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ABSTRACT
Weput forward the first non-interactive verifiable secret sharing (NI-

VSS) scheme using class groups – we call it cgVSS. Our construction
follows the standard framework of encrypting the shares to a set of

recipients and generating a non-interactive proof of correct sharing.

However, as opposed to prior works, such as Groth’s [Eprint 2021],

or Gentry et al.’s [Eurocrypt 2022], we do not require any range

proof - this is possible due to the unique structure of class groups,

that enables efficient encryption/decryption of large field elements

in the exponent of an ElGamal-style encryption scheme. Impor-

tantly, this is possible without destroying the additive homomorphic

structure, which is required to make the proof-of-correctness highly

efficient. This approach not only substantially simplifies the NI-VSS

process, but also outperforms the state-of-art schemes significantly.

For example, our implementation shows that for a 150 node system

cgVSS outperforms (a simplified implementation of) Groth’s proto-

col in overall communication complexity by 5.6x, about 9.3 − 9.7x

in the dealer time and 2.4 − 2.7x in the receiver time per node.

Additionally, we formalize the notion of public verifiability, which

enables anyone, possibly outside the participants, to verify the cor-

rectness of the dealing. In fact, we re-interpret the notion of public

verifiability and extend it to the setting when potentially all recipi-

ents may be corrupt and yet can not defy public verifiability – to

distinguish with state-of-art we call this strong public verifiability.

Our formalization uses the universal composability framework.

Finally, through a generic transformation, we obtain a non-

interactive distributed key generation (NI-DKG) scheme for thresh-

old systems, where the secret key is the discrete log of the public key.

Our security analysis in the VSS-hybrid model uses a formalization

that also considers a (strong) public verifiability notion for DKG,

even when more than threshold parties are corrupt. Instantiating

with cgVSS we obtain the first NI-DKG scheme from class groups –

we call it cgDKG.
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1 INTRODUCTION
In a threshold secret sharing scheme [10, 71], a dealer distributes

a secret among a set of 𝑛 parties in such a way that the secret can

only be reconstructed if a subset of 𝑡 + 1 or more parties contribute

their shares. A potential concern arises when a malicious dealer

distributes shares in a manner that enables two different subsets

of 𝑡 + 1 or more parties to reconstruct two different secret values.

A verifiable secret sharing (VSS) scheme [29] addresses this con-

cern and enhances security by ensuring that each party receives a

share and proof that their share is a valid part of the secret. This

crucial feature allows parties to confirm the validity of their shares

without needing to reconstruct the actual secret, rendering VSS

highly valuable for secure distributed computing (SDC) applications

such as randomness beacon [9, 22, 42], distributed key generation

(DKG) [43, 47, 49, 58] for threshold cryptography [11, 35, 48, 53],

and multiparty computation [16, 30, 59, 64].

Over the past decade, the increasing prominence of blockchains,

cryptocurrencies, and the emergence of decentralized finance (DeFi)

has sparked substantial practical interest in VSS and its various SDC

applications. These applications encompass but are not limited to

threshold signatures for wallet security [60], blockchain consensus

certifcates [3], distributed randomness services [1, 36, 42], as well

as generic secure multi-party computation [45]. Like blockchain

ledgers, blockchain-based applications rely heavily on demonstrat-

ing the system’s correctness to any interested party, possibly outside

the system. Consequently, these applications require the employed

SDC solutions to be publicly verifiable [67, 69]. In particular, the

protocol execution transcript should be convincing evidence to

anyone that the system output is correct, even when all parties

are malicious.
1
Considering that an interested verifier might arise

after the protocol execution concludes, the verification procedure

should be non-interactive and transferable, allowing it to convince

an unlimited number of verifiers.

Until recently, the SDC literature has mostly focused on uncon-

ditionally hiding VSS protocols [5, 39, 43, 44, 55, 61, 65] as they

can offer the best possible secrecy guarantee using secure and

authenticated channels between the dealer and each party while

being efficient as compared to perfectly secure (or unconditional)

VSS schemes [28] due to their otherwise computational nature.

However, any communication over secure and authenticated chan-

nels is not publicly verifiable [69], and so are these VSS schemes.
2

Moreover, to the best of our knowledge, replacing secure and au-

thenticated channels with public-key encryption does not solve

the problem as these schemes continue to be incorrect when the

1
Note that when all parties are malicious, no privacy or robustness (a.k.a. guaranteed

termination) properties can be guaranteed. Public verifiability solely focuses on the

correctness of the protocol output, if the protocol terminates.

2
We consider public verifiability against up to 𝑛 corruptions here. As we discuss later,

a weaker version of public verifiability has been considered in the recent literature [33,

34] that holds only when the adversary can compromise up to 𝑡 parties. To distinguish,

we call our notion strong public verifiability. Unless otherwise mentioned, by public

verifiability we will be referring to this stronger notion throughout this paper.



number of malicious parties exceeds the threshold 𝑡 . Neverthe-

less the notion of publicly verifiable secret sharing (PVSS) already

exists [22, 29, 46, 47, 50, 66, 69, 72] assuming a public-key infras-

tructure (PKI) is in place and a non-interactive zero-knowledge

(NIZK) proof of correct sharing is feasible. Furthermore, many of

these protocols require participants to speak only once, if a PKI is

in place (the PKI can be used unlimited times) and are also termed

as non-interactive VSS (NI-VSS) – this is an important feature that

often comes handy in permissioned blockchain ecosystems, espe-

cially when synchronization among the participants is a problem.

Henceforth, whenever we refer to NI-VSS we mean non-interactive

VSS (in the PKI setup) with public verifiability.

Recent works [46, 47], developed in the blockchain context, fol-

low a common template to construct an NI-VSS: consider a public-

key infrastructure, in that each party 𝑃𝑖 has a secret decryption key

𝑠𝑘𝑖 and public encryption key 𝑝𝑘𝑖 . Then the dealer, with a secret 𝑠 ,

creates a share 𝑠𝑖 for party 𝑃𝑖 and then broadcasts a multi-receiver

encryption vector, in that each 𝑠𝑖 is encrypted with corresponding

public key 𝑝𝑘𝑖 . Every party 𝑃𝑖 can decrypt their own 𝑠𝑖 with 𝑠𝑘𝑖 , but

nothing else. To enable (public) verifiability, the dealer additionally

provides a proof that validates that the multi-receiver ciphertext

correctly encrypts a 𝑡 out of 𝑛 Shamir’s sharing [71] of 𝑠 with re-

spect to the commitments of shares. Notably, if the encryption

scheme is additively homomorphic, then the proof of correctness

can be made practically efficient by exploiting the homomorphic

structure. In particular, Gentry, Halevi, and Lyubashevsky [46] use

a variant of Regev’s lattice-based encryption, whereas Groth [47]

uses exponentiated ElGamal encryption. While the lattice-based

approach is asymptotically beneficial in terms of computation com-

plexity, they additionally needed to employ range proof systems

such as Bulletproofs [17], thereby incurring significant performance

overhead and design complexity. Instead, Groth [47] uses exponen-

tiated ElGamal encryption over cyclic groups where discrete log

is hard; however, since the plaintexts have to be small to facili-

tate efficient decryption (precisely because discrete log is hard), a

so-called “chunking technique”, in that a standard-sized (i.e. 256

bit) plaintext is split into small chunks (i.e. 16 bits each), is used.
3

However, this also requires the dealer to prove that the chunking

is done correctly. To resolve this, a novel Schnorr-style Fiat-Shamir

based NIZK proof technique, called proof-of-correct-chunking was

employed by Groth [47]. While this makes their protocol more

efficient compared to [46], it comes at the cost of rendering the

final design more communication heavy and substantially more

complex. For example, if we use a simplified variant (that is without

forward secrecy) of Groth’s protocol [47] for a publicly verfiable

DKG with 200 parties, as much as 441MB data (cf. Fig 7) needs to

be communicated over the broadcast channel (or posted on the

bulletin board/ledger) in total.

1.1 Our Contribution
A New and Simple NI-VSS. Ours is the first work that demon-

strates the efficacy of class group based techniques in the context

of VSS/DKG. As our primary contribution we propose a new simple

3
We note that other ways to encrypt large messages, such as hashed ElGamal, do not

work as they lack the additive homomorphism structure for the specialized proof of

correct sharing to work.

and efficient NI-VSS scheme (in Section 5), which follows the same

“encrypt-and-prove" paradigm as above, but completely avoids any

range-proof or “chunking” of the shares. In particular, we use a

class group based additively homomorphic encryption scheme [26],

which is structurally similar to ElGamal, but supports encryptions

of large plaintexts in the exponent. Specifically, the class group-

based encryption puts the plaintext in the exponent of a sub-group

where the discrete log is easy, thus enabling efficient decryption

– security is based on existing class group-based assumptions. Us-

age of a class group in the above template not only significantly

simplifies the design, but also makes considerable gain in the per-

formance compared to the state-of-art (a simplified version Groth’s

NI-VSS [47]) as evident by our implementations (cf. Section 7). Also,

since deploying our NI-VSS scheme requires a PKI setup for class

group based encryptions, we show in Section 4.1 how to realize that

using NIZK proofs of the argument of knowledge over class groups.

Our NIZK proofs are adapted from prior works such as [74], but

provides a stronger knowledge extraction guarantee – we provide

a modified analysis in Appendix B.

Generic Transformation to NI-DKG. Using a generic round-

preserving and efficiency-preserving transformation to our NI-VSS

protocol we obtain a class group based NI-DKG protocol, that

we call cgDKG, for key generation in the discrete log (DLog)-

based threshold settings (that supports threshold signatures such

as BLS [11], Schnorr [68] etc.). However, we remark that cgDKG is

susceptible to the so-called “biasing public-key” attack [43]. This

is inevitable as a recent work by Katz [56] shows that it is impos-

sible to construct NI-DKG without that. Nevertheless, as argued

in [4, 16, 43] this suffices for many DLog-based applications such

as threshold Schnorr signature, BLS, threshold decryption etc. In

Appendix H we also sketch how this bias can be removed by us-

ing the same technique proposed by Gennaro et al. [43] using a

perfectly hiding commitment (e.g. Pederson’s) instead of the DLog

commitments, but with the inevitable cost of more rounds.

New Definitions with Public Verifiability. Additionally we pro-

pose a new formal definition using the universal composability

framework [19] for NI-VSS (cf. Section 5) that takes our stronger

notion of public verifiability into account. In short, our stronger

notion ensures that a VSS dealing is publicly verifiable even if more

than threshold (potentially all) recipients are corrupt, when secrecy

or robustness (aka guaranteed output delivery) can not be guar-

anteed.
4
We formally prove that our construction cgVSS securely

realizes our ideal functionality FVSS (cf. Theorem 4). The generic

transformation from NI-VSS to NI-DKG (cf. Section 6) is provided

in FVSS-hybrid, and is shown to securely realize our DKG function-

ality FDKG, which is also equipped with a similar notion of (strong)

public verifiability. Our functionality FDKG differs substantially

from existing ones [12, 51, 76] because of two reasons. Firstly, it

is specially equipped to handle strong public verifiability as men-

tioned above. Secondly, our definition is weakened to account for

public-key biasing, whereas prior definitions do not allow that.
5
We

also remark that, (variants of) the prior NI-VSS schemes, namely

4
Note that, this is, in spirit, somewhat similar to the concept of publicly auditable

MPC [52, 63], that allows public verification of transcripts of an MPC protocol even

when all parties are corrupt.

5
A recent simulation-based definition put forward by Katz [56] also formalizes this,

but in a different manner.

2



the works such as Gentry et al. [46] and Groth [47], plausibly satisfy

our definitions too. We do not investigate that formally.

Benchmarking. Finally, we implement cgVSS and compare that

with the closest existing scheme by Groth’s [47] in terms of dealer/

receiver times, and the total bit-length of the message broadcast by

the dealer (in Section 7). For comparison, we implement a simplified

version of the VSS scheme (referred to as GrothVSS henceforth)

proposed by Groth [47] without forward secrecy. Our implementa-

tion shows that the bit-length of the total broadcast message for a

single execution for 150 users is 296.51 Kb for the cgVSS compared

to 1.66 Mb in GrothVSS which is a 5.6x improvement. Also, in the

same setting, the gain in the dealer’s computation time is about

9.3 − 9.7x, and the receiver’s time is about 2.4 − 2.7x. In summary,

our protocol cgVSS outperforms the state-of-art GrothVSS both in

communication and computation. This is despite the class group

operations being in the regime of other similar composite order

groups, such as RSA, in contrast with prime order groups, which

GrothVSS is based on. Essentially, the performance gain can be

attributed to the design simplification, in that any range proof (or

proof-of-chunking ala Groth [47]) is dispensed with.
6
Consequently,

our scheme cgVSS scales much better with the increasing number

of parties compared toGrothVSS. We also benchmark the DKG pro-

tocols (cf. Sec. 7) end-to-end and compare GrothDKG with cgDKG;
for a 50 node network, GrothDKG takes 69.7sec and cgDKG takes

47.9sec. We find that the class group implementations are still in

their infancy and the scope for performance improvement is signif-

icant.

1.2 Discussion and more Related Work
PVSS Litearture. In their seminal paper, Chor et al. [29] intro-

duced the notion of verifiable secret sharing (VSS). Stadler [72]

first proposed publicly verifiable VSS (PVSS) and two construc-

tions using verifiable ElGamal encryption. A long line of works

[14, 69] ,[14, 18, 22, 41, 47, 50, 66, 72, 79] realized publicly veri-

fiable and non-interactive VSS schemes. They typically employ

encryption mechanisms, including Paillier [50, 66], ElGamal-in-the-

exponent [47], pairing [37, 77] and lattice-based encryptions[46].

The schemes, that use Paillier encryption, suffer from long exponen-

tiations and proof size, and one that uses ElGamal in the exponent

[47] requires small exponents due to the hardness of the discrete log.

The schemes involving pairing generate shares are group elements

(not scalars) and are not suitable for settings such as threshold sig-

natures. Lattice-based PVSS schemes [46] are indeed asymptotically

efficient, albeit require large public keys and ciphertext sizes.

Different notions of Public Verifiability. The concept of public
verifiability has been around for a long time. However, we observe

that there is a lack of formalization in the literature, which resulted

in different interpretations. In particular, for all non-interactive

protocols, the public verifiability holds even if more than 𝑡 recipients

(possibly everyone) are corrupt. A motivation for this strong notion

is the electronic voting scenario, for which the concept of PVSS was

originally developed. In particular, a correct ballot cast by a voter via

PVSSmust be self-verifiable, that is the verifiability must not depend

on any other participants including the voting servers (that is the

6
Moreover, the simplified design itself is a substantial advantage from engineer-

ing/deployment perspective as well.

VSS recipients). Our strong public verifiability notion provides the

following guarantees: (i) an honest voter’s ballot (i.e. the dealing)

cannot be falsely discarded or manipulated to a different vote even

when all voting servers are compromised and (ii) if a ballot publicly

verifies correctly, then it implies that a correct ballot must have been

cast – these hold regardless of the number of corruptions, which

may potentially be more than the threshold. For VSS schemes that

are not publicly verifiable such as [5, 65], it is possible for a majority

of servers to force the voter to reveal her ballot on the broadcast

channel with false complaints, and the voter would have no way to

prove the legitimacy of her vote in that case; or, a fraudulent voter

may collude with the servers to produce an illegitimate vote that

publicly verifies correctly.

Recent work by Das et al. [34]. Recently a weaker version of

public verifiability has been formalized by Das et al. [34] in the VSS

context that holds only against an adversary that can compromise

up to 𝑡 recipients. This notion, while falling short of providing a

guarantee in settings similar to above such as voting, can be relevant

in some blockchain applications. Nevertheless, in this paper, we

focus on the rather traditional notion of public verifiability, re-

interpret and formally capture it through our UC-based definitions.

To distinguish with the weaker variant (a la [33, 34]) we call it, for

lack of a better term, strong public verifiability in this work. Also,

their elegant interactive construction uses GrothVSS as a building

block, and achieves significantly better performance as they do not

use zero-knowledge proof. We note that our cgVSS is compatible

with their paradigm and would yield an even more efficient scheme.

Strong Public Verifiability of DKG. Our NI-VSS to NI-DKG trans-

formation carries over the strong public verifiability. However, we

need to interpret what it actually means in the context of DKG.

First, we note that if more than 𝑡 parties in a DKG protocol are com-

promised, we cannot guarantee the confidentiality of the shared

secret/private key: the adversary can simply interpolate 𝑡 + 1 of

its shares to compute the secret. As a result for applications such

as threshold signing, the adversary can easily sign any message

in this case. However, we notice that strong public verifiability

is still meaningful for applications such as distributed verifiable

randomness [1, 36, 73] (DVRF).
7
In this case, even if the secret-key

is known to the adversary, and as a consequence the DVRF output

is predictable, yet the adversary can not deviate from computing

a correct value – this is guaranteed by the VRF definition itself.

Intuitively, this means that, if the key is uniform at random then

the output of the VRF can not biased to a specific value, desired by

the attacker. So, in other words, loss of unpredictability does not

mean a loss of so-called “unbiasability”.

Strong public verifiability for DKG guarantees if at least one

dealer is honest, the final secret-key/public-key pair would be cor-

rectly distributed – this holds regardless of the number of corrup-

tions. However, this does not guarantee anything about privacy, as

potentially more than 𝑡 parties can be corrupt and know the secret

key. Therefore, unbiasability continues to hold even if more than 𝑡

parties are corrupt; and unpredictability, which relies on the privacy

of the secret key, only holds when up to 𝑡 parties are corrupt. We

capture this in our UC functionality FDKG in Section 6. However,

to prove that our generic NI-DKG construction (in FVSS-hybrid)
7
Specifically when a DKG protocol is deployed to support a DVRF protocol.

3



securely realizes this when more than 𝑡 parties are corrupt, we need

to make another assumption, that is the adversary is non-rushing.

8
Otherwise, a rushing adversary would know the dealings of the

honest parties before committing its own dealings, and can actually

set the final secret to an arbitrary value of her choice (for example

0) – rendering the guarantee useless in practice. A non-rushing

adversary has to commit the corrupt party’s dealing ahead of time,

and thereby can not execute this attack. It is worth noting that, as

long as up to 𝑡 parties are corrupt, our protocol continues to se-

curely realize the FDKG functionality against rushing adversary. In

a nutshell, we obtain a degraded, yet meaningful security guarantee

(perhaps the best possible) beyond 𝑡 corruption, while keeping the

full security guarantee up to 𝑡 corruption (cf. Theorem 5).

Prior works on DKG. Several DKG protocols to support DLog-

based threshold protocols have been studied [2, 21, 43, 47, 56–58]

in the literature in the synchronous and asynchronous settings.

