Multivariate Correlation Attacks and the Cryptanalysis of LFSR-based Stream Ciphers

Isaac A. Canales-Martínez and Igor Semaev
University of Bergen, Bergen, Norway
\{isaac.canales,igor.semaev\}@uib.no

Abstract

Cryptanalysis of modern symmetric ciphers may be done by using linear equation systems with multiple right hand sides, which describe the encryption process. The tool was introduced by Raddum and Semaev in [31] where several solving methods were developed. In this work, the probabilities are ascribed to the right hand sides and a statistical attack is then applied. The new approach is a multivariate generalisation of the correlation attack by Siegenthaler [33]. A fast version of the attack is provided too. It may be viewed as an extension of the fast correlation attack in [26] by Meier and Staffelbach, based on exploiting so called parity-checks for linear recurrences. Parity-checks are a particular case of the relations that we introduce in the present work. The notion of a relation is irrelevant to linear recurrences. We show how to apply the method to some LFSR-based stream ciphers including those from the Grain family. The new method generally requires a lower number of the keystream bits to recover the initial states than other techniques reported in the literature.

Keywords - Cryptanalysis, Multivariate correlation attacks, Test-and-extend algorithm, Stream ciphers, LFSRs, Grain

1 Introduction

The goal of a key recovery attack against a stream cipher is to get the cipher key given a sequence of the generated keystream bits. The key is used for initialising various components of the cipher. On devices employing linear feedback shift registers (LFSR), the key is commonly used to set their initial states.

A non-linear filter generator is a keystream generator used for constructing stream ciphers. It consists of a binary LFSR of length n and a Boolean function f in ℓ variables, as depicted in Figure 1 . The LFSR's feedback taps are defined by its degree- n primitive polynomia $\left.{ }^{1}\right] g \in \mathbb{F}_{2}[x]$, where $g(x)=x^{n}-$ $c_{n-1} x^{n-1}-\ldots-c_{1} x-1$. So,

$$
\begin{equation*}
s_{i+n}=c_{n-1} s_{i+n-1}+\ldots+c_{1} s_{i+1}+s_{i} \tag{1}
\end{equation*}
$$

where the arithmetic is in \mathbb{F}_{2}. Let S_{i} be the LFSR state at time i, then $S_{i}=M^{i-1} S_{1}$, where M is the transpose of the companion matrix of g, i.e.,

$$
S_{i}=\left(\begin{array}{c}
s_{i} \\
s_{i+1} \\
\vdots \\
s_{i+n-1}
\end{array}\right) \quad \text { and } \quad M=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
1 & c_{1} & \cdots & c_{n-1}
\end{array}\right)
$$

The keystream bit at time i is $z_{i}=f\left(s_{i+k_{1}}, \ldots, s_{i+k_{\ell}}\right)$, where $f: \mathbb{F}_{2}^{\ell} \rightarrow \mathbb{F}_{2}$ and $0 \leq k_{1}<\cdots<k_{\ell} \leq n-1$. The polynomial $g(x)$, the filtering function f and the indices k_{1}, \ldots, k_{ℓ} are considered to be public. Let Λ be an $\ell \times n$ matrix which "selects" the inputs to f, i.e.,

$$
\left(\begin{array}{c}
s_{i+k_{1}} \\
\vdots \\
s_{i+k_{\ell}}
\end{array}\right)=\Lambda S_{i}, \quad \Lambda=\left(\begin{array}{c}
e_{k_{1}+1} \\
\vdots \\
e_{k_{\ell}+1}
\end{array}\right)=\left(\begin{array}{c}
e_{1} M^{k_{1}} \\
\vdots \\
e_{1} M^{k_{\ell}}
\end{array}\right)
$$

[^0]

Figure 1: Model of a filter generator.
where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0), i=1, \ldots, n$, and the only 1 is in position i from the left. Let $A_{i}=$ ΛM^{i-1}, then $z_{i}=f\left(s_{i+k_{1}}, \ldots, s_{i+k_{e}}\right)=f\left(A_{i} X\right)$, where $X=S_{1}$. The pre-image of z_{i} is the set of all possible values of $A_{i} X$ in \mathbb{F}_{2}^{ℓ} such that $z_{i}=f\left(A_{i} X\right)$. We assign a uniform probability distribution on the pre-image of z_{i} and all other values get probability 0 . That defines a probability distribution for a random variable X_{i} on the values of $A_{i} X$. We assume X is uniformlydistributed on \mathbb{F}_{2}^{n} and X_{i} are independent. Let N bits z_{1}, \ldots, z_{N} of the keystream be available. The key recovery attack on the filter generator is then to find the value $X=x$ with maximum likelihood under the condition that

$$
\begin{equation*}
A_{i} X=X_{i}, i=1, \ldots, N . \tag{2}
\end{equation*}
$$

We present a statistical approach to solve (2) and employ it to find the LFSR's initial state. This new approach is very general and does not use the properties of the recurrence (11), including parity-checks as in fast correlation attacks. The LFSR equations (2) are only used for running experiments with the new method.

1.1 Published Key Recovery Attacks

There is a substantial literature on key recovery attacks against the filter generator, where Fast Correlation Attacks (FCA) are among the most important. The first FCA was discovered by Meier and Staffelbach [26] as an improvement to the correlation attack by Siegenthaler [33]. Algebraic attacks [10, 9] form another important class. The attacks by Anderson [2], Golić et. al [16] and Leveiller et. al [24] are examples of the so-called deterministic attacks, which are efficient for very specific filter generators. There is also a general class of time/memory/data trade-offs [4].

In FCAs, key recovery is represented as a decoding problem. The sequence $s_{i}, 1 \leq i \leq N+n-1$, generated by the LFSR is the information transmitted and the sequence $z_{i}, 1 \leq i \leq N$, is the information received at the other end of a binary symmetric channel with crossover probability $1-p$, where s_{i} and z_{i} are correlated as $p=\operatorname{Pr}\left(s_{i}=z_{i}\right) \neq 1 / 2$. Let

$$
\begin{equation*}
1+x^{i_{1}}+\cdots+x^{i_{d-1}} \equiv 0 \bmod g(x), \tag{3}
\end{equation*}
$$

for some indices $0<i_{1}<\ldots<i_{d-1}<N$. So $s_{j}+s_{i_{1}+j}+\ldots+s_{i_{d-1}+j}=0$ for $1 \leq j \leq N+n-1-i_{d-1}$. The relation (3) is called parity-check and d is called its weight. A more general definition of a paritycheck is in 8 . Parity-checks only depend on the LFSR's generating polynomial $g(x)$ and N. FCAs use low-weight parity-checks. Some characteristics affect the efficiency of FCAs: the weight (i.e., the number of non-zero terms) of the primitive polynomial g and the nonlinearity of f (see [27]). Also, Golić presents in (15) a thorough list of design criteria to make the filter generator resistant to various attacks.

In the next section we will compare the performance of the new method (see Table 2) with that of published FCAs for a variety of $n=\operatorname{deg}(g)$, where the number of available keystream bits is N. Table 1 summarises some of these results. Entries with * in the second column are theoretical results only. Many attacks use the same degree-40 polynomial of weight 17 from [21. The symbol ? in the third column indicates that neither g is explicitly presented nor its weight is reported.

1.2 Overview and contributions

A more general problem than (2) is formulated in Section 2.1 . In Section $[2.2$ we describe a multivariate generalisation of the binary correlation attack by Siegenthaler [33. The correct solution is recovered by deciding whether a candidate solution $X=x$ follows a uniform distribution or the distribution induced

Attack	$\operatorname{deg}(g)$	weight (g)	d	$1-p$	N
21	40	17	2	0.260	$4 \cdot 10^{4}$
	40	17	2	0.400	$4 \cdot 10^{5}$
20	40	17	2	0.300	$4 \cdot 10^{4}$
	40	17	2	0.410	$4 \cdot 10^{5}$
7	60	?	3	0.300	$6.3 \cdot 10^{4}$
	60	?	3	0.400	$6 \cdot 10^{5}$
	70	?	3	0.350	$1.12 \cdot 10^{6}$
[5]	40	17	4	0.440	$4 \cdot 10^{5}$
	40	17	5	0.482	$3.6 \cdot 10^{5}$
22	40	17	2	0.450	$4 \cdot 10^{5}$
	60	13	3	0.320	$1.5 \cdot 10^{5}$
	60	13	2	0.430	$4 \cdot 10^{7}$
28	40	17	3	0.469	$4 \cdot 10^{5}$
	40	17	3	0.490	$3.6 \cdot 10^{5}$
	*89	?	3	0.469	$\approx 2.5 \cdot 10^{11}$
	*89	?	3	0.478	$\approx 10^{12}$
	*89	?	3	0.480	$\approx 4 \cdot 10^{12}$
8	40	17	4	0.469	$8 \cdot 10^{4}$
	*40	17	4	0.490	$8 \cdot 10^{4}$
	* 89	?	4	0.469	2^{28}
29	60	?	4		$1.5 \cdot 10^{7}$
	60	?	4	0.470	$1 \cdot 10^{8}$
[25]		17	5	0.375	$1.7 \cdot 10^{4}$
	100	3	3	0.4375	$3 \cdot 10^{4}$
11	53	?	5	0.4375	$\approx 4 \cdot 10^{5}$
	59	?	5	0.4531	$\approx 1.45 \cdot 10^{6}$
	61	?	5	0.4531	$\approx 2.1 \cdot 10^{6}$

Table 1: Some published results of FCAs.
by (2). A maximum likelihood type statistic is used. In Section 2.4, similarly to the binary case in [8, we show how to employ the Fast Fourier Transform (FFT) to compute the values of the statistic. This largely reduces the time complexity of the method while increasing the space complexity. However, a straightforward application of these basic multivariate correlation attacks still has time complexity at least 2^{n}, though requiring a lower number of equations compared to the univariate correlation attack. The goal of the present work is to solve (2) in a more efficient way.

The new method is constructed upon relations introduced below which have a more general nature than parity-checks resulted from the recurrence (1). Let $B=B_{r}$ denote a matrix of size $r \times n$ and of rank $1 \leq r \leq n$. A subset $I \subseteq\{1,2, \ldots, N\}$ is called a relation modulo B if the space spanned by the rows of $A_{i}, i \in I$, and the space spanned by the rows of B have an intersection of dimension $r_{I} \geq 1$. Let T_{I} be a matrix of size $r_{I} \times r$ such that the rows of the matrix $T_{I} B$ form a basis of this intersection. Also, let $Y=B X$. One may compute a probability distribution for a random variable Y_{I} on the values of $T_{I} Y=T_{I} B X$. The distribution of Y_{I} only depends on the distribution of $X_{i}, i \in I$. A set \mathcal{I}_{r} of relations I, where the distribution of Y_{I} is non-uniform, is collected. Then, the system of equations

$$
T_{I} Y=Y_{I}, \quad I \in \mathcal{I}_{r}
$$

is similar to (2), but of a smaller dimension. The values of $Y=B X$ are tested with the multivariate correlation method in Section 2.2. Even though the distributions of Y_{I} are closer to uniform compared to the distributions of X_{i}, and the random variables Y_{I} may be dependent, the number of values to test is reduced. The trade-off may be positive and that is proved by our experiments with the filter generator.

To compute the solution $X=x$ to (2), a test-and-extend algorithm is used. The algorithm is similar to a tree search method in a variation of linear cryptanalysis for block ciphers; see 14 . One chooses a sequence of matrices B_{r} of rank $r=1, \ldots, n$, such that B_{r} is a sub-matrix of B_{r+1}, and computes sets of relations \mathcal{I}_{r}. The test-and-extend algorithm has two variations:

1. The candidates for $B_{r} X$ are tested, and the survivors are extended to candidates for $B_{r+1} X$, which in turn are tested, etc. The cost of computing the values of the statistic for $B_{r} X$ is proportional to $\left|\mathcal{I}_{r}\right|$. The method is implemented by traversing a tree.
2. The search starts at $r=r_{0}$ for some parameter $r_{0} \geq 1$. The FFT is applied to compute the values of the statistic for $B_{r_{0}} X$. Up to around $2^{r_{0}}$ relations may be used within essentially the cost of one application of the FFT. The candidates for $B_{r_{0}} X$ are ranked according to the value of the statistic. After that, the tree traversal is done as in the first variation starting with the most probable candidates for $B_{r_{0}} X$. As an option, we can brute force the values of X such that $B_{r_{0}} X$ are most probable. We call that variation hybrid method in what follows.

The new method is presented in Section 3 in more detail. Two techniques for obtaining a set of relations \mathcal{I}_{r} are in Section 4 . Several methods to compute the probability distribution of $Y_{I}, I \in \mathcal{I}_{r}$, are introduced in Section 5. The analysis of the attack and implementation details are given in Sections 6 and 7 respectively.

The experimental results of attacks on some instances of the filter generator are presented in Section 8 and we summarise them in Table 2. Experimentally, our method requires less keystream bits to recover the LFSR's initial state compared to FCAs, and it is still significantly faster than brute force; see Section 8.3.2. Even if the LFSR is an internal block of a stream cipher, we may have (2) with the distributions of X_{i} defined differently. For instance, we demonstrate an application to the Grain family [18] of stream ciphers in Section 9 .

$\operatorname{deg}(g)$	weight (g)	d	$1-p$	N
40	17	3	0.375	$5 \cdot 10^{3}$
40	17	3	0.375	$5 \cdot 10^{3}$
64	17	3	0.375	$1 \cdot 10^{4}$
80	7	3	0.375	$1 \cdot 10^{4}$

Table 2: Result of experimental attacks against the filter generator.
The idea of the method and theoretical results in Sections $2 \sqrt{6}$ are due to Semaev. All computer calculations in this work and application of the method to the filter generator and the Grain family of stream ciphers in Sections 779 are due to Canales-Martínez.

2 Multivariate Correlation Attacks

In this section, the general problem we plan to solve is formulated. Also, multivariate extensions of known correlation attacks are introduced. That is a basis for the new method in Section 3.

2.1 General Problem

Let $A_{i}, i=1, \ldots, N$, be $\ell_{i} \times n$ matrices of rank ℓ_{i} over a finite field \mathbb{F}_{q}, where ℓ_{i} are small compared to n. Let X be a vectorial random variable uniformly distributed on \mathbb{F}_{q}^{n} and X_{i} be vectorial random variables on $\mathbb{F}_{q}^{\ell_{i}}$, where $\operatorname{Pr}\left(X_{i}=a\right)=P_{i}(a)$ for some probability distribution P_{i} on $\mathbb{F}_{q}^{\ell_{i}}, i=1, \ldots, N$. We consider the system of equations

$$
\begin{equation*}
A_{i} X=X_{i}, i=1, \ldots, N \tag{4}
\end{equation*}
$$

The task is to find the value $X=x$ with the largest conditional probability

$$
\operatorname{Pr}\left(X=x \mid A_{i} X=X_{i}, i=1, \ldots, N\right)
$$

It is equivalent to maximising the likelihood $\operatorname{Pr}\left(X_{1}=A_{1} x, \ldots, X_{N}=A_{N} x\right)$. If X_{i} are independent, we may maximise $\sum_{i=1}^{N} \ln \operatorname{Pr}\left(X_{i}=A_{i} x\right)=\sum_{i=1}^{N} \ln P_{i}\left(A_{i} x\right)$, for $P_{i}\left(A_{i} x\right) \neq 0$. From now on, the variables X, X_{1}, \ldots, X_{N} are assumed to be independent, unless otherwise stated.

