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Abstract

The Lattice Isomorphism Problem (LIP) is the computational task of recover-
ing, assuming it exists, an orthogonal linear transformation sending one lattice to
another. For cryptographic purposes, the case of the trivial lattice Zn is of par-
ticular interest (ZLIP). Heuristic analysis suggests that the BKZ algorithm with
blocksize β = n/2 + o(n) solves such instances (Ducas, Postlethwaite, Pulles,
van Woerden, ASIACRYPT 2022).
In this work, I propose a provable version of this statement, namely, that ZLIP
can indeed be solved by making polynomially many calls to a Shortest Vector
Problem (SVP) oracle in dimension at most n/2 + 1.
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1 Introduction

Two lattices Λ,Λ′ ⊂ Rn are said to be isomorphic if there exists a rotation between
them, that is a linear orthogonal map O ∈ On(R) such that O · Λ = Λ′. Determining
isomorphism and �nding it if it exists is called the Lattice Isomorphism Problem
(LIP). The best known provable algorithm [1] has super-exponential time nO(n), but
in practice other methods are often preferred [1�4]. They essentially consist in �nding
all the shortest vectors, to then solve a (potentially exponentially large) instance of
the Graph Isomorphism Problem.

The Lattice Isomorphism Problem has recently been proposed as a foundation for
cryptographic construction [5, 6], and the case of rotations of Zn quickly arose as a
natural instantiation for simple and e�cient cryptographic design [7, 8]. In this case
(coined ZLIP [6]), �nding the shortest vectors is su�cient, which generically implies a
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provable algorithm in time 2n+o(n) thanks to the worst-case Shortest Vector Problem
(SVP) algorithm [9, 10].

Prior Provable Algorithms for ZLIP
Yet, one might doubt that �nding the shortest vector in rotations of Zn should be as
hard as in a worst-case lattice. It was suggested already by Szydlo [11] than �nding
rather short yet not necessarily the shortest vector could be su�cient to solve LIP over
Zn, though it was not exactly clear at the time how short of a vector is required nor
how costly it would be to �nd it. The only formal statement of Szydlo is a reduction
from ZLIP to a decisional version of LIP for mild sparsi�cation of Zn.

Bennett, Ganju, Peetathawatchai, and Stephens-Davidowitz [6] indeed proposed
a provable algorithm with complexity 2n/2+o(n) for this task, via a polynomial time
reduction Gap-SVP in the same dimension n, with a constant approximation factor.
Despite the relaxation to an Gap version of SVP, block reductions algorithm remain
insu�cient to reach this result, as they are only known to provide Ω(

√
n) approxi-

mation factors even when the blocksize is close to the full dimension [12�14]. Instead,
they rely on an algorithm of [9] tailored to Gap-SVP; the core of this algorithm is
similar to the 2n+o(n) algorithm for exact-SVP, in particular it operate on lattices of
full dimension n, but the gap allows for some complexity improvements.

Heuristic Algorithms for ZLIP
As for many other lattice problems, the best provable complexity stands in contrast
with the heuristic state of the art. Using standard heuristic analysis (see [15] for a
survey), Ducas, Postlethwaite, Pulles, and van Woerden [8, Sec. 4.2] argued that the
block reduction algorithm BKZ [16, 17] should be successful in �nding those shortest
vectors using a blocksize of β = n/2+ o(n) because the shortest vectors are unusually
short compared to that of a random lattice by a factor Θ(

√
n).

More speci�cally, it is argued that when the lattice is su�ciently reduced, the last
block of the lattice has a large volume, and therefore it is not expected to contain a
vector shorter than the ones we are looking for. This step of the reasoning is entirely
heuristic. From there, one concludes that an SVP call on this last block should indeed
�nd (a projection1 of) some unit vectors of the full Zn lattice. This heuristic conclusion
is con�rmed by extensive experiments.

Plugging the best heuristic complexity of 2.292β+o(β) for SVP [19] in dimension β
leads to a heuristic complexity of 2.146n+o(n).

