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Abstract

This paper introduces the first registered functional encryption RFE scheme tailored for linear func-
tions. Distinctly different from classical functional encryption (FE), RFE addresses the key-escrow issue
and negates the master key exfiltration attack. Instead of relying on a centralized trusted authority, it
introduces a “key curator” - a fully transparent entity that does not retain secrets. In an RFE framework,
users independently generate secret keys and subsequently register their respective public keys, along with
their authorized functions, with the key curator. This curator consolidates public keys from various users
into a unified, concise master public key. For decryption, users occasionally secure helper decryption keys
from the key curator, which they use in conjunction way with their private keys. It is imperative that
the aggregate public key, helper decryption keys, ciphertexts, and the times for encryption/decryption
are polylogarithmic in the number of registered users.

All existing RFE designs were confined to predicates where given the correct credentials a user can re-
trieve the entire payload from a ciphertext or gain no information about it otherwise. Contrarily, our RFE
scheme facilitates the computation of linear functions on encrypted content and extraction of only the
computation results. Recognizing potential leaks from linear functions, we further enhance our RFE by
incorporating an attribute-based access control mechanism. The outcome is the first registered attribute-
based linear FE (RABIPFE), which supports access policies depicted as linear secret sharing schemes
LSSS. Our proposed schemes are realized in the common reference string (CRS) model as introduced
by Hohenberger et al.[EUROCRYPT 2023], employ simple tools and black-box methods. Specifically,
our constructs operate in asymmetric prime-order bilinear group regime setting and are proven secure in
the generic bilinear group model. Aligning with all pre-existing black-box RFE designs within the CRS
model, our schemes cater to a predetermined maximum user count. A notable variant of our RABIPFE
scheme also yields the first efficient register ABE (RABE) system for LSSS access policies in asymmetric
prime-order bilinear groups. Conclusively, demonstrating feasibility, we formulated an RFE blueprint
that supports general functionalities and an infinite user base, leveraging indistinguishability obfuscation
and one-way functions.
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1 Introduction
Functional Encryption: Functional Encryption (FE) [BSW11, O’N10] expands upon the traditional
public-key encryption paradigm by introducing fine-grained access control over encrypted data. In an FE
scheme, a central authority possesses a master secret key and issues a corresponding master public key.
Leveraging its master secret key, this authority furnishes users with secret keys corresponding to diverse
legitimate functions. Conversely, any party can encrypt data using the master public key. Given a secret key
for a function f and a ciphertext of a message x, decryption unveils f(x) without revealing further details
about x.

The FE paradigm holds vast potential, presenting myriad applications, both as a standalone solution
and as a foundational element for other cryptographic primitives [GKP+13,HJO+16,GPSZ17,GHKW17,
Bit17, BGJS17, BV15, AJ15, AJS15, NWZ16]. Given its broad utility, FE and its various subclasses have
garnered significant attention in the research community. Below is a non-exhaustive list of notable results in
the field [BF01,BB04,BGW05, SW05,GPSW06,KSW08,Wat09,LOS+10b,ABB10b,ABB10a,LW10,OT10,
OT12, LW12,Wat12, GVW12,GVW13, BGG+14, Att14,Wee14, GVW15, ABDP15, ALS15, CGW15, BJK15,
LV16, AS16, DDM16, BCFG17, BBL17, GKW17, Agr17, Wee17, DOT18, CLT18, CGKW18, TT18, GWW19,
AV19, LL20a, LL20b, GW20, ACGU20a, CDSG+20, JLS21, ALMT20, AY20, KW20,Wee20, AGW20, Gay20,
Wee21,AMVY21,Wee22,KNT21,DP21,DPT22,JLS22,AKM+22,GGLW22,Tom23]

The Key-Escrow Challenge: While FE offers a powerful means for achieving precise control over en-
crypted data, it distinctly alters the trust dynamic when juxtaposed with standard public-key encryption.
Specifically, in FE, a central, trusted entity is tasked with distributing the secret decryption keys tailored
to each user. This central entity must safely maintain a long-term master secret key. A compromise of
this authority could grant adversaries the power to decrypt every ciphertext in the system, revealing all
encrypted messages. This inherent vulnerability to key exfiltration attacks necessitates meticulous protec-
tion of the master secret key for the system’s duration. By contrast, with traditional public-key encryption,
users autonomously generate their own key pairs without entrusting their secret keys to a central figure.
This decentralization eliminates a single point of failure. The amalgamation of inherent key escrow and
susceptibility to key exfiltration remains a significant barrier to FE adoption.

Registered FE: Addressing the key-escrow and master key exfiltration vulnerabilities inherent in FE,
recent efforts have delved into an innovative encryption framework known as Registered FE (RFE). RFE
replaces the central authority with a fully transparent entity known as a “key curator”, which does not
retain any secrets. Contrary to issuing secret decryption keys, the key curator’s primary role revolves
around consolidating public keys from registered users into a concise master public key. Elaborating, within
an RFE framework, users autonomously generate their public and secret key pairs (mirroring traditional
public-key encryption practices). They subsequently register their public keys, along with the functions they
are sanctioned for, with the key curator. This entity, in turn, refreshes the scheme’s master public key.
Analogous to conventional FE, this master public key can encrypt any message x in the system. A registered
user, authorized for a specific function f , can decrypt the ciphertext, gleaning solely f(x), utilizing their
secret key. This is aided by a publicly computable helper decryption key, which connects the user’s public
key with the prevailing master public key. Given the dynamic nature of the RFE system, where the master
public key evolves as new users are onboarded, it is imperative for users to intermittently update their helper
decryption keys throughout the system’s lifespan. It is worth noting that these updates for each user can
be determined publicly. From an efficiency perspective, if L users are registered, each user should only be
tasked with updating their decryption key a maximum of O(logL) times throughout the system’s existence.
Further, the magnitude of each update must remain succinct, preferably within the realm of poly(λ, logL),
where λ symbolizes a security parameter. Aligning with standard FE, it is also crucial that the master public
key maintains a compact footprint, sized approximately poly(λ, logL).

Initial Results: Non-Black-Box Constructions: Early research work spearheaded by Garg et al. [GHMR18,
GHM+19,GV20,CES21], established RFE schemes within the context of Identity-Based Encryption (IBE),

3



a subclass of FE. These were developed using well-studied computational assumptions, including CDH, fac-
toring, and LWE. This new primitive was named Registration-Based Encryption (RBE) in those works.
However, these constructions extensively relied on non-black-box cryptographic techniques, making them
largely infeasible, even when considering subsequent optimization efforts [CES21].

Non-Black-Box Constructions and the CRS Model: A seminal advancement in the domain of RFE
was marked by the recent contributions of Hohenberger et al. [HLWW23]. Their work elucidated the concept
of Registered ABE (RABE), examining RFE within the broader framework of Attribute-Based Encryption
(ABE).

Moreover, the research devised innovative techniques for realizing RABE (with RBE as a specific case)
using purely black-box cryptographic methods. Impressively, they designed an efficient RABE scheme for
access structures represented as Linear Secret Sharing Schemes (LSSS) in composite order bilinear groups,
based on the same established static assumptions for IBE [LW10] and ABE [LOS+10b].

Yet, this black-box approach did require one significant trade-off: the one-time trusted generation of a
structured Common Reference String (CRS). At a cursory look, this might seem like a mere transposition
of trust. However, it is crucial to underscore that this CRS setup is a one-off process, potentially executed
via a multi-party computation protocol, and remains reusable across diverse systems. Importantly, post
this setup, the CRS remains the sole trusted element. All subsequent activities of the key curator are both
deterministic and auditable. The system’s security remains intact unless the initial CRS setup is jeopardized.
This is markedly different from conventional FE wherein the central authority’s long-term master secret key
demands perpetual trust. Any breach, resulting in the unauthorized acquisition of this secret key, grants the
perpetrator unfettered access to decrypt every system ciphertext. Hence, this CRS-based RFE framework
considerably reduces the inherent trust requisites compared to its traditional FE counterpart.

This innovative approach, focusing on creating efficient black-box RFE architectures within the CRS
paradigm using simple cryptographic tools, has catalyzed a renaissance of interest in the cryptographic
sphere. This has culminated in a flurry of very recent findings [KMW23, FWW23, FKdP23, DKL+23,
ZZGQ23, FFM+23], majority of which are actually concurrent to our work [FKdP23, ZZGQ23, FFM+23,
KMW23]. These investigations have spearheaded the development of registration-adapted variants of as-
sorted FE subclasses, such as broadcast encryption [KMW23, FWW23], IBE (tailored for large identi-
ties) [DKL+23]( [FKdP23]), ABE designed for access policies represented as LSSS and arithmetic branching
programs [ZZGQ23], and Inner-Product Predicate Encryption (IPE) [ZZGQ23, FFM+23]. Notably, these
constructions [KMW23,FKdP23,ZZGQ23,FFM+23] are characterized by their black-box nature, efficiency,
and reliance on simple tools like bilinear pairings.

Limitation of the State of the Art: While the advancements in the field have been commendable, the
subclasses of FE for which registration-based variations have been constructed predominantly fall within
the realm of predicate encryption (PE). PE, a subclass of FE, associates a secret key with an ID/attribute
string, while a ciphertext encrypts a predicate-payload pair (or vice-versa). The decryption process unveils
the payload only if the predicate is satisfied by the attribute string; otherwise, a unique null symbol, ⊥,
is revealed. Although PE facilitates fine-grained access controls to encrypted content, its capabilities are
restricted. Specifically, it can only expose encrypted data entirely or partially to eligible users and keep con-
cealed from unauthorized ones. In contrast, more potent FE subclasses permit privacy-focused computations
on encrypted data, emphasizing the extraction of computational outcomes over the raw data. Despite the
massive developments in the field, currently, constructing RFE for functionalities beyond predicates remains
an unresolved challenge.

Inner-Product FE: This study pivots to what is arguably one of the simplest function classes richly
covered in literature: linear functions or inner-products [ABDP15, ALS15, KLM+18, BJK15, ABKW19,
ACGU20a, DDM16, ALMT20, CLT18,Wee17, BBL17,WFL19, Tom19, TT18, TAO16,MKMS21, DP19]. An
Inner-Product FE (IPFE) scheme involves encrypting vectors over a specific finite field, with secret keys also
devised for vectors within that field. The decryption process discloses the inner product of the message and
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secret key vectors. The practicality of inner product functions spans diverse applications, from computing
weighted means in descriptive statistics, evaluating polynomials, determining exact thresholds [ABDP15], fa-
cilitating hidden-weight coin flips [CS19], to biometric authentication and encrypted data’s nearest-neighbour
search [KLM+18]. Moreover, IPFE can serve as foundational for creating FE schemes that support advanced
function categories, such as quadratic functions [BCFG17,Gay20]. Regrettably, as with other FE subclasses,
the key-escrow issue poses a significant challenge to the deployment of IPFE.

Attribute-Based IPFE: FE has further evolved to support even more advanced function classes, merg-
ing the attribute-based access control of PE with the evaluation of linear functions on encrypted data.
Although IPFE offers broad practical applications, its underlying nature is fragile, with each new secret key
release leaking sensitive information. To counteract this vulnerability, Abdalla et al. [ACGU20a] proposed
attribute-based IPFE (ABIPFE), a concept that embeds access policies into ciphertext while facilitating lin-
ear function evaluations. In an ABIPFE framework, each vector is encrypted under certain access policies,
while its secret key corresponds to a combination of an attribute stream and a vector. Successful decryption
unveils the inner product of the message and key vector, contingent upon the access policy being met by
the attribute. Numerous subsequent studies [AGW20,LLW21,PD21a,DP21,DPT22,DDM+23,DP23] have
explored ABIPFE across diverse access policy categories using established tools such as bilinear groups and
lattices. Despite such advancements, the threat of master key exfiltration attacks continues to overshadow
ABIPFE. Hence, in this work, we pose a pivotal question that has largely remained elusive.
Open problem. Is it possible to design efficient black-box RFE schemes for function classes beyond predi-
cates, such as for Attribute-Based Linear Function Evaluation?

Our Results: In this paper, we offer a positive response to the aforementioned open question. Indeed,
for the first time in the literature, we formulate the notion of RFE 1, and the design of the primitive
for function classes that transcend simple predicates. Specifically, we presented the first registered IPFE
(RIPFE) and ABIPFE (RABIPFE) schemes. Developed within the CRS model and leveraging simple tools
and black-box methodologies, our designs operate within asymmetric prime-order bilinear group setting,
which is known to be faster and more secure compared to its other variants [BGJT14,GGMZ13,Jou13,Jou14].
Security is assured within the generic bilinear group model (GGM) [Sho97a]. The proposed RABIPFE system
incorporates LSSS access policies, the zenith of policy expressiveness achieved by current ABE/ABIPFE
constructions rooted in bilinear groups, even within conventional centralized frameworks. As a special case
of our RABIPFE construction, we also present the first registered ABE (RABE) system in a prime-order
bilinear group setting.

Our schemes are tailored to accommodate a pre-determined number of users. Specifically, the structured
CRS dimensions are quadratically proportional to user numbers, while registration performance is linearly
dependent on user count, aligning with existing black-box RFE structures within the CRS model. Further,
analogous to the current CRS-based RFE schemes, we necessitate a thorough verification of user public keys
before their registration in the system to address concerns regarding malicious public keys. Similar to the
existing RABE scheme, our RABIPFE system can accommodate an attribute within access policies either
singularly or within set limitations, with parameter dimensions expanding linearly based on repetition limits
via a simple encoding technique similar to this [Wat11,LW11a]. Existing techniques for handling arbitrary
repetitions of the same attributes within an access policy from centralized ABE literature [KW19, LL20b,
LL20a] seemingly lack direct applicability in the registration-based context, leaving ample room for future
investigation.

As our objective veers towards designing RFEs with functionalities surpassing predicates, we have to
devise a different randomization strategy than existing works. While prior works like [HLWW23] naturally

1All existing studies in this field have specifically defined the concept of RFE in accordance with the particular function
classes they explored, often under varied terminologies. For instance, Garg et al. [GHMR18] utilized the term “registration-based
encryption (RBE)”. Hohenberger et al. [HLWW23] introduced the term “registered ABE (RABE)”. Kolonelos et al. [KMW23]
put forth the concept of “distributed broadcast encryption (DBE)”. Similarly, Freitag et al. [FWW23] coined the term “flexible
broadcast encryption (FBE)”, and the list goes on. What distinguishes our work is the formal definition of RFE in its broadest
sense, encompassing all existing registration-based primitives as particular instances of this overarching notion.
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separated the masking component from the CRS into random shares to oversee predicate validation and
membership verification, this does not work in our setting. Broadly speaking, the challenge arises from
the distinction that, in the context of predicates, each user’s output is either zero or one. However, in our
setting, the outputs for different users can diverge significantly. To resolve this issue, our approach directly
randomizes the component concealing the inner-product value during decryption. This novel process however,
inherently risks the intermingling of decryption threads, potentially leading to vulnerabilities. To navigate
these challenges, our refined randomization process, in essence, links the key vector to pertinent users while
concurrently managing functional evaluation and membership validation in an integrated fashion. Such
technique was previously used implicitly by Waters [Wat11] in the context of centralized ABE. We not only
extend this method beyond predicates but also adapt it to the registration-based framework, while presenting
it in a more explicit manner (see Section 2 for further details).

Further, beyond the prime-order bilinear group-centric schemes, we also detail the blueprint for an RFE
system catering to an indefinite number of users and supporting general functionalities via indistinguishability
obfuscation (IO) and one-way functions (OWFs). An obfuscator, as defined in [BGI+01], is a tool that
converts a circuit into an equivalent one, i.e. preserving its input-output behaviour, while concealing the
original circuit’s confidential data. Indistinguishability obfuscator [BGI+01] is a specific type of obfuscator
ensuring that any two equivalent circuits’ obfuscations are indistinguishable. Coupled with the seminal work
of Jain et. al. [JLS21, JLS22], realizing IO from falsifiable assumptions, this leads to an RFE system for
arbitrary functionalities and user counts grounded in falsifiable assumptions. This latter achievement stands
as a testament to the potential of RFE systems to accommodate versatile functionalities and an expansive
user base.

Concurrent Works: In parallel and independent research, Francati et al. [FFM+23] provides robust at-
tribute hiding registered zero inner-product PE scheme, in prime-order bilinear group under the generic
bilinear group model (GGM). The attribute hiding security ensures that the ciphertext obscures the associ-
ated attribute vector from all system users, even those with decryption rights. However, this RFE remains
within the context of RFE for predicates as previously described, and fully discloses payload data to autho-
rized individuals. Contrasting this, our RFE scheme for linear or inner-product functionality does not just
reveal encrypted data. Instead, it computes and outputs the inner-product of encrypted content.

Further, just like our work, Francati et.al [FFM+23] also presented an RFE scheme for general function-
alities and supporting an arbitrary number of users from IO and OWFs. The differences between the two
constructions are as follows. Francati et.al [FFM+23] essentially observed that the construction of RABE
due to Hohenberger et al. [HLWW23] for general access policies and an arbitrary number of users from IO
and OWFs actually works as a full pleaded RFE that can support arbitrary functionalities beyond predicates.
On the other hand, we tweak the RABE scheme of [HLWW23] by introducing a Naor-Yung style [NY90]
“double-encryption” mechanism inspired by the techniques of Garg et.al [GHMR18]. However, rather than
using a simulation sound non-interactive zero-knowledge (NIZK) proof system as [NY90, GHMR18], our
construction only employs Lamport’s one-time signatures [Lam79] which can be realized from OWFs.

In another synchronized study, Zhu et al. [ZZGQ23] introduced RABE schemes suitable for LSSS access
policies and non-attribute-hiding inner-product predicates. They utilized asymmetric prime-order bilinear
groups and proved security in the standard model under the k-linear assumption [EHK+13]. In contrast,
while the RABE scheme, which emerges as a particular instance of our RABIPFE, is also constructed
using asymmetric prime-order bilinear groups, its security is guaranteed solely within the generic bilinear
group model (GGM). However, the RABE scheme of Zhu et al. [ZZGQ23] appears to leverage the well-
known composite-to-prime-order conversion framework [CGKW18,CGW15] derived from centralized ABE
literature on the RABE scheme of [HLWW23]. As a result, it inherits the inefficiencies of that framework,
namely, the generation of large ciphertext/secret keys and diminished performance. In contrast, our RABE
scheme is straightforward and delivers notably superior concrete performance. Furthermore, for user public
key validation, Zhu et al. [ZZGQ23] deploy a strong cryptographic primitive: a pairing-based unbounded
simulation-secure Quasi-adaptive non-interactive zero-knowledge proof system. In comparison, we propose
a streamlined public key validation technique harnessing the power of GGM. Lastly, while both of their
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schemes primarily address predicates, our registration-based renditions of IPFE and ABIPFE surpass this
scope, facilitating the evaluation of linear functions on encrypted data.

2 Technical Overview

In this work, we construct registration-based FE schemes for general as well as specific function classes.
Regarding the specific classes, in the registration-based setting, we consider FE for linear functions which
is known as IPFE [ABDP15] and FE for linear functions with access control2 which is noted as ABIPFE
[ACGU20b]. Before going to the technical descriptions of the designing of these primitives in the registration-
based setting, we first provide an overview of the definition of registered FE for general functions.

2.1 Definition of Registered FE

Let UF be the universe of functions andM be the set of messages supported by the scheme. We also assume
that UF contains only polynomial-size functions having maximum size ℓf in bit-length. There is a one-time
trusted setup which samples a common reference string (CRS) crs depending on the security parameter and
the bound ℓf . We allow the size of crs to be poly(λ, ℓf , L). The key curator first initializes an empty master
public key MPK when there is no user in the system at the beginning. If a user wants to join the system
then it first samples a public-secret key pair (pk, sk) using crs, and then sends the public key pk along with a
function fpk ∈ UF to the key curator for registration. The key curator then aggregates the pair (pk, fpk) into
the current master public key MPK and outputs an updated one MPK′. Additionally, the user also receives
a helper decryption key hsk from the key curator.

The key curator does not hold any secret and the role can be played by anyone in the system as well
since the process of aggregation is deterministic. The key generation and registration are both allowed to
run in time poly(λ, ℓf , L). However, in our actual constructions, the key generation process does not depend
on ℓf . On the other hand, we require that the size of the secret key sk, the master public key MPK (at any
stage) and the helper decryption key hsk for each user must be polylogarithmic in the total number of users,
i.e., poly(λ, ℓf , logL). Whenever a new user joins the system, the master public key is updated and as a
result, the existing users might need an updated helper decryption key from the key curator. As in existing
registration-based systems, we require that the actual number of updates needed for a helper decryption key
of each user is essentially O(logL) throughout the existence of the system.

In our setting, the knowledge of MPK is sufficient for encrypting a message m ∈ M. Any registered
users whose public key-function pair (pk, fpk) is integrated into the master public key MPK can decrypt the
ciphertext ct using their secret keys sk and the helper decryption keys hsk. It is important to note that
the large crs is not required at all during encryption or decryption, the information of crs is requested for
generating keys of users and at the time of registering a user. This makes the encryption and decryption
algorithm much more efficient, both of which run in time poly(λ, ℓf , logL) and are comparable to exiting
(non-registered) FEs for specific class of functions such as IPFE. We formally define registered FE in Section 4.

Slotted Registered FE: We followed the blueprint of Hohenberger et al. [HLWW23] for constructing a
registered encryption scheme. In particular, we first define and construct a slotted registered FE (SlotRFE)
scheme and then use a transformation to achieve the full-fledged RFE scheme described above. A SlotRFE
scheme is basically an RFE scheme where the total number of users L is fixed at the time of setup, and
each user of the system is identified via a slot index i ∈ [L]. Therefore, each slot i is associated with a
user-sampled key pair (pki, ski) and a function fi ∈ UF . The aggregation algorithm can be run only when a
list of public key-function pair (pki, fi) for all i ∈ [L] is available. It uses the list to output the aggregated
master public key MPK and a helper decryption key hski for each user i ∈ [L], that is all the users are
registered in one shot. Note that, no update of the master public key or helper decryption keys is needed
since no new user is allowed to join the system once the registration is over. For a SlotRFE, we require that

2It is like having ABE on top of IPFE.
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the sizes of the master public key and helper decryption keys must grow at most poly-logarithmically with
the total number of users in the system. The formal definition of SLotRFE is given in Section 5.

We present a transformation to go from SlotRFE to RFE. The idea of the conversion essentially follows
from the similar transformation used for RABE by Hohenberger et al. [HLWW23]. In Section 9, we adapt
their transformation into the setting of FE to construct RFE from our SlotRFE. It depends on a power-of-two
approach that uses ℓ + 1 many SlotRFE schemes for building an RFE scheme with L = 2ℓ users. Just like
the RABE, the public parameters (crs,MPK, hsk), ciphertext size and encryption time of the resulting RFE
carry an overhead of O(logL) compared to the underlying SlotRFE scheme. This means that if the CRS
of the SlotRFE scales with at most O(logL) then the RFE can support an exponential number of users. It
is exactly the case for our IO-based RFE scheme for general functions. However, our pairing-based RFE
schemes can only support a (polynomially) bounded number of users3 since corresponding slotted versions
produce a CRS of size O(L2).

2.2 Registered FE for (Attribute-Based) Linear Functions

In this subsection, we first provide technical ideas of our registered IPFE where functions and messages are
vectors and decryption recovers the inner product between the vectors. Then, we discuss the technical ideas
of constructing a registered ABIPFE.

Recap of plain IPFE [ABDP15]: Let us first describe the IPFE construction by Abdalla et. al [ABDP15],
which is not registration-based, but serves as our starting point. Their construction works over groups
of prime order without pairings. In their construction, the master public key consists of group elements
MPK = (g, gα), where α ∈ Zn

p and n is the dimension of the vectors supported by the scheme. The cipher-
text encrypting a vector x ∈ Zn

p is of the form ct = (gsα+x, gs), where s← Zp, and a secret key associated

with a vector y ∈ Zn
p is sk = ⟨α,y⟩. To decrypt a ciphertext, we first compute gs⟨α+x,y⟩ = gs⟨α,y⟩+⟨x,y⟩

from gsα+x and remove the masking term gs⟨α,y⟩ using gs and the secret key ⟨α,y⟩. Then, we recover ⟨x,y⟩
from g⟨x,y⟩ by the brute-force computation.

Let us briefly discuss the intuition behind the security of the construction. Suppose that the adversary is
given secret keys {⟨α,yi⟩}i corresponding to vectors {yi}i. Intuitively, only meaningful way to get informa-
tion of x from the ciphertext is to take linear combination between the ciphertext components to compute
gs⟨α+x,z⟩ = gs⟨α,z⟩+⟨x,z⟩ for some vector z and remove the masking term gs⟨α,z⟩ to recover the information
of ⟨x, z⟩. Since the adversary is given only {⟨α,yi⟩}i, it is impossible for her to obtain any information of
⟨α, z⟩ when z is outside of the span of the vectors {yi}i. This in turn means that the information of ⟨x, z⟩
cannot be obtained if z is outside of the span, as desired.

Attempt 1: In our first attempt, we consider a construction that supports only a single user. Even in
this setting, we face the challenge that there is no obvious way to generate a secret key, because the secret
key generation of the plain IPFE construction we explained above crucially requires the knowledge of the
master secret key. Translated into the setting of registration-based IPFE, this means that the key generation
requires the knowledge of a trapdoor corresponding to the CRS, which is not known to the user. To resolve
the problem, we observe that what is necessary for the decryption is actually the masking term gs⟨α,y⟩. We
construct the scheme so that the masking term can be recovered by the decryptor by exploiting the fact that
the master public key can depend on the vector y in the registration-based setting.

Concretely, the CRS of the construction is the same as the master public key of the IPFE we explained.
Namely, we set crs = (g, gα). A user who joins the system chooses random r ← Zp and sets the public key as
pk = gr and the secret key as sk = r. We set the master public key as MPK = (g, gα,W = gr+⟨α,y⟩), where
y is the vector associated with the user. The ciphertext encrypting x is ct = (gsα+x, gs,W s = gsr+s⟨α,y⟩).
A user can therefore recover gs⟨α,y⟩ by computing gsr from gs and r and then compute W s/gsr. The rest of
the decryption algorithm is the same as the plain IPFE construction explained above.

3In fact, all existing pairing-based RABEs have the limitation of supporting only a bounded number of users.
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While the construction works for the single-user setting, the apparent problem is that there is no obvious
way to extend the construction to the multi-user case. One could consider a natural attempt where we
set pki = gri for each user indexed with i and aggregate the public keys to set the master public key as
MPK = (g, gα,W =

∏
i g

ri+⟨α,yi⟩ = g
∑

i ri+
∑

i⟨α,yi⟩). Suppose that we were able to set the ciphertext and
helper decryption key so that the decryption is possible. Then, a collusion of two users should be able
to recover ⟨x,y1 + z⟩ and ⟨x,y1 − z⟩ for arbitrary z, which breaks the security of the scheme. This is
because sk1 = r1 and sk2 = r2 are valid secret keys for vectors y1 + z and y2 − z respectively, since we have
W = gr1+⟨α,y1+z⟩ · gr2+⟨α,y2−z⟩ · g

∑
i̸=1,2 ri+

∑
i⟨α,yi⟩. At a high level, the construction is insecure, since each

vector yi is not bound to the corresponding index i.

Attempt 2: Based on the above observation, in our second attempt, we computationally bind each vector
with the corresponding index. Namely, we set crs = (g, gα, gβ1 , . . . , gβL , gβ1α, . . . gβLα), where L is the
number of users in the system and βi ← Zp for each i. We set the secret key for user i as ski = ri and the
corresponding public key as pki = gβiri . Given the set of public keys {pki}i∈[L] and corresponding vectors

{yi}i∈[L], the master public key is set asMPK = (g, gα,W =
∏

i∈[L] pki·gβi⟨α,yi⟩ =
∏

i∈[L] g
βi(ri+⟨α,yi⟩)). The

difference from the previous attempt is that we separate the thread of the computation for each user by the
individual randomness βi. To encrypt the vector x, we compute ct = (gs, gsα+x,MPKs =

∏
i g

sβi(ri+⟨α,yi⟩)).
Although it seems that now the construction is secure, we do not know how to decrypt the ciphertext. During
the decryption, a user indexed with i may want to unmask gsβiri , but she only knows gs, gβi , and ri and
thus this task is impossible. This motivates us to use the (symmetric) pairings in our next attempt.

Attempt 3: In our third attempt, we construct the scheme so that a user who knows ri can remove the
masking term. Towards this goal, we change the CRS as crs = (g, gαT , g

β1 , . . . , gβL , gβ1α, . . . , gβLα, g1/β1 , . . . ,
g1/βL). The forms of the public keys, secret keys, and master public key are the same as the previous attempt
except that now the group components are in the source group. We change the form of the ciphertext as
ct = (gsT , g

sα+x
T ,W s =

∏
j g

sβj(rj+⟨α,yj⟩)), where gT = e(g, g). To decrypt the ciphertext, user i computes

e(W s, g1/βi) = e(
∏
j

gsβj(rj+⟨α,yj⟩), g1/βi) = gsriT · gs⟨α,yi⟩
T ·

∏
j ̸=i

g
sβjrj/βi

T ·
∏
j ̸=i

g
sβj⟨α,yj⟩/βi

T︸ ︷︷ ︸
=Cross term

.

Here, the user can unmask the term gsriT using gsT and her secret key ri. However, to retrieve the desired

term g
s⟨α,yi⟩
T , she also has to remove the cross term. In our next attempt, we enforce the users to compute

extra components and include them into the public key when they register into the system. These extra
components will enable the decryptor to compute the cross term.

Attempt 4: In our fourth attempt, we set crs = (g, g1/γ , gαT , {gβj , gβjα, g1/βj}j , {gγβj/βk , gγβjα/βk}j ̸=k),
where γ ← Zq and the extra components will be used for computing the cross terms. We then enforce user
i to compute and publicize {gγβiri/βj}j ̸=i when it registers. Namely, we set pki = (gβiri , {gγβiri/βj}j ̸=i) and
ski = ri. The aggregation algorithm is going to be a bit more complex since it computes helper decryption
keys {hski}i in addition to MPK. Concretely, given the public keys {pki}i and corresponding vectors {yi}i,
the aggregation algorithm computes

MPK =

gT , g
α
T , g

1/γ ,W =
∏
i∈[L]

gβi(ri+⟨α,yi⟩)

 , hski =
∏
j ̸=i

(
gβjγrj/βi · gβjγ⟨α,yj⟩/βi

)
.

The ciphertext is now ct = (gsT , g
s/γ , gsα+x

T ,W s). The cross term then can be recovered by computing

e(gs/γ , hski) =
∏
j ̸=i

e
(
gs/γ , gβjγrj/βi · gβjγ⟨α,yj⟩/βi

)
=

∏
j ̸=i

g
sβjrj/βi

T ·
∏
j ̸=i

g
sβj⟨α,yj⟩/βi

T
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as desired.
One thing missing from the above discussion is how to check the validity of the public key registered

by the user. Given the public key pki = (Ui, {Vi,j}j ̸=i), we can check that it is in the valid form in the
sense that there exists ri such that Ui = gβiri and Vi,j = gγβiri/βj by checking e(Ui, g

1/βj ) = e(Vi,j , g
1/γ)

for all j ̸= i. However, this check does not ensure that the user actually followed the protocol to compute
Ui: a malicious user might have deviated from the protocol and still have passed the verification. For
example, the user might have used gβi and gβiα to compute Ui as Ui = gβiri+βi⟨α,z⟩ for some z and
computed corresponding Vi,j = gγβiri/βj+βi⟨α,z⟩/βj from gγβi/βj and gβiα/βj . Such a user can certainly
pass the verification. However, the user is able to decrypt the ciphertext with respect to the vector yi + z,
namely, it can recover ⟨x,yi + z⟩, even though it registered into the system with the vector yi, since we have
W = gβi(ri+⟨α,yi+z⟩) ·

∏
j ̸=i g

βj(rj+⟨α,yj⟩), which is problematic. Therefore, it is not enough to check that
the public key is in a valid form. Rather, we have to check that the public key is computed following the
exact procedure specified by the protocol. A straightforward solution to ensure this is to use non-interactive
zero-knowledge proof of knowledge (NIZK-PoK), where we add the CRS of NIZK-PoK to the CRS (of
registration-based IPFE) and let the user i prove the knowledge of ri when it registers. While this idea may
work, it is inefficient and indirect. In the next step, we provide a much more direct and efficient solution to
the problem using asymmetric pairings.

