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Abstract. In this paper we describe attacks on the UOV-based signa-
ture scheme called MQ-Sign. MQ-Sign was submitted by Shim, Kim,
and An as a a first-round candidate for standardization in the (South)
Korean post-quantum cryptography competition (KpqC). The scheme
makes use of sparseness of the secret central polynomials and equiva-
lent key construction to reduce the size of the private key. The authors
propose four variants exploiting different levels of sparsity, MQ-Sign-SS,
MQ-Sign-RS, MQ-Sign-SR, and MQ-Sign-RR with the last one being
the standard UOV signature scheme.

We show that apart from the MQ-Sign-RR variant, all the others are
insecure. Namely, we present a polynomial-time key-recovery attack on
the variants MQ-Sign-SS and MQ-Sign-RS and a forgery attack on the
variant MQ-Sign-SR below the claimed security level. Our attack exploits
exactly the techniques used for reduction of keys - the sparsity of the
central polynomials in combination with the specific structure of the
secret linear map S.

We provide a verification script for the polynomial-time key-recovery
attack, that recovers the secret key in less than seven seconds for security
level V. Furthermore, we provide an implementation of the non-guessing
part of the forgery attack, confirming our complexity estimates.

1 Introduction

In recent years we have witnessed a substantial effort from standardization bodies
and the cryptographic community to design, develop and scrutinize candidates
for post-quantum secure key-encapsulation mechanisms and digital signatures
[20, 12, 14, 26, 7]. This effort is racing an equally fuelled one for developing a
large scale error-tolerant universal quantum computer which, although still very
much elusive, will likely be reality in a decade or so [19]. When this happens,
all the classical cryptography we are happily using today will be immediately
rendered insecure. Therefore, as the community widely agrees upon, we need to
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move as fast as possible with the standardization of post-quantum cryptosystems
that we believe are secure even against quantum adversaries.

On the other hand, we need to be extremely careful in the assessment of
the level of scrutiny put into these standardization processes. For example, a
major disruption in NIST’s standardization process, and certainly a shock for
the crypto community, was the cryptanalysis [28, 3] of the two multivariate
quadratic (MQ) signature schemes - GeMSS [6] and Rainbow [8] after they
were chosen as finalists [20]. Both of these schemes were thought to be well
understood, with solid security analysis, albeit both with ad-hoc designs and no
security proof.

These developments resulted in NIST choosing two lattice-based signatures
schemes in the new standard [25, 18] in addition to the heavy SPHINCS+ [13],
and no adequate solution for use-cases in need of very small signatures. NIST
reopened the call for post-quantum digital signature proposals, specifying the
need for shorter signatures with fast verification. This spurred a huge number
of new multivariate signatures many of which variants of UOV (Unbalanced Oil
and Vinegar) [16]. UOV is one of the oldest, simplest and most studied ad-hoc
multivariate signatures schemes. It has very short signatures, but the public
key is huge. Therefore, it was not particularly interesting for a very long time,
especially since the alternative Rainbow seemed to be more efficient for the same
security level (after the attack by Beullens [3] this advantage disappeared). After
Rainbow was out of the game, the community returned to UOV in a new round
of attempts to reduce the size of the public key while not compromising the
security.

One of those efforts is the MQ-Sign [27] signature scheme submitted to the
Korean Post-Quantum Cryptography Competition [26], and since recently se-
lected to advance to the 2nd round. The MQ-Sign submission combines two
known techniques from multivariate cryptography - equivalent keys [24] and
sparse central polynomials [30]. The central map is a standard UOVmap that can
additionally exhibit sparseness in either the vinegar-vinegar part or the vinegar-
oil part. The authors propose four different variants: Both the vinegar-vinegar
and vinegar-oil parts being sparse corresponds to the MQ-Sign-SS variant, which
yields the smallest private keys. In the variant MQ-Sign-RS, the vinegar-vinegar
part is random and the vinegar-oil part is sparse. The two parts switch their
structure in the MQ-Sign-SR variant. Finally, the variant MQ-Sign-RR, where
both parts are random, corresponds to the standard UOV signature scheme.

1.1 Our contribution

In this work, we study the security of the MQ-Sign signature scheme. We propose
two attacks that cover all variants using sparseness, i.e. every except the last,
MQ-Sign-RR variant.

First, we show how the property of using sparse polynomials can be exploited
to develop a polynomial time key-recovery attack on the variants MQ-Sign-
SS and MQ-Sign-RS. Our attack relies on two key properties – the sparseness
property of the vinegar-oil quadratic part and the specific structure of the linear
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transformation S, as per the equivalent keys key generation technique. We first
recover the linear transformation S, which allows to subsequently compute the
central map F . Our attack is very efficient, and recovers the key in just seconds
regardless of the security level.