However, to achieve (a weaker form of) public verifiability, the

nodes need to typically perform a PVSS (instead of VSS or asyn-

chronous VSS). Any aggregatable PVSS scheme [58] which supports

homomorphic operations on the secret shares [47, 50, 66] may be

employed to realize a (weaker) publicly verifiable DKG mechanism.

However, since the stronger public verifiability notion was not for-

malized for VSS prior to our work, the resulting DKGs also lack the

stronger property, as we defined. Groth [47] proposed an NI-DKG

protocol using ElGamal encryptions of shares that can be publicly

verified by all the parties from the commitments of the polynomial

coefficients. We use a simplified variant of this scheme as our base-

line. The resulting NI-DKG protocol plausibly satisfies our stronger

notion – we do not investigate this formally.

UC vs Game-based definition. Our definition of VSS and DKG are

both based on universal composability framework [19] – this helps

us to capture the strong public verifiability property plus the special

structure of our protocols compactly. In contrast, a recent work by

Komlo et al. [58] provides a formal treatment of VSS and DKG using

game-based definitions. The advantage is that their definitions do

not assume any structure of the underlying protocol, so can be

readily applicable to other kinds of secrets (such as lattice-based),

whereas our definitions assume a cyclic group of prime order with

discrete log hardness. They do not consider public verifiability.

Cryptography from Class groups. Class groups were used [26]

to construct additive homomorphic encryption, that is structurally

similar to ElGamal public-key encryption. In contrast to ElGamal,

the special structures of class groups allow encryptions of large

messages (e.g. 256 bits) in the exponent with an efficient decryption.

The main idea is to use a composite order group of unknown order

with an underlying subgroup of known order where the discrete

logarithm is easy. Since then, a number of works showed the feasi-

bility of several cryptographic tasks such as threshold ECDSA [24],

verifiable delay functions [75], timed encryption [74] etc. A recent

work by Braun, Damgård, and Orlandi [16] leveraged this to con-

struct a multi-party computation protocol. En route they designed

a threshold encryption scheme based on class groups that is secure

with biased public keys; so our NI-DKGwould apply there too. Also,

8
Using a timed-lock puzzle [74] to encode a party’s message, one may generically

remove this assumption, by making sure that the maximum allowed response time is

shorter than the time required to decode the puzzle. Formore discussion see Appendix I.

we remark that class group based Verifiable Delay Functions are

already deployed by Chia network [62] - this indicates the desire

for these techniques in the real world too. We believe that our work

would widen the spectrum of class group based crypto by effec-

tively demonstrating new practical capabilities in an unexplored

area (namely, VSS/DKG) and this would garner more attention for

rigorous cryptanalysis and applications in the future.

Another recent work [23]. A recent work [23] independently

proposes class group-based (non-interactve) PVSS scheme and a

corresponding NI-DKG scheme, structurally very similar to ours.

Their PVSS construction differs from ours mainly in using a coding

theoretic fact, adapted from [22], to check that the dealing indeed

has a 𝑡 out of 𝑛 sharing. Consequently they do not need the proof of

correct sharing and the corresponding DLog commitments. How-

ever, they rely on a recently introduced non-falsifiable assumption,

called rough order assumption over the class group [16]; we do not

need this and all our assumptions are falsifiable. Their work [23]

does not provide any implementation benchmarking. As per our

concrete estimation, while their (non-interactive) PVSS requires

less communication, the computation costs are comparable. Cru-

cially, their NI-DKG protocol does require the DLog commitments

as we do and performs concretely worse in terms both communi-

cation and computation costs than our NI-DKG. In Section 7.1 we

provide a detailed comparison with their non-interactive protocols.

2 PRELIMINARIES
2.1 Notation
Unless explicitly mentioned otherwise, all algorithms (including

the adversary) considered in this paper are probabilistic polynomial

time (PPT). Sometimes, we explicitly use the notation 𝐴(𝑥 ; 𝑟 ) to
determinize 𝐴 when run on input 𝑥 and fixed randomness 𝑟 . In

a multiparty system, we say an adversary is 𝑘-bounded if it may

corrupt upto 𝑘 parties. We indicate the set {1, 2, · · · , 𝑛} by [𝑛]. We

use the symbol

?

= to indicate a check of equality of the left and right-

hand side entities of the symbol. (𝑎 ?

= 𝑏) returns a boolean value

denoting whether the equality holds or not. The computational

security parameter is denoted by _ (a typical value 256), and the

statistical security parameter is denoted by _st (typical value 40).

To denote that a value 𝑥 is polynomial in _, we write 𝑥 ∈ poly(_);
similarly for exponential values, we write 𝑥 ∈ 2

𝑂 (poly(_))
. We say

that a function is negligible in _, if it vanishes faster than 1/poly(_)
for any polynomial poly. For more preliminaries see Appendix A.

2.2 Class Groups
In this paper, we follow a presentation similar to [16]. We consider a

finite abelian group𝐺 of unknown order 𝑞 ·𝑠 with an unknown (and

hard to compute) 𝑠 , and known 𝑞 such that 𝑞 and 𝑠 are co-prime; 𝐺

is factored as 𝐺 ≃ 𝐺𝑞 × 𝐹 , where 𝐹 = ⟨𝑓 ⟩ is the unique subgroup
of order 𝑞. An upper bound 𝑠 is known for 𝑠 . We also consider a

cyclic subgroup 𝐺 = ⟨𝑔⟩ of 𝐺 , such that 𝐺 has order 𝑞 · 𝑠 and 𝑠

divides �̂� – hence 𝑞 and 𝑠 are also co-prime. Both 𝑠, 𝑠 ′ are odd and

all 𝑠, 𝑠 ′, 𝑞 are exponential in _. Unlike 𝐺 , the elements of 𝐺 are not

efficiently recognizable. 𝐺𝑞 = ⟨𝑔𝑞⟩ denotes the cyclic subgroup

of 𝐺 of the 𝑞-th power. So, 𝐺 can be factored as 𝐺 ≃ 𝐺𝑞 × 𝐹 and

𝑔 = 𝑔𝑞 · 𝑓 , such that ⟨𝑔𝑞⟩ = 𝐺𝑞
. We also consider two distributions

4



D and D𝑞 over Z {𝑔𝑥 | 𝑥 ← D} and {𝑔𝑥𝑞 | 𝑥 ← D𝑞}, such
that they induce distributions over 𝐺 and 𝐺𝑞

respectively, that are

statistically close (within distance 2
−_st

) to uniform distributions

over respective domains. The framework specifies PPT algorithms

(CG.ParamGen,CG.Solve) with the following description:

• (𝑞, _, _st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌) ← CG.ParamGen(1_, 1_st , 𝑞). This
algorithm, on input the computational security parameter _, the

statistical security parameter _st and a modulus 𝑞, outputs the

group parameters and the randomness 𝜌 used to generate them.

For convenience, we include the descriptions of the distributions

D and D𝑞 as well.

• 𝑥 ← CG.Solve(𝑓 𝑥 , (𝑞, _, _st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞)). This algorithm
deterministically solves the discrete log in group 𝐹 .

Hardness assumptions on class groups. We formally recall some

of the computational hardness assumptions we require for proving

the security of our scheme. All assumptions below use a common

setup: for the security parameters _, _st ∈ N, modulus 𝑞 ∈ Z con-
sider a set of public parameters 𝑝𝑝CG := (𝑞, _, _st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,

D𝑞 ; 𝜌) ← CG.ParamGen(1_, 1_st , 𝑞) generated using a random 𝜌 .

Definition 1 (q-Hard subgroup membership assumption

[27]). Sample 𝑥
$← D𝑞 and 𝑢

$← Z𝑞 . Sample a bit 𝑏
$← {0, 1}

uniformly at random. If 𝑏 = 0, define ℎ∗ ← 𝑔𝑥𝑞 , otherwise if 𝑏 = 1

define ℎ∗ ← 𝑓 𝑢 · 𝑔𝑥𝑞 . Then we say that the hard subgroup member-

ship assumption holds over the class group framework, if for any

PPT adversary A, the following probability is negligible in _.����Pr

[
𝑏 = 𝑏∗ | 𝑏∗ ← A(𝑝𝑝CG, ℎ∗)CG.Solve( ·)

]
− 1

2

����
Definition 2 (Low order assumption [25]). Let B ∈ N. Then

we say that the low order assumption over 𝐺 holds if for any PPT

algorithm A, the following probability is negligible in _:

Pr

[
`𝑑 = 1 ∧ 1 ≠ ` ∈ 𝐺 ∧ 1 < 𝑑 < B | (`, 𝑑) ← A(𝑝𝑝CG)CG.Solve( ·)

]
Definition 3 (Strong root assumption [25]). Sample 𝑌

$←
𝐺𝑞

. Then we say that the strong root assumption holds over 𝐺 , if for

any PPT algorithm A and any 𝑘 ∈ Z the following probability is

negligible in _:

Pr

[
𝑋𝑒 = 𝑌 ∧ 𝑒 ≠ 2

𝑘 ∧ 𝑋 ∈ 𝐺 | (𝑋, 𝑒) ← A(𝑝𝑝CG, 𝑌 )CG.Solve( ·)
]

3 BUILDING BLOCKS
Here we present three building blocks over the class groups: (i) a

NIZK proof for knowledge of exponent; (ii) a multi-receiver en-

cryption scheme; (iii) and a non-interactive sigma protocol that

ensures compact and efficient proof of correct secret-sharing. Next,

we present them in order. Among them the knowledge-of-exponent

proof is required to setup the PKI for the multi-receiver encryp-

tion. Based on the PKI setup our NI-VSS protocol combines the

encryption and proof of correct secret-sharing to realize FVSS.

3.1 NIZK for Knowledge of exponent
Now we present our NIZK construction for knowledge of expo-

nents over class groups. We use a simpler variant of different sigma

protocols used in prior works [25, 32, 74]. Similarly to those, we

show that NIZK proof system is a secure argument of knowledge

(Def. 6) from two new assumptions, hardness of finding low-order

elements (Def. 2), and hardness of finding a root (Def. 3) over group

𝐺 . Below we describe the construction.

Consider the class group parameters 𝑝𝑝CG = (𝑞, _, _st, 𝑠, 𝑓 , 𝑔𝑞,𝐺,
𝐹,D,D𝑞 ; 𝜌) generated using CG.ParamGen(1_, 1_st, 𝑞), an instance

inst = (𝑔𝑞, ℎ) ∈ 𝐺𝑞 × 𝐺𝑞
and witness wit = 𝑘

$← D𝑞 such that

ℎ ← 𝑔𝑘𝑞 ∈ 𝐺𝑞
. Also, consider a hash function𝐻 (modeled as random

oracle) which maps to a range [B] for an integer B = 2
_
. The set

of public parameters for the proof system is defined as 𝑝𝑝Kex ←
(𝐻,B) ∪ {𝑝𝑝CG}. Then the proof system consists of the following

two algorithms (for simplicity we keep the RO notation implicit):

• Kex.Prove(𝑝𝑝Kex, inst,wit) → 𝜋 . This randomized algorithm

takes an instance-witness pair (inst,wit) = ((𝑔𝑞, ℎ), 𝑘) as input.
Then it executes the following steps:

– Samples an integer 𝑟
$←− [B · |D𝑞 | · 2_st ]

– 𝑎 ← 𝑔𝑟𝑞 ;

– 𝑐 ← 𝐻 (𝑔𝑞, ℎ, 𝑎) ∈ B;
– 𝑠 ← 𝑟 + 𝑘𝑐 ∈ Z;
– Output the NIZK proof 𝜋 = (𝑐, 𝑠)

• Kex.Ver(𝑝𝑝Kex, inst, 𝜋) → 1/0. This deterministic algorithm takes

an instance inst = (𝑔𝑞, ℎ) and a candidate proof 𝜋 = (𝑐, 𝑠) as in-
put. Then:

– Check if 𝑠 ≤ (2_st + 1) · B · |D𝑞 |;
– If the above check fails output 0 and stop. Else compute

𝑎 ← 𝑔𝑠𝑞 · (ℎ𝑐 )−1
;

– Output (𝑐 ?

= 𝐻 (𝑔𝑞, ℎ, 𝑎)) ∈ {0, 1}.

Security. Security of the proof system can be argued following

the analysis of Schnorr’s proof over cyclic group. The main differ-

ence from Schnorr’s proof is due to unknown order 𝑠 is an integer.

Nevertheless, using the class group structure we can ensure that

unless the witness 𝑘 is extracted, one of the low-order or strong root

assumptions is broken. Formally we state the following theorem, a

proof for which is deferred to Appendix B.

Theorem 1. For any _, _st ∈ N and any modulus 𝑞 ∈ Z, for a cor-
rectly generated class group parameters 𝑝𝑝CG ← CGE.KeyGen(1_, 1_st, 𝑞)
as long as the low order assumptions (Def. 2) and the strong root as-

sumption (Def. 3) holds over the class group𝐺 , the NIZK proof system

described above is secure argument of knowledge (Def. 6) in the ran-

dom oracle model.

3.2 Multi-receiver Encryption from Class
groups

We first provide a definition of multi-receiver encryption by simply

extending from prior notions [7, 8] where the adversary can corrupt

𝑡 out of 𝑛 parties and possibly know their secrets too.

Definition 4 (Multi-receiver Encryption). Let 𝑛, 𝑡, ∈ N such

that 𝑛 > 𝑡 . Let 𝑝𝑝 be a set of public parameters. A multi-receiver

encryption scheme consists of three algorithms (KeyGen, Enc,Dec)
with the following syntax:

• KeyGen(𝑝𝑝). The algorithm takes a set of system parameters

and return a pair of keys (𝑠𝑘, 𝑝𝑘).
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• mrEnc(𝑝𝑝, ®𝑝𝑘, ®𝑚). The algorithm takes a vector of messages and

a vector of public keys to generate a vector of ciphertext of the

form (𝑅, ®𝐸), with the common randomness-dependent part 𝑅

and message-dependent (and key-dependent) individual parts

𝐸1, . . . , 𝐸𝑛 .

• Dec(𝑝𝑝, 𝑠𝑘, (𝑅, 𝐸)). The algorithm takes a specific secret key 𝑠𝑘

and the corresponding ciphertext (𝑅, 𝐸) to output a message𝑚.

Security notion. Before describing the security definition, first let

us define an admissible adversary, which chooses a corrupt set 𝐶 ⊆
[𝑛], for which it generates keys by correctly running (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ) ←
KeyGen𝑝𝑝 for all 𝑖 ∈ 𝐶 . Looking ahead, this assumption is removed

in the PKI setup (cf. Section 4.1) by making every party produce

a NIZK argument of knowledge (cf. Definition 6) of the 𝑠𝑘𝑖 for a

public key 𝑝𝑘𝑖 (in the construction 𝑝𝑘𝑖 = 𝑔
𝑠𝑘𝑖
𝑞 , so a knowledge-of-

exponent argument suffices).

We call a multi-receiver encryption scheme secure, if for any

correctly generated 𝑝𝑝 any 𝑛, 𝑡 ∈ N (𝑛 > 𝑡) and for any admissible

PPT adversary A the probability that the following experiment

outputs 1 is bounded by at most negl(_) away from 1/2:
• Once generated, give 𝑝𝑝 to A
• From A receive 𝐶 ⊂ [𝑛]. Define 𝑡 ← |𝐶 | and 𝐻 ← [𝑛] \𝐶 .
• For all 𝑖 ∈ 𝐻 run KeyGen(𝑝𝑝) (each time with fresh random-

ness) to obtain {(𝑠𝑘𝑖 , 𝑝𝑘𝑖 )}𝑖∈𝐻 . Give all {𝑝𝑘𝑖 }𝑖∈𝐻 to A. Receive

{𝑝𝑘𝑖 }𝑖∈𝐶 from A.

• Receive challenge vectors ( ®𝑚0, ®𝑚1) of length 𝑛 fromA such that

for all 𝑖 ∈ 𝐶 : 𝑚0,𝑖 = 𝑚1,𝑖 ; if this does not hold then output a

random bit and abort.

• Choose a uniform random 𝑏 and encrypt

(𝑅, {𝐸𝑖 }𝑖∈[𝑛] ) ← mrEnc(𝑝𝑝, {𝑝𝑘𝑖 ,𝑚𝑏,𝑖 }𝑖∈[𝑛] )

• Receive 𝑏 ′ from A, output (𝑏 ?

= 𝑏 ′).

The Encryption Scheme. We present multi-receiver encryption

from class groups in this section. This is a simple adaptation of the

base scheme from [26].

Let 𝑝𝑝CG be the public parameters generated by running (𝑞,
_, _st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞) ← CG.ParamGen(1_, 1_st, 𝑞) for some

appropriately chosen _, _st, 𝑞. Let 𝑛, 𝑡 ∈ N be such that 𝑛 > 𝑡 . The

multi-receiver encryption scheme is comprised of three algorithms

CGE.KeyGen, CGE.mrEnc and CGE.Dec for generating the keys,

(multi-receiver) encryption and decryption, respectively:

• CGE.KeyGen(𝑝𝑝CG) → (𝑠𝑘, ℎ):
– 𝑠𝑘

$←− D𝑞

– ℎ ← 𝑔𝑠𝑘𝑞
• CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 ,𝑚𝑖 }𝑖∈[𝑛] ) → (𝑅, {𝐸𝑖 }𝑖∈[𝑛] )

– 𝑟
$←− D𝑞

– 𝑅 ← 𝑔𝑟𝑞
– For all 𝑖 ∈ [𝑛]: 𝐸𝑖 ← 𝑓𝑚𝑖ℎ𝑟

𝑖
• CGE.Dec(𝑝𝑝CG, 𝑠𝑘, 𝑅, 𝐸) →𝑚

– 𝑀 ← 𝐸
𝑅𝑠𝑘

– 𝑚 ← CG.Solve(𝑝𝑝CG, 𝑀)
In this description, we use the notation ℎ for the public key instead

of 𝑝𝑘 . Throughout the paper, we use them interchangeably.

Analysis. The security argument of single-receiver scheme pro-

vided in [26] can be extended easily to the multi-receiver setting.

Formally we can present the following theorem, a proof for which

is deferred to Appendix C:

Theorem 2. For any _, _st and any modulus 𝑞 ∈ Z let (𝑞, _, _st,
𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,D,D𝑞 ; 𝜌) ← CG.ParamGen(1_, 1_st, 𝑞) be a set of cor-
rectly generated class group parameters. Then, for that set of parame-

ters as long as hard subgroup assumptions (Def. 1) holds, the above

multi-receiver encryption scheme is secure according to Definition 4

for any 𝑛, 𝑡 ∈ N such that 𝑛 > 𝑡 .

3.3 Proof of Correct Secret Sharing
Looking ahead, in our NI-VSS protocol, we shall require the dealer

to produce a NIZK proof of correct sharing, where shares are en-

crypted with the above multi-receiver encryption. We essentially

use the Groth’s [47] variant of sigma protocol, adapted to our class

group setting. The overall idea, as we recall from [47], is to use

Schnorr-like proof for knowledge of exponent in a compact fashion.

