
Post-Quantum Privacy Pass
via Post-Quantum Anonymous Credentials

Guru-Vamsi Policharla
UC Berkeley

Bas Westerbaan
Cloudflare, Inc

Armando Faz-Hernández
Cloudflare, Inc

Christopher A. Wood
Cloudflare, Inc

Abstract
It is known that one can generically construct a post-
quantum anonymous credential scheme, supporting the
showing of arbitrary predicates on its attributes using
general-purpose zero-knowledge proofs secure against
quantum adversaries [Fischlin, CRYPTO 2006]. Tradi-
tionally, such a generic instantiation is thought to come
with impractical sizes and performance. We show that
with careful choices and optimizations, such a scheme
can perform surprisingly well. In fact, it performs com-
petitively against state-of-the-art post-quantum blind sig-
natures, for the simpler problem of post-quantum unlink-
able tokens, required for a post-quantum version of Pri-
vacy Pass.

To wit, a post-quantum Privacy Pass constructed in
this way using zkDilithium, our proposal for a STARK-
friendly variation on Dilithium2, allows for a trade-off
between token size (85–175 KB) and generation time
(0.3–5 s) with a proof security level of 115 bits. Veri-
fication of these tokens can be done in 20–30 ms. We
argue that these tokens are reasonably practical, adding
less than a second upload time over traditional tokens,
supported by a measurement study.

Finally, we point out a clear advantage of our ap-
proach: the flexibility afforded by the general purpose
zero-knowledge proofs. We demonstrate this by showing
how we can construct a rate-limited variant of Privacy
Pass that doesn’t not rely on non-collusion for privacy.

1 Introduction

Traditional goals of cryptography include the protection
of confidentiality, integrity and authenticity of communi-
cation, which are achieved using encryption, key agree-
ment and signature schemes. Recently, more advanced
cryptography such as verifiable oblivious pseudorandom
functions (vOPRFs), blind signatures, and anonymous
credentials are seeing wider adoption to attain more dif-
ficult privacy goals, such as preventing the tracking of

users. These primitives are used in widely deployed (or
to be deployed) protocols such as Cloudflare’s Privacy
Pass. Other examples include Apple’s Private Access
Tokens [3], Google’s Private State Tokens [31], Brave’s
Basic Attention Tokens [48], private click measurement
[21], the Dutch Corona app (CoronaCheck) [43], Face-
book’s fraud prevention [35] and DIT system for private
telemetry on Whatsapp [34], effectively impacting bil-
lions of users. Although we focus on Privacy Pass in
this work, our results are nonetheless relevant to all other
protocols mentioned above, and those using more gen-
eral anonymous credentials, eg. IRMA [45].

Privacy Pass. In Privacy Pass [22, 23], clients inter-
act with an attester and issuer to issue a token that can
later be redeemed to a website, or origin, upon being
challenged. This basic interaction is shown in Fig. 1.
In the original deployment of Privacy Pass, the attester
and issuer roles were combined into a single entity, and
clients demonstrated validity to issue tokens by solving a
CAPTCHA. In effect, this let clients use tokens in place
of solving a CAPTCHA, resulting in a better end-user
experience, especially when accessing content anony-
mously through VPNs, Tor, or I2P. Since its inception,
the Privacy Pass protocol has transitioned to the IETF
for standardization ietf-privacypass-protocol-08 and has
seen new deployment in technologies today, including
Apple’s Private Access Tokens [3].

Given the widespread use of Privacy Pass and
other unlinkable tokens, constructing a practical, post-
quantum version should be considered an important
milestone in future-proofing user privacy [37]. We view
this as an opportunity to not only secure the Privacy Pass
protocol against quantum adversaries but also to explore
alternatives to prior approaches that can a) improve the
privacy guarantees for a rate-limited version of Privacy
Pass and b) have the flexibility to handle more compli-
cated rate-limiting policies if needed in the future. Un-
fortunately, there are no known post-quantum solutions

1

Figure 1: Privacy Pass token issuance and redemption interaction overview

for vOPRFs/blind signatures, the building blocks of Pri-
vacy Pass, that perform competitively against their clas-
sical counterparts based on assumptions that do not hold
against quantum adversaries.

