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Abstract. Asynchronous Remote Key Generation (ARKG, introduced
in ACM CCS 2020) allows for a party to create public keys for which
corresponding private keys may be later computed by another intended
party only. ARKG can be composed with standard public-key cryptosys-
tems and has been used to construct a new class of privacy-preserving
proxy signatures. The original construction of ARKG, however, generates
discrete logarithm key pairs of the form (x, gx).

In this paper we define a generic approach for building ARKG schemes
which can be applied to a wide range of pairing-based cryptosystems.
This construction is based on a new building block which we introduce
and call Asymmetric Key Generation (AKG) along with its extension ϕ-
AKG where ϕ is a suitable mapping for capturing different key structures
and types of pairings. We show that appropriate choice of ϕ allows us
to create a secure ARKG scheme compatible with any key pair that is
secure under the Uber assumption (EUROCRYPT 2004).

To demonstrate the extensive range of our general approach, we construct
ARKG schemes for a number of popular pairing-based primitives: Boneh-
Lynn-Shacham (JoC 2004), Camenisch-Lysyanskaya (CRYPTO 2004),
Pointcheval-Sanders (CT-RSA 2016), Waters (EUROCRYPT 2005) sig-
natures and structure-preserving signatures on equivalence classes (ASI-
ACRYPT 2014). For each scheme we give an implementation and provide
benchmarks that show the feasibility of our techniques.
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1 Introduction

Asynchronous Remote Key Generation (ARKG) introduced by Frymann et al. [1]
is a primitive that allows one party, following some initialisation step, to remotely
create one or more public keys for another (receiving) party who can recover the
corresponding secret keys at a later stage. As long as the key pairs generated via
ARKG are compatible with some secure public key cryptosystem they can be
securely used by the receiving party in that cryptosystem as its own key pair,
e.g., to sign messages using a digital signature scheme or to decrypt ciphertexts



with some public key encryption scheme. This is ensured by the composability
result from [1] and the two security properties of ARKG: SK-security ensures
that only the designated receiving party can recover the derived private key;
PK-unlinkability guarantees that the derived public keys cannot be linked. How-
ever, the only3 existing ARKG construction is limited to cryptographic schemes
based on the discrete-logarithm (DL) problem in a single group, i.e. of the form
(sk, pk) = (x, gx) for some group generator g.

The ARKG primitive is useful in the context of decentralised applications
where parties generate their own key pairs and require certain privacy guaran-
tees. In fact the original ARKG construction was designed for WebAuthn [3]
where it was used to enable back-up and recovery of WebAuthn credentials. In
a nutshell, WebAuthn is a decentralised protocol which requires each user to
have an independent key pair for each web account to perform a signature-based
challenge-response authentication upon login while ensuring unlinkability across
their accounts. In WebAuthn private keys are managed through authenticators
that can be easily lost, in which case the user would be locked out of their
accounts. ARKG helps to mitigate against this problem by allowing the user
to use its current authenticator to pre-register public keys on web accounts for
which it knows a long-term public key of the back-up authenticator (obtained
from the initialisation step). The back-up authenticator can later recover the
corresponding private keys and use them for authentication.

Although the original ARKG primitive was proposed for the application in
WebAuthn, we observe that the actual instance of their protocol for key pairs
of the form (x, gx) has been deployed earlier in the context of stealth addresses
for cryptocurrencies [4,5]. Following an initialisation step, during which a sender
receives a long-term public key from another receiving party, it can transfer cryp-
tocurrency to an ephemeral address (represented by an ephemeral public key)
that it has created from the recipient’s long-term public key without interaction
with the recipient. The creation of this ephemeral public keys corresponds to the
generation of public keys via ARKG. SK-security of ARKG property ensures that
only the intended recipient is able to compute the corresponding private key and
thus spend the cryptocurrency, whereas anonymity of the transaction would be
implied by the PK-unlinkability property of ARKG.

As another application, ARKG has been used to construct a new class of
privacy-preserving proxy signatures with unlinkable warrants [6]. These schemes
adopt the delegation-by-warrant approach, yet in contrast to earlier schemes,
delegated warrants and signatures produced by proxies remain unlinkable to the
identities of the proxies. ARKG is the critical building block that performs the
delegation step by creating an new verification key for the proxy using its long-
term key for which the proxy can later compute the signing key. In this construc-
tion, unlinkability of warrants relies on the PK unkability of ARKG whereas the
unforgeability property reduces to SK-security. This scheme has found applica-

3 We note new ARKG constructions for lattice-based cryptosystems introduced con-
currently by Frymann, Gardham, and Manulis at IEEE EuroS&P 2022 [2].
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tions in decentralised environments, for example, enabling delegation of signing
rights in the context of WebAuthn.

As mentioned previously, the original ARKG construction is restricted to
DL-based keys in single groups which prevents the use of ARKG in cryptosys-
tems that are not compatible with this setting. A prominent example of such
cryptosystems can be found in pairing-based cryptography. Pairing-based cryp-
tosystems enjoy flexibility and functionality over traditional group based setting
and are widely used in privacy-preserving applications. This additional flexibility
comes from the more complex nature that pairings introduce, namely the types
of pairings, the key structures, and even the hardness assumptions can all vary
hugely. Therefore, there can not be a single ARKG instance when we talk about
pairing-based cryptosystems and instead a more general approach is required.

Contributions. The first main contribution is that we generalise the original DL-
based ARKG construction by introducing a new building block which we call
Asymmetric Key Generation (AKG) and its extension ϕ-AKG, where ϕ is an
abstract map. We give a general transformation for building ARKG schemes from
ϕ-AKG. In this way we not only provide a better understanding of the original
DL-based ARKG scheme but also pave the way for new ARKG constructions.

The second main contribution is that we build first pairing-based ARKG
schemes. Focusing on some particular type of pairings or some concrete structure
of keys would be limiting. Instead, we develop pairing-based ϕ-AKG schemes by
utilising the Uber assumption. By doing so, we can use our transformation to
obtain many concrete instances of pairing-based ARKG schemes that would be
able to cater for distinct types of pairings and different key structures. We prove
the generic transformation has both SK-security and PK-unlinkability based
on several properties (uniform sampling of private and public keys, one-time
blindness, key secrecy) that we define for the underlying ϕ-AKG schemes.

To demonstrate extensive range that our techniques capture, we identify
several concrete instances of ϕ-AKG based on both type-1 and type-2/3 pair-
ings that rely on the hardness of standard assumptions. We use these to con-
struct ARKG schemes for a wide range of signatures: BLS [7], Waters [8], CL
[9], Structure-preserving signatures on equivalence classes [10] and Pointcheval-
Sanders [11] signatures. We choose signatures that vary in their choice of pairing
type, the format of the keys and the hardness assumptions on which their security
relies, besides being quite popular in various privacy-preserving applications.

Organisation. First, we recall the formal definition of ARKG in Section 2. In
Section 3 we define Asymmetric Key Generation (AKG) and the extension ϕ-
AKG with their corresponding security properties. We then present our generic
transformation from ϕ-AKG to ARKG. We prove that our construction satis-
fies PK-unlinkability and SK-security based on a new assumption that we call
PRF-Oϕ. In Section 4, we show that our PRF-Oϕ assumption is implied by the
Decisional Uber Assumption [12]. We construct various AKG schemes, from both
type-1 and type-2/3 pairings and for variety of key structures. Finally in Sec-
tion 5, we instantiate our generic transformation with suitable ϕ-AKG instances
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to enable pairing-based ARKG schemes for several popular pairing-based sig-
natures. We provide a publicly-available implementations and benchmark their
performance.

2 Asynchronous Remote Key Generation

In this section we recall the syntax, model and security properties for ARKG.
The original DL-based instantiation can be found in Figure 2.

2.1 The ARKG Model

Definition 1 (ARKG [1]). An ARKG scheme is composed of five algorithms
ARKG := (Setup, KGen, DerivePK, DeriveSK, Check) defined as follows:

– Setup(1λ) : This algorithm takes as input a security parameter 1λ. It outputs
a description pp of the public parameters for a security parameter 1λ.

– KGen(pp) : This algorithm takes as input public parameters pp. It outputs a
private-public keypair (sk, pk).

– DerivePK(pp, pk, aux) : This algorithm takes as input public parameters pp,
a public key pk and auxiliary information aux. It probabilistically returns a
public key pk’ together with a link cred between pk and pk′.

– DeriveSK(pp, sk, cred) : This algorithm takes as input public parameters pp,
a secret key sk and credential cred. It either outputs the secret key sk′ corre-
sponding to pk′ or ⊥ on error.

– Check(pp, sk′, pk′) : This algorithm takes as input public parameters pp, a
secret key sk’ and a public key pk’. It returns 1 if the keypair (sk′, pk′) is
legitimate, otherwise 0.