With the description as in Section 1 the key recovery for the filter generator is a particular case of this problem. Multiple right hand side equation systems introduced in 31] are also a particular case of the problem.

2.2 Basic Multivariate Correlation Attack

For $x \in \mathbb{F}_{q}^{n}$, we decide whether $x_{i}=A_{i} x$ were independently taken from the distributions P_{i} on $\mathbb{F}_{q}^{\ell_{i}}$ (Hypothesis 0) or independently from uniform distributions on $\mathbb{F}_{q}^{\ell_{i}}$ (Hypothesis 1). We say x survives if

$$
\begin{align*}
& P_{i}\left(x_{i}\right) \neq 0, i=1, \ldots, N \tag{5}\\
& S(x)=\sum_{i=1}^{N} \ln P_{i}\left(x_{i}\right) \geq c \tag{6}
\end{align*}
$$

Let β be a prescribed success probability. We will show how to compute a threshold c such that $\operatorname{Pr}(S(x) \geq$ $c)=\beta$ under Hypothesis 0. The number of incorrect survivors is on average αq^{n}, where α is the probability of an incorrect x to pass the test, that is under Hypothesis 1. We now define asymptotic distributions of the statistic $S(x)$ in these two cases.

- Hypothesis 0. Let

$$
\mu_{0 i}=\sum_{y \in \mathbb{F}_{q}^{\ell_{i}}} P_{i}(y) \ln P_{i}(y) \quad \text { and } \quad \sigma_{0 i}^{2}=\sum_{y \in \mathbb{F}_{q}^{\ell_{i}}} P_{i}(y) \ln ^{2} P_{i}(y)-\mu_{0 i}^{2}
$$

be the expectation and the variance of $\ln P_{i}\left(x_{i}\right)$, respectively. Then $\mu_{0}=\sum_{i=1}^{N} \mu_{0 i}, \sigma_{0}^{2}=\sum_{i=1}^{N} \sigma_{0 i}^{2}$ are the expectation and the variance of $S(x)$. Let P_{i} be close to the uniform distributions on their supports. It is easy to check that the Lyapunov condition [3] is then satisfied for $S(x)$. So, for large enough N, its distribution approximately follows the normal distribution $\mathbf{N}\left(\mu_{0}, \sigma_{0}^{2}\right)$ by the Lyapunov Central Limit Theorem. The threshold c is then computed from $\beta=\operatorname{Pr}\left(\mathbf{N}\left(\mu_{0}, \sigma_{0}^{2}\right) \geq c\right)$.

- Hypothesis 1. Let K_{i} denote the size of the support of P_{i}, and

$$
\mu_{1 i}=\sum_{y \in \mathbb{F}_{q}^{\ell_{i}}, P_{i}(y) \neq 0} \frac{\ln P_{i}(y)}{K_{i}} \quad \text { and } \quad \sigma_{1 i}^{2}=\sum_{y \in \mathbb{F}_{q}^{\ell_{i}}, P_{i}(y) \neq 0} \frac{\ln ^{2} P_{i}(y)}{K_{i}}-\mu_{1 i}^{2}
$$

be the expectation and the variance of $\ln P_{i}\left(x_{i}\right)$, respectively. Then $\mu_{1}=\sum_{i=1}^{N} \mu_{1 i}$ and $\sigma_{1}^{2}=$ $\sum_{i=1}^{N} \sigma_{1 i}^{2}$ are the expectation and the variance of $S(x)$ in that case. Under the condition that $P_{i}\left(x_{i}\right) \neq 0, i=1, \ldots, N$, the distribution of $S(x)$ approximately follows $\mathbf{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ by the Lyapunov Central Limit Theorem. Then $\alpha=\left(\prod_{i=1}^{N} \frac{K_{i}}{q^{i_{i}}}\right) \operatorname{Pr}\left(\mathbf{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \geq c\right)$.

We may get multiple candidate solutions. In practice, however, the solution is unique for large enough N. The complexity of this straightforward attack is $O\left(N q^{n}\right)$ operations. If the distributions P_{i} are uniform on their supports (as in equations (2) for the filter generator) the statistic $S(x)$ is a constant. Then, only (5) works to test the candidate solutions and the method is reduced to brute force on the LFSR initial state. Another example is the correlation attack in [33. This attack is a particular case for $q=2, \ell_{i}=1$ and there are only two different distributions among P_{i}. In that case, only (6) works to test the candidate solutions.

2.3 Number of Equations

Let the distributions P_{1}, \ldots, P_{N} be permutations of the same distribution. Given a desired success probability β and the number of survivors αq^{n}, we estimate the number of necessary equations N (e.g., the amount of required keysteam bits in the cryptanalysis of a filter generator) and define the threshold c. Since

$$
\mu_{0}=N \mu_{01}, \sigma_{0}^{2}=N \sigma_{01}^{2} \quad \text { and } \quad \mu_{1}=N \mu_{11}, \sigma_{1}^{2}=N \sigma_{11}^{2}
$$

we find c and N from the equations

$$
\alpha \prod_{i=1}^{N} \frac{q^{\ell_{i}}}{K_{i}}=\operatorname{Pr}\left(\mathbf{N}\left(N \mu_{11}, N \sigma_{11}^{2}\right) \geq c\right) \quad \text { and } \quad \beta=\operatorname{Pr}\left(\mathbf{N}\left(N \mu_{01}, N \sigma_{01}^{2}\right) \geq c\right)
$$

2.4 Improved Complexity with FFT

Let every distribution P_{i} be close to the uniform on $\mathbb{F}_{q}^{\ell_{i}}$ such that $q^{\ell_{i}} P_{i}(y)=1+o(1)$. We show that with the Fast Fourier Transform (FFT) [6] the time complexity of the multivariate correlation attack is $O\left(\sum_{i=1}^{N} \ell_{i} q^{\ell_{i}}+n q^{n}\right)$ and the space complexity is q^{n}. This is the multivariate extension of a univariate FFT-based mathod in [8]. Let ξ be a primitive q-th root of unity. Then

$$
P_{i}(y)=\sum_{a} W_{i a} \xi^{a y}=q^{-\ell_{i}}+\sum_{a \neq 0} W_{i a} \xi^{a y},
$$

where $W_{i a}=q^{-\ell_{i}} \sum_{x} P_{i}(x) \xi^{-a x}$ and $a x$ denotes the dot-product of $a, x \in \mathbb{F}_{q}^{\ell_{i}}$. The numbers $W_{i a}, a \in \mathbb{F}_{q}^{\ell_{i}}$, are called the Fourier spectrum of P_{i}. Given an input vector of length q^{n}, the FFT computes the Fourier spectrum with time complexity $O\left(n q^{n}\right)$ for bounded q. So the cost of computing the spectrum for all P_{1}, \ldots, P_{N} is $O\left(\sum_{i=1}^{N} \ell_{i} q^{\ell_{i}}\right)$ operations. By assumption, $P_{i}(y)$ are close to $q^{-\ell_{i}}$, so $q^{\ell_{i}} \sum_{a \neq 0} W_{i a} \xi^{a y}$ are small. Since $\ln (1+\varepsilon) \approx \varepsilon$ for small ε, we have

$$
\ln P_{i}(y)=\ln \left(q^{-\ell_{i}}+\sum_{a \neq 0} W_{i a} \xi^{a y}\right)=\ln \left(1+q^{\ell_{i}} \sum_{a \neq 0} W_{i a} \xi^{a y}\right)-\ell_{i} \ln q \approx q^{\ell_{i}} \sum_{a \neq 0} W_{i a} \xi^{a y}-\ell_{i} \ln q .
$$

Therefore,

$$
\sum_{i=1}^{N} \ln P_{i}\left(A_{i} x\right) \approx \sum_{i=1}^{N} q^{\ell_{i}} \sum_{a \neq 0} W_{i a} \xi^{a A_{i} x}-\sum_{i=1}^{N} \ell_{i} \ln q=\sum_{b} C(b) \xi^{b x}-\sum_{i=1}^{N} \ell_{i} \ln q
$$

where $C(b)=\sum_{i=1}^{N} q^{\ell_{i}} \sum_{a \neq 0, a A_{i}=b} W_{i a}$ and b runs over \mathbb{F}_{q}^{n}. The non-zero $C(b)$ may be computed in $\sum_{i=1}^{N} q^{\ell_{i}}$ operations. The values $\sum_{b} C(b) \xi^{b x}$ for all $x \in \mathbb{F}_{q}^{n}$ may be computed with the FFT in $O\left(n q^{n}\right)$ operations for bounded q. We have to keep the values $C(b), b \in \mathbb{F}_{q}^{n}$, in order to apply the FFT. So the space complexity is q^{n}. The overall time complexity of the attack is $O\left(\sum_{i=1}^{N} \ell_{i} q^{\ell_{i}}+n q^{n}\right)$, which is still larger than q^{n}. We apply this method to Grain-v1 in Section 9.2. It requires a significantly lower number of the keystream bits compared to [34], though with higher time complexity.

3 New Method

The new method may work faster than the multivariate correlation attacks above and, in particular, its time complexity is lower than q^{n}. That is the main contribution of this study. The fast correlation attack in [26] applies to LFSR-based stream ciphers and exploits low-weight parity-checks, which may not exist within the available length- N keystream. Since the system (4) is generally irrelevant to LFSRs and linear recurrences, relations of a more general nature are used instead.

Let B_{r} denote an $r \times n$ matrix of rank r, where $1 \leq r \leq n$, and $Y=B_{r} X$. We show how to test the values of Y. Let $\langle V\rangle$ denote the linear space spanned by the rows of a matrix V. A set of indices $I \subseteq\{1, \ldots, N\}$ such that

$$
\begin{equation*}
\left\langle A_{i}, i \in I\right\rangle \cap\left\langle B_{r}\right\rangle \neq\langle 0\rangle \tag{7}
\end{equation*}
$$

is called a relation modulo B_{r}. Let $t_{r I}>0$ be the dimension of the space (7). It is spanned by the rows of a matrix $T_{r I} B_{r}$, where $T_{r I}$ is a matrix of size $t_{r I} \times r$ and of rank $t_{r I}$. If $|\bar{I}|$ is small, we may efficiently compute a conditional probability distribution $p_{r I}$ as

$$
\begin{equation*}
p_{r I}(v)=\operatorname{Pr}\left(\left(T_{r I} B_{r}\right) X=v \mid A_{i} X=X_{i}, i \in I\right), \quad v \in \mathbb{F}_{q}^{t_{r I}} . \tag{8}
\end{equation*}
$$

Let Y_{I} denote a random variable on $\mathbb{F}_{q}^{t_{r I}}$ with the distribution $p_{r I}$ and let \mathcal{I}_{r} be a set of the relations modulo B_{r}. Then

$$
T_{r I} Y=Y_{I}, \quad I \in \mathcal{I}_{r},
$$

is a system of equations of the same type as (4), but of a smaller dimension $r \leq n$. Since X is uniformly distributed on \mathbb{F}_{q}^{n}, the random variable Y is uniformly distributed on \mathbb{F}_{q}^{r}. The multivariate methods in Sections 2.2 and 2.4 are then applied to solve the new system. That is, $b_{r}=B_{r} X$ is tested with

$$
\begin{align*}
& p_{r I}\left(b_{r I}\right) \neq 0, \quad I \in \mathcal{I}_{r}, \tag{9}\\
& S_{r}\left(b_{r}\right)=\sum_{I \in \mathcal{I}_{r}} \ln p_{r I}\left(b_{r I}\right)>c_{r}, \tag{10}
\end{align*}
$$

where $b_{r I}=T_{r I} b_{r}$ and c_{r} is a threshold defined by the success probability, i.e., the probability of not rejecting the correct solution. Alternatively, we may use the FFT to compute the values of the statistic S_{r} if the probabilities $p_{r I}(v)$ are close enough to $q^{-t_{r I}}$. For matrices B_{r} of large rank r, a straightforward application of these methods is inefficient as we need to run over q^{r} vectors b_{r}. So, the following test-and-extend algorithm is used.

We choose a sequence of matrices B_{r} of rank $r=1, \ldots, n$, such that B_{r} is a sub-matrix of B_{r+1} and compute the relations \mathcal{I}_{r}. The algorithm has two variations:

1. The candidates for $B_{r} X$ are tested with (9) and (10). The survivors are extended to candidates for $B_{r+1} X$ and those are tested, etc. The cost of computing the values of the statistic for $B_{r} X$ is proportional to $\left|\mathcal{I}_{r}\right|$. The method is implemented by traversing a tree.
2. The search starts at $r=r_{0}$ for some parameter $r_{0} \geq 1$. The FFT is applied to compute the values of the statistic for $B_{r_{0}} X$. Up to around $2^{r_{0}}$ relations may be used within essentially the cost of one application of the FFT. The candidates for $B_{r_{0}} X$ are ranked according to the value of the statistic. After that, the tree traversal is done as in the first variation starting with the most probable candidates for $B_{r_{0}} X$. As an option, one can brute force the values of $X=x$ such that $B_{r_{0}} x$ are most probable.

In Sections 4 and 5 we show how to compute the relations (7) and their probability distributions (8), respectively. The success probability of the algorithm, its time and data complexity are studied in Section 6. Implementation details are presented in Section 7. The algorithm is applied to equations (2) constructed from some instances of the filter generator in Section 8 . Experimentally, the complexity of finding the solution is lower than q^{n}, even for some hard instances of (2), where the number of equations N is relatively low.

4 Relations Modulo B_{r}

Let $I=\left\{i_{1}, \ldots, i_{d}\right\}$ be a relation modulo B_{r}. Then $d=|I|$ is called the weight of the relation. If d is small, then the relation I is said to be short. In this section, we present two methods to find short relations.

4.1 Brute Force

The relation (7) is equivalent to a system of homogeneous linear equations

$$
\begin{equation*}
\sum_{i \in I} v_{i} A_{i}=v B_{r} \tag{11}
\end{equation*}
$$

where the variables are vectors $v_{i} \in \mathbb{F}_{q}^{\ell_{i}}, i \in I$, and $v \in \mathbb{F}_{q}^{r}$ such that $v \neq 0$. The system incorporates n equations in $\sum_{i \in I} \ell_{i}+r$ variables from \mathbb{F}_{q}. One has to solve $\binom{N}{d}$ such systems to find all relations (7) modulo B_{r} of weight $\leq d$.

Let $\ell_{i}=\ell$ for $1 \leq i \leq N$. We may expect to find at least one relation 7 if $N>(d / e) q^{\frac{n-d \ell-r+1}{d}}$. Indeed, there are $q^{\ell d}-1$ non-zero vectors in the left hand sides of (11) for every $I=\left\{i_{1}, \ldots, i_{d}\right\}$ if dependencies between the rows of $A_{i}, i \in I$, are neglected. The probability that one random vector hits the space $\left\langle B_{r}\right\rangle$ is q^{r-n}. If a vector belongs to $\left\langle B_{r}\right\rangle$, then its multiples by non-zero constants belong to $\left\langle B_{r}\right\rangle$ too. For $\ell d+r<n$, the probability that two non-collinear vectors for the same I hit $\left\langle B_{r}\right\rangle$ is negligible. The average number of the relations (11) and therefore (7) is around

$$
\begin{equation*}
\frac{\binom{N}{d}\left(q^{\ell d}-1\right)}{q^{n-r}(q-1)} \tag{12}
\end{equation*}
$$

For small d and large N, we have $\binom{N}{d} \approx \frac{N^{d}}{d!}$. That implies the bound for N. The expression (12) is a rather accurate estimate for the actual number of relations modulo B_{r} for the parameters in Section 8.3 .