Reviving an old approach. We generically construct
a very flexible many-show anonymous credential scheme
(and hence anonymous tokens for Privacy Pass), support-
ing the showing of arbitrary predicates evaluated on its
attributes using general-purpose zero-knowledge Non-
Interactive Arguments of Knowledge (zkNIAoKs) via
the Camenisch-Lysyankaya framework [16]. One can
also obtain blind signatures through an adaptation of Fis-
chlin’s scheme [28]. Here, a client commits to the at-
tributes (attr1, . . . ,attrk) and sends the commitment com
to the issuer who responds with a signature σ on the
commitment. The client then provides a zkNIAoK of
a signature σ on a commitment com, an opening of this
commitment r to a set of k attributes (attr1, . . . ,attrk)
and reveals the output of predicates evaluated on the at-
tributes. This construction is plausibly post-quantum if
the commitment scheme and argument system are se-
cure against quantum adversaries. Traditionally, such a
generic instantiation is thought to come with impracti-
cal sizes and performances but recent advances in suc-
cinct arguments warrants a reconsideration. This is by
no means straightforward as evidenced by the work of
Agrawal et al. [1], who estimated that even with modern
proof systems, such a proof is at least 100 KB in size
with a prover complexity of at least one hour.

A subtlety in the security reduction demands that the
proof system is not only a proof of knowledge but also
satisfies Multi-Proof Online Extractability [9], where the
extractor does not need to rewind a malicious prover and
instead, only needs a list of Random Oracle queries made
by the adversary and the proof to extract a satisfying wit-
ness. Fortunately, zkSTARKs [7, 50], the argument sys-
tem we use already satisfy these requirements

Rate-Limited Privacy Pass. The flexibility of this
new approach has applications beyond making Privacy
Pass post-quantum friendly. It can also be used to add

new functionality to the Privacy Pass protocol. One such
functionality is rate limiting support, wherein token is-
suance to clients is rate limited without compromising
on client privacy. This capability has a number of appli-
cations, including rate limiting via “metered paywalls,”
as well as limiting abusive client behavior.

The IETF is currently standardizing a version of rate-
limited Privacy Pass [33], but the proposed design is lim-
ited in several respects. Our new approach can be used
to construct a conceptually simpler rate-limited version
of Privacy Pass. We refer the reader to Section 5 for a
detailed discussion of the limitations with the existing
design, as well as an overview of our proposed design.

Our Contributions. We show that when instantiated
with the right proof system and with careful optimiza-
tions, such a scheme can perform surprisingly well. As
such, the main focus of our work is to efficiently ver-
ify a post-quantum signature using a post-quantum proof
system. Blind Signatures and Anonymous Credentials
follow almost for free.

• We design and implement a plausibly post-quantum
anonymous credential scheme as described above
using zkDilithium, our protocol for a STARK-
friendly variant of Dilithium2 [26]. To the best of
our knowledge, this is the first implementation of
a post-quantum anonymous credential scheme and
we believe that this will serve as a valuable base-
line for future research. We use zkSTARKs for the
proof system which allows for a trade-off between
proof size (85–175 KB) and prover time (0.3–5 s)
for a conjectured proof security level of 115 bits.
The proof can be verified in 20–30 ms and the size
is comparable to the best known post-quantum blind
signature schemes (22–100 KB) [1,10,24], which is
a weaker primitive implied by anonymous creden-
tials [4]. (Section 3)

• We show how anonymous credentials together can
be used to improve Privacy Pass. First, we pro-
vide a template for a rate-limiting protocol that does

2

not require an Attester and guarantees better pri-
vacy for clients. Our credentials can also be limited
to k−show which implies a Privacy Pass protocol
where an issuer can give a client k tokens with O(1)
work and transcript size. (Section 5)

• We present the findings of a measurement study
in collaboration with a large content delivery net-
work (CDN) to determine the impact of larger to-
ken sizes on client latency during redemption in the
Privacy Pass protocol. We conclude that a vast ma-
jority of users have an effective upload speed of at
least 1 Mbit/s and hence these tokens add roughly
0.5–1.5 s to the upload time over traditional tokens
(based on RSA). (Section 6)

1.1 Overview

We begin with a brief introduction to zkSTARKs and
the Arithmetic Intermediate Representation (AIR) which
defines the corresponding language for which argu-
ments are produced (Section 2). Next we first re-
call the Dilithium post-quantum signature scheme (Sec-
tion 3) and present our STARK friendly modification
zkDilithium in Section 3.4. We evaluate the performance
of our anonymous credential scheme in Section 4 and
demonstrate the flexibility of the scheme by considering
a rate-limited variant Section 5. Finally, we discuss re-
sults of a measurement study to investigate the impact of
larger token sizes in Section 6.

