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Abstract. Wireless-channel key exchange (WiKE) protocols that lever-
age Physical Layer Security (PLS) techniques could become an alterna-
tive solution for secure communication establishment, such as vehicular
ad-hoc networks, wireless IoT networks, or cross-layer protocols.
In this paper, we provide a novel abstraction of WiKE protocols and
present the first game-based security model for WiKE. Our result en-
ables the analysis of security guarantees offered by these cross-layer pro-
tocols and allows the study of WiKE’s compositional aspects. Further,
we address the potential problem of the slow-rate secret-key generation
in WiKE due to inadequate environmental conditions that might render
WiKE protocols impractical or undesirably slow. We explore a solution
to such a problem by bootstrapping a low-entropy key coming as the out-
put of WiKE using a Password Authenticated Key Exchange (PAKE).
On top of the new security definition for WiKE and those which are
well-established for PAKE, we build a compositional WiKE-then-PAKE
model and define the minimum security requirements for the safe sequen-
tial composition of the two primitives in a black-box manner. Finally, we
show the pitfalls of previous ad-hoc attempts to combine WiKE and
PAKE.

Keywords: WiKE · wireless channel · key exchange · PAKE · physical
layer security · cross-layer design

1 Introduction

Security and privacy in wireless communications has always been of foremost
importance, but takes on a new dimension with the mass adoption of wireless-
enabled devices propelled by the Internet of Things (IoT), wireless systems and
other technologies such as as radio frequency identification (RFID) and vehicu-
lar ad-hoc networks (VANET). The traditional and most widely used approach
to solving this problem is via key agreement protocols, which typically require
legitimate parties to share a common secret key or password.

Protocols such as TLS, Kerberos, and Wi-Fi Protected Access are notable
examples of widely deployed cryptographic solutions that incorporate Authenti-
cated Key Exchange (AKE) or Password Authenticated Key Exchange (PAKE)
mechanisms. These cryptographic primitives and the security guarantees arising
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therefrom have been well-studied within standard security frameworks and un-
der precisely formulated security definitions [14,6]. Within these security frame-
works, an adversary is without exception modeled as a network adversary that
has complete insight into the communication of honest participants. Security
protocols following this paradigm are, in practice, deployed above the physical
layer of the OSI model.

Physical layer security. An alternative security paradigm for enabling secure
communication originates from the work of Wyner [37] and is implemented on
the physical layer. The basic principle behind Physical Layer Security (PLS)
arises from specific characteristics of the (wireless) communication channels. On
a high level, the inherent random noise that affects communication channels can
be leveraged to achieve information-theoretic security guarantees, albeit usually
against an eavesdropping adversary. Since Wyner’s seminal work, various PLS
techniques have been developed and are classified into two distinct groups [20].
The first group of techniques follows a keyless approach whereby (wireless) se-
cret communication is directly enabled without relying on an encryption key.
The second group relies on mechanisms that extract a sequence of random bits
from the shared channel. The latter is the set of techniques we are interested in.

Cross-layer design. In recent years, there has been increasing research inter-
est in hybrid security constructions [9,18] due to the very likely future threat
of quantum adversaries to classical cryptographic primitives and protocols, but
also as a result of the relative immaturity of existing quantum-secure schemes.
In the domain of key exchange protocols, a hybrid approach involves a parallel
execution of a classical key exchange protocol with a post-quantum key exchange
protocol [9]. Outputs of both primitives can then be combined to obtain a master
secret (to be used with symmetric-key primitives). Another potential solution to
augment the security of communication systems and hedge against a motivated
adversary is to consider a cross-layer security design [18]. In practice, key dis-
tribution problems are usually implemented above the physical layer. Moreover,
the central purpose of the physical layer is usually only to provide an error-
free link. However, one can also leverage the secrecy of wireless (and wired)
networks and augment classical security measures by adopting physical layer se-
curity techniques. Assuming that involved end-point devices are secure and only
their communication network is exposed, the use of the cross-layer (hybrid) ap-
proach would force an adversary to attack the targeted communication system
in multiple domains simultaneously.

1.1 Our Contribution

We provide a detailed study of the Wireless-channel key exchange (WiKE), and
our contributions can be placed into the following three categories:

Wireless-channel key exchange model. The design and security analysis
of key exchange protocols has proved to be a difficult task. Even though many

2



WiKE protocols have been proposed during the last two decades [20], we are
unaware of any attempt to describe a game-based or UC-based security defini-
tion for WiKE. In this paper, to address this gap, we propose a first, general,
game-based security definition that captures the properties of WiKE. We base
our security model on the Real-or-Random (RoR) variant [3] of the classical
Bellare-Rogaway model for Authenticated Key Exchange (AKE) [7]. Our result
provides a novel abstraction of WiKE protocols that allow them to be modelled
within a standard provable security framework. We capture the difference (but
also potential correlation) in communication between honest participants and
an adversary. In contrast, in traditional key exchange protocols, all participat-
ing parties have the same view (i.e., noiseless transmission) of the network traffic.

Composition with PAKE. In this paper, we address the problem of a slow key
generation rate due to inadequate environmental conditions that might cause the
failure of WiKE in some circumstances. We explore a potential solution to such
a problem by bootstrapping a low-entropy key from WiKE with a PAKE. We
propose a generic solution building on top of our WiKE security model: we de-
fine a compositional WiKE-then-PAKE model following the techniques from [12]
and [35]. Then, we prove that the sequential composition of any WiKE protocol
secure in our RoR-WiKE model with any PAKE protocol secure in the standard
RoR-PAKE model is also secure under the WiKE-then-PAKE security model.
In this process, we observe that forward secrecy of RoR-PAKE is unnecessary
for a safe sequential composition of the two primitives in a black-box manner.

Insecurity of ad-hoc solutions. The authors of [41] proposed a variant of
PAKE called vPAKE, whose goal is to leverage the wireless fading channel in
the physical layer to extract a common low-entropy key. Below, we show that
their ad-hoc attempt to combine WiKE and PAKE has a circular argument
in the security proof of the proposed PAKE protocol. Moreover, if deployed
standalone, the proposed PAKE protocol allows testing if a client registers the
same password with two different servers. Although the sequential combination
of WiKE and vPAKE renders such an attack unfeasible because duplicate keys
are unlikely to come out of WiKE, it’s still noteworthy that the proposed protocol
on its own is unsafe in most real-world scenarios. Interestingly, the attack that
exploits this vulnerability is of practical significance and yet falls outside of the
Real-or-Random game-based model.

1.2 Related Work

Physical layer security. In his seminal work, Wyner [37] considers an eaves-
dropping wire-tapper adversary with a degraded view of the communication
channel between legitimate parties but assumes no pre-shared secret. Subse-
quently, Csiszár and Körner [16] generalized Wyner’s result again in the noisy
channel. Expanding on their work, Maurer looked at the problem of secret key
generation from correlated information and noiseless public discussion [29]. He
demonstrated that information-theoretic security is attainable if there exists only
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a difference (and not necessarily an advantage) in the received signals between
an eavesdropper and either of the legitimate parties. However, this result comes
with a caveat: an additional, authenticated, error-free, public channel is needed.
Later, Maurer and Wolf [28] analyzed a more difficult setting in which an adver-
sary can actively participate in secret-key agreement protocol or certain parts of
it. These works, among others, constitute the foundation for a relatively novel
security research area of Physical Layer Security (PLS) and inspired a plethora
of various schemes that are designed for different channel types, communication
scenarios, and under various assumptions, [40,20].

