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Abstract

We consider the problem of constructing an unconditionally secure
cipher with a short key for the case where the probability distribution
of encrypted messages is unknown. Note that unconditional security
means that an adversary with no computational constraints can obtain
only a negligible amount of information (”leakage”) about an encrypted
message (without knowing the key).

Here we consider the case of a priori (partially) unknown message
source statistics. More specifically, the message source probability
distribution belongs to a given family of distributions. We propose
an unconditionally secure cipher for this case. As an example, one
can consider constructing a single cipher for texts written in any of
the languages of the European Union. That is, the message to be
encrypted could be written in any of these languages.
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1 Introduction

The concept of unconditional security is very attractive to cryptography and
has found many applications since C. Shannon described it in his famous
article [1]. The concept refers to secret-key cryptography involving three



participants Alice, Bob and Eve, where Alice wants to send a message to
Bob in secret from Eve, who has the ability to read all correspondence
between Alice and Bob. To do this, Alice and Bob use a cipher with a
secret key k (i.e. a word from some alphabet), which is known to them in
advance (but not to Eve). When Alice wants to send some message m, she
first encrypts m using key k and sends it to Bob, who in turn decrypts
the received encrypted message using the key k. Eve also receives the
encrypted message and tries to decrypt it without knowing the key. The
system is called unconditionally secure, or perfect, if Eve, with computers
and other equipment of unlimited power and unlimited time, cannot obtain
any information about the encrypted message. Not only did C. Shannon
provide a formal definition of perfect (or unconditional) secrecy, but he
also showed that the so-called one-time pad (or Vernam cipher) is such a
system. One of the specific properties of this system is the equivalence of
the length of the secret key and the message (or its entropy). Moreover,
C. Shannon proved that this property must be true for any perfect system.
Quite often this property has limited practical application as many modern
telecommunication systems forward and store megabytes of information and
the requirement to have secret keys of the same length seems to be quite
stringent. There are, therefore, many different approaches to overcoming
this obstacle. These include the ideal systems proposed by C. Shannon [1],
the so-called honeycomb cipher proposed by Jewels and Ristenpart [2], the
so-called entropy security proposed by Russell and Wang [3] and some others
developed in recent decades [4–11].

The present work is concerned with entropically secure ciphers.
It is important to note that an entropically secure cipher is not perfect,

and Eve may obtain some information about the message — the property
referred to as “leakage,” see the definition below, but this leakage can be
made negligible. On the other hand, an entropically secure cipher makes
it possible to significantly reduce the key length (compared to the perfect
cipher).

Recently, an entropically secure cipher has been proposed for the case
where encrypted messages have a known distribution, and for the case where
messages are generated by a Markov chain [11]. In the case of a known
distribution, the length of the secret key is independent of message length,
while in the case of a Markov chain, the length of the key grows logarithmically
with message length; in both cases the length of the key depends on the
amount of leakage.
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In this paper we consider the situation where encrypted messages obey
an unknown (or partially unknown) probability distribution. We propose
an entropically secure cipher for which the key length depends on universal
code (or data compressor) used for encoding the source and on the admissible
leakage of the cipher. In a sense, the problem under consideration includes as
special cases the previously solved problems with known probability distribution
and the case where messages are generated by a Markov chain.

The construction of the cipher is based on entropically secure ciphers
[3, 5, 10, 11] and universal coding [12]. It is worth noting that the proposed
cipher uses data compression and randomisation, both of which are quite
popular in unconditional security, cf. [13–15] and [15,16], respectively.

2 Definitions and preliminaries

2.1 Basic concepts

We consider the problem of symmetric encryption, where Alice wants to
securely transmit a message to Bob. The messages are n-letter binary words,
they obey a certain probability distribution p defined on the set {0, 1}n, n ≥
1. This distribution is only partially known, i.e. it is known that p belongs
to some given set P , P ⊂ Rn. Alice and Bob have a shared secret key K =
K1...Kk, and Alice encrypts the message M ∈ {0, 1}n using K and possibly
some random bits. Then she sends the word cipher(M,K) to Bob, who
decrypts the received cipher(M,K) and obtains M . The third participant
is a computationally unconstrained adversary Eve, who knows cipher(M,K)
and distribution p, and wants to find some information about M without
knowing K.