Note that, the multi-ciphertext consists of a group element 𝑅 = 𝑔𝑟𝑞
and another 𝑛 group elements of the form 𝐸𝑖 = 𝑓 𝑠𝑖ℎ𝑟

𝑖
. The dealer

is required to prove that the encrypted messages vector forms a

legitimate 𝑡 out of 𝑛 Shamir’s secret sharing. The crux of the idea

is to combine these different exponents in a way such that they

are consistent with the evaluation of 𝑡-degree secret polynomial

used for secret-sharing – to enable these DLog commitments of the

secret polynomial are used. Now we provide the details.

Consider any cyclic group (typically an elliptic curve) ⟨𝑔⟩ =

𝐺 of prime order 𝑞. Note that 𝐺 is isomorphic to 𝐹 . Also, con-

sider hash functions (modeled as random oracles in the proof)

𝐻,𝐻 ′ both mapping→ Z𝑞 . The public parameter of the proof sys-

tem is defined as 𝑝𝑝PoC := {𝑔,𝐺, 𝐻, 𝐻 ′} ∪ 𝑝𝑝CG, where 𝑝𝑝CG ←
CG.ParamGen(1_, 1_st, 𝑞).

Now consider a secret 𝑠 ∈ Z𝑞 , and let (𝑠1, . . . , 𝑠𝑛) be a 𝑡 out of
𝑛 Shamir’s secret-sharing of 𝑠 , which is generated by randomly

choosing a 𝑡-degree secret polynomial 𝑃 (𝑥) over Z𝑞 such that

𝑃 (𝑖) = 𝑠𝑖 for all 𝑖 ∈ [𝑛]. Also, denote the coefficients of 𝑃 by

𝑎0, 𝑎1, . . . , 𝑎𝑡 each in Z𝑞 and corresponding DLog commitments

over 𝐺 as 𝐴0, 𝐴1, . . . , 𝐴𝑡 where 𝐴𝑖 = 𝑔𝑎𝑖 for 𝑖 ∈ {0, . . . , 𝑡}. The
shares 𝑠1, . . . , 𝑠𝑛 are then encrypted using themulti-receiver encryp-

tion scheme described above as CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 , 𝑠𝑖 }𝑖∈[𝑛] ; 𝑟 )
using randomness 𝑟 ∈ D𝑞 (we determinize the encryption algo-

rithm here) to produce a ciphertext tuple (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ). The NIZK
proof we describe below proves a hard relationℜCS that consists of

instances (inst,𝑤𝑖𝑡) where each inst and the corresponding witness
wit are of the form:

• inst =
(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), (𝐴0, . . . , 𝐴𝑡 )

)
;

• wit = ((𝑠1, . . . , 𝑠𝑛), 𝑟 )
such that the following holds:

• there exists a 𝑡-degree polynomial 𝑃 (𝑥) = 𝑎0+𝑎1𝑥 + . . . 𝑎𝑡𝑥𝑡 over
Z𝑞 such that for all 𝑖 ∈ [𝑛]: 𝑠𝑖 = 𝑃 (𝑖); and for all 𝑗 ∈ {0, . . . , 𝑡}:
𝐴 𝑗 = 𝑔𝑎 𝑗

;
9

9
Note that, the coefficients 𝑎0, 𝑎1, . . . of polynomial 𝑃 can be computed from the

evaluations 𝑠1, . . . , 𝑠𝑛 , therefore we do not include the coefficients within the witness

separately.
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• encrypting 𝑠1, . . . , 𝑠𝑛 with randomness 𝑟 using public keysℎ1, . . . , ℎ𝑛
yields the multi-receiver ciphertext (𝑅, {𝐸𝑖 }𝑖∈[𝑛] )

Our proof of correct sharing consists of two algorithms PoCS.Prove
and PoCS.Ver, which are described in Figure 1.

PoCS.Prove(𝑝𝑝PoC, inst,wit) → 𝜋CS :

• Parse wit as {(𝑠1, . . . , 𝑠𝑛), 𝑟 }.
• Sample 𝛼,

$← Z𝑞, 𝜌 ← [𝑞 · |D𝑞 | · 2_st ].
• 𝑊 ← 𝑔

𝜌
𝑞 and 𝑋 ← 𝑔𝛼

• Compute:

– 𝛾 ← 𝐻 (inst).
– 𝑌 ← 𝑓 𝛼 ·

(
ℎ
𝛾

1
· ℎ𝛾

2

2
. . . · ℎ𝛾

𝑛

𝑛

)𝜌
∈ 𝐺 .

– 𝛾 ′ ← 𝐻 ′(𝛾,𝑊 ,𝑋,𝑌 ).
– 𝑧𝑟 ← 𝑟𝛾 ′ + 𝜌 ∈ Z.
– 𝑧𝑠 ← 𝛾 ′

∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛼 ∈ Z𝑞 .

• Finally return 𝜋CS ← (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 )
PoCS.Ver(𝑝𝑝PoC, inst, 𝜋CS) → 1/0 :

• Parse 𝜋CS as (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 ).
• Compute:

– 𝛾 ← 𝐻 (inst).
– 𝛾 ′ ← 𝐻 ′(𝛾,𝑊 ,𝑋,𝑌 ).

• Verify the following equality:

– 𝑊 · 𝑅𝛾 ′ ?

= 𝑔
𝑧𝑟
𝑞 ∈ 𝐺𝑞

;

– 𝑋 · (∏𝑡
𝑗=0

𝐴

∑𝑛
𝑖=1

𝑖𝑘𝛾 𝑗

𝑗
)𝛾 ′ ?

= 𝑔𝑧𝑠 ∈ 𝐺 ;

– (∏𝑛
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾 ′ · 𝑌 ?

= 𝑓 𝑧𝑠 ·∏𝑛
𝑖=1
(ℎ𝛾

𝑖

𝑖
)𝑧𝑟 ∈ 𝐺 .

• Return 1 if all of the above holds, and 0 otherwise.

Figure 1: Proof System of Correct Sharing.

The following theorem shows that our construction (cf. Fig. 1) is

a NIZK proof in ROM (as Def. 6) – a proof is given in Appendix D.

Theorem 3. For any security parameters _, _st ∈ N and any

modulus 𝑞 ∈ N, our NIZK construction described in Fig. 1 is a secure

proof system (as described in Def. 6) in the random oracle model.

4 OUR MODEL

Communication Model. For our non-interactive constructions,
similar to all previous NI-VSS and NI-DKG construction schemes

(such as [22, 46, 47]), we assume that every party has access to a

broadcast channel. This is a common assumption for non-interactive

publicly verifiable multiparty computation protocols [6, 70], where

the adversary controls the communication channel and can delay

the messages; however, it has to deliver those before the synchrony

communication bound Δ. The adversary is rushing, unless explic-

itly stated otherwise. Moreover, unlike interactive VSS/DKG con-

structions [5, 34, 43, 65], we do not need any communication links

between parties. Furthermore, we consider static corruption, in that

the set of corrupt parties is fixed at the beginning of the execution

and stays the same until the end.

4.1 PKI Setup for Class groups
Though non-interactive in the online phase, our NI-VSS/NI-DKG

requires a PKI setup for class group encryptions. Once a PKI is

successfully established, unbounded number of non-interactive

executions can take place. Here we describe how a PKI is established

for our multi-receiver encryption scheme (cf. Section 3.2).

Protocol for PKI setup. We realize the PKI for the multi-receiver

encryption scheme (CGE.KeyGen,CGE.mrEnc,CGE.Dec)with class
group parameters 𝑝𝑝CG ← CG.ParamGen((𝑞, _, _st, 𝑠, 𝑓 , 𝑔𝑞,𝐺, 𝐹,
D,D𝑞)) along with the NIZK argument for knowledge of exponent

(cf. Sec 3.1), that is for a pair (𝑥,𝑔𝑥𝑞 ), the NIZK argument would

produce a proof of knowledge of 𝑥 given 𝑔𝑥𝑞 . An instantiation is

provided in Section 3.1.

Suppose that the NIZK has algorithms (Kex.Prove,Kex.Ver) and
public parameters 𝑝𝑝Kex, which is consistent with 𝑝𝑝CG. Then we

describe a protocol Π
𝑝𝑝

PKI where 𝑝𝑝 = {𝑝𝑝CG ∪ 𝑝𝑝Kex} as follows:
• Each party 𝑃𝑖 executes:

– (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ) ← CGE.KeyGen(𝑝𝑝CG).
– 𝜋𝑖 ← Kex.Prove(𝑝𝑝Kex, 𝑝𝑘𝑖 , 𝑠𝑘𝑖 ).
– Broadcast (𝑝𝑘𝑖 , 𝜋𝑖 ).

• On receiving {(𝑝𝑘 𝑗 , 𝜋 𝑗 )} 𝑗≠𝑖 each 𝑃𝑖 runs for all 𝑗 ≠ 𝑖:Kex.Ver(𝑝𝑝Kex,
𝑝𝑘 𝑗 , 𝜋 𝑗 ). Create the list 𝑄 by including all 𝑗 for which Kex.Ver
returns 1 and also include 𝑖 . Output (𝑠𝑘𝑖 , {𝑝𝑘𝑖 }𝑖∈𝑄 ).
The security argument is deferred to Appendix G. In the follow-

ing sections, when we say that we assume a PKI setup, we imply

that participants already executed the protocol Π
𝑝𝑝

PKI. Without loss

of generality, we assume that 𝑄 = {1, . . . , 𝑛} for simplicity.

5 NI-VSS USING CLASS GROUPS
In this section, we first provide the UC definition of (NI-)VSS that

captures strong public verifiability. Then we describe our scheme.

5.1 Definition:NI-VSS
Ideal Functionality FVSS. Following the UC paradigm [19] we

provide a VSS ideal functionality, that captures all the properties

we desire. The ideal functionality is described in Figure 2.

The functionality is parameterized with a set of public param-

eters 𝑝𝑝 , a cyclic group of prime order 𝐺 with a uniform random

generator 𝑔; integers 𝑛, 𝑡 such that 𝑛 ≥ 2𝑡 + 1. It interacts with

the following ideal (dummy) parties: the dealer 𝑃𝐷 , 𝑛 recipients

𝑃1, . . . , 𝑃𝑛 a public verifier 𝑃𝑉 , and an ideal world adversary (a.k.a.

simulator) S. It initializes a list 𝑇 [sid] for any sid with all entries

set to ⊤ by default. Since we are in the static setting, the set of

corrupt parties, 𝐶 is known initially. Based on that we mark sid
either honest when |𝐶 | ≤ 𝑡 or corrupt when |𝐶 | > 𝑡 .

We note that a crucial feature of our ideal functionality is that the

simulator is given all 𝑔𝑠𝑖 ’s (and thereby 𝑔𝑠 ) – this can be thought of

as a “leakage”. This is due to our use of DLog commitments, which

does not have hiding in the indistinguishability sense. However,

if 𝑠 is sampled from a high-min entropy distribution, then it is

hard to compute due to the discrete log. We note that for our DKG

application, this suffices, as 𝑠 is sampled from a uniform random

distribution in the generic protocol (cf. Figure 6). It is plausible to

use fully hiding commitments such as Pederson’s instead to remove

this leakage, but that would require a more complex NIZK proof,
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(1) Upon (sid, Dealing, 𝑠) from 𝑃𝐷 : only if 𝑃𝐷 is honest, and 𝑇 [sid] = ⊤: compute a (𝑛, 𝑡) Shamir secret sharing (𝑠1, . . . , 𝑠𝑛),
where (𝑎0, . . . , 𝑎𝑡 ) are the equivalent coefficient representation (note that 𝑎0 = 𝑠). Denote 𝐴𝑖 ← 𝑔𝑎𝑖 and cmt← {𝐴𝑖 }𝑖∈{0,...,𝑡 } .
Send (sid, 𝑠𝑖 ) to each 𝑖 ∈ 𝐻 and (sid, cmt) to everyone, and (𝑠1, . . . , 𝑠𝑛) to 𝑃𝐷 . Additionally, send {𝑠𝑖 }𝑖∈𝐶 to the adversary. Set

𝑇 [sid] ← (𝑠, 𝑔𝑠 , cmt). /*In this case, all properties, including privacy holds, as the dealer is honest and the corruption threshold is

below 𝑡 + 1.*/

(2) Upon (sid, Corrupt-Dealing) from S: only if 𝑃𝐷 is corrupt and 𝑇 [sid] = ⊤:
(a) If sid is honest: wait for S to send either (sid, {𝑠𝑖 }𝑖∈𝐻 , cmt, 𝑠), in that case skip unless 𝑠 is consistent with {𝑠𝑖 }𝑖∈𝐻 (this is

possible as sid is honest), and then set 𝑇 [sid] ← (𝑠, 𝑔𝑠 , cmt); or (sid,⊥), in which case set 𝑇 [sid] ← ⊥.
(b) Else (when sid is corrupt): wait for S to send either (sid, {𝑠𝑖 }𝑖∈𝐻 , cmt,★), in that case parse (𝐴0, . . .) ← cmt set

𝑇 [sid] ← (★, 𝐴0, cmt); or S sends (sid,⊥) when set 𝑇 [sid] ← ⊥.
– In any case, if 𝑇 [sid] ≠ ⊥ then send (sid, 𝑠𝑖 ) to each 𝑖 ∈ 𝐻 and (sid, cmt) to everyone; otherwise if 𝑇 [sid] = ⊥, send
(sid,⊥) to everyone.

/*In this case, a corrupt dealer can not break uniqueness. When sid is corrupt the dealing is committed via DLog commitment.*/

(3) Upon (sid, Recon) from any party 𝑃 if 𝑇 [sid] = ⊤ then skip. Else if 𝑇 [sid] = ⊥, then reply Dealing-Failed to 𝑃 . Else:
(a) Send (sid, Recon) to the simulator, and when S responds back with the same message, send it to the honest parties

{𝑃𝑖 }𝑖∈𝐻 .

(b) Wait for S to reply with {𝑠𝑖 }𝑖∈𝐶 , where each 𝑠𝑖 ∈ {𝑠𝑖 ,⊥, No-Response} and the honest parties 𝑃𝑖 to reply with 𝑠𝑖 ∈
{𝑠𝑖 , No-Response}. Now based on the replies there are three cases:

(i) In total at least 𝑡 + 1 parties replies with 𝑠𝑖 ∉ {⊥, No-Response} then reply with Recon-Error unless the shares are

consistent, otherwise reconstruct using Lagrange interpolation to get 𝑠 .

(A) If 𝑇 [sid] ≠ (★, · · · ) then check whether 𝑇 [sid] = (𝑠, ·), and if that succeeds then send back 𝑠 to 𝑃 ; otherwise

send back Recon-Error to 𝑃 .

(B) Else if 𝑇 [sid] = (★, 𝐴0, · · · ), check if 𝐴0 = 𝑔𝑠 , if that fails send back Recon-Error, otherwise send back 𝑠 to 𝑃

and set 𝑇 [sid] ← (𝑠, 𝐴0).
/*There are responses from at least 𝑡 + 1 parties. However, the responses must be consistent with the committed

value during dealing in either case.*/

(ii) Else if there are ≥ 𝑡 + 1 𝑖 for which 𝑠𝑖 = No-Response then reply with Recon-Declined to 𝑃 ./*Parties decline to the

reconstruction request.*/

(iii) Else, reply with Recon-Error to 𝑃 ./*In this case, there are not enough values, and also not enough explicit decline. This

implies there is an error in the execution. It is important to distinguish this from Recon-Declined, as in the previous

case, there is no error in the protocol execution.*/

(4) Upon (sid, Verify, cmt) from any party 𝑃 : if 𝑇 [sid] = (· · · , cmt) return Dealing-Succeeded. Otherwise, return

Dealing-Failed. /*This facilitates “strong public verifiability”, which holds regardless of whether sid is honest or corrupt*/

Figure 2: Our VSS ideal functionality Fvss

and would affect efficiency. We discuss how it captures the key

properties.

• Privacy. This only makes sense when 𝑃𝐷 is honest and sid is

marked honest as well. This is guaranteed by the fact that the

simulator only obtains𝑔𝑠 in this case. This is captured by virtually

all existing definitions in the literature, and also referred to as

secrecy in some of them.

• Uniqueness. For a potentially corrupt dealer, when sid is honest
then uniqueness guarantees that, a dealing is always associated

with a unique value (which maybe ⊥ when dealing fails to ver-

ify). This is captured as𝑇 [sid] is populated only once with either

a valid pair (𝑠, 𝑔𝑠 ) or ⊥. Also, in this case a successful recon-

struction is guaranteed, as long as the honest parties agree to

participate in the reconstruction. In the literature, similar prop-

erties have been captured and are called uniqueness (in [12, 58]),

or strong commitment (in [28]).

• Strong Public Verifiability. This makes sense in all cases, re-

gardless of either 𝑃𝐷 or sid are honest or corrupt. This is guar-

anteed by Step 4. In particular, whenever 𝑇 [sid] is populated,

immediately after that, any party (including the public verifier

𝑃𝑉 ) can verify whether the dealing succeeded or not. Note that,

in this step, the ideal adversary S does not engage. Now, if the

dealer is honest, a successful verification immediately implies

consistent dealing regardless of whether sid is corrupt. In con-

trast when both 𝑃𝐷 and sid are corrupt there is a possibility that

𝑇 [sid] has (★, ¯ℎ). In this case, nonetheless, any reconstruction

effort fixes𝑇 [sid] to a specific (𝑠, ¯ℎ) such that
¯ℎ = 𝑔𝑠 (as checked

in Step 3(b)iB). So, once the verifier is committed to a certain

𝑠 in the exponent through
¯ℎ, reconstruction becomes unique

and consistent. However, when sid is corrupt then a successful

reconstruction can not be guaranteed. In contrast, the public

verifiability as defined in Das et al. [34] only holds when |𝐶 | ≤ 𝑡 ,

which is equivalent to honest sid in our setting.

Real World NI-VSS protocol. In the real world we describe a

generic NI-VSS protocols protocol ΠNI-VSS assuming a PKI setup.

So there are 𝑛 recipients 𝑃1, . . . , 𝑃𝑛 , each 𝑃𝑖 knows a secret key 𝑠𝑘𝑖 ,

corresponding to which there is a public key 𝑝𝑘𝑖 . There are two

other parties, a dealer 𝑃𝐷 and a public verifier 𝑃𝑉 who do not hold
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any secret. Everyone knows all public keys {𝑝𝑘𝑖 }𝑖∈[𝑛] , in addition

to the public parameters 𝑝𝑝 . For a threshold 𝑡 such that 𝑛 ≥ 2𝑡 + 1

an NI-VSS protocol consists of the following algorithms:

• Share(𝑝𝑝, 𝑠) → ({𝑠𝑖 }𝑖∈[𝑛] , cmt). The sharing algorithm pro-

duces (𝑛, 𝑡) Shamir’s secret shares (𝑠1 . . . , 𝑠𝑛) of a value 𝑠 and
the associated commitments cmt.