Second, we introduce a forgery attack on the variant MQ-Sign-SR which is
actually a direct attack using only the public key. Our attack exploits a bilinear
substructure emerging as a result of the sparse secret polynomials. The attack is
not practical, but still shows that MQ-Sign-SR falls short of the claimed security
levels by about 30 bits.

We perform a complexity analysis of both attacks, showing that these three
variants do not reach the originally estimated security levels. The claims in our
complexity analysis are additionally backed up with experimental results. Most
notably, we provide an implementation of the practical key-recovery attack that
is executed in less than seven seconds for all security levels. We also provide an
implementation of the non-guessing part of the forgery attack, confirming our
complexity estimates. Both the implementation of attacks and the code used for
confirming the complexity estimates are open source.

1.2 Timeline

Our key recovery attack on MQ-Sign-RS and MQ-Sign-SS with S in block matrix
structure (using the equivalent keys optimization) was announced in March 2023.
Shortly afterwards, Ikematsu, Jo, and Yasuda [15] generalized our approach and
gave an efficient attack that also works with general S. As a result of the two
attacks, the authors of MQ-Sign removed the two variants MQ-Sign-RS and
MQ-Sign-SS from their specifications in the ongoing KpqC competition. Note
that in the current version of the specifications, both remaining variants still use
the equivalent key optimization, and do not use a random linear transformation
S.

1.3 Organization of the paper

In Section 2 we provide the necessary background on multivariate cryptography,
in particular the UOV signature scheme and the optimization choices used in
MQ-Sign. We introduce the announced attacks in Section 3 and 4. In more
detail, we first show in Section 3 that the sparse vinegar-oil polynomials in MQ-
Sign-RS and MQ-Sign-SS let us derive enough linear equations to compute the
secret linear transformation S in a matter of seconds. Section 4 demonstrates
a strategy to attack MQ-Sign-SR by first guessing a selection of variables and
subsequently solving a part of the equations for the remaining ones. Even though
the cost of the guessing part remains quite high, this shows that the remaining
sparse variant slightly fails to provide the required security levels. We provide
verification scripts of the stated attacks in Section 5 and discuss the impact on
the MQ-Sign variants in Section 6. Finally, we debate about the still appealing
question of using sparse polynomials in UOV and shift attention to the public
equations instead.

3



2 Preliminaries

Throughout the text, Fq will denote the finite field of q elements, and GLn(Fq)
and AGLn(Fq) will denote respectively the general linear group and the general
affine group of degree n over Fq. We will also use the notation x = (x1, . . . , xn)

⊺

for the vector (x1, . . . , xn) ∈ Fn
q .

2.1 Multivariate signatures

First, we recall the general principle of MQ public key cryptosystems. A typical
MQ public key cryptosystem relies on the knowledge of a trapdoor for a particu-
lar system of polynomials over the field Fq. The public key of the cryptosystem is
usually given by a multivariate quadratic map P = (P(1), . . . ,P(m)) : Fn

q → Fm
q ,

where

P(k)(x1, . . . , xn) =
∑

1≤i≤j≤n

γ
(k)
ij xixj +

n∑
i=1

β
(k)
i xi + α(k)

for some coefficients γ
(k)
ij , β

(k)
i , α(k) ∈ Fq. It is obtained by obfuscating a struc-

tured central map

F : (x1, . . . , xn) ∈ Fn
q →

(
F (1)(x1, . . . , xn), . . . ,F (m)(x1, . . . , xn)

)
∈ Fm

q ,

using two bijective affine mappings S, T ∈ AGLn(q)(Fq) that serve as a sort of
mask to hide the structure of F . The public key is defined as

P = T ◦ F ◦ S.

The mappings S and T are part of the private key s. Besides them, the private
key may also contain other secret parameters that allow creation, but also easy
inversion of the transformation F . Without loss of generality, we can assume
that the private key is s = (F ,S, T ).

Signature Generation. To generate a signature for a message d, the signer uses a
hash function H : {0, 1}⋆ → Fm

q to compute the hash value w = H(d) ∈ Fm
q and

computes recursively x = T −1(w) ∈ Fm
q , y = F−1(x) ∈ Fn

q , and z = S−1(y).
The signature of the message d is z ∈ Fn

q . Here, F−1(x) means finding one (of
possibly many) preimages of x under the central map F .