We also recall the definition of correctness for ARKG. It states that asyn-
chronously derived key pairs are as valid as freshly generated ones.

Correctness. An ARKG scheme is correct if it satisfies the following condition:
For all λ ∈ N and pp← Setup(1λ), the probability

Pr
[
ARKG.Check(pp, sk′, pk′) = 1

]
= 1

if (sk, pk)← KGen(pp), (pk′, cred)← DerivePK(pp, pk, ·) and
sk′ ← DeriveSK(pp, sk, cred).

2.2 Security Definitions

An adversary A is modelled as a probabilistic polynomial time (PPT) algorithm
allowed to call any of the above procedures. The security definitions introduced
further also allow the adversary to interact with the primitive via oracles defined
below.
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– Opk’(pk, ·) : This oracle is parametrized with a public key pk and takes as
input aux. It outputs the result of DerivePK(pp, pk, aux ). These results are
stored as (pk′, cred) in a list PKList initialy set as ∅.

– Ob
pk’(b, sk0, pk0): This oracle is parameterized with keypair (sk0, pk0) and

integer b, it takes no input. It outputs (sk′, pk′) derived using (sk0, pk0) when
b = 0 or a uniformly sampled private-public key pair when b = 1.

– Osk’(sk, ·) : This oracle is parametrized with a secret key sk and takes a
credential cred as input. It outputs the results of DeriveSK(pp, sk, cred) if
(·, cred) ∈ PKList, otherwise ⊥. The results are stored as cred in a list SKList
initialy set as ∅.

PK-unlinkability. This privacy property concerns the obfuscation of the link
between pk and pk’. It ensures that derived key pairs (sk′, pk′) are indistinguish-
able from fresh key pairs under the knowledge of pk. Formally, an ARKG scheme
provides PK-unlinkability if the following advantage is negligible in λ:

AdvPKUARKG,A(λ) =

∣∣∣∣Pr[ExpPKUARKG,A = 1
]
− 1

2

∣∣∣∣
where the PKU experiment is defined in Figure 1.

SK-security. This security property prevents unauthorized derivation of key
pairs and credentials. We recall the four flavors introduced in [1] (mwKS, hwKS,
msKS and hsKS) corresponding to malicious/honest and weak/strong variants
of the security experiment ExpKSARKG,A. Formally, an ARKG scheme provides SK-
security if the following advantage is negligible in λ:

AdvKSARKG,A(λ) = Pr
[
ExpKSARKG,A = 1

]
where the KS experiment is defined in Figure 1.
Figure 2 contains the five algorithms introduced in [1] instantiating an ARKG
scheme for DL-based keys. Public parameters pp contain a group G of order q
with generator g, a Message Authentification Code MAC and two Key Derivation
Functions KDF1 and KDF2 as defined in Appendix B.

3 Generalised ARKG

In this section we introduce and formally define Asymmetric Key Generation
(AKG) schemes and their generalisation ϕ-AKG.

3.1 ϕ-AKG Schemes

Consider two asymmetric Diffie-Hellman (DH) key pairs (s, S = gs), (e, E = ge)
as generated by the ARKG.KGen algorithm. These are used in the ARKG.DerivePK
and ARKG.DeriveSK algorithms of Definition 1 to derive a value ϕ(S, e) = Se =
Es = ϕ(E, s) only available through knowledge of crossed key pair (e, S) or
(s, E). We capture this notion in the next definition.
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ExpPKUARKG,A

1 : pp← Setup

2 : (pk0, sk0)← KGen(pp)

3 : b←$ {0, 1}

4 : b′ ← AO
b
pk’(pp, pk0)

5 : return b
?
= b′

ExpKSARKG,A

1 : pp← Setup

2 : (sk, pk)← KGen(pp)

3 : (sk⋆, pk⋆, cred⋆)← AOpk’,Osk’ (pp, pk)

4 : sk′ ← DeriveSK(pp, sk, cred⋆)

5 : return Check(pp, sk⋆, pk⋆)
?
= 1

6 : ∧ Check(pp, sk′, pk⋆)
?
= 1

7 : ∧cred⋆ /∈ SKList

8 : ∧(pk⋆, cred⋆) ∈ PKList

Fig. 1: The security experiments relating to PK-unlinkability on the left and SK-
security on the right. dashed boxes give strong variants (msKS, hsKS) of the KS
security experiment while dotted boxes give honest variants (hwKS, hsKS).

Setup

1 : return pp = ((G, g, q),

2 : MAC,KDF1,KDF2)

KGen(pp)

1 : x←$ Zq

2 : return (pk, sk) = (x, gx)

Check(pp, sk = x, pk = X)

1 : return gx
?
= X

DerivePK(pp, pk = S, aux)

1 : (E, e)← KGen(pp)

2 : ck ← KDF1(S
e)

3 : mk ← KDF2(S
e)

4 : P ← gck · S
5 : µ← MAC(mk, (E, aux))

6 : return pk′ = P, cred = (E, aux, µ)

DeriveSK(pp, sk = s, cred = (E,µ, aux))

1 : ck ← KDF1(E
s))

2 : mk ← KDF2(E
s)

3 : if µ
?
= MAC(mk, (E, aux)) then

4 : return sk′ = sk+ s

5 : else return ⊥

Fig. 2: The original DL-based ARKG instantiation as defined in [1].
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Definition 2 (ϕ-AKG). An Asymmetric Key Generation (AKG) scheme is a
tuple of algorithms AKG:= (Setup, SKGen, PKGen, Check) defined as:

– Setup(1λ) : This algorithm takes as input a security parameter 1λ. It outputs
a description pp of the public parameters of the scheme for security parameter
1λ. The public parameters describe two groups Gsk and Gpk representing
respectively the private and public key spaces.

– SKGen(pp) : This algorithm takes as input public parameters pp. It computes
and outputs a secret key sk ∈ Gsk.

– PKGen(pp, sk) : This algorithm takes as input public parameters pp and a
secret key sk. It computes and outputs a public key pk ∈ Gpk.

– Check(pp, pk, sk) : This algorithm takes as input public parameters pp, a
public key pk and a private key sk. It returns 1 if (pk, sk) forms a valid
keypair, otherwise 0.

Let ϕ be an efficiently computable map Gsk × Gpk → G where G is an arbi-
trary group. An AKG in combination with ϕ and the following two algorithms
SKCombine and SKInv form a ϕ-AKG scheme:

– SKCombine(pp, sk1, sk2) : This algorithm takes as input public parameters
pp, and two secret keys sk1 and sk2. It returns a secret key sk′ ∈ Gsk.

– SKInv(pp, sk1, sk2) : This algorithm takes as input public parameters pp, and
two secret keys sk1 and sk2. It returns a secret key sk′ ∈ Gsk.

Remark 1. AKG schemes are implicit in many cryptosystems and usually bun-
dle SKGen and PKGen together. However, the ARKG model requires remote
key generation leading to this split. We write (sk, pk) ← KGen(pp) for sk ←
SKGen(pp); pk← PKGen(pp, sk).

Correctness. An AKG scheme is correct if it satisfies the following condition:
For all λ ∈ N, pp← Setup(1λ) and (sk, pk)← KGen(pp), we have

Pr[AKG.Check(pp, sk, pk) = 1] = 1.

A ϕ-AKG scheme is correct if it is correct as an AKG scheme and if for every
private-public key pairs (sk1, pk1), (sk2, pk2) ∈ Gpk × Gsk the following three
properties are satisfied:

ϕ(sk1, pk2) = ϕ(sk2, pk1) (1)

Pr[AKG.Check(pp, SKCombine(pp, sk1, sk2), pk1 · pk2) = 1] = 1. (2)

Pr[sk1 = SKInv(pp, sk2, SKCombine(pp, sk1, sk2))] = 1. (3)

Intuitively, property (1) states that crossed key pairs (sk1, pk2) and (sk2, pk1)
can be used independently to derive a shared value. Property (2) states that
the secret key corresponding to the product of public keys pk1 and pk2 in multi-
plicative group Gpk can be efficiently computed from sk1 and sk2 using algorithm
SKCombine. For instance, let g be a generator of a group G of order p and sup-
pose private-public key pairs are of type (x, gx), then algorithm SKCombine sim-

ply performs addition over Zp. However for key pairs of type (x, gx
2

) ∈ Zp ×G,
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the algorithm should output a square root of x2 + y2 from inputs x and y in
Zp. Property (3) allows for efficient inversion in the secret key group, this is
required in the proofs of Theorems 2 and 3. In the rest of this paper, we assume
AKG schemes to have the following 3 properties: uniform sampling for private
and public keys (USK, UPK), one-time blindness (OTB) and key secrecy (KS)
defined in the following. The corresponding experiments are defined in Figure 3.