4.2 Lattice Reduction

Assume that q is a small prime number. Let A be a vertical concatenation of the matrices A_{1}, \ldots, A_{N}. Thus, A is a matrix with $m=\sum_{i=1}^{N} \ell_{i}$ rows, n columns and integer entries. Let L denote a lattice of all integer vectors v of length m such that $v A \in\left\langle B_{r}\right\rangle$ modulo q. Clearly, if 11) holds, then

$$
\left(0, \ldots, 0, v_{i_{1}}, 0 \ldots, 0, v_{i_{d}}, 0 \ldots, 0\right) \in L
$$

That is a relatively short vector in the lattice since its norm is $\leq \frac{q}{2}\left(\sum_{i \in I} \ell_{i}\right)^{1 / 2}$.
The rank of the lattice L is m and the volume is q^{n-r}, the basis is easy to construct. A reduction algorithm (e.g., [23]) is applied to compute the reduced basis. Short vectors are extracted and checked. If d is small enough, a short relation (7) is found. Since we may want many short relations, the initial basis of L is modified and the reduction algorithm is applied again.

5 Computing the Distributions $p_{r I}$

In this section, we present four different methods to compute the probabilities (8). To simplify notation, let $I=\{1, \ldots, d\}$ and \mathcal{C} denote the event $A_{i} X=X_{i}, i \in I$. Let V be a matrix of size $t \times n$ and rank t such that the rows of V are in the space generated by the rows of A_{1}, \ldots, A_{d}. Then

$$
p_{r I}(v)=\operatorname{Pr}(V X=v \mid \mathcal{C})
$$

Method	Formula	Complexity	Comments
Section 5.1	(13)	$d q^{n}+R$	-
Section 5.2	14	$d q^{\operatorname{rank}(A)}+R$	$A=\left(A_{1}, \ldots, A_{d}\right)$
Section	5.4	16	$d q^{\operatorname{rank}(W)}+R$
Section	5.5	$\left\langle A_{1}\right\rangle, \ldots,\left\langle A_{d}\right\rangle$ lin. indep. $\bmod \langle W\rangle$ and $\langle V\rangle \subseteq\langle W\rangle$	

Table 3: Summary of the methods for computing $\operatorname{Pr}(V X=v \mid \mathcal{C})$.
where $V=T_{r I} B_{r}$. The results are summarised in Table 3, where $R=\sum_{i=1}^{d} q^{\ell_{i}}$ and $\ell_{i}=\operatorname{rank}\left(A_{i}\right)$. The term R appears in all methods because the corresponding computations depend on all $\sum_{i=1}^{d} q^{\ell_{i}}$ probability values.

The first three methods are universal and the third one is the fastest of the three. The convolution method in Section 5.5 may be even faster. That works if the rows of A_{1}, \ldots, A_{d} are linearly independent. Remark that, even if A_{1}, \ldots, A_{d} are linearly independent, the matrix W of smallest rank such that $\left\langle A_{1}\right\rangle, \ldots,\left\langle A_{d}\right\rangle$ are linearly independent modulo $\langle W\rangle$ and $\langle V\rangle \subseteq\langle W\rangle$ may be $A=\left(A_{1}, \ldots, A_{d}\right)$. For instance, let A_{1}, A_{2}, A_{3} be linearly independent rows ($\ell_{1}=\ell_{2}=\ell_{3}=1$) and $V=A_{1}+A_{2}+A_{3}$. Then $W=\left(A_{1}, A_{2}, A_{3}\right)$ and $\operatorname{rank}(W)=3$. The method from Section 5.5 is faster in that case as $\operatorname{rank}(V)=1$.

5.1 Basic Formula

By the conditional probability formula,

$$
p_{r I}(v)=\operatorname{Pr}(V X=v, \mathcal{C}) / \operatorname{Pr}(\mathcal{C})
$$

Since X, X_{1}, \ldots, X_{d} are independent and X is uniformly distributed on \mathbb{F}_{q}^{n}, we have

$$
\begin{equation*}
\operatorname{Pr}(V X=v, \mathcal{C})=\sum_{V x=v} \operatorname{Pr}\left(X=x, X_{1}=A_{1} x, \ldots, X_{d}=A_{d} x\right)=\frac{1}{q^{n}} \sum_{V x=v} \prod_{j=1}^{d} P_{j}\left(A_{j} x\right) \tag{13}
\end{equation*}
$$

where the sum is over $x \in \mathbb{F}_{q}^{n}$ such that $V x=v$. In order to compute $p_{r I}(v)$, it is enough to compute only $\operatorname{Pr}(V X=v, \mathcal{C})$ for each $v \in \mathbb{F}_{q}^{t}$ since $\operatorname{Pr}(\mathcal{C})=\sum_{v} \operatorname{Pr}(V X=v, \mathcal{C})$. The whole computation takes $d q^{n}$ operations.

5.2 Change of Variables

Let $k=\operatorname{dim}_{\mathbb{F}_{q}}\left\langle A_{1}, \ldots, A_{d}\right\rangle$ and let U be a $(k \times n)$-matrix constructed with linearly independent rows of A_{1}, \ldots, A_{d}. Then $A_{j}=A_{j}^{\prime} U$ and $V=V^{\prime} U$ for some matrices A_{j}^{\prime} and V^{\prime}. Let $Z=U X$. So $A_{j} X=A_{j}^{\prime} Z$ and $V X=V^{\prime} Z$, and 13 implies

$$
\begin{equation*}
\operatorname{Pr}(V X=v, \mathcal{C})=\frac{1}{q^{k}} \sum_{V^{\prime} z=v} \prod_{j=1}^{d} P_{j}\left(A_{j}^{\prime} z\right) \tag{14}
\end{equation*}
$$

where the sum is over $z \in \mathbb{F}_{q}^{k}$ such that $V^{\prime} z=v$. There are at most q^{k} terms in the sums for all v and each term is a product of d numbers. Therefore, the cost of computing $p_{r I}$ is $d q^{k}$ operations.

5.3 Independence in A_{1}, \ldots, A_{d} modulo $\langle W\rangle \supseteq\langle V\rangle$

Another method for computing probabilities $p_{r I}(v)$ is presented in this section and the following one. It may be efficient even if $k=\operatorname{dim}_{\mathbb{F}_{q}}\left\langle A_{1}, \ldots, A_{d}\right\rangle$ is large. Let W be a matrix of size $l \times n$ over \mathbb{F}_{q} and of rank l. The linear spaces

$$
\begin{equation*}
\left\langle A_{1}\right\rangle, \ldots,\left\langle A_{d}\right\rangle \tag{15}
\end{equation*}
$$

are called linearly independent modulo $\langle W\rangle$ if $\sum_{i=1}^{d} a_{i} \in\langle W\rangle$ and $a_{i} \in\left\langle A_{i}\right\rangle$ imply $a_{i} \in\langle W\rangle$. We will show how to construct a matrix W of lowest rank such that $\langle V\rangle \subseteq\langle W\rangle$ and 15 are linearly independent modulo $\langle W\rangle$. Then in Section 5.4, we will give a formula to compute

$$
\operatorname{Pr}(W X=w, \mathcal{C})
$$

for every $w \in \mathbb{F}_{q}^{l}$. The probabilities $\operatorname{Pr}(V X=v, \mathcal{C})$ are then easy to deduce. The complexity of the computation is $d q^{\mathrm{rank}(W)}$ operations.

Let U be a space generated by all b_{1}, \ldots, b_{d} such that $b_{i} \in\left\langle A_{i}\right\rangle$ and $b_{1}+\cdots+b_{d} \in\langle V\rangle$. Let W be a matrix whose rows form a basis of U. Then the spaces (15) are linearly independent modulo W. Suppose $\sum_{i=1}^{d} a_{i} \in\langle W\rangle$ and $a_{i} \in\left\langle A_{i}\right\rangle$. We need to show that $a_{i} \in\langle W\rangle$. One has $\sum_{i=1}^{d} a_{i} \in \sum_{i=1}^{d} b_{i}+\langle V\rangle$, for some $b_{i} \in\left\langle A_{i}\right\rangle \cap\langle W\rangle$ by the definition of W. Then $\sum_{i=1}^{d}\left(a_{i}-b_{i}\right) \in\langle V\rangle$ and therefore $\left(a_{i}-b_{i}\right) \in\langle W\rangle$. Hence, $a_{i} \in\langle W\rangle$ for $i=1, \ldots, d$. The spaces (15) are linearly independent. The rank of W is the lowest by construction. The following statement is then true.
Lemma 1. W is a lowest rank matrix such that $\langle V\rangle \subseteq\langle W\rangle$ and 15) are linearly independent.
We now show how to construct a basis of U. That may be done by solving a system of linear equations. Let $b_{i 1}, \ldots, b_{i t_{i}}$ be a basis for $\left\langle A_{i}\right\rangle /\langle V\rangle, i=1, \ldots, d$. So $b_{i}=\sum_{j=1}^{t_{i}} \gamma_{i j} b_{i j} \in\left\langle A_{i}\right\rangle /\langle V\rangle$ for $\gamma_{i 1}, \ldots, \gamma_{i t_{i}} \in \mathbb{F}_{q}$. Therefore $b_{1}+\cdots+b_{d} \in\langle V\rangle$ if and only if

$$
\sum_{i=1}^{d} \sum_{j=1}^{t_{i}} \gamma_{i j} b_{i j} \in\langle V\rangle
$$

We take a set of linearly independent solutions. Each solution results in b_{1}, \ldots, b_{d} and such b_{i} generate the space U. A basis of U forms the matrix W.

5.4 Formula for $\operatorname{Pr}(W X=w, C)$

Let W be a matrix constructed in Section 5.3 and $\operatorname{rank}(W)=l$. Suppose K is a matrix of size $n \times(n-l)$ and of rank $n-l$ such that $W K=0$. Hence, $W x=w$ if and only if $x=x_{0}+K y$, where y is a column vector of length $n-l$ and $W x_{0}=w$. Let V_{i} be the linear space spanned by the columns of $A_{i} K$ and

$$
\phi: \mathbb{F}_{q}^{n-l} \rightarrow V_{1} \times \ldots \times V_{d}
$$

be a linear mapping defined by $\phi(y)=\left(y_{1}, \ldots, y_{d}\right)$, where $y_{i}=A_{i} K y$.
Lemma 2. The mapping ϕ is surjective and

$$
\begin{equation*}
\operatorname{Pr}(W X=w, \mathcal{C})=\operatorname{Pr}\left(W X=w, A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)=\frac{|\operatorname{Ker} \phi|}{q^{n}} \prod_{i=1}^{d} \sum_{y_{i} \in V_{i}} P_{i}\left(w_{i}+y_{i}\right) \tag{16}
\end{equation*}
$$

where $w_{i}=A_{i} x_{0}$.
Proof. Let's prove that ϕ is surjective. If not, then the values of ϕ belong to a proper subspace of $V_{1} \times \ldots \times V_{d}$. So there are $v_{i} \in \mathbb{F}_{q}^{\ell_{i}}$ such that $\sum_{i} v_{i} A_{i} K y=0$ for every $y \in \mathbb{F}_{q}^{n-l}$ and there are nonzero vectors among $v_{1} A_{1} K, \ldots, v_{d} A_{d} K$. The equality $\sum_{i} v_{i} A_{i} K y=0$ holds for any y if and only if $\left(\sum_{i} v_{i} A_{i}\right) K=0$, and so $\sum_{i} v_{i} A_{i} \in\langle W\rangle$. By the definition of W, the latter implies $v_{i} A_{i} \in\langle W\rangle$. Hence $v_{1} A_{1} K=\cdots=v_{d} A_{d} K=0$, which is a contradiction. Therefore ϕ is surjective.

Let's prove 16). By 13),

$$
\operatorname{Pr}(W X=w, \mathcal{C})=\frac{1}{q^{n}} \sum_{W x=w} \prod_{i=1}^{d} P_{i}\left(A_{i} x\right)=\frac{1}{q^{n}} \sum_{y} \prod_{i=1}^{d} P_{i}\left(A_{i} x_{0}+A_{i} K y\right)
$$

where the first sum is over $x \in \mathbb{F}_{q}^{n}$ such that $W x=w$ and over $y \in \mathbb{F}_{q}^{n-\ell}$ in the second sum, and where $x=x_{0}+K y$. Hence,

$$
\operatorname{Pr}(W X=w, \mathcal{C})=\frac{|\operatorname{Ker} \phi|}{q^{n}} \sum_{y_{1}, \ldots, y_{d}} \prod_{i=1}^{d} P_{i}\left(w_{i}+y_{i}\right)=\frac{|\operatorname{Ker} \phi|}{q^{n}} \prod_{i=1}^{d} \sum_{y_{i}} P_{i}\left(w_{i}+y_{i}\right)
$$

where the sums are over $y_{i} \in V_{i}$ for $i=1, \ldots, d$.
Let r be the rank of the system of linear equations $\phi(y)=(0, \ldots, 0)$. So $|\operatorname{Ker} \phi|=q^{n-l-r}$. The values $\sum_{y_{i} \in V_{i}} P_{i}\left(w_{i}+y_{i}\right)$ may be precomputed for any i and $w_{i} \in \mathbb{F}_{q}^{\ell_{i}}$. It takes at most $\sum_{i=1}^{d} q^{\ell_{i}}$ operations. After that, the cost is $d q^{l}$ operations. The overall cost is then $d q^{l}+\sum_{i=1}^{d} q^{\ell_{i}}$ operations. Recall that $l=\operatorname{rank}(W) \leq k=\operatorname{dim}_{\mathbb{F}_{q}}\left\langle A_{1}, \ldots, A_{d}\right\rangle$. If $l<k$, this method is more efficient than that in Section 5.2 .

5.5 Convolution Formula

Let the rows in A_{1}, \ldots, A_{d} be linearly independent. The probabilities $\operatorname{Pr}(V X=v \mid \mathcal{C})$ may be computed in $\sum_{i} q^{\ell_{i}}+d q^{2 t}$ operations, where $t=\operatorname{rank}(V)$. Since $\langle V\rangle \subseteq\left\langle A_{1}, \ldots, A_{d}\right\rangle$, we can represent $V=\sum_{i=1}^{d} V_{i} A_{i}$, where V_{i} are matrices of size $\left(t \times \ell_{i}\right)$. This representation is unique and may be found by solving a system of linear equations.