2 zkSTARKs and AIR

A Scalable Transparent ARgument of Knowledge
(STARK) is a non-interactive argument system, which
creates proofs for log-space computations requiring T (n)
time and O(logT (n)) space in O(T (n) · logT (n)) time,
which can be verified in O(log(T (n))) time, for an in-
stance of size n. These log-space computations are for-
mally modeled by the language of AIRs. In this section
we give a brief introduction to AIR to highlight its rele-
vant features and refer the reader to [39] for more high
level details, but leave a proper introduction to [7, 50].

Arithmetic Intermediate Representation (AIR). In
its basic form, in AIR, we model the computation as a
matrix of field elements, called the execution trace. The
name makes sense, if one thinks of the columns as reg-
isters and rows as time-steps, but it’ll become clear later
that this is not a perfect analogue. We describe the com-
putation using two kind of constraints. The boundary
constraints fix the value of a particular cell to a given
public value. The heavy lifting is done in the transition

constraints, where each constraint is a polynomial equa-
tion that describes how two consecutive rows relate. In
fact, STARKs use a uniform computation model which
requires all transition constraints to hold for every row.

As an example, suppose want to show that F15 = 610,
where Fn are the Fibonacci numbers. As execution trace,
we use a 8×2 matrix filled as follows.

a b

0 1
1 2
3 5
8 13
21 34
55 89

144 233
377 610

Boundary

a1 = 0
b1 = 1
b8 = 610

Transition

ai+1 = ai +bi
bi+1 = ai+1 +bi

We use three boundary constraints. The first two start the
sequence with initial values and the third one asserts the
desired conclusion that F15 = 610. The transition con-
straints ensure that a and b are updated according to the
sequence formula.

Uniform computation. It is easy to specify constraints
when the same computation is repeated every time (as
in the Fibonacci sequence). However, performing dif-
ferent calculations complicates the design of transition
constraints as they must be applied to every row.

One way to handle multiple calculations under a
uniform computation is using selectors or multiplexers
which publicly known values. For example, suppose we
want to additionally show that F15

27 = 61027. To keep
transition degrees low, we compute the power as three
consecutive cubes. The selector m allows switching be-
tween the computation of the Fibonacci sequence and the
calculation of cubes.

a b m

0 1 0
1 2 0
...

...
...

377 610 0

...

6103 1
6109 1
61027 1

3

Boundary constraints

a1 = 0 b1 = 1 b11 = 61027

mi =

{
0 i≤ 8
1 i > 8

Transition constraints

(ai +bi−ai+1)(1−m) = 0
bi+1 = (ai+1 +bi)(1−m)+bi

3m

Time vs Space. A common strategy that can be em-
ployed in the design of AIRs is to use more registers to
reduce the multiplicative degree of transition constraints.
In the above example, one could have used a transition
constraint of the form bi+1 = (ai+1 +bi)(1−m)+bi

27m
with just one extra row instead of three but this would
mean the transition constraint has a multiplicative degree
of 27 instead of 3 which in turn affects prover time1.

The finite field. STARKs are easiest to implement ef-
ficiently in a finite field that has a primitive root of unity
(PROU) of order 2k, for large enough k. Also, to ensure
soundness of the proof, field extensions may have to be
introduced to make the field sufficiently large. Looking
ahead, we use the finite field Fq6 , where q= 223−213+1
is the prime used in Dilithium. We construct it as a
quadratic extension on top of a cubic extension.