• ShareEnc(𝑝𝑝, cmt, {𝑠𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] ) → (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS) . On in-

put 𝑛 many shares 𝑠1, 𝑠2, . . ., the associated commitments cmt,
and corresponding public keys, this algorithm outputs a multi-

receiver ciphertext (𝑅, 𝐸1, 𝐸2, . . . , 𝐸𝑛) plus a proof of correct shar-
ing 𝜋CS.

• Verify(𝑝𝑝, cmt, 𝑅, {𝐸𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] , 𝜋CS) → 1/0. This algorithm

verifies the entire ciphertext tuple with respect to the proof

𝜋CS and the commitment to output a decision bit.

• ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ) → 𝑠𝑖 . The decryption algorithm uses a

specific secret-key 𝑠𝑘𝑖 to decrypt ciphertext (𝑅, 𝐸𝑖 ). Note that,
only the party who posses 𝑠𝑘𝑖 can decrypt (𝑅, 𝐸𝑖 ).

• CmtVer(cmt, 𝑖, 𝑠𝑖 ) → 1/0. This algorithm checks the consistency

of the 𝑖-th opening 𝑠𝑖 with commitment cmt.
In the real world protocol, ΠNI-VSS The parties execute these algo-

rithms and interact as described in Figure 3. Corruption in real world

is attributed to adversary denoted by A. We consider 𝑛-bounded

PPT adversaries.

Definition 5 (NI-VSS). We say an instantiation of the protocol

ΠNI-VSS a secure NI-VSS if it securely realizes the ideal functionality

FVSS in the PKI setup.

5.2 Our NI-VSS Protocol: cgVSS
In this section we provide a concrete instantiation of a ΠNI-VSS

protocol based on the multi-receiver encryption scheme (cf. Sec-

tion 3.2), a corresponding proof of correct sharing (cf. Section 3.3)

in the class group setting, assuming a PKI setup for class groups

(cf. Section 4.1). The instantiation is provided in Figure 4.We call our

instantiation cgVSS. The security argument is formally captured

by the following theorem, a proof of which is given in Appendix E.

Theorem 4 (Security of cgVSS). cgVSS is is a secure NI-VSS

assuming a PKI for class groups as long as the underlying multi-

receiver encryption scheme is secure (Def 4) and the NIZK proof of

correctness is a secure proof system (Def 6).

6 NI-DKG USING CLASS GROUPS
In this section, we use a folklore generic transformation [43, 47,

65] from VSS to construct NI-DKG. First we provide a new ideal

functionality FDKG in Figure 5, and then provide a VSS construction

in FDKG-hybrid. Instantiating with cgVSS we obtain our NI-DKG

protocol cgDKG. To avoid confusion with encryption public keys

we denote the output of the functionality as follows: joint (resp.

individual) public key by 𝑦 (resp. 𝑦𝑖 ) and secret keys by 𝑥𝑖 .

Different guarantees by FDKG. The functionality provides differ-

ent guarantees depending on the modes. There are three main guar-

natees: (i) privacy which means that the secret key is only known

collectively by any 𝑡 + 1 parties; (ii) robustness which guarantees

that the protocol always terminates; (iii) strong public verifiability

guarantees that, from the transcript of the protocol anyone (even

• Input. Only the dealer 𝑃𝐷 has an input 𝑠 ∈ Z𝑞 .
• Dealing. The dealer 𝑃𝐷 executes:

– ({𝑠𝑖 }𝑖∈[𝑛] , cmt) ← Share(𝑝𝑝, 𝑠)
– Compute (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS) ← ShareEnc(𝑝𝑝, {𝑠𝑖 ,

𝑝𝑘𝑖 }𝑖∈[𝑛] )
– Broadcast dealing 𝐷 = (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , cmt, 𝜋CS) to all

receivers {𝑃𝑖 }𝑖∈[𝑛] .
• Receiving. Each recipient 𝑃𝑖 for 𝑖 ∈ [𝑛], on receiving 𝐷

performs the following steps:

– 𝑒 ← Verify(𝑝𝑝, {𝑝𝑘}𝑖∈[𝑛] , 𝐷) where 𝐷 = (𝑅,
{𝐸𝑖 }𝑖∈[𝑛] , cmt, 𝜋CS)

– If 𝑒 = 1 then 𝑠𝑖 ← ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ) and define

𝑦𝑖 ← 𝑠𝑖 as its share corresponding to the dealing 𝐷 ;

otherwise, if 𝑒 = 0 reject dealing 𝐷 , and set 𝑦𝑖 ← ⊥.
– Each recipient has a private output𝑦𝑖 and the common

public input cmt.
• Reconstruction. Any party 𝑃 can broadcast a reconstruc-

tion request. On receiving a reconstruction request each

recipient 𝑃𝑖 may broadcast share𝑦𝑖 . On receiving the shares

𝑦 𝑗 , the requester 𝑃 executes:

– For each 𝑗 , if 𝑦 𝑗 ≠ ⊥ then check 𝑏 𝑗 ←
CmtVer(cmt, 𝑗, 𝑠 𝑗 ). Set 𝑦 𝑗 ← ⊥ if 𝑏 𝑗 = 0.

– If there are at least 𝑡 + 1 𝑗 (including when 𝑃 = 𝑃 𝑗 )

for which 𝑦 𝑗 ≠ ⊥, then reconstruct 𝑦 by choosing

any 𝑡 + 1 𝑦 𝑗 ’s (maybe chosen in a lexicographic order).

Otherwise set 𝑦 ← ⊥.

Figure 3: The generic NI-VSS protocol in the PKI.

outside the system) can verify whether {𝑦𝑖 }𝑖∈[𝑛] ’s exponents are
indeed 𝑡 out of 𝑛 secret sharing of the secret 𝑥 – if there is at least

one honest party, then 𝑥 is uniform over Z𝑞 as desired.

When𝑛 ≥ 2𝑡+1 and 𝑡 ′ = |𝐶 | ≤ 𝑡 , then the mode is set strong, in

which the functionality achieves all of these guarantees. In contrast,

the weak mode only offers strong public verifiability. The lack of

robustness in weak mode is captured in Step 4, which allows the

simulator to abort only in this case. Since this is not allowed in

strong mode, that offers robustness.

Privacy follows from the fact that, in strongmode the simulator

never obtains the secret keys for the honest parties, whereas in

weakmode, the simulator gets their initial dealings (Step 1(a)ii) and

hence can learn all secrets. However, it is important to note that, the

secret can not be biased in this case, as the simulator only obtains

the secrets after it sends the commitments of the corrupt party’s

secrets. On the flip side this puts a restriction on our adversarial

model, as the adversary has to be non-rushing (see Appendix I,

for a discussion on how to remove this), and in that case the so-

called key-biasing is out of scope. One may contemplate a weaker

definition where the simulator gets honest party’s secret before it

sends the corrupt party’s commitments. This would let us work

with rushing adversaries as well. However, in that case it is not only

impossible to prevent biasing against public-key, but also against

secret-key – the rushing adversary may just choose the corrupt

secrets once it obtains all the honest secrets, setting the final secret

to, for example, 0 rendering it useless.
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• Ingredients. The NI-VSS algorithms described below uses

the following ingredients.

– A multi-receiver encryption scheme (cf. Sec-

tion 3.2) with algorithms (CGE.KeyGen,
CGE.mrEnc,CGE.Dec) and public parameters

𝑝𝑝CG.

– An associated proof system of correct sharing (cf. Sec-

tion 3.3) with algorithms (PoCS.Prove, PoCS.Ver) and
public parameters 𝑝𝑝PoC, which is consistent with

𝑝𝑝CG.

• Public parameters. The public parameter 𝑝𝑝 is defined

as 𝑝𝑝 ← 𝑝𝑝CG ∪ 𝑝𝑝PoC.
Construction

• Share(𝑝𝑝, 𝑠) → ({𝑠𝑖 }𝑖∈[𝑛] , cmt):

– Sample 𝑎 𝑗
$←− Z𝑞, 𝑗 ∈ [𝑡].

– Set 𝑎0 ← 𝑠 .

– Define 𝑃 (𝑥) = 𝑎0 + 𝑎1𝑥 + . . . + 𝑎𝑡𝑥𝑡 .
– For each 𝑖 ∈ [𝑛]: set 𝑠𝑖 ← 𝑃 (𝑖).
– Compute for all 𝑗 ∈ {0, . . . , 𝑡}: 𝐴 𝑗 ← 𝑔𝑎 𝑗

.

– Set cmt← {𝐴0, . . . , 𝐴𝑡 }.
• ShareEnc(𝑝𝑝, cmt, {𝑠𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] ) → (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS)/
⊥.
– Sample 𝑟

$← D
– Compute (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ) ← CGE.mrEnc(𝑝𝑝CG, {ℎ𝑖 , 𝑠𝑖

; 𝑟 }𝑖∈[𝑛] ).
– Define:

∗ inst =
(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), cmt

)
.

∗ wit = ((𝑠1, . . . , 𝑠𝑛), 𝑟 ).
– Compute 𝜋CS ← PoCS.Prove(𝑝𝑝PoC, inst,wit).

• Verify(𝑝𝑝, cmt, 𝑅, {𝐸𝑖 , 𝑝𝑘𝑖 }𝑖∈[𝑛] , 𝜋CS) → 1/0:
– Parse inst←

(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), cmt

)
.

– Output PoCS.Ver(𝑝𝑝PoC, inst, 𝜋CS).
• ShareDec(𝑝𝑝, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ) → 𝑠𝑖 :

– Compute 𝑠𝑖 ← CGE.Dec(𝑝𝑝CG, 𝑠𝑘𝑖 , 𝑅, 𝐸𝑖 ).
• CmtVer(cmt, 𝑖, 𝑠𝑖 ) → 1/0: Parse cmt as 𝐴0, . . . , 𝐴𝑡 . Check

if 𝑔𝑠𝑖
?

=
∏𝑗=𝑡

𝑗=0
𝐴𝑖 𝑗

𝑗
.

Figure 4: Concrete instantiation of cgVSS

Finally, note that in either mode strong public verifiability is

guaranteed as noted in Step 5. In strong mode public verifiability

is captured easily, because the secret sharing is executed by the

functionality itself, and the list 𝐿 has an entry only if that is done

correctly. However, it is more involved to see in the weak mode,

because in that mode the entries in 𝐿 is defined by the simulator.

Nevertheless, in Step 3a, the ideal functionality checks that whether

the values returned by the simulator indeed forms a 𝑡 out of 𝑛 secret

sharing of𝑦.10 So, similar to VSS, we can refer to this as strong public

verifiability, as opposed to simply public verifiability, which was

considered only in a setting equivalent to our strong mode.

10
This can be done by, for example, a simple linear code check in the exponent akin

to [9, 22].

Our definition compared to state-of-art. Our definition differs

from prior UC-based DKG definitions [12, 51, 58, 76] significantly.

This is because, first we formally capture the strong variant of public

verifiability separately for the first time (as far as we know). We

handle two modes strong and weak within a single functionality

in a more fine-grained manner. Furthermore, our definition (only

in the strong mode) allows biasing of the final public key 𝑦 in a

manner, as described in Gennaro et al. [43]. Nevertheless, as also

shown in earlier works, this weaker definition suffices for many

threshold applications such as threshold Schnorr’s signature [43],

BLS [4] etc. while offering efficiency benefit. We briefly discuss

Appendix H the measures to remove this “biasability” with a two

round protocol using a known technique [43]. We note that a recent

work by Katz [56] also captures the biasability in a different manner.

Our NI-DKG. Our protocol uses a generic transformation from any

NI-VSS scheme to a NI-DKG scheme. This transformation is sort

of “folklore” and was used in [47]. The basic idea is quite simple:

each party 𝑃𝑖 now runs an NI-VSS instance using her own secret

𝑠𝑖 ; after the completion of the protocol, 𝑠𝑖 is computed by linearly

combining own share of 𝑠𝑖 with shares of 𝑠 𝑗 received from other 𝑃 𝑗 .

We present the generic protocol in FVSS-hybrid in Figure 6. FVSS,
when realized with cgVSS, the resulting protocol is called cgDKG.
We formalize via the following theorem, a proof for which is given

in Appendix F.

Theorem 5 (Security ofGeneric DKG). For parameters𝑛, 𝑡 ∈ N
such that 𝑛 ≥ 2𝑡 + 1, the generic DKG protocol securely UC-realizes

FDKG in FVSS-hybrid for the following adversary:
• Any 𝑡-bounded PPT adversary.

• Any 𝑛-bounded non-rushing PPT adversary.
11

7 EXPERIMENTATION AND PERFORMANCE
ANALYSIS

Implementation and Setup. We implement cgVSS in C++ using

the BICYCL library [15] for class groups, Miracl C++ library for

cryptographic operations with∼ 1858 lines of code. For comparison,

we adapt and realize a version of the implementation of GrothVSS
without forward secrecy in Rust in ∼ 4178 lines of code (available

at the anonymous link https://anonymous.4open.science/r/NIDKG-

056A/class-group-master.zip

We run the experiments with each node realized on a Google

Cloud Platform (GCP) instance with an Intel Xeon 2.8GHz CPU

with 16 cores and 16GB RAM. We use HotStuff state machine repli-

cation [78] (SMR) to realize the broadcast. Our SMR instance is

realized over four GCP instances separate from the DKG nodes. All

the reported timings are averages over 10 runs of the protocols.

Parameter setting. We run the DKG protocol to generate shares

of a 256 bit key and choose the PKI parameters to support 256 bit

secret scalar. The shares generated are also 256 bit. This offers 128

bit security and the groups for the GrothVSS and cgVSS are chosen
to offer the same level of security. The encryption scheme uses

class-group based encryption similar to exponentiated ElGamal,

11
We clarify that non-rushing only becomes a requirement when the adversary cor-

rupts more than 𝑡 parties. Hence, this additional guarantee only strengthens our result

by providing “some guarantee” beyond 𝑡 corruption, in which setting prior works

provide no guarantee.

10
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The ideal functionality FDKG interacts with 𝑛 + 1 ideal parties 𝑃1, . . . , 𝑃𝑛, 𝑃𝑣 and an ideal adversary, the simulator S. The functionality
is also parameterized with a threshold 𝑡 < 𝑛 and a group ⟨𝑔⟩ = 𝐺 of prime order 𝑞 where discrete log is hard. Since we assume a static

corruption setting, we consider another parameter 𝑡 ′ = |𝐶 |, that denotes the number of corrupted parties. Also define 𝐻 = [𝑛] \𝐶 . The
functionality works in strong and weak modes. If 𝑛 ≥ 2𝑡 + 1 and 𝑡 ′ ≤ 𝑡 it sets the mode to strong, otherwise it sets to weak mode.

(1) Upon receiving (sid, Dealing) from all 𝑛 parties: only if sid is unmarked then mark sid Live and:

(a) For each 𝑖 ∈ 𝐻 choose a uniform random 𝑠𝑖
$← Z𝑞 . Then:

(i) If mode is strong then send {𝑔𝑠𝑖 }𝑖∈𝐻 to S./*In this mode S gets only the commitments as “leakage”, so privacy holds.*/

(ii) Else, when mode is weak wait for the simulator to send {𝑔𝑠𝑖 }𝑖∈𝐶 . Then send {𝑠𝑖 }𝑖∈𝐻 to S. /*In this mode, privacy is not

guaranteed since 𝑠𝑖 s are provided to the simulator.*/

(2) Upon (sid, {𝑠𝑖 }𝑖∈𝐶 ∈ Z𝑞, ) from S: only if (i) sid is marked Live; (ii) and the mode is strong:

(a) Initialize a set 𝑉 ⊆ 𝐶 , and include 𝑖 into 𝑉 only if 𝑠𝑖 ≠ ⊥.
(b) Compute 𝑠 =

∑
𝑖∈𝐻∪𝑉 𝑠𝑖 .

(c) Choose uniform random 𝑡-degree 𝑃 (𝑥) ∈ Z𝑡𝑞 [𝑥] subject to 𝑃 (0) = 𝑠 . Set 𝑥 ← 𝑠 , 𝑦 ← 𝑔𝑠 ; 𝑦𝑖 ← 𝑔𝑥𝑖 where 𝑥𝑖 ← 𝑃 (𝑖) for all
𝑖 ∈ [𝑛].

(d) Finally send (𝑥𝑖 , 𝑦𝑖 , 𝑦) to party 𝑖 ∈ 𝐻 ; (sid, 𝑦, {𝑦𝑖 }𝑖∈𝐻∪𝑉 , {𝑥𝑖 }}𝑖∈𝑉 ) to S and 𝑦 to 𝑃𝑣 .

(e) Mark sid End and store (sid, {𝑦𝑖 }𝑖∈[𝑛] ) into a list 𝐿.

/*This mode offers robustness, privacy and strong public verifiability.*/

(3) Upon (sid, 𝑦, {𝑥𝑖 }𝑖∈𝐻 , {𝑦𝑖 }𝑖∈[𝑛] ) from S: only if (i) sid is marked Live; and (ii) the mode is weak:

(a) Let 𝑦 = 𝑔𝑥 and {𝑦𝑖 = 𝑔𝑥𝑖 }𝑖∈[𝑛] , where 𝑥 and {𝑥𝑖 }𝑖∈𝐶 are unknown. Check whether 𝑥𝑖 ’s are a 𝑡 out of 𝑛 Shamir’s secret sharing

of 𝑥 . This can be checked in the exponent, for example, by choosing a random linear code in the orthogonal space defined by

𝑦0, . . . , 𝑦𝑛 . If this check fails skip. Else go to the next step.

(b) Send(𝑥𝑖 , 𝑦𝑖 , 𝑦) to party 𝑖 ∈ 𝐻 .

(c) Send 𝑦, {𝑦𝑖 }𝑖∈[𝑛] to 𝑃𝑣 .
(d) Mark sid End and store (sid, {𝑦𝑖 }𝑖∈[𝑛] ) into a list 𝐿.

/*This modes guarantees only strong public verifiability.*/

(4) Upon (sid, Failure) from S: only if (i) sid is marked Live; and (ii) the mode is weak: then send ⊥ to everyone and mark sid
End./*In the weak mode, abort is allowed, so robustness does not hold.*/

(5) Upon (sid, Verify, {𝑦𝑖 }𝑖∈[𝑛] ) from any party P: only if sid is marked End: return 1 if and only if ∃ (sid, {{𝑦𝑖 }𝑖∈[𝑛] }) ∈ 𝐿 and 0

otherwise./*In all modes strong public verifiability holds.*/

Figure 5: The ideal functionality FDKG

and consists of two elements; each element in the class group in

the compressed form [24] takes 1752 bits. Refer [15, 26, 27] for the

relation between bit-length and the security level of class groups

and further details. For elliptic curve operations, for either protocol,

we use the BLS-381 elliptic curve. Each commitment is a curve

element, taking 384 bits (closest to 381, when represented as bytes).