Verification. To check if z ∈ Fn
q is indeed a valid signature for a message d, one

computes w = H(d) and w′ = P(z) ∈ Fm
q . If w′ = w holds, the signature is

accepted, otherwise it is rejected.

The standard signature generation and verification process of a multivariate
signature scheme works as shown in Figure 1.
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Signature Verification

Fig. 1. General workflow of multivariate signature schemes.

2.2 Unbalanced Oil and Vinegar

The Unbalanced Oil and Vinegar signature scheme is one of the oldest multi-
variate signature schemes. It was proposed by Kipnis, Patarin, and Goubin at
EUROCRYPT’99 [16] as a modification of the oil and vinegar scheme of Patarin
[22] that was broken by Kipnis and Shamir in 1998 [17].

The characteristic of the oil and vinegar construction is in the special struc-
ture of the central map in which the variables are divided in two distinct sets,
vinegar variables and oil variables. The vinegar variables are combined quadrati-
cally with all of the variables, while the oil variables are only combined quadrati-
cally with vinegar variables and not with other oil variables. Formally, the central
map is defined as F : Fn

q → Fm
q , with central polynomials

F (k)(x1, . . . , xn) =
∑

i∈V,j∈V

γ
(k)
ij xixj +

∑
i∈V,j∈O

γ
(k)
ij xixj +

n∑
i=1

β
(k)
i xi + α(k) (1)

where n = v +m, and V = {1, . . . , v} and O = {v + 1, . . . , n} denote the index
sets of the vinegar and oil variables, respectively.

It can be shown that if an oil an vinegar central map is used in the standard
MQ construction the affine mapping T does not add to the security of the
scheme and is therefore not necessary. Hence the secret key consists of a linear
transformation S and central map F , while the public key is defined as P = F◦S.
In order to sign a message, we need to find a preimage of F . This can be done
by simply fixing the vinegar variables to some random values. In this way, we
obtain a system of m linear equations in m variables, which has a solution with
probability around 1− 1/q. If the obtained system does not have a solution, we
repeat the procedure with different values for the vinegar variables.
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Key Generation. It was shown in [23] that for any instance of a UOV secret key
(F ,S), there exists an equivalent secret key (F ,S) with

S =

(
Iv×v S1

0m×v Im×m

)
. (2)

Furthermore, the quadratic polynomials of the central map F : Fn
q → Fm

q

can be represented using upper triangular matrices F(1), . . . ,F(m) ∈ Fn×n
q where

each nonzero coefficient (i, j) in F(k) corresponds to the nonzero coefficient of
xixj in F (k). Note that the m×m block on the bottom right of these matrices
is empty, since the polynomials of the central map have no quadratic oil terms.

Thus, these matrices contain an upper triangular block F
(k)
1 ∈ Fv×v

q and a block

F
(k)
2 ∈ Fv×m

q on the top right. In other words, the matrices are of the form:

F(k) =

(
F

(k)
1 F

(k)
2

0 0

)
.

Thus, in order to obtain a key pair, it suffices to first randomly generate
(S1,F

(1), . . . ,F(m)) and then compute (P(1), . . . ,P(m)) by evaluating P(k) =
S⊤F(k)S and bringing the resulting matrices to upper triangular form.

2.3 MQ-Sign

MQ-Sign is a signature scheme based on UOV. The scheme uses inhomogenous
polynomials and each polynomial of the central map can be written as

F (k) = F (k)
V + F (k)

OV + F (k)
L,C

where

F (k)
V (x1, . . . , xn) =

∑
i∈V,j∈V

γ
(k)
ij xixj , and F (k)

OV (x1, . . . , xn) =
∑

i∈V,j∈O

γ
(k)
ij xixj .

These can alternatively be referred to as the vinegar-vinegar quadratic part and

the vinegar-oil quadratic part. Finally, F (k)
L,C refers to the linear and constant

part of the polynomials. In the following, we ignore the linear and constant
parts, since our attack does not use them.

The main design goal of MQ-Sign is to reduce the size of the secret key
compared to traditional UOV. This is achieved using sparse polynomials for the

quadratic part of the central map. If sparseness is introduced in the F (k)
V part,

then it is defined as

F (k)
V,S(x1, . . . , xn) =

v∑
i=1

αk
i xix(i+k−1( mod v))+1 (3)
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If, on the other hand, sparseness is introduced in the F (k)
OV part, then it is defined

as

F (k)
OV,S(x1, . . . , xn) =

v∑
i=1

βk
i xix(i+k−2( mod m))+v+1. (4)

The MQ-Sign proposal provides a parameter selection for four variants of the
scheme: MQ-Sign-SS, MQ-Sign-RS, MQ-Sign-SR and MQ-Sign-RR. The first
S/R in the suffix specifies whether FV is defined with sparse (FV,S) or random
polynomials (FV,R). The second S/R refers to the same property, but for FOV .
Note that the variant MQ-Sign-RR corresponds to the standard UOV scheme
defined with inhomogenous polynomials.