Non-native arithmetic. Emulating arithmetic mod-
ulo M (as we will need it later on) when working in Fq
takes some care. For instance, suppose we want to com-
pute x= x′ mod M. We add a new register Q to store ⌊ x

M ⌋
and use the constraint x+M ·Q = x′. This is not suffi-
cient, as we can now set x to any value we like, by set-
ting Q to (x′− x)M−1, where the inverse of M is com-
puted in Fq. To prevent these shenanigans, we need to
ensure 0≤ Q≤ ⌊ q

M ⌋. So, how do we do range proofs?
An approach we followed is to show the binary repre-

sentation of Q. We add m = ⌈log2
q
M ⌉ new registers Q0,

. . . , Qm−1 with constraints Qi(Qi−1) = 0, which ensure
Qi ∈ {0,1}; and the constraint Q = ∑i 2iQi. This en-
sures 0 ≤ Q ≤ 2m− 1 and thus ticks off 0 ≤ Q. To en-
sure Q≤ ⌊ q

M ⌋, we repeat for Q′ = Q+2m−⌊ q
M ⌋−1.

Verifier Injected Randomness. Verifying Dilithium
signatures involves showing polynomial equality. This
can be done efficiently, by evaluating on a challenge
point. Hence, we would like random coins supplied by
the verifier as part of the execution trace. This is possible,
but needs to happen in multiple stages: the prover first
sends a main execution trace, the verifier then sends a

1Lower transition degrees allow for a more efficient Prover.

challenge and the prover responds with another auxiliary
execution trace. Using the Fiat–Shamir transform [27]
this can be made non-interactive. We refer to these traces
as Randomized AIRs with Preprocessing (RAPs).

For example, a prover wants to convince a verifier
that they know two polynomials f (X) and g(X) such
that f (X)g(X) = h(X). The naive strategy is to imple-
ment schoolbook polynomial multiplication in the AIR
which involves O(d2) operations if f and g are degree-
d polynomials. A natural improvement is to use NTT
to compute the polynomial multiplication in O(d logd)
operations. However, with the added power of verifier
injected randomness the prover can convince a verifier
with overwhelming probability in just O(d) operations
using polynomial identity testing. The prover first com-
mits to the coefficients of f ,g and h in the main trace
and evaluates these polynomials in the auxiliary trace to
show that f (ξ)g(ξ) = h(ξ), where ξ is a random point
chosen by the verifier. Note that a malicious prover can
fool a verifier with probability at most 2d/|F|.

3 Dilithium

Dilithium [26] is a lattice-based post-quantum signature
scheme, selected for standardization by NIST [44]. The
full scheme contains many optimizations and a full expo-
sition would be too involved. Instead, here, we discuss
the key aspects of the scheme [49].

3.1 Parameters
Dilithium uses a polynomial ring R = Fq[x]/(xn + 1),
which is the set of polynomials of degree less than n with
coefficients in Fq, where n = 256 and q = 223−213 +1.

The “size” of polynomials plays a crucial role, which
is precisely defined as follows. For any a ∈ Fq, define
a′ = a mod± q to be the unique integer a′ in the range
− q−1

2 ≤ a′ ≤ q−1
2 such that a ≡ a′ (mod q). For any

polynomial p(x) = ∑i pixi ∈R, the norm of p(x) is de-
fined as ∥p(x)∥∞ = maxi |pi mod± q|. Similarly, for a
vector v over R, we define ∥v∥∞ = maxi ∥vi∥∞.

A Dilithium’s private key consists of two vec-
tors (s1,s2) ∈ Rℓ ×Rk sampled uniformly at random
such that ∥s1∥∞,∥s2∥∞ ≤ η , where η , k and ℓ are con-
stants depending on the security level. The correspond-
ing public key is (A, t), where A is a random k× ℓ matrix
over R, and t = As1 + s2. The hardness of the module
learning-with-errors (M-LWE) problem [15] ensures that
it is difficult to recover s1 and s2 from A and t.

Let v be a vector over R, the functions HighBits(v)
and LowBits(v) decompose v uniquely as

v = HighBits(v) ·2γ2 + LowBits(v) ,

such that −γ2 < LowBits(v)≤ γ2, for a parameter γ2.

4

In this paper we focus on the Level 2 of security set by
NIST [44], which specifies the following constant val-
ues: η = 2, k = ℓ = 4, γ1 = 217, γ2 = q−1

88 , and τ = 39,
and β = ητ = 78.