Lemma 3.

$$
\begin{equation*}
\operatorname{Pr}\left(V X=v \mid A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)=\operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} X_{i}=v\right) \tag{17}
\end{equation*}
$$

Proof. Since the rows in A_{1}, \ldots, A_{d} are linearly independent, $A_{1} X, \ldots, A_{d} X$ are independent uniformly distributed random variables. By the conditional probability formula,

$$
\begin{aligned}
\operatorname{Pr}\left(V X=v \mid A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right) & =\frac{\operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} A_{i} X=v, A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)}{\operatorname{Pr}\left(A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)} \\
& =\frac{\operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} X_{i}=v, A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)}{\operatorname{Pr}\left(A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)},
\end{aligned}
$$

where

$$
\operatorname{Pr}\left(A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)=\prod_{i=1}^{d} \operatorname{Pr}\left(A_{i} X=X_{i}\right)=\prod_{i=1}^{d} 1 / q^{\ell_{i}}=q^{-\sum_{i=1}^{d} \ell_{i}}
$$

and

$$
\begin{aligned}
\operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} X_{i}=v, A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right) & =\sum_{\sum_{i=1}^{d} V_{i} v_{i}=v} \prod_{i=1}^{d} \operatorname{Pr}\left(A_{i} X=v_{i}\right) \times \prod_{i=1}^{d} P_{i}\left(v_{i}\right) \\
& =q^{-\sum_{i=1}^{d} \ell_{i}} \times \sum_{\sum_{i=1}^{d} V_{i} v_{i}=v} \prod_{i=1}^{d} P_{i}\left(v_{i}\right) \\
& =q^{-\sum_{i=1}^{d} \ell_{i}} \times \operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} X_{i}=v\right) .
\end{aligned}
$$

The sum is over v_{1}, \ldots, v_{d} such that $\sum_{i=1}^{d} V_{i} v_{i}=v$. Therefore,

$$
\operatorname{Pr}\left(V X=v \mid A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)=\operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} X_{i}=v\right)
$$

It takes $q^{\ell_{i}}$ linear algebra operations to compute the distribution of $V_{i} X_{i}$. Then, $\operatorname{Pr}\left(\sum_{i=1}^{d} V_{i} X_{i}=v\right)$ may be computed iteratively by a convolution type formula because $V_{i} X_{i}$ are independent. That takes $d q^{2 t}$ operations. The overall cost of computing the distribution $\operatorname{Pr}(V X=v \mid \mathcal{C})$ is $\sum_{i=1}^{d} q^{\ell_{i}}+d q^{2} \operatorname{rank}(V)$. According to Section 5.3, $\langle W\rangle=\left\langle V_{1} A_{1}, \ldots, V_{d} A_{d}\right\rangle$ since the rows in A_{1}, \ldots, A_{d} are linearly independent. The cost to compute the conditional distribution $\operatorname{Pr}\left(W X=w \mid A_{1} X=X_{1}, \ldots, A_{d} X=X_{d}\right)$ is $\sum_{i=1}^{d} q^{\ell_{i}}+$ $d q^{\text {rank }(W)}$. The conditional distribution on $V X$ may be computed within the same cost since $\langle V\rangle \subseteq\langle W\rangle$. So, the convolution method is preferable if the rows A_{1}, \ldots, A_{d} are linearly independent and $\operatorname{rank}(V)<$ $\operatorname{rank}(W) / 2$.

6 Success Probability and Complexity of the Tree Search

To simplify notation, we may assume that $\mathcal{I}_{1}=\mathcal{I}_{2}=\cdots=\mathcal{I}_{n}=\mathcal{I}$. Every relation I for B_{r} is a relation for B_{r+1} according to the definition of B_{r} and the definition (7) of a relation. So $\mathcal{I}_{r} \subseteq \mathcal{I}_{r+1}$. However, a relation I modulo B_{r+1} may not be a relation modulo B_{r}. In the latter case, we can still consider I as a trivial relation for B_{r} because we have $\langle 0\rangle$ in the right hand side of (7). Then $t_{r I}=0$ and $p_{r I}(0)=1$ for such I. Thus we can formally augment the set \mathcal{I}_{r} and get $\mathcal{I}_{r}=\mathcal{I}_{r+1}$.

6.1 Success Probability

The execution of the algorithm is a success if $b_{r}=B_{r} x$ was not rejected for every $r=1, \ldots, n$, where $X=x$ is the correct solution to (4). The success probability β is defined by

$$
\beta=\operatorname{Pr}\left(S_{r}\left(b_{r}\right) \geq c_{r}, r=1, \ldots, n \mid A_{i} X=X_{i}, i=1, \ldots, N\right)
$$

We will show how to compute the thresholds c_{1}, \ldots, c_{n} given β. Let

$$
\mathcal{S}=\left(\begin{array}{c}
S_{1}\left(b_{1}\right) \\
\vdots \\
S_{n}\left(b_{n}\right)
\end{array}\right)=\sum_{I \in \mathcal{I}} \mathcal{S}_{I}, \quad \mathcal{S}_{I}=\left(\begin{array}{c}
\ln p_{1 I}\left(b_{1 I}\right) \\
\vdots \\
\ln p_{n I}\left(b_{n I}\right)
\end{array}\right), \quad c=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)
$$

where $b_{r I}=T_{r I} b_{r}$ by the definition of the statistic S_{r} in 10$)$. The inequalities $S_{r}\left(b_{r}\right) \geq c_{r}$ may be written entry-wise as $\mathcal{S} \geq c$. So $\beta=\operatorname{Pr}\left(\mathcal{S} \geq c \mid A_{i} X=X_{i}, i=1, \ldots, N\right)$.

As B_{r} is a submatrix of B_{r+1} in its first r rows, we choose the matrices $T_{r I}$ in (7) such that $T_{r I}$ is a submatrix of $T_{r+1 I}$ in its first $t_{r I}$ rows and first r columns as below

$$
T_{r+1 I}=\left(\begin{array}{cc}
& 0 \\
T_{r I} & \vdots \\
& 0 \\
* & *
\end{array}\right)
$$

So, $b_{r I}=T_{r I} b_{r}$ is a subvector of $b_{r+1 I}=T_{r+1 I} b_{r+1}$ in its first $t_{r I}$ entries. The mean of \mathcal{S}_{I} is

$$
\mu_{I}=\left(\begin{array}{c}
\mu_{1 I} \\
\mu_{2 I} \\
\vdots \\
\mu_{n I}
\end{array}\right), \quad \mu_{r I}=\sum_{v} p_{r I}(v) \ln p_{r I}(v),
$$

where v runs over $\mathbb{F}_{q}^{t_{r I}}$. The mean of \mathcal{S} is therefore $\mu=\sum_{I \in \mathcal{I}} \mu_{I}$. Let Q_{I} be the covariance matrix of \mathcal{S}_{I}. The entry in the row i and the column $j \geq i$ of Q_{I} is

$$
\sum_{v} p_{j I}(v) \ln p_{i I}\left(v_{i}\right) \ln p_{j I}(v)-\mu_{i I} \mu_{j I}
$$

where v runs over $\mathbb{F}_{q}^{t_{j I}}$ and v_{i} is the vector in the first $t_{i I}$ entries of v. This is because $j \geq i$ and $b_{i I}=T_{i I} b_{i}$ is the vector in the first $t_{i I}$ coordinates of $b_{j I}=T_{j I} b_{j}$.

The distribution of \mathcal{S}_{I} only depends on the distribution of $X_{i}, i \in I$. If any distinct $I, J \in \mathcal{I}$ are disjoint, then $\mathcal{S}_{I}, I \in \mathcal{I}$, are independent and the covariance matrix of \mathcal{S} is $Q=\sum_{I \in \mathcal{I}} Q_{I}$. In practice, the sets I are small (of size at most d) randomly looking subsets of $\{1, \ldots, N\}$. They are mostly pairwise disjoint. For the same reason, for large enough $|\mathcal{I}|$, the sum $\mathcal{S}=\sum_{I \in \mathcal{I}} \mathcal{S}_{I}$ approximately follows the multivariate normal distribution $\mathbf{N}(\mu, Q)$. Our experiments with the filter generator in Section 8 fit well this assumption. Given β, the threshold c such that $\operatorname{Pr}(\mathbf{N}(\mu, Q) \geq c)=\beta$ is relatively easy to compute.

6.2 Number of the Tree Nodes at Level r

The complexity of the algorithm is defined by the number of nodes visited during the search. At level r a current node b_{r} is tested with (9) and (10). The number of nodes at level r is the number of survivors b_{r-1} times q. We show how to compute the number of incorrect survivors b_{r}.

Let X be taken from the uniform distribution on \mathbb{F}_{q}^{n}. Therefore, $b_{r}=B_{r} X$ is uniformly distributed on \mathbb{F}_{q}^{r} and $b_{r I}=T_{r I} b_{r}$ is uniformly distributed on $\mathbb{F}_{q}^{t_{r I}}$. Let $\mathcal{E}_{r I}$ denote the event $p_{r I}\left(b_{r I}\right) \neq 0$. Clearly, $\operatorname{Pr}\left(\mathcal{E}_{r I}\right)=K_{r I} / q^{t_{r I}}$, where $K_{r I}$ is the size of the support for the distribution $p_{r I}$. Let \mathcal{E}_{r} be the joint event $\left\{\mathcal{E}_{r I}, I \in \mathcal{I}\right\}$. If any distinct $I, J \in \mathcal{I}$ are disjoint, then the events $\mathcal{E}_{r I}$ are independent. In practice, that is likely to happen, so we may assume

$$
\varepsilon_{r}=\operatorname{Pr}\left(\mathcal{E}_{r}\right)=\prod_{I \in \mathcal{I}} K_{r I} / q^{t_{r I}} .
$$

Let

$$
\mathcal{S}(r)=\left(\begin{array}{c}
S_{1}\left(b_{1}\right) \\
\vdots \\
S_{r}\left(b_{r}\right)
\end{array}\right), \quad c(r)=\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{r}
\end{array}\right)
$$

where c_{i} are found from $\operatorname{Pr}(\mathbf{N}(\mu, Q) \geq c)=\beta$ in Section 6.1. The current b_{r} passes the tests up to level r if and only if \mathcal{E}_{r} holds and $\mathcal{S}(r)>c(r)$. The probability of this event is

$$
\operatorname{Pr}\left(\mathcal{S}(r)>c(r), \mathcal{E}_{r}\right)=\operatorname{Pr}\left(\mathcal{E}_{r}\right) \cdot \operatorname{Pr}\left(\mathcal{S}(r)>c(r) \mid \mathcal{E}_{r}\right)
$$

We will show how to compute $\alpha(r)=\operatorname{Pr}\left(\mathcal{S}(r)>c(r) \mid \mathcal{E}_{r}\right)$. We can write $\mathcal{S}(r)=\sum_{I \in \mathcal{I}} \mathcal{S}_{I}(r)$, where

$$
\mathcal{S}_{I}(r)=\left(\begin{array}{c}
\ln p_{1 I}\left(b_{1 I}\right) \\
\vdots \\
\ln p_{r I}\left(b_{r I}\right)
\end{array}\right) .
$$

Let $\mu_{r I}=\left(\begin{array}{c}\mu_{1 I} \\ \vdots \\ \mu_{r I}\end{array}\right)$ be the mean vector and let $Q_{r I}$ be the covariance matrix of $\mathcal{S}_{I}(r)$. Since $b_{j I}$ is a vector in the first $t_{j I}$ entries of $b_{r I}$, then

$$
\mu_{j I}=\frac{\sum_{v_{r}} \ln p_{j I}\left(v_{j}\right)}{K_{r I}}
$$

where the sum is over all $v_{r} \in \mathbb{F}_{q}^{t_{r I}}$ such that $p_{r I}\left(v_{r}\right) \neq 0$ and v_{j} is the first $t_{j I}$ entries of v_{r}. Notice that $p_{r I}\left(v_{r}\right) \neq 0$ implies $p_{j I}\left(v_{j}\right) \neq 0$. The entry in the row i and the column j of the covariance matrix $Q_{r I}$ is

$$
\sum_{v_{r}} \frac{\ln p_{i I}\left(v_{i}\right) \ln p_{j I}\left(v_{j}\right)}{K_{r I}}-\mu_{i I} \mu_{j I},
$$

where the sum is over all v_{r} such that $p_{r I}\left(v_{r}\right) \neq 0$. For large $|\mathcal{I}|$, the random variable $\mathcal{S}(r)=\sum_{I \in \mathcal{I}} \mathcal{S}_{I}(r)$ approximately follows a multivariate normal distribution $\mathbf{N}\left(\mu_{r}, Q_{r}\right)$, where $\mu_{r}=\sum_{I \in \mathcal{I}} \mu_{r I}$ and $Q_{r}=$ $\sum_{I \in \mathcal{I}} Q_{r I}$. Therefore $\alpha(r) \approx \operatorname{Pr}\left(\mathbf{N}\left(\mu_{r}, Q_{r}\right)>c(r)\right)$. The number of incorrect b_{r} which pass the test at level r is approximately

$$
\varepsilon_{r} \cdot \alpha(r) \cdot q^{r} .
$$

6.3 Time and Data Complexity

For $N>(d / e) q^{\frac{n-d \ell-r+1}{d}}$, according to Section 4.1, we may expect non-trivial relations modulo B_{r} of weight at most d. Short relations are computed by brute force or lattice reduction. The search for relations is fully parallelisable. For small d, the distributions $p_{r I}$ are relatively easy to compute and more likely to be non-uniform. However, we do not expect many useful relations if N is moderate and r is small. For larger r, we can have numerous useful relations. On the other hand, computing the distributions $p_{r I}$ may be tedious for larger d and the distributions tend to be uniform. We need $\left|\mathcal{I}_{r}\right|$ arithmetic operations with low precision reals to compute the statistic S_{r} in for each visited node at level r. So the complexity of the tree search is $\sum_{r=0}^{n-1} \varepsilon_{r} \cdot \alpha(r) \cdot q^{r+1} \cdot\left|\mathcal{I}_{r+1}\right|$ arithmetic operations, where we set $\varepsilon_{0}=1, \alpha(0)=1$.

7 Algorithm Implementation Details

The algorithm comprises two stages: pre-computation and tree search. Let a small d be a parameter. In the first stage, a set of matrices B_{r} of rank $r=1, \ldots, n$ are chosen; these matrices are such that B_{r} is a submatrix of B_{r+1} in its first r rows. Also, using the methods in Section 4 the sets \mathcal{I}_{r} of relations modulo B_{r} of weight at most d are constructed. The probability distributions $p_{r I}, I \in \mathcal{I}_{r}$, defined by (8) are then computed with the methods in Section 5. The available relations are ranked and the best ones are used; see Section 7.1. The thresholds c_{r} are calculated such that the correct solution is found with a predefined success probability β after the algorithm terminates; see Section 6 . That defines the statistical tests (9), (10) for $1 \leq r \leq n$. In the second stage, the candidate solutions for $B_{r} X$ are tested, the survivors are extended to candidate solutions for $B_{r+1} X$ and tested, for $1 \leq r \leq n-1$. This stage
is implemented with a tree search; see Section 7.2. The complexity of computing the statistic S_{r} is proportional to $\left|\mathcal{I}_{r}\right|$ by 10 . We can afford using only a limited number of the relations \mathcal{I}_{r} with this variation.