If both FV,S and FOV,S are used, the size of the secret key is reduced to 2vm
field elements.

The authors provide an elaborate security analysis including all known rel-
evant attacks on UOV. However, they do not consider the sparseness of (parts
of) the secret polynomials in any of the attacks. Their assumption is that it is
not exploitable within the known cryptanalytic techniques. Table 1 summarizes
the parameters chosen by the authors for security levels I, III, and V.

Note that when FV,S is used, the size of the public key can also be reduced,
as, due to the equivalent keys structure of S as in (2), a part of the public key is
equivalent to a part of the secret key and thus sparse. This is however not taken
into consideration in the implementation of MQ-Sign or in the public key sizes
reported in Table 1.

Sec. level Parameters (q, v,m) sig PK SK (SS) SK (RS) SK (SR) SK (RR)

I (28, 72, 46) 134 328 441 15 561 133 137 164 601 282 177

III (28, 112, 72) 200 1 238 761 37 729 485 281 610 273 1 057 825

V (28, 148, 96) 260 2 892 961 66 421 1 110 709 1 416 181 2 460 469

Table 1. The parameter selection for security category I, III and V for the variants
SS, RS, SR and RR of MQ-Sign with key sizes in bytes.

3 An efficient key-recovery attack on variants using
sparse FOV

In the following, we consider C to be the class of polynomials defined by FV,R +
FOV,S , denoting that only FOV needs to be defined as in (4), i.e. with sparse
polynomials. This corresponds to the MQ-Sign-SS and MQ-Sign-RS variants.

In this section we show that the usage of FOV,S introduces weaknesses that
enable a practical key-recovery attack that takes merely seconds to mount. In
the attack, we essentially solve the Extended Isomorphism of Polynomials (EIP)
problem as defined in [9] (see also [27]). We recall here its definition.
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EIP(n,m,P, C):
Input: Anm-tuple of multivariate polynomials P = (P(1),P(2), . . . ,P(m)) ∈
Fq[x1, . . . , xn]

m and a special class of m-tuples of multivariate polynomials
C ⊆ Fq[x1, . . . , xn]

m.
Question: Find – if any – S ∈ GLn(q) and F = (F (1),F (2), . . . ,F (m)) ∈ C
such that P = F ◦ S.
Solving this problem is in general not easy. In fact, the security of ad-hoc

multivariate schemes is based on the hardness on this problem. However, if F
exhibits enough structure, then the problem can become easy to solve.

We next show that the sparse structure present in MQ-Sign-SS and MQ-Sign-
RS is enough to solve the corresponding EIP problem very efficiently. In order
to see this, note that the computation of the public key for UOV-like signatures
schemes can be written in matrix form as:

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
I 0

S⊤
1 I

)(
F

(k)
1 F

(k)
2

0 0

)(
I S1

0 I

)
.

From this we deduce(
P

(k)
1 P

(k)
2

0 P
(k)
4

)
=

(
F

(k)
1 (F

(k)
1 + F

(k)⊤
1 )S1 + F

(k)
2

0 Upper(S⊤
1 F

(k)
1 S1 + S⊤

1 F
(k)
2 )

)
. (5)

Equation (5) shows how different blocks from the public key are obtained from
the blocks of the secret key, and having these relations allows us to mount an
algebraic attack that will recover all of the entries of the secret key. We first
modelize this correspondence between the public and the secret key as a system

of equations where the variables are the entries of S1 and F
(k)
1 . From the two

upper blocks we obtain the following two equations

P
(k)
1 = F

(k)
1

P
(k)
2 = (F

(k)
1 + F

(k)⊤
1 )S1 + F

(k)
2 .

From these, we infer that

P
(k)
2 = (P

(k)
1 +P

(k)⊤
1 )S1 + F

(k)
2 . (6)

Ignoring the sparseness at first, from (6) we can derive a linear system of vm2

equations in v(m2 + m) variables (vm that correspond to the entries of the
unknown block of the linear transformation S, and vm2 from the entries of

F
(k)
2 ). Even though the system is linear, a solution can not be extracted easily

as it is highly underdetermined. But considering the sparseness in the MQ-Sign-
SS and MQ-Sign-RS instances, the following key observation allows us to solve
the system easily in practice.