3.2 Underlying identification scheme

Dilithium is based on the following identification scheme
where a prover, having access to the private key, demon-
strates this fact to a verifier that knows the public key,
without leaking any information. The protocol, shown in
Fig. 2, runs as follows.

1. The prover samples at random a secret nonce2 y ∈
Rℓ of norm ≤ γ1, and sends the commitment w1 =
HighBits(Ay) to the verifier. Note that it’s crucial
that the prover only sends the higher bits of Ay, as
it would otherwise leaks y since A is likely to be
invertible.

2. After receiving w1, the verifier returns a random
challenge c ∈ R with exactly τ non-zero coeffi-
cients, all either −1 or 1.

3. The prover now computes the response z = y+ cs1.
Note that cs1 is not so large as ∥cs1∥∞ ≤ β . Before
returning z, the prover performs two checks on the
sizes of z and r0 = LowBits(Ay− cs2), whose im-
portance becomes clear later on.

∥r0∥∞ ≤ γ2−β (r0-check)
∥z∥∞ ≤ γ1−β (z-check)

If any of these checks fails, the prover aborts and
starts again from the beginning, generating a new
nonce y.

4. Finally, when eventually receiving a response (af-
ter, on average, three attempts), the verifier cal-
culates w′1 = HighBits(Az− ct) and accepts when-
ever w′1 = w1, and ∥z∥∞ ≤ γ1−β .

Without the checks, the scheme would not always work.
In general w′1 ≡ HighBits(Az − ct) = HighBits(Ay −
cs2) ̸= HighBits(Ay) ≡ w1 as even though cs2 has small
coefficients (also ≤ β), they might still carry into the
higher bits. The problem is solved by ensuring y does
not overflow, which is the purpose of (r0-check) (see [26,
Eq. 3]). A different issue is that z might leak information
on y and s1 if it has large coefficients. The (z-check)
prevents this. Indeed, this scheme is perfectly non-abort
zero-knowledge [49, §2.1].

2Nonce, as in ‘number only used once’ is misleading: y is neither a
number nor is its single use the only requirement that it should satisfy.

Prover Verifier

comm. w1

challenge c

response z

Sample nonce y
w1 = HighBits(Ay). Sample c ∈R.

z = y+ cs1
r0 = LowBits(Ay− cs2)
Abort unless
∥r0∥∞ ≤ γ2−β and
∥z∥∞ ≤ γ1−β .

w′1 = HighBits(Az− ct)
Accept if
∥z∥∞ ≤ γ1−β and
w′1 = w1.

Figure 2: Dilithium’s identification scheme.

3.3 Dilithium signatures
This identification scheme can be turned into a signa-
ture scheme using the well-known Fiat–Shamir trans-
form [27]. A signature on M is given by a pair (c,z)
of a challenge c and response z of a successful interac-
tion of the identification scheme, where the challenge
is computed as c = H(A ∥ t ∥ M ∥ w1) for some hash
function H that ranges over the challenge space. To
check an alleged signature (c,z), a verifier makes sure
that ∥z∥∞ ≤ γ1− β , computes w′1 = Az− ct and checks
whether c = H(A ∥ t ∥M ∥ w′1).

Some optimizations. The full scheme is rather more
complex, as it contains many modifications to improve
efficiency. We point out some of these, that are rele-
vant to this work, and leave the full details to Dilithium’s
specification [26].

For starters, the size of A is reduced by deriving it
deterministically from a seed ρ . Furthermore, only the
higher bits of t are included in the public key. To be able
to correctly verify signatures without the lower bits of t,
a hint h is included in signatures. The ring R is isomor-
phic to Fq

256 via the number-theoretic transform (NTT),
which allows for faster multiplications. To speed up op-
erations, A is sampled in the NTT domain.

Finally, to decrease the size of the coefficients of w1
ever so slightly, the exception LowBits(−γ2) = −γ2 is
admitted, so that we can set HighBits(−γ2) = 0 instead
of q−1

γ2
.

3.4 zkDilithium: a zkSTARK-friendly al-
ternative

It is challenging to verify unmodified Dilithium signa-
tures in zero-knowledge with zkSTARKs. Ideally one
would use a zkSTARK defined over Dilithium’s base
field Fq, to avoid expensive non-native modular arith-
metic. However, the maximum execution trace depth in
zkSTARKs is limited by the order of the PROU in the
base field. With Dilithium’s q = 223−213+1, the largest

5

PROU has order 213, which severely restricts the size of
the AIR. Its extensions do not change the situation by
much. This budget is so tight, that it’s difficult to evalu-
ate the SHA3 hash used to derive the challenge c.