The result

In this work, I propose a provable variant of the heuristic claim of [8, Sec. 4.2], namely,
exhibiting a block reduction algorithm for solving ZLIP, that indeed relies on polyno-
mially many calls to an SVP oracle in dimensions less than n/2 + 1. The algorithm
is however not exactly BKZ [16, 17], but rather a specialization of the Slide algo-
rithm [12�14]. The key remark is that projected lattices of Zn have a shortest vector

1Lifting this projected solution to a full solution should then be rather easy according to further heuristic
reasoning [18, Claim 1].
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of length either 1 or smaller than
√

1− 1/n (Lemmas 3 and 4). This implies that
the slide algorithm makes signi�cant progress at each iteration, until the �rst block is
itself a rotation of Zk where n = 2k + 1.

Note that this does not directly improve the best provable complexity for ZLIP,
as plugging in the best provable algorithm [9, 10] for SVP in dimension n/2 also
leads to a 2n/2+o(n) complexity, as reached by di�erent means in [6]. While those �nal
complexity are similar, the complexity theoretic reduction underlying these results are
di�erent. The approach of [6] maintain the dimension of the lattice to n, but relax
the problem to a gap version with an constant approximation factor2. On the other
hand the approach of this work divides the SVP dimension but doesn't relax the
problem3. Another di�erence is that our reduction is deterministic while that of [6] is
probabilistic.

Despite the lack of direct impact on the complexity of ZLIP of our approach, we
found it motivating for the following reason. It appears to be the �rst case where we can
prove that block reduction does �nd the shortest vector with a blocksize β < n despite
the lack of uniqueness of the shortest vector. Indeed, to the best of my knowledge, this
was only proved [13, 14] for lattices with polynomial gap of at least Ω(

√
n) between the

�rst and second minima λ1(L) and λ2(L). On the contrary, lattices that are rotation
of Zn have all their successive minima equal λ1(L) = λ2(L) = · · · = λn(L) = 1.

In that sense, this result is a step toward closing the gap between the theory
and practice. Indeed heuristic and experiments suggested that the uniqueness of the
shortest vector is essentially irrelevant in practice, what matter is how unusually short
it is compared to Minkowski's bound [5, 8, 18].

2 Preliminaries

We write a matrix B ∈ Rm×n as B = (b0, . . . , bn−1) where bi is the i-th column vector
of B. We denote by In the n× n identity matrix.

Lattices

If B ∈ Rm×n has full-column rank n, the lattice L generated by the basis B is denoted
by L(B) = B · Zn = {B · x | x ∈ Zn}. We denote by B⋆ = (b⋆0, . . . , b

⋆
n−1) the Gram-

Schmidt orthogonalization (GS) of the matrix (b0, . . . , bn−1). For i ∈ {0, . . . , n− 1},
we denote the projection orthogonal to the span of (b0, . . . , bi−1) by πi; π0 denotes �no
projection�, i.e. the identity. For 0 ≤ i ≤ j < d, we denote by B[i:j] the local projected
block (πi(bi), . . . , πi(bj)), and when the basis is clear from context, by L[i:j] the lattice
generated by B[i:j]. Note that both bounds of the interval [i : j] are inclusive in this
notation.

Metric and Volumetric Properties

The Euclidean norm of a vector v is denoted by ∥v∥. The volume (or determinant)
of a lattice L(B) is vol(L(B)) =

√
|det(BT ·B)| =

∏
i ∥b⋆i ∥. It is an invariant of the

2They in fact propose a trade-o�, which can reach larger approximation factors at the cost of making
super-polynomially or even exponentially many calls to the Gap-SVP oracle

3or only just a little bit: we remark later on that our approach would survive an tiny approximation

factor of 1 + o(n−1/2)
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lattice, it is also invariant under rotation, and is non-negative for any lattice L. The
�rst minimum of a lattice L is the norm of a shortest non-zero vector, denoted by
λ1(L). We use the abbreviations vol(B) = vol(L(B)) and λ1(B) = λ1(L(B)).