The matrices F
(k)
2 are part of the secret key, but we know that they are sparse.

From the description of FOV in (4) we can see that the value of F
(k)
2 is known on
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(vm − v) entries. Since F
(k)
2 appears linearly in (6), we can extract constraints

from the entries where the value of F
(k)
2 is zero and obtain a system that is only

in the S1 variables. Let P̃
(k)
1 = P

(k)
1 +P

(k)⊤
1 . We obtain the following system of

equations, where we denote by p̃
(k)
i,j the entries of P̃

(k)
1 , by si,j the entries of S1,

by p
(k)
i,j the entries of P

(k)
2 , and by f

(k)
i,j the entries of F

(k)
2 .4

∑
1⩽p⩽v

p̃
(k)
i,p sp,j − p

(k)
i,j = 0, ∀(i, j, k) s.t. f (k)

i,j = 0. (7)

This is a linear system in vm variables. The number of equations that we can
obtain if we use all of the m quadratic maps from the public key is mv(m− 1).
Hence, the system has vm linearly independent equations with overwhelming
probability. As such, it can be solved efficiently through Gaussian Elimination.
This is under the assumption that the system behaves as a random system and
has no specific structure that results in non-trivial dependencies between the
equations, which will be argumented below as part of the complexity analysis.
We conclude that, ignoring some of the equations from (6), specifically those

where f
(k)
i,j is not zero, allowed us to derive a linear system that is only in

variables from S1. Once we recover the secret map S, computing F is easy, as
we just need to apply the inverse linear transformation on P.

We further refine our modelisation to obtain a more efficient attack, using
the following strategy. Note from (7) that each equation in the system contains
variables from only one column of S1. This observation allows us to optimize the
attack by solving for one column at a time. This is more evident when we look
at the matrix representation of our linear system. Let us define a matrix A′ as

P̃
(1)
1

P̃
(2)
1

. . .

P̃
(m)
1

 ,

i.e. a block matrix obtained by concatenating vertically the quadratic maps P̃
(k)
1 .

Then, let A be a block matrix that has copies of A′ on the main diagonal and
zeros everywhere else

A =


A′ 0 . . . 0

0 A′ . . . 0
. . .

0 0 . . . A′

 .

4 Here, and in the following, the submatrix indices are ommited where there is no
ambiguity
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Now, let x⊤ =
(
x1 x2 . . . xm

)
be a vector obtained by concatenating the columns

of S1. Finally, let b
⊤ =

(
b1 b2 . . . bm

)
be a vector that is obtained by concate-

nating the first column of each quadratic map P
(k)
2 , followed by the second

column of each map, etc.

We can then rewrite P̃
(k)
1 S1 = P

(k)
2 , for all k ∈ {1, . . . ,m}, as Ax = b.

Indeed, we have


A′ 0 . . . 0

0 A′ . . . 0
. . .

0 0 . . . A′

 ·


x1

x2

. . .

xm

 =



b1

b2

. . .

bm


,

where

A′ =



p̃
(1)
1,1 ... p̃

(1)
1,v

p̃
(1)
2,1 ... p̃

(1)
2,v

...

p̃
(1)
v,1 ... p̃

(1)
v,v

. . .

p̃
(m)
1,1 ... p̃

(m)
1,v

p̃
(m)
2,1 ... p̃

(m)
2,v

...

p̃
(m)
v,1 ... p̃

(m)
v,v



, xi =


s1,i

s2,i

. . .

sv,i

 , and bi =



p
(1)
1,i

p
(1)
2,i

...

p
(1)
v,i

. . .

p
(m)
1,i

p
(m)
2,i

...

p
(m)
v,i



.

Looking at where the zero entries lie in A, we can now split the problem. We
solve A′xi = bi for all i ∈ {1, . . . ,m}, and for every system that we solve, we
reveal one column of S1.

3.1 Complexity analysis

Using this strategy, instead of solving one linear system in vm variables, we
solve m linear systems in v variables. Thus, our attack has only O(mvω) time
complexity, where ω is the linear algebra constant. A strong requirement for
the success of the attack is that all of the linear subsystems that we need to
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solve are determined. Since we are combining solutions of subsystems to recover
the entire solution, having even a small nonzero number of solutions to the
subsystems would rapidly increase the complexity of the attack. However, in the
following, we argue that we can rely on the assumption that all subsystems have
exactly one solution.

Security level Parameters (q, v,m) Attack complexity

I (28, 72, 46) 224

III (28, 112, 72) 227

V (28, 148, 96) 229

Table 2. Theoretical complexity of our attack against the MQ-Sign-SS and MQ-Sign-
RS variants.