Our Final Construction: We then explain our final construction. In the construction, we use the asym-
metric pairing e : G1×G2 → GT with generators g1 ∈ G1 and g2 ∈ G2. In the construction, Ui resides in G1

and is computed as Ui = gβiri
1 . We let the user compute the copy Ũi = gβiri

2 of Ui in G2 when it registers,
which is meant to serve as a proof that Ui is generated following the honest procedure of the protocol. By
carefully placing the group components into G1 and G2, we can prevent the above attack. In more detail, we

place {gβi

1 }i and {g
γβi/βj

2 }i,j in the CRS so that the user can compute Ui and Vi,j . The CRS also includes

{gβiα
1 }i, which is used for computing the master public key. We further include {gβi

2 }i in the CRS so that

the copy Ũi of Ui can be computed. However, we do not include {gβiα
2 }i in the CRS and thus the adversary

is not able to mount the above attack.
Here, we provide a concrete description of our construction. First, we set

crs =
(
g1, g2, g

α
T , g

1/γ
1 , {gβi

1 , gβi

2 , g
1/βi

2 }i, {g
γβi/βj

2 , g
γβiα/βj

2 }i ̸=j

)
. (1)

When a user with index i registers, it sets the public key as pki = (Ui = gβiri
1 , Ũi = gβiri

2 , {Vi,j =

g
γriβi/βj

2 }j ̸=i) and ski = ri. The verification of the public key is done by checking e(Ui, g2) = e(g1, Ũi)

and e(Ui, g
1/βj

2 ) = e(g
1/γ
1 , Vi,j) for all j ̸= i. The aggregation algorithm computes

MPK =

gT , g
α
T , g

1/γ
1 ,W =

∏
i∈[L]

g
βi(ri+⟨α,yi⟩)
1

 , hski =
∏
j ̸=i

(
g
βjγrj/βi

2 · gβjγ⟨α,yj⟩/βi

2

)
. (2)

A ciphertext encrypting a vector x is

ct = (gsT , g
sα+x
T , g

−s/γ
1 ,W s).

We omit the description of the decryption algorithm here. We observe that the sizes of MPK and hski are
compact, both of which are poly(λ, n, logL)4.

Overview of the Security Proof: We prove the security of our construction in the generic group model.
Roughly speaking, in the generic group model, the only way for the adversary to obtain non-trivial informa-
tion encoded on the exponents of the group elements is to find a non-trivial linear combination of pairing
products that equals zero. In the first step of the proof, we show that (1) the only way for the adversary

4We assume that the master public key MPK is implicitly included in each user’s helper decryption key hski.
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to pass the verification when it registers the public key is to follow the honest key generation procedure.
We then show that (2) the only way for the adversary to obtain non-trivial information on the encrypted
vectors (i.e., messages) is to follow the honest decryption procedure or take a linear combination between
them. These two facts immediately imply the security of the construction.

We first show (1). In particular, we show that when the adversary passes the verification, it should have

computed Ui as Ui = gβiri
1 using ri. In the proof, we show that if the adversary deviates from the correct

procedure of computing Ui, then it cannot compute the associating copy Ũi or {Vi,j}j ̸=i. For example,

suppose that the adversary inserts the term g
1/γ
1 into Ui as Ui = gβiri

1 · gt/γ1 for some t ∈ Zq. Then, in order

to pass the verification, the adversary has to compute Ũi = gβiri
2 · gt/γ2 . However, the term g

1/γ
2 is missing

from the CRS, there is no way for the adversary to compute Ũi. Other cases can be dealt with in a similar
manner.5

We then explain the overview of the proof of (2), which is shown in several steps. In the first step, we

show that the ciphertext component W s should be paired with (linear combination of) {g1/βi

2 }i terms, since
otherwise the result of the pairing computation includes terms that can never be cancelled by any other
pairing products. For example, if we pair W s with gβi

2 , the pairing product includes the term of the form

g
sβiβjri
T . However, this term cannot be cancelled inside the linear combination of the pairing products, since

any other combination of the terms does not yield g
sβiβjri
T as a result of the pairing computation. This

means at a high level that there is no non-trivial information that is obtained by inserting e(W s, gβi

2 ) into
the linear combination.

We then focus the term e(W s, g
1/βi

2 ). By (1), all the public keys should be correctly generated including

the ones that are generated by the adversary. In particular, we have W =
∏

i∈[L] Wi =
∏

i∈[L] g
βi(ri+⟨yi,α⟩)
1

for some {ri}. We therefore have

e(W s, g
1/βi

2 ) = gsriT · gs⟨α,yi⟩
T ·

∏
j ̸=i

g
sβjrj/βi

T ·
∏
j ̸=i

g
sβj⟨α,yj⟩/βi

T︸ ︷︷ ︸
=Cross term

.

Ignoring the cross terms, the above component is similar to the message-carrying part of the plain IPFE
we first introduced. Indeed, our proof from here closely follows the intuition of why the plain IPFE scheme
is secure. First, we show that if ri is not known to the adversary, then it cannot unmask the term gsriT .

This means that the adversary can insert e(W s, g
1/βi

2 ) into the linear combination only when the index i is
corrupted or the public key for this index is generated by the adversary herself. In both cases, the adversary
can unmask the term gsriT using the knowledge of ri. However, she still has to compute and unmask the

term g
s⟨α,yi⟩
T . By inspection, we can show that the only possible way to unmask g

s⟨α,yi⟩
T is to compute

g
s⟨α,yi⟩+⟨x,yi⟩
T using gsα+x

T and then subtract the term from it. As a result, we will obtain g
⟨x,yi⟩
T , which

only contains the information of ⟨x,yi⟩. To sum up, if the adversary wants to obtain non-trivial information
of the encrypted vector x from the ciphertext, it should take the linear combination among the ciphertext
components in a way that the information of x is lost except for ⟨x,yi⟩, where i is an index that is corrupted
or the corresponding public key is generated by the adversary herself. This means that the information of
x does not leak to the adversary more than necessary, since ⟨x,yi⟩ for such i is revealed to the adversary
anyway by the correctness of the protocol. The full construction and analysis are provided in Section 6.

Registered ABIPFE: Our pairing-based registered ABIPFE scheme provides attribute-based access con-
trol over IPFE. In the slotted version, each user is registered with a vector yi and an attribute set Atti whereas
the encryption of x is performed under an access policy P which is represented by a linear secret sharing
scheme (LSSS). We recall that an access structure of LSSS is specified by a matrix M ∈ ZK×N

p and a map-
ping ρ which associates distinct attributes to the row indices of M. To share a secret s, we first sample a

5Actually, the adversary can pass the verification by randomizing an honestly generated public key. However, there is no
gain for the adversary to perform this type of malicious key generation as we will show in the formal proof. We ignore this
subtle point in this overview and defer the full details to the formal proof.
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random vector v = (s, v2, . . . , vN ) and compute the shares u = Mv. The i-th component of u is the share
associated with the attribute ρ(i). The reconstruction of the secret is possible with a set of attributes Att
that satisfies the access structure. More specifically, there exists a vector ω such that ω⊤uAtt = MAttv = s
where MAtt is the matrix formed by the rows of M associated with the attributes in Att via the mapping ρ
and uAtt is the components of u associated with Att.

At a very high level, our slotted registered ABIPFE is a combination of the registered ABE of [HLWW23]
and our registered IPFE discussed above. Combining the primitives ABE and IPFE, even in the non-
registration-based setting, in a completely generic way might be insecure [ACGU20a,PD21b] since the ABE
adversary is not allowed to query any secret key that decrypts the challenge ciphertext. However, this is
crucial for the security of ABIPFE. Our approach aims to blend the attribute-aggregation procedure devised
for the registered ABE of [HLWW23] with the function-aggregation technique developed in this work for
our registered IPFE. The aggregated master public key consists of two aggregated components—one for
attributes and another for function vectors—which are randomized using a newly sampled group element
during encryption. This additional randomization adds an extra layer of security to the encryption process,
making it (computationally) difficult for unauthorized users to gain access to the inner product values, even
if they possess secret keys.

Let Uatt be the universe of attributes. Then, for each attribute w ∈ Uatt and slot i ∈ [L], the setup

randomly samples ti,w ← Zp and adds the additional elements {g1/π1 , {gβiti,w
1 }i,w, {g

πβiti,w/βj

2 }i ̸=j} to the
crs (given is Eq. 1) of the registered IPFE. The users can sample their individual key pairs similar to our
registered IPFE. At the aggregation step, each user submits a pair (yi,Atti) comprising of a vector and an
attribute set along with its public key pki. The aggregation algorithm follows exactly the same way as in IPFE

except it adds new components: {Tw =
∏

i∈[L],w ̸∈Atti
g
βiti,w
1 }w to MPK and

∏
j ̸=i:w ̸∈Attj

g
πβjtj,w/βi

2 to hski
of Eq. 2. Therefore, the sizes of MPK and hski both are bounded by poly(λ, |Uatt|, n, logL), meeting the
efficiency requirement of a slotted registered FE scheme. A ciphertext encrypting a vector x under a policy
(M, ρ) is computed as follows. Our idea is to randomize the ciphertext component W s of IPFE with a
random element h← G1 as hs ·W s. At the time of decryption, it eventually produces an additional masking
factor e(h, g2)

s/βi which can only be cancelled using a secret key ski that corresponds to Atti satisfying
the policy (M, ρ). More specifically, we first sample a random vector v = (s, v2, . . . , vN ) and then set the
ciphertext

ct = ( gsT , g
sα+x
T , g

−s/γ
1 , g

−s/π
1 , hsW s, h⟨v,mk⟩T s

ρ(k) )

where mk denotes the k-th row of M. To decrypt the ciphertext the i-th user first computes a slot-

specific component e(h, g2)
s/βi · e(g1, g2)s⟨α,yi⟩ using the ciphertext components hsW s, g

−s/γ
1 , secret key

ski and a component (same as the i-th helper decryption key of IPFE shown in Eq. 2) of hski. Next,
assuming that Atti satisfies the policy, the user reconstruct the secret s in the form of e(h, g2)

s/βi via

pairing the ciphertext components h⟨v,mk⟩T s
ρ(k), g

−s/π
1 with g

1/βi

2 and the newly added helper decryption key

component
∏

j ̸=i:w ̸∈Attj
g
πβjtj,w/βi

2 respectively. In this step, we avail a cross-terms cancellation approach

similar to [HLWW23]. Finally, the user recovers the inner product value ⟨x,yi⟩ from g
s⟨α,yi⟩+⟨x,yi⟩
T by

unmasking it using the term g
s⟨α,yi⟩
T . To prove the generic security of the scheme, we show that the only way

for an adversary to recover the masking term g
s⟨α,yi⟩
T is to make use of a secret key ski which corresponds

to an attribute set satisfying the challenge policy. We refer to Section 7 for a formal description of the
construction and analysis of the slotted registered ABIPFE.

2.3 Registered FE for Polynomial-size Circuits

In this work, we build a registered FE for all polynomial-size circuits from indistinguishable obfuscation and
one-way functions. While our pairing-based registered FEs for specific functionalities could only support a
bounded number of users, the registered FE for general functions allows an arbitrary number of users to join
the system. Our registered FE for all circuits generalizes the IO-based registered ABE of Hohenberger et
al. [HLWW23] that provides access control using any arbitrary circuit predicates. In particular, it is based
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on IO [BGI+01,GGH+13] and somewhere statistically binding hash functions (SSB) [HW15,OPWW15]. An
overview of the slotted registered FE is as follows. The CRS is an SSB hash key hk. In the key generation
phase, each user samples a seed si and sets the public key as pki = PRG(si) where PRG is a pseudorandom
generator. To register a set of L users, the key curator hashes the list of public key-function pairs {(pki, fi)}i
using hk and sets the hash value h to be the master public key MPK. Additionally, it computes an SSB
opening πi for each slot index i, which serves as the helper decryption key hski of the user. The ciphertext of
the slotted scheme consists of a ciphertext CT encrypting the messagem under a freshly sampled (symmetric)
encryption key SK and an obfuscated circuit which is consistent with MPK and SK. The circuit first verifies
(a) the opening π using MPK and (b) the public key pki by re-computing PRG(ski), and if the checks pass
then it outputs the message m by decrypting the ciphertext CT using SK. The correctness is immediate by
the definition of the obfuscated circuit. The compactness of MPK and hski follows from the succinctness of
SSB. Since the CRS (or the hash key) size scales with O(logL), our slotted registered FE can be transformed
into a registered FE supporting any arbitrary number of users. We give a detailed description of the scheme
in Section 8.

3 Preliminaries

Notations: Throughout this paper, we use λ as the security parameter. Let n,m ∈ Z be two non-negative
integers. Then [n] denotes the set {1, 2, . . . , n} if n > 0 and [n,m] denotes the set {n, n + 1, . . . ,m}. We
use the bold uppercase letters (e.g. M) to denote matrices and the bold lowercase letters (e.g. x) to denote
vectors. The components of the vectors are denoted by non-boldface letters (e.g. x = (x1, . . . , xn)). We
write poly(λ) as a polynomial function of λ if it is of the form O(λc) for some constant c ∈ N. We say a
function negl(λ) is negligible function of λ if it is of the form O(λ−c) for all c > 0.

Bilinear groups: Assume a bilinear group generator algorithm GG that takes as input 1λ and outputs
a tuple G = (G1,G2,GT , p, g1, g2, e), where G1,G2 are the source groups and GT is the target group of
the same prime order p = p(λ) with generators g1, g2 respectively. The map e : G1 × G2 → GT satisfies
non-degeneracy, meaning that e(g1, g2) = gT generates GT . It also satisfies bilinearity, i.e., for all a, b ∈ Zp it
holds that e(ga1 , g

b
2) = e(g1, g2)

ab. We require that the group operations and the bilinear map are efficiently
computable.

3.1 Generic Bilinear Group Model

In this work, we prove the security of our pairing-based schemes in the generic bilinear group model. We
recall the notations and definitions of generic bilinear group model adapted from [BCFG17,AY20]. In the
generic bilinear group model, the adversary only receives handles of the group elements instead of the actual
group elements. The adversary is also given a stateful oracle to perform some specific group and pairing
operations on already queried group elements via the received handles. Note that, the adversary gets only
the handles of the newly computed group elements. In order to perform the group operations, the generic
bilinear group model maintains an internal mapping between the handles and their corresponding group
elements. The handles are not unique meaning that the same group elements may appear more than once
in a list under different handles. The motivation of proving the security of a group-based cryptographic
scheme in the generic bilinear group model is to ensure that an adversary that applies group operations in
a black-box manner can not break the security of the scheme. In the definition below, we consider the list
that maintains the list of the group exponents rather than elements as in [BCFG17,AY20], since the specific
representation of the group element is irrelevant in this model.

Definition 1 (Generic Bilinear Group Oracle) Let G = (G1,G2,GT , p, g1, g2, e) be a bilinear group
and L1, L2, LT be the lists of exponents of group elements in G1,G2 and GT respectively. The challenger
initializes L1, L2 and LT according to a distribution D and the adversary receives handles for the elements
in the lists. For s ∈ {1, 2, T}, Ls[h] denotes the h-th element in the list Ls. The handle to this element is
simply the pair (s, h). The adversary is provided with the following oracles:
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• add(s, h1, h2): The adversary submits a tuple (s, h1, h2) such that (s, h1), (s, h2) represent handles to
elements in the list Ls for s ∈ {1, 2, T}. The challenger appends Ls[h1] + Ls[h2] to Ls and returns its
handle (s, |Ls|).

• neg(s, h): The adversary submits a handle (s, h) for s ∈ {1, 2, T}. The challenger appends −Ls[h] to
Ls and returns its handle (s, |Ls|).

• map(h1, h2): The adversary submits a tuple (h1, h2) such that (1, h1) and (2, h2) represent handles of
elements in the lists L1 and L2 respectively. The challenger appends L1[h1] · L2[h2]

• zero-test(h): The adversary submits h such that (T, h) represents a handle of an element in the lists
LT . The challenger returns 1 if LT [h] = 0; and 0 otherwise.

Symbolic group model: The symbolic group model for a bilinear group G = (G1,G2,GT , p, g1, g2, e)
and a distribution Dp gives to the adversary the same interface as the corresponding generic bilinear group
model, except that internally the challenger stores lists of element in the field Zp(X1, . . . , Xn) instead of lists
of group elements. The oracles add, neg,map and zero-test computes addition, negation, multiplication and
equality in the field. In this work, we will use the subring Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] whose elements
can be represented as

f(X1, . . . , Xn) =
∑

(c1,...,cn)∈Zn

ac1,...,cnX
c1
1 · · · , Xcn

n

using the coefficients {ac1,...,cn ∈ Zp}(c1,...,cn)∈Zn , where we have ac1,...,cn = 0 for all but finite (c1, . . . , cn) ∈
Zn. This expression of f is unique.

We will require the Schwatrz-Zipple Lemma [Sho97b,Zip79] stated as follows.

Lemma 1 ( [Sho97b,Zip79]) Fix a prime p and let f ∈ Zp[X1, . . . , Xn] be an n-variate polynomial with
degree at most d and which is not identical to zero. Then,

Pr[f(x1, . . . , xn) = 0 : x1, . . . , xn ← Zp] ≤ d/p.

4 Registered Functional Encryption

In this section, we introduce the notion of registered FE for general class of functions. We generalize the
registration-based ABE notion of [HLWW23] into the setting of FE which goes beyond the all-or-nothing
type paradigm.

Definition 2 (Registered Functional Encryption) Let UF = {Fλ}λ∈N be the universe of functions and
M be the set of messages. A registered functional encryption scheme with function universe UF and message
space M is a tuple of efficient algorithms RFE = (Setup,KeyGen,RegPK,Enc,Update,Dec) that work as
follows:

Setup(1λ, 1ℓf )→ crs : The setup algorithm takes the security parameter λ, the (maximum) size ℓf of the
functions in UF as inputs and outputs a common reference string crs.

KeyGen(crs, aux)→ (pk, sk) : The key generation algorithm takes the common reference string crs, and a
(possibly empty) state aux as inputs and outputs a public key pk and a secret key sk.

RegPK(crs, aux, pk, fpk)→ (MPK, aux′) : The registration algorithm takes a common reference string crs, a
(possibly empty) state aux, a public key pk and a function fpk ∈ Fλ as inputs and outputs a master
public key MPK and an updated state aux′. This is a deterministic algorithm.

Enc(MPK,m)→ ct : The encryption algorithm takes a master public key MPK and a message m ∈ M as
inputs and outputs a ciphertext ct.
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Update(crs, aux, pk)→ hsk : The update algorithm takes a common reference string crs, a state aux and a
public key pk as inputs, and outputs a helper decryption keys hsk. This is a deterministic algorithm.

Dec(sk, hsk, ct) ∈M∪ {GetUpdate,⊥} : The decryption algorithm takes a secret key sk, a helper decryption
key hsk and ciphertext ct as inputs. The algorithm either outputs a message m′ ∈ M, a special
symbol ⊥ indicating decryption failure, or a special message GetUpdate indicating an updated helper
decryption key is needed to decrypt the ciphertext. This is a deterministic algorithm.

The algorithms must satisfy the following properties:

Correctness, Compactness and Update efficiency: For all security parameters λ ∈ N, all messages
m ∈M, all functions f ∈ Fλ, we define the following experiment between an adversary A and a challenger:

• Setup phase: The challenger starts by sampling the common reference string crs ← Setup(1λ, 1ℓf ). It
then initializes the auxiliary input aux← ⊥ and initial master public key MPK0 ← ⊥. It also initializes
a counter ctr[reg]← 0 to keep track of the number of registration queries and another counter ctr[enc]←
0 to keep track of the number of encryption queries. Finally, it initializes ctr[reg]∗ ← ∞ as the index
for the target key. It gives crs to A.

• Query phase: During the query phase, the adversary A is able to make the following queries:

– Register non-target key query: In a non-target-key registration query, the adversary A spec-
ifies a public key pk and a function f ∈ UF . The challenger first increments the counter ctr[reg]←
ctr[reg] + 1 and then registers the key by computing (MPKctr[reg],aux′) ← RegPK(crs, aux, pk, f).
The challenger updates its auxiliary data by setting aux ← aux′ and replies A with (ctr[reg],
MPKctr[reg], aux).

– Register target key query: In a target-key registration query, the adversary specifies a func-
tion f∗ ∈ UF . If the adversary has previously made a target-key registration query, then the
challenger replies with ⊥. Otherwise, the challenger increments the counter ctr[reg]← ctr[reg]+1,
samples (pk∗, sk∗) ← KeyGen(1λ, aux), and registers (MPKctr[reg],aux′) ← RegPK(crs, aux, pk∗, f∗).
It computes the helper decryption key hsk∗ ← Update(crs, aux, pk∗). The challenger updates its
auxiliary data by setting aux ← aux′, stores the index of the target identity ctr[reg]∗ ← ctr[reg],
and replies to A with (ctr[reg],MPKctr[reg], aux, pk

∗, hsk∗, sk∗).

– Encryption query: In an encryption query, the adversary submits the index ctr[reg]∗ ≤ i ≤
ctr[reg] of a public key6 and a message mctr[enc] ∈ M. If the adversary has not yet registered
a target key the challenger replies with ⊥. Otherwise, the challenger increments the counter
ctr[enc]← ctr[enc] + 1 and computes ctctr[enc] ← Enc(MPKi,m). The challenger replies to A with
(ctr[enc], ctctr[enc]).

– Decryption query: In a decryption query, the adversary submits a ciphertext index 1 ≤ j ≤
ctr[enc]. The challenger computes m′

j ← Dec(sk∗, hsk∗, ctj). If m′
j = GetUpdate, then the chal-

lenger computes an updated helper decryption key hsk∗ ← Update(crs, aux, pk∗) and recomputes
m′

j ← Dec(sk∗, hsk∗, ctj). If m
′
j ̸= f∗(mj), the experiment halts with outputs b = 1.

If A has finished making queries and the experiment has not halted (as a result of a decryption query),
then the experiment outputs b = 0.

We say that RFE is correct, compact and update efficient if for all adversaries A making at most polynomial
number of queries, the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for all λ ∈ N, Pr[b = 1] = negl(λ) in
the above experiment. We say that the scheme satisfies perfect correctness if Pr[b = 1] = 0.

6The message is encrypted under a master public key which is registered only after the adversary registers a target key since
we require the correctness to hold only for the target key.
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• Compactness: Let N be the number of registration queries the adversary makes in the above exper-
iment. There exists a universal polynomial poly(·, ·, ·) such that for i ∈ [N ], |MPKi| = poly(λ, ℓf , log i).
We also require that the size of the helper decryption key hsk∗ satisfy hsk∗ = poly(λ, ℓf , logN) (at all
point of the experiment).

• Update efficiency: Let N be the number of registration queries made by A. Then, in the course
of the above experiment, the challenger invokes the update algorithm Update at most O(logN) times
where each invocation runs in poly(logN) time in the RAM model of computation. Specially, we model
Update as a RAM program that has random access to its input; thus, the running time of Update in
the RAM model can be smaller than the input length.

Security: Let coin ∈ {0, 1} be a bit. We define the following security experiment ExptRFEA (1λ, coin) played
between an adversary A and a challenger.

• Setup phase: The challenger samples a common reference string crs← Setup(1λ, 1ℓf ). It then initializes
the auxiliary input aux ← ⊥, the initial master public key MPK ← ⊥, a counter ctr ← 0 for the
number of honest-key-registration queries the adversary has made, an empty set of keys Cor ← ∅ for
tracking the honestly generated keys that are corrupted in course of the experiment, an empty set of
keys Mal ← ∅ which will be filled with the keys generated by the adversary and an empty dictionary
D ← ∅ mapping public keys to registered function. For notational convenience, if pk ̸∈ D, then we
define D[pk] := ∅. The challenger gives the crs to A.

• Query phase: The adversary A is allowed to query the following queries:

− Registered malicious key query: In a corrupted key query, A specifies a public key pk and
a function f ∈ UF . The challenger registers the key by computing (MPK′, aux′) ← RegPK(crs,
aux, pk, f). The challenger updates its copy of the public key MPK ← MPK′, its auxiliary data
aux← aux′, adds pk to Mal, and updates D[pk]← D[pk] ∪ {f}. It replies to A with (MPK′, aux′).

− Registered honest key query: In an honest key query, A specifies a function f ∈ UF . The
challenger increments ctr← ctr+1 and samples (pkctr, skctr)← KeyGen(crs, aux), and registers the
key by computing (MPK′, aux′)← RegPK(crs, aux, pkctr, f). The challenger updates its public key
MPK← MPK′, its auxiliary data aux← aux′, adds D[pkctr]← D[pkctr] ∪ {f}. It replies to A with
(ctr,MPK′, aux′, pkctr).

− Corrupt honest key query: In a corrupt-honest key query, A specifies an index 1 ≤ i ≤ ctr.
Let (pki, ski) be the i-th public/secret key the challenger samples when responding to the i-th
honest-key-registration query. The challenger adds pki to Cor and replies to A with ski.

• Challenge phase: The adversary A chooses two messages m∗
0,m

∗
1 ∈M. The challenger replies with the

challenge ciphertext ct∗ ← Enc(MPK,m∗
coin).

• Output phase: At the end of the experiment, A outputs a bit coin′ ∈ {0, 1}, which is the output of the
experiment.

Let S = {fpk ∈ D[pk] : pk ∈ Cor ∪Mal}. We say an adversary A is admissible if for all functions fpk ∈ S,
it holds that fpk(m

∗
0) = fpk(m

∗
1). The registration-based functional encryption scheme RFE is said to be

secure if for all admissible adversaries A, there exists a negligible function negl(·) such that for all λ ∈ N,

|Pr[ExptRFEA (1λ, 0) = 1]− Pr[ExptRFEA (1λ, 1) = 1]| = negl(λ).

Definition 3 (Bounded Registered FE) We say that a registered FE scheme RFE is bounded if there is
an a-priori bound on the number of registered users in the system. In a bounded RFE, the setup additionally
takes a bound parameter 1L which specifies the maximum number of registered users that can be joined to
the system. Similarly, in the correctness and security definition, the adversary is asked to submit the bound
1L at the beginning and it is restricted to query up to L queries.

16



Specific function classes of RFE: In this work, we construct RFE schemes for general (polynomial-size)
functions from obfuscation as well as bounded RFE schemes for specific function classes from pairings. We
consider the following class of registered FEs:
• Registered Inner Product FE. The inner product FE or IPFE [ABDP15,ALS16] is a specific class of FE
which only allows linear computation over the encrypted data. The function space UF and the message
space M are vectors from the set Zn for an integer n ∈ N. In particular, a user registers the public
key pk along with a function fpk = y ∈ Zn and a message m = x ∈ Zn is encrypted using the master
public key. During decryption a user recovers the inner product ⟨x,y⟩ between the vectors. As in all
existing pairing-based IPFE schemes of the literature, our registered IPFE scheme also requires that
the inner product value to lie in a polynomial range for efficient extraction of it from the exponent of
the target group.

• Registered Attribute-Based Inner Product FE. We consider the attribute-based IPFE or ABIPFE
[ACGU20a] which provides attribute-based access control over IPFE. The secret key and message vec-
tors are additionally associated with an attribute set Att ⊆ Uatt and a policy P ∈ P where Uatt and P
are attribute universe and a set of supported policies respectively, and the recovery of the inner product
during decryption depends on whether the attribute set is satisfying the policy. In our registration-
based setting, a user registers a public key pk with a function fpk = (Att,y) ∈ PSet(Uatt)×Zn(= UF )7
and the encryption of the message m = (P,x) ∈ P × Zn yields a ciphertext where P is made avail-
able with it in the clear. The decryption procedure computes ⟨x,y⟩ (also belonging to a polynomial
range) using the secret key sk of the user if the associated attribute set Att satisfies the policy, i.e., if
P (Att) = 1 holds.

5 Slotted Registered Functional Encryption

In this section, we introduce the notion of slotted registered FE which is the core building block for building
the full-fledged registered FE scheme. We discuss the transformation from slotted registered FE to registered
FE in Section 9.

Definition 4 (Slotted Registered Functional Encryption) Let UF = {Fλ}λ∈N be the universe of func-
tions andM be the set of messages. A slotted registered functional encryption scheme with function universe
UF and message spaceM is a tuple of efficient algorithms SlotRFE = (Setup,KeyGen, IsValid,Aggregate,Enc,
Dec) that work as follows:

Setup(1λ, 1|UF |, 1L)→ crs : The setup algorithm takes the security parameter λ, the (maximum) size |UF |
of the functions in UF and the number of slots L (in unary) as inputs and outputs a common reference
string crs.

KeyGen(crs, i)→ (pki, ski) : The key generation algorithm takes the common reference string crs, and a slot
index i ∈ [L] as inputs and outputs a public key pki and a secret key ski for the slot i.

IsValid(crs, i, pki) ∈ {0, 1} : The key-validation algorithm takes a common reference string crs, a slot index
i ∈ [L] and a public key pki as inputs and outputs a bit b ∈ {0, 1}. This is a deterministic algorithm.

Aggregate(crs, (pk1, f1), . . . , (pkL, fL))→ (MPK, hsk1, . . . , hskL) : The aggregate algorithm takes a common
reference string crs, a list of L public key-function pairs (pk1, f1), . . . , (pkL, fL) as inputs such that
fi ∈ Fλ for all i ∈ [L] and outputs a master public key MPK and a collection of helper decryption keys
hsk1, . . . , hskL. We assume that the master public key is implicitly provided to the users along with
their helper decryption keys. This is a deterministic algorithm.

Enc(MPK,m)→ ct : The encryption algorithm takes a master public key MPK and a message m ∈ M as
inputs and outputs a ciphertext ct.

7Here, PSet(X) denotes the power set of the set X.
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Dec(sk, hsk, ct) ∈M∪ {⊥} : The decryption algorithm takes a secret key sk, a helper decryption key hsk
and ciphertext ct as inputs and outputs a message m′. This is a deterministic algorithm.

The algorithms must satisfy the following properties:

Completeness: For all λ ∈ N, all property universes UP , and all indices i ∈ [L],

Pr

[
IsValid(crs, i, pki) = 1 : crs← Setup(1λ, 1|UF |, 1L); (pki, ski)← KeyGen(crs, i)

]
= 1.

Correctness: The SlotRFE is said to be correct if for all security parameters λ ∈ N, all possible lengths

L ∈ N, all indices i ∈ [L], if we sample crs ← Setup(1λ, 1|UF |,1L), (pki, ski) ← KeyGen(crs, i) and for
all collections of public keys {pkj}j ̸=i (which may be correlated to pki) where IsValid(crs, j, pkj) = 1, all
messages m ∈M, all functions f ∈ Fλ, the following holds

Pr

[
Dec(ski, hski, ct) = f(m) :

(MPK, hsk1, . . . , hskL)← Aggregate(MPK, (pk1, f1), . . . , (pkL, fL));
ct← Enc(MPK,m)

]
= 1.

Compactness: The SlotRFE is said to be compact if there exists a universal polynomial poly(·, ·, ·) such
that the length of the master public key and individual helper secret keys output by Aggregate are bounded
by poly(λ, |UF |, logL).

Security: Let coin ∈ {0, 1} be a bit. We define the following security experiment ExptSlotRFEA (1λ, b) played
between an adversary A and a challenger.

• Setup phase: The adversary sends a slot count 1L to the challenger. The challenger samples crs ←
Setup(1λ, 1|UF |, 1L) and sends crs to A. The challenger initializes a counter ctr ← 0, a dictionary D
and a set of corrupted indices Cor← ∅ and a set of malicious indices Mal← ∅.