Communication and Computation Overhead. For cgVSS, the
total bit-length length for the multi-receiver encryption and com-

mitments is (1752) · (𝑛+1)+384·𝑡 , for𝑛 receivers and 𝑡 commitments.

For the proof of correctness, the dealer also forwards 5 elements,

including two class group elements, one elliptic curve element, and

two scalars. Figure 7 shows the total bit-length of the dealing –

size of the message the dealer broadcasts. Figure 8 shows the time

taken by the dealer and the receiver in the cgVSS protocol. We

use multi-exponentiation [13] to compute the product of multiple

exponentiated values in proof of correct sharing.

To encrypt a GrothVSS share value, (assume) each share is di-

vided into 24 chunks (chosen as per the paper [47]) and encrypted in-

dividually. The number of chunks can be varied with varying chunk

size. For 𝑛 users, the total bit-length of ciphertexts is 9216 · (𝑛 + 1),
including the random values. The dealer also commits to the 𝑡 coef-

ficients of the polynomial, which amount to 257 · 𝑡 bits. The NIZK

proof of correctness of sharing by the dealer constitutes 3 multi-

plicative group elements and two scalars of 384 bits each. For the

proof of correct chunking, an approximate range proof is employed

where the dealer forwards 2ℓ + 2 group elements for a parameter

ℓ and ℓ + 𝑛 + 1 masked values of the chunks.
12

Taking a conserva-

tive estimate of 32 bits for the masked chunk value summations,

we have the total bit-length of the approximate range proof to be

(2ℓ + 2) · 384 + (ℓ + 𝑛 + 1) · 32.

Figure 7 indicates a 5.6x improvement in total broadcast message

length while using cgVSS when compared to GrothVSS for 150

nodes. The comparison also indicates that the broadcast message

length increases slower in cgVSS when compared to GrothVSS.
Table 1 indicates the number of exponentiations involved at

the dealer and each receiver for cgVSSand GrothVSS. Though an

exponentiation in the class group is longer, cgVSSgains significantly
with the reduction of the number of exponentiations.

We also provide a brief discussion on the performance of LWE-

based PVSS [46] in Section 7.2 for completeness.

NI-DKGProtocolAnalysis.We benchmark the cgDKG andGrothDKG
protocols and compare them. Figure 9 compares the time taken by

12ℓ is a crucial parameter used in GrothVSS [47]. It is tuned appropriately to enable

an effective rejection sampling mechanism in their proof of chunking. Since we do not

use proof of chunking, we do not need it.
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Ingredients and parameters. We consider 𝑛 parties

𝑃1, . . . , 𝑃𝑛 are running this protocol with a threshold 𝑡 < 𝑛/2
in FVSS hybrid. We also consider a separate public verifier 𝑃𝑣 .

The functionality is parameterized by a cyclic group of prime

order 𝑝 with generator 𝑔.

Protocol

Dealing. Each party 𝑃𝑖 , upon a dealing request

(sid, Dealing), sample 𝑠𝑖
$← Z𝑞 and send (sid𝑖 , Dealing, 𝑠𝑖 )

to FVSS where sid𝑖 ← (sid, 𝑖). Then:
• Receive (sid𝑖 , (𝑠𝑖1, . . . , 𝑠𝑖𝑛), cmt𝑖 ) from FVSS.
• For all 𝑗 ∈ [𝑛] \ {𝑖} receive (sid𝑗 , 𝑠 𝑗𝑖 , cmt𝑗 ) or ⊥ from

FVSS. Let 𝑈 denote the set of 𝑗 ∈ [𝑛] for which ⊥ is

not returned. Also append 𝑖 to𝑈 .

• Compute the secret key share 𝑥𝑖 ←
∑

𝑗 ∈𝑈 𝑠 𝑗𝑖 , and

own individual public key 𝑦𝑖 ← 𝑔𝑥𝑖 .

• Compute the individual public keys {𝑦 𝑗 } 𝑗 ∈[𝑛]\{𝑖 } for
everyone else:

– For all 𝑖 ∈ [𝑛] parse (𝐴𝑖,0, . . . , 𝐴𝑖,𝑡 ) ← cmt𝑖 ;
– For all 𝑗 ∈ [𝑛] \ {𝑖}:

∗ Compute 𝐵 𝑗 ←
∏

𝑖∈𝑈 𝐴𝑖, 𝑗 .

∗ Compute 𝑦 𝑗 ←
∏

𝑘 𝐵
𝑗𝑘

𝑗
.

• Finally compute the system public key 𝑦 ←∏
𝑖∈𝑈 𝐴𝑖,0.

• Store (sid, {𝑦𝑖 }𝑖∈[𝑛] , {cmt𝑖 }𝑖∈[𝑛] ).
Public Verifying. Any party 𝑃 ∈ {𝑃1, . . . , 𝑃𝑛, 𝑃𝑣} upon input

(sid, Verify, {𝑦𝑖 }𝑖∈[𝑛] ):
• Look up for ({𝑦𝑖 }𝑖∈[𝑛] , {cmt𝑖 }𝑖∈[𝑛] ).
• For all 𝑖 ∈ [𝑛] Send (sid𝑖 , Verify, cmt𝑖 ) to FVSS.
• If there is at least one Dealing-Succeeded response,

then output 1, otherwise output 0.

Figure 6: Our DKG protocol cgDKG in FVSS-hybrid
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Figure 7: Comparison of broadcast (dealing) message length
where 𝑛 = 2𝑡 + 1. cgVSS dealing consists of encryptions and
proof of correct sharing, while GrothVSS also consists of
proof of correct chunking.

each node in each DKG instance; it is the time taken from the start

of dealing to the computation of the system public key after verify-

ing 𝑡 + 1 valid dealings. The nodes publish the encrypted shares and

commitments using the HotStuff [78] SMR. Figure 8 and Figure 9,

also indicate that the SMR takes significant time in the overall end-

to-end scenario, and the optimizations in SMR usage (block rate,

dummy blocks etc) would improve the performance.
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(a) Comparison of dealer times. cgVSS dealer time consists of times
for encryption and proof of correct sharing, while GrothVSS also
involves proof of correct chunking.
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(b) Comparison of receiver times. cgVSS receiver time consists of de-
cryption time and verification of correct sharing, whileGrothVSS also
involves verification of correct chunking.

Figure 8: Comparison of dealer and receiver times for
cgVSS and GrothVSS.

Exp (Prove) Exp (Verify) Bit-length

cgVSS (𝐺) 𝑛 + 4 2𝑛 + 𝑡 + 5 1752(𝑛 + 1) + 384𝑡

(2𝑛 + 1)𝑚 + 1 𝑛 + 4 +𝑚𝑛 9216(𝑛 + 1) + 257𝑡

GrothVSS (𝐺) +(2𝑛 + 3ℓ + 1) +(2𝑚𝑛 + 3𝑛) + (2ℓ + 2)384

+(2𝑙 + 1) +(ℓ + 𝑛 + 1)32

Table 1: The number of exponentiations and the bit-length
for the proof generation and verification for various thresh-
old 𝑡 . Here ℓ is a “rejection sampling parameter” chosen for
the approximate range proof for GrothVSS and𝑚 denotes the
number of chunks. Also note that the order of class-group 𝐺

is 𝑞.𝑠 (𝑠 unknown), whereas that of 𝐺 is 𝑞.
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Figure 9: Comparison of time taken to perform a DKG.
GrothDKG is realized using GrothVSS where each party acts
as a dealer and runs an instance of GrothVSS. The times re-
ported are aggregates of time taken from starting of dealing
and computation of public key by each node, across nodes

In summary, our performance analysis demonstrates that cgDKG con-

tinues to perform significantly better than GrothDKG with an in-

creasing number of nodes in the system. The implementation is
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also significantly simpler since the chunking and proof of correct

chunking mechanisms are no longer needed.

7.1 Comparison with Cascudo-David [23]
Here, we provide a detailed comparison of our NI-VSS and NI-DKG

schemes with Cascudo and David’s [23] PVSS (which is also non-

interactive) and the corresponding non-interactive DKG protocol,

called 𝜋BDKG, respectively.
13

As wemention in related works (Sec. 1.2), their schemes rely on a

non-falsifiable assumption recently introduced in [16]. Instead, we

rely on existing class group assumptions, all of which are falsifiable.

Nevertheless, there are crucial structural differences, and we focus

on those below.

Structural difference in NI-VSS Schemes. Both, their PVSS

scheme (which we call CD-PVSS) and our cgVSS, use the same

class-group based multi-receiver encryption scheme for encrypting

the shares. However, in CD-PVSS, the dealer does not need DLog

commitments cmt = {𝑔𝑎0 , 𝑔𝑎1 , . . . , 𝑔𝑎𝑡 } for the proof of correct shar-
ing. Instead, they use a coding-theoretic technique, called the Scrape

test [22] to verify whether the multi-receiver ciphertext indeed con-

tains a 𝑡 out of 𝑛 sharing. Therefore, their CD-PVSS ensures a

stronger "indistinguishabilty of secrets", whereas our cgVSS “leaks”

the secret 𝑎0 in the exponent of 𝑔 (recall that for DKG applica-

tion this is both necessary and sufficient) and provides secrecy for

uniform/high entropy secrets. As a result, in terms of overhead,

CD-PVSS’s communication is concretely lower than cgVSS when
we consider the NI-VSS separately.

Structural difference in (non-interactive) DKGs. However, as
CD-PVSS scheme does not output the commitments cmt to the re-

ceivers, it falls short of satisfying the typical requirements required

for DKG, formally captured by our ideal functionality Fvss. Conse-
quently, CD-PVSS can not be used to obtain an NI-DKG using our

generic compiler (in Fvss-hybrid), as described in Figure 6, which

works almost immediately from the underlying NI-VSS.

In contrast, their NI-DKG protocol, called 𝜋BDKG, requires con-

siderably more work on the top of their CD-PVSS protocol. In

particular, they need to include the DLog commitments now, which

are essential for parties to compute the partial public keys locally

in the post-processing after the (single round of) interaction.
14

Ad-

ditionally, they require a proof for the fact that the commitments

and the encryptions are consistent – this is done by a variant of

proof of equality in the exponents. As a result, as we observe in

the performance comparison below, their 𝜋BDKG incurs significant

computation overhead compared to their CD-PVSS.

Concrete PerformanceComparison. We provide the comparison

of cgVSS andCD-PVSS in Table 2 and cgDKG and 𝜋BDKG in Table 3.

For calculation of communication (over a broadcast channel) we

hide constant factors, accounting for not more than a few field

13
They also proposed a two round DKG scheme, which we do not include in our

discussion, as we primarily focus on NI-DKGs.

14
In fact, they need to send𝑛 elements {𝑔𝑠1 , . . . , 𝑔𝑠𝑛 } as the commitment of the secret

sharing, which is embedded as evaluations in the exponent. Instead we need to send

𝑡 +1 elements {𝑔𝑎0 , . . . , 𝑔𝑎𝑡 }, which embeds the secret as coefficients in the exponent

– this saves our communication cost by 𝑛 (𝑛 − 𝑡 − 1) |𝐺 |. We observe that they could

possibly also use coefficient embedding at the expense of 𝑛 more multi-exponentiation

of size 𝑡 in group𝐺 for converting them to evaluation embedding. For our protocol,

this conversion is necessary, and the only major additional cost over our NI-VSS.

elements (only a few bytes). For computation cost, we only count

the exponentiations, because other costs, such as field operations or

group multiplications contribute insignificantly. The computation

cost is shown in three different categories – we provide separate

costs for operations in class group𝐺 and cyclic group𝐺 . Note that,

it is crucial to measure them separately due to the high disparity

between the costs. For example, in our experimental setup, we

observe the cost of single exponentiation in𝐺 is about 50× the cost
of the same in 𝐺 . For 𝑛 = 50, the cost of a multi-exponentiation

of size 𝑛 in 𝐺 is comparable to a single exponentiation in 𝐺 . The

computation costs of encryption/decryption is also kept separate,

though they can be broken down into group operations (and the

cost of solving DLog in group 𝐹 ). However, since this part is exactly

the same for both [23]’s and our constructions, we do not break

this further. For communication, however, we break this cost by

including the size of a ciphertext as (𝑛 + 1) |𝐺 |.
Multi-exponentiation of size ` is denoted by `-exp. The special

case ` = 1 denotes a single exponentiation. We write a × `-exp

to denote a many (multi-)exponentiation of size `. 𝑛-Enc denotes

a multi-receiver encryption of size 𝑛 which performs 𝑛 + 1 class-

group exponentiations; 𝑛-Dec denotes 𝑛 separate decryptions, each

of which involves a class-group exponentiation plus running the

DLog solver over 𝐹 .

We observe from Table 2 that their CD-PVSS has concretely

better communication cost than our cgVSS, precisely it requires

lesser communication by about (𝑡 + 1)-many 𝐺 elements plus 2 𝐺

elements. On the other hand, the computation cost of the dealer

is concretely better for cgVSS, because note that CD-PVSS does

not have any 𝐺 operations, but one extra 𝐺 multi-exponentiation

of size 𝑛 compared to cgVSS – this is much more expensive than

operations in𝐺 for a reasonable size 𝑛 (in our example, given below,

we consider 𝑛 = 50). Precisely, the difference (cost of CD-PVSS
minus cost of cgVSS) in cost of dealing is given by:

𝐸𝐺,𝑛 − 𝐸𝐺,1 − (𝑡 + 2)𝐸𝐺,1

where 𝐸𝐺,𝑛 denotes a multi-exp of size 𝑛 in group𝐺 and so on. The

cost of receiving is marginally higher for cgVSS, and the difference

is given by:

𝐸𝐺,1 + 𝐸𝐺,𝑡+1 + 𝐸𝐺,1

From Table 3 we observe that our cgDKG outperforms their

𝜋BDKG in all measures. Note that, for each party, 𝑛 instances of

cgVSS are simply run for one execution of cgDKG. However, now
since 𝜋BDKG needs to additionally accommodate for the commit-

ments in the exponents as evaluation embedding, the communica-

tion becomes concretely more than cgDKG by 𝑛(𝑛 − 𝑡 − 1)-many

𝐺 elements minus 2𝑛-many 𝐺 elements. Now, for the cost of deal-

ing (or computation before the interaction), cgDKG outperforms

𝜋BDKG by:

𝐸𝐺,𝑛 + 2𝐸𝐺,𝑡+1 + 2𝐸𝐺,1 + 𝐸𝐺,𝑡+1 + (𝑛 − 𝑡 − 1)𝐸𝐺,1

For the cost of receiving (that is, the computation that takes place

after the interaction) the difference is even higher as an additional

𝑛 − 1 factor, and in that cgDKG outperforms 𝜋BDKG precisely by:

2(𝑛 − 1)𝐸𝐺,𝑡+1 + 4(𝑛 − 1)𝐸𝐺,1 + (𝑛 + 1)𝐸𝐺,𝑛 + (𝑛 − 1)𝐸𝐺,1
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Protocol Communication Comp. Type Dealing Receiving

𝐺 2 × 1-exp; 1 × 𝑛-exp 3 × 1-exp; 2 × 𝑛-exp
cgVSS (𝑛 + 3) |𝐺 | + (𝑡 + 2) |𝐺 | 𝐺 (𝑡 + 2) × 1-exp 1 × 1-exp; 1 × (𝑡 + 1)-exp

Enc/Dec 𝑛-Enc 1-Dec

CD-PVSS [23] (𝑛 + 1) |𝐺 | 𝐺 1 × 1-exp; 2 × 𝑛-exp 2 × 1-exp; 2 × 𝑛-exp
Enc/Dec 𝑛-Enc 1-Dec

Table 2: A concrete cost comparison between the class-group based non-interactive VSS protocols

Protocol Communication Comp. Type Dealing Receiving

𝐺 2 × 1-exp; 1 × 𝑛-exp 3(𝑛 − 1) × 1-exp; 2(𝑛 − 1) × 𝑛-exp
cgDKG 𝑛 ( (𝑛 + 3) |𝐺 | + (𝑡 + 2) |𝐺 |) 𝐺 (𝑡 + 2) × 1-exp (𝑛 − 1) × 1-exp; (𝑛 − 1) × (𝑡 + 1)-exp; 𝑛 × 𝑛-exp

Enc/Dec 𝑛-Enc 𝑛-Dec

𝐺 4 × 1-exp; 2 × (𝑡 + 1)-exp; 2 × 𝑛-exp 7(𝑛 − 1) × 1-exp; 2(𝑛 − 1) × (𝑡 + 1)-exp; 2(𝑛 − 1) × 𝑛-exp
𝜋BDKG [23] 𝑛 ( (𝑛 + 1) |𝐺 | + 𝑛 |𝐺 |) 𝐺 (𝑛 + 1) × 1-exp; 1 × (𝑡 + 1)-exp 2(𝑛 − 1) × 1-exp; (𝑛 − 1) × (𝑡 + 1)-exp; (2𝑛 + 1) × 𝑛-exp

Enc/Dec 𝑛-Enc 𝑛-Dec

Table 3: A concrete cost comparison between the class-group based NI-DKG protocols.

Protocol Comm (KB) Dealing (msec) Receiving (msec)

cgVSS 13 218 358

CD-PVSS [23] 11.4 268 348
Table 4: An estimated cost comparison between the class-
group based non-interactive VSS protocols for 𝑛 = 50 and
𝑡 = 24. Better performance numbers are embolden.

While we do not implement their protocols, from the concrete

comparison we approximately estimate that in our setting (detailed

at the beginning of this section), for 𝑛 = 50 and 𝑡 + 1 = 25:

• cgVSS needs to communicate 1.6 KB more than CD-PVSS,
which is a 14% increase (cf. Figure 7) from 11.4 KB needed

for CD-PVSS.
• In cgVSS, dealer’s computation takes 50 msec less than

CD-PVSS and receiver’s computation takes 9.5 msec more.

So, from Figure 8 we observe that: dealer’s computation

would incur a 23% slowdown if CD-PVSS is used instead

of cgVSS which takes 218 msec. Verifier’s computation

costs are quite close, and incurs as little as 3% overhead for

cgVSS over 348 msec, which is the time taken for CD-PVSS.
• cgDKG needs to communicate 49 KB less than𝜋BDKG, whereas

a concrete calculation shows cgDKG needs to communicate

around 642 KB. So using 𝜋BDKG would incur a slight 7%

increase in communication.

• cgDKG’s takes approximately 4.5 sec less than 𝜋BDKG for ex-

ecuting one NI-DKG – this combines the dealing and receiv-

ing cost, however, it is worth noting that the receiving cost

is much higher.
15

Recall from Figure 9 that cgDKG takes

around 18.5 sec for one end-to-end computation. So, use of

𝜋BDKG would incur a 24% slowdown.