Password authenticated key exchange. PAKE has been very heavily studied
in the past 30 years. The idea of PAKE originates from the work of Bellovin and
Meritt [8]. The first formal models for analyzing PAKE emerged in the 2000s
[6,11]. Bellare et al. [6] defined a game-based Find-then-Guess model (FtG)
and showed that a provably secure PAKE protocol must provide two security
properties: indistinguishability of the session key and authentication property.
Abdalla et al. [3] extended their work and introduced a variant of the FtG model
called Real-or-Random (RoR) that provides stronger security properties. In [32],
Paterson and Stebila looked at the specificity of a one-time password scenario.
The aspect of securely composing PAKE with other protocols was explored by
Canetti et al. [14], where Universally Composable (UC) PAKE was first defined
and the first UC secure construction was provided based on work from [25].
Their framework also captures possible correlations between passwords, which
was not possible with previous game-based definitions. Over the years, many
other PAKE protocols were proposed: for the latest survey, we refer to [21].

2 Preliminaries

In this section, we review two fundamental primitives that are used throughout
this paper: Wireless-channel Key Exchange (WiKE), and Password Authenti-
cated Key Exchange (PAKE).

2.1 Wireless-channel key exchange

The existence of a secure physical layer WiKE is dependent on several assump-
tions. The theoretical basis for WiKE assumes three physical phenomena that
are observable in a typical multipath scattering environment [20]: 1) Spatial
channel decorrelation; 2) Channel reciprocity; 3) Channel variation (random-
ness) that can exist in the temporal, spectral, and/or spatial domains. This
means that the wireless channel between two communicants under real-world
conditions produces a time-varying, random mapping between the transmitted
and received signals. Importantly, this channel impulse response (mapping) is
reciprocal, bound to communicants’ location, and according to the Jakes uni-
form scattering model [22] decorrelates rapidly with the radio frequency (RF)
half-wavelength distance due to the multipath fading phenomenon. Considering
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a practical scenario where a wireless transmission occurs at 2.4 GHz, an eaves-
dropping adversary would have to be less than 6.25 cm away from either of the
communicants to get meaningful information [26]. The aforementioned channel
properties enable legitimate parties to first generate a “dirty” secret in presence
of an eavesdropper that is later “purified”. To implement this in practice, most
of the existing physical layer Wireless-channel Key Exchange (WiKE) schemes
follow a 3-phase design commonly referred to as ‘advantage creation’, ‘informa-
tion reconciliation’, and ‘privacy amplification’ [29,13,27].

Phase I – Advantage creation. The first phase starts with the successive
probing of the wireless channel by the parties wishing to extract a secret key.
Since the channel impulse response decorrelates in time, each probe can be seen
as a fresh source of randomness3 [39]. Unfortunately, this probing process is vul-
nerable to active attacks. Although specific physical layer authentication tech-
niques exist [38], we cannot apply them directly to our problem, so we will
assume an eavesdropping adversary in this phase of the protocol, as usually
done in WiKE research. After the probing phase, communicating parties can
transform correlated random measurements into correlated random bit strings
through the process of quantization.

Phase II – Information reconciliation. After the first phase, the difference
in the bit strings on the two sides is due to channel noise and interference, po-
tential malicious participation of adversary, but also hardware limitations and
vendor-specific implementation details [23]. This string mismatch is resolved us-
ing information reconciliation. As a result of this probabilistic, error-correction
procedure legitimate partners end up with an identical random string S. This
procedure typically assumes the existence of a noiseless, authenticated, public
channel [34]. At this stage, the adversary may have partial information about S.

Phase III – Privacy amplification. This procedure solves the problem of
leaked information during two previous phases and also removes correlations
between subsequent bits in the string S that may occur because of a skewed
estimate of the channel’s coherence time period. As a result, an insecure string
S is compressed to a shorter string K that is almost uniformly distributed and
outside the adversary’s knowledge. As with the information reconciliation pro-
cedure, the problem that privacy amplification solves is usually studied by as-
suming the existence of an error-free, authenticated channel. However, there
exist protocols [28] that achieve privacy amplification without such assumption
- security can be achieved in the presence of an adversary who possesses par-
tial knowledge about the secret string S, but this knowledge must be limited [17].

3 This is a simplification, as it assumes that each probe is done once during the
channel’s coherence time-period. The problem is that it is usually difficult to estimate
the exact coherence time period in the channel. However, this issue is typically
addressed in the later WiKE phases.
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Authenticated channel. In WiKE literature, similar to Quantum Key Distri-
bution, it is typically assumed the existence of a secret setup established among
WiKE protocol participants enabling an authenticated channel necessary for
information reconciliation and privacy amplification. In practice, such a secret
setup can be instantiated in multiple ways: using a pre-shared symmetric key, or
by relying on a PKI, for instance. If one wants to achieve information-theoretic
security, message authentication can be ensured using an unconditionally secure
scheme such as Carter-Wegman MAC scheme [36]. However, since message au-
thentication should only stay secure during the execution period of the WiKE,
one can also resort to computationally-secure authentication [30].

Comparing metrics. WiKE schemes can be evaluated in terms of 3 important
metrics [23]: 1) output entropy; 2) bit mismatch rate, and 3) secret key rate. The
first two are self-explanatory, and the third metric quantifies the average num-
ber of secret bits extracted (per second) excluding bit losses due to information
reconciliation and privacy amplification. Note that temporal channel variation,
or in simple terms, movements of legitimate parties and other objects in the
environment, are an important source of entropy and significantly contribute to
the increase of the secret key rate.

Security. Adversarial threat models typically considered for WiKE assume only
an eavesdropping adversary during the advantage creation (probing), as this
phase is particularly sensitive to active adversaries. In contrast, the two sub-
sequent phases may be achieved assuming an active adversary. Despite this
limitation of WiKE, in contrast to more traditional key exchange approaches
(e.g. Diffie-Hellman-based key exchange), WiKE’s adversary is assumed to have
an unbounded computational power and needs to be physically present and in
close proximity to the protocol principals when WiKE is taking place. Therefore,
a robust, well-designed, and thoroughly-implemented WiKE scheme should, in
theory, only be affected by brute force attacks whose success depends on the
length of the extracted key.

Real-world deployment. Although many physical layer security techniques
and WiKEs have been proposed during the last two decades [20,33,31], we are
only aware of WiKE being used in limited testbed environments [33].

2.2 Password Authenticated Key Exchange

Password Authenticated Key Exchange (PAKE) is a primitive that can be used
over insecure networks to bootstrap weak pre-shared secrets (shared between two
or more parties) into high-entropy secret keys. These low-entropy pre-shared se-
crets are in practice usually passwords, PINs, and passphrases, but they can
also be partially secret strings. Although PAKE primitive is not a silver bullet
for the key exchange problem, it can be very useful in certain scenarios. When
compared with approaches using PKI, secret management in PAKE is simpler
and more flexible. In the registration phase, protocol participants should secretly
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exchange passwords (or bit strings of a certain amount of entropy) and fix public
parameters that are known to everyone (including the adversary). It is important
to note that PAKE protocols come in two flavours: balanced and augmented. A
balanced PAKE protocol assumes that a secret shared among users is symmetric
– it’s the same at both ends. Augmented (or asymmetric) PAKE is more suitable
in a client-server setting where a server may wish to save a function of password
to slow down the adversary in case of password file compromise. In this paper,
we will be considering only balanced PAKEs.

Security. PAKE protocols must be free from offline dictionary attacks target-
ing users’ passwords. Online password guessing attempts must be recognized and
limited to a small number per user account. In contrast to WiKE, PAKE offers
security against fully active adversaries. However, adversarial interactions with
honest parties using PAKE should provide the adversary with at most one pass-
word guess per user, and no other information should be leaked regarding the
password used nor the resulting session keys. Forward secrecy guarantees that
past communications remain confidential even in the event of a password com-
promise. This property is generally of great importance for standalone PAKE
protocols, but as we show later in Section 4, it is unnecessary for the security
of a black-box sequential composition of WiKE-then-PAKE. For precise security
definitions for PAKE, we refer the to Appendix A, which describes the well-
established Real-or-Random (RoR) model from [3].

