requirements follow from the complexity preservation of homomorphic
evaluation. We henceforth focus on proving hardness.

Fix any polynomial p = p(λ) and assume toward contradiction that for every constant c, there exists a
polynomially bounded function t ≥ pc, δ ≤ 0.9

p , and a (δ,Dt)-faulty Ft-solver A with size at most p, such
that for infinitely many λ,

Pr [A(x) = Ft,λ(x) | x← Dt,λ] >
1

p(λ)
. (2)

We prove that there exists a polynomial q such that for any polynomial Q and language L ∈ DTIME(Q),
there exists a size-q circuit family B that decides L on infinitely many input lengths, thereby contradicting
Assumption 4.1.

Let Q be a polynomial and let L ∈ DTIME(Q). Also, let M be a deterministic Turing machine that

decides L in time Q. Consider a sampler D̂M (x) that given x ∈ {0, 1}λ, samples pk, sk ← Gen(1λ), and
outputs an encryption x̂← Encpk(x

′), where x′ = (M,x), padded to size 3λ.
We construct a probabilistic circuit family B′ that decides L with error < 2−λ. In particular, we can

non-uniformly fix its randomness to get a deterministic decider that decides L on inputs x ∈ {0, 1}λ. (The
size of B′ will be a polynomial q(λ) independent of Q.)

On input x ∈ {0, 1}λ, B′ repeats the following process D, k(λ) times, for some polynomial k(·) to be

determined later. D(x) samples x̂i ← D̂M (x), runs A on x̂i, and obtains its output yi. If yi ̸= ⊥, D
outputs bi = Decsk(y), and otherwise outputs bi = ⊥. Finally, B′ outputs the majority among the values
{b1, . . . , bk} \ {⊥} generated by D.

Claim 4.5. There exists a polynomial t ≥ Q and constants 0 < α < 1 < β, such that for infinitely many λ
it holds that for any x ∈ {0, 1}λ,

Pr [D(x) = L(x)] ≥ max

{
α

p(λ)
, β · Pr [D(x) /∈ {⊥,L(x)}]

}
.

Proof. Let c be such that pc ≥ Q, and let t ≥ pc be such that Equation 2 holds.

16

For every large enough λ such that 2 holds,

Pr [D(x) = L(x)] = (M decides L)
Pr [D(x) = M(x)] = (FHE correctness)

Pr
[
A(x̂) = Ft,λ(x̂)

∣∣∣ x̂← D̂M (x)
]

≥ (FHE semantic security)

Pr [A(x̂) = Ft,λ(x̂) | x̂← Dt,λ]−
0.01

p(λ)
≥ (Equation 2)

1

p(λ)
− 0.01

p(λ)
=

0.99

p(λ)
.

In addition,

Pr [D(x) /∈ {⊥,L(x)}] = (FHE correctness)

Pr
[
A(x̂) /∈ {⊥,Ft,λ(x̂)}

∣∣∣ x̂← D̂M (x)
]

≤ (FHE semantic security)

Pr [A(x̂) /∈ {⊥,Ft,λ(x̂)} | x̂← Dt,λ] +
0.01

p(λ)
≤ (A is δ faulty)

δ(λ) +
0.01

p(λ)
≤

0.91

p(λ)
.

In particular, the claim holds with α = 0.99 and β = 0.99
0.91 .

So, by claim 4.5, taking k(λ) = C · p(λ) for a large enough constant C (and assuming w.l.o.g that
p(λ) ≥ λ), it follows by a Chernoff bound that for any x ∈ {0, 1}λ,

Pr [B′(x) ̸= L(x)] < 2−p(λ) ≤ 2−λ .

The Size of B. First, note each invocation of D can be done in fixed polynomial size ℓ(λ), which depends
only on the size p(λ) of A and fixed polynomial running time of the FHE algorithms. Overall the size of B′,
and hence also of the derandomized B, is q = ℓ · k = O(ℓ · p).
Extending to Space-Efficient Puzzles (Proof of theorem 4.4). Let s be the space bound given by
Assumption 4.2. First, by the complexity preservation of homomorphic evaluation F s, which evaluates Ut,s,
can be computed in space s · poly(log t, λ) space. The proof of security is the same, with the exception that
we consider L ∈ DTIME(Q) ∩DSPACE(s).