Alternatively, the FFT may be used. We choose a parameter $1 \leq r_{0} \leq n$. The values of the statistic $S_{r_{0}}(b)$ are computed for all $b \in \mathbb{F}_{q}^{r_{0}}$ with the FFT; see Section 2.4 The candidates $b=B_{r_{0}} X$ are ranked according to the values $S_{r_{0}}(b)$. They are extended, starting with the most probable candidates, to candidate solutions for $B_{r} X, r=r_{0}+1, \ldots, n$, tested and the survivors are further extended and tested. This variation requires storage of order $q^{r_{0}}$ to execute the FFT. We can use a large number of the relations in $\mathcal{I}_{r_{0}}$, up to $q^{r_{0}}$, within the cost of one FFT application. Experimentally, that reduces the size of the tree search. Since the number of the relations $\mathcal{I}_{r_{0}}$ is large, there may be dependencies between the summands in the definition (10) of the statistic S_{r} for $r=r_{0}$ and a normal approximation to the distribution of $S_{r_{0}}$ may not be very accurate.

7.1 Ranking Relations

The complexity of the tree search for every level r is influenced by the number of relations \mathcal{I}_{r} as the statistic in 10 incorporates $\left|\mathcal{I}_{r}\right|$ summands. The available relations may be ranked according to the size of the support and the entropy (or quadratic imbalance) of the distribution $p_{r I}$ on $\mathbb{F}_{q}^{t_{r I}}$. Inferior relations are then filtered out. The size of the support of $I \in \mathcal{I}_{r}$ is the number $K_{r I}$ of $v \in \mathbb{F}_{q}^{q_{r I}}$ such that $p_{r I}(v) \neq 0$. The normalised q-ary entropy is

$$
H\left(p_{r I}\right)=-\sum_{v} p_{r I}(v) \log _{q} p_{r I}(v)-t_{r I}
$$

where the sum is over $v \in \mathbb{F}_{q}^{t_{r I}}$. Let $I, J \in \mathcal{I}_{r}$. We say that I is a better distinguisher than J (i.e., further away from being uniform) if

1. $\frac{K_{r I}}{q^{t_{r I}}}<\frac{K_{r J}}{q^{t r J}}$, or
2. $H\left(p_{r I}\right)<H\left(q_{r J}\right)$ if $\frac{K_{r I}}{q^{t_{r I}}}=\frac{K_{r J}}{q^{t_{r J}}}$.

A number of best relations are used to construct the statistic S_{r} in 10 .

7.2 Tree Search

Let $b=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$. For $1 \leq r \leq n$, we denote $b_{r}=\left(a_{1}, a_{2}, \ldots, a_{r}\right)$, so that $b_{n}=b$. To simplify notation, we will use a predicate R_{r}. We say $R_{r}\left(b_{r}\right)=1$ if both conditions (9) and (10) are satisfied, and $R_{r}\left(b_{r}\right)=0$ otherwise. The task is to find b such that

$$
\begin{equation*}
R_{1}\left(b_{1}\right)=1, \ldots, R_{n}\left(b_{n}\right)=1 \tag{18}
\end{equation*}
$$

The solving algorithm is implemented by traversing a tree, where b_{r} is tested at level r. If $R_{r}\left(b_{r}\right)=1$, then b_{r} is extended to b_{r+1} and tested. If $R_{r}\left(b_{r}\right)=0$, that branch is not explored and the search backtracks. Whenever the last level n is reached, the value of b_{n} is a solution to (18). Generally, the tree search finds candidate solutions to (4). In our experiments with the filter generator, the correct solution is always found. In some cases, it is unique at an early level $r<n$.

8 Key Recovery Attacks for the Filter Generator

In this section we apply the new method for cryptanalysis of the filter generator.

8.1 Constructing B_{r} and relations

For the filter generator, the matrix B_{n}, and therefore its sub-matrices B_{r}, and the relations in \mathcal{I}_{r} were chosen according to the following principles:

1. Each row of B_{n} is randomly taken from the vectors $a A_{i}, i=1, \ldots, N$, where $a=\left(a_{1}, \ldots, a_{\ell}\right)$ and the linear Boolean function $a\left(x_{1}, \ldots, x_{\ell}\right)=a_{1} x_{1}+\cdots+a_{\ell} x_{\ell}$ is one of the best linear approximations to the filtering function f. The vector $a A_{i}$ belongs to the space generated by the rows of A_{i}. There are at least r relations I modulo B_{r} of weight 1 , thus providing with a few good distributions $p_{r, I}$.
2. Even though we may find numerous relations, only a bounded number of them may be used for the tree search. We try to choose \mathcal{I}_{r} such that $I \cap J=\emptyset$ for distinct $I, J \in \mathcal{I}_{r}$, that is, all the relations are pairwise disjoint. In that case, the distribution of the statistic S_{r} may be well approximated with the Central Limit Theorem. Also, the sets \mathcal{I}_{r} were chosen to be disjoint. The tests (9) and (10) may be considered independent for $r=1, \ldots, n$. So the statistics $S_{r}, r=1, \ldots, n$, are independent and the covariance matrix Q for their joint distribution is diagonal. That allows our experimental results to be as close as possible to the theoretical analysis based on the normal approximation to the distribution of \mathcal{S}_{r}.
3. In contrast, when using the FFT at stage r_{0} (hybrid method), we can afford a large number of relations in $\mathcal{I}_{r_{0}}$ with almost no additional cost. That significantly reduces the time complexity of the whole attack. However, the Central Limit Theorem does not seem to hold for the statistic $S_{r_{0}}$, since the sum (10) representing the statistic may contain a large number of dependent terms. At least in the case when b is distributed uniformly on $\mathbb{F}_{q}^{r_{0}}$ (as in Section 6.2 where the number of wrong survivors is computed), the distribution of $S_{r_{0}}$ is normal, but the parameters are different from those calculated with the CLT. Hence, the complexity of the FFT based attack is generally more difficult to predict.
4. Let I be a relation modulo B_{r}. Then, $j \in I$ is called irrelevant if $v_{j}=0$ for every solution v_{i}, $i \in I$, and $v \neq 0$ to 11). That means that the distribution $p_{r, I}$ does not depend on X_{j}, even if $j \in I$. The other indices in I are called relevant modulo B_{r}. Two relations I_{1} and I_{2} modulo B_{r} are equivalent if their set of relevant indices coincide. For each B_{r}, we apply the ordering criteria in Section 7.1 on the classes of equivalent relations and choose a suitable number of them to create \mathcal{I}_{r}.

The statistical software R 30 was used to get the vector c which defines the tests (10) and the probabilities $\alpha(r)$ in Sections 6.1 and 6.2.

8.2 Toy example

Let the keystream $z_{1}, \ldots, z_{11}=1,0,1,0,0,0,0,0,0,1,0$ be produced by a filter generator, where $g(x)=$ $x^{7}+x^{5}+x^{2}+x+1, f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{1} x_{2}+x_{2} x_{3}$, and $\left(k_{1}, k_{2}, k_{3}\right)=(0,2,5)$. We will find its initial state X. One computes $A_{i}=\Lambda M^{i-1}, i=1, \ldots, 11$, where

$$
M=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

and

$$
\Lambda=\left(\begin{array}{l}
e_{1} M^{0} \\
e_{1} M^{2} \\
e_{1} M^{5}
\end{array}\right)=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

where $e_{1}=\left(\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$. That is

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad A_{3}=\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0
\end{array}\right), \\
& A_{4}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right), \quad A_{5}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 & 0
\end{array}\right), \quad A_{6}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}\right), \\
& A_{7}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right), \quad A_{8}=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right), \quad A_{9}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \\
& A_{10}=\left(\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \quad A_{11}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

The truth table of f is in Table 4. The distributions $P_{(0)}=(1 / 4,1 / 4,1 / 4,0,0,0,1 / 4,0)$ and $P_{(1)}=$ $(0,0,0,1 / 4,1 / 4,1 / 4,0,1 / 4)$ correspond to $f(a)=0$ and $f(a)=1$, respectively. Hence, the distributions of the random variables X_{i} are $P_{i}=P_{(0)}$, for $i=2,4,5,6,7,8,9,11$, and $P_{i}=P_{(1)}$, for $i=1,3,10$. That defines the system (4).

a	$(0,0,0)$	$(0,0,1)$	$(0,1,0)$	$(0,1,1)$	$(1,0,0)$	$(1,0,1)$	$(1,1,0)$	$(1,1,1)$
$f(a)$	0	0	0	1	1	1	0	1

Table 4: Truth table of $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{1} x_{2}+x_{2} x_{3}$.

The matrix B_{7} is constructed by randomly taking vectors from $(1,1,0) A_{i}$, where $x_{1}+x_{2}$ is a good linear approximation to f :

$$
B_{7}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

We have found 45 relations modulo B_{3} (the sub-matrix of B_{7} in its first 3 rows) of weight $d=2$:

$$
\mathcal{I}=\left\{\begin{array}{l}
\{1,2\},\{1,3\},\{1,5\},\{1,6\},\{1,7\},\{1,8\},\{1,9\},\{1,10\},\{1,11\}, \\
\{2,3\},\{2,4\},\{2,5\},\{2,6\},\{2,7\},\{2,9\},\{2,10\},\{2,11\},\{3,4\}, \\
\{3,6\},\{3,7\},\{3,9\},\{3,10\},\{3,11\},\{4,5\},\{4,6\},\{4,8\},\{4,10\}, \\
\{4,11\},\{5,6\},\{5,7\},\{5,8\},\{5,9\},\{5,11\},\{6,7\},\{6,10\},\{7,8\}, \\
\{7,9\},\{7,10\},\{7,11\},\{8,9\},\{8,10\},\{8,11\},\{9,10\},\{9,11\},\{10,11\}
\end{array}\right\} .
$$

For instance, if $I=\{1,2\}$, then $\left\langle A_{1}, A_{2}\right\rangle \cap\left\langle B_{3}\right\rangle=T_{3 I} B_{3}$, where $T_{3 I}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$, and therefore $t_{3}=2$. Some of the relations $I \in \mathcal{I}$ taken modulo B_{r} may have irrelevant indices for $r<3$ or be equivalent. For instance, let $I=\{1,2\}$ and $J=\{1,8\}$. For $r=1$ we have $(0) B_{1}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) A_{1}+\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) A_{2}$, and $(0) B_{1}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) A_{1}+\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) A_{8}$. For $r=2$ we have $\left(\begin{array}{ll}0 & 1\end{array}\right) B_{2}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) A_{1}+\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) A_{2}$ and $\left(\begin{array}{ll}0 & 1\end{array}\right) B_{2}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right) A_{1}+\left(\begin{array}{lll}0 & 0 & 0\end{array}\right) A_{8}$. Finally, for $r=3$ we get

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) B_{3}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) A_{1}+\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) A_{2} \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) B_{3}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) A_{1}+\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right) A_{8}
\end{aligned}
$$

Neither indices in I nor J are relevant modulo B_{1}. The only relevant index of I and J at level 2 is 1 , so they are equivalent modulo B_{2}. They are no longer equivalent modulo $B_{r}, r \geq 3$, since their set of relevant indices are distinct. We then computed the probability distributions $p_{7 I}$ for $I \in \mathcal{I}$ and deduced $p_{r I}$ for each $r<7$. After sorting the relations we set

$$
\begin{aligned}
& \mathcal{I}_{1}=\{\{5,7\},\{1,5\}\} \\
& \mathcal{I}_{2}=\{\{1,6\},\{1,7\},\{2,5\}\} \\
& \mathcal{I}_{3}=\{\{8,10\},\{2,11\},\{3,7\},\{4,8\}\} \\
& \mathcal{I}_{4}=\{\{2,4\},\{4,6\},\{2,6\},\{2,7\},\{2,10\}\} \\
& \mathcal{I}_{5}=\{\{5,11\},\{1,2\},\{2,9\},\{7,11\},\{6,7\},\{1,11\},\{4,5\},\{10,11\},\{1,8\},\{5,8\}\}, \\
& \mathcal{I}_{6}=\{\{1,10\},\{3,4\},\{5,9\},\{8,11\},\{4,10\},\{3,6\},\{3,9\}\}, \\
& \mathcal{I}_{7}=\{\{8,9\}\}
\end{aligned}
$$

The covariance matrix and mean vector for the multivariate distributions in Sections 6.1 and 6.2 are then computed. For the success probability $\beta=0.9$ the vector of thresholds is

$$
c=(-2.8344,-8.8069,-15.4057,-17.0976,-39.5219,-28.2609,-4.0000)
$$

The tree search in Figure 2 found a unique candidate solution $b=(0,0,1,0,0,1,1)^{T}$. Solving the linear system $B_{7} X=b$ yields $x=(1,0,1,1,0,1,0)^{T}$, which is the correct initial state.

We also applied the hybrid approach using all relations modulo B_{3}. After applying the FFT at level 3, we sorted the candidates and executed the tree search. The result of ordering according to the value of the statistic was

$$
(0,1,0), \quad(1,1,0), \quad(1,1,1), \quad(0,1,1), \quad(0,0,1), \quad(1,0,0), \quad(0,0,0), \quad(1,0,1)
$$

Figure 2: Tree traversal for the toy example. Filled nodes represent the survivor nodes. Non-filled nodes represent rejected nodes whose branch is not traversed.

Neither of the first four candidates survived at level 4. The fifth candidate is the one corresponding to the correct initial state, which was recovered, and the tree search stopped at this point. The complexity of the hybrid method is defined by the FFT. Due to the size of this example, the hybrid approach is the worst. For bigger instances, however, the hybrid approach yields the best results.

8.3 Experimental Results on the Filter Generator

We now present results of the new method applied to four hard instances of the filter generator. The method requires a significantly lower number of keystream bits than FCAs, methods based on the Berlekamp-Massey algorithm and fast algebraic attacks as in [10, 9. So, we compare the efficiency of the new method with brute force. The latter requires $2^{n}-1$ trials of the LFSR initial state. On each candidate, we clock the LFSR and generate n bits of the keystream. Therefore, brute force takes essentially $n 2^{n}$ bit operations, where we neglected the cost of clocking the LFSR.

In the first two experiments, $n=40$ and the filtering functions f depend on $\ell=5$ and 7 variables, respectively. We were able to explicitly recover the LFSR initial state with $N=5000$ keystream bits and significantly faster than brute force. The best complexity was achieved with a combination of FFT and tree search, that is, $2^{32.06}$ and $2^{35.19}$ of low precision additions of reals, respectively, to compute the values of the statistics. The results closely fit the theoretical prediction. In the last two experiments, $n=64$ and 80 , respectively, $\ell=5$ and $N=10000$. The tree search was executed up to some intermediate level. The complexity was then extrapolated to the whole tree. Again, the best result was achieved with a combination of FFT and tree search, that is, $2^{57.39}$ and $2^{70.95}$ of low precision additions of reals, respectively.

In the experiments below, we used instances of the filter generator which employ "components" from the existing literature, such as the degree-40 feedback polynomial in [21] and the filtering Boolean function f from Grain-v1 [19]. In the first three experiments, we used feedback polynomials with high weight and input indices k_{i} that maximise the memory. In the last experiment, we follow closely the definition of the LFSR in Grain-v1, but maximise the memory when choosing the last input to the filtering function. Under various criteria (for example [15]), the devices are hard instances of the filter generator.