• Pre-challenge query phase: The adversary A is allowed to query the following queries:

− Key-generation query: In a key-generation query, A specifies a slot index i ∈ [L]. The
challenger samples (pkctr, skctr) ← KeyGen(crs, i) and increments ctr ← ctr + 1. Then, it sends
(ctr, pkctr) to A. The challenger adds the mapping ctr 7→ (i, pkctr, skctr) to the dictionary D.

− Corruption query: In a corruption query, A specifies an index 1 ≤ c ≤ ctr. The challenger
looks up the tuple (i′, pk′, sk′)← D[c] and sends sk′ to A.

• Challenge phase: For each slot i ∈ [L], A specifies a tuple (ci, pk
∗
i ) where either ci ∈ {1, . . . , ctr} to

reference a challenger-generated key or ci = ⊥ to reference a key outside this set. A also specifies two
challenge messages m∗

0,m
∗
1. The challenger does the following:

− If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] = (i′, pk′, sk′). If i = i′, then the
challenger sets pki ← pk′. Moreover, if A previously issues a corruption query on the index ci,
then the challenger adds the slot index i to Cor. Otherwise, if i ̸= i′, then the experiment halts.

− If ci = ⊥, then the challenger checks IsValid(crs, i, pk∗i ) = 1. If not, the experiment halts. If the
key is valid, the challenger sets pki ← pk∗i and adds the slot index i to Mal.

The challenger computes (MPK, hsk1, . . . , hskL) ← Aggregate(MPK, (pk1, f1), . . . , (pkL, fL) and then
ct∗ ← Enc(MPK,m∗

coin). Finally, it sends ct
∗ to A. Note that, there is no need to additionally provide

(MPK, hsk1, . . . , hskL) toA since Aggregate is a deterministic algorithm. Similarly, there is no advantage
of allowing A to select the challenge messages after seeing the aggregated key.

• Post-challenge query phase: The adversary A is allowed to query the following queries:
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− In a corruption query, A specifies a slot index c ∈ {1, . . . , ctr}. The challenger picks the tuple
(i′, pk′, sk′) ← D[c] and sends sk′ to A. Moreover, if A registered a tuple of the form (c, pk∗) in
the challenge phase for some choice of pk∗, then the challenger adds the slot index i′ ∈ [L] to Cor.

• Output phase: At the end of the experiment, A outputs a bit coin′ ∈ {0, 1}, which is the output of the
experiment.

We say an adversary A is admissible if for all corrupted slot indices i ∈ Cor ∪Mal, it holds that f(m∗
0) =

f(m∗
1). The slotted registration-based encryption scheme SlotRFE is said to be secure if for all polynomials

L = L(λ) and all efficient and admissible adversaries A, there exists a negligible function negl(·) such that
for all λ ∈ N,

|Pr[ExptSlotRFEA (1λ, 0) = 1]− Pr[ExptSlotRFEA (1λ, 1) = 1]| = negl(λ).

Remark 1 (On post-challenge queries) The security definition above allows the adversary to make ad-
ditional corruption queries in a post-challenge query phase. However, as shown in [HLWW23], the security
in the setting without post-challenge queries implies the security in the setting with post-challenge queries
since the aggregation algorithm is deterministic. For the same reason, we ignored post-challenge queries in
the security definition of registered FE (Def. 2). Hence, we only consider (slotted) registered FE with a
security notion that does not involve any post-challenge queries.

6 Slotted Registered IPFE from Pairing

In this section, we construct a slotted registered IPFE in the asymmetric bilinear pairing groups and prove
its security in the GGM.

6.1 Construction

The slotted registered inner product functional encryption SlotRIPFE = (Setup,KeyGen, IsValid,Aggregate,
Enc,Dec) for a function universe UF = Zn, and message spaceM = Zn works as follows:

Setup(1λ, 1n, L) : The setup algorithm takes the security parameter λ, the length n of vectors (in unary)
and the number of users L (in binary) as inputs and samples G = (G1,G2,GT , p, g1, g2, e) ← GG(1λ).
The algorithm computes the following terms:

1. Sample α← Zn
p , γ, βi ← Zp for all i ∈ [L].

2. Compute Z := gαT and Γ := g
1/γ
1 where gT = e(g1, g2).

3. For each i ∈ [L], compute Ai := gβiα
1 , Bi := gβi

1 , B̃i := gβi

2 , Di := g
1/βi

2 .

4. For each slot i, j ∈ [L] and i ̸= j, compute Ri,j := g
γβi/βj

2 ,Si,j := g
γβiα/βj

2 .

5. Output the common reference string as

crs :=

 G, Z = gαT , Γ = g
1/γ
1 ,

{Ai = gβiα
1 , Bi = gβi

1 , B̃i = gβi

2 , Di = g
1/βi

2 }i∈[L],ℓ∈[n],

{Ri,j = g
γβi/βj

2 , Si,j = g
γβiα/βj

2 }i,j∈[L],i̸=j

 .

KeyGen(crs, i) : The key generation algorithm takes the common reference string crs, and a slot index i ∈ [L]
as inputs and works as follows:

1. Sample ri ← Zp and compute Ui := Bri
i , Ũi = B̃ri

i , Pi,j := Rri
i,j for all j ∈ [L] and j ̸= i.

19



2. Output the public and secret keys as

pki :=
(
Ui = gβiri

1 , Ũi = gβiri
2 , {Pi,j = g

γβiri/βj

2 }j∈[L],j ̸=i

)
and ski := ri.

IsValid(crs, i, pki) : The public key verification algorithm takes the common reference string crs, a slot index

i ∈ [L] and a public key pki = (Ui, Ũi, {Pi,j}j∈[L],j ̸=i), and checks the following:

e(Ui, g2)
?
= e(g1, Ũi) and

e(Ui, Dj)
?
= e(Γ, Pi,j) ∀j ∈ [L] \ {i}.

If the check passes then it outputs 1; otherwise 0.

Aggregate(crs, (pk1,y1), . . . , (pkL,yL)) : The aggregate algorithm takes a common reference string crs, a
list of L public key-function pairs (pk1,y1), . . . , (pkL,yL) as inputs such that yi ∈ Zn and pki =

(Ui, Ũi, {Pi,j}j∈[L],j ̸=i) for all i ∈ [L]. It proceeds as follows:

1. Using Ai, Ui and yi, compute Wi := Ui ·
∏

ℓ∈[n] A
yi,ℓ

i,ℓ = Ui · gβi⟨yi,α⟩
1 , where Ai,ℓ denotes the ℓ-th

entry of Ai.

2. Using Si,j and yi, compute Sj,i =
∏

ℓ∈[n] S
yj,ℓ

j,i,ℓ = g
γβj⟨yi,α⟩/βi

2 for all i, j ∈ [L] and j ̸= i, where
Sj,i,ℓ denotes the ℓ-th entry of Sj,i.

3. Compute the component of MPK as W =
∏

i∈[L] Wi.

4. Compute the components of hski as Si :=
∏

j∈[L]\{i} Sj,i and Pi :=
∏

j∈[L]\{i} Pj,i.

5. Output the master public key and slot-specific helper decryption keys as

MPK := (G, Z, Γ, W ) and hski := Si · Pi.

Enc(MPK,x) : The encryption algorithm takes a master public key MPK and a message x ∈ Zn as inputs
and proceeds as follows:

1. Sample s← Zp.

2. Compute C0 := gsT and C1 = (gx1

T · Zs
1 , . . . , g

xn

T · Zs
n) = gx+sα

T where Zℓ denotes the ℓ-th entry of
Z.

3. Compute C2 := W−s and C3 := Γs.

4. Output the ciphertext
ct := (C0,C1, C2, C3).

Dec(sk, hsk, ct) : The decryption algorithm takes a secret key sk = r, a helper decryption key hsk for the
i-th slot and a ciphertext ct := (C0,C1, C2, C3) as inputs and works as follows:

1. Compute the following terms

E := e(C2, Di) · e(C3, hsk) and C =
∏
ℓ∈[n]

C
yi,ℓ

1,ℓ

where C1,ℓ denotes the ℓ-th entry of C1.

2. Output the message as loggT
(
C · Csk

0 · E
)
.
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Completeness: Consider a key pair (pki, ski) generated using KeyGen(crs, i; r). Then by construction, we

have pk = (Ui, Ũi, {Pi,j}j∈[L],j ̸=i) where

Ui = Bri
i = gβiri

1 , Ũi = B̃ri
i = gβiri

2 and Pi,j = Rri
i,j = g

γβiri/βj

2 .

Therefore, the validity of pki is verified using

e(Ui, g2) = e(g1, g2)
βiri = e(g1, Ũi) and

e(Ui, Dj) = e(g1, g2)
βiri/βj = e(Γ, Pi,j) ∀j ∈ [L] \ {i}

since Dj = g
1/βj

2 and Γ = g
1/γ
1 . The RIPFE satisfies completeness since the public key passes all the pairing

equations defined by the IsValid algorithm, i.e. IsValid(crs, pki) outputs 1.

Correctness: Consider a secret key sk = ri, a helper decryption key hsk = Si · Pi and a ciphertext
ct = (C0,C1, C2, C3). Then, by construction, we have

hsk =
∏
j ̸=i

g
γrjβj/βi

2 ·
∏
ℓ∈[n]

∏
j ̸=i

g
γrjyj,ℓαℓβj/βi

2 =
∏
j ̸=i

g
γrjβj/βi

2 ·
∏
j ̸=i

g
γrj⟨yj ,α⟩βj/βi

2 ,

C2 =
∏
i∈[L]

W−s
i =

∏
i∈[L]

U−s
i

∏
i∈[L]

·
∏
ℓ∈[n]

A
−syi,ℓ

i,ℓ =
∏
i∈[L]

g−sriβi

1 ·
∏
i∈[L]

g
−s⟨yi,α⟩βi

1 ,

e(C2, Di) =
∏
j∈[L]

e(g1, g2)
−srjβj/βi ·

∏
j∈[L]

e(g1, g2)
−s⟨yj ,α⟩βj/βi ,

e(C3, hsk) =
∏
j ̸=i

e(g1, g2)
srjβj/βi ·

∏
j ̸=i

e(g1, g2)
srj⟨yj ,α⟩βj/βi ,

C =
∏
ℓ∈[n]

C
yi,ℓ

1,ℓ = g
⟨x,yi⟩+s⟨yi,α⟩
T , Csk

0 = gsriT .

Therefore, E = e(C2, Di) · e(C3, hsk) = e(g1, g2)
−s(ri+⟨yi,α⟩). Hence, the inner product value is obtained as

loggT
(
C · Csk

0 · E
)
= ⟨x,yi⟩.

Compactness: The master public key contains O(n) group elements and each group element can be
represented using poly(λ) bits. Therefore, the master public key size is bounded by poly(λ, |UF |, logL) where
|UF | = n. The helper decryption key contains a single group element. Since the information of the aggregated
master public key is given with the helper decryption key the size is also bounded by poly(λ, |UF |, logL).

6.2 Security Analysis

Theorem 1 The slotted registered inner product functional encryption scheme is secure in the generic group
model.

Proof. Let a PPT adversary against our slotted registered IPFE be A. Recall that it is sufficient to assume
that there is no post-challenge queries from A. Let Cor be the set of all corrupted slots, for which honest
key pairs are generated by the challenger and later are corrupted by A and the corresponding secret keys
are revealed to A. Let Mal be the set of slots for which maliciously keys are provided by A itself. At the
beginning, Cor is set an empty set and it is dynamically filled with the corrupted slot indices during the
course of the security experiment. Similarly, Mal is set an empty set at the beginning of the game. It is
defined during the challenge phase based on the keys provided by A.

We consider the following sequence of hybrid games played between the adversary A and the challenger.
Let Ei be the event of A outputting the correct bit coin in Game i.
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Game 0: This is the real experiment in the generic group model. We also assume that the total number
of corrupted slots is Qcor and the total number of zero-test queries made by A is Qzt. The challenger
simulates A as follows.

Setup. The challenger samples α ← Zn
p , γ, βi ← Zp for all i ∈ [L]. It creates the following lists of

group exponents:

• L1 = {1, 1/γ, {βiαi, βi}i∈[L]} which corresponds to the G1-elements in the CRS.

• L2 = {1, {βi, 1/βi}i∈[L], {γβi/βj , γβiα/βj}i,j∈[L],i̸=j} which corresponds to the G2-elements in
the CRS.

• LT = {1,α} which corresponds to the GT -elements in the CRS.

The adversary is given handles corresponding to all the elements of lists L1, L2 and LT .

Pre-challenge query phase. The challenger initializes a dictionary D, a set of corrupted set Cor←
∅, a set of indices for which maliciously generated keys Mal ← ∅, and sets ctr ← 0. A makes the
following queries:

1. Key generation queries. A specifies a slot index i. Then, the challenger samples ri ← Zp, sets
skctr = ri, updates the lists as

• L1 ← L1 ∪ {βiri},
• L2 ← L2 ∪ {βiri, {γβiri/βj}i,j∈[L],i̸=j},

and provides A with the handles of newly computed group elements. The challenger increments
ctr ← ctr + 1 and adds the mapping ctr 7→ (i, hpkctr , skctr) to the dictionary D. Here, hpkctr is
the set of handles corresponding to the newly added elements in the list and is of the form
{(1, hi), (2, h̃i), {(2, hi,j)}j∈[L]\{i}} with L1[hi] = L2[hi] = βiri and L2[hi,j ] = γβiri/βj .

8

2. Corruption queries. In a corruption query, A specifies an index 1 ≤ c ≤ ctr. The challenger looks
up the tuple (i′, hpk′ , sk

′) ← D[c] and sends sk′ to A. It updates the set of corrupted indices as
Cor← Cor ∪ {i′}.

Challenge phase. For each slot i ∈ [L], A specifies a tuple (ci, hpk∗i
,yi) where either ci ∈ {1, . . . , ctr}

to reference a challenger-generated key or ci = ⊥ to reference a key outside this set. Here, we denote
hpk∗i

= {(1, h∗
i ), (2, h̃

∗
i ), {(2, h∗

i,j)}j∈[L]\{i}} by the list of handles associated to the public key of the i-th
slot. A also specifies two challenge messages x∗

0,x
∗
1.

• If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] = (i′, hpk′ , sk
′). If i = i′, then the

challenger sets hpki ← hpk′ . Otherwise, if i ̸= i′, then the experiment halts.

• If ci = ⊥, then the challenger runs IsValid on the GGM. In more detail, it checks whether the
following equations hold by the zero test oracle:9

L1[h
∗
i ]− L2[h̃

∗
i ] ≡ 0 mod p, (3)

L1[h
∗
i ]/βj − L2[h

∗
i,j ]/γ ≡ 0 mod p ∀j ∈ [L] \ {i}. (4)

If Equation (3) or (4) does not hold, the experiment halts. If the both equations hold, the
challenger sets hpki ← hpk∗i

, adds the slot index i to Mal. Note that for each index i such that
ci ̸= ⊥, L additional zero-test queries are made by the above check.

8Recall that in the GGM, the adversary can only access the handles corresponding to the group elements in pkctr.
9We note that the verification of the equations requires a number of steps in GGM, which we supress here. For example, to

check Eq. (4), a handle for L1[h∗
i,j ]/γ is first generated by calling map on input h∗

i,j and the handle for 1/βj . Then, a handle

for −L1[h∗
i,j ]/γ is generated by submitting the resulting handle to neg. A handle for L1[h∗

i ]/βj − L2[h∗
i,j ]/γ is generated by

calling add on input the handle for L1[h∗
i ]/βj and −L1[h∗

i,j ]/γ, where the former handle is generated similarly to the latter.
Finally, the obtained handle is submitted to zero-test.
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Let us denote hpki = {(1, hi), (2, h̃i), {(2, hi,j)}j∈[L]\{i∗}} for i ∈ [L]. Next, the challenger computes the
handles corresponding to the challenge ciphertext by sampling coin← {0, 1}, s← Zp and computing

c0 := s, c1 := {c1,ℓ}ℓ∈[n] = x∗
coin + sα, c2 :=

∑
i∈[L]

s(L1[hi] + βi⟨yi,α⟩), c3 := s/γ.

It then updates the lists as

• L1 ← L1 ∪ {c2, c3},
• LT ← LT ∪ {s, {c1,ℓ}ℓ∈[n]}

and gives the handles of the newly added elements to the adversary A.

Output phase. At the end of the experiment, A outputs a guess coin′ ∈ {0, 1}, which is the output
of the experiment.

Game 1: In this game, we partially switch to the symbolic group model and replace

γ, {βi}i∈[L], {ri}i∈[L], s, α = {αℓ}ℓ∈[n], {c1,ℓ}ℓ∈[n], c2, c3

in Zp with formal variables

Γ̂, {B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n], {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3

respectively. Therefore, all the handles given to A refer to elements in the ring

T := Zp[Γ̂, 1/Γ̂, {B̂i, 1/B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n], {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3]

where {R̂i}i∈[L] are needed to represent the secret keys sampled by the challenger. However, when A
submits a zero-test query, the challenger substitutes the formal variables with corresponding elements
in Zp.

In more detail, the challenger picks γ, {βi}i∈[L], s, {αℓ}ℓ∈[n], {ri}i∈[L] at the beginning of the game
as in the previous game (following the same distribution). It also computes {c1,ℓ}ℓ∈[n], c2, c3 ∈ Zp

as in the previous game when it answers the challenge query. Once the Zp-elements are sampled,
these remain fixed throughout the experiment. Furthermore, for an honest slot i, ri is revealed to
the adversary whenever it makes a corruption query for the slot and the associated index i is added
to Cor. A zero-test query before and during the challenge phase10 always corresponds to an element
f(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n]) in the sub-ring T′ of T which is defined as

T′ := Zp[Γ̂, 1/Γ̂, {B̂i, 1/B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n]].

For the query, the challenger returns 1 if

f(γ, {βi}i∈[L], {ri}i∈[L], s, {αℓ}ℓ∈[n]) = 0

holds over Zp, and 0 otherwise. A zero test query after the challenge phase corresponds to an element

f(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n], {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3) in T. For the query, the challenger returns 1
if

f(γ, {βi}i∈[L], {ri}i∈[L], s, {αℓ}ℓ∈[n], {c1,ℓ}ℓ∈[n], c2, c3) = 0

holds over Zp, and 0 otherwise. We show in Lemma 1 that Pr[E0] = Pr[E1].

10Recall that IsValid ia run during the challenge phase and it involves the zero-test queries.
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We now list all the components in T for which the corresponding handles are given to A during the game.
The components of T related to the group elements of G1, G2, and GT are given by

V1 =

{
1, 1/Γ̂, {B̂i, {B̂iÂℓ}ℓ∈[L]}i∈[L], {B̂iR̂i}i∈[L], Ĉ2, Ĉ3

}
,

V2 =

{
1, {B̂i, 1/B̂i, B̂iR̂i}i∈[L], {Γ̂B̂i/B̂j , Γ̂B̂iR̂i/B̂j , {Γ̂B̂iÂℓ/B̂j}ℓ∈[n]}i,j∈[L],i̸=j

}
,

VT =

{
1, Ŝ, {Ĉ1,ℓ}ℓ∈[n]

}
,

(5)

respectively. We also define V3 ⊂ V2 as V3 = {1/B̂i}i∈[L]. Note that any handle refers to an element f ∈ T
that can be represented as

f =
∑

(X,Y )∈V1×V2

aX,Y X · Y +
∑

Z∈VT

aZZ

=
∑

(X,Y )∈(V1×V2)\({Ĉ2}×V3)

aX,Y X · Y

︸ ︷︷ ︸
:=f1

+
∑
i∈[L]

bi · Ĉ2 · (1/B̂i)︸ ︷︷ ︸
:=f2

+ d0 · Ŝ +
∑
ℓ∈[n]

dℓ · Ĉ1,ℓ︸ ︷︷ ︸
:=f3

(6)

using aX,Y ∈ Zp for X ∈ V1 and Y ∈ V2 and aZ ∈ Zp for Z ∈ VT . In the last equation, we rename the
coefficients as bi := aĈ2,1/B̂i

, d0 := aŜ, and dℓ := aĈ1,ℓ
and divide the sum into three parts for later analysis.

Note that the above representation of f does not uniquely determine {aX,Y }X,Y , since different choices of
X and Y may lead to the same product X · Y .11 However, we can see that {bi}i∈[L], and {dℓ}ℓ∈[0,n] are
uniquely determined from f .

Game 2: In this game, we change the way zero-test queries are answered. Namely, whenever a zero-test
query corresponding to a handle of f ∈ T is made, the challenger defines f ′′ ∈ T′ as f ′′ := f if the
query is made during or before the challenge phase. Otherwise, the challenger defines f ′′ as

f ′′(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n]) :=

f(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L], Ŝ, {Âℓ}ℓ∈[n], {C1,ℓ}ℓ∈[n], C2, C3)

where {C1,ℓ}ℓ∈[n], C2, and C3 are polynomials in T′ defined as

C1,ℓ := ŜÂℓ + x∗
ℓ,coin, C2 :=

∑
i∈[L]

Ŝ(L1[hi] + B̂i · ⟨yi, Â⟩), C3 := Ŝ/Γ̂ (7)

respectively, where ⟨yi, Â⟩ denotes the linear combination of the vector yi and the variables {Âℓ}ℓ∈[n],

that is ⟨yi, Â⟩ =
∑

ℓ∈[n] yi,ℓÂℓ. Here, L1[hi] is an element in T′ defined as in Game 1. Then, f ′ ∈ T′

is defined as

f ′(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]) :=

f ′′(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {ri}i∈Cor, Ŝ, {Âℓ}ℓ∈[n]). (8)

We emphasize that Cor is the set of corrupted indices at the time when the zero-test query is made.
After that, it answers the zero-test query by substituting the formal variables with their values in Zp.
In particular, the challenger returns 1 if it holds that

f ′(γ, {βi}i∈[L], {ri}i∈[L]\Cor, s, {αℓ}ℓ∈[n]) = 0

and 0 otherwise. We show in Lemma 2 that Pr[E1] = Pr[E2].

11For example, we have 1 · B̂i = B̂i · 1 and B̂i · (1/B̂j) = (1/Γ̂) · (Γ̂B̂i/B̂j).
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Game 3: In this game, we switch to the SGM completely and change the way the zero-test queries are an-
swered by the challenger. The challenger no longer uses the integers γ, {βi}i∈[L], {ri}i∈[L]\Cor, s, {αℓ}ℓ∈[n]

from Zp in order to simulate the zero-test queries. Instead, when A submits a handle corresponding
to f ∈ T, the challenger first computes associated f ′ ∈ T′ and returns 1 if

f ′(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]) = 0 (9)

holds over T′, 0 otherwise. Note that this change in particular means that Eq. (3) and (4) that are
checked during the challenge phase is replaced with the following check:

L′
1[h

∗
i ]− L′

2[h̃
∗
i ] ≡ 0 over T′ (10)

and
L′
1[h

∗
i ]/B̂j − L′

2[h
∗
i,j ]/Γ̂ ≡ 0 over T′ ∀j ∈ [L] \ {i} (11)

where L′
1[h

∗
i ] and L′

2[h
∗
i,j ] are elements in T′ that are obtained by replacing {R̂i}i∈Cor with {ri}i∈Cor

that appear in L1[h
∗
i ] and L2[h

∗
i,j ], respectively.

12 We show in Lemma 3 that

|Pr[E2]− Pr[E3]| ≤ Qzt(L+ 7)2/p.

Game 4: In this game, the challenger checks if the adversarially generated public keys are in a specific
form before proceeding to computing the challenge ciphertext. More precisely, if A submits handles
{(1, h∗

i ), (2, h̃
∗
i ), {(2, h∗

i,j)}j∈[L]\{i}} with ci = ⊥ at the challenge phase, the challenger verifies whether
the handles satisfy

L′
1[h

∗
i ] = L′

2[h̃
∗
i ] = r∗i B̂i + t∗i B̂iR̂i, L′

2[h
∗
i,j ] = r∗i Γ̂B̂i/B̂j + t∗i Γ̂B̂iR̂i/B̂j , ∀j ̸= i (12)

for some r∗i , t
∗
i ∈ Zp and aborts the experiment otherwise. We show in Lemma 4 that Pr[E3] = Pr[E4].

Game 5: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. When A submits a handle corresponding to f ∈ T for a zero-test query, the challenger represents
f as in Eq. (6) and returns 0 if there exists i ̸∈ Cor ∪Mal such that bi ̸= 0. Otherwise, the challenger
proceeds as in the previous game for answering the zero-test queries. We show in Lemma 5 that
Pr[E4] = Pr[E5].

Game 6: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. When A submits a handle corresponding to f ∈ T for a zero-test query, the challenger represents
f as in Eq. (6) and returns 0 if

d = −
∑

i∈Cor∪Mal

biyi, where d = (d1 . . . , dn) (13)

does not hold. Otherwise, the challenger proceeds as in the previous game for answering the zero-test
queries. We show in Lemma 6 that Pr[E5] = Pr[E6].

In Lemma 7, we show Pr[E6] = 1/2. Combining the advantage of A in distinguishing between the adjacent
games, we obtain

|Pr[E0]−
1

2
| ≤ Qzt(L+ 7)2/p

which is negligible in the security parameter.
We now prove Lemma 1 to 6 to complete the security analysis.

12L1[h∗
i ] and L2[h∗

i,j ] do not contain the terms {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3 since the challenge ciphertext has not been generated
yet at the point when these handles are specified. So, we can skip the step where they are replaced with the corresponding
polynomials in T′ when transforming L1[h∗

i ] and L2[h∗
i,j ] into L′

1[h
∗
i ] and L′

2[h
∗
i,j ].

25



Lemma 1 For any adversary, it holds that Pr[E0] = Pr[E1].

Proof. The only difference between Game 0 and Game 1 is that the challenger switched to the symbolic
group model in Game 1, however, it answers the zero-test queries of A in the exact same way as it does in
Game 0. In particular, in both the games, the zero-test queries are answered using the same distribution of
γ, {βi}i∈[L], {ri}i∈[L], s, {αℓ}ℓ∈[n], {c1,ℓ}ℓ∈[n], c2, c3 over Zp. Hence, the view of A remains the same in both
the games. The lemma follows. □

Lemma 2 For any adversary, it holds that Pr[E1] = Pr[E2].

Proof. The only difference between Game 1 and Game 2 is in how the zero-test queries corresponding to
f ∈ T are answered. We only consider the case where the query is made after the challenge phase, since
the other case is simpler. When the query corresponding to f ∈ T is made, the challenger replaces the
formal variables {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3 with the polynomials {C1,ℓ}ℓ∈[n], C2, C3 ∈ T′ defined as Eq. (7) and

{R̂i}i∈Cor with {ri}i∈Cor, represents f as an element f ′ in the subring T′, and replaces the remaining formal
variables with the Zp values to see if the resulting value equals to 0 in Game 2, whereas the challenger
directly replaces all the formal variables in f with the corresponding Zp values without going through the
intermediate polynomial f ′ in Game 1. However, this does not change the value that the zero-test oracle
returns to the adversary since we have

f ′(values′) = f ′′(values′, values′′) = f ′′(values)

= f(values, {C1,ℓ(values)}ℓ∈[n], C2(values), C3(values)) = f(values, {c1,ℓ}ℓ∈[n], c2, c3)

where values, values′, and values′′ are short-hand expressions for (γ, {βi}i∈[L], {ri}i∈[L], s, {αℓ}ℓ∈[n]), (γ,
{βi}i∈[L], {ri}i∈[L]\Cor, s, {αℓ}ℓ∈[n]), and {ri}i∈Cor, respectively. Hence, the view of A remains the same
in both the games. The lemma follows. □

Lemma 3 For any adversary, it holds that |Pr[E2]− Pr[E3]| ≤ (Qzt +QcorL)(L+ 5)/p.

Proof. The only change of Game 3 from Game 2 is that the challenger uses the formal variables Γ̂, {B̂i}i∈[L],

{R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n] instead of the Zp values γ, {βi}i∈[L], {ri}i∈[L]\Cor, s, {αℓ}ℓ∈[n] to answer the zero-
test queries of A, where Cor is the set of corrputed indices at the time when the query is made. Therefore,
the only possible case when Game 3 behaves differently from Game 2 in A’s view is the following: A submits
a handle for an element f ∈ T to the zero-test oracle satisfying

f ′(γ, {βi}i∈[L], {ri}i∈[L], s, {αℓ}ℓ∈[n]) = 0
∧

f ′(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]) ̸= 0

where f ′ ∈ T′ is defined from associated f ∈ T as in Eq. (8). Let us denote the event as Ebad. It is sufficient
to bound the probability of Ebad in Game 2.

We now fix an element f ′ ∈ T′ and define a polynomial g(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]) ∈
Zp[Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]] as

g(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n])

= Γ̂ ·
∏

i∈[L] B̂i · f ′(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]).

The product Γ̂ ·
∏

i∈[L] B̂i is introduced to cancel out any denominator of f ′ ∈ T′. Note that g is a polynomial

in the ring Zp[Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]] rather than in T. We have that the event Ebad occurs
if and only if

g(γ, {βi}i∈[L], {ri}i∈[L]\Cor, s, {αℓ}ℓ∈[n]) = 0
∧

g(Γ̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]) ̸= 0
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since γ and {βi}i∈[L] are non-zero over Zp. Using Schwartz-Zippel lemma (Lemma 1), we can bound the

probability of Ebad by (L + 5)2/p since the maximum degree of g is (L + 5) over the ring Zp[Γ̂, {B̂i}i∈[L],

{R̂i}i∈[L]\Cor, Ŝ, {Âℓ}ℓ∈[n]]. The maximum degree is calculated by representing f as in Eq. (6) and noting that
the degree of C2 as a polynomial in T′ does not exceed 3, since each L1[hi] should be the linear combination

of element in V1\{Ĉ2, Ĉ3} (See Eq. (7).). Since there are a total of Qzt +QcorL number of zero-test queries,
the lemma follows. □

Lemma 4 For any adversary, it holds that Pr[E3] = Pr[E4].

Proof. The only difference between Game 3 and Game 4 is that the challenger aborts the experiment in
Game 4 at the challenge phase if the adversarially sampled public keys do not match with a particular
format. In particular, if A submits handles {(1, h∗

i ), (2, h̃
∗
i ), {(2, h∗

i,j)}j∈[L]\{i}} representing the handles for
(an adversarially generated) public key for the slot i at the challenge phase, then the challenger verifies
whether the handles satisfy Eq. (12) for some r∗i , t

∗
i ∈ Zp and aborts the game if not in Game 4. Note

that in both the games, the challenger runs IsValid before proceeding to computing the challenge ciphertext,
otherwise the challenger aborts the experiment. Thus, the two games only differ from A’s view if IsValid
ouputs 1 on those handles, but the handles do not match the particular format shown in Eq. (12). Here, we
show that this cannot happen and thus the two games are in fact equivalent.

For proving this, we first define the set of monomials V0 as V1\{Ĉ2, Ĉ3}. We can see that L1[h
∗
i ] should be

an element in T′ that can be represented as a linear combination of monomials in V0 with coefficients in Zp.
13

This implies that L′
1[h

∗
i ] can be represented as a linear combination of monomials in V ′

0 with coefficients in
Zp, where V ′

0 is defined as

V ′
0 :=

{
1, 1/Γ̂, {B̂k, {B̂kÂℓ}ℓ∈[L]}k∈[L], {B̂kR̂k}k∈[L]\Cor

}
Similarly, we can also see that L2[h̃

∗
i ] and L2[h

∗
i,j ] for j ∈ [L]\{i} should correspond to elements in T′

that can be represented as linear combinations of monomials in V2 with coefficients in Zp. This implies that
L′
2[h

∗
i ] and L′

2[h
∗
i,j ] for all j ∈ [L]\{i} can be represented as linear combinations of monomials in V ′

2 with
coefficients in Zp, where V ′

2 is defined as

V ′
2 =

{
1, {B̂k, 1/B̂k}k∈[L], {Γ̂B̂k/B̂j , {Γ̂B̂kÂℓ/B̂j}ℓ∈[n]}k,j∈[L],k ̸=j , {B̂kR̂k, {Γ̂B̂kR̂k/B̂j}j ̸=k}k∈[L]\Cor

}
.