Real-world deployment. In the past decade, we have seen a rise in popularity
of large-scale deployments with PAKE. It is now used in electronic passports
(ICAO Doc9303 standard), Wi-Fi Personal (WPA3), Apple’s iCloud, Thread
protocol (IoT) to name a few [21].

3 Security Model for WiKE

Many Wireless-channel Key Exchange (WiKE) protocols have been proposed
during the last 15 years [20]. However, we are unaware of any attempt to de-
scribe a game-based or UC-based security definition for WiKE. In this section,
we intend to address this gap and propose a general game-based security def-
inition for WiKE in the manner of Bellare-Rogaway (BR) Authenticated Key
Exchange (AKE) models [6]. Within the model, the adversary interacts with
participants via oracles with a well-defined interface. As typical for AKE proto-
cols, the security property we are interested in is the indistinguishability of the
session key in a multi-participant multi-instance setting.

3.1 How to Model WiKE Security?

As explained in Section 2.1, almost all WiKE protocols consider an adversary
with eavesdropping-only capabilities during the physical layer communication
(i.e. advantage creation phase). The readings of an attacker obtained during
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probing are correlated with those of legitimate parties but are also dependent
on many factors (physical position, reading equipment, environment, etc). The
two subsequent phases of WiKE (i.e. information reconciliation and privacy am-
plification) admit active adversaries and thus the interference of an attacker can
be modelled per message flow, via Send queries, as usually done in game-based
definitions of AKE and PAKE.

Advantage creation modelling. A number of environmental factors weigh in
to determine the extracted channel features of the participants (legitimate or
otherwise), such as the position of objects, whether the transmission takes place
indoors or outdoors, noise, etc. Channel responses are similar at both ends of
the same link (but not necessarily the same) and somewhat more decorrelated
for an eavesdropping adversary who is more than half wavelength away. In the
literature, the majority of PLS techniques are derived from the received signal
strength indicator (RSSI) and channel state information (CSI), including phase
and amplitude.

Similar to earlier works [29,13,27], we model the view of the adversary during
the probing phase – with respect to legitimate parties – using a joint probability
distribution. More formally, let X, Y, and Z be discrete random variables with
globally-known joint probability distribution DX,Y ,Z and state space P. The
wireless channel behaviour is completely specified by DX,Y ,Z that may be under
partial control of an eavesdropping adversary. Let x, y, z be (possibly correlated)
realizations of the random variables X, Y, and Z, respectively. Here, x and y
correspond to the view of legitimate participants and z corresponds to the view of
the adversary measuring from a different position. We abstract away the channel
quantization procedure by assuming that state space P includes bitstrings of
finite length.

3.2 WiKE Protocol

We represent the WiKE protocol as a pair of algorithms (WGen,W). WGen is
responsible for the generation of the secret(s) used to establish an authenticated
link and of public parameters common to all principals. W defines how a WiKE
protocol is executed internally by a protocol principal. In practice, WiKE pro-
tocol consists of three phases: advantage creation W.Phase1, information recon-
ciliation W.Phase2, and privacy amplification W.Phase3. In our model, we treat
these three phases as sub-algorithms of one monolithic algorithm W.

3.3 Real-or-Random Security Model for WiKE

We denote a game that represents the WiKE security model Gwike. In such a
game, there exists a challenger Cwike whose job is to administer the security
experiment and keep the appropriate secrets away from an adversary A while
doing so. We use λ to denote a security parameter.
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Protocol participants and execution. In the two-party WiKE scenario, each
node U , comes from a set of Iwike that is a finite, nonempty set of identities in
the form of bit strings. The protocol W is a PPT algorithm that describes the
reaction of principals to the messages received, coming from both physical and
upper network layers. In reality, each principal may run multiple executions of W
with different nodes, thus in the model, each principal is allowed to run multiple
instances by executing W in parallel. We denote U i the i-th instance of principal
U . In places where distinction matters, we will denote initiator instances T i and
responder instances Rj .

Execution state of a principal instance. Each principal’s instance U i holds
an execution state that is updated as the protocol advances. The execution state
contains all the necessary data for the protocol execution and is described as a
tuple (U .setup, U i.pid, U i.sid, U i.key, U i.status, U i.internal), where:

– U .setup might hold long-term secrets of U , either unique to U (such as a
public/private key pair) or pre-shared secrets with other parties;

– U i.pid is the partner identifier of U i, initially set to ⊥ and remains so until
U i starts running the protocol;

– U i.sid is the session identifier of U i containing the full transcript of W.Phase2
and W.Phase3 of WiKE protocol;

– U i.key is the session key of U i, and is set to ⊥ upon initialization and until
the party instance U i accepts;

– U i.status takes values from set {running, accepted, terminated, rejected}.
It is set to running once an instance U i is initiated, set to accepted once
a running instance computes a session key U i.key ̸=⊥, set to terminated if
the instance successfully terminates after accepting, and set to rejected if
the instance could not compute a session key and aborted the protocol.

– U i.internal is an internal state reserved for any ephemeral state needed for
the execution of WiKE protocol.

In an initialization phase of the execution state, which occurs before the exe-
cution of a protocol, WGen is run to generate the system’s public parameters
and long-term secrets. More specifically, before starting the game, the challenger
Cwike generates long-term secrets viaWGen such that every pair of parties (U ,V )
can establish an authenticated channel.

Adversary. When assessing the security of WiKE protocol W, we first need
to define the adversarial capabilities. Our adversary A runs in time t(λ), which
is possibly unbounded. In line with WiKE literature, we model A with eaves-
dropping capabilities on the physical layer (W.Phase1) and active capabilities on
the upper network layers (W.Phase2 and W.Phase3). A has access to principals’
instances via certain oracles provided by Cwike. Upon receiving a query from A,
Cwike parses it, forwards messages to corresponding instances, and sends their
answer back to A. Thus, while playing Gwike, A has the following set of queries:
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Execute(T i,Rj) This query models a honest run of W between initiator T i and
responder Rj . For the advantage creation phase, Cwike samples three bit-
strings x, y, and z from the same finite set P of size l ≥ λ according to
some joint probability distribution DX,Y ,Z . While bitstring z is given to A,
x and y are kept private. More precisely, value x is assigned as part of the
internal state to T i and y to Rj . The complete transcript related to both
information reconciliation and privacy amplification phases is given to A.
As a result, instances compute the same key T i.key = Rj .key ∈ {0, 1}λ and
T i.status = Rj .status = terminated.

Probe(T i,Rj) This query models an honest run ofW.Phase1 (advantage creation
phase) between initiator T i and responderRj . In the same way, as for Execute
query, three bitstrings x, y, and z are sampled, and z is given to A, while
x and y are kept private. Thereby, the adversary cannot actively interfere
during W.Phase1.

Send(U i,M) This query models an active adversary for the phases W.Phase2
and W.Phase3. As a result, a message M is sent to a principal instance U i

that responds to A according to the protocol. Note that A will be notified
in case instance U i accepts or terminates its execution.

Reveal(U i) As a response to this query,A receives the current value of the session
key U i.key. A may ask this query only if U i has successfully terminated
(holding a session key) and a Test query has not been made to U i or its
partner instance. This query allows us to capture a potential leak of a session
key as a result of its use in higher-level protocols. It ensures that in case some
session key gets exposed, other session keys remain protected.

Corrupt(U) As a response to this query, A receives the long-term secret value
used by U to authenticate to its partner(s). Hence, this query models the
security compromise of the authenticated channel. As we do not assume any
particular instantiation of the authenticated channel, we leave this query
agnostic to the type of trusted setup (e.g. a symmetric secret pre-shared
pairwise, a public/private key pair per participant, etc.).