Definition 3 (Uniform sampling). We say that an AKG scheme with public
and private key groups Gpk,Gsk has uniform sampling if the following advantages
are negligible in λ,

AdvUPKAKG,A(λ) =

∣∣∣∣Pr[ExpUPKAKG,A(λ) = 1
]
− 1

2

∣∣∣∣ ,
AdvUSKAKG,A(λ) =

∣∣∣∣Pr[ExpUSKAKG,A(λ) = 1
]
− 1

2

∣∣∣∣ .
Definition 4 (Key Secrecy). We say a ϕ-AKG scheme provides key secrecy
(KS) if the following advantage is negligible in λ,

AdvKSAKG,A(λ) = Pr
[
ExpKSAKG,A(λ) = 1

]
.

Definition 5 (One-time blindness). We say that a ϕ-AKG scheme with
public and private key groups Gpk,Gsk has the one-time blindness property if the
following advantages are negligible in λ,

AdvOTB
G,A (λ) = Pr

[
ExpOTB

G,A (λ) = 1
]
for G ∈ {Gpk,Gsk}.

Example 1 (DL-based ϕ-AKG scheme). Let us outline the ϕ-AKG scheme used
in the original ARKG implementation found in Figure 2. Let G be a cyclic group
of order p generated by element g. Private keys are generated by sampling uni-
formally at random an element of Zp. A public key is generated from private key
x by exponentiation gx. This yields algorithms SKGen and PKGen for the common
DL-based AKG scheme. Algorithms Setup and Check are also easily identified.
Define further a mapping ϕ : G×Zp → G sending (gx, y) to (gx)y. This mapping
extends the AKG into a ϕ-AKG scheme. Algorithms SKCombine and SKInv are
addition and inversion in group (Zp,+) respectively. The uniform sampling of
keys and OTB properties are verified by definition of the key generation process.
Key secrecy follows for instance from the DL assumption in G.

3.2 Our general transformation from ϕ-AKG to ARKG

Using the previously defined structures, we introduce a compiler transforming a
ϕ-AKG scheme into an ARKG scheme. We first introduce some cryptographic
primitives used in our construction. The definitions of Pseudorandom Func-
tion (PRF), Key Derivation Function (KDF) and Message Authentication Code
(MAC) are given in Appendix B.
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ExpUSKAKG,A

1 : pp← AKG.Setup(1λ)

2 : sk0 ← AKG.SKGen(pp)

3 : sk1 ←$ Gsk

4 : b←$ {0, 1}
5 : b′ ← A(pp, skb)

6 : return b
?
= b′

ExpUPKAKG,A

1 : pp← AKG.Setup(1λ)

2 : sk← AKG.SKGen(pp)

3 : pk0 ← AKG.PKGen(pp, sk)

4 : pk1 ←$ Gpk

5 : b←$ {0, 1}
6 : b′ ← A(pp, pkb)

7 : return b
?
= b′

ExpOTB
G,A

1 : pp← AKG.Setup

2 : x, y, z ←$ G
3 : if G == Gpk

4 : (z0, z1)← (x · z, y · z)
5 : else if G == Gsk

6 : z0 ← SKCombine(pp, x, z)

7 : z1 ← SKCombine(pp, y, z)

8 : b←$ {0, 1}
9 : b← A(pp, zb, x, y)

10 : return b
?
= b′

ExpKSAKG,A

1 : pp← AKG.Setup

2 : (pk, sk)← AKG.KGen(pp)

3 : sk′ ← A(pp, pk)

4 : return sk′
?
= sk

Fig. 3: Uniform sampling of private and public keys, one-time blindness and key-
secrecy experiments for ϕ-AKG schemes.

The lrPRF-Oϕ assumption. In the DL setting, the PK-unlinkability property
follows from the PRF-Oracle-Diffie-Hellman (PRF-ODH) assumption. This as-
sumption and various flavours of it were introduced by Brendel et al. [13] to
study TLS security. It is used to model a man-in-the-middle attack scenario
where two parties derive a session key from an exchanged DH secret using a
pseudorandom function PRF. Informally, the PRF-ODH assumption states that
PRF(guv, ·) looks random even when knowing gu, gv and having access to values
PRF(Su, ·) and/or PRF(Sv, ·).

Definition 6 (Security under the lrPRF-Oϕ assumption). Let l, r ∈ {n =
none, s = single,m = many}. Let PRF : G × L → Gsk be a pseudorandom
function. We say (ϕ-AKG,PRF) is lrPRF-Oϕ secure if the following advantage is
negligible in λ for all PPT adversary A,

Adv
lrPRF-Oϕ

PRF,A (λ) =

∣∣∣∣Pr[ExplrPRF-Oϕ

PRF,A (λ) = 1
]
− 1

2

∣∣∣∣ ,
where the lrPRF-Oϕ experiment is defined in Figure 4.
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Exp
lrPRF-Oϕ

PRF,A

1 : pp← Setup(1λ)

2 : (pk1, sk1)← KGen(pp)

3 : (pk2, sk2)← KGen(pp)

4 : bp← (bp, pk1, pk2)

5 : Pick challenge label x ∈ {0, 1}∗

6 : y0 ← PRF(ϕ(pk2, sk1), x)

7 : y1 ←$ {0, 1}λ

8 : b←$ {0, 1}

9 : b′ ← AOϕ(bp, yb, x)

10 : return b
?
= b′

Ol
ϕ(S, x̂)

1 : if (S, x̂) == (pk2, x) then return ⊥
2 : return PRF(ϕ(S, sk1), x̂)

Or
ϕ(T, x̂)

1 : if (T, x̂) == (pk1, x) then return ⊥
2 : return PRF(ϕ(T, sk2), x̂)

Fig. 4: The lrPRF-Oϕ security experiment and its Ol
ϕ,O

r
ϕ oracles. These oracles

generalize the Diffie-Hellman oracles ODHu and ODHv in the lrPRF-ODH as-
sumption [13].

Definition 7 (ϕ-AKG to ARKG compiler). Our transformation of a ϕ-
AKG scheme into an ARKG scheme uses two key derivation functions KDF1 and
KDF2 and a message authentication code MAC. Function KDF1 (resp. KDF2) has
input group G and target group Gsk (resp. the input space of the MAC function).
The algorithms of the resulting ARKG scheme are specified in Figure 5.

We now proceed with the proof of PK-unklinkability and SK-security properties
for the resulting scheme in Figure 5.

Theorem 1 (PK-unlinkability). Let ϕ-AKG be a scheme providing key se-
crecy and let KDF1, KDF2 and MAC be functions with input and output spaces
compatible with Figure 5. We assume these three functions are secure under the
definitions given in Appendix B. If ϕ-AKG is secure under the nnPRF-Oϕ assump-
tion, the compiled ARKG scheme satisfies PK-unlinkability.

Proof. Let game G0 be defined by the ExpPKUARKG,A experiment. Thus, Pr[G0 = 1] =

AdvPKUARKG,A(λ). Recursively define a series of hybrid games by H0 = G0 and
Hi = Hi−1 with the exception that on the i-th oracle call to Opk’:

– computation of the public key pk′ is replaced by AKG.PKGen(pp, ck) ·R,
– computation of the secret key sk′ is replaced by AKG.SKCombine(pp, ck, r)

where (R, r)← AKG.KGen(pp).
Assume A is able to distinguish between the two games Hi and Hi−1. Let

B be an adversary for experiment ExpOTB
Gsk,A receiving challenge (pp, zb, x, y).

Adversary B wins if it is able to tell whether zb = SKCombine(pp, x, z) or
zb = SKCombine(pp, y, z) for some uniformly sampled element z. The USK and
UPK assumptions in Gsk and Gpk make keys indistinguishable from uniform
sampling. The following distributions are therefore indistinguishable
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Setup(1λ)

1 : p̃p← AKG.Setup(1λ)

2 : return pp = p̃p

KGen(pp)

1 : return (pk, sk) = AKG.KGen(pp)

Check(pp, sk, pk)

1 : return AKG.Check(pk, sk)

DerivePK(pp, S, aux)

1 : (e, E)← AKG.KGen(pp)

2 : ck ← KDF1(ϕ(S, e))

3 : mk ← KDF2(ϕ(S, e))

4 : P ← AKG.PKGen(pp, ck) · S
5 : µ← MAC.Tag(mk, (E, aux))

6 : return pk′ = P, cred = (E, aux, µ)

DeriveSK(pp, s, cred = (E,µ, aux))

1 : ck ← KDF1(ϕ(s, E))

2 : mk ← KDF2(ϕ(s, E))

3 : if MAC.Verify(mk, (E, aux), µ)
?
= 1 then

4 : return sk′ = AKG.SKCombine(pp, ck, s)

5 : else return ⊥

Fig. 5: Our general transformation from ϕ-AKG to ARKG.