If the handles pass the verification, it in particular means that the handles satisfy Eq. (10) . This implies

that L′
1[h

∗
i ] (and thus L′

2[h̃
∗
i ]) can be represented as a linear combination of monomials in V ′

0 ∩ V ′
2 = {1} ∪

{B̂k}k∈[L] ∪ {B̂kR̂k}k∈[L]\Cor with coefficients in Zp. Namely, we can write

L′
1[h

∗
i ] = e0 +

∑
k∈[L]

ekB̂k +
∑

k∈[L]\Cor

e′kB̂kR̂k

using ek ∈ Zp for k ∈ [0, L] and e′k ∈ Zp for k ∈ [L]\Cor. We then show that ek = 0 and e′k = 0 hold for all
k ̸= i if the handles pass the verification shown in Eq. (11).

• We first show that e0 = 0. For the sake of contradiction, let us assume that e0 ̸= 0 and take some
index k∗ ̸= [L]\{i}. Then, L′

2[h
∗
i,k∗ ] should contain the term Γ̂/B̂k∗ , since Eq. (11) with k∗ ̸= i implies

L′
2[h

∗
i,k∗ ] = Γ̂ · L′

1[h
∗
i ]/B̂k∗ . However, this contradicts the fact that L′

2[h
∗
i,k∗ ] can be represented as a

linear combination of the monomials in V ′
2 with coefficients in Zp, since Γ̂/B̂k∗ ̸∈ V ′

2 .

• We next show that ek = 0 for all k ∈ [L]\{i}. For the sake of contradiction, let us assume that ek∗ ̸= 0

holds for some k∗ ̸= i. Then, L′
2[h

∗
i,k∗ ] should contain the term Γ̂, since Eq. (11) with j = k∗ implies

L′
2[h

∗
i,k∗ ] = Γ̂ · L′

1[h
∗
i ]/B̂k∗ . However, this contradicts the fact that L′

2[h
∗
i,k∗ ] can be represented as a

linear combination of the monomials in V ′
2 with coefficients in Zp, since Γ̂ ̸∈ V ′

2 .

13Note that the linear combination should not include Ĉ2 and Ĉ3, since the handle is submitted before the challenge phase.
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• We finally show that e′k = 0 for all k ̸= i. For the sake of contradiction, let us assume that e′k∗ ̸= 0

holds for some k∗ ̸= i. Then, L′
2[h

∗
i,k∗ ] should contain the term Γ̂R̂k∗ , since Eq. (11) with j = k∗

implies L′
2[h

∗
i,k∗ ] = Γ̂ ·L′

1[h
∗
i ]/B̂k∗ . However, this contradicts the fact that L′

2[h
∗
i,k∗ ] can be represented

as a linear combination of the monomials in V ′
2 with coefficients in Zp, since Γ̂R̂k∗ ̸∈ V ′

2 .

The above shows that L′
1[h

∗
i ] can be written as L′

1[h
∗
i ] = r∗i B̂i + t∗i B̂iR̂i using r∗i ∈ Zp and t∗i ∈ Zp, if

we rename ei and e′i as r∗i and t∗i , respectively. Then, L′
2[h̃

∗
i ] = r∗i B̂i + t∗i B̂iR̂i follows from Eq. (10) and

L′
2[h

∗
i,j ] = r∗i Γ̂B̂i/B̂j + t∗i Γ̂B̂iR̂i/B̂j for all j ̸= i follows from Eq.(11).

Lemma 5 For any adversary, it holds that Pr[E4] = Pr[E5].

Proof. The only difference between Game 4 and Game 5 is in the way zero-test queries are answered.
The only possible case when Game 5 behaves differently from Game 4 in A’s view is the case where the
following event occurs: A submits a handle for f ∈ T to the zero-test oracle such that bi∗ ̸= 0 for some
i∗ ∈ [L]\(Cor ∪Mal) and the associated polynomial f ′ ∈ T′ equals to 0 in T′. Here, we prove that f ′ cannot
be 0 for such f and thus the two games are in fact equivalent.

Recall that f ′ is obtained by replacing {Ĉ1,ℓ}ℓ∈[n], Ĉ2, and Ĉ3 in Eq. (6) with polynomials {C1,ℓ}ℓ∈[n],

C2, and C3 defined as in Eq. (7) to obtain f ′′ ∈ T′ and then replacing {R̂i}i∈Cor that appear in f ′′ with
{ri}i∈Cor. We divide f into f1, f2, and f3 as in Eq. (6) and define the corresponding polynomials f ′′

1 , f
′′
2 , f

′′
3 ,

and f ′
1, f

′
2, and f ′

3 similarly. First observe that we can write f ′′
2 as follows:

f ′′
2 =

∑
i∈[L]

bi · C2 · (1/B̂i) =
∑

i∈[L],j∈[L]

bi · Ŝ(L1[hj ] + B̂j · ⟨yj , Â⟩)(1/B̂i).

If we replace {R̂i}i∈Cor that (implicitly) appear in the above sum with {ri}i∈Cor, we obtain the following:

f ′
2 =

∑
i∈[L],j∈[L]

bi · Ŝ(L′
1[hj ] + B̂j · ⟨yj , Â⟩)(1/B̂i)

=
∑

i∈[L],j∈[L]\(Mal∪Cor)

bi · ŜB̂jR̂j/B̂i +
∑

i∈[L],j∈Cor\Mal

birj · ŜB̂j/B̂i

+
∑

i∈[L],j∈Mal

bi · ŜB̂j(r
∗
j + t∗j R̂j)/B̂i +

∑
i,j∈[L]

bi · ⟨yj , Â⟩ · ŜB̂j/B̂i

=
∑

i∈[L]\(Mal∪Cor)

bi · ŜR̂i +
∑

i∈Cor\Mal

biri · Ŝ +
∑
i∈Mal

bi · Ŝ(r∗i + t∗i R̂i) +
∑
i∈[L]

bi · ⟨yi, Â⟩ · Ŝ + Φ (14)

where we define Φ as

Φ =
∑

i∈[L],j∈[L]\(Mal∪Cor),i̸=j

bi · ŜB̂jR̂j/B̂i +
∑

i∈[L],j∈Cor\Mal,i̸=j

birj · ŜB̂j/B̂i

+
∑

i∈[L],j∈Mal,i̸=j

bi · ŜB̂j(r
∗
j + t∗j R̂j)/B̂i +

∑
i,j∈[L],i̸=j

bi · ⟨yj , Â⟩ · ŜB̂j/B̂i. (15)

In the second line of Eq. (14), we use the fact that L′
1[hj ] can be represented as L′

1[hj ] = r∗j B̂j + t∗j B̂jR̂j for
j ∈ Mal due to the change introduced in Game 4 and in the last line, we single out the terms with i = j
from each of the summations in the second line and put other terms into Φ. In particular, f ′

2 contains the

term ŜR̂i∗ with non-zero coefficient bi∗ , which appears in the leftmost summation in the last line of Eq. (14).
It can be seen by inspection that the term cannot be canceled inside the above sum. We then show that
neither of f ′

1 nor f ′
3 contains the monomial ŜR̂i∗ .

• It is easy to observe that f ′
3 can be represented as a linear combination of Ŝ, 1, and {ŜÂℓ}ℓ. Therefore,

it does not contain the term ŜR̂i∗ .
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• We then show that f ′
1 cannot contain the term either. To show this, we consider each combination of

(X,Y ) ∈ (V1×V2)\({Ĉ2}×V3) and show that the resulting element that is obtained by replacing Ĉ2, Ĉ3

that appear in X ·Y with the polynomials C2 and C3 and then replacing {R̂i}i∈Cor with {ri}i∈Cor does

not contain the desired term ŜR̂i∗ . We first observe that X should be either Ĉ2 or Ĉ3, since otherwise
the resulting element does not contain the multiplicative factor Ŝ.

– We first consider the case of X = Ĉ2. In this case, Y should be chosen from V2\V3. However,

then the resulting terms are multiplied by B̂i for some i and thus does not yield the term.

– We then consider the case of X = Ĉ3. In this case, since Y ∈ V2, the resulting element is
multiplied by either 1/Γ̂ or B̂i/B̂j with i ̸= j. Therefore, it does not yield the term.

Therefore, the monomial ŜR̂i∗ that appears in f ′
1 cannot be canceled by any term in f ′

2 nor f ′
3. This implies

f ′ = f ′
1 + f ′

2 + f ′
3 ̸= 0 over T′ as desired. This completes the proof. □

Lemma 6 For any adversary, it holds that Pr[E5] = Pr[E6].

Proof. The only difference between Game 5 and Game 6 is in the way zero-test queries are answered. The
only possible case when Game 6 behaves differently from Game 5 in A’s view is the case where the following
event occurs: A submits a handle for a polynomial f ∈ T to the zero-test oracle such that bi = 0 for all
i ̸∈ Cor ∪Mal and d ̸= −

∑
i∈Cor∪Mal biyi, but the associated polynomial f ′ ∈ T′ equals to 0 in T′. Here, we

prove that this cannot happen and thus the two games are in fact equivalent.
We divide f into f1, f2, and f3 as in Eq. (6) and define the corresponding polynomials f ′

1, f
′
2, and f ′

3 as in
the proof of Lemma 5. Recall that f ′

2 can be expressed as Eq. (14). Noting that bi = 0 for all i ̸∈ Cor ∪Mal,
Eq. (14) can be (slightly) simplified as follows:

f ′
2 =

∑
i∈Cor∪Mal

bi · ⟨yi, Â⟩ · Ŝ +
∑

i∈Cor\Mal

biri · Ŝ +
∑
i∈Mal

bi · Ŝ(r∗i + t∗i R̂i) + Φ

︸ ︷︷ ︸
:=Ψ

where Φ is defined as in Eq. (15). We also have

f ′
3 = d0Ŝ + ⟨d, Â⟩ · Ŝ + ⟨x∗

coin,d⟩,

which is easy to observe. We then show that f ′
1 does not contain the monomial of the form ŜÂℓ for any ℓ.

This is sufficient to complete the proof, since

f ′ = f ′
1 + f ′

2 + f ′
3 =

〈
d+

∑
i∈Cor∪Mal

bi · yi, Â

〉
· Ŝ + f ′

1 +Ψ+ d0Ŝ + ⟨x∗
coin,d⟩,

does not equal to 0 unless d+
∑

i∈Cor∪Mal bi·yi = 0, which can be seen by observing that f ′
1+Ψ+d0Ŝ+⟨x∗

coin,d⟩
does not contain any term of the form ŜÂℓ.

We then move to show that f ′
1 does not contain the term of the form ŜÂℓ for any ℓ. To show this, we

consider each combination of (X,Y ) ∈ (V1×V2)\({Ĉ2}×V3) and show that the resulting element in T′ that

is obtained by replacing Ĉ2, Ĉ3 that appear in X · Y with the polynomials C2 and C3 and then replacing
{R̂i}i∈Cor with {ri}i∈Cor does not contain the desired term ŜÂℓ. We first observe that X should be either Ĉ2

or Ĉ3, since otherwise the resulting element does not contain the multiplicative factor Ŝ.

• We first consider the case of X = Ĉ2. In this case, Y should be chosen from V2\V3. However, then the

resulting terms are multiplied by B̂i for some i and thus does not yield the term.

• We then consider the case of X = Ĉ3. In this case, since Y ∈ V2, the resulting element is multiplied
by either 1/Γ̂ or B̂i/B̂j with i ̸= j. Therefore, it does not yield the term.
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As discussed above, this completes the proof. □

Lemma 7 For any adversary, it holds that Pr[E6] = 1/2.

Proof. We show that answer to any zero-test query made by A does not depend on the challenge bit coin
and therefore the view of A is independent from the value of coin. To see this, let us consider f ∈ T that
corresponds to a zero-test query made by A during the game and prove that f ′ refers to the same element in
T′ regardless of the value of coin if f satisfies the restrictions that are introduced in Game 5 and Game 6.
For the analysis, we divide f into f1, f2, and f3 as in Eq. (6) and define the corresponding polynomials f ′

1,
f ′
2, and f ′

3 as in the proof of Lemma 5.
We first claim that regardless of the value of coin, f ′

1 and f ′
2 refer to the same elements in T′. This can

be easily seen by observing that f1 and f2 do not include the formal variables {Ĉ1,ℓ}ℓ, which are the only
variables that depend on the value of coin when they are replaced with the polynomials in T′.

We then prove the same statement for f ′
3. We observe:

f ′
3 = d0Ŝ + ⟨d, Â⟩ · Ŝ + ⟨x∗

coin,d⟩ = d0Ŝ + ⟨d, Â⟩ · Ŝ−
∑

i∈Cor∪Mal

bi · ⟨x∗
coin,yi⟩.

Since ⟨x∗
0,yi⟩ = ⟨x∗

1,yi⟩ for all i ∈ Cor∪Mal by the admissibility condition, f ′
3 refers to the same element in

T′ regardless of whether coin = 0 or coin = 1.
Since each of f ′

1, f
′
2, and f ′

3 refers to the same element in T′ regardless of whether coin = 0 or coin = 1,
the same holds for f ′ = f ′

1 + f ′
2 + f ′

3. This completes the proof. □

Finally, the proof of Theorem 1 follows by combining the proofs of Lemma 1 to 7. □

Registered IPFE from pairings: Plugging our slotted registered IPFE into the transformation described
in Section 9, we achieve the following corollary:

Corollary 1 (Bounded Registered IPFE) Let λ be a security parameter. Then, under generic bilinear
group model, for every polynomial L = L(λ) and an integer n ∈ N, there exists a bounded registered IPFE
scheme with function space UF = Zn, message space M = Zn, and supporting up to L users with the
following properties:

• The size of the common reference string and the size of the auxiliary data maintained by the key
curator is L2 · poly(λ, n, logL).

• The running times of key-generation and registration are L · poly(λ, logL) and L · poly(λ, n, logL)
respectively.

• The size of the master public key and the helper decryption keys are both poly(λ, n, logL).

• The size of a ciphertext is poly(λ, n, logL).

7 Slotted Registered ABIPFE from Pairing

In this section, we present our slotted registered attribute-based IPFE scheme based on pairing. The
attribute-based access control is provided by the policies represented by linear secret sharing access struc-
tures (LSSS). In many well-known ABE schemes [GPSW06,LOS+10b,LW11b] the access control is delivered
by LSSS which also captures the class of monotone Boolean formulas [LW11a] as a special case. Before going
ahead, we first present the formal definitions of access structures and linear secret-sharing schemes.

Definition 5 (Access Structures [Bei96]) Let Uatt be the attribute universe. An access structure on Uatt
is a collection A ⊆ 2Uatt \ ∅ of non-empty sets of attributes. The sets in A are called the authorized sets and
the sets not in A are called the unauthorized sets. An access structure is called monotone if ∀B,C ∈ 2Uatt if
B ∈ A and B ⊆ C, then C ∈ A.
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Definition 6 (Linear Secret Sharing Schemes (LSSS) [Bei96]) Let q = q(λ) be a prime and Uatt the
attribute universe. For each monotone access structure A on Uatt, there exists a matrix M ∈ Zℓ×n

q , called
the share-generating matrix, and a function ρ : [ℓ] → Uatt, that labels the rows of M with attributes from
Uatt. A secret sharing scheme with domain of secrets Zp for a monotone access structure A over Uatt, a.k.a.
a monotone secret sharing scheme, is a randomized algorithm that has the following properties:

• Share generation. To share a secret s ∈ Zp, we define the vector v = (s, v2, ..., vn), by sampling
v2, . . . , vn ← Zp. Then the vector of ℓ shares of the secret s is given by u = Mv⊤ ∈ Zℓ×1

p , where for
all i ∈ [ℓ] the share ui “belongs” to a party holding the attribute ρ(i). We will be referring to the pair
(M, ρ) as the LSSS policy of the access structure A.

• Reconstruction of secret and soundness. Let S (resp. S′) denote an authorized (resp. unau-
thorized) set of attributes according to some monotone access structure A and let I (resp. I ′) be
the set of rows of the share generating matrix M of the LSSS policy pair (M, ρ) associated with A
whose labels are in S (resp. S′). For reconstruction, there exist constants {wi}i∈I in Zp such that for
any valid shares {ui = (Mv⊤)i}i∈I of a secret s ∈ Zp, it is true that

∑
i∈I wiui = s (equivalently,∑

i∈I wiMi = (1,

n−1︷ ︸︸ ︷
0, . . . , 0), where Mi is the ith row of M or (1, 0, . . . , 0) ∈ Span{Mρ(i) : ρ(i) ∈ S}).

For soundness, there are no such wi’s, as above or equivalently, (1, 0, . . . , 0) ̸∈ Span{Mρ(i) : ρ(i) ∈ S′}.

Remark 2 (One-use restriction) In this work, we construct a registered ABIPFE scheme where policies
are represented by a linear secret sharing scheme (Definition 6), with the restriction that each attribute
is associated with at most one row of the associated LSSS matrix M. In other words, the row-labelling
function ρ of the policies (M, ρ) is injective. It is well-known that a scheme with the one-use restriction can
be extended into one where attributes can be used up to k times by expanding the public parameters and
secret keys by a factor of k via a simple encoding (Lewko et al. [LOS+10a]).

7.1 Construction

The slotted registered attribute-based IPFE SlotRABIPFE = (Setup,KeyGen, IsValid,Aggregate,Enc,Dec) for
an attribute universe Uatt, a set of policies P which contains (one-use) LSSS policies of a monotone access
structure on Uatt, and a function space UF = PSet(Uatt)× Zn, message spaceM = P × Zn works as follows:

Setup(1λ, 1n,Uatt, L) : The setup algorithm takes the security parameter λ, the length n of vectors (in
unary), the attribute universe Uatt and the number of users L (in binary) as inputs and samples
G = (G1,G2,GT , p, g1, g2, e)← GG(1λ). The algorithm computes the following terms:

1. Sample α← Zn
p , γ, π, βi ← Zp for all i ∈ [L].

2. Compute Z := gαT and Γ := g
1/γ
1 ,Π := g

1/π
1 where gT = e(g1, g2).

3. For each i ∈ [L], compute Ai := gβiα
1 , Bi := gβi

1 , B̃i := gβi

2 , Di := g
1/βi

2 .

4. For each slot i, j ∈ [L] and i ̸= j, compute Ri,j := g
γβi/βj

2 ,Si,j := g
γβiα/βj

2 .

5. Sample ti,w ← Zp for all i ∈ [L], w ∈ Uatt.

6. For all i, j ∈ [L] with i ̸= j and w ∈ Uatt, compute Ti,w := B
ti,w
i , Hi,j,w := g

πβiti,w/βj

2 .

7. Output the common reference string as

crs :=


G, Z = gαT , Γ = g

1/γ
1 , Π = g

1/π
1 ,{

Ai = gβiα
1 , Bi = gβi

1 , {Ti,w = g
βiti,w
1 }w∈Uatt , B̃i = gβi

2 , Di = g
1/βi

2

}
i∈[L]

,{
Ri,j = g

γβi/βj

2 , Si,j = g
γβiα/βj

2 , Hi,j,w = g
πβiti,w/βj

2

}
i,j∈[L],i̸=j,

w∈Uatt
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KeyGen(crs, i) : The key generation algorithm takes the common reference string crs, and a slot index i ∈ [L]
as inputs and works as follows:

1. Sample ri ← Zp and compute Ui := Bri
i , Ũ = B̃ri

i , Pi,j := Rri
i,j for all j ∈ [L] and j ̸= i.

2. Output the public and secret keys as

pki :=
(
Ui = gβiri

1 , Ũi = gβiri
2 , {Pi,j = g

γβiri/βj

2 }j∈[L],j ̸=i

)
and ski := ri.

IsValid(crs, i, pki) : The public key verification algorithm takes the common reference string crs, a slot index
i ∈ [L] and a public key pki = (Ui, {Pi,j}j∈[L],j ̸=i), and checks the following:

e(Ui, g2)
?
= e(g1, Ũi) and

e(Ui, Dj)
?
= e(Γ, Pi,j) ∀j ∈ [L] \ {i}.

If the check passes then it outputs 1; otherwise 0.

Aggregate(crs, (pk1,Att1,y1), . . . , (pkL,AttL,yL)) : The aggregate algorithm takes a common reference string
crs, a list of L public key, attribute, function tuple (pk1,Att1,y1), . . . , (pkL,AttL,yL) as inputs such

that Atti ⊆ Uatt,yi ∈ Zn and pki = (Ui, Ũi, {Pi,j}j∈[L],j ̸=i) for all i ∈ [L]. It proceeds as follows:

1. Using Ai, Ui and yi, compute Wi := Ui

∏
ℓ∈[n] A

yi,ℓ

i,ℓ = g
βi(ri+⟨yi,α⟩)
1 , where Ai,ℓ denotes the ℓ-th

entry of Ai.

2. Using Si,j and yi, compute Sj,i =
∏

ℓ∈[n] S
yj,ℓ

j,i,ℓ = g
γβj⟨yi,α⟩/βi

2 for all i, j ∈ [L] and j ̸= i, where
Sj,i,ℓ denotes the ℓ-th entry of Sj,i.

3. Compute the component of MPK as W =
∏

i∈[L] Wi =
∏

i∈[L] g
βi(ri+⟨yi,α⟩)
1 .

4. Compute the component of hski as Fi = Si · Pi where

Si :=
∏

j∈[L]\{i}

Sj,i =
∏

j∈[L]\{i}

g
γβj⟨yi,α⟩/βi

2 , Pi :=
∏

j∈[L]\{i}

Pj,i =
∏

j∈[L]\{i}

g
γβiri/βj

2

.

5. For each w ∈ Uatt, i ∈ [L], compute

Tw =
∏

j∈[L]:w ̸∈Attj

Tj,w =
∏

j∈[L]:w ̸∈Attj

g
βjtj,w
1 , Hi,w =

∏
j ̸=i:w ̸∈Attj

Hj,i,w =
∏

j ̸=i:w ̸∈Attj

g
πβjtj,w/βi

2 .

6. Output the master public key and slot-specific helper decryption keys as

MPK := (G, Z,Γ, W, {Tw}w∈U ) and hski := (Atti, Di, Fi, {Hi,w}w∈Uatt) .

Enc(MPK, (M, ρ),x) : The encryption algorithm takes a master public key MPK, a policy (M ∈ ZK×N
p , ρ :

[K] → Uatt) where ρ is an injective function mapping the row indices of M into the attributes in Uatt
and a message x ∈ Zn as inputs and proceeds as follows:

1. Sample h← G1 and s← Zp.

2. Compute C0 := gsT and C1 := (gx1

T · Zs
1 , . . . , g

xn

T · Zs
n) = gx+sα

T where Zℓ denotes the ℓ-th entry of
Z.

3. Compute C2 := h−sW−s, C3 := Γs and C4 := Πs.

4. Sample v2, . . . , vN and set v := (s, v2, . . . , vN ).

5. For each k ∈ [K], compute C5,k := h⟨v,mk⟩T−s
ρ(k).
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6. Output the ciphertext

ct :=
(
(M, ρ), C0,C1, C2, C3, C4, {C5,k}k∈[K]

)
.

Dec(sk, hsk, ct) : The decryption algorithm takes a secret key sk = r, a helper decryption key hsk =
(Atti, Di, Fi, {Hi,w}w∈Uatt) for the i-th slot and a ciphertext ct := ((M, ρ), C0,C1, C2, C3, C4, {C5,k}k∈[K])
as inputs and works as follows. If Atti does not satisfy the policy (M, ρ) then output ⊥. Otherwise,

there exists ω ∈ Z|I|
p such that ω⊤MAtti = e⊤1 where I = {k ∈ [K] : ρ(k) ∈ Atti} = {kι : ι ∈ [|I|]} and

MAtti is formed by taking the subset of rows of M indexed by I.

1. Compute the following terms

Eslot = e(C2, Di) · e(C3, Fi) · Csk
0 ,

Eatt =
∏

ι∈[|I|]

(
e(C5,kι

, Di) · e(C4, Hi,ρ(kι))
)ωι

and C =
∏
ℓ∈[n]

C
yi,ℓ

1,ℓ

where C1,ℓ denotes the ℓ-th entry of C1.

2. Output the message as loggT (C · Eslot · Eatt).

Completeness: Consider a key pair (pki, ski) generated using KeyGen(crs, i; r). Then by construction, we

have pk = (Ui, Ũi, {Pi,j}j∈[L],j ̸=i) where

Ui = Bri
i = gβiri

1 , Ũi = B̃ri
i = gβiri

2 and Pi,j = Rri
i,j = g

γβiri/βj

2 .

Therefore, the validity of pki is verified using

e(Ui, g2) = e(g1, g2)
βiri = e(g1, Ũi) and

e(Ui, Dj) = e(g1, g2)
βiri/βj = e(Γ, Pi,j) ∀j ∈ [L] \ {i}

since Dj = g
1/βj

2 and Γ = g
1/γ
1 . The RAB-IPFE satisfies completeness since the public key passes all the

pairing equations defined by the IsValid algorithm, i.e., IsValid(crs, pki) outputs 1.

Correctness: Consider a secret key sk = ri, a helper decryption key hsk = (Atti, Di, Fi, {Hi,w}w∈Uatt) and
a ciphertext ct := ((M, ρ), C0,C1, C2, C3, C4, {C5,k}k∈[K]). Then, by construction, we have

Fi = Si · Pi =
∏
j ̸=i

g
γrjβj/βi

2 ·
∏
ℓ∈[n]

∏
j ̸=i

g
γrjyj,ℓαℓβj/βi

2 =
∏
j ̸=i

g
γrjβj/βi

2 ·
∏
j ̸=i

g
γrj⟨yj ,α⟩βj/βi

2 ,

C2 = h−s
∏
i∈[L]

W−s
i = h−s

∏
i∈[L]

U−s
i

∏
i∈[L]

·
∏
ℓ∈[n]

A
−syi,ℓ

i,ℓ = h−s
∏
i∈[L]

g−sriβi

1 ·
∏
i∈[L]

g
−s⟨yi,α⟩βi

1 ,

and then we compute

e(C2, Di) = e(h, g2)
−s/βi ·

∏
j∈[L]

e(g1, g2)
−srjβj/βi ·

∏
j∈[L]

e(g1, g2)
−s⟨yj ,α⟩βj/βi ,

e(C3, Fi) =
∏
j ̸=i

e(g1, g2)
−srjβj/βi ·

∏
j ̸=i

e(g1, g2)
−srj⟨yj ,α⟩βj/βi ,

Therefore,
Eslot = e(C2, Di) · e(C3, Fi) · Cski

0 = e(h, g2)
−s/βi · e(g1, g2)−s⟨yi,α⟩
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Next, we check that the attributes of Atti are satisfying the policy (M, ρ). First, by construction, we have

C5,k = h⟨v,mk⟩T−s
ρ(k) = h⟨v,mk⟩ ·

∏
j∈[L]:ρ(k)̸∈Attj

g
−sβjtj,ρ(k)

1 ,

Hi,ρ(k) =
∏

j∈[L]\{i}:ρ(k) ̸∈Attj

Hj,i,w =
∏

j∈[L]\{i}:ρ(k)̸∈Attj

g
πβjtj,ρ(k)/βi

2 ,

and then we compute

e(C5,k, Di) = e(h, g2)
⟨v,mk⟩/βi ·

∏
j∈[L]:ρ(k) ̸∈Attj

e(g1, g2)
−sβjtj,ρ(k)/βi ,

e(C4, Hi,ρ(k)) =
∏

j∈[L]\{i}:ρ(k) ̸∈Attj

e(g1, g2)
sβjtj,ρ(k)/βi .

Let I = {k ∈ [K] : ρ(k) ∈ Atti} = {k1, . . . , k|I|}. Then for all ι ∈ [|I|], we have ρ(kι) ∈ Atti and hence∏
j∈[L]:ρ(kι )̸∈Attj

e(g1, g2)
−sβjtj,ρ(kι)/βi =

∏
j∈[L]\{i}:ρ(kι )̸∈Attj

e(g1, g2)
−sβjtj,ρ(kι)/βi .

Therefore, we can write
e(C5,kι

, Di) · e(C4, Hi,ρ(kι)) = e(h, g2)
⟨v,mkι ⟩/βi .

Now, if Atti satisfies the policy then there exists ω ∈ Z|I|
p such that ω⊤MAtti = e⊤1 . So, we get

Eatt =
∏

ι∈[|I|]

(
e(C5,kι , Di) · e(C4, Hi,ρ(kι))

)ωι
= e(h, g2)

⟨v,
∑

ι ωιmkι ⟩/βi

= e(h, g2)
⟨v,ω⊤MSi

⟩/βi

= e(h, g2)
⟨v,e⟩/βi = e(h, g2)

s/βi .

Next, we compute C =
∏

ℓ∈[n] C
yi,ℓ

1,ℓ = g
⟨x,yi⟩+s⟨yi,α⟩
T . Finally, the inner product value is obtained as

loggT (C · Eslot · Eatt) = ⟨x,yi⟩.

Compactness: The master public key contains O(n+ |Uatt|) group elements and each group element can
be represented using poly(λ) bits. Therefore, the master public key size is bounded by poly(λ, |UF |, logL)
where |UF | = n+ |Uatt|. The helper decryption key contains O(|Uatt|) group element. Since the information
of aggregated master public key is given with the helper decryption key the size of it is also bounded by
poly(λ, |UF |, logL).

7.2 Security Analysis

Theorem 2 The slotted registered attribute-based inner product functional encryption scheme is secure in
the generic group model.

Proof. Let a PPT adversary against our slotted registered ABIPFE be A. Recall that it is sufficient to
assume that there are no post-challenge queries from A. Let Cor be the set of all corrupted slots, for which
an honest key pair is generated by the challenger and later is corrupted by A and the corresponding secret
key is revealed to A. Let Mal be the set of slots for which malicious keys are provided by A itself. At the
beginning, Cor is set as an empty set and it is dynamically filled with the corrupted slot indices during the
course of the security experiment. Similarly, Mal is also set as an empty set at the beginning of the game.
It is defined during the challenge phase based on the keys provided by A.

We consider the following sequence of hybrid games played between the adversary A and the challenger.
Let Ei be the event of A outputting the correct bit coin in Game i.
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Game 0: This is the real experiment in the generic group model. We also assume that the total number of
zero-test queries made by A is Qzt. The challenger simulates A as follows.

Setup. The challenger samples α← Zn
p , γ, π, βi, ti,w ← Zp for all i ∈ [L] and w ∈ Uatt. It creates the

following lists of group exponents:

• L1 = {1, 1/γ, 1/π, {βiα, βi, {βiti,w}w∈Uatt}i∈[L]} which corresponds to the G1-elements in the CRS.

• L2 = {1, {βi, 1/βi}i∈[L], {γβi/βj , γβiα/βj , {πβiti,w/βj}w∈Uatt}i,j∈[L],i̸=j} which corresponds to the
G2-elements in the CRS.

• LT = {1,α} which corresponds to the GT -elements in the CRS.

The adversary is given handles corresponding to all the elements of lists L1, L2 and LT .

Pre-challenge query phase. The challenger initializes a dictionary D, a set of corrupted set Cor←
∅, a set of indices for which maliciously generated keys Mal← ∅, and set ctr← 0. A makes the following
queries:

1. Key generation queries. A specifies a slot index i. Then, the challenger samples ri ← Zp, sets
skctr = ri, updates the lists as

• L1 ← L1 ∪ {βiri},
• L2 ← L2 ∪ {βiri, {γβiri/βj}i,j∈[L],i̸=j},

and provides A with the handles of newly computed group elements. The challenger increments
ctr ← ctr + 1 and adds the mapping ctr 7→ (i, hpkctr , skctr) to the dictionary D. Here, hpkctr is
the set of handles corresponding to the newly added elements in the list and is of the form
{(1, hi), (2, h̃i), {(2, hi,j)}j∈[L]\{i}} with L1[hi] = L2[hi] = βiri and L2[hi,j ] = γβiri/βj .

14

2. Corruption queries. In a corruption query, A specifies an index 1 ≤ c ≤ ctr. The challenger looks
up the tuple (i′, hpk′ , sk

′) ← D[c] and sends sk′ to A. It updates the set of corrupted indices as
Cor← Cor ∪ {i′}.