The Uniform Case (Proof of theorem 4.2). Recall that here we focus on puzzles against uniform
solvers (that are not necessarily space-efficient). We show how to remove assumption 4.1, on which we relied
in the non-uniform case. Instead, we rely on the following (unconditional) hierarchy theorem for slightly
non-uniform probabilistic time.

Theorem 4.6 ([Bar02]). For any polynomial q, there exists a polynomial Q such that

BPTIME(Q)/ logn ̸⊆ ioBPTIME(q)/ logn .

The differences from theorem 4.3 is only in the security proof. The security proof has a similar outline.
Below, the parts that are similar to the proof of theorem 4.3 are in grey, whereas only the new parts are in
black.

17

Fix any polynomial p = p(λ) and assume toward contradiction that for every constant c, there exists a
polynomially bounded function t ≥ pc, δ ≤ 0.9

p , and a (δ,Dt)-faulty Ft-solver A of running time at most p,
such that for infinitely many λ,

Pr [A(x) = Ft,λ(x) | x← Dt,λ] >
1

p(λ)
. (3)

We prove that there exists a polynomial q such that for any polynomialQ and language L ∈ BPTIME(Q)/ logn,
there exists a q-time probabilistic algorithm B that decides L on infinitely many input lengths, thereby con-
tradicting theorem 4.6.

Let Q be a polynomial and let L ∈ BPTIME(Q)/ logn. Also, let M be a Q-time probabilistic Turing
machine with non-uniform description of size O(log λ), for inputs of size λ, that decides L with error < 1/3.

Claim 4.7. Assuming one-way functions (and in particular, assuming FHE), there exists a polynomial Q′

and a Q′-time probabilistic M ′, with non-uniform description of size O(log λ), and randomness of size λ,
that decides L with error 0.01

p(λ) , on all inputs of large enough size λ.

Proof Sketch. First consider an amplified version M ′′ of M with error 0.01
2p(λ) . M ′′ also has non-uniform

description of size O(log λ) and polynomial running time, but may use randomness of polynomial size ≫ λ.
Then to get M ′, derandomize M ′′ using a cryptographic pseudorandom generator with seed length λ (which
follows from one-way functions [HILL99]). Then by pseudorandomness, for all large enough λ, the error of
M ′ is at most 0.01

2p(λ) +
0.01
2p(λ) =

0.01
p(λ) , and it has some polynomial running time Q′(λ), as required.

Consider a sampler D̂M ′(x) that given x ∈ {0, 1}λ, samples pk, sk ← Gen(1λ), r ← {0, 1}λ, and outputs
an encryption x̂ ← Encpk(x

′), where x′ = (M ′
r, x), padded to size 3λ, and M ′

r is M ′ with randomness r
hardwired (note that M ′ has description of size λ+O(log λ)).

We construct a probabilistic Turing machine B with non-uniform description of size O(log λ) that decides
L (with error < 1/3) for infinitely many λ. (The time of B will be a polynomial q(λ) independent of Q.)

On input x ∈ {0, 1}λ, B repeats the following process D, k(λ) times, for some polynomial k(·) to be

determined later. D(x) samples x̂i ← D̂M ′(x), runs A on x̂i, and obtains its output yi. If yi ̸= ⊥, D
outputs bi = Decsk(y), and otherwise outputs bi = ⊥. Finally, B outputs the majority among the values
{b1, . . . , bk} \ {⊥} generated by D.

Claim 4.8. There exists a polynomial t ≥ Q′ and constants 0 < α < 1 < β, such that for infinitely many λ
it holds that for any x ∈ {0, 1}λ,

Pr [D(x) = L(x)] ≥ max

{
α

p(λ)
, β · Pr [D(x) /∈ {⊥,L(x)}]

}
.