– (x, y, z) and (s, r, ck)
– (S,R, AKG.PKGen(pp, ck)) and

(AKG.PKGen(pp, x), AKG.PKGen(pp, y), AKG.PKGen(pp, z)).

As such, adversary B can ask A to distinguish between H′ and H′′ where

– H′ = Hi−1 except s = x, ck = z and S = AKG.PKGen(pp, x) and
– H′′ = Hi except r = y, ck = z and S = AKG.PKGen(pp, r).

The result is a distinguisher for the OTB experiment, which is supposed hard.
Thus Pr[Hi = 1] = Pr[Hi−1 = 1]. Set game G1 as Hq where q is the last oracle

call index. Recursively define another series of games as H̃0 = G1 and H̃i = H̃i−1

with the exception that on the i-th oracle call to Opk’ expressions ’ϕ(S, e)’ and
’ϕ(E, s)’ are replaced with ’u’ where u ←$ Gpk. The nnPRF-Oϕ assumption

coupled with properties of PRF function KDF1 ensure that games H̃i and H̃i−1

are indistinguishable. Thus Pr
[
H̃i = 1

]
= Pr

[
H̃i−1 = 1

]
.

Now assume A is able to win at the PK-unlinkability game. We construct an
adversary B for the nnPRF-Oϕ game that wins with non-negligible probability.

Adversary B plays the role of challenger for A in H̃j . It invokes its own nnPRF-
Oϕ game, receiving pk1, pk2, yc and sets the label of PRF to the one of KDF1.
The game is won if B can correctly guess bit c.

Adversary B sets up game H̃j for A with pk0 ← pk1 and sk0 ←⊥. It answers
A’s j-th oracle query to Ob

pk’ honestly except it sets pk′ = pk2, sk
′ =⊥ and ckj =

yj , the output of KDF1 in game H̃j . It then waits for A to produce a bit b and
forwards it to nnPRF-Oϕ. The distribution of sk2 in the nnPRF-Oϕ experiment
is the same as the distribution of e in ARKG.DerivePK. Thus the distributions of
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ϕ(pk1, sk2) and ϕ(pk1, e) are equal. As such, B wins with probability equal to that

of A distinguishing between H̃b
j and H̃b

j−1 and Pr
[
H̃b

i = 1
]
= Pr

[
H̃b

i−1 = 1
]
. Set

G2 = H̃b
q where q is the last oracle call index. We define yet another series of

games as Ĥ0 = G2 and Ĥi = Ĥi−1 with the exception that on the i-th oracle call
to Opk’ line ’mk ← KDF2(ϕ(S, e))’ is replaced with ’mk ← KDF2(u)’ where u←$

GT . An argument similar to the one showing H̃b
j is indistinguishable from H̃b

j−1

shows that Ĥb
j is indistinguishable from H̃b

j−1, Pr
[
Ĥb

i = 1
]
= Pr

[
Ĥb

i−1 = 1
]
. Set

G3 = Ĥb
q where q is the last oracle call index. The advantage in distinguishing

between b = 0 and b = 1 is equal to 1/2 as the output distributions pk′ and sk′

are now identical and independent from b, thus Pr[G3 = 1] = 1
2 . Finally we get

a bound for the advantage of A in the PKUs experiment

AdvPKUARKG,A(λ) ≤ q
(
Adv

nnPRF-Oϕ

KDF1,A (λ) + Adv
nnPRF-Oϕ

KDF2,A (λ)
)
.

According to our assumptions, AdvPKUARKG,A(λ) is negligible in λ. ⊓⊔

Theorem 2 (hsKS-security). Let ϕ-AKG be a scheme providing key secrecy
and let KDF1, KDF2 and MAC be functions with input and output spaces com-
patible with Figure 5. We assume these three functions are secure under the
definitions given in Appendix B. The compiled ARKG scheme is hsKS-secure
(and therefore hwKS-secure).

Proof. Define G0 as ExphsKSA and G1 as G0 except

– During oracle calls to Opk’, line 4 of DerivePK is replaced with

r ←$ Gsk; P ← AKG.PKGen(pp, c) · AKG.PKGen(pp, r).

– If A queries Osk’ with E ∈ cred such that E ∈ List, then line 4 of DeriveSK is
replaced with “return sk′ = SKCombine(pp, ck, r)”. This ensures the validity
of the derived keys.

The two games G0 and G1 are indistinguishable as s and r are uniformly sampled
from the same space by the PKU assumption.

We now construct an adversary B for the ExpKSAKG,A game assuming an ad-
versary A is able to win game hsKS with non-negligible probability. Adver-
sary B instantiates its own ExpKSAKG,A experiment, receiving challenge pk = S ←
AKG.PKGen(pp, s). It wins if it is able to recover the secret key sk = s.
B sets up the hsKS game as described in the experiment but replaces line 2

with ’(pk, sk) ← (S,⊥)’. Adversary B chooses an oracle query where it guesses
A will use the derived key pk’ in its forgery. For this single query, B can answer
calls to Opk’ using S but cannot answer calls to Osk’. Should this later call be
queried, the experiment aborts. In the other cases, B can answer calls to Osk’ as
it generates the ephemeral keys (e, E) and can locate r using the list kept by the
oracle.

12



Adversary B waits for a successful forgery (sk′, cred⋆) from A. Using cred⋆,
it can locate (e, E) corresponding to cred⋆ in the list. As such, it is able to
compute ck and s = AKG.SKInv(pp, sk′, ck). Adversary B is guaranteed to find
(E, e) in List as successful forgery of a tuple for hsKS requires, following line 8
of the experiment’s definition, that (pk⋆, cred⋆) ∈ PKList, which implies a call
to Opk′ . However, the experiment fails if Osk’ is called with pk’, which happens
with probability ϵ = 1/#Gpk.

Thus, the advantage of A in ExphsKSA is bounded by the advantage of an
adversary B against the ExpKSAKG,A game by

AdvhsKSA (λ) ⩽ (1− ε)ExpKSAKG,A.

By assumption the ExpKSAKG,A experiment is hard and it follows that the ARKG
scheme is hsKS-secure. ⊓⊔

Theorem 3 (msKS-security). Let ϕ-AKG be a scheme providing key secrecy
and let KDF1, KDF2 and MAC be functions with input and output spaces compat-
ible with Figure 5. We assume these three functions are secure under the defini-
tions given in Appendix B. If ϕ-AKG is secure under the snPRF-Oϕ assumption,
the compiled ARKG scheme is msKS-secure (and therefore mwKS-secure).

Proof. See Appendix A.1.

4 Pairing-based ϕ-AKG and ARKG schemes from Uber
assumption

In this section we define generic ϕ-AKG schemes for various key structures over
bilinear groups so that they can be used with the transformation in Figure 5.
Using the decisional Uber assumption [12, 14], we provide a generic result on
the security of the ARKG instance obtained through this transformation in
Lemma 1. We use this result to prove the security of ARKG instances obtained
from ϕ-AKG schemes based on the three types of pairings.

4.1 Notations and Building Blocks

Arrows over letters will indicate vectors. Let us fix integers n,m, k, l and de-
note the polynomial ring Zn[X1, · · · , Xm] by the letter A. For any vectors
of m-variate polynomials F ∈ Ak, H ∈ Al and vector x ∈ Zm

n , we write
F (x) := (F1(x), · · · , Fk(x)). Similarily, for a group G of order n and element
g ∈ G we write gF (x) := (gF1(x), · · · , gFk(x)). We concatenate vectors with nested
notation:

(gF (x), gH(x)) := (gF1(x), · · · , gFk(x), gH1(x), · · · , gHl(x)) ∈ Gk+l.

Finally for a binary vector ϵ ∈ {0, 1}m, we write xϵ = (xϵ1
1 , · · · , xϵm

m ). In
this section and the next, when using mappings ϕ(sk1, pk2), we denote by x

13



(possibly with sub-indices) exponents belonging to the first key pair (sk1, pk1)
and y for exponents of the second key pair (sk2, pk2). For instance, we will
write ϕ(sk1, pk2) = e(gx1

1 , gy1

2 ), which stands for ϕ(sk(x), pk(y)), without re-
introducing vectors x and y.

Definition 8 (Bilinear Groups). A description of a bilinear group G is a
tuple (G1,G2,GT , g1, g2, e, γ, p) such that

– G1, G2 and GT are cyclic groups of prime order p,
– G1 (resp. G2) is generated by element g1 (resp. g2),
– e : G1 ×G2 → GT is a non-degenerate bilinear pairing,
– γ : G2 → G1 is an isomorphism.

In the above definition, non-degenerate bilinear pairing means group homomor-
phism linear in both components and such that neither e(g1, ·) nor e(·, g2) are
trivial maps. We assume group operations as well as mapping e to be efficiently
computable. Assumptions on the efficient computability of γ and γ−1 give rise
to three types of bilinear groups:

– Type 1: both γ and γ−1 are efficiently computable,
– Type 2: γ is efficiently computable but γ−1 is not,
– Type 3: Neither γ nor γ−1 is efficiently computable.