Challenge phase. For each slot i ∈ [L], A specifies a tuple (ci, hpk∗i
,Atti,yi) where either ci ∈

{1, . . . , ctr} to reference a challenger-generated key or ci = ⊥ to reference a key outside this set. Here,

we denote hpk∗i
= {(1, h∗

i ), (2, h̃
∗
i ), {(2, h∗

i,j)}j∈[L]\{i}} by the list of handles associated to the public key

of the i-th slot provided by A. A also specifies a challenge policy (M ∈ ZK×N
p , ρ : [K]→ Uatt) and two

challenge messages x∗
0,x

∗
1.

• If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] = (i′, hpk′ , sk
′). If i = i′, then the

challenger sets hpki ← hpk′ . Otherwise, if i ̸= i′, then the experiment halts.

• If ci = ⊥, then the challenger runs IsValid on the GGM. In more detail, it checks whether the
following equations hold by the zero test oracle:

L1[h
∗
i ]− L2[h̃

∗
i ] ≡ 0 mod p, (16)

L1[h
∗
i ]/βj − L2[h

∗
i,j ]/γ ≡ 0 mod p ∀j ∈ [L] \ {i}. (17)

If Equation (16) or (17) does not hold, the experiment halts. If the key is valid, the challenger
sets hpki ← hpk∗i

, adds the slot index i to Mal.

14Recall that in the GGM, the adversary can only access the handles corresponding to the group elements in pkctr.
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Let us denote hpki = {(1, hi), (2, h̃i), {(2, hi,j)}j∈[L]\{i∗}} for i ∈ [L]. Next, the challenger computes the
handles corresponding to the challenge ciphertext by sampling coin ← {0, 1}, δ, s,
v2, . . . , vN ← Zp, setting h = gδ1,v = (s, v2, . . . , vN ) and computing

c0 := s, c1 := {c1,ℓ}ℓ∈[n] = x∗
coin + sα, c2 := −sδ −

∑
i∈[L] s(L1[hi] + βi⟨yi,α⟩),

c3 := s/γ, c4 := s/π, {c5,k := δ · ⟨v,mk⟩ − s
∑

j∈[L]:ρ(k)̸∈Attj
βjtj,ρ(k)}k∈[K]

It then updates the lists as

• L1 ← L1 ∪ {c2, c3, c4, {c5,k}k∈[K]},
• LT ← LT ∪ {s, {c1,ℓ}ℓ∈[n]}

and gives the handles of the newly added elements to the adversary A.

Output phase. At the end of the experiment, A outputs a guess coin′ ∈ {0, 1}, which is the output
of the experiment.

Game 1: In this game, we partially switch to the symbolic group model and replace

γ,
π,

{βi, ri}i∈[L],
{ti,w}i∈[L],w∈Uatt

,
δ,
s,

α = {αℓ}ℓ∈[n],
{vµ}µ∈[2,N ],

{c1,ℓ}ℓ∈[n], c2,
c3, c4, {c5,k}k∈[K]

in Zp with formal variables

Γ̂,

Π̂,

{B̂i, R̂i}i∈[L],

{T̂i,w}i∈[L],w∈Uatt
,

∆̂,

Ŝ,

Â = {Âℓ}ℓ∈[n],

{V̂µ}µ∈[2,N ],

{Ĉ1,ℓ}ℓ∈[n], Ĉ2,

Ĉ3, Ĉ4, {Ĉ5,k}k∈[K]

respectively. Therefore, all the handles given to A refer to elements in the ring

T := Zp

[
Γ̂,

1/Γ̂,

Π̂,

1/Π̂,

{B̂i, 1/B̂i, R̂i}i∈[L],

{T̂i,w}i∈[L],w∈Uatt
,

∆̂,

Ŝ,

Â = {Âℓ}ℓ∈[n],

{V̂µ}µ∈[2,N ],

{Ĉ1,ℓ}ℓ∈[n], Ĉ2,

Ĉ3, Ĉ4, {Ĉ5,k}k∈[K]

]

where {R̂i}i∈[L] are needed to represent the secret keys sampled by the challenger. However, when A
submits a zero-test query, the challenger substitutes the formal variables with corresponding elements
in Zp.

In more detail, the challenger picks γ, π, {βi}i∈[L], {ri}i∈[L], {ti,w}i∈[L],w∈Uatt
, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]

at the beginning of the game as in the previous game (following the same distribution). It also
computes {c1,ℓ}ℓ∈[n], c2, c3, c4, {c5,k}k∈[K] ∈ Zp as in the previous game when it answers the challenge
query. Once the Zp-elements are sampled, these remain fixed throughout the experiment. Furthermore,
for an honest slot i, ri is revealed to the adversary whenever it makes a corruption query for the slot and
the associated index i is added to Cor. A zero-test query before and during the challenge phase15 always
corresponds to an element f(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L], {T̂i,w}i∈[L],w∈Uatt

, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]) in
the sub-ring T′ of T which is defined as

T′ := Zp

[
Γ̂,

1/Γ̂,

Π̂,

1/Π̂,

{B̂i, 1/B̂i, R̂i}i∈[L],

{T̂i,w}i∈[L],w∈Uatt
,

∆̂,

Ŝ,

Â = {Âℓ}ℓ∈[n],

{V̂µ}µ∈[2,N ]

]
.

For the query, the challenger returns 1 if

f(γ, π, {βi}i∈[L], {ri}i∈[L], {ti,w}i∈[L],w∈Uatt
, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]) = 0

15Recall that IsValid ia run during the challenge phase and it involves the zero-test queries.
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holds over Zp, and 0 otherwise. A zero test query after the challenge phase corresponds to an element

f(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L], {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ], {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K])

in T. For the query, the challenger returns 1 if

f(γ, π, {βi}i∈[L], {ri}i∈[L], {ti,w}i∈[L],w∈Uatt
, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ], {c1,ℓ}ℓ∈[n], c2, c3, c4, {c5,k}k∈[K]) = 0

holds over Zp, and 0 otherwise. We show in Lemma 1 that Pr[E0] = Pr[E1].

We now list all the components in T for which the corresponding handles are given to A during the game.
The components of T related to the group elements of G1, G2, and GT are given by

V1 =

{
1, 1/Γ̂, 1/Π̂, {B̂i, {B̂iÂℓ}ℓ∈[L], {B̂iT̂i,w}w∈Uatt}i∈[L], {B̂iR̂i}i∈[L], Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K]

}
,

V2 =

{
1, {B̂i, 1/B̂i, B̂iR̂i}i∈[L], {Γ̂B̂i/B̂j , Γ̂B̂iR̂i/B̂j , {Γ̂B̂iÂℓ/B̂j}ℓ∈[n], {Π̂B̂iT̂i,w/B̂j}w∈Uatt}i,j∈[L],i̸=j

}
,

VT =

{
1, Ŝ, {Ĉ1,ℓ}ℓ∈[n]

}
,

(18)

respectively. We also define Ṽ1 = {Ĉ2, {Ĉ5,k}k∈[K]} ⊂ V1 and Ṽ2 = {1/B̂i}i∈[L] ⊂ V2.Note that any handle
refers to an element f ∈ T that can be represented as

f =
∑

(X,Y )∈V1×V2
aX,Y X · Y +

∑
Z∈VT

aZZ

=
∑

(X,Y )∈(V1×V2)\(Ṽ1×Ṽ2)

aX,Y X · Y

︸ ︷︷ ︸
:=f1

+
∑
i∈[L]

bi · Ĉ2 · (1/B̂i)︸ ︷︷ ︸
:=f2

+
∑

i∈[L],k∈[K]

b̃i,k · Ĉ5,k · (1/B̂i)︸ ︷︷ ︸
:=f3

+ d0 · Ŝ +
∑
ℓ∈[n]

dℓ · Ĉ1,ℓ︸ ︷︷ ︸
:=f4

(19)

using aX,Y ∈ Zp for X ∈ V1 and Y ∈ V2 and aZ ∈ Zp for Z ∈ VT . In the last equation, we rename the

coefficients as bi := aĈ2,1/B̂i
, b̃i,k = aĈ5,k,1/B̂i

, d0 := aŜ, and dℓ := aĈ1,ℓ
and single out the important terms for

the analysis. Note that the above representation of f does not uniquely determine {aX,Y }X,Y , since different

choices ofX and Y may lead to the same productX ·Y .16 However, we can see that {bi}i∈[L], {b̃i,k}i∈[L],k∈[K],
and {dℓ}ℓ∈[0,n] are uniquely determined from f .

Game 2: In this game, we change the way zero-test queries are answered after the challenge phase. Namely,
whenever A submits a zero-test query corresponding to a handle of f ∈ T, the challenger defines f ′′ ∈ T′

such that

f ′′(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L], {T̂i,w}i∈[L],w∈Uatt
, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ])

:= f(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L], {T̂i,w}i∈[L],w∈Uatt
, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ], {C1,ℓ}ℓ∈[n], C2, C3, C4, {C5,k}k∈[K])

where {C1,ℓ}ℓ∈[n], C2, C3, C4 and {C5,k}k∈[K] are polynomials in T′ defined as

C1,ℓ := ŜÂℓ + x∗
ℓ,coin, C2 := −Ŝ∆̂−

∑
i∈[L]

Ŝ(L1[hi] + B̂i · ⟨yi, Â⟩),

C3 := Ŝ/Γ̂, C4 := Ŝ/Π̂, C5,k := ∆̂ · ⟨V,mk⟩ −
∑

j∈[L]:ρ(k)̸∈Attj

ŜB̂jT̂j,ρ(k) (20)

16For example, we have B̂i · (1/B̂j) = (1/Γ̂) · (Γ̂B̂i/B̂j).
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respectively, where ⟨yi, Â⟩ denotes the inner product between the vector yi and the vector of variables

Â = (Â1, . . . , Ân), that is ⟨yi, Â⟩ =
∑

ℓ∈[n] yi,ℓÂℓ. Similarly, ⟨V,mk⟩ denotes the inner product

between the vector mk and the vector of variables V = (Ŝ, V̂2, . . . , V̂N ). Here, L1[hi] is an element in
T′ defined as in Game 1. Then, f ′ ∈ T is defined as

f ′(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]) :=

f ′′(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {ri}i∈Cor, {T̂i,w}i∈[L],w∈Uatt
, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]). (21)

We emphasize that Cor is the set of corrupted indices at the time when the zero-test query is made.
After that, it answers the zero-test query by substituting the formal variables with their values in Zp.
In particular, the challenger returns 1 if it holds that

f ′(γ, π, {βi}i∈[L], {ri}i∈[L]\Cor, {ti,w}i∈[L],w∈Uatt
, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]) = 0.

We show in Lemma 2 that Pr[E1] = Pr[E2].

Game 3: In this game, we switch to the SGM completely and change the way the zero-test queries are
answered by the challenger. The challenger no longer uses the integers γ, π, {βi}i∈[L], {ri}i∈[L]\Cor,
{ti,w}i∈[L],w∈Uatt

, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ] from Zp in order to simulate the zero-test queries. Instead,
when A submits a handle corresponding to f ∈ T, the challenger first computes associated f ′ ∈ T′ and
returns 1 if

f ′(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]) = 0 (22)

holds over T′, 0 otherwise. Note that this change in particular means that Eq. (16) and (17) that are
checked during the challenge phase is replaced with the following check:

L′
1[h

∗
i ]− L′

2[h̃
∗
i ] ≡ 0 (23)

and
L′
1[h

∗
i ]/B̂j − L′

2[h
∗
i,j ]/Γ̂ ≡ 0 ∀j ∈ [L] \ {i} (24)

where L′
1[h

∗
i ] and L′

2[h
∗
i,j ] are polynomials in T′ that are obtained by replacing {R̂i}i∈Cor with {ri}i∈Cor

that appear in L1[h
∗
i ] and L2[h

∗
i,j ], respectively.

17 These equations are checked over T′ rather than
over Zp. We show in Lemma 10 that

|Pr[E2]− Pr[E3]| ≤ Qzt(L+ 7)2/p.

Game 4: In this game, the challenger checks if the adversarially generated public keys are computed hon-
estly before proceeding to computing the challenge ciphertext. More precisely, if A submits handles
{(1, h∗

i ), (2, h̃
∗
i ), {(2, h∗

i,j)}j∈[L]\{i}} with ci = ⊥ at the challenge phase, the challenger verifies whether
the handles satisfy

L′
1[h

∗
i ] = L′

2[h̃
∗
i ] = r∗i B̂i + τ∗i B̂iR̂i, L′

2[h
∗
i,j ] = r∗i Γ̂B̂i/B̂j + τ∗i Γ̂B̂iR̂i/B̂j , ∀j ̸= i (25)

for some r∗i , τ
∗
i ∈ Zp and aborts the experiment otherwise. We show in Lemma 11 that Pr[E3] = Pr[E4].

Game 5: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. When A submits a handle corresponding to f ∈ T for a zero-test query, the challenger represents
f as in Eq. (19) and returns 0 if there exists i ̸∈ Cor ∪Mal such that bi ̸= 0. Otherwise, the challenger
proceeds as in the previous game for answering the zero-test queries. We show in Lemma 12 that
Pr[E4] = Pr[E5].

17L1[h∗
i ] and L2[h∗

i,j ] do not contain the terms {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3 since the challenge ciphertext is not generated at the point
when these handles are specified. So, there is no need to consider the step where they are replaced with the corresponding
polynomials in T′.
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Game 6: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. When A submits a handle corresponding to f ∈ T for a zero-test query, the challenger represents
f as in Eq. (19) and returns 0 if there exists k ∈ [K] and ρ(k) ̸∈ Atti such that b̃i,k ̸= 0. Otherwise, the
challenger proceeds as in the previous game for answering the zero-test queries. We show in Lemma
13 that Pr[E5] = Pr[E6].

Game 7: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. When A submits a handle corresponding to f ∈ T for a zero-test query, the challenger represents
f as in Eq. (19) and returns 0 if there exists (i, µ) ∈ [L]× [2, N ] such that

∑
k∈[K] b̃i,kmk,µ ̸= 0 where

mk,µ is the (k, µ)-th entry of the LSSS matrix M of the challenge policy. Otherwise, the challenger
proceeds as in the previous game for answering the zero-test queries. We show in Lemma 14 that
Pr[E6] = Pr[E7].

Game 8: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. Let us define a set I(M,ρ) = {i ∈ [L] : Atti satisfies the policy (M, ρ)} which consists of indices
in [L] such that the corresponding attribute sets satisfy the challenge policy (M, ρ). When A submits
a handle corresponding to f ∈ T for a zero-test query, the challenger represents f as in Eq. (19) and
returns 0 if there exists i ̸∈ I(M,ρ) such that bi ̸= 0. Otherwise, the challenger proceeds as in the
previous game for answering the zero-test queries. We show in Lemma 15 that Pr[E7] = Pr[E8].

Game 9: In this game, we further modify the way the zero-test queries are answered after the challenge
phase. When A submits a handle corresponding to f ∈ T for a zero-test query, the challenger represents
f as in Eq. (19) and returns 0 if

d =
∑

i∈(Cor∪Mal)∩I(M,ρ)

biyi, where d = (d1 . . . , dn) (26)

does not hold. Otherwise, the challenger proceeds as in the previous game for answering the zero-test
queries. We show in Lemma 16 that Pr[E8] = Pr[E9].

In Lemma 17, we show Pr[E9] = 1/2. Combining the advantage of A in distinguishing between the adjacent
games, we obtain

|Pr[E0]−
1

2
| ≤ Qzt(L+ 7)2/p

which is negligible in the security parameter.
We now prove Lemma 8 to 17 to complete the security analysis.

Lemma 8 For any adversary, it holds that Pr[E0] = Pr[E1].

Proof. The only difference between Game 0 and Game 1 is that the challenger switched to the symbolic
group model in Game 1, however, it answers the zero-test queries of A in the exact same way as it does in
Game 0. In particular, in both the games, the zero-test queries are answered using the same distribution of
γ, π, {βi}i∈[L], {ri}i∈[L], {ti,w}i∈[L],w∈Uatt

, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ], {c1,ℓ}ℓ∈[n], c2, c3, c4, {c5,k}k∈[K] over Zp.
Hence, the view of A remains the same in both the games. The lemma follows. □

Lemma 9 For any adversary, it holds that Pr[E1] = Pr[E2].

Proof. The only difference between Game 1 and Game 2 is that when answering to the zero-test queries
corresponding to a polynomial f ∈ T after the challenge phase, the challenger replaces the formal variables
{Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K] with the polynomials {C1,ℓ}ℓ∈[n], C2, C3, C4, {C5,k}k∈[K] ∈ T′ defined as

Equation (20) and {R̂i}i∈Cor with {ri}i∈Cor, represents f as an element f ′ in the subring T′, and replaces the
formal variables with the Zp values to see if the resulting value equals to 0 in Game 2, whereas the challenger
directly replaces the formal variables in f with the corresponding Zp values without going through the
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intermediate polynomial f ′. However, this does not change the value that the zero-test oracle returns to the
adversary since we have

f ′(values′) = f ′′(values′, values′′) = f ′′(values)

= f(values, {C1,ℓ(values)}ℓ∈[n], C2(values), C3(values), C4(values), {C5,k(values)}k∈[K])

= f(values, {c1,ℓ}ℓ∈[n], c2, c3, c4, {c5,k}k∈[K])

where values, values′, and values′′ are short-hand expressions for (γ, π, {βi}i∈[L], {ri}i∈[L], {ti,w}i∈[L],w∈Uatt
, δ,

s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]), (γ, π, {βi}i∈[L], {ri}i∈[L]\Cor, {ti,w}i∈[L],w∈Uatt
, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]), and {ri}i∈Cor,

respectively. Hence, the view of A remains the same in both the games. The lemma follows. □

Lemma 10 For any adversary, it holds that |Pr[E2]− Pr[E3]| ≤ Qzt(L+ 7)2/p.

Proof. The only change of Game 3 from Game 2 is that the challenger uses the formal variables Γ̂, Π̂,
{B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt

, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ] instead of the Zp values γ, π, {βi}i∈[L],
{ri}i∈[L]\Cor, {ti,w}i∈[L],w∈Uatt

, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ] to answer the zero-test queries of A, where Cor is the
set of corrputed indices at the time when the query is made. Therefore, the only possible case when Game
3 behaves differently from Game 2 in A’s view is the following: A submits a handle for an element f ∈ T to
the zero-test oracle satisfying

f ′(γ, π, {βi}i∈[L], {ri}i∈[L], {ti,w}i∈[L],w∈Uatt
, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]) = 0

∧
f ′(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt

, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]) ̸= 0

where f ′ ∈ T′ is defined from associated f ∈ T as in Eq. (21). Let us denote the event as Ebad. It is sufficient
to bound the probability of Ebad in Game 2.

We now fix an element f ′ ∈ T′ and define a polynomial

g(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ])

∈ Zp[Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]]

as

g(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ])

= Γ̂ ·
∏

i∈[L] B̂i · f ′(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]).

The product Γ̂ ·
∏

i∈[L] B̂i is introduced to cancel out any denominator of f ′ ∈ T′. Note that g is a polynomial

in the ring Zp[Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]] rather than in T.

Therefore, the event Ebad occurs if and only if

g(γ, π, {βi}i∈[L], {ri}i∈[L]\Cor, {ti,w}i∈[L],w∈Uatt
, δ, s, {αℓ}ℓ∈[n], {vµ}µ∈[2,N ]) = 0

∧
g(Γ̂, Π̂, {B̂i}i∈[L], {R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt

, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]) ̸= 0

since γ and {βi}i∈[L] are non-zero over Zp. Using Schwartz-Zippel lemma (Lemma 1), we can bound the

probability of Ebad by (L+ 7)2/p since the maximum degree of g is (L+ 7) over the ring Zp[Γ̂, Π̂, {B̂i}i∈[L],

{R̂i}i∈[L]\Cor, {T̂i,w}i∈[L],w∈Uatt
, ∆̂, Ŝ, {Âℓ}ℓ∈[n], {V̂µ}µ∈[2,N ]]. The maximum degree is calculated by repre-

senting f as in Eq. (19) and noting that the degree of C2 or C5,k as a polynomial in T′ does not exceed 4,

since each L1[hi] should be the linear combination of element in V1\{Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K]} (See Eq. (20).).
Since there are a total of Qzt number of zero-test queries, the lemma follows. □

Lemma 11 For any adversary, it holds that Pr[E3] = Pr[E4].
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Proof. The only difference between Game 3 and Game 4 is that the challenger aborts the experiment in
Game 4 at the challenge phase if the adversarially sampled public keys do not match with a particular
format. In particular, if A submits handles {(1, h∗

i ), (2, h̃
∗
i ), {(2, h∗

i,j)}j∈[L]\{i}} representing the handles for
(an adversarially generated) public key for the slot i at the challenge phase, then the challenger verifies
whether the handles satisfy Eq. (25) for some r∗i , τ

∗
i ∈ Zp. Note that in both the games, the challenger

runs IsValid before proceeding to computing the challenge ciphertext, otherwise the challenger aborts the
experiment. Thus, the two games only differ from A’s view if IsValid outputs 1 on those handles, but the
handles do not map to the particular monomials as shown above. Here, we show that this cannot happen.

For proving this, we first define the set of monomials V0 as V1\{Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K]}. We can see that
L1[h

∗
i ] should be an element in T′ that can be represented as a linear combination of monomials in V0 with

coefficients in Zp.
18 This implies that L′

1[h
∗
i ] can be represented as a linear combination of monomials in V ′

0

with coefficients in Zp, where V ′
0 is defined as

V ′
0 :=

{
1, 1/Γ̂, 1/Π̂, {B̂κ, {B̂κÂℓ}ℓ∈[L]}κ∈[L], {B̂κT̂κ,w}κ∈[L],w∈Uatt

, {B̂κR̂κ}κ∈[L]\Cor

}
Similarly, we can also see that L2[h̃

∗
i ] and L2[h

∗
i,j ] for j ∈ [L]\{i} should correspond to elements in T′ that

can be represented as linear combinations of monomials in V2 with coefficients in Zp. This implies that
L′
2[h

∗
i ] and L′

2[h
∗
i,j ] for all j ∈ [L]\{i} can be represented as linear combinations of monomials in V ′

2 with
coefficients in Zp, where V ′

2 is defined as

V ′
2 =

{
1, {B̂κ, 1/B̂κ}κ∈[L], {Γ̂B̂κ/B̂j , {Γ̂B̂κÂℓ/B̂j}ℓ∈[n], {Π̂B̂κT̂κ,w/B̂j}w∈Uatt}κ,j∈[L],κ ̸=j , {B̂κR̂κ, {Γ̂B̂κR̂κ/B̂j}j ̸=κ}κ∈[L]\Cor

}
.

If the handles pass the verification, it in particular means that the handles satisfy Eq. (23) . This means that

L′
1[h

∗
i ] (and thus L′

2[h̃
∗
i ]) can be represented as a linear combination of monomials in V ′

0 ∩ V ′
2 = {B̂κ}κ∈[L] ∪

{B̂κR̂κ}κ∈[L]\Cor with coefficients in Zp. Namely, we can write

L′
1[h

∗
i ] = e0 +

∑
κ∈[L]

eκB̂κ +
∑

κ∈[L]\Cor

e′κB̂κR̂κ

using eκ ∈ Zp for κ ∈ [0, L] and e′κ ∈ Zp for κ ∈ [L]\Cor. We then show that eκ = 0 and e′κ = 0 hold for all
κ ̸= i if the handles pass the verification shown in Eq. (24).

• We first show that e0 = 0. For the sake of contradiction, let us assume that e0 ̸= 0 and take some
index κ∗ ̸= [L]\{i}. Then, L′

2[h
∗
i,κ∗ ] should contain the term Γ̂/B̂κ∗ , since Eq. (24) with κ∗ ̸= i implies

L′
2[h

∗
i,κ∗ ] = Γ̂ · L′

1[h
∗
i ]/B̂κ∗ . However, this contradicts the fact that L′

2[h
∗
i,κ∗ ] can be represented as a

linear combination of the monomials in V ′
2 with coefficients in Zp, since Γ̂/B̂κ∗ ̸∈ V ′

2 .

• We first show that eκ = 0 for all κ ̸= i. For the sake of contradiction, let us assume that eκ∗ ̸= 0
holds for some κ∗ ̸= i. Then, L′

2[h
∗
i,κ∗ ] should contain the term Γ̂, since Eq. (24) with j = κ∗ implies

L′
2[h

∗
i,κ∗ ] = Γ̂ · L′

1[h
∗
i ]/B̂κ∗ . However, this contradicts the fact that L′

2[h
∗
i,κ∗ ] can be represented as a

linear combination of the monomials in V ′
2 with coefficients in Zp, since Γ̂ ̸∈ V ′

2 .

• We next show that e′κ = 0 for all κ ̸= i. For the sake of contradiction, let us assume that e′κ∗ ̸= 0 holds

for some κ∗ ̸= i. Then, L′
2[h

∗
i,κ∗ ] should contain the term Γ̂R̂κ∗ , since Eq. (24) with j = κ∗ implies

L′
2[h

∗
i,κ∗ ] = Γ̂ · L′

1[h
∗
i ]/B̂κ∗ . However, this contradicts the fact that L′

2[h
∗
i,κ∗ ] can be represented as a

linear combination of the monomials in V ′
2 with coefficients in Zp, since Γ̂R̂κ∗ ̸∈ V ′

2 .

The above shows that L′
1[h

∗
i ] can be written as L′

1[h
∗
i ] = r∗i B̂i + τ∗i B̂iR̂i using r∗i ∈ Zp and τ∗i ∈ Zp, if

we rename ei and e′i as r∗i and τ∗i , respectively. Then, L′
2[h̃

∗
i ] = r∗i B̂i + τ∗i B̂iR̂i follows from Eq. (16) and

L′
2[h

∗
i,j ] = r∗i Γ̂B̂i/B̂j + τ∗i Γ̂B̂iR̂i/B̂j for all j ̸= i follows from Eq.(24).

18Note that the linear combination should not include Ĉ2 and Ĉ3, since the handle is submitted before the challenge phase.

41



Lemma 12 For any adversary, it holds that Pr[E4] = Pr[E5].

Proof. The only difference between Game 4 and Game 5 is in the way zero-test queries are answered. The
only possible case when Game 5 behaves differently from Game 4 in A’s view is the case where the following
event occurs: A submits a handle for a polynomial f ∈ T to the zero-test oracle such that bi∗ ̸= 0 for some
i∗ ∈ [L]\(Mal ∪ Cor) and the associated polynomial f ′ ∈ T′ equals to 0 in T′. Here, we prove that f ′ cannot
be 0 for such f .

Recall that f ′ is obtained by replacing {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3, Ĉ4 and {Ĉ5,k}k∈[N ] in Eq. (19) with polyno-
mials {C1,ℓ}ℓ∈[n], C2, C3, C4 and {C5,k}k∈[K] defined as in Eq. (20) to obtain f ′′ ∈ T′ and then replacing

{R̂i}i∈Cor that appear in f ′′ with {ri}i∈Cor. We divide f into f1, f2, f3 and f4 as in Eq. (19) and define the
corresponding polynomials f ′′

1 , f
′′
2 , f

′′
3 , f

′′
4 , and f ′

1, f
′
2, f

′
3 and f ′

4 similarly. First observe that we can write
f ′′
2 as follows:

f ′′
2 =

∑
i∈[L]

bi · C2 · (1/B̂i) = −
∑
i∈[L]

bi · Ŝ∆̂/B̂i −
∑

i∈[L],j∈[L]

bi · Ŝ(L1[hj ] + B̂j · ⟨yj , Â⟩)(1/B̂i).

If we replace {R̂i}i∈Cor that (implicitly) appear in the above sum with {ri}i∈Cor, we obtain the following:

f ′
2 = −

∑
i∈[L]

bi · Ŝ∆̂/B̂i −
∑

i∈[L],j∈[L]

bi · Ŝ(L′
1[hj ] + B̂j · ⟨yj , Â⟩)(1/B̂i)

= −
∑
i∈[L]

bi · Ŝ∆̂/B̂i −
∑

i∈[L],j∈[L]\(Mal∪Cor)

bi · ŜB̂jR̂j/B̂i −
∑

i∈[L],j∈Cor\Mal

birj · ŜB̂j/B̂i

−
∑

i∈[L],j∈Mal

bi · ŜB̂j(r
∗
j + τ∗j R̂j)/B̂i −

∑
i,j∈[L]

bi · ⟨yj , Â⟩ · ŜB̂j/B̂i

= −
∑
i∈[L]

bi · Ŝ∆̂/B̂i −
∑

i∈[L]\(Mal∪Cor)

bi · ŜR̂i −
∑

i∈Cor\Mal

biri · Ŝ−
∑
i∈Mal

bi · Ŝ(r∗i + τ∗i R̂i)

−
∑
i∈[L]

bi · ⟨yi, Â⟩ · Ŝ− Φ (27)

where we define Φ as

Φ =
∑

i∈[L],j∈[L]\(Mal∪Cor),i̸=j

bi · ŜB̂jR̂j/B̂i +
∑

i∈[L],j∈Cor\Mal,i̸=j

birj · ŜB̂j/B̂i

+
∑

i∈[L],j∈Mal,i̸=j

bi · ŜB̂j(r
∗
j + τ∗j R̂j)/B̂i +

∑
i,j∈[L],i̸=j

bi · ⟨yj , Â⟩ · ŜB̂j/B̂i. (28)

In the second line of Eq. (27), we use the fact that L′
1[hj ] can be represented as L′

1[hj ] = r∗j B̂j + τ∗j B̂jR̂j for
j ∈ Mal due to the change introduced in Game 4 and in the last line, we single out the terms with i = j
from each of the summations in the second line and put other terms into Φ. In particular, f ′

2 contains the

term ŜR̂i∗ with non-zero coefficient bi∗ , which appears in the second summation (from left) in the last line
of Eq. (27). It can be seen by inspection that the term cannot be cancelled inside the above sum. We then

show that not a single polynomial among f ′
1, f

′
3 and f ′

4 contains the monomial ŜR̂i∗ .

• It can be observed that f ′
3 can be represented as a linear combination of ∆̂Ŝ/B̂j , {∆̂V̂µ/B̂i}µ∈[2,N ],j∈[L]

and {ŜB̂jT̂j,ρ(k)/B̂i}i∈[L],j∈[L]:ρ(k)̸∈Attj . Therefore, f
′
3 does not contain the monomial ŜR̂i∗ .

• It is easy to observe that f ′
4 can be represented as a linear combination of Ŝ, 1, and {ŜÂℓ}ℓ. Therefore,

it does not contain the term ŜR̂i∗ .

• We then show that f ′
1 cannot contain the term either. To show this, we consider each combination

of (X,Y ) ∈ (V1 × V2)\(Ṽ1 × Ṽ2) where Ṽ1 = {Ĉ2, {Ĉ5,k}k∈∈[K]}, Ṽ2 = {1/B̂i}i∈[L] and show that the
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resulting element that is obtained by replacing Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K] that appear in X · Y with the

polynomials C2, C3, C4 and C5,k, and then replacing {R̂i}i∈Cor with {ri}i∈Cor does not contain the

desired term ŜR̂i∗ . We first observe that X should be one of Ĉ2, Ĉ3, Ĉ4 and {Ĉ5,k}k∈[K] since otherwise

the resulting element does not contain the multiplicative factor Ŝ.

– We first consider the case of X = Ĉ2. In this case, Y should be chosen from V2\Ṽ2. Note that,
in this case, the term XY is not a monomial, but a sum of monomials. However, the resulting
terms are multiplied by B̂i for some i and thus does not yield the term ŜR̂i∗ .

– We then consider the case of X = Ĉ3. In this case, Y is chosen from V2. Then, the resulting
element is either multiplied by 1/Γ̂ or B̂i/B̂j with i ̸= j. Therefore, it does not yield the term
either.

– We then consider the case of X = Ĉ4. In this case, Y is chosen from V2. Then, the resulting
element is either multiplied by 1/Π̂ or B̂i/B̂j with i ̸= j. Therefore, it does not yield the term
either.