We summarize this in the following two tables, Table 4 and Table 5.

15
This is as expected because each party, in a NI-DKG scheme takes part in𝑛 instances

of non-interactive VSS, among them only one as a dealer and the rest𝑛−1 as receivers.

Protocol Comm (KB) Time (sec)

cgDKG 642 18.5
𝜋BDKG [23] 691 23

Table 5: An estimated cost comparison between the class-
group based non-interactive VSS protocols for 𝑛 = 50 and
𝑡 = 24. Better performance numbers are embolden.

7.2 Comment on LWE based PVSS [46]
To also give a sense of how the scheme compares to other existing

state-of-the-art PVSS schemes, we briefly discuss the performance

reported by Gentry et al. [46] for their LWE-based PVSS scheme. For

128 parties, their system takes 4.2 sec for generating ciphertexts

and 22.9 sec for generating the proof of correctness of sharing

totaling 27.1 sec of dealer time, whereas for 256 parties, the total

dealer time is 28.1 sec. The receiver takes 1.4 msec to decrypt and

15.3 sec to verify the dealing totaling 15.301 sec. The total receiver

time for 256 parties is 15.901 sec. In comparison, for example, for a

200 node network, the dealer and receiver times of our cgVSS are

0.62 sec and 1.9 sec respectively. However, it appears that in terms

of size / communication complexity, their performance would be

much worse compared to ours, as lattice-based scheme are usually

known to suffer from this. A precise calculation of this does not

seem immediate and they do not provide any benchmarking.

Note that, their performance has been evaluated on a more pow-

erful machine (with 32 cores and 250GB RAM) compared to our

benchmarks (10 core 16GB RAM machine). For more details we

refer to their paper [46].

Also, as noted in their work, their protocol relies on a large

CRS, which does not grow with the number of parties – hence the

cost of their protocol is amortized over a large number of parties.

Therefore, its performance only becomes comparable to ours (or

Groth’s) only when the number parties is around 1000. Our focus

is on protocols that are also efficient for a lower range, such that

around 50-200 parties. We do not provide a detailed comparison

with their protocols.
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8 CONCLUSION
In this work we propose a class-group based NI-VSS and NI-DKG

protocols for a discrete log based key generation. In particular, we

show how the unique structures provided by class-groups can be

used to achieve not only a significantly simpler protocol, but also a

more efficient one. Importing and adapting class-group techniques

to the regime of VSS/DKG is our primary contribution.

Additionally, we explore and re-interpret the semantic of public

verifiability from the literature in the context of VSS/DKG, in line

with auditable MPC. We provide the first formalization of a new

public verifiability property (we call strong public verifiability),

discuss its significance in specific VSS/DKG applications.We believe

this new comprehensive study holds independent significance for

the broader field of threshold cryptography.
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Appendix
A ADDITIONAL PRELIMINARIES
A.1 Shamir Secret Sharing
We use Shamir’s secret sharing [71]. In a typical (𝑛, 𝑡)-Shamir’s

secret sharing, a field element 𝑠 ∈ Z𝑞 can be shared in a 𝑡 out

of 𝑛 fashion by choosing a 𝑡-degree uniform random polynomial

𝑃 (𝑥) $← Z𝑞 [𝑥]𝑡 with constraint 𝑃 (0) = 𝑠 . The 𝑖-th share is com-

puted as 𝑠𝑖 ← 𝑃 (𝑖). To reconstruct one may use Lagrange co-

efficients 𝐿𝑖s as 𝑠 =
∑𝑡+1
𝑖=1

𝐿𝑖𝑠𝑖 . Due to linearity, this can be per-

formed in the exponent without computing 𝑠 . We denote this by

Shamir𝑛,𝑡,𝑞 (𝑠) = (𝑠1, . . . , 𝑠𝑛). Furthermore, given any 𝑠1, . . . , 𝑠𝑡 ′ for

𝑛 ≥ 𝑡 ′ ≥ 𝑡 + 1 it is possible to verify whether they are a consistent

(𝑛, 𝑡) sharing.

A.2 DLog Commitments
We will be using discrete log (DLog) commitments, that are defined

over any cyclic group𝐺 of prime order 𝑞. A commitment of a value

𝑥 ∈ Z𝑞 is simply defined to be 𝑔𝑥 , where 𝑔 is a generator of 𝐺 .

Note that, the commitment scheme does not guarantee hiding, but

provides computational binding, as long as the discrete log is hard

over 𝐺 . A commitment of 𝑠 is generally denoted by cmt(𝑠).

A.3 NIZK proofs
Let ℜ be an efficiently computable binary NP relation. For any

pair (inst,wit) ∈ ℜ, we refer to inst as the instance and wit as
the witness. If it is computationally hard (in the average case) to

determine a witness from a statement, then the relation is called a

hard relation. For any hard relation ℜ we define NIZK arguments of

knowledge (resp. NIZK proof) in the random oracle model.

Definition 6 (Non-interactive Zero-knowledge Argument

of knowledge (resp. Proof) in ROM). Let 𝑝𝑝 be some public

parameters that include a computational security parameter _, and a

statistical security parameter _st, generated in a setup, and available

to all algorithms. Let 𝐻 be a hash function with an appropriate

domain/range, modeled as a random oracle. A secure NIZK for a

binary hard relation ℜ consists of two PPT algorithms Prove and
Verify with oracle access to 𝐻 defined as follows:

• Prove𝐻 (inst,wit). The algorithm takes as input an instance-

witness pair and outputs a proof 𝜋 if (inst,wit) ∈ ℜ and ⊥
otherwise.

• Verify𝐻 (inst, 𝜋). The algorithm takes as input an instance inst
and a candidate proof 𝜋 , and outputs a bit 𝑏 ∈ {0, 1} denoting
acceptance or rejection.

We call a ROM-based NIZK scheme a secure argument of knowl-

edge (resp. secure proof system) if the algorithms satisfy perfect

completeness, statistical zero-knowledge in ROM and argument of

knowledge (resp. statistical soundness in ROM), defined as follows:

• Perfect completeness: For any (inst,wit) ∈ ℜ,

Pr

[
Verify𝐻 (inst, 𝜋) = 1 | 𝜋 ← Prove𝐻 (inst,wit)

]
= 1.

• Statistical Zero-knowledge (in ROM): There must exist a

PPT simulator S such that for any (inst,wit) ∈ ℜ the statistical

distance between the following two probability distribution is

bounded by a negligible function of _st as long as an unbounded

verifier may ask a bounded (depends on _, _st) number of queries

to the random oracle (simulated by S):
– Output (inst, 𝜋,𝑄𝐻 ) where 𝜋 ← Prove𝐻 (inst,wit);
– Output (inst, 𝜋,𝑄𝐻 ) where 𝜋 ← S′(inst)

where S′ returns a simulated proof 𝜋 ← S(inst) on input

(inst,wit) if (inst,wit) ∈ ℜ and ⊥ otherwise and 𝑄𝐻 denotes

the random oracle query-answer pairs made by the verifier;

• Argument of knowledge: For all PPT adversary A𝐻
, there

exists a PPT extractor EA such that

Pr

[
(inst,wit) ∉ ℜ and Verify𝐻 (inst, 𝜋) = 1 |

(inst, 𝜋) ← A𝐻 (1_);wit← EA (inst, 𝜋)
]
≤ negl(_)

for some negligible function negl, where A’s RO queries to 𝐻

are simulated by the extractor.

• Statistical Soundness (in ROM). For any unbounded adversary
A𝐻

, that may ask a bounded numner of RO queries to 𝐻 we

have that:

Pr[1← Verify𝐻 (inst, 𝜋) ∧ inst ∉ ℜ

| (inst, 𝜋) ← A𝐻 (𝑝𝑝PoC)] ≤ negl(_st)
Note that, we necessarily rely on unbounded adversaries making

a bounded number of RO queries. This number, however, may be

sub-exponential in _, _st.

Fiat-Shamir transform [40]. Let (Prove,Verify) be a constant

round public-coin honest-verifier zero-knowledge interactive proof

system (a sigma [31] protocol) with unique responses. Let 𝐻 be a

function with range equal to the space of the verifier’s coins. In

the random oracle model, the proof system (Prove,Verify) by ap-

plying the Fiat-Shamir transform satisfies the zero-knowledge and

argument of knowledge properties defined above. See Definition

1, 2 and Theorem 1, 3 in Faust et al. [38] for more details. (They

actually show that these properties hold even when adversary can

ask for proofs of false instances.)

A.4 Universal Composability
We briefly describe UC frameowrk, taken almost verbatim from [54].

In the UC framework, a PPT algorithm called the environment

(which is adversarial) is trying to distinguish between a real and

an ideal world. The adversary in the protocol can corrupt parties

in the real world, whereas an ideal adversary, called the simulator,

simulates the adversarial behavior in the ideal world. The ideal

world comprises an ideal functionality (a.k.a. trusted third party)

that is directly connected to all the parties, among which the simu-

lator fully controls the corrupt ones. The honest ideal world parties

are called dummy parties because they are interfaces between the
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environment and the ideal functionality. The objective is to design

a simulator in the ideal world such that no environment providing

inputs to and observing the outputs from the computing entities

can distinguish between the real world and the ideal world, given

the adversary’s view of both worlds. The simulator typically simu-

lates the real world to an instance of the real-world adversary by

providing messages on behalf of the honest parties while accessing

the ideal functionality and finally outputs whatever the adversary

outputs. The simulator can schedule messaging and outputs in the

ideal world to prevent trivial distinctions by timing.

We say that a protocol 𝜋 securely realizes an ideal functionality

F if for any real world adversary in the real world there is an ideal

adversary (or simulator) in the ideal world such that the adversary’s

view in both these worlds are computationally indistinguishable.

All entities are formally modeled as instances of an interactive

Turing machine, or ITI. For a detailed formalization, we refer to [19,

20].

B SECURITY OF NIZK PROOF OF EXPONENT
OVER CLASS GROUP

We recall the construction from Section 3.1. Let us first provide

some intuition. As detailed in Definition 6, a NIZK proof system

is called secure argument of knowledge if it satisfies completeness,

statistical zero-knowledge and argument of knowledge. Completeness

follows immediately. The statistical zero-knowledge argument is

analogous to Schnorr’s proof over cyclic groups, except that now

the simulator needs to sample 𝑠 carefully to match the range. Since

we compute it over an integer as the group order is unknown,

we need to ensure that the value 𝑠 can be simulated without the

knowledge of 𝑘 . For that, we rely on a statistical argument. In

particular, we choose a “mask” 𝑟 randomly from a range, which is

larger than the range of 𝑘𝑐 by a factor of 2
_st
. So, to simulate, it is

possible to sample 𝑠 from a range such that the simulated value is

within statistical distance 2
−_st

to the actual value. The argument of

knowledge is more intricate, and uses two more assumptions over

class groups – this can be done by carefully adjusting analysis from

prior works [25, 32, 74]. The main difference from Schnorr’s proof is

again that due to unknown order 𝑠 is an integer. Nevertheless, using

the class group structure we can ensure that unless the witness

𝑘 is extracted, one of the low-order or strong root assumptions is

broken. We prove Theorem 3.1 below.

Proof. Since completeness is immediate. We focus on statistical

zero-knowledge and knowledge of argument in order.

Statistical Zero-knowledge in ROM. We build a simulator S as

follows:

(1) Input: (𝑔𝑞, ℎ) ∈ 𝐺𝑞 ×𝐺𝑞
.

(2) Sample a uniform random 𝑠
$← [2_st · B · |D𝑞 |].

(3) Sample a uniform random 𝑐
$← B

(4) Compute 𝑎 ← 𝑔𝑠𝑞 · (ℎ𝑐 )−1
.

(5) Program the random oracle 𝐻 (𝑔𝑞, ℎ, 𝑎) = 𝑐 .

(6) Output 𝜋 ← (𝑐, 𝑠)
Now note that, the proof (𝑐, 𝑠) satisfies the verification test, be-

cause (i) 𝑠 is in the correct range; (ii) the equation in Step 4 holds

and (iii) the random oracle is correctly programmed in Step 5. Note

that, if a malicious verifies makes 𝑄𝐻 many RO queries, then the

probability of successfully obtaining a correct input-output pair

is bounded by 𝑄2

𝐻
/2|B|. Setting 𝑄2

𝐻
= 2

_−_st
this probability is

negl(_st).
Again, if the above event does not happen then the only event

when the simulated 𝑠 and an actual 𝑠 produced by the prover does

not match when 2
_st · |D𝑞 | · B ≥ 𝑟 > 2

_st−1 · |D𝑞 | · B. This
happens with probability 2

−_st
. So the statistical distance btween

the simulated and real proof is bounded by negl(_st) as required.
Knowledge of Argument. We can use the low order assump-

tion and strong root assumption to argue knowledge of argument

similar to prior works [25, 32, 74]. The idea is to use the standard

forking/rewinding technique to obtain two challenges 𝑐, 𝑐 ′ for the
same 𝑎, and subsequently two different 𝑠, 𝑠 ′ such that we have:

𝑔𝑠𝑞 · ℎ−𝑐 = 𝑔𝑠
′
𝑞 · ℎ−𝑐

′
. Let 𝑑 = gcd(𝑠 − 𝑠 ′, 𝑐 − 𝑐 ′). Then we define

𝛾 = 𝑔
𝑠−𝑠′
𝑑

𝑞 · (ℎ−1)
𝑐−𝑐′
𝑑

Clearly, 𝛾𝑑 = 1. Now there are two cases:

• Case-1: 𝛾 ≠ 1. In this case, we have an element 𝛾 ∈ 𝐺 which

has order 𝑑 < 𝑐 − 𝑐 ′ < B. That implies a break of B-low order

assumption. So the probability of this case is negligible.

• Case-2: 𝛾 = 1. In this case we have 𝑔
𝑠−𝑠′
𝑑

𝑞 = ℎ
𝑐−𝑐′
𝑑 . Define 𝑓 = 𝑐−𝑐′

𝑑
Then there are two sub-cases:

– Case-2.(a): 𝑓 ≠ 2
𝜌
for any integer 𝜌 . In this case we can

write using Euclidean GCD: 𝑑 = 𝛼 (𝑠 − 𝑠 ′) + 𝛽 (𝑐 − 𝑐 ′) for
integers 𝛼, 𝛽 . Then we have:

𝑔𝑑𝑞 = 𝑔
𝛼 (𝑠−𝑠′)+𝛽 (𝑐−𝑐′)
𝑞

= ℎ𝑓 𝑑𝛼𝑔
𝑓 𝑑𝛽
𝑞

This means we can write:

𝑔𝑞 = (ℎ𝛼𝑔𝛽𝑞 ) 𝑓

So, for 𝑌 = 𝑔𝑞 we get 𝑋 = ℎ𝛼𝑔
𝛽
𝑞 and 𝑓 is not a power of

two – this solves the strong root assumption over 𝐺 . We

note that, 𝑔𝑞 may not be a random element in𝐺𝑞
, but in𝐺𝑞

.

However, in the reduction we can choose 𝐺 to be a random

power of 𝐺 to resolve this, since we know that the order

of𝐺 divides the order of𝐺 (while both remains unknown)

this is possible.

– Case-2.(b): 𝑓 = 2
𝜌
. In this case let𝑤 = 𝑠−𝑠′

𝑑
∈ Z (since 𝑑 is

the gcd of 𝑠−𝑠 ′ and 𝑐−𝑐 ′). Then we haveℎ𝑓 = 𝑔𝑤𝑞 . However,

since the group 𝐺𝑞
has an odd order (the order 𝑠 divides �̂�),

the integer 𝑓 = 2
𝜌
must divide𝑤 , otherwise we would have

an element that has an even order. Therefore, we can write

𝑔

𝑤
𝑓

𝑞 = ℎ, where 𝑤
𝑓
∈ Z which is a witness. Note that the

witness is in the range [(2_st + 1) · |D𝑞 | · B] instead of the

original range B. But that suffices as they are equal modulo

the order of 𝐺𝑞
.

This concludes the proof for knowledge of argument.

□
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C SECURITY OF THE MULTI-RECEIVER
ENCRYPTION SCHEME

We provide detailed proof of the security of class group-based multi-

receiver encryption scheme. Specifically we prove Theorem 3.2

below.

Proof. The proof idea basically follows footsteps of the proof

for the linearly homomorphic encryption scheme provided in [27],

with adequate changes for the multi-receiver case. For simplicity

of exposition, we assume that 𝑛 = 2 and 𝑡 = 1 – extending to the

general case is straightforward. Suppose that A corrupts 𝑠𝑘2, and

outputs two message vectors ®𝑚0 = (𝑚1,𝑚2) and ®𝑚1 = (𝑚′
1
,𝑚2),

where the second element is the same by condition. Let us call

the indistinguishability game with 𝑏 = 0: Game0 and with 𝑏 = 1:

Game1. We show that using the hard subgroup assumption (Def. 1)

we can move from Game0 to a mental game (via a sequence of

hybrids) where the message𝑚1 is statistically hidden. A similar

sequence of hybrid can be constructed to move from Game1 to

the same mental game. To start with first note that in Game0 the

adversary’s view can be expressed as:

𝑠𝑘2, ℎ1 = 𝑔
𝑠𝑘1

𝑞 , ℎ2 = 𝑔
𝑠𝑘2

𝑞 ;𝑅 = 𝑔𝑟𝑞 ;𝐸1 = 𝑓𝑚1ℎ𝑟
1
;𝐸2 = 𝑓𝑚2ℎ𝑟

2

where 𝑠𝑘1, 𝑠𝑘2, 𝑟
$← D𝑞

In Hyb
1
we can write 𝐸1 = 𝑓𝑚1𝑅𝑠𝑘1

and 𝐸2 = 𝑓𝑚1𝑅𝑠𝑘2
, and clearly

Hyb
1
and Game0 are identically distributed. In the next hybrid

Hyb
2
, 𝑠𝑘1 is sampled as 𝑠𝑘1

$← D instead of D𝑞 . However, since

the adversary is given 𝑠𝑘1 only in the exponents of𝑔𝑞 and 𝑅, both of

which are in𝐺𝑞
, information-theoretically A only sees 𝑠𝑘1 mod 𝑠 .

Also drawing 𝑠𝑘1

$← D𝑞 induces a distribution with is 2
−_st

close

to the uniform distribution over Z𝑠 in the exponent and similarly

drawing 𝑠𝑘1

$← D induces a distribution with is 2
−_st

close to the

uniform distribution over Z𝑞𝑠 in the exponent. Therefore, we can

conclude that the statistical distance between Hyb
1
and Hyb

2
is

bounded by 2
−_st+1

.