Proof. Let c be such that pc ≥ Q′, and let t ≥ pc be such that Equation 2 holds.
For every large enough λ such that 3 holds,

Pr [D(x) = L(x)] = (FHE correctness)

Pr
[
A(x̂) = Ft,λ(x̂)

∣∣∣ x̂← D̂M ′(x)
]
−Pr [M ′(x) ̸= L(x)] ≥ (M ′ error probability)

Pr
[
A(x̂) = Ft,λ(x̂)

∣∣∣ x̂← D̂M ′(x)
]
− 0.01

p(λ)
≥ (FHE semantic security)

Pr [A(x̂) = Ft,λ(x̂) | x̂← Dt,λ]−
0.01

p(λ)
− 0.01

p(λ)
≥ (Equation 3)

0.98

p(λ)
.

18

In addition,

Pr [D(x) /∈ {⊥,L(x)}] = (FHE correctness)

Pr
[
A(x̂) /∈ {⊥,Ft,λ(x̂)}

∣∣∣ x̂← D̂M ′(x)
]
+Pr [M ′(x) ̸= L(x)] ≤ (M ′ error probability)

Pr
[
A(x̂) /∈ {⊥,Ft,λ(x̂)}

∣∣∣ x̂← D̂M ′(x)
]
+
0.01

p(λ)
≤ (FHE semantic security)

Pr [A(x̂) /∈ {⊥,Ft,λ(x̂)} | x̂← Dt,λ] +
0.01

p(λ)
+

0.01

p(λ)
≤ (A is δ faulty)

δ(λ) +
0.02

p(λ)
≤

0.92

p(λ)
.

In particular, the claim holds with α = 0.99 and β = 0.98
0.92 .

So, by claim 4.8, taking k(λ) = C · p(λ) for a large enough constant C (and assuming w.l.o.g that
p(λ) ≥ λ), it follows by a Chernoff bound that for any x ∈ {0, 1}λ,

Pr [B(x) ̸= L(x)] < 2−p(λ) ≤ 2/3 .

The Time and Non-Uniformity of B. First, note that each invocation of D can be done in fixed
polynomial time ℓ(λ), which depends only on the size p(λ) of A and fixed polynomial running time of the
FHE algorithms. Overall the running time of B is q = ℓ · r = O(ℓ · p). The non-uniform description of B is
dominated by that of M , and hence is of size O(log λ), as required.

References

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional encryption
through a local simulation paradigm. In Amos Beimel and Stefan Dziembowski, editors, Theory
of Cryptography - 16th International Conference, TCC 2018, Panaji, India, November 11-14,
2018, Proceedings, Part II, volume 11240 of Lecture Notes in Computer Science, pages 455–472.
Springer, 2018.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual Symposium on
Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA,
pages 106–115. IEEE Computer Society, 2001.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for ”slightly non-uniform” algorithms. In
Randomization and Approximation Techniques, 6th International Workshop, RANDOM 2002,
Cambridge, MA, USA, September 13-15, 2002, Proceedings, pages 194–208, 2002.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein,
and Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017.

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain, Huijia Lin, Rafael
Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistinguishability obfuscation for RAM
programs and succinct randomized encodings. SIAM J. Comput., 47(3):1123–1210, 2018.

[BCH+22] Nir Bitansky, Arka Rai Choudhuri, Justin Holmgren, Chethan Kamath, Alex Lombardi, Omer
Paneth, and Ron D. Rothblum. PPAD is as hard as LWE and iterated squaring. In Eike Kiltz and
Vinod Vaikuntanathan, editors, Theory of Cryptography - 20th International Conference, TCC

19

2022, Chicago, IL, USA, November 7-10, 2022, Proceedings, Part II, volume 13748 of Lecture
Notes in Computer Science, pages 593–622. Springer, 2022.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM J. Comput.,
38(5):1661–1694, 2008.

[BG20] Nir Bitansky and Idan Gerichter. On the cryptographic hardness of local search. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, Jan-
uary 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 6:1–6:29. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and Brent
Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan, editor, Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA,
USA, January 14-16, 2016, pages 345–356. ACM, 2016.

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Kalai. Non-interactive delegation and batch np
verification from standard computational assumptions. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 474–482, 2017.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm
for keyless hash functions. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 671–684. ACM, 2018.

[BS23] Nir Bitansky and Tomer Solomon. Bootstrapping homomorphic encryption via functional en-
cryption. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume
251 of LIPIcs, pages 17:1–17:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Non-interactive batch arguments for
np from standard assumptions. In Annual International Cryptology Conference, pages 394–423.
Springer, 2021.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. Snargs for \mathcal{P} from LWE.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 68–79. IEEE, 2021.