8.3.1 Experiments

We employed the following devices:

- Experiment 1. The polynomial g is a common choice in the literature, f is the one used in Grain-v1, the input spacings to f are coprime and span the whole register.
$-g(x)=x^{40}+x^{38}+x^{33}+x^{32}+x^{29}+x^{27}+x^{25}+x^{21}+x^{19}+x^{17}+x^{12}+x^{11}+x^{9}+x^{5}+x^{3}+x+1 ;$
$-f\left(x_{1}, \ldots, x_{5}\right)=x_{2}+x_{5}+x_{1} x_{4}+x_{3} x_{4}+x_{4} x_{5}+x_{1} x_{2} x_{3}+x_{1} x_{3} x_{4}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{5}+x_{3} x_{4} x_{5}$;
$-\left(k_{1}, \ldots, k_{5}\right)=(0,7,15,26,39)$.
- Experiment 2. Device taken from [25], the authors did not specify the input spacings to f, in our case, they are coprime and span the whole register.

$$
-g(x)=x^{40}+x^{38}+x^{33}+x^{32}+x^{29}+x^{27}+x^{25}+x^{21}+x^{19}+x^{17}+x^{12}+x^{11}+x^{9}+x^{5}+x^{3}+x+1 ;
$$

$$
\begin{aligned}
& -f\left(x_{1}, \ldots, x_{7}\right)=1+x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{1} x_{7}+x_{2}\left(x_{3}+x_{7}\right)+x_{1} x_{2}\left(x_{3}+x_{6}+x_{7}\right) \\
& -\left(k_{1}, \ldots, k_{7}\right)=(0,3,8,15,26,31,39)
\end{aligned}
$$

- Experiment 3. The polynomial g was chosen at random with high weight, f is the one used in Grain-v1, the input spacings to f are coprime and span the whole register.
$-g(x)=x^{64}+x^{62}+x^{55}+x^{49}+x^{44}+x^{42}+x^{37}+x^{24}+x^{23}+x^{20}+x^{16}+x^{15}+x^{10}+x^{8}+x^{6}+x^{2}+1 ;$
$-f\left(x_{1}, \ldots, x_{5}\right)=x_{2}+x_{5}+x_{1} x_{4}+x_{3} x_{4}+x_{4} x_{5}+x_{1} x_{2} x_{3}+x_{1} x_{3} x_{4}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{5}+x_{3} x_{4} x_{5}$;
$-\left(k_{1}, \ldots, k_{5}\right)=(0,22,43,61,63)$.
- Experiment 4. The polynomial g, the function f and the indices k_{i} are taken from Grain-v1. In that cipher, the last input to f comes from its NFSR (see Section 9); here we wired that input to the last cell of the LFSR $\left(k_{5}=79\right)$ to increase the memory.
$-g(x)=x^{80}+x^{62}+x^{51}+x^{38}+x^{23}+x^{13}+1 ;$
$-f\left(x_{1}, \ldots, x_{5}\right)=x_{2}+x_{5}+x_{1} x_{4}+x_{3} x_{4}+x_{4} x_{5}+x_{1} x_{2} x_{3}+x_{1} x_{3} x_{4}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{5}+x_{3} x_{4} x_{5}$;
$-\left(k_{1}, \ldots, k_{5}\right)=(3,25,46,64,79)$.
In all experiments, as in the toy example, the matrices B_{r} were created as in Section 8.1, we applied brute force to obtain a set \mathcal{I} of relations modulo $B_{r_{1}}$, for some value r_{1}, and created the (disjoint) sets \mathcal{I}_{r} by choosing relations from \mathcal{I}. Table 5 shows the values used in the experiments. Then, for all experiments, we computed the covariance matrix and mean vector for the multivariate distributions to get the vector c of thresholds using a success probability $\beta=0.9$.

	Linear approx.	r_{1}	d	$\|\mathcal{I}\|$	$\left\|\mathcal{I}_{r}\right\|$
Experiment 1	$x_{1}+x_{3}+x_{4}$	10	3	15000	50 for $r=1, \ldots, 10 ; 150$ for $r=11, \ldots, 20 ;$ 300 for $r=21, \ldots, 40$
Experiment 2	$x_{1}+x_{4}+x_{5}+x_{6}+x_{7}$	5	3	15000	50 for $r=1, \ldots, 10 ; 150$ for $r=11, \ldots, 20 ;$ 300 for $r=21, \ldots, 40$
Experiment 3	$x_{4}+x_{5}$	32	3	100000	100 for $r=1, \ldots, 20 ; 250$ for $r=21, \ldots, 30 ;$ 400 for $r=31, \ldots, 50 ; 500$ for $r=51, \ldots, 64$
Experiment 4	$x_{4}+x_{5}$	40	3	49657	50 for $r=1, \ldots, 20 ; 200$ for $r=21, \ldots, 45 ;$ 400 for $r=46, \ldots, 60 ; 500$ for $r=61, \ldots, 80$

Table 5: Details of the experiments.
Experiment 1. The tree search found a unique solution corresponding to the correct initial state. Figure 3 shows the number of theoretical and experimental survivors from the tree search. The maximum of theoretical survivors is $2^{28.59}$ at $r=30$. Experimentally, it was $2^{28.34}$. Since $\left|\mathcal{I}_{30}\right|=300$, the theoretical complexity is $2^{36.82}$ and in practice it was $2^{36.57}$ of low precision additions of reals to compute the values of the statistics in the right hand side of 10). We applied the hybrid approach with $r_{0}=20$ using all 2269 relations modulo B_{20} with non-uniform distributions. The complexity of the FFT is $O\left(2^{24.32}\right)$ operations. Then, the correct initial state was recovered after executing the tree search on $32603 \approx 2^{15}$ candidate solutions starting at level $r=20$. Figure 3 shows the number of survivors with the hybrid approach at levels $r \geq 20$. The maximum number of survivors is $2^{23.84}$ at $r=30$. Since $\left|\mathcal{I}_{30}\right|=300$, the complexity of the tree search is $2^{32.06}$ of low precision additions with reals. The hybrid approach performs better in this case compared to only using the tree search.
Experiment 2. The tree search found 14 solutions which included the one corresponding to the correct initial state. Figure 4 shows the number of theoretical and experimental survivors from the tree search. The maximum of theoretical survivors is $2^{30.31}$ at $r=32$. Experimentally, it was $2^{27.83}$. Since $\left|\mathcal{I}_{30}\right|=300$, the theoretical complexity is $2^{38.54}$ operations and in practice it was $2^{36.06}$. We applied the hybrid approach with $r_{0}=20$ using all 261 relations modulo B_{20} with non-uniform distributions. The complexity of the FFT is negligible as above. Then, the correct initial state was recovered after executing the tree search on $259039 \approx 2^{18}$ candidate solutions starting at level $r=20$. Figure 4 shows the number of survivors with the hybrid approach at levels $r \geq 20$. The maximum number of survivors is $2^{26.96}$ at $r=32$. Since $\left|\mathcal{I}_{30}\right|=300$, the complexity of the tree search is $2^{35.19}$ operations. The hybrid approach performs better in this case compared to only using the tree search.
Experiment 3. We estimated the theoretical complexity first and, given the number of expected survivors, we executed the tree search up to level 36 only. Figure 5 shows the number of theoretical and partial experimental survivors from the tree search. The maximum of theoretical survivors is $2^{50.67}$

Figure 3: Number of survivors for experiment 1.

Figure 4: Number of survivors for experiment 2.
at $r=52$. Since $\left|\mathcal{I}_{52}\right|=500$, the theoretical complexity is $2^{59.64}$ operations. At level 36 , we got $2^{35.75}$ survivors from the tree search and $2^{35.73}$ survivors theoretically. Since the number of experimental survivors follows very closely the theoretical curve, we expect the experimental complexity to be about $2^{59.64}$. We applied the hybrid approach using 1115 relations with B_{20}. These are all the relations in $\mathcal{I} \bmod B_{20}$ whose support have a non-uniform probability distribution (at level 20). Due to the potential high number of survivors, we executed the tree search part up to level 36 as well. For this partial experiment, however, we knew in advance the candidate at level 20 corresponding to the correct initial state. Otherwise, we would not have been able to know where to stop the tree search and it would be equivalent to brute force all candidates at level 20. Figure 5 shows the number of survivors with the hybrid approach. We got $2^{32.42}$ candidates at level 36 . Hence, the hybrid approach also performs better than using the tree search only. As in the previous experiments, the complexity of the FFT is negligible compared to the tree search part. We assume that the number of survivors for the hybrid method follows the behaviour of the tree search only, as in the previous experiments. In the worst case, the tree search part of the hybrid method will not reject any candidates up to level 52 , that is, there should be $2^{48.42}$ survivors at this level. Since $\left|\mathcal{I}_{52}\right|=500$, the worst case complexity is about $2^{57.39}$ operations.
Experiment 4. We also executed the tree search up to level 36 given the high theoretical complexity. Figure 6 shows the number of theoretical and experimental survivors (up to level 36) from the tree search. The maximum of theoretical survivors is $2^{63.9}$ at B_{65} giving the theoretical complexity $2^{72.86}$ (since $\left|\mathcal{I}_{65}\right|=500$). At level 36 , we got $2^{34.72}$ survivors from the tree search and $2^{35.72}$ survivors theoretically. Since the number of experimental survivors follows very closely the theoretical curve, we can expect the experimental complexity to be about $2^{71.86}$ operations. We applied the hybrid approach using all 9845 relations modulo B_{20} whose support have a non-uniform probability distribution (at level 20). We executed the tree search up to level 36 as well and, as in experiment 3 , we knew in advance the correct candidate at level 20. Figure 6 shows the number of survivors with the hybrid approach. We got $2^{32.98}$ candidates at level 36 . Hence, the hybrid approach also performs better than using the tree search only. As in the previous experiments, the complexity of the FFT is negligible compared to the tree search part. We assume that the number of survivors for the hybrid method follows the behaviour

Figure 5: Number of survivors for experiment 3.
of the tree search only method, as in the previous experiments. In the worst case, the tree search part of the hybrid method will not reject any candidates up to level 65 , that is $2^{61.98}$ survivors at level 65 . Since $\left|\mathcal{I}_{65}\right|=500$, the worst case complexity is about $2^{70.95}$ operations.

Figure 6: Number of survivors for experiment 4.

8.3.2 Analysis of experimental results

The relations (7) may be seen as a generalisation of the parity checks used in FCAs. Some FCAs perform a partial brute force on a subset Γ of the LFSR's initial state bits as in [8]. We call parity checks used in that work parity checks modulo Γ. The expected number of weight d parity checks modulo Γ given the length- N keystream is $2^{|\Gamma|-n}\binom{N}{d-1}$, according to [8]. With the same weight, the set of relations modulo B_{r}, for an appropriate matrix B_{r}, incorporates parity checks modulo Γ, where $|\Gamma|=r$. However, for the same number of the keystream bits, the expected number (12) of relations modulo B_{r} is significantly higher. Table 6 compares these numbers for some explicit parameters. The value of a relation I is defined by the quality of the distribution (8). A large pool of the relations is constructed during the pre-computation, then we choose those to use during the attack.

That explains why our method requires less keystream bits to recover the LFSR initial state compared to FCAs and is still faster than brute force. In experiments 1 and 2 we successfully applied our method with $N=5 \cdot 10^{3}$ keystream bits, while the attack in [25] requires $1.7 \cdot 10^{4}$; see Table 1 . This is the best comparison since $1-p=0.375$ for both filtering functions. Experiment 3 can be compared to the attacks in [7] and [22]. Even though the parameters n and $1-p$ are not the same, we can notice that our method requires less keystream bits when compared to the entries with $n=60$ in Table 1. The closest comparison for experiment 4 may be the result with $n=70$ from [7] see Table 1. In our experiment, the length of the LFSR is larger and our method requires less keystream bits.

n	d	N	$r=\|\Gamma\|$	\# parity-checks $\bmod \Gamma$
			0	0
40	3	$5 \cdot 10^{3}$	15	0
			25	$2^{8.58}$
			0	0
40	3	$8 \cdot 10^{4}$	15	$2^{6.58}$
			25	$2^{16.58}$
89	3	2^{28}	32	0

(a) Expected number of parity checks $\bmod \Gamma$ of weight d.

n	d	N	ℓ	r	\# relations mod B_{r}
40	3	$5 \cdot 10^{3}$	5	0	$2^{9.28}$
			5	15	$2^{24.28}$
40	3	$5 \cdot 10^{3}$	7	7	15
			7	25	$2^{34.28}$
40		$8 \cdot 10^{4}$	5	15	$2^{15.28}$
			7	15	$2^{40.28}$
89	3	2^{28}	5	32	$2^{36.29}$
			7	32	$2^{42.29}$

(b) Expected number of relations $\bmod B_{r}$ of weight d.

Table 6: Comparison of the expected number of parity checks and relations.

9 Application to Grain ciphers

Ciphers in the Grain family [18] are bit oriented synchronous stream ciphers for hardware implementation. Their main components are an LFSR, an NFSR and an output function constructed with a nonlinear Boolean function h and linear terms added to h; see Figure 7. In 34, Todo et al. present a new key recovery attack for Grain-v1 [19], Grain-128 [17] and Grain-128a [1] (in stream cipher mode). This attack is more efficient than previous attacks against Grain-v1. For Grain-128, this is the first attack targeting the keystream generator. Previous attacks targeted the initialisation of the cipher. For full Grain-128a, this is the first cryptanalysis reported.

Figure 7: Overview of the components in the Grain family of ciphers.
In this section, we show how to construct a system of equations (4) for the toy Grain-like cipher described in 34 and Grain-v1. We apply the basic multivariate correlation attack from Sections 2.2 and 2.4 to these ciphers. It requires a significantly lower number of the keystream bits compared to [34, though with higher time complexity. For the ciphers in this section, the resulting relations presented a high number of right hand sides and therefore required a more efficient strategy for storing their probability distributions. So, we did not apply the test-and-extend algorithm in this case. That is a future direction for this work. For both ciphers, we also find linear combinations of LFSR bits with higher correlations than those indicated in [34. In [32], the authors apply a FCA against SNOW-V [12] and SNOW-Vi [13] by finding a linear approximation with high correlation. The latter is obtained with the so-called technique of approximation to composite functions together with the aid of an automatic search model based on the SAT/SMT technique (see the paper for details). This technique may be used with the Grain ciphers and check whether it yields linear approximations with even higher correlation. In addition, our new technique may be applied to Snow-V and Snow-Vi, in a similiar fashion as described
below for the Grain ciphers, using the correlations already found in 32. However, we do not follow these directions in this work.