The i-th minimal distance λi(L) is de�ned as the smallest radius r > 0 such that
L contains i many linearly independent vectors. These quantities are also invariants
under rotation.

Primitivity

We write π⊥
X for the projection orthogonal to the space spanned by X for any set

X ⊂ Rm. A sublattice S of L is said to be primitive if S = SpanR(S)∩L. Equivalently,
S ⊂ L is primitive if and only if there exists another sublattice S′ ⊂ L such the sum
S + S′ is direct and L = S ⊕ S′. In particular, if B is a basis of L, then the lattice
generated by any subset of the column of B is a primitive sublattice of L.

The main purpose of primitivity in this work is the following property. For a
primitive sublattice S ⊂ L and any x ∈ L \ S, it holds that the projection of x
orthogonally to S is a non-zero lattice vectors of π⊥

S (L): π
⊥
S (x) ̸= 0.

2.1 Reduction

De�nition 1 (Size reduction). A basis B ∈ Rm×n of a lattice L ⊂ Rm is said to be

size-reduced if ⟨bj , b⋆i ⟩ ≤ 1
2∥b

⋆
i ∥2 for all j > i.

We recall that there is a polynomial-time algorithm that size-reduces a basis [20,
21], and that this algorithms does not a�ect the Gram-Schmidt orthogonalization B⋆.
De�nition 2 (SVP and HKZ reduction). A basis B ∈ Rm×n of a lattice L ⊂ Rm is

said to be SVP-reduced if b1 is a shortest vector of L. It is said to be HKZ-reduced if

it is size-reduced and if each block B[i:n−1] for i ∈ {0, . . . , n− 1} is SVP-reduced.

Note that by the volume invariance, SVP reduction minimizes ∥b0∥ = ∥b⋆0∥, it also
maximizes the remaining volume vol(B[1:n−1]) =

∏n−1
i=1 ∥b⋆i ∥.

2.2 Duality

De�nition 3 (Dual Lattice). The dual lattice L∨ of a lattice L ⊂ Rm is the set of all

w ∈ SpanR(Λ) such that ⟨w,L⟩ ⊆ Z.
An important fact for our proof is that Zn is self-dual, and so are all of its rotations.
There is a natural correspondence between bases of the primal and bases of the

dual, given by the (pseudo-)inverse transpose: if B is a basis of Λ then D = B ·
(BT ·B)

−1
is a basis of the dual lattice L∨. For our purpose, we will only need the

fact that the last dual vector dn is the reciprocal of the last Gram-Schmidt vector:
dn−1 = b⋆n−1/∥b⋆n−1∥2; in particular ∥dn−1∥ = 1/∥b⋆n−1∥. We refer to [13, 14] for more
background on reduction and duality.

For this reason, it is natural to consider the dual basis in reversed order. In par-
ticular, by applying SVP reduction in the dual, we mean to minimize ∥dn−1∥, or
equivalently maximize ∥b⋆n−1∥.
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2.3 ZLIP
Let Λ be a rotation of Zn. We assume n to be odd and write n = 2k + 1 for some
integer k. The case of even n can be treated by arti�cially adding an extra orthogonal
component de�ning a lattice Λ+ = Λ⊕Z. Note that this restriction seemingly prevents
direct reduction from ZSVP to ZLIP by induction4: instead we will directly solve ZLIP.

We denote E = (e0, . . . , e2k) some orthogonal basis of Λ. The problem is to �nd
any such orthogonal basis given any basis of Λ as input5, i.e. to �nd E up to signs
and permutation. Note that the set {±ei} is precisely the set of shortest vectors of Λ.

Note further that this is equivalent to �nding an HKZ-reduced basis of Λ (a state-
ment that is not necessarily true for all lattices). Indeed, the shortest vectors are
exactly ±ei so an HKZ basis must start with such a vector. Projecting orthogonally
to any of those vectors gives a rotation of Zn−1; it remains to unroll the inductive
de�nition of HKZ reduction.