As per the analysis in the previous section, the ith subset of equations is
obtained from 

p̃
(1)
1,1 ... p̃

(1)
1,v

p̃
(1)
2,1 ... p̃

(1)
2,v

...

p̃
(1)
v,1 ... p̃

(1)
v,v

. . .

p̃
(m)
1,1 ... p̃

(m)
1,v

p̃
(m)
2,1 ... p̃

(m)
2,v

...

p̃
(m)
v,1 ... p̃

(m)
v,v



·


s1,i

s2,i

. . .

sv,i

 =



p
(1)
1,1

p
(1)
2,1

...

p
(1)
v,1

. . .

p
(m)
1,1

p
(m)
2,1

...

p
(m)
v,1



. (8)

From this equality, we extract v(m−1) equations. That is, one equation for each

entry from bi, ignoring entries (i, j) where f
(k)
i,j is not zero. We are interested

in how many of these equations are linearly independent. From (8) we can see
that each equation can be viewed as a linear combination of the s ,i variables

where the coefficients come from a row of P̃
(k)
1 , plus a constant that corresponds

to an entry of P
(k)
2 . Hence, the number of linearly independent equations is

exactly determined by the rank of A′. It is actually the rank of
(
A′ bi

)
, but

we can ignore the constant in our case. Indeed, if the rank of A′ is smaller

than the rank of
(
A′ bi

)
, this would result in the system derived from (8)

being inconsistent. This case can not happen when we model a coherent instance
of UOV key generation. Now, recall that public key in UOV-based schemes is
generated randomly (or derived from a randomly generated central map) and
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thus it is comprised of matrices of full rank with high probability. Hence, a
concatenation of several such matrices is also full rank, which is v in this case
(the dimension of the column space being v) – equal to the number of variables.
We have also performed experiments to verify this claim, and out of 500 runs of
the attack on MQ-Sign-SS with level I parameters, not once did the attack fail
for not having enough independent equations in any of the subsystems. Table 2
summarizes the effect of the attack on the different MQ-Sign parameters.

4 A forgery attack on variants using sparse FV

In this section we show a forgery attack on the MQ-Sign-SR variant, where
the polynomials of FV are defined as in Equation (3). A forgery attack on a
multivariate signature scheme aims at finding a signature z ∈ Fn

q for a given
target value t ∈ Fm

q , such that P(z) = t is fulfilled. We show that in the case of
MQ-Sign-SR, a forgery is directly possible using only the public key.

Recall from Section 3, that, when the linear transformation S is given as in

Equation (2), it holds that P
(k)
1 = F

(k)
1 . This means that the sparsity of the

secret coefficient matrices gets transferred to the public system. In more detail,
an attacker faces the task of finding (zv, zo) ∈ Fn

q such that

(zv, zo)

(
P

(k)
1 P

(k)
2

0 P
(k)
4

)(
zv

zo

)
= zvP

(k)
1 zv + zvP

(k)
2 zo + zoP

(k)
4 zo = tk (9)

holds for all k ∈ {1, . . . ,m}, where P
(k)
1 are sparse as in Equation (3). The

parameters n ≈ 2.5m allow us to fix the m entries of zo ∈ Fm
q and thereby

remove the non-sparse submatrices P
(k)
2 and P

(k)
4 from the quadratic part of

this system of equations. This leads us to equations of the form

zvP
(k)
1 zv + lin(zv) =

v∑
i=1

αk
i ziz(i+k−1( mod v))+1 + lin(zv) = tk. (10)

The term lin(zv) summarizes the linear and constant terms emerging from Equa-
tion (9) after fixing the entries of zo. Note that the resulting system is a system
of m equations in v variables, and since v is greater than m, we can fix another
(v −m) variables and still expect to have a solution.

At the core of this attack is the observation that, due to the sparsity in P
(k)
1 ,

the resulting system has subsets of equations that are bilinear in some subsets of
variables. Specifically, upon closer examination of the indices in Equation (10),
one notices that for odd k, the quadratic monomials appearing in the polynomial
equation each consist of a variable with an odd and an even index. This implies
that these m

2 equations are bilinear in the sets of variables {z1, z3, . . . , zm−1}
and {z2, z4, . . . , zm}, where we denote by zi the variables in vector zv. Hence,
randomly guessing e.g., the v

2 odd-indexed variables gives us a v−m
2 -dimensional

linear solution space for the even-indexed variables in the m
2 bilinear equations.
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Let us denote by z̃v the vector comprised of the vinegar variables that have
not yet been assigned, i.e. the even-indexed vinegar variables. At this point, the
overall system is of the following form

v
2−1∑
i=0

αk
2i+1z((2i+1)+k−1( mod v))+1 + αk

2i+2z2i+2 + lin(z̃v) = tk, if k odd

v
2∑

i=1

αk
2iz2iz(2i+k−1( mod v))+1 + lin(z̃v) = tk, if k even.