– We next consider the case of X = Ĉ5,k. In this case, Y should be chosen from V2\Ṽ2. Note that,
in this case, the term XY is not a monomial, but a sum of monomials. However, the resulting
terms are either multiplied by ∆̂ or T̂j,ρ(k). Therefore, it does not yield the term ŜR̂i∗ .

Therefore, the monomial ŜR̂i∗ that appears in f ′
1 cannot be cancelled by any term in f ′

2, f
′
3 and f ′

4. This
implies f ′ = f ′

1 + f ′
2 + f ′

3 + f ′
4 ̸= 0 over T′ as desired. This completes the proof. □

Lemma 13 For any adversary, it holds that Pr[E5] = Pr[E6].

Proof. The only difference between Game 5 and Game 6 is in the way zero-test queries are answered. The
only possible case when Game 6 behaves differently from Game 5 in A’s view is the case where the following
event occurs: A submits a handle for a polynomial f ∈ T to the zero-test oracle such that b̃i,k ̸= 0 for some
(i, k) ∈ [L] × [K] such that ρ(k) ̸∈ Atti and the associated polynomial f ′ ∈ T′ equals to 0 in T′. Here, we
prove that f ′ cannot be 0 for such f .

Recall that f ′ is obtained by replacing {Ĉ1,ℓ}ℓ∈[n], Ĉ2, Ĉ3, Ĉ4 and {Ĉ5,k}k∈[N ] in Eq. (19) with polyno-
mials {C1,ℓ}ℓ∈[n], C2, C3, C4 and {C5,k}k∈[K] defined as in Eq. (20) to obtain f ′′ ∈ T′ and then replacing

{R̂i}i∈Cor that appear in f ′′ with {ri}i∈Cor. We divide f into f1, f2, f3 and f4 as in Eq. (19) and define the
corresponding polynomials f ′′

1 , f
′′
2 , f

′′
3 , f

′′
4 , and f ′

1, f
′
2, f

′
3 and f ′

4 similarly. First observe that we can write

f ′′
3 = f ′

3 since it does not contain R̂i and it can be written as follows:

f ′
3 =

∑
i∈[L],k∈[K]

b̃i,k · C5,k · (1/B̂i) =
∑

i∈[L],k∈[K]

b̃i,k ·

∆̂ · ⟨V,mk⟩ −
∑

j∈[L]:ρ(k)̸∈Attj

ŜB̂jT̂j,ρ(k)

 · (1/B̂i)

= −
∑

i∈[L],k∈[K],
j∈[L]:ρ(k)̸∈Attj

b̃i,k · ŜB̂jT̂j,ρ(k)/B̂i +
∑

i∈[L],k∈[K]

b̃i,kmk,1 · ∆̂Ŝ/B̂i +
∑

i∈[L],k∈[K],µ∈[2,N ]

b̃i,kmk,µ · ∆̂V̂µ/B̂i

= −
∑

i∈[L],k∈[K]

b̃i,k · ŜT̂i,ρ(k) −
∑

i∈[L],k∈[K],
j∈[L]\{i}:ρ(k)̸∈Attj

b̃i,k · ŜB̂jT̂j,ρ(k)/B̂i

+
∑

i∈[L],k∈[K]

b̃i,kmk,1 · ∆̂Ŝ/B̂i +
∑

i∈[L],k∈[K],µ∈[2,N ]

b̃i,kmk,µ · ∆̂V̂µ/B̂i (29)

In the last line of Eq. (29), we single out the terms in the first summation of the first line with ρ(k) ̸∈ Atti, (i.e.

taking j = i) for each summations. We observe that f ′
3 contains the term ŜT̂i,ρ(k) with no-zero coefficient

b̃i,k which appears in the left most summation in the last line of Eq. (29). It can be seen that the term

cannot be cancelled inside the above summation since ρ is injective and thus ŜT̂i,ρ(k) are distinct monomials
for k ∈ [K]. We claim that the term does not appear in f ′

1, f
′
2 and f ′

4.
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• It can be observed from Eq. (27) that no monomial of f ′
2 contains T̂i,ρ(k). Therefore, f ′

2 does not

contain the monomial ŜT̂i,ρ(k).

• It is easy to observe that f ′
4 can be represented as a linear combination of Ŝ, 1, and {ŜÂℓ}ℓ. Therefore,

it does not contain the term ŜT̂i,ρ(k).

• We then show that f ′
1 cannot contain the term either. To show this, we consider each combination

of (X,Y ) ∈ (V1 × V2)\(Ṽ1 × Ṽ2) where Ṽ1 = {Ĉ2, {Ĉ5,k}k∈∈[K]}, Ṽ2 = {1/B̂i}i∈[L] and show that the

resulting element that is obtained by replacing Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K] that appear in X · Y with the

polynomials C2, C3, C4 and C5,k, and then replacing {R̂i}i∈Cor with {ri}i∈Cor does not contain the

desired term ŜT̂i,ρ(k). We first observe that X should be one of Ĉ2, Ĉ3, Ĉ4 and {Ĉ5,k}k∈[K] since

otherwise the resulting element does not contain the multiplicative factor Ŝ.

– We first consider the case of X = Ĉ2. In this case, Y should be chosen from V2\Ṽ2. Recall that

L′
1[hj ] in Ĉ2 takes the form L′

1[hj ] = r∗j B̂j + τ∗j B̂jR̂j for j ∈ Mal due to Game 4. Note that,
in this case, the term XY is not a monomial, but a sum of monomials. Therefore, the resulting
terms of X · Y are multiplied by B̂i for some i and thus does not yield the term ŜT̂i,ρ(k).

– We then consider the case of X = Ĉ3. In this case, Y is chosen from V2. Then, the resulting
element is either multiplied by 1/Γ̂ or B̂i/B̂j with i ̸= j. Therefore, it does not yield the term
either.

– We then consider the case of X = Ĉ4. In this case, Y is chosen from V2. Then, the resulting
element is either multiplied by 1/Π̂ or B̂i/B̂j with i ̸= j. Therefore, it does not yield the term

ŜT̂i,ρ(k).

– We next consider the case of X = Ĉ5,k. In this case, Y should be chosen from V2\Ṽ2. Note that,
in this case, the term XY is not a monomial, but a sum of monomials. However, the resulting
element is either multiplied by ∆̂ or B̂j for some j ∈ [L]. Therefore, it does not yield the term

ŜT̂i,ρ(k).

Therefore, the monomial ŜT̂i,ρ(k) that appears in f ′
3 cannot be cancelled by any term from f ′

1, f
′
2 or f ′

4. This
implies f ′ = f ′

1 + f ′
2 + f ′

3 + f ′
4 ̸= 0 over T′ as desired. Therefore, if f ∈ T passes the zero-test then it must

hold that b̃i,k = 0 for all i ∈ [L], k ∈ [K] with ρ(k) ̸∈ Atti. This completes the proof. □

Lemma 14 For any adversary, it holds that Pr[E6] = Pr[E7].

Proof. The only difference between Game 6 and Game 7 is in the way zero-test queries are answered. The
only possible case when Game 7 behaves differently from Game 6 in A’s view is the case where the following
event occurs: A submits a handle for a polynomial f ∈ T to the zero-test oracle such that there exists
(i, µ) ∈ [L]× [2, N ] satisfying

∑
k∈[K] b̃i,kmk,µ ̸= 0 where mk,µ is the (k, µ)-th entry of the LSSS matrix M of

the challenge policy and the associated polynomial f ′ ∈ T′ equals to 0 in T′. Here, we prove that f ′ cannot
be 0 for such f .

We divide f into f1, f2, f3, and f4 as in Eq. (19) and define the corresponding polynomials f ′
1, f

′
2, f

′
3,

and f ′
4 as in the proof of Lemma 13. We can write f ′

3 as

f ′
3 =

∑
i∈[L],k∈[K]

b̃i,k · C5,k · (1/B̂i) =
∑

i∈[L],k∈[K]:
ρ(k)∈Atti

b̃i,k · C5,k · (1/B̂i)

= −
∑

i∈[L],k∈[K],
j∈[L]\{i}:ρ(k)̸∈Attj

b̃i,k · ŜB̂jT̂j,ρ(k)/B̂i +
∑

i∈[L],k∈[K]:
ρ(k)∈Atti

b̃i,kmk,1 · Ŝ∆̂/B̂i

+
∑

i∈[L],k∈[K],
µ∈[2,N ]:ρ(k)∈Atti

b̃i,kmk,µ · ∆̂V̂µ/B̂i (30)
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Firstly, note that in the first line of Eq. (30), we use the fact that b̃i,k = 0 for all (i, k) such that ρ(k) ̸∈ Atti
due to Game 6. Now, for a fixed i ∈ [L] and µ ∈ [2, N ] if

∑
k∈[K]:ρ(k)∈Atti

b̃i,kmk,µ ̸= 0 then the term

∆̂V̂µ/B̂i will present with non-zero coefficient in f ′
3. By inspection, it is easy to see that the term cannot be

cancelled inside the above summation. Moreover, we observe that the term cannot be cancelled by any term
of f ′

1, f
′
2 and f ′

4 since no element of these polynomials contains V̂µ. This implies f ′ = f ′
1 + f ′

2 + f ′
3 + f ′

4 ̸= 0
over T′ as desired. This completes the proof. Therefore, if f ∈ T passes the zero-test query then f ′

3 must
take the form

f ′
3 = −

∑
i∈[L],k∈[K],

j∈[L]\{i}:ρ(k)̸∈Attj

b̃i,k · ŜB̂jT̂j,ρ(k)/B̂i +
∑

i∈[L],k∈[K]:
ρ(k)∈Atti

b̃i,kmk,1 · Ŝ∆̂/B̂i (31)

Lemma 15 For any adversary, it holds that Pr[E7] = Pr[E8].

Proof. The only difference between Game 7 and Game 8 is in the way zero-test queries are answered. The
only possible case when Game 8 behaves differently from Game 7 in A’s view is the case where the following
event occurs: A submits a handle for a polynomial f ∈ T to the zero-test oracle such that bi ̸= 0 for any
i ̸∈ I(M,ρ) and the associated polynomial f ′ ∈ T′ equals to 0 in T′. Here, we prove that f ′ cannot be 0 for
such f .

We divide f into f1, f2, f3, and f4 as in Eq. (19) and define the corresponding polynomials f ′
1, f

′
2, f

′
3,

and f ′
4 as in the proof of Lemma 13. We first recall that f ′

2 can be expressed as Eq. (27). Noting that bi = 0
for all i ̸∈ Cor ∪Mal, Eq. (27) can be (slightly) simplified as follows:

f ′
2 = −

∑
i∈Cor∪Mal

bi · Ŝ∆̂/B̂i −
∑

i∈Cor\Mal

biri · Ŝ−
∑
i∈Mal

bi · Ŝ(r∗i + τ∗i R̂i)−
∑
i∈[L]

bi · ⟨yi, Â⟩ · Ŝ− Φ

where Φ is defined as in Eq. (28). We then show that if bi ̸= 0 for any i ∈ (Cor ∪Mal)\I(M,ρ) then the term

Ŝ∆̂/B̂i must appear with non-zero coefficient in f ′. Note that the term cannot be cancelled inside f ′
2 since

no other term except Ŝ∆̂/B̂i contains ∆̂. We now show that the term does not appear in f ′
1, f

′
3 and f ′

4.

• It is easy to see that f ′
4 can be represented as a linear combination of Ŝ, 1, and {ŜÂℓ}ℓ. There fore, it

does not contain the term Ŝ∆̂/B̂i.

• We claim that f ′
3 does not contain the term Ŝ∆̂/B̂i if i ̸∈ I(M,ρ). Recall that f ′

3 takes the form as

in Eq. 31 which contains Ŝ∆̂/B̂i with coefficient
∑

k∈[K]:ρ(k)∈Atti
b̃i,kmk,1. By the property of LSSS,

it is known that (1, 0, . . . , 0) ̸∈ Span{Mρ(k) : ρ(k) ∈ Atti and i ̸∈ I(M,ρ)} where Mρ(k) denotes the
ρ(k)-th row of the matrix M. Also, we observe from Eq. 31 that f ′

3 does not contain any monomial

involving V̂µ for µ ∈ [2, N ]. Therefore, if
∑

k∈[K]:ρ(k)∈Atti
b̃i,kmk,1 ̸= 0 for some i ̸∈ I(M,ρ) then it

means that (̃bi,k, 0, . . . , 0) ∈ Span{Mρ(k) : ρ(k) ∈ Atti and i ̸∈ I(M,ρ)} which contradicts the fact that

(1, 0, . . . , 0) ̸∈ Span{Mρ(k) : ρ(k) ∈ Atti and i ̸∈ I(M,ρ)}. This implies that
∑

k∈[K]:ρ(k)∈Atti
b̃i,kmk,1 =

0 for all i ̸∈ I(M,ρ). In particular, Eq. 31 is slightly simplified as

f ′
3 = −

∑
i∈[L],k∈[K],

j∈[L]\{i}:ρ(k)̸∈Attj

b̃i,k · ŜB̂jT̂j,ρ(k)/B̂i +
∑

i∈I(M,ρ),k∈[K]:

ρ(k)∈Atti

b̃i,kmk,1 · Ŝ∆̂/B̂i (32)

Therefore, f ′
3 cannot contain Ŝ∆̂/B̂i if i ̸∈ I(M,ρ).

• We then show that f ′
1 cannot contain the term either. To show this, we consider each combination

of (X,Y ) ∈ (V1 × V2)\(Ṽ1 × Ṽ2) where Ṽ1 = {Ĉ2, {Ĉ5,k}k∈∈[K]}, Ṽ2 = {1/B̂i}i∈[L] and show that the

resulting element that is obtained by replacing Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K] that appear in X · Y with the

polynomials C2, C3, C4 and C5,k, and then replacing {R̂i}i∈Cor with {ri}i∈Cor does not contain the

desired term Ŝ∆̂/B̂i if i ̸∈ I(M,ρ). We first observe that X should be one of Ĉ2 and {Ĉ5,k}k∈[K] since

otherwise the resulting element does not contain the multiplicative factor ∆̂.
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– We first consider the case of X = Ĉ2. In this case, Y should be chosen from V2\Ṽ2. Recall that

L′
1[hj ] in Ĉ2 does not contain ∆̂ since it takes the form L′

1[hj ] = r∗j B̂j + τ∗j B̂jR̂j for j ∈ Mal due

to Game 4. Therefore, the resulting terms of X · Y are either multiplied by B̂i for some i or
B̂i/B̂j with i ̸= j, and thus does not yield the term Ŝ∆̂/B̂i.

– We next consider the case of X = Ĉ5,k. In this case, Y should be chosen from V2\Ṽ2. Then, the

resulting element is either multiplied by B̂i for some j ∈ [L] or B̂i/B̂j with i ̸= j. Therefore, it
does not yield the term either.

Therefore, the term Ŝ∆̂/B̂i with i ̸∈ I(M,ρ) that appears in f ′
2 cannot be cancelled by any term from f ′

1, f
′
3

or f ′
4. This implies f ′ = f ′

1 + f ′
2 + f ′

3 + f ′
4 ̸= 0 over T′ as desired. This completes the proof.

Lemma 16 For any adversary, it holds that Pr[E8] = Pr[E9].

Proof. The only difference between Game 8 and Game 9 is in the way zero-test queries are answered. The
only possible case when Game 9 behaves differently from Game 8 in A’s view is the case where the following
event occurs: A submits a handle for a polynomial f ∈ T to the zero-test oracle such that bi = 0 for all
i ̸∈ (Cor ∪Mal) ∩ I(M,ρ) and d ̸=

∑
i∈(Cor∪Mal)∩I(M,ρ)

biyi, but the associated polynomial f ′ ∈ T′ equals to 0

in T′. Here, we prove that this cannot happen.
We divide f into f1, f2, f3, and f4 as in Eq. (19) and define the corresponding polynomials f ′

1, f
′
2, f

′
3,

and f ′
4 as in the proof of Lemma 13. Recall that f ′

2 can be expressed as Eq. (27). Noting that bi = 0 for all
i ̸∈ (Cor ∪Mal) ∩ I(M,ρ), Eq. (27) can be (slightly) simplified as follows:

f ′
2 = −

∑
i∈(Cor∪Mal)∩I(M,ρ)

bi · Ŝ∆̂/B̂i −
∑

i∈(Cor∪Mal)∩I(M,ρ)

bi · ⟨yi, Â⟩ · Ŝ

−
∑

i∈(Cor\Mal)∩I(M,ρ)

biri · Ŝ−
∑

i∈Mal∩I(M,ρ)

bi · Ŝ(r∗i + τ∗i R̂i)− Φ

︸ ︷︷ ︸
:=Ψ

where Φ is defined as in Eq. (28). We also have

f ′
4 = d0Ŝ + ⟨d, Â⟩ · Ŝ + ⟨x∗

coin,d⟩,

which is easy to observe. First, we see that f ′
3 does not contain the term ŜÂℓ which is easy to observe from

Eq. 32. We then show that f ′
1 also does not contain the term of the form ŜÂℓ for any ℓ. This is sufficient

to complete the proof, since

f ′ = f ′
1 + f ′

2 + f ′
3 + f ′

4 =

〈
d−

∑
i∈(Cor∪Mal)∩I(M,ρ)

bi · yi, Â

〉
· Ŝ + f ′

1 +Ψ+ d0Ŝ + ⟨x∗
coin,d⟩,

does not equal to 0 unless d−
∑

i∈Cor∪Mal bi·yi = 0, which can be seen by observing that f ′
1+Ψ+d0Ŝ+⟨x∗

coin,d⟩
does not contain any term of the form ŜÂℓ.

We then move to show that f ′
1 does not contain the term of the form ŜÂℓ for any ℓ. To show this, we

consider each combination of (X,Y ) ∈ (V1 × V2)\(Ṽ1 × Ṽ2) where Ṽ1 = {Ĉ2, {Ĉ5,k}k∈∈[K]}, Ṽ2 = {1/B̂i}i∈[L]

and show that the resulting element that is obtained by replacing Ĉ2, Ĉ3, Ĉ4, {Ĉ5,k}k∈[K] that appear in

X · Y with the polynomials C2, C3, C4 and C5,k, and then replacing {R̂i}i∈Cor with {ri}i∈Cor does not

contain the desired term ŜÂℓ. We first observe that X should be among Ĉ2, Ĉ3, Ĉ4 and Ĉ5,k, since otherwise

the resulting element does not contain the multiplicative factor Ŝ.

• We first consider the case of X = Ĉ2. In this case, Y should be chosen from V2\Ṽ2. Note that, in this
case, the term XY is not a monomial, but a sum of monomials. However, then the resulting terms are
multiplied by B̂i for some i and thus does not yield the term.
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• We consider the case of X = Ĉ3. If we multiply Y from V2, the resulting element either carries the
multiplicative factor 1/Γ̂ or B̂i/B̂j with i ̸= j. In any case, it does not yield the term ŜÂℓ.

• Next, we consider the case X = Ĉ4. If we multiply Y from V2, the resulting element either carries the
multiplicative factor 1/Π̂ or B̂i/B̂j with i ̸= j. In any case, it does not yield the desired term.

• We then consider the case of X = Ĉ5,k. In this case, Y should be chosen from V2\Ṽ2. Note that, in
this case, the term XY is not a monomial, but a sum of monomials. The resulting element is either
multiplied by ∆̂ or B̂i for some i ∈ [L]. Therefore, it does not yield the term ŜÂℓ.

As discussed above, this completes the proof. □

Lemma 17 For any adversary, it holds that Pr[E9] = 1/2.

Proof. We show that answer to any zero-test query made by A does not depend on the challenge bit coin
and therefore the view of A is independent from the value of coin. To see this, let us consider f ∈ T that
corresponds to a zero-test query made by A during the game and prove that f ′ corresponds to the same
element in T′ regardless of the value of coin if f satisfies the restrictions that are introduced in Game 5−9.
For the analysis, we divide f into f1, f2, f3, and f4 as in Eq. (19) and define the corresponding polynomials
f ′
1, f

′
2, f

′
3, and f ′

4 as in the proof of Lemma 16.
We first claim that regardless of the value of coin, f ′

1, f
′
2 and f ′

3 correspond to the same elements in T′.

This can be easily seen by observing that f1, f2 and f3 do not include the formal variables {Ĉ1,ℓ}ℓ, which
are the only variables that depend on the value of coin when they are replaced with the polynomials in T′.

We then prove the same statement for f ′
4. We observe:

f ′
4 = d0Ŝ + ⟨d, Â⟩ · Ŝ + ⟨x∗

coin,d⟩ = d0Ŝ + ⟨d, Â⟩ · Ŝ +
∑

i∈(Cor∪Mal)∩I(M,ρ)

bi · ⟨x∗
coin,yi⟩.

Since ⟨x∗
0,yi⟩ = ⟨x∗

1,yi⟩ for all i ∈ (Cor ∪Mal) ∩ I(M,ρ) by the admissibility condition, the above refers to
the same element in T′ regardless of whether coin = 0 or coin = 1.

Since each of f ′
1, f

′
2, f

′
3, and f ′

4 corresponds to the same element in T′ regardless of whether coin = 0 or
coin = 1, the same holds for f ′ = f ′

1 + f ′
2 + f ′

3 + f ′
4. This completes the proof. □

Finally, the proof of Theorem 2 follows by combining the proofs of Lemma 8 to 17. □

Registered ABIPFE from pairings: Plugging our slotted registered ABIPFE into the transformation
described in Section 9, we achieve the following corollary:

Corollary 2 (Bounded Registered ABIPFE) Let λ be a security parameter. Let Uatt be any (polynomial-
size) attribute space, and let P be a set of policies that can be described by a one-use LSSS over Uatt. Then,
under generic bilinear group model, for every polynomial L = L(λ) and an integer n ∈ N, there exists a
bounded registered ABIPFE scheme with function space UF = PSet(Uatt)×Zn, message spaceM = P ×Zn,
and supporting up to L users with the following properties:

• The size of the common reference string and the size of the auxiliary data maintained by the key
curator is L2 · poly(λ, n, |Uatt|, logL).

• The running times of key-generation and registration are L·poly(λ, |Uatt|, logL) and L·poly(λ, n, |Uatt|, logL)
respectively.

• The size of the master public key and the helper decryption keys are both |Uatt| · poly(λ, n, logL).

• The size of a ciphertext is K ·poly(λ, n, logL), where K denotes the number of rows in the LSSS matrix
M associated with the access policy.
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8 Slotted Registered FE from Indistinguishability Obfuscation

This section is devoted to present the slotted registered FE scheme that can be lifted to a registered FE
scheme with no a-priori bound on the number of users in the system. The construction transforms the
IO-based registered ABE of Hohenberger et al. [HLWW23] into the setting of functional encryption. Before
we proceed, let us discuss the cryptographic building blocks required for the construction.

8.1 Cryptographic Tools

Definition 7 (Pseudorandom Generator [HG90,Lev85]) A pseudorandom generator (PRG) PRG :
{0, 1}λ → {0, 1}λ+ℓ(λ) with stretch ℓ(λ) (ℓ is some polynomial function) is a polynomial-time computable
function that satisfies the following. For any PPT adversary A, it holds that

|Pr[A(PRG(s)) = 1 : s← {0, 1}λ]− Pr[A(r) : r ← {0, 1}λ+ℓ(λ)] ≤ negl(λ)

.

Definition 8 (Secret Key Encryption) Let λ be a security parameter and let p, q, r and s be some
polynomials. A secret key encryption scheme is a tuple of algorithms SKE = (Setup,Enc,Dec) with plaintext
spaceM := {0, 1}n, ciphertext space C := {0, 1}ℓc(λ), and secret key space SK := {0, 1}ℓk(λ).

Setup(1λ)→ sk : The setup algorithm takes the security parameter 1λ as input and outputs a secret key
sk ∈ SK.

Enc(sk,m)→ ct : The encryption algorithm takes sk and a plaintext m ∈ M as input, and outputs a
ciphertext ct ∈ C.

Dec(sk, ct) ∈M∪ {⊥} : The decryption algorithm takes sk and ct as input, and outputs a plaintext m′ ∈M
or ⊥.

The algorithms must satisfy the following properties:

Correctness: There exists a negligible function negl such that for any λ ∈ N and m ∈M,

Pr

[
Dec(sk, ct) ̸= m :

sk← Setup(1λ)
ct← Enc(sk,m)

]
≤ negl(λ).

Security: Let SKE = (Setup,Enc,Dec) be a SKE scheme. We consider the following security experiment
ExptSKEA (λ, b) against a PPT adversary A.

1. The challenger computes sk← Setup(1λ).

2. A sends an encryption query m to the challenger. The challenger computes ct ← Enc(sk,m) and
returns ct to A. A can repeat this process polynomially many times.

3. A sends (m0,m1) ∈M2 to the challenger.

4. The challenger computes ct← Enc(sk,mb) and sends ct to A.

5. A sends an encryption query m to the challenger. The challenger computes ct ← Enc(sk,m) and
returns ct to A. A can repeat this process polynomially many times.

6. A outputs b′ ∈ {0, 1}. This is the output of the experiment.

We say that SKE is IND-CPA secure if, for any PPT A, it holds that

|Pr[ExptSKEA (λ, 0) = 1]− Pr[ExptSKEA (λ, 1) = 1]| ≤ negl(λ).
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Definition 9 (Indistinguishability Obfuscation (IO) [BGI+01,GGH+13]) A PPT algorithm iO is
a secure IO for a class of circuits {Cλ}λ∈N if it satisfies the following two conditions.

• Functionality: For any security parameter λ ∈ N, circuit C ∈ Cλ, and input x, we have that

Pr[C ′(x) = C(x) | C ′ ← iO(1λ, C)] = 1 .

• Indistinguishability: For any pair of circuits C0, C1 ∈ Cλ satisfying C0(x) = C1(x),∀x and any PPT
distinguisher D, the following holds:∣∣Pr [D(iO(1λ, C0)) = 1

]
− Pr

[
D(iO(1λ, C1)) = 1

]∣∣ ≤ negl(λ).

Theorem 3 ( [JLS22]) Assume sub-exponential security of the following assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polynomially
many LPN samples and error rate 1/kδ, where k is the dimension of the LPN secret, and δ > 0 is any
constant;

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where n is
the length of the PRG seed, and τ > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, (subexponentially secure) indistinguishability obfuscation for all polynomial-size circuits exists. As-
suming only polynomial security of the assumptions above yields polynomially secure functional encryption
for all polynomial-size circuits.

Definition 10 (Somewhere Statistically Binding (SSB) Hash Function [HW15,OPWW15]) Let
λ be a security parameter. A somewhere statistically binding (SSB) hash function with block length
ℓblk = ℓblk(λ), output length ℓhash = ℓhash(λ), and opening length ℓopen = ℓopen(λ) is a tuple of efficient
algorithms SSB = (Setup,Hash,Open,Vrfy) with the following properties:

Setup(1λ, 1ℓblk , N, i∗)→ hk : The setup algorithm takes as input a security parameter λ, a block size ℓblk,
the message length N ≤ 2λ, and an index i∗ ∈ [N ], and outputs a hash key hk. Both N and i∗ are
encoded in binary; in particular, this means that |hk| = poly(λ, ℓblk, logN). We let Σ = {0, 1}ℓblk denote
the block alphabet.

Hash(hk, x)→ h : the hash algorithm takes as input a hash key hk and input x, and outputs a hash value
h ∈ {0, 1}ℓhash .

Open(hk,x, i)→ πi : The open algorithm takes as input a hash key hk, an input x ∈ ΣN and an index i,
and outputs an opening πi ∈ {0, 1}ℓopen .

Vrfy(hk, h, i, xi, πi) ∈ {0, 1} : The verify algorithm takes as input a hash key hk, a hash value h, an index
i, a value xi ∈ Σ, and an opening πi ∈ {0, 1}ℓopen , and outputs a bit b ∈ {0, 1} indicating whether it
accepts or rejects.

The algorithm must satisfy the following properties:

Correctness: For all security parameter λ ∈ N, all block sizes ℓblk = ℓblk(λ), all integers N ≤ 2λ, all indices
i, i∗ ∈ [N ], and any x ∈ ΣN ,

Pr

[
Vrfy(hk, h, i, xi, πi) = 1 :

hk← Setup(1λ, 1ℓblk , N, i∗)
h← Hash(hk,x);πi ← Open(hk,x, i)

]
= 1.
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Index hiding: For a bit b ∈ {0, 1} and an adversaryA, define the index hiding experiment ExptindexSSBA (1λ, b)
as follows:

1. A chooses an integer N and two indices i0, i1 ∈ [N ].

2. The challenger samples hk← Setup(1λ, 1ℓblk , N, ib) and gives hk to A.

3. A outputs a bit b′ ∈ {0, 1}, which is also the output of the experiment.

We require that for all polynomials ℓblk = ℓblk(λ) and for all efficient adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N,

|Pr[ExptindexSSBA (1λ, 0) = 1]− Pr[ExptindexSSBA (1λ, 1) = 1]| = negl(λ).

Somewhere statistically binding: We say that a hash key hk is statistically binding for an index
i∗ ∈ [N ] if there does not exists h ∈ {0, 1}ℓhash , x ̸= x′ ∈ Σ, and π, π′ where Vrfy(hk, h, i∗, x, π) = 1 =
Vrfy(hk, h, i∗, x′, π′). We require that for all polynomial ℓblk = ℓblk(λ) and for all N ≤ 2λ, there exists a
negligible function negl(·) such that for all λ ∈ N and all i ∈ [N ],

Pr[hk is statistically binding for index i : hk← Setup(1λ, 1ℓblk , N, i)] = 1− negl(λ).

Succinctness: The hash length ℓhash, and opening length ℓopen are all fixed polynomials in the security
parameter λ and block size ℓblk (and independent of N).

Theorem 4 ( [KLW15,OPWW15]) Assuming indistinguishability obfuscation for polynomial-size cir-
cuits and one-way function, then for any polynomial block size ℓblk = ℓblk(λ), there exists a somewhere
statistically binding hash function for alphabet Σ = {0, 1}ℓblk .

Subsequently, Okamoto et al. [OPWW15] designed SSB hash functions from various well-studied assumptions
such as DDH, DCR, LWE, and others.

8.2 Construction

We use the following cryptographic tools as building blocks:

− A length doubling PRG PRG : {0, 1}λ → {0, 1}2λ.

− A secret key encryption scheme SKE = (Setup,Enc,Dec).

− A somewhere statistically binding hash function SSB = (Setup,Hash,Open,Vrfy).

− An indistinguishability obfuscation iO for P/poly.

The slotted registered functional encryption SlotRFE = (Setup,KeyGen, IsValid,Aggregate,Enc,Dec) for a
function universe UF = {0, 1}ℓf , and message spaceM works as follows:

Setup(1λ, 1ℓf , L) : The setup algorithm takes the security parameter λ, the bit-length ℓf of a function in
UF (in unary) and the number of users L (in binary) as inputs and sets ℓblk = ℓf + 2λ, computes
hk← SSB.Setup(1λ, 1ℓblk , L, 1) and sets crs := hk. It outputs crs.

KeyGen(crs, i) : The key generation algorithm takes the common reference string crs, and a slot index i ∈ [L]
as inputs and samples si ← {0, 1}λ. It outputs the public key as pki := PRG(si) and the secret key as
ski := si.

IsValid(crs, i, pki) : The key-validation algorithm takes a common reference string crs, a slot index i ∈ [L]
and a public key pki as inputs and outputs 1 if pki ∈ {0, 1}2λ; otherwise outputs 0.
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Aggregate(crs, (pk1, f1), . . . , (pkL, fL)) : The aggregate algorithm takes a common reference string crs, a list
of L public key-function pairs (pk1, f1), . . . , (pkL, fL) as inputs such that fi ∈ UF for all i ∈ [L]. It
computes

h← SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL))

and sets MPK := (hk, h). For each user i ∈ [L], the aggregate algorithm computes

πi ← SSB.Open(hk, ((pk1, f1), . . . , (pkL, fL)), i)

where we treat each pair (pki, fi) ∈ {0, 1}ℓblk as one SSB hash-block. It sets the helper decryption key
as hski := (i, pki, fi, πi) and outputs MPK, hsk1, . . . , hskL.