Test(U i) At the beginning of Gwike, a hidden bit b is randomly selected by Cwike

and used for all Test queries. If b = 0, A receives U i.key as an answer to
the Test(U i) query. Otherwise, A receives a random string from the session
key space {0, 1}λ. In this case (i.e. when b = 1), Cwike must ensure that two
partnered instances will respond with the same random value. It is important
to note that only a fresh instance can be targeted with a Test query. This
query is here to measure the indistinguishability of session keys.

The adversary is allowed to send multiple Execute, Probe, Send, Reveal, Corrupt,
and Test queries to Cwike. Note that the validity and format of each query are
checked upon receipt. The session keys that are forwarded to A in response to
Test queries are either all real or all random.

Game state. In order to run a sound simulation, the challenger Cwike, in ad-
dition to execution states of instances, maintains a game state. While Cwike
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updates the execution state with the progression of the actual network interac-
tions between A with the instances running W on the lower level, the game state
is updated with the progression of the security game Gwike on the higher level.
Cwike will flip the test bit b at the beginning of the game. All other flags – such
as those related to freshness and partnering properties (see below), as well as
those that track which instance is tested, corrupted, or revealed are maintained.
From the adversary’s perspective, a pair of instances T i and Rj come into being
after either Execute(T i, Rj) or Probe(T i,Rj) query is asked.

Partnering. We say that instance T i is a partner instance to Rj and vice versa
if: (1) T is a initiator and R is a responder or vice versa, (2) both party instances
hold same session identifiers sid = T i.sid = Rj .sid ̸= ⊥, (3) both party instances
hold appropriate partner identifiers T i.pid = R and Rj .pid = T , (4) both party
instances hold the same session keys T i.key = Rj .key, and (5) no other instance
has a non-⊥ session identity equal to sid.

Freshness. This property captures the idea that the adversary should not triv-
ially know session keys being tested. First, an instance T i and its partner in-
stance Rj are made fresh after Execute(T i,Rj) query is asked. Furthermore, an
instance U i (whether this is T i or Rj) that has accepted as a result of appropri-
ate Probe and Send queries is fresh unless any of the following conditions hold:
(1) Reveal(U i) query was asked previously, or (2) if Reveal(V j) query was asked
previously where V j is U i’s partner instance, or (3) if any participant Q was
target of Corrupt(Q) query before U i defined its key U i.key, and a Send(U i,M)
query occurred.

WiKE security. Now we can formally define WiKE advantage of A against
W. Eventually, A ends the game and outputs a bit b′. We say that A wins
the game if b = b′, where b is the hidden bit selected at the beginning of the
protocol execution. We denote the probability of this event by P[b = b′]. The
wike-advantage of A in breaking W is defined as

AdvwikeW (A) def
= |2 · Pr[b = b′]− 1| . (1)

Finally, we say that W is wike-secure (resp. everlasting wike-secure) if for every
PPT (resp. unbounded) adversary A it holds that

AdvwikeW (A) ≤ ϵ(λ), (2)

where function ϵ is negligible in the security parameter λ (that also defines the
length of the session key output by W).

This formula captures the idea that an adversary’s advantage in breaking a
WiKE should only negligibly grow with the reduction in the length of session
keys obtained as a result of WiKE protocol. In particular, a protocol secure in
this model guarantees that generated session keys are indistinguishable from the
uniform and independently sampled random keys.
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Remark 1. In our model, we assume an eavesdropping adversary during the
advantage creation phase due to its high sensitivity to active adversaries. We ab-
stract away from different PLS techniques used in the advantage creation phase
(probing, measurements, and quantization). We assume that honest instances
and an eavesdropper each get a random (potentially correlated) bit string of
a certain length sampled from some joint probability distribution. Such an ap-
proach allows us to capture various proposed PLS techniques.

Remark 2. Notice that in our model Execute query differs from the similar
query in standard key exchange game-based models (e.g., [6]). More precisely,
each protocol participant (including the adversary) has a distinct view of the
result of the advantage creation phase due to variations in measurements (differ-
ences occurring due to location, hardware, timing, etc.). Thus, there is no single
global transcript of the advantage creation phase. For this reason, the session id
that uniquely names the WiKE session only includes messages from W.Phase2
and W.Phase3. Otherwise, two partners would likely end up with distinct session
ids as the first phase of W.Phase1 runs over a noisy channel.

Remark 3. Although WiKE literature typically assumes information reconcilia-
tion and privacy amplification to occur over authenticated links (after advantage
creation), we allow the adversary to send maliciously crafted messages via Send
queries, which enables an adversary to try to defeat the message authentication.
Moreover, such a choice enables analysis of various WiKEs, as there exist pro-
tocols for privacy amplification that achieve security against active adversaries
without relying on authenticated links [28].

Remark 4. The spatial channel decorrelation assumption implies that any
eavesdropper located more than one half-wavelength away from either initia-
tor or responder experiences uncorrelated multipath fading4. More specifically,
the value z that a distant eavesdropper receives is uncorrelated with values x
and y obtained by honest parties. At the same time, due to channel reciprocity
property, x and y values should be correlated. We highlight that the spatial
channel decorrelation and the channel reciprocity assumptions are crucial for
the security of WiKE.

Remark 5. Our consideration of both PPT and unbounded adversaries results
in two definitions for WiKE of different strengths. To achieve unbounded WiKE
security, it becomes clear that one must use unconditionally-secure codes to au-
thenticate messages [36] instead of a computationally-secure MAC.

Remark 6. By including Corrupt query and defining condition (3) within our
freshness definition we capture the forward secrecy property. This property guar-
antees the long-term secrecy of the session keys even in the event of a later com-

4 In practical terms, this distance must be at least 6.25 cm for a wireless transmission
occurring at 2.4 GHz.
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promise of the pre-established authenticated channel. Intuitively, most WiKE
protocols should satisfy forward secrecy since long-term secrets in WiKEs are
used solely for message authentication during WiKE execution and not mes-
sage confidentiality. Note that we could make our definition tighter by making
unfresh party instances (and corresponding partners) that are directly targeted
with Corrupt query. Instead, we opted for a simple but more encompassing defi-
nition inspired by [6]. Namely, our definition is agnostic to the long-term setup
type while capturing a meaningful security property.

4 WiKE-then-PAKE Security Model and Composition

Previously, we defined a game-based security model for Wireless-channel Key
Exchange (WiKE) which considers WiKE in isolation. In this section, we aim
to solve the problem of the slow rate of secret key generation that may occur
because of inadequate environmental conditions. The main idea is to bootstrap
a low-entropy secret coming from WiKE using Password Authenticated Key
Exchange (PAKE). We propose a generic solution building on top of our WiKE
security model: we define a compositional WiKE-then-PAKE model by following
the techniques from [12] and [35]. Then, we prove that the composition of any
WiKE protocol that is secure according to our WiKE model and any PAKE
protocol that is secure in the standard Real-or-Random PAKE model is secure
under our WiKE-then-PAKE model of security.

4.1 The Slow-rate Key Generation Problem

The goal of WiKE is to generate a secret key stream of high entropy and uniform
distribution in the presence of an unbounded adversary. One important metric
when assessing the utility of WiKE protocol is the secret key rate. This metric
tells us how many secret bits/second (bps) we can expect to derive from WiKE
protocol execution. This rate depends on many parameters such as the proposed
WiKE method, indoor or outdoor environment, endpoint (node) mobility, the
distance between sender and receiver nodes, the presence of different interference
sources, etc. From various experimental results [23,39,33], we see that for partic-
ular WiKE protocols secret key rate range from 0.5 bps in static environments
up to 15 bps in a highly dynamic outdoor setting. This means that in real-world
conditions it may take from 15 seconds to a whole 8 minutes to generate a 256-
bit secret key. We would argue that for some applications this observed latency
is too high. Therefore, we pose the following question: How to quickly establish
a secure session key in case of a slow key generation in WiKE protocols?