The probability that there exists a solution to the complete system - including
the remaining m

2 quadratic (non-bilinear) equations - with the previously guessed

odd variables is around q−( v
2−(v−m)), since we can only fix v − m variables in

a quadratic system with v variables in m equations and still expect to find
a solution. An alternative view is that, to obtain the v−m

2 -dimensional linear
solution space, we can fix (v − m) variables and enumerate the rest with the
usual cost of enumeration. This is the first step of our attack and its cost will
be denoted by Cenum(q, v2−(v−m)).

In the second step, we need to find an assignment to the even-indexed vari-
ables that also validate the remaining m

2 equations. Using the description of the
linear solution space obtained from the bilinear equations, this step boils down
to solving a quadratic system of m

2 equations in v−m
2 variables. We denote the

complexity of this step by CMQ(q, v−m
2 ,m2 ).

4.1 Complexity analysis

The cost of the first step of the algorithm corresponds to the usual cost of
enumeration over Fq. In the second step, the complexity is dominated by the
algorithm for solving the quadratic systems of equations. For the choice of q = 28,
as per the MQ-Sign parameters, the best strategy would be to solve the system
with a Gröbner-based algorithm (such as F4 or F5 [10, 11]), without the use of
hybridization. Assuming that the quadratic systems we obtain behave as semi-
regular non-boolean systems of s equations in n variables, the complexity [2] of
the solving algorithm is approximated by

O
(
sD

(
n+D − 1

D

)ω)
,

where D denotes the degree of regularity and is computed as the power of the
first non-positive coefficient in the expansion of

(1− t2)s

(1− t)n
.

Then, the complexity of the whole attack is given by

Cenum(q, v2−(v−m)) · CMQ(q, v−m
2 ,m2 ),

13



since the second step has to be repeated until the odd variables are guessed
correctly in the first step. In Table 3 we present an overview of the approximate
costs for the parameter sets of MQ-Sign. We conclude that because of this attack,
the proposed parameters of the MQ-Sign-SR variant slightly fail to provide the
required security levels. Note that the algorithm described here uses the most
straighforward approach to exploit the bilinearity of the subsystems, but more
advanced techniques can potentially result in attacks with lower complexity.

Security level Parameters (q, v,m) Cenum(q, v
2
−(v−m)) C

MQ(q, v−m
2

,m
2
)
Complexity

I (28, 72, 46) 280 231 2111

III (28, 112, 72) 2128 242 2170

V (28, 148, 96) 2176 252 2228

Table 3. Theoretical complexity of our direct attack using the bilinear structure of
the odd equations.

Our attack again relies on the sparseness property of the vinegar-vinegar
quadratic part and the specific structure of the linear transformation S, as per
the equivalent keys key generation technique.

5 Implementation

5.1 Sparse FOV

To confirm the practicality of our attack in Section 3, we provide a verifica-
tion script in MAGMA [5] where we implement the key generation of MQ-Sign-
{S/R}S and then run the main algorithm for recovering the secret key from the
public key as input. The running time of the attack on a laptop is 0.6 seconds for
the proposed parameters for security level I, 2.3 seconds for security level III and
6.9 seconds for security level V. We also provide an equivalent SageMath [29]
script that is slower.

5.2 Sparse FV

Complexity estimates in Section 4 show that MQ-Sign-SR falls below the re-
quired security level, but the attack is not practical for the chosen parameter
sizes. We nevertheless implemented the attack as a proof-of-concept and to con-
firm practically our complexity estimations. The cost of enumeration is straight-
forward, but the second part of the attack involves Gröbner-based algorithms,
whose complexity rely on heuristic assumptions of semi-regularity. Hence, our
primary goal in this experimental work was to verify that the degree of regularity
reached by the F4/F5 algorithm is estimated correctly. The verification script
for this attack consists of generating the polynomial system in (9), fixing all

14



variables in zo and in the odd-indexed subset, and finally, solving the resulting
system using the F4 algorithm implemented in MAGMA. When fixing the vari-
ables, we experimented both with a correct assignment that subsequently leads
to a solution, and a random assignment that leads to an inconsistent system.
As expected, there is no difference in the solving running times between the two
cases.