Russell and Wang [3] suggested a definition of entropic security which
was generalised by Dodis and Smith [5] as follows: A probabilistic map Y is
said to hide all functions on {0, 1}n with leakage ϵ if, for every adversary A,
there exists some adversary Â (who does not know Y (M)) such that for all
functions f ,

|Pr{A(Y (M)) = f(M)} − Pr{Â( ) = f(M)} | ≤ ϵ. (1)

(note that Â does not know Y (M) and, in fact, she guesses the meaning
of the function f(M).) In what follows, the probabilistic map Y will be
cipher(M,K) and f is a map f : {0, 1}n → {0, 1}∗.
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Definition 1. The map Y () is called ϵ-entropically secure for family
probability distributions P if Y () hides all functions on {0, 1}n with leakage
of ϵ, whenever p ∈ P .

Note that, in a sense, Definition 1 is a generalisation of Shannon’s notion
of perfect security. Namely, if we take ϵ = 0 and Y = cipher(M,K) and
f(x) = x, we obtain that for any M

|Pr{A(cipher(M,K)) = M} − Pr{Â( ) = M} | = 0

So, A and Â obtained the same result, but A estimates the probability based
on cipher(M,K), whereas Â does it without knowledge of cipher(M,K).
Thus, the entropic security (1) can be considered as a generalisation of the
Shannon’s perfect secrecy.

We will use another important concept, the notion of indistinguishability.
Definition 2 A randomised map Y : {0, 1}n → {0, 1}n, n ≥ 1, is ϵ-

indistinguishable for some family of destributions P and ϵ > 0 if there
is a probability distribution G on {0, 1}n such that for every probability
distribution p ∈ P we have

SD(Y (M), G) ≤ ϵ,

where for two distributions A,B

SD(A,B) =
1

2

∑
U∈M

|Pr{A = U} − Pr{B = U}| .

Importantly, G is independent of Y (M).
Dodis and Smith [5] showed that the concepts of ϵ-entropic security and

ϵ-indistinguishability are equivalent up to small parameter changes.

2.2 ϵ-entropically secure ciphers for distributions with
bounded min-entropy

In 2006 [3], the first entropy secure cipher was developed for probability
distributions with a limited value of the so-called minimum entropy, which
is defined as follows

hmin(p) = − log max
a∈A

p(a) . (2)

where p is a probability distribution, log = log2 . The Russell and Wang [3]
cipher was generalized and developed by Dodis and Smith [5] and their result
can be formulated as follows:
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Theorem 1 [5]. Let p be a probability distribution on {0, 1}n, n > 0,
whose min-entropy is not less then h, h ∈ [0, n]. Then there exists an ϵ-
entropically secure cipher with the k-bit key where

k = n− h+ 2log(1/ϵ) + 2. (3)

Let’s denote this cipher as cipherrw−ds.
In a sense, this cipher generalizes the perfect Shannon cipher as follows:

In a perfect cipher the key is the word from {0, 1}n, while in an entropically
secure cipher the key belongs to the 2k-element subset K ⊂ {0, 1}n, which is
a so-called small-biased set. Informally, this means that for any m ≤ n and a
uniformly chosen binary word u ∈ {0, 1}m, for anym positions i1i2, ..., im, the
probability that Ki1 , Ki2 , ...., Kim = u is close to 2−m. (This construction is
based on some deep results in combinatorics [5,17,18].) Thus, the key length
decreases from n to k. Note that the leakage ϵ and hence the summand
2 log(1/ϵ) + 2 depends on the size of the “small-biased set” 2k (In general,
larger k implies smaller ϵ.)

2.3 ϵ-entropically secure ciphers with reduced secret
key

In equality (3), the linearly increasing summand n− h depends on the min-
entropy h. So, it seems natural to transform the set {0, 1}n so as to reduce
the min-entropy of the original distribution p and hence the summand n−h.
In [11] this approach was realised as follows: let there be a set of probability
distributios P defined on {0, 1}n, n ≥ 1. The key part of the cipher is such
a randomised map ϕ : {0, 1}n → {0, 1}n∗

, n∗ ≥ n, that there exists a map
ϕ−1 (i.e ∀u ϕ−1(ϕ(u)) = u) and a min-entropy of the transform probabiity
distribution πp is close to n∗ (here the distribution πp is such that p(u) =∑

v:ϕ−1(v)=u πp(v)). And then the cipherrw−ds can be applied to ϕ(m) with a

shorter key, because the difference n∗−hmin(πp) will be less that n−hmin(p),
see (3). Thus, the smaller supp∈P (n

∗ − hmin(πp)), the shorter the secret key.
The described cipher is based on data compression and randomisation and
denoted in [11] by cipherc&r. The following theorem describes its properties.