Below we recall the DBDH, XDH and SXDH assumptions for bilinear pair-
ings.

Definition 9 (DBDH, XDH, SXDH). Let G be a bilinear group. For A ∈
{DBDH,XDH,SXDH} we say assumption A holds in G if the following advantage
is negligible in λ,

AdvAG,A(λ) = Pr
[
ExpAG,A(λ) = 1

]
where the corresponding experiments are defined in Figure 6.

We now give a specialization of Definition 2 to schemes using bilinear pairings.
This particular description provides a framework for schemes with private-public
key pairs consisting of order elements and bilinear group elements. It is most
convenient when used in conjunction with the Uber assumption [12, 15] and
encompasses a wide range of key types that are commonly used in pairing-based
cryptosystems.

Definition 10 (Pairing-based ϕ-AKG schemes). A pairing-based ϕ-AKG
is based on a bilinear group G and an AKG scheme. It is defined as follows. Let
(m, lF , lH , lK , kF , kH , kK) be integers and ϵ = (ϵ1, · · · , ϵm) be a binary vector.
Let (F sk,Hsk,Ksk) ∈ AlF+lH+lK and (F pk,Hpk,Kpk) ∈ AkF+kH+kK be vectors
of m-variate polynomials over Zp. Assume private-public key pairs of AKG are
parametrized by exponents via

sk(x) =
(
xϵ, g

F sk(x)
1 , g

Hsk(x)
2 , g

Ksk(x)
T

)
,

pk(x) =
(
g
F pk(x)
1 , g

Hpk(x)
2 , g

Kpk(x)
T

)
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ExpDBDH
G,A

1 : (x, y, z)←$ Z3
p

2 : c0 ← e(g1, g2)
xyz

3 : c1 ←$ GT

4 : b←$ {0, 1}
5 : b′ ← A(G, (gx1 , gy1 , g

z
1 , cb))

6 : return b
?
= b′

ExpXDH
G,A

1 : (x, y)←$ Zp

2 : c0 ← gxy1

3 : c1 ←$ G1

4 : b←$ {0, 1}
5 : b′ ← A(G, (gx1 , gy1 , cb))

6 : return b
?
= b′

ExpSXDH
G,A

1 : (x, y, z, t)←$ Zp

2 : (c0, d0)← (gxy1 , gzt2 )

3 : (c1, d1)←$ G1 ×G2

4 : (a, b)←$ {0, 1}2

5 : (a′, b′)← A(G, (gx1 , gy1 , ca), (g
z
2 , g

t
2, db))

6 : return (a
?
= a′) ∧ (b

?
= b′)

Fig. 6: The Decisional Bilinear Diffie-Hellman (DBDH), Extended Diffie-Hellman
(XDH) and Symmetric Extended Diffie-Hellman (SXDH) experiments.

for vector x = (x1, · · · , xm) ∈ Zp.
Let Q ∈ Zp[X1 · · · , Xm, Y1, · · · , Ym] be a 2m-variate polynomial and define

ϕ : (sk(x), pk(y)) 7→ g
Q(x,y)
T . We write (ϵ,F sk,Hsk,Ksk|F pk,Hpk,Kpk|Q) as

a description of the scheme.

Such a ϕ-AKG scheme has the correctness property 1 of Definition 2 if, for every

pair of vectors x,y ∈ Zm
p , the value g

Q(x,y)
T is efficiently computable from the

knowledge of either one of crossed key pairs (sk(x), pk(y)) and (sk(y), pk(x)).
The decisional Uber assumption provides a general framework encompassing
many standard assumptions. We use it to prove the PK-unlinkability property
of an ARKG instance obtained from a pairing-based ϕ-AKG scheme through the
transformation in Figure 5. We recall the decisional Uber assumption and prove
this result in Lemma 1.

Definition 11 (Decisional Uber Assumption [12, 15]). Let G be a bilin-
ear group description. Fix integers f, h, k,m. Take three m-variate polynomials
vectors F = (F1, · · · , Ff ), H = (H1, · · · , Hh), K = (K1, · · · ,Kk) and a tar-
get polynomial Q. The decisional (F ,H,K, Q)-Uber assumption is said to hold
in bilinear group G if, for the ExpUberA experiment described in Figure 7, the
following advantage is negligible in λ:

AdvUberA (λ) =

∣∣∣∣Pr[ExpUberA (λ) = 1
]
− 1

2

∣∣∣∣ ,
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ExpUberA

1 : x←$ Zm
p

2 : X,Y ,Z ← g
F (x)
1 , g

H(x)
2 , g

K(x)
T

3 : y0 = g
Q(x)
T

4 : y1 ←$ GT

5 : b←$ {0, 1}
6 : b′ ← A(pp,X,Y ,Z, yb)

7 : return b
?
= b′

Fig. 7: The Uber experiment. Adversary A wins if it is able to distinguish target

value g
Q(x)
T from a uniformly sampled element in GT .

Let ϕ-AKG be a pairing-based scheme as defined in Definition 10 and let PRF be
a pseudorandom function with input space GT . In the following we prove that
the nnPRF-Oϕ security of (ϕ-AKG, PRF) according to Definition 6 is implied by
a certain parameterisation of the decisional Uber assumption. This parameteri-
sation depends on 2m-variate polynomials in X1, · · · , Xm, Y1, · · · , Ym for which
we also write X = (X1, · · · , Xm) and Y = (Y1, · · · , Ym). From ϕ-AKG define
2m-variate polynomial vectors

F = (F pk
1 (X), · · · ,F pk

lF
(X),F pk

1 (Y ), · · · ,F pk
lF
(Y ))

H = (Hpk
1 (X), · · · ,Hpk

lH
(X),Hpk

1 (Y ), · · · ,Hpk
lH
(Y ))

K = (Kpk
1 (X), · · · ,Kpk

lK
(X),Kpk

1 (Y ), · · · ,Kpk
lK
(Y )).

The m-variate polynomials defining ϕ-AKG appear twice: once in the variables
X1, · · · , Xm and once in variables Y1, · · · , Ym. We thus parametrize the Uber
game with two exponents vectors x,y ∈ Zm

p accounting for pk(x) and pk(y).
The value to distinguish from random sampling using the knowledge of these

public keys is then g
Q(x,y)
T = ϕ(sk(x), pk(y)).

Lemma 1 (Decisional Uber assumption implies nnPRF-Oϕ). Using the
above notations, assume the decisional (F ,H,K, Q)-Uber assumption holds in
G. Then the nnPRF-Oϕ assumption holds for (ϕ-AKG,PRF).

Proof. Assuming an adversary A is able to win at the nnPRF-Oϕ experiment
with significant probability. We construct an adversary B able to break the Uber
game in G. Suppose B receives challenge (X,Y ,Z, C). It wins if it is able to tell

whether y = g
Q(x,y)
T for some x,y ∈ Zm

p or y ←$ GT .
Observe that vector X can be written as a concatenation (XX ,XY ) where

XX = g
F pk(x)
1 and XY = g

F pk(y)
1 for some x and y. The same applies to vectors

Y and Z. Adversary B can thus instantiates an nnPRF-Oϕ game for A with
pk1 = (XX ,Y X ,ZX), pk2 = (XY ,Y Y ,ZY ) and challenge yb = PRF(C). A
forwards its output as a bit b′.
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Adversary A is able to distinguish between PRF(ϕ(pk1, sk2)) = PRF(g
Q(x,y)
T )

and uniform sampling. Furthermore, uniform sampling is indistinguishable from
PRF(y) for y ←$ GT by definition of pseudorandom functions. Adversary A is

thus able to distinguish g
Q(x,y)
T from uniform sampling on GT . B only has to

forward bit b′ to the challenger to win with significant probability. Thus, the
advantage of A in the nnPRF-Oϕ experiment is bounded by the advantage of
an adversary B against the Uber game, hence

Adv
nnPRF-Oϕ

PRF,A (λ) ⩽ AdvUberA (λ).

Hence, if the advantage on the right is negligible, it follows the nnPRF-Oϕ as-
sumption holds. ⊓⊔

4.2 Symmetric pairings

We give ϕ-AKG constructions from AKG schemes using type-1 bilinear groups.
We provide a security analysis of the corresponding nnPRF-Oϕ assumption us-
ing Lemma 1. Throughout the entire section we consider a bilinear group G =
(G1,G2,GT , g1, g2, e, γ, p) of type 1. We write G := G1 = G2 and g := g1 = g2.
We assume the underlying PRFs are secure under the definitions of Appendix B.
The proofs of lemmas and corollaries of this section can be found in Appendix A.

Key pairs of type (x, gx). In the general DL context, Lemma 1 implies the
following result.