4.2 Solution

WiKE offers strong security guarantees – in our security model, we consider a
powerful adversary with unbounded computational power and in physical prox-
imity of either honest party. In normal environmental conditions, one can directly
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use WiKE to obtain a session key that can be used for various applications (e.g.,
to establish a secret channel). However, depending on multiple factors linked to
the environment, the WiKE protocol might be slow. One possible solution to
deal with this slow key bitrate is the following: First, use WiKE to generate a
secret bitstream during a pre-specified time period depending on the application,
and then, as a fail-over mechanism, use a password-authenticated key exchange
(PAKE) in case of a low-entropy output from WiKE to derive a high-entropy
session key. In the rest of this section, we explore how to combine WiKE and
PAKE and what security guarantees one might expect of such a composition.

Design choices. We consider two different realizations of a sequential WiKE-
then-PAKE composition: (a) To establish a session key, WiKE protocol is fol-
lowed by PAKE protocol. The high-entropy key output by PAKE can be used to
secure a single session, or it can be stored to be used across multiple sessions. To
refresh the key, the two parties engage in a new WiKE-then-PAKE protocol. (b)
The two parties run once the WiKE protocol and store the output of WiKE as a
long-term secret both parties share. Every time the two parties wish to establish
a secure channel, they run PAKE to obtain a session key.

Arguments can be made to support one design choice over the other. If we
were to store one key, we would opt for the high entropy that comes out of PAKE
for the simple reason that in practical terms it would give fewer opportunities
to an adversary to monitor, intercept and replace messages to attack the PAKE
protocol. This choice is reflected in our compositional security model, as it means
that the key that comes out of WiKE is just an ephemeral state of the instance,
and therefore is not considered corruptible information. Looking forward, our
choice reduces PAKE security requirements within the composition. Namely, in-
stead of relying on Real-or-Random PAKE model with perfect forward secrecy
(pfs-RoR) (see [1]), we can resort to the weaker one-time-password-authenticated
key exchange [32] or the original RoR model [3] without forward secrecy. The
reason for this relaxed requirement is that passwords input to PAKE are not
repeated across instances. And although the one-time-PAKE model is strictly
enough for this composition – as low-entropy secrets coming out of WiKE are
uniformly and independently sampled and to be used only once – we opted
for the original RoR model without forward secrecy. The motivation for such a
choice is two-fold: 1) most real-world PAKEs are analyzed within the original
RoR model; 2) although one-time PAKE is enough, it does not bring efficiency
benefits for a concrete instantiation when compared to a full-fledged PAKE pro-
tocol. We highlight that our original RoR model has only been slightly enhanced
with Reveal query for simplicity of proof exposition. The two models (without
forward secrecy) are equivalent up to a factor 2, as Reveal queries can be simu-
lated via Test queries. This is the only change to the original model.

Security guarantees. Since the security of all PAKE protocols relies on var-
ious computational hardness assumptions (e.g., discrete log-based, RSA-based,
lattice-based, etc.), guarantees offered by our WiKE-then-PAKE composition

14



will also be computational. In our composed protocol, WiKE is used for initial
secret generation. The high-level protocol running WiKE will decide, based on
WiKE’s output length, whether PAKE execution is needed. The security level
achieved by PAKE will be determined by the security parameter λ.

4.3 Composed Protocol WiKE-then-PAKE

Previously, we defined WiKE protocol as a pair of algorithms (WGen,W), and
PAKE protocol (see Appendix A.1) as a pair of algorithms (PGen,P). In a similar
fashion, we now define our composed protocol as a pair of algorithms (CGen,C).

We instantiate algorithm CGen as a WGen5 and algorithm C as expected:
First, C runs the WiKE protocol W. Whenever an instance only manages to
obtain a low entropy session key after successfully running W (due to inadequate
environmental conditions and/or insufficient time to generate a high entropy
key), that key is passed as input to the PAKE protocol P afterwards. The task of
algorithm C is to track the status of an instance through status flags and switch to
the appropriate sub-algorithm when necessary. Note that WiKE protocol outputs
are independent and uniformly distributed (and potentially of low entropy),
which perfectly fits our assumption that passwords are uniformly sampled from
Dpw in the RoR PAKE model from Appendix A.2. The secrets generated by the
WGen algorithm can be seen as the long-term keys to the composed protocol.

4.4 Security Model for WiKE-then-PAKE

Here we define a security model for the sequential composition of WiKE and
PAKE protocol. With Gcom, we will denote a security game for our composed
protocol. An adversary A interacts with a challenger Ccom that keeps the appro-
priate secret information away from A while administrating the security exper-
iment of game Gcom.

We will define our model using the techniques from [12] and [35]. The goal
of the adversary is to distinguish real session keys from random keys in the
composed protocol WiKE-then-PAKE. Naturally, the composed protocol will be
broken if: (1) An adversary manages to obtain partial or complete information
about a WiKE protocol output, or (2) An adversary makes a correct guess on
WiKE output (with or without relying on information leakage from WiKE exe-
cution). Intuitively, it is clear that we cannot hope for the composed protocol to
achieve a better security guarantee than one coming from a PAKE protocol itself.

Participants. Without loss of generality, we will assume that the composition
of WiKE-then-PAKE algorithms uses WiKE’s participant format of nodes. As
a result, Iwike and Icom are equal. Interestingly, due to the particular way of
defining password setup in RoR-PAKE model, where each client may only hold
a single password, we will need to initiate a new PAKE client party for every

5 Note that CGen also includes part of (PGen that is responsible for public parameter
generation, but without password generation algorithm.
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initiator instance of WiKE6. This issue does not occur on the responder side, as
a server in RoR PAKE may hold many passwords for different clients.

Protocol execution. The protocol C is a PPT algorithm describing the reac-
tion of principals to incoming messages from both physical and upper network
layers. The adversary A has the freedom to interact with multiple different exe-
cutions of composed protocol C. We denote by U i the i-th instance of principal
U running C. In places where it matters, we will denote initiator instances T i

and responder instances Rj .

Execution state of a principal instance. The challenger Ccom will maintain
the execution and game state for Gcom and run initialization procedures similar
to those in models for WiKE and PAKE. The execution state of the composed
protocol contains all the necessary data for the actual executions of a WiKE
protocol W in the first stage and a PAKE protocol P in the second stage.

Similarly to our WiKE model, execution state of each instance of our com-
posed protocol C can be described as a tuple (U .setup, U i.pid, U i.sid, U i.key,
U i.status, U i.internal), where all the execution state variables keep the same pur-
pose. In the composed model, we use U .setup to store the long-term secrets from
WiKE, and U i.internal to store the low-entropy output of WiKE, which is an
intermediary, ephemeral value used as a password input for PAKE. U i.key now
corresponds to the session key coming out of PAKE. The set of possible values
for U i.status now applies to the session key corresponding to the PAKE stage of
execution. The session identifiers in the composed protocol will – in addition to
the full transcript of W.Phase2 and W.Phase3 of WiKE – also include the full
PAKE transcript. Various session and partner identifiers and other flags that
track execution and game state will be handled appropriately.

The network adversary. Similar to WiKE and PAKE models, an adversary A
against game Gcom has access to a set of queries via a standard game interface
provided by the challenger. Queries from this set will correspond to a query or a
combination of queries from both Gwike and Gpake. Thus, while playing Gcom,
A has a following set of queries:

Execute(T i,Rj) This query models a honest run of C between initiator T i and
responder Rj . The complete transcript of upper-layer communication (i.e.
information reconciliation and privacy amplification phases from WiKE and
the whole transcript from PAKE) is given to A. As a result, instances com-
pute the same high-entropy T i.key = Rj .key ∈ {0, 1}λ and status is updated
T i.status = Rj .status = terminated.