Enc(MPK,m) : The encryption algorithm takes MPK, and a message m ∈ M as inputs and samples
SK0,SK1 ← SKE.Setup(1λ), computes

CT0 ← SKE.Enc(SK0,m) and CT1 ← SKE.Enc(SK1,0|m|).

It writes (CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) ∈ {0, 1}2ℓc . The algorithm samples uk,β ← {0, 1}λ
for all k ∈ [2ℓc], β ∈ {0, 1}. It computes V = (vk,β := PRG(uk,β))k∈[2ℓc],β∈{0,1}. It constructs the circuit

C0 = C[MPK,SK0, V ] as defined in Figure 1 and computes C̃0 ← iO(1λ, C0). It outputs the ciphertext

ct := (CT0,CT1, C̃0, σCT := (uk,βk
)k∈[2ℓc]).

Dec(ski, hski, ct) : The decryption algorithm takes a secret key ski, a helper decryption key hski = (i, pki, fi, πi)

and ciphertext ct = (CT0,CT1, C̃0, σCT) as inputs and outputs C̃0(ski, i, pki, fi, πi,CT0,CT1, σCT).

Constants: MPK = (hk, h),SKj , V = (vk,β)k∈[2ℓc],β∈{0,1}
Inputs: ski ∈ {0, 1}λ, i ∈ [L], pki ∈ {0, 1}2λ, fi ∈ {0, 1}ℓf , πi ∈ {0, 1}ℓopen , SKE ciphertexts {CTj}j∈{0,1}
and σCT = (uk)k∈[2ℓc]

1. Parse (CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) ∈ {0, 1}2ℓc .

2. If SSB.Vrfy(hk, h, i, (pki, fi), πi) = 1 ∧ PRG(ski) = pki ∧ (PRG(uk) = vk,βk
)k∈[2ℓc]

a. Compute m̂← SKE.Dec(SKj ,CTj)

b. Output fi(m̂)

3. Else, output ⊥

Figure 1: The circuit Cj = Cj [MPK,SKj , V ] for j ∈ {0, 1}

Completeness: The scheme satisfies completeness since the IsValid algorithm outputs 1 only if pki ∈
{0, 1}2λ and the KeyGen algorithm computes pki = PRG(si) which belongs to {0, 1}2λ.

Correctness: Consider a secret key ski = si, a helper decryption key hski = (i, pki, fi, πi), and a ciphertext

ct = (CT0,CT1, C̃0, σCT) generated as above. By definition, pki = PRG(ski) and MPK = (hk, h) where

h←SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL))

πi ←SSB.Open(hk, ((pk1, f1), . . . , (pkL, fL)), i).
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Therefore, the check of the circuit C0 passes, i.e., SSB.Vrfy(hk, h, i, (pki, fi), πi) = 1 and PRG(ski) = pki
by the correctness of SSB and PRG. Also, by definition PRG(uk) = vk,βk

holds for all k ∈ [2ℓc] where
σCT = (uk)k∈[2ℓc]. Then, the SKE decryption SKE.Dec(SK0,CT0) returns m, and hence the circuit C0 on

input (ski, hski,CT0,CT1, σCT) returns fi(m). Therefore, by the correctness of iO, we get C̃0(ski, hski,CT0,
CT1, σCT) = fi(m).

Compactness: Consider the master public key MPK = (hk, h) and the helper decryption key hski =
(i, pki, fi, πi) output by the Aggregate algorithm. Since SSB.Setup is an efficient algorithm we have |hk| =
poly(λ, ℓblk, logL) and due to the succinctness of SSB.Hash we have |h|, |πi| = poly(λ, ℓblk). The maximum
length of any function in the universe UF is ℓf and ℓblk = ℓf + 2λ = log(|UF |) + 2λ. Therefore, it must hold
that |MPK|, |hski| are bounded by poly(λ, log(|UF |), logL).

8.3 Security Analysis

We prove the following theorem to show that the SlotRFE is secure.

Theorem 5 Assuming that the PRG is secure, SKE is IND-CPA secure, SSB is correct and secure, and iO
is secure then our SlotRFE is secure.

Proof. We prove the theorem using a sequence of hybrid experiments. We start with a real experiment
which is ExptSlotRFEA (1λ, 0) and end up in ExptSlotRFEA (1λ, 1). The computational indistinguishability between
the consecutive hybrids will be argued based on the assumptions stated in the theorem.

Game 0 : This is the real experiment with coin = 0. More precisely, it works as follows:

• Setup phase: The adversary sends a slot count 1L to the challenger. The challenger samples
hk ← SSB.Setup(1λ, 1ℓblk , L, 1) and sends crs := hk to A. The challenger initializes a counter
ctr← 0, a dictionary D and a set of slot indices Cor.

• Pre-challenge query phase: The adversary A is allowed to query the following queries:

− Key-generation query: In a key-generation query, A specifies a slot index i ∈ [L]. The
challenger samples s← {0, 1}λ and increments ctr← ctr+1. Then, it sends (ctr, pkctr := PRGs)
to A. The challenger adds the mapping ctr 7→ (i, pkctr, skctr := s) to D.

− Corruption query: In a corruption query, A specifies an index 1 ≤ c ≤ ctr. The challenger
looks up the tuple (i, pk, s)← D[c] and sends s to A.

• Challenge phase: For each slot i ∈ [L], A specifies a tuple (ci, fi, pk
∗
i ), and two challenge messages

m∗
0,m

∗
1. The challenger does the following:

− If ci ∈ {1, . . . , ctr}, then the challenger looks up the entry D[ci] = (i′, pk′, sk′). If i = i′,
then the challenger sets pki ← pk′. Moreover, if A previously issues a corruption query on
the index ci, then the challenger adds the slot index i to Cor. Otherwise, if i ̸= i′, then the
experiment halts.

− If ci = ⊥, then the challenger checks pk∗i ∈ {0, 1}2λ. If not, the experiment halts. Otherwise,
the challenger sets pki ← pk∗i and adds the slot index i to Cor.

The challenger computes h ← SSB.Hash(hk, (pk1, f1), . . . , (pkL, fL)) and samples SK0,SK1 ←
SKE.Setup(1λ). Then, it computes CT0 ← SKE.Enc(SK0,m

∗
0), CT1 ← SKE.Enc(SK1,0|m∗

0 |) and

V = (v∗k,β := PRG(u∗
k,β))k∈[2ℓc],β∈{0,1} where u∗

k,β ← {0, 1}λ. Then, it computes C̃0 ← iO(1λ, C0)
and sets σ∗

CT = (u∗
k,βk

)k∈[2ℓc] where C0 = C[MPK,SK0, V
∗] (as defined in Figure 1) and βk

represents the k-th bit of (CT0,CT1). Finally, it sends ct
∗ := (CT0,CT1, C̃0, σ

∗
CT) to A.

• Output phase: At the end of the experiment, A outputs a bit coin′ ∈ {0, 1}, which is the output
of the experiment.
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Constants: MPK = (hk, h),SK0,SK1, V
∗ = (v∗k,β)k∈[2ℓc],β∈{0,1}, j ∈ [0, L]

Inputs: ski ∈ {0, 1}λ, i ∈ [L], pki ∈ {0, 1}2λ, fi ∈ {0, 1}ℓf , πi ∈ {0, 1}ℓopen , SKE ciphertexts {CTj}j∈{0,1}
and σCT = (uk)k∈[2ℓc]

1. Parse (CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) ∈ {0, 1}2ℓc .
2. If SSB.Vrfy(hk, h, i, (pki, Pi), πi) = 1 ∧ PRG(ski) = pki ∧ (PRG(uk) = v∗k,βk

)k∈[2ℓc]

3. Compute m̂←

{
SKE.Dec(SK0,CT0) if i > j

SKE.Dec(SK1,CT1) if i ≤ j

4. Output F (Pi, m̂)

5. Otherwise, output ⊥

Figure 2: The circuit Cslot
j = Cslot

j [MPK,SK0,SK1, V
∗, j] for j ∈ [0, L]

Game 1 : It is the same as Game 0 except the challenger sets CT1 ← SKE.Enc(SK1,m
∗
1) and computes

CT0, C̃0 ← iO(1λ, C0), σ
∗
CT as before.

Game 2 : It is the same as Game 1 except the computation of V ∗ = (v∗k,β)k∈[2ℓc],β∈{0,1}. Let ct∗ =

(CT0,CT1, C̃0, σ
∗
CT) be the challenge ciphertext where CT0 ← SKE.Enc(SK0,m

∗
0), CT1 ← SKE.Enc(SK1,m

∗
1)

and (CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) ∈ {0, 1}2ℓc . Then, the challenger computes v∗k,β as fol-
lows:

v∗k,β ←

{
PRG(u∗

k,βk
) for u∗

k,βk
← {0, 1}λ, if β = βk

{0, 1}2λ, if β = 1− βk

for all k ∈ [2ℓc]. Note that, the challenger defines C0 := C0[MPK,SK0, V
∗] and sets σ∗

CT
:= (u∗

k,β)k∈[2ℓc]

as in the previous hybrid.

Game 3 : It is the same as Game 2 except the challenger computes C̃slot
0 ← iO(1λ, Cslot

0 ) instead of C̃0

where the circuit Cslot
0 = Cslot

0 [MPK,SK0,SK1, V
∗, 0] is defined in Figure 2. The other components of

the challenge ciphertext, i.e., CT0,CT1 remain the same as in the previous hybrid.

Game 3 + j (j ∈ [L]) : It is the same as Game 2+(j−1) except the challenger computes C̃slot
j ← iO(1λ, Cslot

j )

instead of C̃slot
j−1 where the circuit Cslot

j = Cslot
j [MPK,SK0,SK1, F, j] is defined in Figure 2.

Game 4 + L : It is the same as Game 3 + L except the challenger computes C̃1 ← iO(1λ, C1) instead of

C̃slot
L where the circuit C1 = C1[MPK,SK1, V

∗] is defined in Figure 1. That is, the challenge ciphertext

becomes ct∗ = (CT0,CT1, C̃1, σ
∗
CT).

Game 5 + L : It is the same as Game 4 + L except the challenger sets CT0 ← SKE.Enc(SK0,m
∗
1) and

computes CT1, C̃1 ← iO(1λ, C0), σ
∗
CT as before.

Game 6 + L : It is the same as Game 5+L except the challenger computes C̃0 ← iO(1λ, C0) instead of C̃1

where the circuit C0 = C0[MPK,SK0, V
∗] is defined in Figure 1.

Game 7 + L : It is the same as Game 6 + L except the computation of V ∗ = (v∗k,β)k∈[2ℓc],β∈{0,1}. Let

ct∗ = (CT0,CT1, C̃0, σ
∗
CT) be the challenge ciphertext where CT0 ← SKE.Enc(SK0,m

∗
1), CT1 ←
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SKE.Enc(SK1,m
∗
1) and (CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) ∈ {0, 1}2ℓc . Then, the challenger

computes v∗k,β as follows:

v∗k,β ←

{
PRG(u∗

k,βk
) for u∗

k,βk
← {0, 1}λ, if β = βk

PRG(u∗
k,1−βk

) for u∗
k,1−βk

← {0, 1}λ, if β = 1− βk

for all k ∈ [2ℓc]. Note that, the challenger defines C0 := C0[MPK,SK0, V
∗] and sets σ∗

CT
:= (u∗

k,β)k∈[2ℓc]

as in the previous hybrid.

Game 8 + L : It is the same as Game 7+L except the challenger sets CT1 ← SKE.Enc(SK1,0|m∗
1 |). Observe

that this hybrid is the same as ExptSlotRFEA (1λ, 1).

Let Ei be the event of A outputting the correct bit coin in Game i. We show that the each pair of
consecutive games are indistinguishable from A’s view in the following lemmas.

Lemma 18 If SKE is IND-CPA secure then for all efficient and admissible adversaries A, for all λ ∈ N
there exists a negligible function negl such that

|Pr[E0]− Pr[E1]| = negl(λ).

Proof. The only difference between games 0 and 1 is that the challenge ciphertext component CT1 is an SKE
encryption of m∗

1 instead of 0|m∗
0 |. We show that if A distinguishes between the hybrids with a non-negligible

advantage ϵ(λ) then there exists an adversary B who breaks the IND-CPA security of SKE with at least an
advantage of ϵ(λ). The adversary B works as follows:

1. B receives the slot count L from A and then plays the role of the challenger as in the hybrid 0 for the
setup and pre-challenge query phase.

2. When B receives the challenge query ({(ci, fi, pk∗i )}i∈[L],m
∗
0,m

∗
1) from A, it works exactly the same as

the challenger in hybrid 0 except it uses the SKE-challenger to compute CT1. In particular, B sends
the challenge message pair (0|m∗

0 |,m
∗
1) to the SKE-challenger and gets back a ciphertext CT∗

1. Finally,

B sends the challenge ciphertext ct∗ = (CT0,CT1 := CT∗
1, C̃0, σ

∗
CT) to A. Note that, B does not require

the secret key SK1 to compute the components CT0, C̃0, σ
∗
CT of ct∗.

3. At the end of the experiment, A outputs a guess coin′ ∈ {0, 1} which is also the output of B.

If the SKE-challenger computes CT∗
1 ← SKE.Enc(SK1,0|m∗

0 |) then B perfectly simulates hybrid 0. On the
other hand, if the SKE-challenger computes CT∗

1 ← SKE.Enc(SK1,m
∗
1) then B perfectly simulates hybrid 1.

Therefore, B breaks the IND-CPA security of SKE with advantage at least ϵ(λ) if A distinguishes between
the hybrids advantage ϵ(λ). Hence, the lemma follows. □

Lemma 19 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L]
there exists a negligible function negl such that

|Pr[E1]− Pr[E2]| = negl(λ).

Proof. We prove the lemma using a sequence of 2ℓc games G1,k for k ∈ [2ℓc+1] where we sample v∗t,1−βt
←

{0, 1}2λ for all t < k in G1,k and βt represents the t-th bit of (CT0,CT1). Note that, G1,1 is identical to
Game 1 and G1,2ℓc+1 is identical to Game 2. We only show that the distinguishing advantage of A between
the games G1,k and G1,k+1 is negligible for each k ∈ [2ℓc]. In particular, we show that if A distinguishes
between the hybrids with a non-negligible advantage ϵ(λ) then there exists an adversary B that breaks the
security of PRG with at least an advantage of ϵ(λ). The adversary B works as follows:

1. B receives a string v∗ ∈ {0, 1}2λ from the PRG-challenger.

54



2. B plays the role of the challenger as in the game G1,k or G1,k+1. It receives the slot count L from A
and runs the setup phase and sends crs to A.

3. After that, B simulates the pre-challenge query phases as in G1,k or G1,k+1.

4. At the challenge query phase, B computes CT0 ← SKE.Enc(SK0,m
∗
0), CT1 ← SKE.Enc(SK1,m

∗
1) and

writes (CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) ∈ {0, 1}2ℓc . Then, it computes v∗t,β as follows:

v∗t,β ←


PRG(u∗

t,βt
) for u∗

t,βt
← {0, 1}λ, if β = βt

{0, 1}2λ, if β = 1− βt and t < k

v∗ if β = 1− βk

PRG(u∗
t,1−βt

) for u∗
t,1−βt

← {0, 1}λ, if β = 1− βt and t > k

for all t ∈ [2ℓc]. Finally, it sets V ∗ = (v∗t,β)t∈[2ℓc],β∈{0,1}, σ
∗
CT = (u∗

t,βt
)t∈[2ℓc], C̃0 ← iO(1λ, C0) where

C0 = C0[MPK, skj , V ] and sends ct∗ = (CT0,CT1, C̃0, σ
∗
CT) to A as in the previous hybrid.

5. At the end of the experiment, A outputs a guess coin′ ∈ {0, 1} which is also the output of B.

If the PRG-challenger computes v∗ ← PRG(uk,1−βk
) for some uk,1−βk

← {0, 1}λ then B perfectly simulates
G1,k. On the other hand, if the PRG-challenger samples v∗ ← {0, 1}2λ then B perfectly simulates G1,k+1.
Therefore, B breaks the security of SSB with advantage at least ϵ(λ) if A distinguishes between the games
with advantage ϵ(λ). Hence, the lemma follows. □

Lemma 20 If iO is secure then for all efficient and admissible adversaries A, for all λ ∈ N there exists a
negligible function negl such that

|Pr[E2]− Pr[E3]| = negl(λ).

Proof. The only difference between the games 2 and 3 is that the ciphertext component C̃0 is replaced
by C̃slot

0 . Since iO is secure it is sufficient to show that the two circuits C0 and Cslot
0 are equivalent. Let

(ski, i, pki, fi, πi,CT0,CT1, σCT) be an arbitrary input to the circuits. The programming of the circuits differ
only in step 2 where m̂ is computed via SKE decryption algorithm. The circuit C0 always decrypts CT0 using
SK0 whereas the circuit Cslot

0 decrypts CT0 using SK0 if i > 0, otherwise it CT1 using SK1. Since i ∈ [L]
and i > 0 holds for all possible inputs (ski, i, pki, fi, πi,CT0,CT1, σCT), the circuit Cslot

0 always decrypts CT0

using SK0 in step 2. Thus, the circuits C0 and Cslot
0 are equivalent. By the security of iO, the distinguishing

advantage of A is negligible in λ. □

Lemma 21 If the PRG is secure, SSB is correct and secure, and iO is secure then for all efficient and
admissible adversaries A, for all λ ∈ N there exists a negligible function negl such that

|Pr[E3+j ]− Pr[E3+(j−1)]| = negl(λ).

Proof. We first introduce a new set of intermediate hybrids jG3+j defined as follows:

jG3+j: It works exactly the same as Game 3 + j except the challenger samples hk ← SSB.Setup(1λ,

1ℓblk , L, j + 1) in the setup phase. The hash key hk binds with index (j + 1) instead of 1.

We now show that the distinguishing advantage of A between Game 3 + j and jG3+j is negligible for each
j ∈ [L]. Let jE3+j be the event of A outputting the correct bit coin in jG3+j .

Claim 1 If SSB satisfies index hiding then for all efficient and admissible adversaries A, for all λ ∈ N there
exists a negligible function negl such that

|Pr[E3+j ]− Pr[jE3+j ]| = negl(λ).
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Proof. We show that if A distinguishes between the hybrids with a non-negligible advantage ϵ(λ) then there
exists an adversary B who breaks the index hiding security of SSB with at least an advantage of ϵ(λ). The
adversary B works as follows:

1. B receives the slot count L from A. Then, it sends L and (1, j + 1) to the SSB-challenger.

2. B receives a hash key hk∗ from it’s challenger and sets hk := hk∗. Then, it sends crs := hk to A.

3. After that, B plays the role of the challenger exactly similar to Game 3 + j for simulating the pre-
challenge query and challenge phases.

4. At the end of the experiment, A outputs a guess b′ ∈ {0, 1} which is also the output of B.

If the SSB-challenger computes hk∗ ← SSB.Setup(1λ, 1ℓblk , L, 1) then B perfectly simulates Game 3 + j. On
the other hand, if the SSB-challenger computes hk∗ ← SSB.Setup(1λ, 1ℓblk , L, j+1) then B perfectly simulates
jG3+j . Therefore, B breaks the index hiding security of SSB with advantage at least ϵ(λ) if A distinguishes
between the games advantage ϵ(λ). Hence, the lemma follows. □

By Claim 1, proving Lemma 21 is equivalent ot prove the following claim.

Claim 2 If SSB is somewhere statistically binding then for all efficient and admissible adversaries A, for all
λ ∈ N there exists a negligible function negl such that

|Pr[jE3+j ]− Pr[jE3+(j−1)]| = negl(λ).

Proof. The only difference between jG3+j and jG3+(j−1) is in the second last component of the challenge

ciphertext where it is C̃slot
j in game jG3+j . The circuits Cslot

j and Cslot
j−1 behaves differently only for an input

of the form (skj , j, pkj , fj , πj ,CT0,CT1, σCT). The analysis of the claim depends on whether the j-th user is
corrupted or not. Let (cj , fj , pk

∗
j ) be the tuple specified by A during the challenge query phase. We define

an event NonCorrupt as follows:

1. The index cj satisfies {1, . . . , ctr} meaning that pkj was generated by the challenge on the cj-th key
generation query.

2. A never make a corruption query on index cj .

We also denote NonCorrupt by the event which is complement of NonCorrupt. By definition, we can write

Pr[jE3+(j−1)] = Pr[jE3+(j−1) ∧ NonCorrupt] + Pr[jE3+(j−1) ∧ NonCorrupt]

Pr[jE3+j ] = Pr[jE3+j ∧ NonCorrupt] + Pr[jE3+j ∧ NonCorrupt]

Thus, it is sufficient to show that

|Pr[jE3+(j−1) ∧ NonCorrupt]− Pr[jE3+j ∧ NonCorrupt]| = negl(λ) (33)

|Pr[jE3+(j−1) ∧ NonCorrupt]− Pr[jE3+j ∧ NonCorrupt]| = negl(λ) (34)

We show that the equations 33 and 34 hold in claims 3 and 4 respectively.

Claim 3 If the PRG is secure, SSB is correct and secure, and iO is secure then for all efficient and admissible
adversaries A, for all λ ∈ N there exists a negligible function negl such that

|Pr[jE3+(j−1) ∧ NonCorrupt]− Pr[jE3+j ∧ NonCorrupt]| = negl(λ).

Proof. The main intuition for proving the claim is that the adversary A does not have skj and hence the
associated public key pkj can be chosen uniformly at random depending on the security of PRG. Then, with

the help of SSB and iO we show that it is possible to change the obfuscated circuit from C̃slot
j−1to C̃slot

j . More
precisely, we use the following sequence of hybrids:
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ncG3+(j−1),1: It is the same as jG3+(j−1) except at the beginning of the experiment, the challenger samples

q ← [Q] where Q = Q(λ) denotes the total number of key generation queries A makes during the query
phase. Let pkq be the public key sampled by the challenger on the q-th key query (if there is one).
The challenger aborts with output 0 if either of the following events occurs:

− A sends the tuple (cj , fj , pk
∗
j ) for registering the j-th user during the challenge query phase where

cj ̸= q.

− A makes a corruption query with a index q.

Otherwise, the experiment proceeds exactly similar to jG3+(j−1).

ncG3+(j−1),2: It is the same as ncG3+(j−1),1 except the challenger samples pkq ← {0, 1}2λ during the q-th

key generation query. In this hybrid, the challenger is not required to answer for a corruption query
on index q since it immediately aborts with output 0 as soon as it gets such a query.

ncG3+(j−1),3: It is the same as ncG3+(j−1),2 except the challenger obfuscates the circuit Cslot
j instead of Cslot

j−1

while computing the challenge ciphertext.

ncG3+(j−1),4: It is the same as ncG3+(j−1),3 except the challenger samples skq ← {0, 1}λ and computes

pkq ← PRG(skq) during the q-th key generation query.

ncG3+(j−1),5: It is the same as ncG3+(j−1),4 except the challenger ignores the abort condition as defined in

ncG3+(j−1),1.

As before, we denote ncEk be the event of A outputting the correct bit coin in the game ncG3+(j−1),k for
each k ∈ [5]. Next, we show the indistinguishability between any two consecutive games in the following
lemmas.

Lemma 22 For all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L] there exists a negligible
function negl such that

Pr[jE3+(j−1) ∧ NonCorrupt] = Q · Pr[ncE3+(j−1),1].

Proof. By definition, the games jG3+(j−1) and ncG3+(j−1),1 proceeds exactly in the same way except the
challenger aborts with output 0 if cj = q or A makes a corruption query for the index q. This means that
both the experiments output 1 with the same probability if the event NonCorrupt occurs and cj = q holds.
Thus, we can write

Pr[ncE3+(j−1),1]

= Pr[jE3+(j−1) ∧ NonCorrupt ∧ cj = q]

= Pr[cj = q | jE3+(j−1) ∧ NonCorrupt] · Pr[jE3+(j−1) ∧ NonCorrupt]

= 1/Q · Pr[jE3+(j−1) ∧ NonCorrupt]

since the probability that cj = q holds where q ← [Q] and cj ∈ {1, . . . , ctr} ⊆ [Q] is 1/Q given the event
NonCorrupt has occurred. □

Lemma 23 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L]
there exists a negligible function negl such that

|Pr[ncE3+(j−1),1]− Pr[ncE3+(j−1),2]| = negl(λ).

Proof. We show that if A distinguishes between the hybrids with a non-negligible advantage ϵ(λ) then there
exists an adversary B that breaks the security of PRG with at least an advantage of ϵ(λ). The adversary B
works as follows:
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1. B starts by sampling q ← [Q] and receives a string pk∗ ∈ {0, 1}2λ from the PRG-challenger.

2. B plays the role of the challenger as in the experiment ncG3+(j−1),1 or ncG3+(j−1),2. It receives the slot
count L from A and runs the setup phase and sends crs to A.

3. After that, B simulates the pre-challenge query phases as in ncG3+(j−1),1 or ncG3+(j−1),2. B returns
pk∗ when it receives a key generation query for the index q and adds [ctr] 7→ (q, pk∗,⊥) to D. If A
makes a corruption query for the index q then B aborts with output 0.

4. At the challenge query phase, B checks if the tuple (cj , fj , pk
∗
j ) received from A satisfies cj = q and

then it proceeds with the role of the challenger. If not, B aborts with output 0 as in ncG3+(j−1),1 or
ncG3+(j−1),2.

5. At the end of the experiment, A outputs a guess coin′ ∈ {0, 1} which is also the output of B.

If the PRG-challenger computes pk∗ ← PRG(s) for some s← {0, 1}λ then B perfectly simulates ncG3+(j−1),1.

On the other hand, if the PRG-challenger samples pk∗ ← {0, 1}2λ then B perfectly simulates ncG3+(j−1),2.
Therefore, B breaks the security of SSB with advantage at least ϵ(λ) if A distinguishes between the games
with advantage ϵ(λ). Hence, the lemma follows. □

Lemma 24 If SSB is somewhere statistically binding and iO is secure then for all efficient and admissible
adversaries A, for all λ ∈ N, and j ∈ [L] there exists a negligible function negl such that

|Pr[ncE3+(j−1),2]− Pr[ncE3+(j−1),3]| = negl(λ).

Proof. The only difference between the games is in the circuit which the challenger obfuscated during the
challenge query phase: Cslot

j−1 in ncG3+(j−1),2 and Cslot
j in ncG3+(j−1),3. We show that with overwhelming

probability over the choice of hk and pkq the circuits Cslot
j and Cslot

j−1 are equivalent. Let us consider an

arbitrary input (skx, x, pkx, fx, πx,CT
′
0,CT

′
1, σCT′) to the circuits. Note that the programming of the two

circuits is different only in step 2 (see Figure 2) where SKE decryption algorithm is performed. We consider
the following cases:

Case 1: If x ̸= j, then both the circuits either decrypt CT0 when x > j or CT1 when x < j in step 2. Hence,
output of both the circuits is the same.

Case 2: If x = j and (pkx, fx) ̸= (pkq, fq), then we use the somewhere statistically binding property of SSB
to argue that both the circuits return ⊥. Note that, the challenger hardwires MPK = (hk, h) in both
the circuits computed as

hk←SSB.Setup(1λ, 1ℓblk , L, j)

h←SSB.Hash(hk, (pk1, f1), . . . , (pkq, fq), . . . (pkL, fL))

in ncG3+(j−1),2 or ncG3+(j−1),3. By the somewhere statistically binding property of SSB, with over-
whelming probability over the choice of hk (which binds index j), there does not exist any (pk∗, f∗) ̸=
(pkq, fq) and π∗ such that SSB.Vrfy(hk, j, (pk∗, f∗), π∗) = 1. Therefore, if (pkx, fx) ̸= (pkq, fq) then the

circuits Cslot
j and Cslot

j−1 output ⊥ due to step 1.

Case 3: If x = j and (pkx, fx) = (pkq, fq), then the we use the fact that pkq is uniformly chosen to argue
that the circuits returns the same value. Let us assume the challenger does not abort in both games
ncG3+(j−1),2, ncG3+(j−1),3. This means that pkx = pkj = pkq where pkq ← {0, 1}2λ is the q-th public

key. Since pkq is chosen uniformly at random from {0, 1}2λ then the probability that there exists some

s ∈ {0, 1}λ such that PRG(s) = pkq is at most 1/2λ which is negligible in the security parameter.
Therefore, with overwhelming probability it holds that PRG(skx) ̸= pkx = pkq. Consequently, the

check in step 2 of both the circuits does not pass and as a result the circuits Cslot
j and Cslot

j−1 output ⊥.
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Hence, for all possible inputs, the circuits Cslot
j and Cslot

j−1 output the same value with overwhelming probability
over the choice of hk, pkq. Therefore, by the security of iO, the lemma follows. □

Lemma 25 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L]
there exists a negligible function negl such that

|Pr[ncE3+(j−1),3]− Pr[ncE3+(j−1),4]| = negl(λ).

The proof follows similar to that of Lemma 23.

Lemma 26 For all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L] there exists a negligible
function negl such that

Pr[jE3+j ∧ NonCorrupt] = Q · Pr[ncE3+(j−1),1].

The proof follows similar to that of Lemma 22.
Finally, the proof of Claim 3 follows by combining the Lemmas 22 to 26. □

Claim 4 If SSB is correct and secure, and iO is secure then for all efficient and admissible adversaries A,
for all λ ∈ N there exists a negligible function negl such that

|Pr[jE3+(j−1) ∧ NonCorrupt]− Pr[jE3+j ∧ NonCorrupt]| = negl(λ).

Proof. We prove the claim using the following two hybrid experiments:

cG3+(j−1),1: It is the same as jG3+(j−1) except the challenger aborts with output 0 if the event NonCorrupt

occurs. This means that the output of the experiment can be 1 only if the public key pkj is either
adversarially generated or A makes a corruption query for the index j. Since A is admissible, in either
cases, it must hold that fj(m

∗
0) = fj(m

∗
1) where fj is the associated function with pkj .

cG3+(j−1),2: It is the same as cG3+(j−1),1 except that the challenger obfuscates the circuit Cslot
j instead of

Cslot
j−1 while computing the challenge ciphertext.

As before, we denote cE3+(j−1),k by the event of A outputting the correct bit coin in the game ncG3+(j−1),k

for each k ∈ {1, 2}. By definition, we have that

Pr[jE3+(j−1) ∧ NonCorrupt] = Pr[cE3+(j−1),1]

Pr[jE3+j ∧ NonCorrupt] = Pr[cE3+(j−1),2]

Therefore, it is sufficient to prove that

|Pr[cE3+(j−1),1]− Pr[cE3+(j−1),2]| = negl(λ).

We prove the indistinguishability between the hybrids in the following lemma.

Lemma 27 If SSB is somewhere statistically binding and iO is secure then for all efficient and admissible
adversaries A, for all λ ∈ N, and j ∈ [L] there exists a negligible function negl such that

|Pr[cE3+(j−1),1]− Pr[cE3+(j−1),2]| = negl(λ).

Proof. The only difference between the games is in the circuit which the challenger obfuscated during
the challenge query phase: Cslot

j−1 in cG3+(j−1),1 and Cslot
j in cG3+(j−1),2. We show that with overwhelming

probability over the choice of hk the circuits Cslot
j and Cslot

j−1 are equivalent. Let us consider an arbitrary input

(skx, x, pkx, fx, πx,CT
′
0,CT

′
1, σCT′) to the circuits. Note that the programming of the two circuits is different

only in step 2 (see Figure 2) where SKE decryption algorithm is performed. We consider the following cases:
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Case 1: If x ̸= j, then both the circuits either decrypt CT0 when x > j or CT1 when x < j in step 2. Hence,
output of both the circuits is the same.