[CKV10] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In Tal Rabin, editor, Advances in Cryptology - CRYPTO
2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Pro-
ceedings, volume 6223 of Lecture Notes in Computer Science, pages 483–501. Springer, 2010.

[DGKV22] Lalita Devadas, Rishab Goyal, Yael Kalai, and Vinod Vaikuntanathan. Rate-1 non-interactive
arguments for batch-np and applications. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages
1057–1068. IEEE, 2022.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability conjecture and
a new non-black-box simulation strategy. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 251–260.
IEEE Computer Society, 2009.

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Ernest F.
Brickell, editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740 of
Lecture Notes in Computer Science, pages 139–147. Springer, 1992.

20

[FGHS21] John Fearnley, Paul W. Goldberg, Alexandros Hollender, and Rahul Savani. The complexity of
gradient descent: CLS = PPAD ∩ PLS. In STOC, pages 46–59. ACM, 2021.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the cryptographic hard-
ness of finding a nash equilibrium. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer
Science, pages 579–604. Springer, 2016.

[GS18] Sanjam Garg and Akshayaram Srinivasan. A simple construction of io for turing machines. In
Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography - 16th International
Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part II, volume
11240 of Lecture Notes in Computer Science, pages 425–454. Springer, 2018.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsifiable
assumptions. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM
Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
99–108. ACM, 2011.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom gen-
erator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. Snargs for bounded
depth computations and PPAD hardness from sub-exponential LWE. In Samir Khuller and
Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 708–721. ACM, 2021.

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local search?
Journal of Computer and System Sciences, 37(1):79 – 100, 1988.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, pages 723–732. ACM, 1992.

[KLVW22] Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Daniel Wichs. Boosting batch
arguments and ram delegation. Cryptology ePrint Archive, 2022.

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adaptively se-
cure and succinct functional encryption: Improving security and efficiency, simultaneously. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer Science, pages 521–551.
Springer, 2019.

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations publicly.
In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1115–1124. ACM, 2019.

21

[KPY20] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. Delegation with updatable unambiguous
proofs and ppad-hardness. In Daniele Micciancio and Thomas Ristenpart, editors, Advances
in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part III, volume 12172 of
Lecture Notes in Computer Science, pages 652–673. Springer, 2020.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D Rothblum. How to delegate computations: the power
of no-signaling proofs. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 485–494, 2014.

[KY18] Ilan Komargodski and Eylon Yogev. On distributional collision resistant hashing. In Hovav
Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO 2018 - 38th An-
nual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Pro-
ceedings, Part II, volume 10992 of Lecture Notes in Computer Science, pages 303–327. Springer,
2018.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 436–453. IEEE
Computer Society, 1994.

[Pap94] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs
of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

[PP22] Omer Paneth and Rafael Pass. Incrementally verifiable computation via rate-1 batch arguments.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver,
CO, USA, October 31 - November 3, 2022, pages 1045–1056. IEEE, 2022.

[PR08] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J. Comput.,
37(6):1891–1925, 2008.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, MIT, 1996.

[RV22] Ron D. Rothblum and Prashant Nalini Vasudevan. Collision-resistance from multi-collision-
resistance. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Bar-
bara, CA, USA, August 15-18, 2022, Proceedings, Part III, volume 13509 of Lecture Notes in
Computer Science, pages 503–529. Springer, 2022.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography Con-
ference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2008.

[WW22] Brent Waters and David J. Wu. Batch arguments for sfnp and more from standard bilinear
group assumptions. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15-18, 2022, Proceedings, Part II, volume 13508 of Lecture Notes in
Computer Science, pages 433–463. Springer, 2022.

22

	Introduction
	Results
	Technical Overview

	Preliminaries
	Homomorphic Encryption
	Non-Interactive Arguments for Deterministic Computations
	Incrementally Verifiable Computation
	Average-Case Puzzles

	Universal Lifting
	Incrementally Verifiable Computation Lifting

	Constructing Average-Case Puzzles
	Worst-Case Hardness Assumptions
	Average-Case Puzzles from FHE