In Hyb
3
we change 𝑅 to 𝑅 = 𝑓 𝑢𝑔𝑟𝑞 for 𝑢

$← Z𝑞 . Now we can

argue that Hyb
2
is indistinguishable from Hyb

3
as long as the hard

sub-group problem (Def. 1) holds. The reduction simply plugs in

the challenge value into 𝑅 as there is no dependency on any of

exponent. In particular, the adverasry’s view is computed as:

𝑠𝑘2, ℎ1 = 𝑔
𝑠𝑘1

𝑞 , ℎ2 = 𝑔
𝑠𝑘2

𝑞 ;𝑅;𝐸1 = 𝑓𝑚1𝑅𝑠𝑘1
;𝐸2 = 𝑓𝑚2𝑅𝑠𝑘2

where 𝑠𝑘1

$← D; 𝑠𝑘2

$← D𝑞

Clearly when 𝑅 = 𝑔𝑟𝑞 Hyb
2
is simulated, and when 𝑅 = 𝑓 𝑢𝑔𝑟𝑞 then

Hyb
3
is simulated.

In Hyb
3
we note that the adversary receives 𝐸1 = 𝑓𝑚1+𝑢 ·𝑠𝑘1ℎ𝑟

1
.

Given adversary’s view information theoretically ℎ𝑟
1
is fixed. Hence

an unbounded adversary can obtain𝑚1 + 𝑢 · 𝑠𝑘1 mod 𝑞 (since the

order of ⟨𝑓 ⟩ = 𝐹 is 𝑞). Now, note that in Hyb
2
, we change the

sampling of 𝑠𝑘1 from a distribution, which is 2
−_st

close Z𝑞.𝑠 . Now,
𝑠𝑘1 mod 𝑞𝑠 can be written as (𝑠𝑘1 mod 𝑞, 𝑠𝑘1 mod 𝑠) using Chi-

nese remainder theorem – in that 𝑠𝑘1 mod 𝑞 is uniform random in

Z𝑞 as long as 𝑠𝑘1 mod 𝑞𝑠 is uniform random in Z𝑞𝑠 . Furthermore,

𝑠𝑘1 mod 𝑞 is independent of 𝑠𝑘1 mod 𝑠 . Therefore, although an un-

bounded adversary obtains a fixed 𝑠𝑘1 mod 𝑠 from the public key

ℎ1 = 𝑔
𝑠𝑘1

𝑞 (⟨𝑔𝑞⟩ = 𝐺𝑞
has order 𝑠), 𝑠𝑘1 mod 𝑞 is indeed 𝑠−_st close

to uniformly random value in Z𝑞 . So,𝑚1 + 𝑢 · 𝑠𝑘1 mod 𝑞 is 2
−_st

close to uniform random value in Z𝑞 . Similarly we can arrive at

Hyb
3
starting from Game1. Hence we can conclude that Game0

and Game1 is computationally indistinguishable – this concludes

the proof.

□

D SECURITY OF NIZK PROOF OF
CORRECTNESS OF SECRET-SHARING

Here we provide security arguments for the NIZK proof of cor-

rect secret sharing from Section 3.3. In particular, we show that

the proof system satisfies completeness, statistical soundness, and

zero-knowledge in the random oracle model as per Definition 6.

Specifically we prove Theorem 3 below.

Proof. We prove perfect completeness, statistical soundness in

ROM and statistical zero-knowledge in ROM.

Completeness. The completeness can be seen from checking the

verification equations:

• 𝑊 · 𝑅𝛾 ′ = 𝑔𝜌+𝑟𝛾
′
= 𝑔

𝑧𝑟
𝑞 ;

• 𝑋 · (∏𝑡
𝑗=0

𝐴

∑𝑛
𝑖=1

𝑖𝑘𝛾 𝑗

𝑗
)𝛾 ′

= 𝑋 ·
(
𝐴
(𝛾+𝛾2+...)
0

· 𝐴(𝛾+2𝛾
2+...)

1
· 𝐴(𝛾+2

2𝛾2+...)
2

. . .

)𝛾 ′
= 𝑋 ·

(
𝑔𝑎0 (𝛾+𝛾2+...) · 𝑔𝑎1 (𝛾+2𝛾2+...) · 𝑔𝑎2 (𝛾+22𝛾2+...) . . .

)𝛾 ′
= 𝑋 ·

(
𝑔 (𝑎0+𝑎1+...)𝛾+(𝑎0+2𝑎1+22𝑎2+...)𝛾2+...

)𝛾 ′
= 𝑋 ·

(
𝑔𝑠1𝛾+𝑠2𝛾

2+...
)𝛾 ′

= 𝑔𝛼+𝛾
′∑𝑛

𝑖=1
𝑠𝑖𝛾

𝑖
= 𝑔𝑧𝑠 ;

• (∏𝑛
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾 ′ · 𝑌

=

(
𝑓 𝛾
′ (∑𝑛

𝑖=1
𝑠𝑖𝛾

𝑖 ) ·∏𝑛
𝑖=1

ℎ
𝑟𝛾 ′𝛾𝑖

𝑖

)
·
(
𝑓 𝛼 ·∏𝑛

𝑖=1
ℎ
𝜌𝛾𝑖

𝑖

)
= 𝑓 𝛼+𝛾

′∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 ·∏𝑖 ℎ

(𝑟𝛾 ′+𝜌)𝛾𝑖
𝑖

= 𝑓 𝑧𝑠 ·∏𝑛
𝑖=1
(ℎ𝛾

𝑖

𝑖
)𝑧𝑟

Statistical Soundness in ROM. The soundness argument is es-

sentially the same as the one given by Groth [47](As mentioned

in Groth’s paper, we do not actually need simulation soundness.)

but adjusted to our class group setting. The soundness holds un-

conditionally with overwhelming probability (≥ 1 − negl(_st)) in
the random oracle model with appropriately chosen _st.

In particular, we consider an unbounded adversary, which can,

however, make only bounded number of RO queries – we assume

it makes𝑄𝐻 queries to 𝐻 and𝑄𝐻 ′ queries to 𝐻
′
. This adversary at-

tempts to produce a “bad” protocol instance {ℎ𝑖 , 𝐸𝑖 , 𝐴 𝑗 , 𝑅}𝑖∈[𝑛], 𝑗 ∈[𝑡 ]
which is not in ℜCS. Let us elaborate what that means. First, note

that the DLog commitments 𝐴 𝑗 = 𝑔𝑎 𝑗
are perfectly binding for

the coefficients 𝑎 𝑗 ∈ Z𝑞 of the hidden polynomial 𝑃 . Let 𝑃 (𝑖) = 𝑠𝑖
for all 𝑖 ∈ [𝑛]. Furthermore 𝑅 = 𝑔𝑟𝑞 information theoretically fixes

𝑟 ∈ Z𝑠 . Also suppose each 𝐸𝑖 has the form 𝑓 𝑠𝑖ℎ𝑟
𝑖
. Therefore, a

“bad’ instance must have at least one “bad” 𝐸𝑖 = 𝑓 𝑠𝑖ℎ𝑟
𝑖
such that

𝑠𝑖 ≠ 𝑠𝑖 ∈ Z𝑞 . Now if the verification passes, that means the proof

𝜋CS ← (𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 ) is well-formed, which means it satisfies
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the three verification equations. So, the only way the unbounded

adversary wins are in the following three events:

• Event1: The adversary predicts 𝛾 ′ correctly before fixing𝑊,𝑋,𝑌 .

If this is possible, then the adversary can easily choose uniform

random 𝑧𝑟 , 𝑧𝑠 in the correct range plus 𝛾 = 𝐻 (inst). From these

values it can easily compute 𝑋,𝑌, 𝑍 from the verification equa-

tions, such that they all satisfy.

• Event2: The adversary manages to find a 𝛾 such that

∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 =∑

𝑖=1
𝑠𝑖𝛾

𝑖
even when 𝑠 𝑗 ≠ 𝑠 𝑗 for (possibly more that one) 𝑗 . In

this case, if the first two equations verify (which does not depend

on this fact), then by this fact the third equation also verifies. So

this constitutes a break of the soundness.

• Event3: In this event

∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 ≠

∑
𝑖=1

𝑎𝑖𝛾
𝑖
, yet all three equa-

tions verify correctly.

Now, we show that:

Pr[Event1 ∨ Event2 ∨ Event3]
≤ Pr[Event1]+ Pr[Event2] + Pr[Event3]
≤ 3 Pr[Event1]+2 Pr[Event2 | ¬Event1]

+ Pr[Event3 | ¬(Event1 ∨ Event2)] ≤ negl(_st)
where the first inequality follows from a union bound, the second

one from simple partitioning and the third one from the three

lemmas we prove next.

Lemma 6. As long as the adversary makes 𝑄 many queries to the

RO such that 𝑄2/2𝑞 is negl(_st), we have that
Pr[Event1] ≤ negl(_st)

Proof. Assume that the adversary makes at most 𝑄𝐻 ′ queries

to 𝐻 ′, the probability with which the adversary correctly predicts

a corret 𝛾 ′ is upper bounded by 𝑄2

𝐻 ′/2𝑞. For 𝑄
2/2𝑞 = negl(_st) we

can set 𝑄2 = 𝑂 (2_−_st ), since 𝑞 = 𝑂 (2_). □

Lemma 7. As long as 𝛾 is chosen uniformly at random in Z𝑞 , we
have that

Pr[Event2 | ¬Event1] ≤ negl(_)

Proof. First note that, since Event1 does not happen, 𝛾 ′ is com-

puted legitimately after computing 𝛾, 𝑋,𝑌, 𝑍 . Then, by definition if

Event2 happens, we have that:

𝑛∑︁
𝑖=1

𝑠𝑖𝛾
𝑖 =

𝑛∑︁
𝑖=1

𝑠𝑖𝛾
𝑖

and there is a 𝑠 𝑗 ≠ 𝑠 𝑗 . Denote for each 𝑖: 𝑠𝛿
𝑖
= 𝑠𝑖 − 𝑠𝑖 ∈ Z𝑞 . So we

can write:

𝑛∑︁
𝑖=1

𝑠𝛿𝑖 𝛾
𝑖 = 0

and by the premise this 𝑛-degree polynomial 𝑃𝛿 =
∑𝑛
𝑖=1

𝑠𝛿
𝑖
𝑥𝑖 is not

identically zero. Using Schwartz-Zippel lemma we conclude that as

long as 𝛾 is chosen uniformly at random from Z𝑞 (which is true as

we are in ROM), the probability of the the polynomial defined by

𝑃𝛿 (𝛾) = 0 ∈ Z𝑞 is at most 𝑛/𝑞 which is negl(_). □

Lemma 8. As long as 𝛾 ′ is chosen uniformly at random, we have

that:

Pr[Event3 | ¬(Event1 ∨ Event2)] ≤ negl(_)

Proof. In this case since Event1 and Event2 are not happening,

we can assume that all verification equations pass even when there

exists an 𝑗 for which 𝑠 𝑗 ≠ 𝑠 𝑗 . In particular, the first two equations

ensure that 𝑧𝑟 = 𝑟𝛾 ′ + 𝜌 mod 𝑠 and 𝑧𝑠 =
∑𝑛
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛼 mod 𝑞. How-

ever, since 𝑞 and 𝑠 are co-prime we can write 𝑧𝑟 = 𝑟𝛾 ′ + 𝜌 + 𝑠b over
integer. Now the third equation over𝐺 (which has order 𝑞𝑠) can be

written as.

(
𝑛∏
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾
′
· 𝑌 = 𝑓 𝑧𝑠 ·

𝑛∏
𝑖=1

(ℎ𝛾
𝑖

𝑖
)𝑟𝛾
′+𝜌+𝑠b

Now, since each ℎ𝑖 is in 𝐺
𝑞
, which has order 𝑠 , we have ℎ𝑠

𝑖
= 1 we

can re-write the equation as:

(
𝑛∏
𝑖=1

𝐸
𝛾𝑖

𝑖
)𝛾
′
· 𝑌 = 𝑓 𝑧𝑠 ·

𝑛∏
𝑖=1

(ℎ𝛾
𝑖

𝑖
)𝑟𝛾
′+𝜌

Now, expressing each 𝐸𝑖 as 𝑓
𝑠𝑖ℎ𝑟

𝑖
we can re-write the equation as:

𝑓
∑𝑛

𝑖=1
𝑠𝑖𝛾

𝑖𝛾 ′ ·
𝑛∏
𝑖=1

(ℎ𝛾
𝑖

𝑖
)𝑟𝛾
′
· 𝑌 = 𝑓 𝑧𝑠 ·

𝑛∏
𝑖=1

(ℎ𝛾
𝑖

𝑖
)𝑟𝛾
′+𝜌

Clearly, 𝑌 must be of the form 𝑌 = 𝑓 𝛽 ·∏𝑛
𝑖=1

ℎ
𝛾𝑖𝜌

𝑖
for some 𝛽 ∈ Z𝑞 .

Using the value of 𝑧𝑠 we obtain:

𝛾 ′
𝑛∑︁
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛽 = 𝛾 ′

𝑛∑︁
𝑖=1

𝑠𝑖𝛾
𝑖 + 𝛼 mod 𝑞

Again, defining 𝑠𝛿
𝑖
= 𝑠𝑖 − 𝑠𝑖 mod 𝑞 we obtain:

𝛾 ′
𝑛∑︁
𝑖=1

𝑠𝛿𝑖 𝛾
𝑖 + 𝛼 − 𝛽 = 0 mod 𝑞

Unless the last equation is identically 0, for a fixed 𝛾 the probability

of this holding equation over the choice of a uniform random 𝛾 ′ is
at most 1/𝑞 which is negl(_).

□

This concludes the proof. Finally note that, for example, a rea-

sonable choice can be 𝑞 = 𝑂 (2256) and 𝑄𝐻 = 𝑂 (2100), then the

overall probability is smaller than 2
−40

which is negligible in _st
for a typical choice of _st = 40.

Statistical Zero-knowledge in ROM.
16

Following [47], we argue

the statistical zero-knowledge of the proof of correct sharing in the

ROM. The PPT simulator works as follows:

(1) Set 𝐻 (inst) = 𝛾 where 𝛾 is uniformly at random.

(2) Choose 𝛾 ′ uniformly at random.

(3) Sample 𝑧𝑟
$← [𝑞 · |D𝑞 | · 2_st] and 𝑧𝑠

$← Z𝑞 .
(4) Compute 𝑋,𝑌,𝑊 from the three verification equations.

(5) Finally program 𝛾 ′ = 𝐻 ′(𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 ).
Clearly, the verification succeeds always. However, similar to the

proof of exponent, if the verifier asks a RO query on𝐻 ′(𝑊,𝑋,𝑌, 𝑧𝑟 , 𝑧𝑠 )
then the simulation fails. But as long as the verifiermakes a bounded

number of queries, this probability can be made ≤ negl(_st) by ad-

justing the parameters. Finally, we note that the simulated value 𝑧𝑟

is identically distributed to the real 𝑧𝑟 as long as 𝜌 < 𝑞 · |D𝑞 | (2_st−1).

16
We note that, in ROM it is possible to achieve both zero-knowledge and soundness

statistically So we do not have to rely on any other assumption here. However, we

need to limit the number of queries made to the RO.
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The probability of happening otherwise is upper bounded by 2
−_st

,

which is negligible in _st. □

E SECURITY PROOF FOR cgVSS
We provide a detailed proof of Theorem 4 here.

Proof. Consider four mutually exclusive and exhaustive cases:

• Case-1When 𝑃𝐷 is honest and |𝐶 | ≤ 𝑡 .

• Case-2When 𝑃𝐷 is corrupt and |𝐶 | ≤ 𝑡 .

• Case-3When 𝑃𝐷 is corrupt and |𝐶 | > 𝑡 .

• Case-4When 𝑃𝐷 is honest and |𝐶 | > 𝑡 .

For each Case-𝑖 we construct a separate simulator S𝑖 . Our actual
simulator S first obtains 𝑝𝑝CG by running CG.ParamGen and then

invokes the PKI setup with the adversary by choosing secret keys

{𝑠𝑘𝑖 }𝑖∈𝐻 for the honest parties. At the end it receives all public keys

{𝑝𝑘𝑖 }𝑖∈[𝑛] . Then it simply runs S𝑖 with input 𝑝𝑝CG, {𝑝𝑘𝑖 }𝑖∈[𝑛]
based on which case it is in – since we are in the static corruption

model, this will be known in the beginning. We describe each

simulators in details now, and argue that why the simulation is

correct.

Case-1. For simplicity suppose that |𝐶 | = 𝑡 (the other cases can

extended in a straightforward manner). The simulator S1 obtains

({𝑠𝑖 }𝑖∈𝐶 , { ¯ℎ𝑖 }𝑖∈[𝑛] ) in this case and works as follows:

• Define (𝐴0, . . . , 𝐴𝑡 ) by using a linear transformation from 𝑛

evaluations to 𝑡 + 1 coefficients in the exponent. Let cmt←
(𝐴0, . . . , 𝐴𝑡 ).

• Let 𝑠 ′
𝑖
← 0 for all 𝑖 ∈ 𝐻 . and 𝑠 ′

𝑖
← 𝑠𝑖 for all 𝑖 ∈ 𝐶 .

• Compute (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS) ← ShareEnc′(𝑝𝑝, cmt, {𝑠 ′
𝑖
, 𝑝𝑘𝑖 }𝑖∈[𝑛] )

where ShareEnc′ is the same as ShareEnc (as described in

Fig. 4) except that the proof 𝜋CS is generated using the

zero-knowledge simulator SPoC.
• Send (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS, cmt) to the adversary.

• On receiving (sid, Recon) from the ideal functionality, it

forwards the reconstruction request to the adversary and

then when adversary sends back {𝑠 ′
𝑖
}𝑖∈𝐶′ for𝐶 ′ ⊆ 𝐶 , define

𝑠𝑖 ← No-Response for all 𝑖 ∈ 𝐶 \𝐶 ′. Then for each 𝑖 ∈ 𝐶 ′
checks whether 𝑔𝑠

′
𝑖 = ¯ℎ𝑖 . If not, then set 𝑠𝑖 ← ⊥, else set

𝑠𝑖 ← 𝑠 ′
𝑖
. Finally sends {𝑠𝑖 }𝑖∈𝐶 to FVSS.

To argue the simulation is correct we start from the real protocol

and through a number of hybrids gradually move to the ideal world.

The hybrids are described as follows:

• Hybrid Hyb
1
. This hybrid is the same as cgVSS, except that the

proof of correctness 𝜋CS is now simulated, and thus is indepen-

dent of the witness wit = ((𝑠1, . . . , 𝑠𝑛), 𝑟 ). Syntactically, instead
of ShareEnc in Step 2, ShareEnc′ (as defined above) is run. This

step is statistically close to the real world execution of cgVSS,
which follows from the statistical zero-knowledge property of

the proof of correctness.

• Hybrid Hyb
2
. This hybrid is the same as Hyb

1
except that now,

the secret 𝑠 is not known, and the honest party’s shares are

defined to be 0.