Case 2: If x = j and (pkx, fx) ̸= (pkj , fj), then we use the somewhere statistically binding property of SSB
to argue that both the circuits return ⊥. Note that, the challenger hardwires MPK = (hk, h) in both
the circuits computed as

hk←SSB.Setup(1λ, 1ℓblk , L, j)

h←SSB.Hash(hk, (pk1, f1), . . . , (pkj , fj), . . . (pkL, fL))

in cG3+(j−1),1 or cG3+(j−1),2. By the somewhere statistically binding property of SSB, with overwhelm-
ing probability over the choice of hk (which binds index j), there does not exist any (pk∗, f∗) ̸= (pkj , fj)
and π∗ such that SSB.Vrfy(hk, j, (pk∗, f∗), π∗) = 1. Therefore, if (pkx, fx) ̸= (pkj , fj) then the circuits

Cslot
j and Cslot

j−1 output ⊥ due to step 1.

Case 3: If x = j and (pkx, fx) = (pkj , fj) ∧ (CT′
0 ̸= CT0 ∨ CT′

1 ̸= CT1), then we use the fact that v∗k,1−βk
’s

are chosen uniformly from {0, 1}2λ for all k ∈ [2ℓc] to argue that both the circuits return ⊥. Suppose
(CT0,CT1) = (β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) and (CT′

0,CT
′
1) = (β′

1, . . . , β
′
ℓc
, β′

ℓc+1, . . . , β
′
2ℓc

). Since CT′
0 ̸=

CT0 or CT′
1 ̸= CT1 there exists t ∈ [2ℓc] such that β′

t = 1− βt. Let us assume σCT′ = (u′
k)k∈[2ℓc] where

u′
k ∈ {0, 1}λ for all k ∈ [2ℓc]. In order to pass the check of step 2 in both the circuits, it should

hold that PRG(u′
t) = v∗t,β′

t
. Since v∗t,β′

t
= v∗t,1−βt

is chosen uniformly at random from {0, 1}2λ then the

probability that there exists u′ ∈ {0, 1}λ such that PRG(u′) = v∗t,1−βt
is at most 1/2λ which is negligible

in the security parameter. Therefore, with overwhelming probability it holds that PRG(u′
t) ̸= v∗t,β′

t
.

Consequently, the check in step 2 of both the circuits does not pass and as a result the circuits Cslot
j

and Cslot
j−1 output ⊥.

Case 4: If x = j and (pkx, fx) = (pkj , fj) ∧ (CT′
0 = CT0 ∧ CT′

1 = CT1), then we use the fact that pkj is
corrupted and A is admissible. Let us assume the challenger does not abort in both games cG3+(j−1),1,
cG3+(j−1),2. This means that pkx = pkj where pkj is either adversarially generated or it is corrupted.
Assuming that the check of step 2 passes in both the circuits, the SKE decryption algorithm of step
2 recovers m∗

0 from CT0 in Cslot
j−1 whereas it recovers m∗

1 from CT1 in Cslot
j . Consequently, on input

(skj , j, pkj , fj , πj ,CT0,CT1, σCT) the circuit C
slot
j−1 outputs fj(m

∗
0) and the circuit Cslot

j outputs fj(m
∗
1).

Since A is admissible, we have fj(m
∗
0) = fj(m

∗
1). In other words, both the circuits Cslot

j and Cslot
j−1

output the same value.

Hence, for all possible inputs, the circuits Cslot
j and Cslot

j−1 output the same value with overwhelming probability
over the choice of hk, pkq. Therefore, by the security of iO, the lemma follows. □

Combining Lemma 19 and 27, the Claim 4 holds. □

Therefore, the proof of Claim 2 follows from Claims 3 and 3. □

Finally, the proof of Lemma 21 follows from the Claim 2. □

Lemma 28 If iO is secure then for all efficient and admissible adversaries A, for all λ ∈ N there exists a
negligible function negl such that

|Pr[E3+L]− Pr[E4+L]| = negl(λ).

The proof of Lemma 28 follows from a similar argument as in Lemma 20.

Lemma 29 If SKE is IND-CPA secure then for all efficient and admissible adversaries A, for all λ ∈ N
there exists a negligible function negl such that

|Pr[E4+L]− Pr[E5+L]| = negl(λ).

60



Proof. The only difference between games 4+L and 5+L is that the challenge ciphertext component CT0

is an SKE encryption of m∗
1 instead of m∗

0. We show that if A distinguishes between the hybrids with a
non-negligible advantage ϵ(λ) then there exists an adversary B who breaks the IND-CPA security of SKE
with at least an advantage of ϵ(λ). The adversary B works as follows:

1. B receives the slot count L from A and then plays the role of the challenger as in the hybrid 3 +L for
the setup and pre-challenge query phase.

2. When B receives the challenge query ({(ci, fi, pk∗i )}i∈[L],m
∗
0,m

∗
1) from A, it works exactly the same

as the challenger in hybrid 3 + L except it uses the SKE-challenger to compute CT0. In particular,
B sends the challenge message pair (m∗

0,m
∗
1) to the SKE-challenger and gets back a ciphertext CT∗

0.

Finally, B sends the challenge ciphertext ct∗ = (CT0 := CT∗
0,CT1, C̃1, σ

∗
CT) to A. Note that, B does not

require the secret key SK0 to compute the components CT1, C̃1, σ
∗
CT of ct∗.

3. At the end of the experiment, A outputs a guess coin′ ∈ {0, 1} which is also the output of B.

If the SKE-challenger computes CT∗
0 ← SKE.Enc(SK1,m

∗
0) then B perfectly simulates Game 4 + L. On the

other hand, if the SKE-challenger computes CT∗
0 ← SKE.Enc(SK1,m

∗
1) then B perfectly simulates Game

5 + L. Therefore, B breaks the IND-CPA security of SKE with advantage at least ϵ(λ) if A distinguishes
between the games with advantage ϵ(λ). Hence, the lemma follows. □

Lemma 30 If iO is secure then for all efficient and admissible adversaries A, for all λ ∈ N there exists a
negligible function negl such that

|Pr[E5+L]− Pr[E6+L]| = negl(λ).

Proof. The only difference between the games 5 + L and 6 + L is that the ciphertext component C̃1 is
replaced by C̃1. Since iO is secure it is sufficient to show that the two circuits C0 and C1 are equivalent.
Let (skx, x, pkx, fx, πx,CT

′
0,CT

′
1, σ

′
CT) be an arbitrary input to the circuits. The programming of the circuits

differ only in step 3 where m̂ is computed via SKE decryption algorithm. The circuit C0 always decrypts
CT0 using SK0 whereas the circuit C1 decrypts CT1 using SK1.

Let (CT0,CT1) be the part of the challenge ciphertext of Game 5 + L or 6 + L. Suppose (CT0,CT1) =
(β1, . . . , βℓc , βℓc+1, . . . , β2ℓc) and (CT′

0,CT
′
1) = (β′

1, . . . , β
′
ℓc
, β′

ℓc+1, . . . , β
′
2ℓc

). We have two cases:

Case 1: If (CT′
0,CT

′
1) = (CT0,CT1), then both the circuits computem∗

1 ← SKE.Dec(SKj ,CTj) for j ∈ {0, 1}
(assuming that the check of step 2 passes for both the circuits). Therefore, output of the circuits C0

and C1 are the same for an input of the from (skx, x, pkx, fx, πx,CT0,CT1, σ
′
CT).

Case 2: If (CT′
0,CT

′
1) ̸= (CT0,CT1), then we rely on the formation of V ∗ to argue that the circuits C0 and

C1 output ⊥. Since CT′
0 ̸= CT0 or CT′

1 ̸= CT1 there exists t ∈ [2ℓc] such that β′
t = 1 − βt. Let us

assume σCT′ = (u′
k)k∈[2ℓc] where u′

k ∈ {0, 1}λ for all k ∈ [2ℓc]. In order to pass the check of step 2
in both the circuits, it should hold that PRG(u′

t) = v∗t,β′
t
. Since v∗t,β′

t
= v∗t,1−βt

is chosen uniformly at

random from {0, 1}2λ then the probability that there exists u′ ∈ {0, 1}λ such that PRG(u′) = v∗t,1−βt
is

at most 1/2λ which is negligible in the security parameter. Therefore, with overwhelming probability
it holds that PRG(u′

t) ̸= v∗t,β′
t
. Consequently, the check in step 2 of both the circuits does not pass and

as a result the circuits C0 and C1 output ⊥.

Thus, the circuits C0 and C1 are equivalent over the choice of V ∗. By the security of iO, the distinguishing
advantage of A is negligible in λ. □

Lemma 31 If PRG is secure then for all efficient and admissible adversaries A, for all λ ∈ N, and j ∈ [L]
there exists a negligible function negl such that

|Pr[E6+L]− Pr[E7+L]| = negl(λ).

The proof of Lemma 31 follows from a similar argument as in Lemma 19.
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Lemma 32 If SKE is IND-CPA secure then for all efficient and admissible adversaries A, for all λ ∈ N
there exists a negligible function negl such that

|Pr[E7+L]− Pr[E8+L]| = negl(λ).

The proof of Lemma 32 follows from a similar argument as in Lemma 18.
Finally, the proof the Theorem 5 follows from combining the proofs of the Lemmas 18 to 21 and Lemmas

28 to 32. □

Registered FE from indistinguishability obfuscation: Plugging our slotted registered FE into the
transformation described in Section 9, we achieve the following corollary:

Corollary 3 (Registered FE) Let λ be a security parameter. Then, under the existence of one-way
function and indistinguishability obfuscation, there exists a registered FE scheme for all polynomial-size
circuits (i.e., |UF | = poly(λ)), and supporting any arbitrary number of users, say L, with the following
properties:

• The size of the common reference string and the size of the auxiliary data maintained by the key
curator is poly(λ, logL).

• The running time of key-generation and registration is poly(λ, logL).

• The size of the master public key and the helper decryption keys are both poly(λ, logL).

• The size of a ciphertext is poly(λ, |m|, logL), where |m| denotes the bit-length of the message m.

A direct combination of Theorems 3 to 5 and Corollary 3 implies the following result.

Corollary 4 (Registered FE from Standard Assumptions) Assume sub-exponential security of the
following assumptions:

• the Learning Parity with Noise (LPN) assumption over general prime fields Fp with polynomially
many LPN samples and error rate 1/kδ, where k is the dimension of the LPN secret, and δ > 0 is any
constant;

• the existence of a Boolean Pseudo-Random Generator (PRG) in NC0 with stretch n1+τ , where n is
the length of the PRG seed, and τ > 0 is any constant;

• the Decision Linear (DLIN) assumption on symmetric bilinear groups of prime order.

Then, registered functional encryption for all polynomial-size circuits supporting an arbitrary number of
users exists.

9 From Slotted Registered FE to Registered FE

Hohenberger et al. [HLWW23] showed a transformation from slotted registered ABE to registered ABE. We
obtain a similar transformation for upgrading the slotted registered FE to the full-fledged registered FE by
tweaking the transformation of [HLWW23]. Roughly, they use a simple “powers-of-two” approach for the
conversion. If we want to support L = 2ℓ users in the system then the transformation utilizes (ℓ+ 1) copies
of slotted registered FE to achieve a registered FE.

Let SlotRFE = SlotRFE.(Setup,KeyGen, IsValid,Aggregate,Enc,Dec) be a slotted registered FE scheme
with a function universe UF and message space M. We construct a registered FE scheme RFE = (Setup,
KeyGen,RegPK,Enc,Update,Dec) that supports a bounded number of users and the same function universe
UF and the message spaceM. The transformation works with the following conventions:
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• We assume that the bound on the number of users supported by the scheme is L = 2ℓ is a power of
two. Rounding the bound to the next power of two incurs at most a factor of 2 overhead.

• The registered FE scheme will be built upon ℓ + 1 slotted RFE schemes where the k-th scheme is a
slotted scheme with 2k slots for k ∈ [0, ℓ].

• The auxiliary data aux = (ctr,D1,D2,MPK) consists of the following components:

– A counter ctr that keeps track of the number of registered users in the system.

– A dictionary D1 that maps a scheme index k ∈ [0, ℓ] and a slot index i ∈ [2k] to a pair (pk, f)
which specifies the public key and the function currently assigned to slot i of the scheme k.

– A dictionary D2 that maps a scheme index k ∈ [0, ℓ] and a user index i ∈ [L] to the helper
decryption key associated with scheme k and user i.

– The current master public key MPK = (ctr,MPK0, . . . ,MPKℓ).

If aux = ⊥, we parse it as (ctr,D1,D2,MPK) where ctr = 0, D1,D2 = ∅, and MPK = (0,⊥, . . . ,⊥).
This corresponds to a fresh scheme with no registered users.

Setup(1λ, 1|UF |, 1L) : The setup algorithm takes input as the security parameter λ, the (maximum) size |UF |
of the functions in UF and a bound on the number of users L = 2ℓ. It runs the setup algorithm
of the slotted RFE scheme for ℓ + 1 times. In particular, for each k ∈ [0, ℓ], it samples crsk ←
SlotRFE.Setup(1secp, 1|UF |, 12

k

) and outputs crs := (crs0, . . . , crsℓ).

KeyGen(crs, aux) : The key generation algorithm takes input as the common reference string crs = (crs0, . . . ,
crsℓ) and the auxiliary data aux = (ctr,D1,D2,MPK). For each k ∈ [0, ℓ], the key generation algorithm
generates a public/secret key-pair (pkk, skk)← SlotRFE.KeyGen(crsk, ik) where ik ← (ctr mod 2k)+1 ∈
[2k] be a slot index for the k-th scheme.

RegPK(crs, aux, pk, fpk) : The registration algorithm takes input as the common reference string crs =
(crs0, . . . , crsℓ), the auxiliary data aux = (ctraux,D1,D2,MPK), whereMPK = (ctraux,MPK0, . . . ,MPKℓ),
a public key pk, and a function fpk ∈ UF . The registration algorithm proceeds as follows:

– For each k ∈ [0, ℓ], let ik := (ctraux mod 2k) + 1 ∈ [2k] be the slot index for the k-th scheme.

– For each k ∈ [0, ℓ], check that SlotRFE.IsValid(crsk, ik, pkk)
?
= 1 and ctraux

?
= ctrpk. If any of the

checks fail then the algorithm halts and outputs the current auxiliary data aux and master public
key MPK.

– For each k ∈ [0, ℓ], the registration algorithm updates D1[k, ik]← (pk, fpk). Now we consider two
cases.

Case 1 — all of the slots in the scheme k are filled—If ik = 2k, the registration algorithm
additionally does the following:

* Compute

(MPK′
k, hsk

′
k,1, . . . , hsk

′
k,2k)← SlotRFE.Aggregate(crsk,D1[k, 1], . . . ,D1[k, 2

k]).

* Update D2[ctr + 1− 2k + i, k]← hsk′k,i for each i ∈ [2k].

Case 2 — all the slots of the k-th scheme are not filled—If ik ̸= 2k, the registration algorithm
sets MPK′

k := MPKk. That is, the master public key is unchanged.

• Define the new master public key MPK′ = (ctraux + 1,MPK′
0, . . . ,MPK′

ℓ).

• Finally, the registration algorithm outputs the new master public key MPK′ and auxiliary data
aux′ = (ctraux + 1,D1,D2,MPK′).
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Enc(MPK,m) : The encryption algorithm takes input as the master public keyMPK = (ctr,MPK0, . . . ,MPKℓ)
and a message m ∈ M. It computes ctk ← SlotRFE.Enc(MPKk,m) for each k ∈ [0, ℓ]; if MPKk = ⊥,
then it sets ctk ← ⊥. Then it outputs ct = (ctr, ct0, . . . , ctℓ).

Update(crs, aux, pk) : The update algorithm takes input as the common reference string crs = (crs0, . . . , crsℓ),
the auxiliary data aux = (ctraux,D1,D2,MPK), and a public key pk = (ctrpk, pk0, . . . , pkℓ). It outputs
⊥ if ctrpk ≥ ctraux. Otherwise, for each k ∈ [0, ℓ], it sets hskk ← D2[ctrpk + 1, k] and outputs hsk =
(hsk0, . . . , hskℓ).

Dec(sk, hsk, ct) : The decryption algorithm takes input as a user secret key sk = (ctrsk, sk0, . . . , skℓ), a helper
decryption key hsk = (hsk0, . . . , hskℓ) and a ciphertext ct = (ctrct, ct0, . . . , ctℓ). It outputs ⊥ if ctrct ≤
ctrsk. Otherwise, it computes the largest index k on which ctr and ctr′ differ (where bits are 0-indexed
starting from the least significant bit). If hskk = ⊥, then the decryption algorithm outputs GetUpdate.
Otherwise, it outputs SlotRFE.Dec(skk, hskk, ctk).

We now discuss the correctness, compactness and update efficiency of the construction.

Correctness: Let use assume that the underlying SlotRFE is perfectly correct. Let crs = (crs0, . . . , crsℓ)←
Setup(1λ, 1|UF |, 1L) be the common reference string and aux = (ctraux,D1,D2,MPK) be the auxiliary data
maintained by the challenger in the correctness game. Note that, by construction, MPK = (ctrMPK,MPK0,
. . . ,MPKℓ) and ctrMPK associated with the master public key always coincides with the counter ctraux embed-
ded in aux. Let (pk∗, sk∗) be the target key sampled by the challenger in response to a target-key registration
query. We use the following lemma from [HLWW23].

Lemma 33 (Hohenberger et al. [HLWW23]) Let aux = (ctraux,D1,D2,MPK) be the auxiliary data (main-
tained by the challenger) during the experiment of correctness after the adversary has made a target-key reg-
istration query. Let MPK = (ctraux,MPK0, . . . ,MPKℓ) be the master public key and pk∗ = (ctr∗, pk∗0, . . . , pk

∗
ℓ )

be the target key the challenger sampled when responding to the target-key registration query. Let k′ ∈ [0, ℓ]
be the most significant bit on which the binary representations of ctr∗ and ctraux differ (indexed as in Dec
algorithm). Then the master public key MPKk∗ was the output of a call to SlotRFE.Aggregate(crsk′ , ·) on a
tuple of keys and functions that included the target key (pkk∗ , f∗).

The proof is exactly similar to that of Lemma 6.3 in [HLWW23] except we use functions instead of
attributes. Given the lemma holds, we now conclude the correctness of our RFE. Let (ij ,mj) be the j-th
encryption query made by A, and let ctj ← Enc(MPKij ,mj) be the ciphertext produced by the challenger.
Suppose A made a decryption query on such an index j. According to the construction, the challenger
computes Dec(sk∗, hsk∗, ctj) as follows:

• It parses sk∗ = (ctr∗, sk∗0, . . . , sk
∗
ℓ ), ctj = (ctrct, ctj,0, . . . , ctj,ℓ), hsk∗ = (hsk∗0, . . . , hsk

∗
ℓ ), and aux =

(ctraux,D1,D2,MPK) where MPK = (ctraux,MPK0, . . . ,MPKℓ).

• Let k′ ∈ [0, ℓ] be the index of the most significant bit on which ctrct and ctr∗ differ.

• If hsk∗k′ ̸= ⊥, the challenger replies with m′
j ← SlotRFE.Dec(sk∗k′ , hsk∗k′ , ctj,k′).

• If hsk∗k′ = ⊥, the challenger first computes hsk∗ ← Update(crs, aux, pk∗) and by construction, this sets
hsk∗k′ ← D2[ctr

∗ + 1, k′]. The challenger then replies with m′
j ← SlotRFE.Dec(sk∗k′ , hsk∗k′ , ctj,k′).

Since ctj is the output of Enc(MPKij ,mj) where MPKij = (ctrij ,MPKij ,0, . . . ,MPKij ,ℓ), it must be the case
that ctrij = ctrct. By definition of the correctness game, the ij-th master public key MPKij is constructed
after the target key pk∗ is registered, so ctrct ≥ ctr∗. Now Lemma 33 ensures that the target key-function
pair (pk∗, f∗) was aggregated in MPKij ,k′ which was the output of SlotRFE.Aggregate(crsk′ , ·). Therefore, we
must have D2[ctr

∗+1, k′] = hsk∗k′ . Moreover, by construction of RegPK, the value of D2[ctr
∗+1, k′] will never

be updated after the first time it is assigned in a call to RegPK (since the counter ctraux is monotonically
increasing). Finally, the correctness of SlotRFE, we have SlotRFE.Dec(sk∗k′ , hsk∗k′ , ctj,k′) = f∗(mj). In other
words, the output of Dec(sk∗, hsk∗, ctj) must be m′

j = f∗(mj).
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Compactness: The master public key MPK of the RFE scheme consists of a ℓ-bit counter ctr indicating
the current number of registered users in the system and a set of ℓ+ 1 master public keys MPK0, . . . ,MPKℓ

of the underlying SlotRFE scheme. Note that each MPKi is a public key of the slotted scheme with at most
L = 2ℓ slots. Therefore, each MPKi is bounded by poly(λ, |UF |, logL) by the compactness of SlotRFE. Hence,
the overall size of MPK is bounded by poly(λ, |UF |, logL). Next, we observe that the helper decryption key
hsk of RFE consists of ℓ+1 helper decryption keys hsk0, . . . , hskℓ of the slotted scheme. By the compactness
of the SlotRFE scheme, each hski is bounded by poly(λ, |UF |, logL). Thus, the overall size of the helper
decryption key is bounded by poly(λ, |UF |, logL).

Update efficiency: By construction, the helper decryption key hsk of SlotRFE consists of ℓ + 1 slotted
helper decryption keys hsk0, . . . , hskℓ. In the course of the correctness game, the challenger call the Update
algorithm at most ℓ + 1 = O(logL) times (one for each hski) since the Update algorithm is only invoked
when one of the underlying helper decryption keys hski is ⊥. After the update of hski, it is no longer
updated. Since the auxiliary data maintains a dictionary D2 mapping each pair of (scheme index, slot index)
(k, i) ∈ [0, ℓ]×[2k] to its helper decryption key, the update operation can be implemented in poly(λ, |UF |, logL)
time in the RAM model of computation.

Security: Next, in the following theorem, we show that the construction of RFE is secure.

Theorem 6 Assuming SlotRFE is a secure slotted registered functional encryption scheme then the above
construction of RFE is secure as per Definition 2.

Proof. We prove this theorem using a sequence of hybrid games. Let L = 2ℓ be the total number of users
in the system. Then there are ℓ + 1 slotted registered RFE in the construction. We consider ℓ + 2 many
hybrid sequences where each hybrid game is parametrized by k∗ ∈ [0, ℓ+ 1].

Game k∗ : This is the registered RFE security game except the challenger sets the challenge ciphertext
ct∗ = (ctrct∗ , ct

∗
0, . . . , ct

∗
ℓ ) by computing ct∗j ← SlotRFE.Enc(MPKj ,m

∗
1) for j ∈ [0, k∗ − 1] and ct∗j ←

SlotRFE.Enc(MPKj ,m
∗
0) for j ∈ [k∗, ℓ]. Let A be an adversary against the security of RFE. More

precisely, the game proceeds as follows:

• Setup phase: The adversary A submits the number of users 1L to the challenger and the chal-
lenger samples crs← Setup(1λ, 1|UF |, 1L). The challenger initializes the auxiliary input aux← ⊥,
the initial master public key MPK ← ⊥, a counter t ← 0, an empty set of keys Cor ← ∅ and
Mal← ∅, an empty dictionary D← ∅. The challenger gives the crs to A.

• Query phase: The adversary A is allowed to query the following queries:

− Registered malicious key query: In a corrupted key query, A specifies a public key pk
and a function f ∈ UF . The challenger registers the key by computing (MPK′, aux′) ←
RegPK(crs, aux, pk, f). The challenger updates its copy of the public key MPK ← MPK′, its
auxiliary data aux← aux′, adds pk to Mal, and updates D[pk]← D[pk] ∪ {f}. It replies to A
with (MPK′, aux′).

− Registered honest key query: In an honest key query, A specifies a function f ∈ UF . The
challenger increments t ← t + 1 and samples (pkt, skt) ← KeyGen(crs, aux), and registers the
key by computing (MPK′, aux′) ← RegPK(crs, aux, pkt, f). The challenger updates its public
key MPK← MPK′, its auxiliary data aux← aux′, adds D[pkt]← D[pkt]∪ {f}. It replies to A
with (t,MPK′, aux′, pkt).

− Corrupt honest key query: In a corrupt-honest key query, A specifies an index i ∈ [t].
Let (pki, ski) be the i-th public/secret key the challenger samples when responding to the i-th
honest-key-registration query. The challenger adds pki to Cor and replies to A with ski.

• Challenge phase: In the challenge phase, the adversary A chooses two messages m∗
0,m

∗
1 ∈ M.

Then the challenger computes the challenge ciphertext ct∗ as follows:
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− Let the current auxiliary data be aux = (ctraux,D1,D2,MPK) where MPK = (ctraux,MPK0,
. . . ,MPKℓ).

− For each j ∈ [0, ℓ], if MPKj = ⊥, then it sets ctj ← ⊥. Otherwise, if j < k∗, it computes
ct∗j ← SlotRFE.Enc(MPKj ,m

∗
1), and if j ≥ k∗, it computes ctj ← SlotRFE.Enc(MPKj ,m

∗
0).

− The challenger sends ct∗ = (ctraux, ct0, . . . , ctℓ) to A.

Let Ek∗ be the event of A outputting the correct bit coin in Game k∗.

Lemma 34 Assuming that the SlotRFE is secure then for any PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, all k∗ ∈ [0, ℓ], it holds that |Pr[Ek∗ ]− Pr[Ek∗+1]| = negl(λ).

Proof. Let us assume that A is a PPT adversary such that |Pr[Ek∗ ] − Pr[Ek∗+1]| = ϵ where ϵ = ϵ(λ) is
non-negligible. We use A to construction a PPT adversary B against the security of the underlying SlotRFE.
The adversary B works as follows:

• Setup phase: B starts by running A who outputs the number of slots 1L. Then the adversary B
proceeds as follows:

− B sends 12
k∗

to its challenger who replies with a common reference string crsk∗ . We observe that

12
k∗

is polynomially bounded as 2k
∗ ≤ L.

Note: If the setup algorithm of the underlying SlotRFE runs polylogarithmically in the number
of users or slots L, then we can allow A to submit L in binary instead of encoding it in unary.
In this case, B also outputs 2k

∗
in binary. In other words, if the underlying SlotRFE supports an

arbitrary polynomial number of users, similar to our IO-based construction in Section 8, then the
transformed RFE scheme also does.

− B internally initializes the auxiliary input aux = ⊥, the master public key MPK = ⊥, and a
dictionary D← ∅ to keep track of the secret keys associated to the honest key generation queries.
In addition, B maintains two ordered lists Scur and Snew which will track the public keys and the
associated functions aggregated as part of MPKk∗ . Initially, Scur ← ⊥ and Snew ← (⊥, . . . ,⊥)
is an uninitialized list of length 2k

∗
. For an index i ∈ [2k

∗
], we write Snew[i] to denote the i-th

element of Snew.

− For each j ∈ [0, ℓ] \ {k∗}, B samples a common reference string crsj ← Setup(1λ, 1|UF |, 12
j

).

− B sets and sends crs := (crs0, . . . , crsℓ) to A.

• Query phase: In this phase, B simulates the key queries made by A as follows:

− Registered malicious key query: Suppose A issues a malicious key-generation-query on public
key pk and a function f ∈ UF . Let ctr be the current counter associated with aux and ik∗ =
(ctr mod 2k

∗
)+ 1. The adversary B first runs (MPK′, aux′)← RegPK(aux,MPK, pk, f) and replies

to A with MPK′ and aux′. In addition, if aux ̸= aux′ (i.e., the registration process updated the
auxiliary input), then B updates Snew[ik∗ ] ← (⊥, f, pk). Moreover, if ik∗ = 2k

∗
, then B sets

Scur ← Snew. Finally, B updates its local state by assigning MPK′ ← MPK and aux← aux′.

− Registered honest key query: Suppose A makes an honest-key-generation query on a function
f ∈ UF . The adversary B proceeds as follows:

⋆ Let ctr be the current counter in aux. For each j ∈ [0, ℓ], let ij = (ctr mod 2j) + 1.

⋆ For each j ̸= k∗, sample (pkj , skj)← SlotRFE.KeyGen(crsj , ij).

⋆ It makes a honest-key-generation query on slot ik∗ to its challenger who replies with (t, pkk∗).
It sets the public key pk = (ctr, pk0, . . . , pkℓ) and adds the mapping t 7→ (ctr, sk0, . . . , skk∗−1,
skk∗+1, . . . , skℓ) to the dictionary D. Here, t is the counter on the number of honest-key-
generation queries maintained by the challenger.
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Next, B runs (MPK′, aux′) ← RegPK(crs, aux, pk, f) and replies with (t,MPK′, aux′, pk) to A. In
addition, B updates Snew[ik∗ ]← (t, f,⊥). Moreover, if ik∗ = 2k

∗
, then B sets Scur ← Snew. Finally,

B updates its local state by assigning MPK← MPK′ and aux← aux′.

− Corrupt honest key query: Suppose Amakes a corruption query on index i. Then, B first looks
up (ctrsk, sk0, . . . , skk∗−1, skk∗+1, . . . , skℓ)← D[i]. Next, B makes a corruption query on index i to
its challenger who replies with skk∗ . Then, B sets and sends the secret key sk := (ctrsk, sk0, . . . , skℓ).

• Challenge phase: When A outputs a pair of challenge messages m∗
0,m

∗
1 ∈ M the adversary B

computes the the challenge ciphertext ct∗ as follows. Let MPK = (ctr,MPK0, . . . ,MPKℓ) be the current
master public key. The adversary B gives the challenge ciphertext ct∗ = (ctraux, ct

∗
0, . . . , ct

∗
ℓ ) to A where

ct∗j are computed as follows:

− If MPKj = ⊥, then ct∗j ← ⊥.
− If MPKj ̸= ⊥ and j < k∗, let ct∗j ← SlotRFE.Enc(MPKj ,m

∗
1).

− If MPKj ̸= ⊥ and j > k∗, let ct∗j ← SlotRFE.Enc(MPKj ,m
∗
0).

− If MPKj ̸= ⊥ and j = k∗, the adversary B makes a challenge query using the components Scur as
the public key-function pair for the slots in the k∗-th SlotRFE, and m∗

0,m
∗
1 as the pair of challenge

messages to its challenger. In a reply, B receives a ciphertext ct∗k∗ from its challenger.

• Output phase: At the end of the experiment, the adversary A outputs a bit coin′ ∈ {0, 1} which is
also the output of B.

We now show that if A is an admissible adversary of RFE then B is also an admissible adversary of
SlotRFE. By construction, the set Scur exactly tracks the public keys currently aggregated in MPKk∗ . If
MPKk∗ = ⊥, then B does not make a challenge query and hence, by definition, B is admissible. Suppose,
MPKk∗ ̸= ⊥. In this case, Scur ̸= ⊥. We now consider each component of Scur in the challenge phase:

• Scur[i] = (ij , f,⊥) : In this case, the adversaryAmade a honest-key-registration query with the function

f . Since A is admissible, either f satisfies the equation f(m∗
0) = f(m∗

1) or A did not make a corruption
query on index ij . Correspondingly, this means that either f satisfies the equation f(m∗

0) = f(m∗
1) or

B does not make a corruption query on index ij . In both the cases, B obeys the rule of admissibility.

• Scur[i] = (⊥, f, pk) : In this case, A made a malicious-key-registration query with public key pk and
function f . Since A is admissible it must hold that f(m∗

0) = f(m∗
1). Therefore, B is also admissible in

this case.

Next, it is easy to observe that B perfectly simulates the security experiment of the RFE protocol for
A. Moreover, if ct∗k∗ ← SlotRFE.Enc(MPKk∗ ,m∗

0), the adversary B simulates Game k∗ whereas if ct∗k∗ ←
SlotRFE.Enc(MPKk∗ ,m∗

1), the adversary B simulates Game k∗ + 1. Consequently, the adversary B wins
the SlotRFE security game with the same non-negligible advantage ϵ which contradicts the fact that the
underlying SlotRFE is secure. Hence, the lemma follows. □

Finally, we observe that in Game 0, the challenge ciphertext is an encryption of m∗
0 and it coincides with

the security experiment of RFE with coin = 0. On the other hand, in Game ℓ+1, the challenge ciphertext is
an encryption of m∗

1 and it coincides with the security experiment of RFE with coin = 1. Since ℓ is polynomial
in λ, the proof the theorem follows. □
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