Probe(T i,Rj) This query is handled in the same way as in our WiKE model.
It models an honest run of W.Phase1 (advantage creation phase) between
initiator T i and responder Rj of WiKE.

6 This is a small manageable inconvenience that would not exist if one-time PAKE
primitive is used.
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Send(U i,M) This query models an active adversary for the phases W.Phase2
and W.Phase3 from WiKE and full PAKE protocol. As a result, a message
M is sent to a principal instance U i that responds to A according to the
protocol. Note that A will be notified in case of successful WiKE completion,
as well as in case instance U i accepts or terminates its execution.

Reveal(U i) As a response to this query, A receives the current value of the
session key U i.key. A may ask this query only if U i is successfully terminated
(holding a session key) and a Test query has not been made to U i or its
partner instance.

Corrupt(U) This query reveals secret setup of WiKE (and not the ephemeral
low-entropy value (U i.internal) used as input to PAKE as discussed in 4.2).

Test(U i) At the beginning of Gcom, a hidden bit b is randomly selected by Ccom
and used to answer all Test queries. If b = 0, U i.key is given, otherwise a
random key is sampled. As in WiKE and PAKE, consistency of answers is
managed by Ccom.

Partnering. This definition is the same as the corresponding definition from
our WiKE model (see Section 3.3).

Freshness. An instance T i and its partner instance Rj are made fresh after
Execute(T i,Rj) query is asked. Furthermore, an instance U i (whether this is T i

or Rj) that has accepted as a result of appropriate Probe and Send queries is
fresh unless any of the following conditions hold: (1) Reveal(U i) query was asked
previously, or (2) if Reveal(V j) query was asked previously where V j is U i’s
partner instance, or (3) if any participant Q was target of Corrupt(Q) query be-
fore U i defined its ephemeral WiKE key stored in U i.internal, and a Send(U i,M)
query occurred.

Security of the sequential composition. As we asserted above, the security
game of our composition Gcom is inherently linked to the security game of PAKE
Gpake. Formally, the advantage of A in breaking the com-security between WiKE
and PAKE is defined as

AdvcomC (A) def
= |2 · Pr[b = b′]− 1| , (3)

where b is the hidden bit selected at the beginning of Gcom, b′ is adversary’s
choice, while P[b′ = b] is the probability of A guessing the hidden bit b. As we
saw before, it is clear that the composed protocol will inherit the limitations of
underlying WiKE and PAKE protocols. Its security will, to the greatest extent,
depend on the quality of the session key generated by WiKE, which is param-
eterized by κ. Further, WiKE produces keys that are information-theoretically
indistinguishable from truly random keys, even considering an active adversary
in phases 2 and 3. This maps particularly well to the assumption of RoR-security
for PAKE that passwords are selected uniformly at random from a dictionary.
Therefore, the “quality” of the key will only impact the dictionary size.
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Therefore, the best that we can expect is to declare com-secure if there
exists some positive constant B such that the com-advantage of A in breaking
C satisfies

AdvcomC (A) ≤ B · nse

|Dκ|
+ ϵ(κ) + ϵ(λ), (4)

where nse is an upper bound on the number of Send queries A makes in Gcom,
function ϵ is negligible function in its input length. Note that ideally B = 1,
meaning at most one password guess per Send query.

4.5 Black-box Composition Result

Here we present our composition results. We show in Theorem 1 that RoR-
secure wireless-channel key exchange protocol securely composes with RoR-
secure password-authenticated key exchange (without forward secrecy).

Theorem 1. Let (WGen,W) be a wireless-channel key exchange secure protocol
according to Definition 2 that outputs keys in key space Dκ. Let (PGen,P) be a
password-authenticated key exchange protocol secure according to Definition 11.

The composed protocol (CGen,C) such that CGen
def
= WGen and C

def
= P ◦W (as

described in detail in Subsection 4.3) is secure according to the composition game
Gcom, and the advantage of any efficient adversary A against the composed pro-
tocol (CGen,C) satisfies the inequality

AdvcomC (A) ≤ 2 ·Advwike
W (B1) + AdvpakeP (B2) (5)

for some PPT adversaries B1 and B2. Furthermore, the advantage of B1 is pa-
rameterized by a security parameter κ, the advantage of B2 is parameterized by
security parameter λ and WiKE output key space Dκ.

Below we provide the proof sketch, while the detailed proof of Theorem 1
can be found in the full version of this paper.

Proof (Theorem 1). Let us fix a PPT adversary Acom attacking the protocol C.
Let Gx be the event that Acom outputs 1 in Game Gx. We will exhibit our
proof as a sequence of four games to bound the advantage of Acom against C.

Game G0 (The original game with b = 0, i.e. real keys) Let this be the
game as defined in Section 4.4 for the composed protocol C that is built as de-
scribed in Section 4.3 with a fixed challenge bit b = 0. Whenever Acom queries
Testcom(U i) oracle, the real session key U i.key is provided.

Game G1 (WiKE output random) Whenever Acom queries Executecom or
Sendcom that successfully completesW.Phase3 of the WiKE part of the composed
protocol, the ephemeral key coming out of the WiKE set in the internal state of
the instance is replaced with a randomly sampled key of the same length, except
in the two cases identified below. The protocol then continues the execution with

18



this key used as a password for PAKE, whether in the remaining steps necessary
to conclude Executecom or in the Sendcom queries that follow.

Case 1 – In case there is another instance V j whose ephemeral WiKE key is
already set and has the same session identifier, i.e. U i.sid = V j .sid, then we set
the ephemeral WiKE key in the internal state of U i to match that of V j . Note
that the ephemeral key stored in V j .internal is random anyway, and this case is
just for consistency unless Case 2 happened.

Case 2 – If Acom queries Sendcom(U i) that successfully completes W.Phase3
and previously asked a Corruptcom query, in which case the adversary might
force an authenticated message to U i, the ephemeral key from WiKE cannot be
replaced.

The distance betweenG0 andG1 is bounded by the advantage against WiKE.
Ccom uses an adversary B1 against WiKE that helps Ccom interpolate between
the two games. B1 makes use of Testcom queries in the WiKE game to get WiKE
ephemeral keys, either real ones matching the description of G0 or random ones,
matching the description of G1. To deal with Case 2, B1 makes use of the
Revealwike query provided by the WiKE game. Corruptcom queries to Ccom are
passed on to B1 to get the answer. Notice that B1 never asks unfresh Testwike

queries as these will fall precisely in Case 2.

| Pr[G1]− Pr[G0] | ≤ Advwike
W (B1) (6)

Game G2 (PAKE output random) In this game, whenever Acom asks a
Testcom(U i) query, a random session key U i.key is sampled, keeping track of
partnerships for consistency. Ccom creates an algorithm B2 that plays against
PAKE and helps Ccom interpolate between G1 and G2. Whenever Acom asks a
Testcom query, this is passed on to B2 that places a Testpake query against the
PAKE game. All passwords are uniformly distributed, as per description of G1,
except whenever a Corruptcom query previously occurred. But in that case, all
interactions with that party instance are computed by Ccom without relaying
the messages to B2. In any case, if Corruptcom occurred, parties are unfresh and
the adversary cannot ask a Testcom query. The distance between G1 and G2 is
bounded by the advantage of B2 against PAKE.

| Pr[G2]− Pr[G1] | ≤ AdvpakeP (B2) (7)

Game G3 (WiKE output real, PAKE output random, the original
game with b = 1) In this game, we revert the change made in G1 and whenever
Acom queries Executecom or Sendcom that successfully completes W.Phase3 of the
WiKE part of the composed protocol, the actual ephemeral key coming out of
WiKE is used in the rest of the protocol. Again, the distance between G2 and
G3 is bounded by the advantage of B1 against the WiKE game.

| Pr[G3]− Pr[G2] | ≤ Advwike
W (B1) (8)
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Notice that G3 is as described in Section 4.4 with bit b = 1, i.e. whenever
Acom asks Testcom(U i) the real session key U i.key is provided. By combining Eq.
6, 7, and 8 we obtain the equations 9. This concludes the proof of Theorem 1.