3 A Provable ZLIP algorithm

We consider the following algorithm, which may be viewed as a specialization of the
Slide algorithm [12�14], namely the number of block is �xed to 2 and the stopping
condition is tailored to the special case of rotations of Zn.

Note that the algorithm is invariant by rotation of the input. Hence, it is su�cient
to analyze its behavior for the case Λ = Zn.

Algorithm 1 An algorithm for ZLIP
Require: A basis B of Λ, Λ being a rotation of Zn, where n = 2k + 1 is odd.
Ensure: An orthonormal basis B of Λ
1: while vol(B[0...k−1]) > 1 do
2: Dual-SVP reduce the block B[0:k]

3: Primal-SVP reduce the block B[k:2k]

4: end while

5: Primal-HKZ reduce the block B[0:k−1]

6: Primal-HKZ reduce the block B[k:2k]

7: return B

3.1 Partial Correctness

Let us start by explaining why the algorithm succeeds when it terminates. The central
argument will be that the �rst block is isometric to Zk (Lemma 2). To establish it, let
us �rst state the following.

4or at least makes it less straightforward: the expert reader might see a proof path invoking the random
self-reducibility of LIP [5, Lemma 3.9] and the automorphism group of Zn.

5There exist an equivalent and sometime advatageous formulation of LIP using positive de�nite quadratic
forms, where basis are replaced by their Gram matrices. In our context, we �nd the explicit basis formalism
to be more convenient. We refer to [1, 5] for this alternative formulation.
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Lemma 1. Let A,B ∈ Rn×n be two positive symmetric de�nite matrices. Then

det(A+B) ≥ det(A).

Proof. This follows directly from the fact that H 7→ det(H)1/n is concave on the space
of positive symmetric de�nite matrices.6 In particular it holds that det(A+ B)1/n ≥
det(A)1/n +det(B)1/n. Because det(B) ≥ 0, we have det(A+B)1/n ≥ det(A)1/n, and
we conclude.

Lemma 2. Any sublattice L ⊂ Zn of rank k ≥ 1 has non-zero integer squared volume.

Furthermore, if vol(L) = 1, then L is isomorphic to Zk.

Proof. Let B ∈ Rn×k be a basis of L. Because L ⊂ Zn, B must be an integer matrix,
and vol(L)2 = det(|BT ·B|) is therefore an integer. It is also non-zero, because L is a
lattice.

For the second property, consider a basis B of L in Hermite Normal Form. Up to
a permutation of the rows, B =

[
X
Y

]
where X is lower triangular and non-degenerate.

Note that BTB = XTX+Y TY . Lemma 1 gives that det(XTX+Y TY ) ≥ det(XTX).
Because both XTX is integral and non-degenerate, and since det(BTB) = 1, we have
det(XTX) = 1. By the properties of Hermite Normal Form, it must therefore be the
case that X is the identity matrix Ik.

Let η1, . . . , ηk ≥ 0 be the eigenvalues of Y TY . Because the identity Ik is co-
diagonalizable with Y TY , the eigenvalues of BTB = Ik + Y TY are exactly 1 +
η1, . . . , 1 + ηk. It remains to write det(BTB) =

∏
(1 + ηi) to conclude that ηi = 0 for

all i, and therefore that Y = 0. That is, up to permutation of the rows, B =
[
Ik
0

]
.

The lattice L is indeed isomorphic to Zk.

Theorem 1. Algorithm 1 is partially correct, that is, if it terminates on a valid input,

it outputs an orthogonal basis of the input lattice.

Proof. By Lemma 2, when the while loop terminates (Steps 1-4 of Algorithm 1), the
block B[0:k−1] has volume 1 and it is therefore isomorphic to Zk; after HKZ reduction
(Step 5) we have recovered k orthogonal unit vectors. Then, the projected block B[k:2k]

is also isomorphic to Zk+1 and we recover the remaining k + 1 orthogonal vectors at
Step 6.