Security level Parameters (q, v,m) D estimated D reached Runtime (s) Memory (MB)

I (28, 72, 46) 4 4 0.6 32

III (28, 112, 72) 5 5 90.2 534

V (28, 148, 96) 6 > 32000

Table 4. Experimental results of the direct attack.

The results of our experiments are in Table 4. Most notably, we confirm that
the degree of regularity reached during the execution of the algorithm matches
the theoretical estimation. This holds for both security level I and III. For se-
curity level V, the degree of regularity is expected to be six, hence we could
not perform the verification due to the high memory requirements. For further
assurance, we verified our complexity estimation on other parameter sets that
are not part of the MQ-Sign specification, but follow the usual UOV ratios. We
conclude that the MQ instances that need to be solved in the second part of
the algorithm behave as semi-regular instances and the complexity of finding a
solution can reliably be estimated using the analysis in [2].

Verification scripts for both attacks outlined in this paper can be found at

https://github.com/mtrimoska/MQ-Sign-attack.

6 Impact on the MQ-Sign variants

Both attacks presented in this paper rely on the specific structure of the linear
transformation S, as per the equivalent keys key generation technique. This
technique is used in most modern UOV-based signature schemes, including MQ-
Sign. If the equivalent keys structure is removed and S is a random affine map5,
this change of representation comes with additional memory cost. Specifically,
Table 5 shows the impact of this modification on the secret key sizes, compared
to the sizes reported in the MQ-Sign specification. The comparison is shown
for the three MQ-Sign variants that are concerned by the two attacks proposed
in this paper. The fourth variant, MQ-Sign-RR, is equivalent to the traditional
UOV scheme and is not affected by our attacks. For this variant, the use of the
equivalent keys structure of S is still a concern for side-channel attacks [21, 1].

5 This was suggested by the authors of MQ-Sign as a countermeasure when the attack
in Section 3 was first announced.
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Variant

Security Level

I III V

equivalent random equivalent random equivalent random

keys S S keys S S keys S S

MQ-Sign-SS 15561 26173 37729 63521 66421 111749

MQ-Sign-RS 133137 143749 485281 511073 1110709 1156037

MQ-Sign-SR 164601 175213 610273 636065 1416181 1461509

Table 5. Size (in Bytes) of the secret key of MQ-Sign with and without the equivalent
keys structure of S.

Furthermore, this countermeasure was shown to be insufficient for the vari-
ants where the vinegar-oil space is sparse. In subsequent work, Ikematsu, Jo, and
Yasuda [15] propose an attack that does not rely on the equivalent structure of S
and remains practical: it runs in no more than 30 minutes for all security levels.

For the MQ-Sign-SR variant, further research is needed to determine whether
the sparseness of FV can still be exploited in a similar manner when S is random.

7 Discussion on using sparse matrices

MQ-Sign follows the UOV construction that is widely believed to be solid. Yet, as
we have demonstrated, bad choices for optimization have significantly damaged
its security. The aforementioned attacks were possible due to mainly two reasons.
First, the secret polynomials were chosen sparse. Thus, we could derive more
equations from the public key entries and their computation in Equation (6) than
there are secret key entries to obscure them. Second, the secret key polynomials
were chosen so sparse, that half of the public key equations turned bilinear after
fixing certain variables. The question that remains is whether we can still make
use of sparseness to reduce the size of the (expanded) keys.

As an alternative, we could, instead of choosing sparse secret submatrices

F
(k)
1 and F

(k)
2 , choose the public P

(k)
1 and P

(k)
2 sparse. Our key-recovery attack

does not work anymore, but, we would need to add more coefficients to the
matrices, so that the strategy in Section 4 does not apply anymore.

The approach complements current UOV instantiations [4] which use key

compression techniques. The authors of [4] expand the matrices P
(k)
1 and P

(k)
2

from a seed seedpk and only store cpk = (seedpk,P
(k)
3 ). Therefore, making these

two matrices sparse will not result in a smaller compressed public key, but the
size of the expanded secret key and the expanded public key would be reduced,
which implies a lower overall storage requirement.

However, caution should be put into the choice of the sparse public matrices.
The strategy of using “rotating diagonals” seems to work well with regards to
the standard attacks against UOV analyzed in the specs. However, the sparse
equations introduce enough structure to make a direct attack cheaper than in
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the no-sparse case. An option could be to slightly increase the number of non-

zero coefficients in P
(k)
1 and P

(k)
2 , enough to increase the cost of our attack or

a similar direct attack. This is of course an ad-hoc solution, and more scrutiny
is required in order to determine whether a secure balance can be found that is
a better solution than simply increasing the parameters. We leave this question
as future work.
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