Corollary 1. Under the decisional ((X1, Y1),∅,∅, X1Y1(X1+Y1))-Uber assum-
ption, a ϕ-AKG scheme of type ((1),∅,∅,∅|(X1),∅,∅|X1Y1(X1+Y1)) provides
an ARKG scheme with PK-unlinkability and hsKS-security under the transfor-
mation in Figure 5.

The assumption used in the above corollary is easily seen to imply the DBDH
assumption. It is unknown to the authors whether these two assumptions are
equivalent or not.

Let us now assume a trusted setup where a random generator h is available as
part of the public parameter output by AKG.Setup. We denote by α the discrete
logarithm of h in base g1.

Corollary 2. In this trusted setup and under the DBDH assumption, a pairing-
based ϕ-AKG of type ((1),∅,∅,∅|(X1),∅,∅|αX1Y1) provides an ARKG scheme
with PK-unlinkability and hsKS-security under the transformation in Figure 5.

Key pairs of type ((x1, x2), (g
x1 , gx2)). In the case where two DL values consitute

the key pairs, we can emulate h in the trusted setup above using shared generator
gxy.

Lemma 2. The DBDH assumption in G implies the decisional ((X1, X2, Y1, Y2)
, ∅, ∅, X1X2Y1Y2)-Uber assumption.

Corollary 3. Under the DBDH assumption, a pairing-based ϕ-AKG scheme
of type ((1, 1),∅,∅,∅|(X1, X2),∅,∅|X1X2Y1Y2) provides an ARKG scheme with
PK-unlinkability and hsKS-security under the transformation in Figure 5.
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4.3 Asymmetric pairings

Following the previous section, we build pairing-based ϕ-AKG schemes from
AKG schemes with key structures using type 2 or 3 bilinear groups. Throughout
the entire section we consider a bilinear group G = (G1,G2,GT , g1, g2, e, γ, p) of
type 2 or 3. The proofs of lemmas and corollaries of this section can be found in
Appendix A.

Key pairs of type (x, gx1 ). Unlike in the type-1 context where the DDH assump-
tion does not hold in G1 = G2, here we can use the XDH assumption.

Lemma 3. For a type-2/3 pairing, the decisional ((X1, Y1),∅,∅, X1Y1)-Uber
assumption is implied by the XDH assumption.

Corollary 4. Under the XDH assumption, a type-2/3 pairing-based ϕ-AKG
scheme of type ((1),∅,∅,∅|(X1),∅,∅|X1Y1) provides an ARKG scheme with
PK-unlinkability and hsKS-security under the transformation in Figure 5.

Key pairs of type (x, gx2 ). For such public keys, care must be taken in designing
ϕ for type-2 pairings as value gx1 = γ(gx2 ) is available via public key gx2 . This
means, for instance, that mapping ϕ(x, gy2 ) = e(gx1 , g

y
2 ) = e(γ(gx2 ), g

y
2 ) cannot be

used. This is not an issue for type-3 pairings in which γ is intractable.

Corollary 5. Under the SXDH assumption, a type-3 pairing ϕ-AKG scheme of
type ((1),∅,∅,∅|∅, (X1),∅|X1Y1) provides an ARKG scheme with PK-unlinka-
bility and hsKS-security under the transformation in Figure 5.

Key pairs of type (gx2 , g
x
1 ). Now consider secret keys of type gx2 and public keys

of type gx1 for some exponent x. A mapping ϕ can be defined via ϕ(sk1, pk2) :=
e(gy1 , g

x
2 ).

Corollary 6. Under the XDH assumption, a type-2/3 pairing-based ϕ-AKG
scheme of type ((0),∅, (X1),∅|(X1),∅,∅|X1Y1) provides an ARKG scheme with
PK-unlinkability and hsKS-security under the transformation in Figure 5.

Key pairs of type (gx1 , g
x
2 ). In the opposite configuration, only type-3 pairings are

usable following the same considerations as with keys of type (x, gx2 ). A mapping
ϕ can be defined via ϕ(sk1, pk2) := e(gx1 , g

y
2 ).

Corollary 7. Under the SXDH assumption, a type-3 pairing ϕ-AKG scheme
of type ((0),∅, (X1),∅|∅, (X1),∅|X1Y1) implies an ARKG scheme with PK-
unlinkability and hsKS-security under the transformation in Figure 5.

Remark 2. For type-3 pairings, independently combining any amount of the
previous key types lead to a secure ARKG scheme under the SXDH assump-
tion by taking the product of the ϕ mappings. For instance, key pairs of type
sk(x), pk(x) = (x1, x2, x3, g

x4
1 , gx5

2 ), (gx1
1 , gx2

1 , gx3
2 , gx4

2 , gx5
1 ) are associated with

pairing

ϕ(sk(x), pk(y)) = e(gy1

1 , gx1
2 )e(gy2

1 , gx2
2 )e(gx3

1 , gy3

2 )e(gy4

1 , gx4
2 )e(gx5

1 , gy5

2 ).
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Since SXDH implies DDH in GT , using elements from the target group in the
public key is also possible and only requires more taking the corresponding
products in the definition of ϕ.

5 Applications to Pairing-based Signatures

We now turn our attention to selected pairing-based signature schemes across
different types of bilinear groups to illustrate the application of our general
transformation to ARKG. It must be noted that the security of the signature
scheme is independent from the security of the ARKG scheme, as highlighted
by the composability results in [1]. We take common signature schemes and
extract the key generation steps from them to build AKG schemes outputting
the same structure of keys. These AKG schemes are assumed to provide key
secrecy, however we also consider in some cases subsets of the signature scheme’s
key structure. The hardness of the DL assumption in the public key group will
imply key secrecy in these cases.

For each scheme we indicate the structure of the original private-public key
pair and the corresponding ϕ-mapping that is used to compute the derived
private-public key pair via the ARKG transformation. For simplicity, in our
descriptions we focus only on the structures of the key pairs without repeating
the remaining computation steps behind the transformation in Figure 5 such as
computation of KDFs or MACs that are also part of the transformation. In the
following, whenever a scheme requires a public key to contain randomly sampled
generators, we assume these to be generated as part of the public parameters.

5.1 ARKG for selected signature schemes over type-1 pairings

In this section we use the notations of Section 4.2. We consider a bilinear group
G = (G1,G2,GT , g1, g2, e, γ, p) of type 1 where G := G1 = G2 and g := g1 = g2.

BLS-1 signatures [7]. The Boneh, Lynn, and Shacham pairing-based signature
scheme is one of the most famous and simple pairing-based schemes. Recall that
the key generation algorithm KGen for BLS-1 signatures outputs keys of the
form (sk, pk) = (x, gx) for some x←$ Zp. The underlying AKG scheme is derived
from the key generation steps of BLS. AKG.Setup(1λ) returns G, AKG.SKGen(pp)
computes sk = x←$ Zp, AKG.PKGen(pp, sk) computes pk = gsk and AKG.Check(pp,
pk, sk) verifies that gsk = pk. Let us first extend this AKG scheme to a ϕ-AKG
scheme in a trusted setup.

Trusted setup. Suppose an additional trusted generator h of G is available and
define mapping ϕ : (x, gy) 7→ e(gy, hx). This extends the aforementionned AKG
scheme to a ϕ-AKG scheme. Corollary 2 of Section 4.2 then implies that under
the DBDH assumption, the transformation of Figure 5 yields an ARKG instance
compatible with the BLS key structure that has the PK-unlinkability and hsKS-
security properties.
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Trustless setup. We can avoid the trusted setup by using, instead of the under-
lying AKG scheme directly derived from the signature scheme, the following key
structure: (sk, pk) = ((x1, x2), (g

x1 , gx2)) and mapping

ϕ : ((x1, x2), (g
y1 , gy2)) 7→ e(gy1 , (gx2gy2)x1))

where public element h = gx2gy2 acts as a trusted generator. Algorithms SKGen,
PKGen and Check need to be modified accordingly. Assuming x2+y2 is not known
to anyone, the AKG provides key secrecy. Since the additional key elements are
equivalent to a shared trusted generator h, the security of the resulting ARKG
instance is also implied by the DBDH assumption.

Alternatively, under the assumption of Corollary 1, one can avoid doubling
keys and use pairing

ϕ : (x, gy) 7→ e((gxgy)x, gy).

CL signatures [9]. The Camenisch-Lysyanskaya signature scheme is based on
the LRSW assumption introduced in [16] and can be used in anonymous creden-
tial systems and group signature schemes. The key structure of the underlying
AKG scheme is (sk, pk) = ((x1, x2), (g

x1 , gx2)) for some (x1, x2)←$ Z2
p. As such,

we can extend it to a ϕ-AKG scheme via mapping ϕ : ((x1, x2), (g
y1 , gy2)) 7→

e(gy1 , gy2)x1x2 . Applying Corollary 3, we deduce that the transformation of Fig-
ure 5 yields an ARKG instance compatible with the CL key structure that has
the PK-unlinkability and hsKS-security properties under the DBDH assumption.