9.1 Grain toy cipher

The cipher consists of LFSR and NFSR of length 24 bits each. The LFSR and NFSR feedback at time t is computed by

$$
\begin{aligned}
s_{t+24} & =s_{t}+s_{t+1}+s_{t+2}+s_{t+7} \\
b_{t+24} & =s_{t}+b_{t}+b_{t+5}+b_{t+14}+b_{t+20} b_{t+21}+b_{t+11} b_{t+13} b_{t+15}
\end{aligned}
$$

respectively. The keystream bit is computed by

$$
\begin{equation*}
z_{t}=h\left(s_{t+3}, s_{t+7}, s_{t+15}, s_{t+19}, b_{t+17}\right)+\sum_{j \in A} b_{t+j} \tag{19}
\end{equation*}
$$

where $A=\{1,3,8\}$ and

$$
h\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{4}+x_{0} x_{3}+x_{2} x_{3}+x_{3} x_{4}+x_{0} x_{1} x_{2}+x_{0} x_{2} x_{3}+x_{0} x_{2} x_{4}+x_{1} x_{2} x_{4}+x_{2} x_{3} x_{4}
$$

Assume the N-bit keystream z_{1}, \ldots, z_{N} is given. Let $X=\left(s_{1}, s_{2}, \ldots, s_{24}\right)^{T}$ be the LFSR unknown initial state and

$$
\begin{aligned}
& A_{t} X=\left(s_{t+3}, s_{t+7}, s_{t+15}, s_{t+19}, s_{t+8}, s_{t+12}, s_{t+20}, s_{t+24}, s_{t+17}, s_{t+21}\right. \\
&\left.s_{t+29}, s_{t+33}, s_{t+27}, s_{t+31}, s_{t+39}, s_{t+43}, s_{t+1}+s_{t+3}+s_{t+8}\right)^{T}
\end{aligned}
$$

where A_{t} is a 17×24-matrix. That is, $A_{t} X$ incorporates 17 linear functions in X. We will construct a multivariate probability distribution on $A_{t} X$ for a random variable X_{t} and get a system of equations $A_{t} X=X_{t}, t=1, \ldots, N$, as in Section 2.1.

Let $T=\{0,5,14,24\}$ according to the notation in [34]. We may have two distributions on $A_{t} X$ depending on the bit $Z_{t}=\sum_{i \in T} z_{t+i}$. From the definition of the NFSR feedback

$$
\sum_{i \in T, j \in A} b_{t+j+i}=\sum_{j \in A} s_{t+j}+\sum_{j \in A} b_{t+20+j} b_{t+21+j}+b_{t+11+j} b_{t+13+j} b_{t+15+j} .
$$

So (19) implies

$$
\begin{align*}
& Z_{t}+\sum_{i \in T} h\left(s_{t+3+i}, s_{t+7+i}, s_{t+15+i}, s_{t+19+i}, b_{t+17+i}\right)+\sum_{j \in A} s_{t+j}= \\
& \sum_{j \in A} b_{t+20+j} b_{t+21+j}+b_{t+11+j} b_{t+13+j} b_{t+15+j} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
s_{t+17}+\sum_{i \in T} b_{t+17+i}=b_{t+37} b_{t+38}+b_{t+28} b_{t+30} b_{t+32} . \tag{21}
\end{equation*}
$$

The distribution of X_{t} on $A_{t} X$ is then computed as a uniform distribution conditioned by the relations (20) and (21). The distribution is non-uniform. To be specific, let $a=\left(a_{1}, \ldots, a_{17}\right)$ be a 17 -bit string and we want to compute $\operatorname{Pr}\left(A_{t} X=a\right)$. By $A_{t} X=a, 20$ and 21 the following 22 bits of

$$
\begin{equation*}
u=\left(Z_{t}, a_{1}, \ldots, a_{17}, b_{t+17}, b_{t+22}, b_{t+31}, b_{t+41}\right) \tag{22}
\end{equation*}
$$

uniquely define 3 bits of

$$
\begin{equation*}
v=\left(b_{t+22}, \sum_{j \in A} b_{t+20+j} b_{t+21+j}+b_{t+11+j} b_{t+13+j} b_{t+15+j}, b_{t+37} b_{t+38}+b_{t+28} b_{t+30} b_{t+32}\right) . \tag{23}
\end{equation*}
$$

So $\phi(u)=v$ for a 22-bit to 3-bit mapping ϕ. Each v has the same number 2^{19} of pre-images u under ϕ. The distribution p_{v} on (23) is precomputed by running over 15 variables involved in the right hand side. This induces a distribution $2^{-19} p_{\phi(u)}$ on 22). Under condition that Z_{t} is fixed by $\varepsilon=0$ or 1 we have

$$
\operatorname{Pr}\left(X_{t}=a \mid Z_{t}=\varepsilon\right)=2^{-18} \sum_{b_{t+17}, b_{t+22}, b_{t+31}, b_{t+41}, Z_{t}=\varepsilon} p_{\phi(u)},
$$

where the sum is run over all values of $b_{t+17}, b_{t+22}, b_{t+31}, b_{t+41}$ and $Z_{t}=\varepsilon$. Therefore $A_{t} X=X_{t}, t=$ $1, \ldots, N$.

We apply the FFT-based method in Section 2.4 to recover X. By Section 2.2 we find the parameters of the limit distributions as

$$
\mu_{01}=-11.782815, \quad \sigma_{01}^{2}=0.00137196
$$

and

$$
\mu_{11}=-11.784191, \quad \sigma_{11}^{2}=0.00138229 .
$$

By formulae in Section 2.3 for $c=-358013.3911$ and $N=30382 \approx 2^{14.89}$, the number of incorrect survivors is <1 on the average and the success probability $\beta=0.9999$. The condition (5) is fulfilled. The FFT is used to compute the values of the statistic in (6), thus recovering X. The complexity of the attack is proportional to $2^{17} N+24 \cdot 2^{24} \approx 2^{31.89}$ operations. The cipher state is 48 bits long. According to [34], with $N=2^{23.25}$ the whole state may be recovered with the number of operations and memory size of order N.

Let p_{0}, p_{1} be a probability distribution, then $\delta=p_{0}-p_{1}$ is called its correlation. With the FFT we find all linear combinations of the entries of $A_{t} X$ with non-zero correlations. Table 7 shows absolute values of non-zero correlations δ and the number of linear combinations N_{δ} with the same δ. The data does not depend on Z_{t}. It is stated in [34] that there are 1024 linear combinations with highest absolute value of the correlation $2^{-10.41503}$. However that is not correct according to Table 7 . There are linear combinations with even a higher correlation. For instance, the absolute value of the correlation of

$$
\begin{equation*}
s_{t+7}+s_{t+19}+s_{t+12}+s_{t+24}+s_{t+17}+s_{t+21}+s_{t+31}+s_{t+43}+s_{t+1}+s_{t+3}+s_{t+8} \tag{24}
\end{equation*}
$$

is $2^{-9.83007}$. The reason for the discrepancy is the relation 21 which was ignored in 34 . So we can slightly improve the results of that paper, though we do not follow this direction here.

δ	N_{δ}
$\frac{9437184}{2^{33}}=2^{-9.83007 \ldots}$	128
$\frac{629156}{2^{33}}=2^{-10.41503 \ldots}$	768
$\frac{4718592}{2^{33}}=2^{-10.83007 \ldots}$	512
$\frac{314528}{2^{33}}=2^{-11.41503 \ldots}$	3968
$\frac{1572864}{2^{33}}=2^{-12.41503 \ldots}$	3584

Table 7: Correlations for Grain toy cipher
We verified experimentally the correlation value of (24) as follows. Let s denote (24) with $t=0$. We randomly chose 2^{30} different initial states for the cipher (i.e, LFSR and NFSR initial states). For each initial state, we computed $Z_{0}=z_{0}+z_{5}+z_{14}+z_{24}$, and when $Z_{0}=0$, we computed s and kept track of the number of times $s=Z_{0}$. We got that $Z_{0}=0$ occurred $536879412 \approx 2^{29.000022}$ times and among those, $s=0$ occurred $268737466=2^{28.001622}$ times. With this, we obtained $2^{-9.816232}$ as experimental correlation.

9.2 Grain-v1

We apply a similar method to Grain-v1. The LFSR and NFSR feedback at time t are computed by

$$
\begin{aligned}
s_{t+80}= & s_{t}+s_{t+13}+s_{t+23}+s_{t+38}+s_{t+51}+s_{t+62}, \\
b_{t+80}= & s_{t}+b_{t+62}+b_{t+60}+b_{t+52}+b_{t+45}+b_{t+37}+b_{t+33}+b_{t+28}+b_{t+21}+b_{t+14}+b_{t+9}+b_{t}+ \\
& b_{t+63} b_{t+60}+b_{t+37} b_{t+33}+b_{t+15} b_{t+9}+b_{t+60} b_{t+52} b_{t+45}+b_{t+33} b_{t+28} b_{t+21}+ \\
& b_{t+63} b_{t+45} b_{t+28} b_{t+9}+b_{t+60} b_{t+52} b_{t+37} b_{t+33}+b_{t+63} b_{t+60} b_{t+21} b_{t+15}+ \\
& b_{t+63} b_{t+60} b_{t+52} b_{t+45} b_{t+37}+b_{t+33} b_{t+28} b_{t+21} b_{t+15} b_{t+9}+b_{t+52} b_{t+45} b_{t+37} b_{t+33} b_{t+28} b_{t+21} .
\end{aligned}
$$

respectively. The keystream bit is computed as

$$
\begin{equation*}
z_{t}=h\left(s_{t+3}, s_{t+25}, s_{t+46}, s_{t+64}, b_{t+63}\right)+\sum_{j \in A} b_{t+j}, \tag{25}
\end{equation*}
$$

where $A=\{1,2,4,10,31,43,56\}$ and

$$
\begin{aligned}
h\left(s_{t+3}, s_{t+25}, s_{t+46}, s_{t+64}, b_{t+63}\right)= & s_{t+25}+b_{t+63}+s_{t+3} s_{t+64}+s_{t+46} s_{t+64}+s_{t+64} b_{t+63}+ \\
& s_{t+3} s_{t+25} s_{t+46}+s_{t+3} s_{t+46} s_{t+64}+s_{t+3} s_{t+46} b_{t+63}+ \\
& s_{t+25} s_{t+46} b_{t+63}+s_{t+46} s_{t+64} b_{t+63} .
\end{aligned}
$$

Let $X=\left(s_{1}, s_{2}, \ldots, s_{80}\right)^{T}$ be the LFSR unknown initial state and

$$
\begin{aligned}
A_{t} X= & \left(s_{t+3}, s_{t+25}, s_{t+46}, s_{t+64}, s_{t+17}, s_{t+39}, s_{t+60}, s_{t+78}, s_{t+24}, s_{t+67}, s_{t+85}, s_{t+31}\right. \\
& s_{t+53}, s_{t+74}, s_{t+92}, s_{t+40}, s_{t+62}, s_{t+83}, s_{t+101}, s_{t+48}, s_{t+70}, s_{t+91}, s_{t+109}, s_{t+55} \\
& s_{t+77}, s_{t+98}, s_{t+116}, s_{t+63}, s_{t+106}, s_{t+124}, s_{t+65}, s_{t+87}, s_{t+108}, s_{t+126}, s_{t+105}, s_{t+144} \\
& \left.s_{t+1}+s_{t+2}+s_{t+4}+s_{t+10}+s_{t+31}+s_{t+43}+s_{t+56}\right)
\end{aligned}
$$

where A_{t} is a 37×80-matrix. That is $A_{t} X$ incorporates 37 linear functions in X. We will construct a multivariate probability distribution on $A_{t} X$ for a random variable X_{t} and get a system of equations $A_{t} X=X_{t}, t=1, \ldots, N$ as in Section 2.1.

Let $T=\{0,14,21,28,37,45,52,60,62,80\}$ as in [34]. We may have two distributions on $A_{t} X$ depending on $Z_{t}=\sum_{i \in T} z_{t+i}$. From the definition of the NFSR

$$
\begin{equation*}
\sum_{i \in T, j \in A} b_{t+i+j}=\sum_{j \in A} s_{t+j}+\sum_{j \in A} g^{\prime}\left(b^{(t+j)}\right), \tag{26}
\end{equation*}
$$

where

$$
\begin{aligned}
g^{\prime}\left(b^{(t)}\right)= & b_{t+33}+b_{t+9}+b_{t+63} b_{t+60}+b_{t+37} b_{t+33}+b_{t+15} b_{t+9}+b_{t+60} b_{t+52} b_{t+45}+ \\
& b_{t+33} b_{t+28} b_{t+21}+b_{t+63} b_{t+45} b_{t+28} b_{t+9}+b_{t+60} b_{t+52} b_{t+37} b_{t+33}+ \\
& b_{t+63} b_{t+60} b_{t+21} b_{t+15}+b_{t+63} b_{t+60} b_{t+52} b_{t+45} b_{t+37}+ \\
& b_{t+33} b_{t+28} b_{t+21} b_{t+15} b_{t+9}+b_{t+52} b_{t+45} b_{t+37} b_{t+33} b_{t+28} b_{t+21} .
\end{aligned}
$$

So 25) and 26 imply

$$
\begin{equation*}
Z_{t}+\sum_{i \in T} h\left(s_{t+3+i}, s_{t+25+i}, s_{t+46+i}, s_{t+64+i}, b_{t+63+i}\right)+\sum_{j \in A} s_{t+j}=\sum_{j \in A} g^{\prime}\left(b^{(t+j)}\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{t+63}+\sum_{i \in T} b_{t+63+i}=g^{\prime}\left(b^{(t+63)}\right) \tag{28}
\end{equation*}
$$

Let $a=\left(a_{1}, \ldots, a_{37}\right)$ be a 37 -bit vector, we want to compute $\operatorname{Pr}\left(A_{t} X=a\right)$. By (27) and (28), the following 48 bits of

$$
\begin{equation*}
u=\left(Z_{t}, a_{1}, \ldots, a_{37}, b_{t+63}, b_{t+77}, b_{t+84}, b_{t+91}, b_{t+100}, b_{t+108}, b_{t+115}, b_{t+123}, b_{t+125}, b_{t+143}\right) \tag{29}
\end{equation*}
$$

uniquely define 9 bits of

$$
\begin{equation*}
v=\left(b_{t+77}, b_{t+84}, b_{t+91}, b_{t+100}, b_{t+108}, b_{t+115}, b_{t+123}, \sum_{j \in A} g^{\prime}\left(b^{(t+j)}\right), g^{\prime}\left(b^{(t+63)}\right)\right) \tag{30}
\end{equation*}
$$

So $\phi(u)=v$ for a 48-bit to 9 -bit mapping ϕ. Each v has 2^{39} pre-images u under ϕ. The distribution p_{v} on (30) is pre-computed. This induces a distribution $2^{-39} p_{\phi(u)}$ on (29). The last entry in $A_{t} X$ above incorporates 6 different variables (s_{t+31} appears in position 12 as well). Hence, under the condition that Z_{t} is fixed by $\epsilon=0$ or 1 , we have

$$
\operatorname{Pr}\left(X_{t}=a \mid Z_{t}=\epsilon\right)=2^{-38} \sum_{\substack{b_{t+63}, b_{t+77}, b_{t+84}, b_{t+91} \\ b_{t+100} b_{t+108}, b_{t+15}, b_{t+123} \\ b_{t+125}, b_{t+143}, Z_{t}=\epsilon}} p_{\phi(u)}
$$

The distribution p_{v} was pre-computed as follows. The expression for (30) incorporates 64 variables. Some of the variables are fixed by constants, then $\sum_{j \in A} g^{\prime}\left(b^{(t+j)}\right)$ and $g^{\prime}\left(b^{(t+63)}\right)$ are represented as sums of "independent" polynomials with fewer variables. Independence means that each of the rest variables
appears in one polynomial only. The distributions relevant to the independent polynomials are computed separately. Finally, they are combined to get p_{v}. We computed p_{v} by fixing $b_{t+38}, b_{t+46}, b_{t+64}, b_{t+65}, b_{t+71}$ and b_{t+91}. The largest computation corresponded with a polynomial in 23 variables.