Theorem 2 [11]. Suppose there is a family P of probability distributions
defined on {0, 1}n and there is a randomised mapping ϕ : {0, 1}n → {0, 1}n∗

, n∗

≥ n for which there exists a mapping ϕ−1 and let

sup
p∈P

(n∗ − hmin(πp)) ≤ ∆ . (4)
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for some ∆. Then
i) cipherc&r is ϵ-entropically secure with secret key length ∆+2 log(1/ϵ)+

2, and
ii) cipherc&r is ϵ-indistinguishable with secret key length ∆+2 log(1/ϵ) +

6.
Now we consider a simple example to illustrate the basic idea. Let n = 2,

p(00) = 1/2, p(01) = 1/4, p(10) = p(11) = 1/8. Obviously, hmin(p) = 1
and ∆ = (2 − 1). The map ϕ is constructed in two steps: first, ”compress”
the letters till − log p(a), that is, in our example, 00 → 0, 01 → 10 and
10 → 110, 11 → 111. Secondly, randomise as follows: 00 uniformly →
{000, 001, 010, 011}, 10 → {100, 101} and two last letters as {110} and {111}
correspondingly. As a result, we obtain a set {0, 1}3 subject to a uniform
distribution whose min-entropy is equal to three, and hence ∆ = 3− 3 = 0.
Thus, the key length becomes 1 bit shorter, but the message length is longer.
It is proved that such a ”bloated” cipher is ϵ-entropically secure [11].

Obviously, the key length depends on the efficiency of the compression
method, or code. Thus, in the case of known statistics (i.e., known p), the key
length is ∆+2log(1/ϵ)+2, where ∆ is 1 or 2 and depends on the compression
code chosen. If p is unknown, but the messages are known to be generated
by a Markov chain with known memory, then ∆ = O(log n) (and the key
length is O(log n) + 2log(1/ϵ) [11] ).

2.4 Universal coding

The problem of constructing a single code for multiple probability distributions
(information sources) is well known in information theory, and there are
currently dozens of effective universal codes based on different ideas and
approaches. It is worth noting that, at present, there are dozens universal
codes, which are the basis for so-called archivers (e.g., ZIP). The first universal
code for Bernoulli and Markov processes was proposed by Fitinghof [19], and
then Krichevsky found an asymptotically optimal code for these processes
[12,20]. Other universal codes include the PPM universal code [21], which is
used together with the arithmetic code [22], the Lempel-Ziv (LZ) codes [23],
the Burrows-Wheeler transformation [24], which is used together with the
book-stack code (or MTF) [25] (see also also [26,27]), grammar codes [28,29]
and some others [30–33].

The universal code c has to“compress” sequences x = x1...xn that obey
the distribution p ∈ P down to Shannon entropy p, that is hSh(p), and the
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difference between Ep(|c(x)|) − hSh(p) is called redundancy r(p) [12] (here
Ep is the expectation and |u| is the legth u). In [34], an algorithm was
proposed to construct a code copt whose redundancy is minimal on P, that is,
rpopt = infp∈P r(p). In [34] it was shown that rpopt is equal to the capacity of a
channel whose input alphabet is P, whose output alphabet is the alphabet on
which distributions from P are defined (in our case it is the alphabet {0, 1}n),
and the lines of the channel matrix are probability distributions from P (see
also [35] for the history of this discovery). This fact is important, because it
allows us to use known methods to compute the channel capacity to find the
optimal code.

In this paper, we will use the so-called Shtarkov maximum likelihood
code cSht [36], whose construction is much simpler, and its redundancy is
often close to that of the optimal code. This code is described as follows:
first define

pmax(u) = sup
p∈P

p(u), u ∈ {0, 1}n, SP =
∑

u∈{0,1}n
pmax(u), q(u) = pmax(u)/SP.

(5)
Clearly,

∀u : p(u)/q(u) ≤ SP. (6)

Shtakov proposed to build code cSht for which |cSht(u)| = ⌈− log q(u)⌉.
(Such a code exists, see [37]. )

Note that for a finite set P
SP ≤ |P | (In particular, this is true when P contains probability distributions
corresponding to several languages).