AdvcomC (A) def
= | Pr[G3]− Pr[G0] | ≤ 2 ·Advwike

W (B1) +AdvpakeP (B2) (9)

Secure instantiation of composition between WiKE and PAKE. As a
direct consequence of Theorem 1, one can securely instantiate our composed
protocol from Section 4.3 with any WiKE protocol that meets Definition 2 and
any PAKE protocol that meets Definition 11, thereby obtaining the security
guarantees from Theorem 1. We leave for future work the security analysis of
concrete WiKE schemes within our model. Thus, we can not give definite advice
on concrete WiKE instantiation. We refer the reader to six concrete WiKE pro-
tocols that have empirically been tested in comprehensive experiments in [33].
Regarding PAKE instantiation, we believe that there exist mature and robust
balanced PAKE protocols such as SPAKE2 [5,1] or CPace[4] that can be used
in a WiKE-then-PAKE configuration. For more information on state-of-the-art
PAKE protocols, we refer the reader to [21].

5 On the Security of vPAKE Protocol

The authors from [41] propose a custom-tailored PAKE called vPAKE (see Fig-
ure 1) that aims at establishing a secret session key from a low-entropy secret
coming from WiKE. As we showed in the previous section of this paper, a regu-
lar PAKE not only is sufficient for the job, it does not even need to be forward
secure.

Here, we show that the security proof of vPAKE in the FtG model [6] pro-
vided in [41] is unconvincing since it falls into a circular argument. Of indepen-
dent interest is an attack on the vPAKE protocol that allows an attacker to
check if a target user registered the same password with two different servers.
In all fairness to the authors, such an attack is benign if the actual password
is fresh from WiKE, and it is not covered by the FtG model from [6] because
within the model each client has a single password that is registered with ev-
ery server. Interestingly, even in more recent adaptations of the RoR model
where unique passwords are sampled per client-server pair [1], although such an
attack is possible, the strategy of looking for repeated passwords yields no ben-
efit to an adversary within the model when compared to the naive approach of
trial guessing from the dictionary: both strategies costs at least one Send query
per trial-guess/password-reuse-test. In the real world, password reuse is a real
phenomenon and such a vulnerability has real implications. (It is noteworthy
to mention that this attack is captured by stronger notions of PAKE defined
within the UC framework.) In the rest of this section, we explain in detail why
the security proof from [41] falls into a circular argument and how an attacker
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Public parameters: g1, g2,h ∈ G; H : {0, 1}∗ → {0, 1}λ;

User X (input : pw) User Y (input : pw)

x← Zq y ← Zq

A := gx1h
pw B := gy1h

pw

A B

C := B/hpw E := A/hpw

D := Cx F := Ey

L := H(idX ||(A⊕B)||D) J := H(idY ||(B ⊕A)||F )

U := x⊕ L V := y ⊕ J

U V

J ′ := H(idY ||(A⊕B)||D) L′ := H(idX ||(B ⊕A)||F )

M := V ⊕ J ′ N := U ⊕ L′

if gM1 == C if gN1 == E

sk := (gM2 )x sk := (gN2 )y

return sk return sk

else return ⊥ else return ⊥

Fig. 1. Protocol vPAKE [41]

would test for password reuse7.

Obstacles in proving vPAKE secure: A circular argument. A careful
analysis of the security proof provided by [41] reveals that a game hop crucial
for proving the security of the protocol cannot be reduced to the DDH problem
as claimed because the argument falls into a fallacy of circular reasoning. Here
we dive into the details of the proof and pinpoint exactly where and why the
argument does not hold.

– Game G0: This is the original Find-then-Guess game [6] for the proposed
vPAKE protocol.

7 Note that in the FtG model [6], should a Send query result in a party instance ac-
cepting, this event is made visible to the adversary. However, in the original protocol
from Zhang et al. [41], in the key confirmation round, instead of rejecting unsuccess-
ful session, the protocol samples new non-matching random keys and continues. It’s
unclear when the protocol accepts and why would a party terminate with a non-
matching key, which is bound to fail when used in any meaningful way. Therefore,
we modify the protocol to reject when the key confirmation round fails.
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– Game G1: When the adversary queries the Execute oracle, the challenger
samples the password from Zq\D, instead of sampling from dictionary D. The
distance between G0 and G1 cannot be zero as claimed by the authors as an
hypothetical adversary with access to a CDH oracle can trivially distinguish
between both games. However, the crucial problem with the proof comes in
the next game hop.

– Game G2: When the adversary queries the Execute oracle, the challenger
samples U and V uniformly at random. (The authors sample s′, t′ ← Zq and
set U := s′ ⊕ L and V := t′ ⊕ J , but ultimately claim that U and V look
random.)

Analysis of game hop G1 → G2: We only look at the left side of the protocol
for simplicity. In order for U := x⊕ L to look random, it must be that either x
or L (or both) are random and independent from all other values. Exponent x is
definitely random but not independent as it is used throughout the protocol. L is
random if H(idx,A⊕B,D) is modeled as a random oracle. But is it independent
as well? H being a random oracle, L is random and independent if the adversary
never queries H on the exact same input (idx,A⊕B,D). One would be tempted
to argue that it is hard for an adversary to compute D := gxy as it seems to boil
down to solving the CDH.

The authors of [41] reduce the distance between G1 and G2 to the DDH
assumption, arguing that D looks random from the adversary point-of-view,
and therefore the likelihood of adversary A querying H(idx,A⊕B,D) is small.
To formalize this intuition, one has to show that an adversary A that wins with
noticeably more probability in G2 compared to G1 can be used by an adversary
B to distinguish a DDH tuple. Adversary B receives (X := gx,Y := gy,D) and is
asked to decide whether D = gxy or D ← Zq. To do so, it embeds the challenge
(X, Y , D) received from its own game wherever it needs to compute gx, gy and
D, and tries to simulate the game A is playing.

All looks good until B has to complete the simulation of the Execute query
for A and compute U := x⊕L. Notice that B received X := gx, cannot compute
x, and x is still necessary to simulate the completion of Execute query. Granted
that the whole point is to make U random, in which case x is not needed, but
then the argument becomes circular.

It doesn’t mean there’s an obvious attack to the protocol, but the reduction is
flawed and one cannot claim provable security either. This is similar to encrypt-
ing the decryption key under the public key. Most public-encryption schemes are
not obviously broken if one encrypts the decryption key under the corresponding
public-key, but designing provably secure encryption schemes in this settings is
known to be challenging [10]. Splitting this game hop into smaller steps would
look like this:

– G2a: In this game, the Execute query sets D ← Zq. If the remaining oper-
ations of the protocol didn’t require the explicit knowledge of x, we could
embed the DDH challenge in the Execute query, and the distance from this
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game to G1 would be bound by the advantage of distinguishing a DDH tu-
ple. Unfortunately, it is not the case in this variant of the protocol and this
is precisely where the argument breaks.

– G2b: In this game, we set a bad event whenever A queries H(idx,A⊕B,D).
Since D is random and independent from everything else, the probability of
this happening is statistically bound to n

q , where n is the number of queries

A places to the random oracle H(·) and q is the order of Zq.

– G2c: In this game, the Execute query sets L← Zq. Because H(·) is modeled
as a random oracle and A never queries H(idx,A⊕B,D), nothing changes.

– G2d: In this game, the Execute query sets U ← Zq. This is transparent for
A because L is random and independent.