5.2 ARKG for selected signature schemes over type-3 pairings

In this section we use the notations of Section 4.3 and consider a bilinear group
G = (G1,G2,GT , g1, g2, e, γ, p) of type 3.

Let l, s ≥ 0 and consider signature schemes using key pairs of the form

(sk, pk) = ((x1, · · · , xl+s), (g
x1
1 , · · · , gxl

1 , g
xl+1

2 , · · · , gxl+s

2 )) ∈ Zl+s
p × (Gl

1 ×Gs
2).

We transform the underlying AKG into a ϕ-AKG scheme using mapping

ϕ : (sk(x), pk(y))) 7→
l∏

i=1

e(gyi

1 , gxi
2 )

s∏
i=1

e(g
xl+i

1 , g
yl+i

2 ).

The security of the associated ARKG scheme follows from the SXDH assump-
tion as mentioned in Remark 2. The key structures used in the following three
signature schemes can therefore be used in a secure ARKG scheme under the
SXDH assumption.

BLS-3 signatures [17] BLS-3 signatures are defined in [17] and use keys of
the form (sk, pk) = (x1, g

x1
2 ) for some x1 ←$ Zp.
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Pointcheval-Sanders signatures [11] Pointcheval-Sanders signatures defined
in [11] use type-3 pairings to obtain all the advantages of CL signatures with
shorter signature elements and more efficient algorithms. The key structure of the
underlying AKG scheme is (sk, pk) = ((x1, x2), (g

x1
1 , gx2

1 )) for some (x1, x2) ←$

Z2
p.

SPS-EQ [10]. Structure-preserving signatures on equivalence classes use type-3
pairings and keys of the form (sk, pk) = ((x1, · · · , xl), (g

x1
2 , · · · , gxl

2 )).

Waters signatures [8]. Waters signatures exist in all three types of bilin-
ear groups and can be tuned either to have very short signatures or very short
shared hash function parameters. We consider the type-3 setting. The key struc-
ture for this scheme is (sk, pk) = ((gx1

1 , x2, · · · , xl), (g
x1

T , gx2
2 , · · · , gxl

2 )). Recall
that ARKG requires an AKG scheme generating such key pairs with two in-
dependent algorithms AKG.SKGen and AKG.PKGen. With AKG.SKGen outputting
secret keys of the form (gx1

1 , x2, · · · , xl), we obtain an algorithm outputting a
corresponding public key of the form (gx1

T , gx2
2 , · · · , gxl

2 ) by computing gx1

T as
e(gx1

1 , g2). A composite mapping for this AKG scheme is

(gx1
1 , x2, · · · , xl), (g

y1

T , gy2

2 , · · · , gyl

2 ) 7→ (gy1

T )x2e(gx1
1 , gy2

2 )e(gx2
1 , gy2

2 ) · · · e(gxl
1 , gyl

2 ).

The security of the ARKG instance obtained from this scheme is the decisional
((X2, · · · , Xl, Y2, · · · , Yl), ∅, (X1, Y1), X2Y1 +X1Y2 +X2Y2 + · · ·XlYl)-Uber as-
sumption. As with the previous schemes, it is implied by the SXDH assumption.

5.3 Implementation and Performance

In Table 1, the mean time (in milliseconds) of ten invocations of ARKG is
presented, taken from our reference implementation4 without any optimisation.
The benchmarking was performed on an Intel i5-6600, with a clock speed of
3.30GHz. When combined, DerivePK and DeriveSK give the total time required
to generate a derived key pair, which is also presented in the table. The schemes
based on type-1 pairings (BLS, CL) are implemented in C using the PBC5 and
Sodium 6 libraries. The type-2/3 schemes (PS, SPS-EQ, Waters) use the readily-
available bplib package in Python. For our implementations in C, which are much
more performant, only an increase of 3.5ms and 4.0ms is seen when comparing
ARKG-derived keys to the underlying AKG KeyGen algorithm, for BL- and CL-
compatible keys, respectively. However, our Python implementations, which are
not optimised in any way, take the order of 100ms. This is primarily due to the
many group operations required for DerivePK.

4 https://gitlab.surrey.ac.uk/sccs/bp-arkg
5 https://crypto.stanford.edu/pbc/
6 https://github.com/jedisct1/libsodium

21

https://gitlab.surrey.ac.uk/sccs/bp-arkg
https://crypto.stanford.edu/pbc/
https://github.com/jedisct1/libsodium


Table 1: Mean time in milliseconds for each ARKG algorithm, along with the
respective AKG.KGen. BLS-1/3 and CL are written in C, PS, SPS-EQ and Waters
are implemented in python.

DerivePK DeriveSK Check ARKG total AKG.KGen

BLS-1 [7] 3.56 1.07 0.63 5.26 0.63
BLS-3 [17] 2.92 0.99 0.62 4.53 0.61
CL [9] 5.36 0.89 2.21 6.26 2.24
PS [11] 99.23 8.29 0.89 107.52 0.94
SPS-EQ [10] 123.34 17.13 10.89 140.47 5.62
Waters [8] 127.40 17.12 11.52 144.52 8.96

6 Conclusion

In this work we proposed a general approach for constructing Asynchronous Re-
mote Key Generation (ARKG) from a simpler building block, which we call
Asymmetric Key Generation (AKG) and its extension ϕ-AKG. Through an
appropriate choice of the mapping ϕ and the underlying private/public key
groups for AKG we were able to generalise the first ARKG scheme for DL-
based key pairs from [1] and, more importantly, obtain first ARKG construc-
tions catering for different types of bilinear groups and key structures commonly
used in pairing-based cryptography. Specifically, our general transformation from
pairing-based ϕ-AKG to ARKG allows to generate key pairs whose security is
implied by a family of decisional Uber assumption [12], and hence all assump-
tions that imply the latter, including DBDH, XDH, SXDH. To demontrate the
power of our general approach we provide concrete pairing-based ϕ-AKG in-
stances for different key pairs and types of pairings, and illustrate their use for
some well-known pairing-based signature schemes. Our work is supported by
appropriate publicly-accessible implementations and benchmarks, showing that
the overhead for generating key pairs using ARKG based on our transformation
introduces only a neglible overhead (i.e., an additional 3.5ms in our most perfor-
mant implementation) when compared to the original key generation algorithms
of the respective schemes.
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Appendix

A More proofs

A.1 Proof of Theorem 3

Define G0 as the starting experiment ExpmsKS
A . As such,

Pr
[
ExpmsKS

A = 1
]
= Pr[G0 = 1].

Define G1 as G0 except,

– During oracle calls to Opk’, line 4 of DerivePK is replaced with

r ←$ Gsk; P ← AKG.PKGen(pp, ck) · AKG.PKGen(pp, r).

An internal list List of elements (E, e, r) generated during the calls is main-
tained by the challenger.

– If A queries Osk’ with E ∈ cred such that E ∈ List, then line 4 of DeriveSK
is replaced with “return sk′ = AKG.SKCombine(pp, ck, r)”. This ensures the
validity of derived keys.

Games G0 and G1 are indistinguisable. Indeed, suppose an adversary C is able
to distinguish between both games with non-negligible probability. C is thus
able to differentiate between the original (G0) and modified (G1) versions of the
DerivePK algorithm. We construct an adversary D able to break the ExpOTB

Gpk,A
experiment.

Adversary D receives challenge (zb, x) and wins if it correctly guesses bit
b where z0 ← x · z and z1 ← y · z for uniformly sampled (x, y, z) ∈ Gpk and
b←$ {0, 1}. Adversary D sets up game a game where it asks C which version of
DerivePK was used to produce output P = yb on input (pp, S, aux) = (⊥, x,⊥)
The distributions AKG.PKGen(pp, ck) and z are indistinguishable as the ϕ-AKG
scheme provides uniform sampling of keys. The same goes for distributions
AKG.PKGen(pp, r) and y. As such, C answers correctly to the challenge with sig-
nificant probability and D breaks the ExpOTB

Gpk,A experiment by forwarding the
answer. Thus

Pr[G0 = 1] = Pr[G1 = 1].

Assume an adversary A is able to win the msKS experiment with non-
negligible probability. We will construct an adversary B able to break the snPRF-
Oϕ experiment.

Adversary B receives a snPRF-Oϕ challenge (yb, x) and public parameters
(bp, pk1, pk2). It sets up game G1 with sk ←⊥ and pk ← pk1 and uses x for the
label of KDF1. It then challenges A create a forgery on yb and answers its oracle
calls honestly. Adversary eventually A answers with a triple (sk⋆, pk⋆, cred⋆).
Adversary B extracts E from cred⋆ and uses a single query to the Oϕ oracle to
get ck ← KDF1(ϕ(E, sk1)) where sk1 is the secret key associated to pk1. B can

24



then compute this secret key as sk1 = AKG.SKInv(pp, sk⋆, ck) and compare yb
and KDF1(ϕ(pk2, sk1)). It returns 0 if they are equal, otherwise 1.