We provide the details below with the changes highlighted in

blue.

(1) Denote the set of corrupt parties by 𝐶 ⊂ [𝑛] such that

|𝐶 | ≤ 𝑡 and 𝑛 ∉ 𝐶 (the dealer is not corrupt). Define the set

of honest parties as 𝐻 ← [𝑛] \𝐶 .

(2) Sample a uniform random 𝑠
$← Z𝑞 . Run

({𝑠𝑖 }𝑖∈[𝑛] , {𝑎 𝑗 } 𝑗 ∈[𝑡 ] , cmt) ← Share(𝑝𝑝, 𝑠),

where cmt = (𝐴0, . . . , 𝐴𝑡 ).
(3) For all 𝑖 ∈ [𝑛] sample 𝑠 ′

𝑖

$← Z𝑞 if 𝑖 ∈ 𝐶 , and 𝑠 ′
𝑖
← 0

if 𝑖 ∈ 𝐻 . Furthermore, use 𝐴0 and {𝑠𝑖 }𝑖∈𝐶 to re-define

cmt = (𝐴0, 𝐴1, . . . , 𝐴𝑡 ) using Lagrange interpolation in the

exponent.

(4) Compute (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS) ← ShareEnc′(𝑝𝑝, cmt, {𝑠 ′
𝑖
, 𝑝𝑘𝑖

}𝑖∈[𝑛] ), where 𝜋CS is a simulated proof.

(5) Then give the following to A:

(
𝑅, {𝐸𝑖 }𝑖∈[𝑛] , cmt, 𝜋CS

)
(6) The rest remains unchanged.

We prove that:

Lemma 9. Hyb
1
and Hyb

2
are computationally indistinguishable

as long as the underlying multi-receiver encryption scheme is se-

cure.

Proof. For any adversary A that distinguishes between the

hybrids we construct an admissible reduction which breaks the

security of underlying multi-receiver encryption scheme as fol-

lows:

– Obtain 𝑝𝑝CG from the challenger.

– Send 𝐶 to the challenger obtain {𝑝𝑘𝑖 }𝑖∈𝐻 .

– Sample appropriate 𝑝𝑝Kex for the NIZK argument of knowl-

edge to be used in the PKI setup. Let 𝑝𝑝 ← {𝑝𝑝CG ∪ 𝑝𝑝Kex}.
Then run a PKI setup protocol Π

𝑝𝑝

PKI to obtain {𝑝𝑘𝑖 }𝑖∈𝐶
– Obtain 𝑝𝑝CG and 𝑛 public keys 𝑝𝑘

1
, . . . , 𝑝𝑘𝑛 from the encryp-

tion challenger. Send𝐶 to the challenger to get back {𝑠𝑘𝑖 }𝑖∈𝐶 .
Sample additional public parameters to compute 𝑝𝑝PoC for the

proof of correct sharing scheme such that they are consistent

with 𝑝𝑝CG. Give 𝑝𝑝CG ∪𝑝𝑝PoC ∪ {𝑝𝑘𝑖 }𝑖∈[𝑛] ∪ {𝑠𝑘𝑖 }𝑖∈𝐶 toA.

– Send ®𝑚0 and ®𝑚1 to the challenger where ®𝑚0 and ®𝑚1 are com-

puted as follows:

∗ Sample 𝑠
$← Z𝑞 and 𝑠𝑖

$← Z𝑞 for all 𝑖 ∈ 𝐶 . Using

Lagrange interpolation compute {𝑠𝑖 }𝑖∈𝐻 .

∗ For all 𝑏 ∈ {0, 1} and all 𝑖 ∈ 𝐶 set𝑚𝑏,𝑖 = 𝑠𝑖 .

∗ For all 𝑖 ∈ 𝐻 set𝑚0,𝑖 ← 𝑠𝑖 and𝑚1,𝑖 ← 0.

– When the challenger returns (𝑅, {𝐸𝑖 }𝑖∈[𝑛] ), compute:

∗ cmt← (𝐴0, . . . , 𝐴𝑡 ) computed by linear transformation

to coefficients in the exponent.

∗ Use the zero-knowledge simulator SPoC of the proof of

correct sharing to generate a simulated proof 𝜋CS using

the instance:(
{ℎ𝑖 }𝑖∈[𝑛] , (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , cmt)

)
– Send the following to A:(

𝑅, {𝐸𝑖 }𝑖∈[𝑛] , cmt, 𝜋CS
)

– When A concludes Hyb
1
return 0 to the challenger, and in

case A concludes Hyb
2
, then send 1.

It is easy to argue that if 𝑏 = 0, A’s view is the same as in Hyb
1
,

and when 𝑏 = 1, that is the same as inHyb
2
. So the probability of

A’s breakingHyb
1
andHyb

2
is upper bounded by the probability

of the reduction’s breaking the security of the encryption. This

concludes the proof. □
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Finally we note that Hyb
2
is identical to the ideal world is we just

use the simulator S1 instead, as the change is only syntactic. This

concludes the analysis for this case. □

Case-2. The simulator S2 works as follows:

• Run ΠPKI with appropriate parameters to get {𝑝𝑘𝑖 }𝑖∈[𝑛]
and {𝑠𝑘𝑖 }𝑖∈𝐻 .

• Once receive (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , 𝜋CS, cmt) from the adversary.

Parse cmt as (𝐴0, . . . , 𝐴𝑡 ). Verify 𝜋CS, if that fails then send

(sid,⊥) to FVSS in Step 2a. Otherwise:

– Decrypt using {𝑠𝑘𝑖 }𝑖∈𝐻 to obtain {𝑠𝑖 }𝑖∈𝐻 . The use La-

grange to compute {𝑠𝑖 }𝑖∈𝐶 . Since there are at least 𝑡 +1

honest parties, reconstruction of all 𝑠𝑖 is possible. Com-

pute { ¯ℎ𝑖 }𝑖∈[𝑛] by computing linear transformation to

𝑛 evaluations in the exponent from (𝐴0, . . . , 𝐴𝑡 ). Send
(sid, {𝑠𝑖 }𝑖∈𝐻 , { ¯ℎ𝑖 }𝑖∈[𝑛] , 𝑠) to FVSS in Step 2a.

• For a (sid, Recon) query, communicate with the adversary

about reconstruction. When adversary sends back {𝑠 ′
𝑖
}𝑖∈𝐶′

for 𝐶 ′ ⊆ 𝐶 , define 𝑠𝑖 ← No-Response for all 𝑖 ∈ 𝐶 \ 𝐶 ′.
Then for each 𝑖 ∈ 𝐶 ′ checks whether 𝑔𝑠′𝑖 = ¯ℎ𝑖 . If not, then

set 𝑠𝑖 ← ⊥, else set 𝑠𝑖 ← 𝑠 ′
𝑖
. Finally sends {𝑠𝑖 }𝑖∈𝐶 to FVSS.

To analyze the correctness of simulation we rely on the soundness

of the NIZK proof of correct sharing and the binding of DLog com-

mitments. In particular, the soundness ensures that as long as the

proof 𝜋CS verifies correctly, the dealer’s message encrypts a share

𝑠 correctly. Therefore, using Lagrange interpolation to construct all

shares is indeed correct. Furthermore, the binding of cmt ensures
that, as long as dealing succeeds the session’s secret is uniquely

defined, and hence any effort to reconstruct to another value is

bound to fail.

Case-3. This is similar to Case-2, but now sid is corrupt and hence
the simulator, after PKI has less than 𝑡 + 1 secret keys {𝑠𝑘𝑖 }𝑖∈𝐻 for

|𝐻 | < 𝑡+1. Therefore, once it obtains themessage (𝑅, {𝐸𝑖 }𝑖∈[𝑛] , cmt, 𝜋CS),
it first checks the proof 𝜋CS – if that fails then send (sid,⊥) in
Step 2b, otherwise it obtains < 𝑡 + 1 values {𝑠𝑖 }𝑖∈𝐻 and send

(sid, {𝑠𝑖 }𝑖∈𝐻 , { ¯ℎ𝑖 }𝑖∈[𝑛] ,★), where { ¯ℎ𝑖 }𝑖∈[𝑛] are computed from cmt
by linear transformation in the exponent. Furthermore, when (sid, Recon)
is received, then it ensures that the response is consistent with the

committed value
¯ℎ = 𝑔𝑠 . So, the correctness follows again from the

soundness of the proof of correct sharing plus the binding of the

DLog commitment. We skip the details.

Case-4. In this case, the simulator obtains (sid, 𝑠) in Step 1. This

means, there is no privacy of 𝑠 and the simulation becomes straight-

forward for this part. However, the (sid, Recon) is handled just like

the above. This ensures guaranteed dealing, because as long as there

are at least 𝑡 + 1 parties who are willing to reconstruct, the value 𝑠

can be (uniquely) reconstructed. Furthermore, even if reconstruc-

tion is not possible, that is either Recon-Declined or Recon-Error
is returned, the corrupt parties can not prevent a successful (pub-

lic) verification, as in this case 𝑇 [sid] ≠ ⊥. Dealing-Failed is

returned by FVSS if and only if 𝑇 [sid] = ⊥.

F SECURITY OF NI-DKG
We provide the security analysis of our generic NI-DKG protocol

(Figure 6) in FVSS-hybrid by proving Theorem 5 below.

Proof. We analyze two different modes. First let us consider

the strong mode when 𝑛 ≥ 2𝑡 + 1 and 𝑡 ′ = |𝐶 | ≤ 𝑡 . For simplicity

assume 𝑡 ′ = 𝑡 .

Specifically, for any PPT adversaryA that corrupts a set𝐶 of size

≤ 𝑡 in the real protocol cgDKG, we construct a PPT simulator S in

the ideal world. The simulator simulates the honest party’s response

and the ideal functionality FVSS’s response to the adversary. It

works as follows:

• Obtain { ¯ℎ𝑖 }𝑖∈𝐻 from FDKG. For each 𝑖 ∈ 𝐻 :

– Choose {𝑠𝑖 𝑗 } 𝑗 ∈𝐶 uniformly at random. Note that these

value together with
¯ℎ𝑖 uniquely defines all {𝑠𝑖 𝑗 } 𝑗 ∈[𝑛] .

– Compute
¯ℎ𝑖 𝑗 for all 𝑗 ∈ [𝑛] using Lagrange in the

exponent.

– Send (sid𝑖 , { ¯ℎ𝑖 𝑗 } 𝑗 ∈[𝑛] , {𝑠𝑖 𝑗 } 𝑗 ∈𝐶 ) to the adversary.

• For all 𝑖 ∈ 𝐶 (assuming, for simplicity, no ⊥ is returned)

receive (sid𝑖 , 𝑠𝑖 , {𝑠𝑖 𝑗 } 𝑗 ∈𝐻 , { ¯ℎ𝑖 𝑗 } 𝑗 ∈[𝑛] ) or ⊥ from FVSS. Re-
construct { ¯ℎ𝑖 }𝑖∈𝐶 using Lagrange in the exponent. Send

{𝑠𝑖 }𝑖∈𝐶 to FDKG.
• Get back {(𝑦, {𝑦𝑖 }𝑖∈[𝑛] ), {𝑥𝑖 }𝑖∈𝐶 } from FDKG, which it out-

puts.

• Store (sid, {𝑦𝑖 }𝑖∈[𝑛] , { ¯ℎ𝑖 𝑗 }𝑖, 𝑗 ∈[𝑛] ).
• In response to (sid, Verify, {𝑦𝑖 }𝑖∈[𝑛] ) then look up an (sid,
{𝑦𝑖 }𝑖∈[𝑛] , { ¯ℎ𝑖 𝑗 }𝑖, 𝑗 ∈[𝑛] ), if not found output 0, otherwise

check whether each 𝑦𝑖 =
∏

𝑗 ∈[𝑛] ¯ℎ𝑖 𝑗 for all 𝑖 ∈ [𝑛]. If all of
them satisfies, then output 1, else output 0.

The simulation is correct because we are in the setting when 𝑡 ′ ≤ 𝑡 ,

which means the simulator can choose the corrupt party’s shares

uniformly at random given each honest party’s commitments.

In the weak mode, we assume a non-rushing adversary. So, the

simulator obtains for all 𝑖 ∈ 𝐶 (sid𝑖 , {𝑠𝑖 𝑗 } 𝑗 ∈𝐻 , { ¯ℎ𝑖 𝑗 } 𝑗 ∈[𝑛] ) (or⊥, but
for simplicity we assume it does not receive any ⊥) from multiple

instances of FVSS before it sends anything to the adversary. Then

the simulator works as follows:

• Obtain {𝑠𝑖 }𝐻 from FDKG.
• For all 𝑖 ∈ 𝐻 : send (sid𝑖 , Dealing, 𝑠𝑖 ) to FVSS. Get back
{𝑠𝑖 𝑗 } 𝑗 ∈𝐻 and { ¯ℎ𝑖 𝑗 } 𝑗 ∈[𝑛] .

• For all 𝑖 ∈ 𝐻 compute 𝑥𝑖 ←
∑

𝑗 𝑠𝑖 𝑗 and for all 𝑖 ∈ [𝑛]
compute 𝑦𝑖 ←

∏
𝑗 ∈[𝑛] ¯ℎ𝑖 𝑗 .

• Send (sid, {𝑥𝑖 }𝑖∈𝐻 , {𝑦𝑖 }𝑖∈[𝑛] ) to FDKG.
• Store (sid, {𝑦𝑖 }𝑖∈[𝑛] , { ¯ℎ𝑖 𝑗 }𝑖, 𝑗 ∈[𝑛] ).
• It may send (sid, Failure) in certain cases, for example if

𝑡 ′ = 𝑛 and all corrupt party returns ⊥.
• In response to (sid, Verify, {𝑦𝑖 }𝑖∈[𝑛] ) then look up an (sid,
{𝑦𝑖 }𝑖∈[𝑛] , { ¯ℎ𝑖 𝑗 }𝑖, 𝑗 ∈[𝑛] ), if not found output 0, otherwise

check whether each 𝑦𝑖 =
∏

𝑗 ∈[𝑛] ¯ℎ𝑖 𝑗 for all 𝑖 ∈ [𝑛]. If all of
them satisfies, then output 1, else output 0.

In this case, the simulator obtains honest party’s dealings, only after

it sends corrupt party’s commitments. This is exactly the reason a

non-rushing restriction is needed. Apart from that, the simulation

is very similar to the strong case.

□
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G SECURITY OF PKI
Now we can argue that the protocol always terminates with a

unique set of {𝑝𝑘𝑖 }𝑖∈𝑄 and each honest party 𝑃𝑖 receiving a corre-

sponding 𝑠𝑘𝑖 , and with knowledge of no one else’s secret key.

First, from the security of underlying NIZK argument of knowl-

edge (cf. Def. 6) we obtain that if Kex.Ver(𝑝𝑘𝑖 , 𝜋𝑖 ) returns 1 for

some 𝑖 , then 𝑃𝑖 indeed has a correct key pair (𝑠𝑘𝑖 , 𝑝𝑘𝑖 ) such that

𝑝𝑘𝑖 = 𝑔
𝑠𝑘𝑖
𝑞 ∈ 𝐺𝑞

. The statistical zero-knowledge guarantees that ev-

eryone only knows their own key and nothing else. Finally, from the

completeness of NIZK and the correctness of the encryption scheme

it is straightforward to see that the protocol always terminates with

a unique set of public keys output by the honest parties.

H MITIGATING THE BIASING PUBLIC KEY
ATTACK

cgDKG (and Groth’s NI-DKG) suffer from the same public key

biasing attack as the one presented by Gennaro et al. [43]. This is

because a rushing adversary can observe the first 𝑡 verified secret

sharings and then perform a valid 𝑡 + 1st sharing to bias the public

key while delaying the messages of the other honest parties in the

system. The adversary can first compute the partial public of the 𝑡

honest parties and choose the 𝑡 + 1
𝑠𝑡

party (which the adversary

controls) to bias the public key.

To overcome this, we use an approach [61] where the knowledge

of the commitments does not aid the adversary in biasing the public

key. After verifying the dealings, the parties use the first set of 𝑡 + 1

verified dealers to compute their secret key share. Each party now

publishes the public key computed as exponentiation of the secret

key with a different generator 𝑔′ ∈ G1 than 𝑔1, the one used in

the initial commitment phase. After computing the qualified set,

each party 𝑃𝑘 broadcasts the value (𝑔′)𝑥𝑘 along with a NIZK proof

that the exponent in (𝑔′)𝑥𝑘 is the same as the one computed using

the verified dealings. The parties finally compute the public key

of the DKG instance as 𝑦 =
∏

𝑘∈𝑇 (𝑔′)𝑥𝑘 , where 𝑇 is the set of

parties that have forwarded their public key, the set 𝑇 has at least

𝑡 + 1 parties as only a maximum of 𝑡 parties are corrupted by the

adversary. This adds one round of communication to the DKG

protocol. A previously suggested approach [43] to overcome the

biasing attack is to use perfectly hiding Pedersen’s commitments.

These commitments are published in the initial commit phase while

the public key is computed in the next phase (round) using discrete

log commitments, which are published along with proof of the

equality of the exponents (shared secret). This approach also needs

an extra round for the parties to agree on the public key. However,

the mentioned approach of using a different generator for the public

key is more efficient as no blinding factors (and the corresponding

exponentiations) are needed.

I DEALINGWITH RUSHING ADVERSARIES
USING TIMED LOCK PUZZLE GENERICALLY

Recall that a rushing adversary waits for all messages from the

honest parties to arrive in a given round and then choose its own

message, which can depend on the honest party’s message arbi-

trarily. This makes adversary more powerful than a non-rushing

adversary, who sends the messages without waiting for honest

party’s messages in a round.

We can hope to relax the assumption of the adversary being non-

rushing by making use of a “folklore” trick of employing time-lock

puzzles [74]. The idea is simple: parties may encode their message

in time-lock puzzles for a stipulated time that is greater than the

maximum allowed response time, which is bounded by Δ (the syn-

chrony communication bound) for the parties – this is possible to

define as we assume a synchronous setting and thus have a pre-

defined Δ. Timed-lock puzzles guarantee that until the stipulated

time, no adversary can learn any information about the honest

parties’ messages from their puzzles. Since the allowed response

time is shorter than the timing hardness of the honest puzzles, the

adversary has to commit to its messages without knowing any in-

formation about the honest parties’ messages. A practical downside

of this approach is that everyone is required to solve the puzzles

in each round which is a computationally intensive task. However,

this can also be amortized if we allow parties to send the messages

in plain once it obtains everyone else’s commitment to the puzzles

– this requires an extra round of communication for each existing

round. Even though adversarial puzzles may remain unopened and

need to be solved, Thyagarajan et al. [74] give a construction of

class-group-based time-lock puzzles that allow for batched solving

of these puzzles, resulting in computational effort for solving just a

single puzzle.
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