The above broken argument does require H(·) to be modeled as a random oracle
(collision resistance is not sufficient to secure the one-time pad), but the random
oracle does not have to be programmable. Alternative reduction to Gap-CDH
(as in [1] to prove the security of SPAKE2, the PAKE this protocol is based on),
or even CDH (with loss of tightness) could be considered but require H(·) to
be modeled as a random oracle with programmability. However, we restrict our
attention to eavesdropping adversaries only as this is enough to show that the
claim does not hold.

Password reuse attack. Standard game-based definitions for PAKE protocols,
such as those known as Find-then-Guess (FtG) [6] and Real-or-Random (RoR)
[3], are known not to capture adversarial attacks that exploit relations between
passwords. In real world scenarios, it is common for users to choose closely-
related passwords, mistype passwords, or even reuse passwords in different ser-
vices. On the other hand, security definitions in the Universal Composability
framework [14] cover these attack vectors as well, reason why they have become
the gold-standard for proving security of PAKE protocols [4,24].

Although vPAKE was designed to be used as an extension to the physical
layer security [20], in which case it might be reasonable to assume that no such
relations between passwords exist, it is worth noting that vPAKE is vulnerable
to such attacks. In particular, we show how an attacker with intercept, redirect
and replace capabilities over a network, can test if a user X registered the same
password with server S1 and server S2.

1. UserX wants to authenticate with server S1.X sends (X,S1,A) as a message
from X to S1.

2. Adversary A intercepts the message, and forwards (X,S2,A) to server S2.

3. Server S2 thinks user X wants to authenticate and replies (S2,X,B) to X.

4. Adversary A intercepts the message, and sends (S1,X,B) to user X.

5. User X thinks he received a reply from S1 since he initiated the protocol
and replies (X,S1,U) to server S1.

6. Adversary A intercepts the message and forwards (X,S2,U) to S2.
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7. If server S2 accepts, the password that X used for authentication with server
S1 is the same password registered with S2.

This attack was possible with vPAKE because the protocol does not strictly
bind both sender and receiver identities in hash function H(·), as in the original
SPAKE2 protocol [5] it is based on. Another related problem is that server S2

can be left hanging, expecting further engagement from user X, and possibly
resulting in a denial of service attack.

6 Conclusion and Future Directions

We proposed a security model for WiKE in the style of [3], which provides clarity
on the security guarantees of WiKE, and allows us to compose WiKE with other
cryptographic primitives within a formal provable security framework. By doing
so, we showed how PAKE can be used to solve the problem of slow key rate in
WiKE. As a result of successfully completing the third phase, the parties are able
to agree on a common secret even in the presence of an unbounded adversary, as
long as it does not actively interfere during the probing phase or sit near either
legitimate party.

In the Real-or-Random security model of PAKE, passwords are sampled uni-
formly, at random from the dictionary. The fact that passwords are usually
selected by humans, and therefore rarely uniformly distributed, is often stressed
as a weakness of the Real-or Random model. The WiKE-then-PAKE construc-
tion does not have this problem since the PAKE input password is the WiKE
output.

This work formally combines a three-phase WiKE with other cryptographic
primitives, of which PAKE is the natural candidate. Other works focus on pro-
viding a better solution to privacy amplification and even information reconcilia-
tion phases via information-theoretic authenticated key exchange (IT-AKA) and
robust fuzzy extractors [17]. These solutions admit active adversaries with un-
bounded computational power and do not assume an authenticated channel. The
caveat is that secrets must be high-entropy enough to render offline dictionary
attacks infeasible, which is precisely the problem we tackle here. An interesting
open question is whether it is possible to run a two-phase WiKE (i.e. without
the privacy amplification phase) and combine it with a UC-secure PAKE [15],
or even a single-phase WiKE with a Fuzzy PAKE [19].
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A Security Model for PAKE

Today, the Real-or-Random (RoR) model from [3] and the Universally Com-
posable PAKE model from [14] are considered state-of-the-art models rigorously
capturing PAKE security requirements. In this paper, we will use a variant of
the RoR definition from [3], where Reveal is added. Reveal query was available
in the original Find-then-Guess model and removed later from the RoR because
it can be simulated via Test oracle, which in the RoR model can be queried
multiple times. However, having a Reveal oracle facilitates proof reductions that
rely on the security of PAKE and was later adopted by multiple authors [2,35].

A.1 PAKE Protocol

We represent PAKE protocol as a pair of algorithms (PGen,P). PGen is a pass-
word generation algorithm, while P defines the execution of the PAKE protocol.
PGen samples passwords uniformly at random from the dictionary Dpw. We as-
sume that P describes several sub-algorithms, one of which is responsible for the
generation of public parameters, common to all principals.

A.2 Real-or-Random Security Model for PAKE

Let us denote a game that represents the RoR security model Gpake. For such a
game, there exists a challenger Cpake that will keep the appropriate secret infor-
mation away from an adversary A while administrating the security experiment.
We denote the security parameter by λ ∈ N.

Participants and passwords. For the two-party PAKE scenario, each prin-
cipal U , identified by a string, comes either from a client set C or a server set
S, which are finite, disjoint, nonempty sets. We denote the union of C and S
sets as Ipake. As usual, we assume that each client C ∈ C possesses a password
C.pw, while each server S ∈ S holds a vector of the passwords of all clients
S.PW := ⟨C.pw⟩C∈C. We assume that these passwords are sampled indepen-
dently and uniformly from Dpw at the start of Gror.

Protocol execution. The protocol P is a PPT algorithm that describes the re-
action of principals to incoming messages. In our model, we allow each principal
to run an unlimited number of instances to model real-world parallel executions
of P. We denote U i the i-th instance of principal U . In places that matters, we
will denote initiator instances Ci and responder instances Sj .

Full network adversary.When analyzing the security of P, we assume that our
adversary A has complete network control. A has access to principals’ instances
via Execute(Ci,Sj), Send(U i,M), Reveal(U i), and Test(U i) queries provided by
Cpake. These are standard RoR PAKE model queries as described in [6,3] that
A may ask multiple times (even Test queries).

25



Initialization and internal state. The challenger Cpake maintains execution
state and game state in order to run a sound simulation. In an initialization
phase, public parameters and the internal state are fixed. The appropriate sub-
algorithm of P, called PGen, is run to generate the system’s public parameters.
From the adversary’s perspective, an instance Ci comes into being after Send(Ci,
S) query is asked. For each client a secret C.pw is drawn uniformly and inde-
pendently at random from a finite set Dpw of size |Dpw|.

Partnering. We say that instance Ci is a partner instance to Sj and vice versa
if: (1) C is a client and S is a server or vice versa, (2) sid := Ci.sid = Sj .sid ̸= ⊥,
(3) Ci.pid = S and Sj .pid = C, (4) Ci.key = Sj .key, and (5) no other instance
has a non-⊥ session identity equal to sid.

Freshness. An instance becomes fresh once it accepts (with or without a part-
ner). An instance U i then becomes unfresh if any of the following events occurs:
(1) Reveal(U i) query is asked, (2) if Reveal(V j) query is asked and V j is U i’s
partner instance.

PAKE security. Now we can formally define RoR PAKE advantage of A
against P. At some point in time, A will end Gpake and outputs a bit b′. We say
that A wins and breaks the RoR security of P if b′ = b (b being the hidden bit
selected at the beginning of Gpake. The probability of this event is denoted by
Pr[b′ = b]. The pake-advantage of A in breaking P is defined as

AdvpakeP (A) def
= |2 · Pr[b = b′]− 1| . (10)

Finally, we say that P is pake-secure if there exists a positive constant B such
that for every PPT adversary A it holds that

AdvpakeP (A) ≤ B · nse

|Dpw|
+ ϵ(λ), (11)

where nse is an upper bound on the number of Send queries A makes, |Dpw| is
the cardinality of Dpw, and function ϵ is negligible in the security parameter λ.
Moreover, passwords are assigned uniformly at random to clients.
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