3 The cipher

Now we are going to construct an ϵ-entropically secure cipher cc&r for the case
of unknown statistics, i.e., there exists some set of probability distributions
P generating words from {0, 1}n, n ≥ 1, and the constructed cipher should be
applicable to messages obeying any p ∈ P with leakage no larger than ϵ. In
short, we apply the general method from [11] to the probability distribution
q (5). In detail, Alice wants to send messages m ∈ {0, 1}n to Bob, and they
both know in advance that m can obey any probability distribution p of the
set of distributions P. The cipher algorithm is as follows.
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Constructing the cipher. We describe all calculations in the following
steps:

i) compute the distribution q according to (5) and order the set q(u), u ∈
{0, 1}n. (Denote the ordered probabilities as q1, q2, ..., qN , N = 2n and let
ν(u) = i for which q(u) = qi.)

ii) encode the “letters” 1, 2, ..., N with the distribution q by the trimmed
Shannon code from [11] . Denote this code λ and note that

∀i : |λ(i)| < − log qi + 2 (7)

and λ is prefix-free, that is, for any i and j, i ̸= j, neither λ(i) is a prefix
λ(j), no λ(j) is a prefix λ(i) [11].

iii) build the following randomised map ϕ First, find n∗ = maxi λ(i) and
then define for u ∈ {0, 1}n,

ϕ(u) = λ(ν(u))r|λ(ν(u)|+1 ... rn∗ , (8)

where rj are equiprobable independent binary digits.
iv) For the desired leakage ϵ build cipherrw−ds with secret key length

⌈logSP⌉+ 2 log(1/ϵ) + δ , (9)

where δ = 2 for ϵ-entropically secure cipher and δ = 6 for ϵ- indistinguishable
one.

It is worth noting that Alice and Bob (and Eve) can do all the calculations
described independently of each other.

Use of the cipher. Suppose Alice and Bob have a randomly chosen
secret key K, |K| = k, and Alice wants to send Bob a message m. To do
this, she computes cipherc&r(m,K), as described above, and sends it to Bob.

Bob receives the word cipherc&r(m,K) and decrypts it with the key K.
As a result he gets the word ϕ(m) = λ(ν(m)r|λ(ν(m)|+1 ... rn∗ whose prefix
λ(ν(m)) defines the message m (this is possible because λ is prefix-free).

The properties of this cipher are described in the following theorem.
Theorem 3. Suppose there is a family P of probability distributions

defined on {0, 1}n and some ϵ > 0. If the described cipherc&r is applied then
i) the cipherc&r is ϵ-entropically secure with secret key length ⌈logSP⌉+

2 log(1/ϵ) + 2 and
ii) the cipherc&r is ϵ–indistinguishable with secret key length ⌈logSP⌉ +

2 log(1/ϵ) + 6.
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Proof. For any p ∈ P the random map ϕ defines a probability distribution
πp(v), v ∈ {0, 1}∗ as follows: for any u ∈ {0, 1}n and v ∈ ϕ(u)

πp(v) = p(u)2−(n∗−|λ(ν(u)|) ,

see (8). From definitions ϕ and (8), (7) we obtain

πp(v) = p(m)2−(n∗−|λ(ν(m)|) ≤ p(m)2−(n∗−(log qν(m)+2))

for any m ∈ {0, 1}n and v ∈ ϕ(m) ⊂ {0, 1}n∗
. Then

− log πp(v) ≥ − log p(m)− (n∗ − (log qν(m) + 2)) ≥

logSP − log qν(m) − (n∗ − (log qν(m) + 2)) = logSP + 2− n∗

for anym and v ∈ ϕ(m) ⊂ {0, 1}n∗
. So, hmin(πp) = minv∈{0,1}n∗ − log πp(v) ≥

logSP + 2 − n∗ and, hence, supp∈P(n
∗ − hmin(πp)) ≤ logSP + 2 . From

(4) (Theorem 2) and the description of the cipher (9) we can see that the
cipherc&r is

i) ϵ-entropically secure with a secret key of length ⌈logSP⌉+2 log(1/ϵ)+4
and

ii) ϵ-indistinguishable with a secret key of length ⌈logSP⌉+2 log(1/ϵ)+8.

4 Conclusion

We described the cipher for a family of probability distributions P defined
on the set {0, 1}n, n ≥ 1, for which the length of the secret key does not
depend directly on n, but depends on P. For example, if P is finite, the
key length is less than log |P| + 2 log(1/ϵ) + O(1) and hence independent of
n. This example includes the case where one needs to have the same cipher
for texts written in different languages. Here, the size of the set P is equal
to the number of languages. Thus, in some practically interesting cases, the
extra length of the secret key is quite small.
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