A query from B to Oϕ with E = pk2 aborts the experiment. This happens
with probability ϵ = q/n where n = #Gpk by the UPK assumption where q is
the number of oracle queries made by A. It becomes negligible when n is large.

Thus, the advantage of A in msKS is bounded by the advantage of an adver-
sary B against the snPRF-Oϕ game, hence

AdvmsKS
A (λ) ⩽ (1− ε)Adv

snPRF-Oϕ

PRF,B (λ).

By assumption the Adv
snPRF-Oϕ

PRF,B (λ) experiment is hard, it follows that this com-
piled ARKG scheme is msKS-secure. ⊓⊔

In the following proofs of lemmata and corollaries, we omit sets used to define
decisional Uber experiments when they are empty for brevity.

A.2 Proof of Lemma 2

Assume an adversaryA is able to win at the Uber experiment with significant
probability. We construct an adversary B able to break the DBDH game. Suppose
B receives challenge (gx, gy, gz, C) ∈ G3×GT . It wins if it is able to tell whether
C = e(g, g)xyz or C ←$ GT .

Adversary B instantiates a Uber game for A with X = (gx, gy, gz, g) and
challenge C. A forwards its output as a bit b′.

Adversary A is by definition able to distinguish g
Q(x,y,z,1)
T = gxyzT from uni-

form sampling in GT . B only has to forward bit b′ to the challenger to win with
significant probability.

Thus, the advantage of A in the Uber experiment is bounded by the advan-
tage of an adversary B against the DBDH game, hence

AdvUberA (λ) ≤ AdvDBDH
G,A (λ).

By assumption the DBDH experiment is hard, it follows that the Decisional
Uber assumption holds. ⊓⊔

A.3 Proof of Lemma 3

Assume an adversaryA is able to win at the Uber experiment with significant
probability. We construct an adversary B able to break the DDH game in G1.
Suppose B receives challenge (gx1 , g

y
1 , C) ∈ G3

1. It wins if it is able to tell whether
C = gxy1 or C ←$ G1.

Adversary B instantiates a Uber game for A with X = (gx1 , g
y
1 ) and challenge

C. A forwards its output as a bit b′.

Adversary A is by definition able to distinguish g
Q(x,y)
T = gxyT from uniform

sampling in GT . As such, A is able to distinguish xy from random sampling in
Zp and thus gxy1 from random sampling in G1. B only has to forward bit b′ to
the challenger to win with significant probability.
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Thus, the advantage of A in the Uber experiment is bounded by the advan-
tage of an adversary B against the DDH game, hence

AdvUberA (λ) ≤ AdvDDH
A (λ).

By assumption the DDH experiment is hard, it follows that the decisional Uber
assumption holds. ⊓⊔

A.4 Proof of Corollary 3

By Lemma 2, the Decisional ((X1, X2, Y1, Y2),∅,∅, X1X2Y1Y2)-Uber assum-
ption is implied by the DBDH assumption. As such, it follows from Lemma 1 that
the nnPRF-Oϕ assumption holds for the ϕ-AKG scheme. We can thus conclude
by Theorem 1 and Theorem 2 . ⊓⊔

A.5 Proof of Corollary 2

Denote by A1 the Decisional ((X1, X2, Y1, Y2), ∅, ∅, X1X2Y1Y2)-Uber as-
sumption and by A2 the Decisional ((X1, Y1), ∅, ∅, αX1X2)-Uber assumption.
According to Lemma 2, it suffices to show that A1 ⇒ A2 since DBDH⇒ A1.

Assume an adversary A is able to win at the A2 experiment with significant
probability. We construct an adversary B able to break the A1 game. Suppose
B receives challenge set X = (gx, gy) and challenge C. It wins if it is able to tell
whether C = e(g, g)αxy or C ←$ GT .

Adversary B instantiates an A1 game for A with input set X = (gx, h, gy, g)
and challenge C. A forwards its output as a bit b′.

Adversary A is by definition able to distinguish g
Q(x,α,y,1)
T = gαxyT from

uniform sampling in GT . B only has to forward bit b′ to the challenger to win
with non-negligible probability.

Thus, the advantage of A in the Uber experiment is bounded by the advan-
tage of an adversary B against the DBDH game, hence

AdvUberA (λ) ≤ AdvDBDH
G,A (λ)

and therefore we conclude that A1 ⇒ A2. ⊓⊔

A.6 Proof of Corollary 4

By Lemma 3, the Decisional ((X1, Y1),∅,∅, X1Y1)-Uber assumption is implied
by the XDH assumption. As such, it follows from Lemma 1 that the nnPRF-Oϕ

assumption holds for the ϕ-AKG scheme. We can thus conclude by Theorem 1
and Theorem 2 . ⊓⊔

A.7 Proof of Corollary 5

The proof is similar to that of Corollary 4 except group G2 (where the DDH
assumption holds) is used in place of G1.

26



A.8 Proof of Corollary 6

The proof is similar to that of Corollary 4 as the public key part ((X1), ∅, ∅),
polynomial Q = X1Y1 and the assumptions are identical.

A.9 Proof of Corollary 7

The proof is similar to that of Corollary 5 since the public key part (∅, (X1),∅),
polynomial Q = X1Y1 and the assumptions are identical.

B Preliminaries

In this section we recall general definitions such as pseudorandom functions, key
derivation functions and message authentication codes.

Definition 12 (Pseudorandom function). A pseudorandom function (PRF)
PRF : K × M → M ′ takes as input a key k and a message m. It outputs a
new message m′ not necessarily from the same space as m. Define oracle OPRF

parametrized by k and taking as input a message m′ ̸= m. It outputs either
PRF(k,m′) or f(m′) where f is a truly random function. A PRF is secure if the
following advantage is negligible in 1λ for all PPT adversary A,

AdvPRFA (λ) =

∣∣∣∣Pr[ExpRANDPRF,A = 1
]
− 1

2

∣∣∣∣ ,
where the output randomness RAND experiment is defined in Figure 8.

Definition 13 (Key Derivation Function). A key derivation function KDF :
K × L → K ′ takes as input a key k and a label l. It outputs a new key k′

not necessarily from the same keyspace as k. A KDF is secure if the following
advantage is negligible in 1λ for all PPT adversary A

AdvKDF
A (λ) =

∣∣∣∣Pr[ExpINDKDF,A(λ) = 1
]
− 1

2

∣∣∣∣ ,
where the indistinguishability IND experiment is defined in figure 8. In the fol-
lowing we will fix once and for all a KDF function KDF : Gpk × L → Gsk, two
labels l1, l2 and consider KDF1 = KDF(·, l1) and KDF2 = KDF(·, l2)

Definition 14 (Message Authentication Code). A Message Authentifica-
tion Code (MAC) is a triple MAC=(KGen, Tag, Verify). KGen(1λ) takes as input

a security parameter 1λ and outputs a secret key mk ←$ {0, 1}λ, Tag(mk,m) out-
puts a tag µ for a secret key mk and a message m and Verify(mk,m, µ) outputs
1 if the tag µ is valid for mk and m, otherwise 0. A MAC scheme is correct if
for every λ ∈ N,m ∈ {0, 1}∗,

(mk ← KGen(1λ); µ← Tag(mk,m))⇒ Verify(mk,m, µ),
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Define oracle OTag,mk parametrized by a key mk and taking a message m as
input. It returns the result of Tag(mk,m). A MAC is unforgeable if the following
advantage is negligible in λ for all PPT adversary A

AdvUNFMAC,A(λ) = Pr
[
ExpUNFMAC,A(λ) = 1

]
,

where the unforgeability UNF experiment is defined in Figure 8.

ExpRANDPRF,A

1 : k ←$ K

2 : m←$ M

3 : y0 ← PRF(k,m)

4 : y1 ←$ {0, 1}λ

5 : b←$ {0, 1}

6 : b′ → AOPRF(yb)

7 : return b′
?
= b

ExpINDKDF,A

1 : k ←$ K

2 : l←$ L

3 : y0 ← KDF(k, l)

4 : y1 ←$ {0, 1}λ

5 : b←$ {0, 1}
6 : b′ → A(yb)

7 : return b′
?
= b

ExpUNFMAC,A

1 : mk ← KGen(1λ)

2 : (m⋆, µ⋆)← AOTag,mk

3 : return m ̸= m⋆

4 : ∧ Verify(mk,m⋆, µ⋆)

Fig. 8: The security experiments associated to the PRF, KDF and MAC defini-
tions.
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