3.2 Termination

We now move to proving termination, which is done by showing that the volume of
the �rst block decrease signi�cantly at each loop iteration.
Lemma 3. Let L be a primitive sublattice of Zn of rank k < n, and let L′ = π⊥

L (Zn).
Then λ1(L

′)2 ≤ 1.

Proof. Because L is not a full rank, there must exist an index j such that ej ̸∈ L.
Therefore, by primitivity of L, π⊥

L (ej) ∈ L′ is non-zero, and ∥π⊥
L (ej)∥ ≤ ∥ej∥ ≤ 1.

Lemma 4. Let L be a primitive sublattice of Zn of rank k < n and volume vol(L) > 1,
and let L′ = π⊥

L (Zn). Then λ1(L
′)2 ≤ 1− 1

n .

6See exercises 209, 218 and 219 of http://perso.ens-lyon.fr/serre/DPF/exobis.pdf for three di�erent
proofs of this fact. One may alternatively invoke the Brunn-Minkowski theorem.
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Proof. Consider an HKZ-reduced and size-reduced basis B = [b0, . . . , bm−1] ∈ Zm×n

of L. Because vol(L) > 1, there is at least one bi that is not a unit vector ej . Let i be
the minimal such index, and let S be the subset of indices j such at ej ∈ L. Because
the basis is HKZ-reduced and therefore size-reduced, bi is orthogonal to all the ek's
such that ek ∈ L. That is, bi =

∑
k ̸∈S vkek where vk ∈ Z.

Now consider an index j that maximizes |vj |, i.e., |vj | = ∥bi∥∞; in particular
⟨ej , bi⟩ = ∥bi∥∞. Note that ej does not belong to L and L is a primitive sublattice of
Zn, so π⊥

L (ej) ∈ L′ is non-zero. Furthermore,

∥∥π⊥
L (ej)

∥∥ ≤
∥∥π⊥

bi(ej)
∥∥ =

∥∥∥∥ej − ⟨ej , bi⟩
∥bi∥2

bi

∥∥∥∥ .
We now apply the polar identity ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2 · ⟨x, y⟩ to conclude

∥π⊥
L (ej)∥2 ≤ 1 +

⟨ej , bi⟩2 · ∥bi∥2

∥bi∥4
− 2 · ⟨ej , bi⟩

2

∥bi∥2

≤ 1− ⟨ej , bi⟩2

∥bi∥2

≤ 1− ∥bi∥2∞
∥bi∥2

≤ 1− 1

n
.

We are now ready to prove that Algorithm 1 terminates after polynomially many
loop iterations.
Theorem 2. On a valid input B ∈ Rn×n, Algorithm 1 terminates after at most

O(n2 logmaxi ∥bi∥) iterations of the main loop.

Note that the number of iteration is polynomial in the input size. One may further
apply the LLL algorithm to the input basis to enforce maxi ∥bi∥ ≤ 2n, to bound the
number of iteration by O(n3).

Proof. The core claim is that, at each loop iteration (Steps 1-4 of Algorithm 1), the
volume of the block B[0:k−1] decreases by at least

√
1− 1/n.

Indeed, the primal-SVP reduction step (Step 3) does not a�ect this block. Further-
more, this Step 3 leaves the Gram-Schmidt norm at position k to a value less than√

1− 1/n, by application of Lemma 4. Then, the dual-SVP reduction step (Step 2)
is going to increase this Gram-Schmidt norm to at least 1, by dual application of
Lemma 3. This step therefore decreases the volume of the block B[0:k−1] by a factor√

1− 1/n.
Note that at the beginning of the algorithm, the volume of that block is at

most (maxi ∥bi∥)k. There are therefore at most log((max ∥bi∥)k)/ log(
√

1− 1/n) =
O(n2 log(maxi ∥bi∥)) loop iterations.
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Remark

One may note that the algorithm and its proof should still work if we replace exact
SVP solvers with approximate SVP solver with approximation factor strictly less than
1/
√

1− 1/n = 1 + 1/(2n) +O
(
1/n2

)
.
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