By Section 2.2. we find the parameters of the limit distributions as

$$
\mu_{0,1}=-25.646445680717974846, \quad \sigma_{0,1}^{2}=3.204164923186231 \cdot 10^{-15}
$$

and

$$
\mu_{1,1}=-25.646445680717978051, \quad \sigma_{1,1}^{2}=3.204164923189462 \cdot 10^{-15}
$$

By formulae in Section 2.3, for $c=-326687075514236406.749337$ and $N=2^{53.5}$, the number of incorrect survivors is <1 on the average and the success probability is $\beta=0.9991$. The condition (5) is fulfilled. The FFT is used to compute the values of the statistic in (6), thus recovering X. The complexity of the attack is proportional to $2^{37} N+80 \cdot 2^{80} \approx 2^{90.5}$ operations. The internal state of the cipher is 160 bits long. According to [34], with $N=2^{75.11}$ the whole state may be recovered with time complexity and space complexity of order N.

With the FFT applied to $f(v)=p_{v}$, we find linear combinations of the entries of $A_{t} X$ with non-zero correlations. That would require space/memory for 2^{37} elements. Due to the memory limitation, we adopted the following strategy. The Fourier-Hadamard Transform on $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{R}$ at point u is

$$
\widehat{f}(u)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{u \cdot x} f(x)
$$

where $u \cdot x$ is the dot-product of u and x. Let $n=n_{1}+n_{2}$ with $n_{1}>0$ and $n_{2}>0$, then

$$
\begin{align*}
\widehat{f}(u) & =\sum_{x_{1}} \sum_{x_{2}}(-1)^{\left(u_{1}, u_{2}\right) \cdot\left(x_{1}, x_{2}\right)} f\left(x_{1}, x_{2}\right)=\sum_{x_{1}}(-1)^{u_{1} \cdot x_{1}} \sum_{x_{2}}(-1)^{u_{2} \cdot x_{2}} f\left(x_{1}, x_{2}\right) \\
& =\sum_{x_{1}}(-1)^{u_{1} \cdot x_{1}} g_{u_{2}}\left(x_{1}\right)=\widehat{g}_{u_{2}}\left(u_{1}\right) \tag{31}
\end{align*}
$$

where $u_{i} \in \mathbb{F}_{2}^{n_{i}}$ and $\left(u_{1}, u_{2}\right),\left(x_{1}, x_{2}\right)$ denote the concatenation of vectors, the sums are run over $x_{i} \in \mathbb{F}_{2}^{n_{i}}$ and where $g_{u_{2}}\left(x_{1}\right)=\sum_{x_{2}}(-1)^{u_{2} \cdot x_{2}} f\left(x_{1} x_{2}\right)$. We can compute the Fourier-Hadamard spectrum of f by using equation (31). For every $u_{2} \in \mathbb{F}_{2}^{n_{2}}$, we evaluate $g_{u_{2}}\left(x_{1}\right)$ in all points x_{1} by running over x_{2}, and then we apply the FFT to compute $\widehat{f}(u)=\widehat{g}_{u_{2}}\left(u_{1}\right)$. The total complexity is $2^{n_{2}}\left(2^{n}+n_{1} 2^{n_{1}}\right)=2^{n}\left(2^{n_{2}}+n_{1}\right)$ operations.

The time complexity of the method above is higher compared to that of the FFT ($n 2^{n}$ operations). However, since we are interested in certain points u (e.g., where $\widehat{f}(u) \neq 0$ or $|\widehat{f}(u)| \geq t$ for a threshold t), we can choose n_{1} and n_{2} such that the computations of $\widehat{g}_{u_{2}}$ can be done with the available space/memory and discard the irrelevant data. The computation is parallelisable which is additional to the parallelisation that can be implemented within the FFT for computing $\widehat{g}_{u_{2}}$.

For this application, we chose $n_{2}=9$ and we parallelised the computation of the 2^{9} possible values for u_{2}. Each computation of the Fast Walsh-Hadamard transform is therefore applied to a vector of length 2^{28}. Since each element was stored on a 64 -bit precision floating-point number, the total memory requirement was 2^{34} bits. For each value of u_{2}, we only kept the values of u_{1} such that $|\widehat{f}(u)|>$ 2^{-36}, where $u=\left(u_{1}, u_{2}\right)$. In other words, we only kept the linear combinations of $A_{t} X$ given by u whose correlation's absolute value is greater than 2^{-36}. The authors in 34 found 442368 such linear combinations, however, we found 443264 . As in the toy example above, we attribute this discrepancy to the omission of (28) in 34. There are 171 different correlation values among the 443264 linear combinations we found. Table 8 shows some of the highest and lowest values. As an example,

$$
\begin{aligned}
& s_{t+3}+s_{t+25}+s_{t+64}+s_{t+39}+s_{t+60}+s_{t+78}+s_{t+24}+s_{t+85}+s_{t+53}+s_{t+92}+s_{t+62}+s_{t+83}+ \\
& s_{t+101}+s_{t+70}+s_{t+109}+s_{t+77}+s_{t+116}+s_{t+63}+s_{t+106}+s_{t+124}+s_{t+87}+s_{t+126}+s_{t+105}+ \\
& s_{t+144}+s_{t+1}+s_{t+2}+s_{t+4}+s_{t+10}+s_{t+31}+s_{t+43}+s_{t+56}
\end{aligned}
$$

has the highest correlation $2^{-35.46890046}$.

10 Conclusions

We introduced new methods for cryptanalysis of LFSR-based stream ciphers. The cryptanalysis is presented as a more general problem of finding solutions to systems of linear equations with associated

δ	N_{δ}
$2^{-35.46890046 \ldots}$	64
$2^{-35.50019546 \ldots}$	64
$2^{-35.54760452 \ldots}$	128
$2^{-35.55461504 \ldots}$	640
$2^{-35.57682560 \ldots}$	64

(a) Highest correlations for Grain-v1.

δ	N_{δ}
$2^{-35.98275923 \ldots}$	128
$2^{-35.98646706 \ldots}$	1280
$2^{-35.99121484 \ldots}$	256
$2^{-35.99186310 \ldots}$	640
$2^{-35.99726377 \ldots}$	640

(b) Lowest correlations for Grain-v1.

Table 8: The correlations for Grain-v1.
probability distributions on possible right hand sides. We described the multivariate correlation attack and then, the test-and-extend algorithm. The latter has lower time complexity and comprises two stages, pre-computation and main computation. In the pre-computation stage, we find relations modulo B and compute the probability distributions induced by these relations. The second stage has two variations: tree search and hybrid variant. The first one finds the initial state of the LFSR (in general, candidate solutions to the systems of linear equations) by traversing a tree along with a statistical test to decide which branches to discard. The second variant also traverses a tree, however, the tree search is started at a further level on the tree following the ranking given by the statistic associated to the nodes and computed with the FFT.

We applied the test-and-extend algorithm to a variety of hard instances of the filter generator. In some experiments, we successfully recovered the correct initial state of the LFSR. For the other cases, our cryptanalytic results are theoretical only. In all cases, the hybrid variant outperformed the simple tree search. This new method allows successful recovery of the initial state requiring a lower number of keystream bits compared to other published attacks. We also applied the multivariate correlation method to a toy Grain-like cipher and Grain-v1. Again, we recover the LFSR's initial state for the ciphers using less keystream bits compared to the best known attack. On the other hand, the time complexity to recover the whole cipher state (LFSR and NFSR states) is higher using our method. In the case of Grain-v1, our results are theoretical only. Additionally, for both ciphers, we found linear combinations of LFSR sequence bits with a higher correlation than those reported in [34. Particularly, the correlations for Grain-v1 were obtained by computing the FFT on a large input vector; we used a simple method to parallelise this computation, which, to the best of our knowledge, has not been reported.

Acknowledgements

Some computations for the various experiments were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing and Data Storage in Norway.

References

[1] M. Ågren, M. Hell, T. Johansson, and W. Meier. Grain-128a: A New Version of Grain-128 with Optional Authentication. International Journal of Wireless and Mobile Computing, 5(1):48-59, 12 2011.
[2] R. Anderson. Searching for the optimum correlation attack. In B. Preneel, editor, Fast Software Encryption, volume 1008 of Lecture Notes in Computer Science, pages 137-143. Springer, Berlin, Heidelberg, 1995.
[3] P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics. John Wiley and Sons, 3 edition, 1995.
[4] A. Biryukov and A. Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers. In T. Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 1-13. Springer, Berlin, Heidelberg, 2000.
[5] A. Canteaut and M. Trabbia. Improved Fast Correlation Attacks Using Parity-Check Equations of Weight 4 and 5. In B. Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 573-588. Springer, Berlin, Heidelberg, 2000.
[6] C. Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, 2021.
[7] V. Chepyzhov, T. Johansson, and B. Smeets. A Simple Algorithm for Fast Correlation Attacks on Stream Ciphers. In G. Goos, J. Hartmanis, J. van Leeuwen, and B. Schneier, editors, Fast Software Encryption, volume 1978 of Lecture Notes in Computer Science, pages 181-195. Springer, Berlin, Heidelberg, 2001.
[8] P. Chose, A. Joux, and M. Mitton. Fast Correlation Attacks: An Algorithmic Point of View. In L. Knudsen, editor, Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 209-221. Springer, Berlin, Heidelberg, 2002.
[9] N. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 176-194. Springer, Berlin, Heidelberg, 2003.
[10] N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 345-359. Springer, Berlin, Heidelberg, 2003.
[11] F. Didier. Attacking the Filter Generator by Finding Zero Inputs of the Filtering Function. In K. Srinathan, C. Pandu Rangan, and M. Yung, editors, Progress in Cryptology - INDOCRYPT 2007, volume 4859 of Lecture Notes in Computer Science, pages 404-413. Springer, Berlin, Heidelberg, 2007.
[12] P. Ekdahl, T. Johansson, A. Maximov, and J. Yang. A new SNOW stream cipher called SNOW-V. IACR Transactions on Symmetric Cryptology, 2019(3):1-42, 92019.
[13] P. Ekdahl, A. Maximov, T. Johansson, and J. Yang. SNOW-Vi: an extreme performance variant of SNOW-V for lower grade CPUs. In C. Pöpper, M. Vanhoef, L. Batina, and R. Mayrhofer, editors, WiSec '21, pages 261-272. Association for Computing Machinery, 2021.
[14] S. Fauskanger and I. Semaev. Separable Statistics and Multidimensional Linear Cryptanalysis. IACR Transactions on Symmetric Cryptology, 2018(2):79-110, 62018.
[15] J. D. Golić. On the Security of Nonlinear Filter Generators. In D. Gollmann, editor, Fast Software Encryption, volume 1039 of Lecture Notes Computer Science, pages 173-188. Springer, Berlin, Heidelberg, 1996.
[16] J. D. Golić, A. Clark, and E. Dwason. Generalized Inversion Attack on Nonlinear Filter Generators. IEEE Transactions on Computers, 49(10):1100-1109, 102000.
[17] M. Hell, T. Johansson, A. Maximov, and W. Meier. A Stream Cipher Proposal: Grain-128. In 2006 IEEE International Symposium on Information Theory, pages 1614-1618. IEEE, 2006.
[18] M. Hell, T. Johansson, A. Maximov, and W. Meier. The Grain Family of Stream Ciphers, volume 4986 of Lecture Notes in Computer Science, pages 179-190. Springer, Berlin, Heidelberg, 2008.
[19] M. Hell, T. Johansson, and W. Meier. Grain: A Stream Cipher for Constrained Environments. International Journal of Wireless and Mobile Computing, 2(1):86-93, 52007.
[20] T. Johansson and F. Jönsson. Fast Correlation Attacks Based on Turbo Code Techniques. In M. Wiener, editor, Advances in Cryptology - CRYPTO '99, volume 1666 of Lecture Notes in Computer Science, pages 181-197. Springer, Berlin, Heidelberg, 1999.
[21] T. Johansson and F. Jönsson. Improved Fast Correlation Attacks on Stream Ciphers via Convolutional Codes. In J. Stern, editor, Advances in Cryptology - EUROCRYPT '99, volume 1592 of Lecture Notes in Computer Science, pages 347-362. Springer, Berlin, Heidelberg, 1999.
[22] T. Johansson and F. Jönsson. Fast Correlation Attacks through Reconstruction of Linear Polynomials. In M. Bellare, editor, Advances in Cryptology - CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages 300-315. Springer, Berlin, Heidelberg, 2000.
[23] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, 121982.
[24] S. Leveiller, J. Boutros, P. Guillot, and G. Zémor. Cryptanalysis of Nonlinear Filter Generators with $\{0,1\}$-Metric Viterbi Decoding. In B. Honary, editor, Cryptography and Coding, volume 2260 of Lecture Notes in Computer Science, pages 402-414. Springer, Berlin, Heidelberg, 2001.
[25] S. Leveiller, G. Zémor, P. Guillot, and J. Boutros. A New Cryptanalytic Attack for PN-generators Filtered by a Boolean Function. In K. Nyberg and H. Heys, editors, Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer Science, pages 232-249. Springer, Berlin, Heidelberg, 2003.
[26] W. Meier and O. Staffelbach. Fast Correlation Attacks on Certain Stream Ciphers. Journal of Cryptology, 1(3):159-176, 101989.
[27] W. Meier and O. Staffelbach. Nonlinearity Criteria for Cryptographic Functions. In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology - EUROCRYPT '89, volume 434 of Lecture Notes in Computer Science, pages 549-562. Springer, Berlin, Heidelberg, 1990.
[28] M. Mihaljević, M. Fossorier, and H. Imai. Fast Correlation Attack Algorithm with List Decoding and an Application. In M. Matsui, editor, Fast Software Encryption, volume 2355 of Lecture Notes in Computer Science, pages 196-210. Springer, Berlin, Heidelberg, 2002.
[29] H. Molland, J. E. Mathiassen, and T. Helleseth. Improved Fast Correlation Attack Using Low Rate Codes. In K. Paterson, editor, Cryptography and Coding, volume 2898 of Lecture Notes in Computer Science, pages 67-81. Springer, Berlin, Heidelberg, 2003.
[30] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021.
[31] H. Raddum and I. Semaev. Solving Multiple Right Hand Sides linear equations. Designs, Codes and Cryptography, 49(1):147-160, 122008.
[32] Z. Shi, C. Jin, J. Zhang, T. Cui, L. Ding, and Y. Jin. A correlation attack on full snow-v and snowvi. In O. Dunkelman and S. Dziembowski, editors, Advances in Cryptology - EUROCRYPT 2022, volume 13277 of Lecture Notes in Computer Science, pages 34-56. Springer International Publishing, 2022.
[33] T. Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only. IEEE Transactions on Computers, C-49(1):81-85, 11985.
[34] Y. Todo, T. Isobe, W. Meier, K. Aoki, and B. Zhang. Fast Correlation Attack Revisited. In H. Shacham and A. Boldyreva, editors, Advances in Cryptology - CRYPTO 2018, volume 10992 of Lecture Notes in Computer Science, pages 129-159. Springer Cham, 2018.

[^0]: ${ }^{1}$ It is not necessary for the polynomial to be primitive, however, when it is, the LFSR sequence has maximum period $2^{n}-1$ on a non-zero initial state.