Instead, we propose zkDilithium, a modified version
of Dilithium2 that trades efficiency against STARK-
friendliness, while not affecting security as compared
to unmodified Dilithium (barring one concession.) At a
high level, we make the following changes.

1. Instead of SHA3, we use the STARK-friendly hash
Poseidon [32] with α =−1, t = 35, R f = 21, Rp = 0
and rate 24. Algebraic hashes, such as Poseidon,
have not received the same scrutiny as SHA3, and
this is the only concession to the security we make.

2. We do not use public key compression and dis-
tribute the full t in the public key. This removes
the need for the hint h in the signature.

3. We change the sample in ball subroutine used to
sample the challenge c, so it is easier to do in zero-
knowledge. We describe later in this section.

These changes are sufficient to verify zkDilithium signa-
tures using zkSTARKs with the original q.

Sample In Ball. Sample in ball, is the deterministic
algorithm used to generate the challenge c from c̃ =
H(M∥w1). Recall that the challenge is a polynomial
with n = 256 coefficients, of which τ = 39 non-zero, all
either −1 or 1. For security it is important that c is sam-
pled uniformly.

This is done in essence by initializing c = 0, sampling
the last τ coefficients of c from {1,−1} and then apply-
ing a random permutation. Because the majority of c is
zero, this can be done efficiently all at once using the
truncated inside-out version of the Fisher–Yates shuffle
algorithm shown in Figure 1.

Algorithm 1 Sample In Ball [26]

1: Initialize c = 0256

2: for i = 256− τ to 255 do
3: j←{0,1, . . . , i}
4: s←{0,1}
5: ci = c j
6: c j = (−1)s

7: end for

In plain Dilithium, the random numbers required in
this algorithm are taken from XOF(c̃) using rejection
sampling. For instance, to get j ∈ [0, i], a uniformly ran-
dom j ∈ [0,255] is taken from the XOF output and re-
jected if j /∈ [0, i]. Proving statements in zero-knowledge
about rejection sampling is difficult and inefficient as the

computation has variable length depending on the input.
One solution is for the signer to try create signatures un-
til it finds one where no rejection occurs in the derivation
of c̃. This requires to many tries to be practical.

Instead, we change the method of sampling of c̃ so
that rejections are rare. Recall that we use Poseidon as
XOF and hence we have a stream of 23-bit field elements
at our disposal. We sample a field element h and then
compute j = h mod (i+1). If the modulus q of the field
is divisible by i+ 1, then j has the desired distribution.
Of course, since q is prime, this is not the case and we’re
more likely to sample low values of j as there exists a
remainder of q when dividing by i+1.

Thus to correct this, consider q′ = q−(q mod (i+1)).
If we reject h that are smaller than q′, then j has the cor-
rect distribution.

We sample eight signs at the same time from a sin-
gle field element in a similar way. The probability of
a rejection occurring in the full derivation of c is less
than 0.06%.

For uniformity it is convenient to bump τ from 39 to
40, so that we can process swaps in batches of eight.

3.4.1 zk20Dilithium

Although verification of zkDilithium fits comfortably in
the limits posed by the order-213 PROU, the final applica-
tions might be more demanding. For those, we propose
zk20Dilithium, a variant of zkDilithium with q = 223−
220 + 1, which allows for PROU of order 220. To ac-
commodate this new q, we only need to change γ2 = 216.
Just like zkDilithium, we use τ = 40. These changes
are conservative: using the same analysis [25] as used
for Dilithium, we reach a slightly higher security level,
see Fig. 3. The trade-off is that the (r0-check) fails
more often and signing is roughly twice as slow for
zk20Dilithium as it is for zkDilithium.

3.5 Signature verification RAP
We now discuss the implementation of a RAP for the
zk20Dilithium verification circuit. Recall from Section 3
that verification of a signature (z, c̃) on a message M con-
sists of the following steps:

Compute: Check:

c = SampleInBall(c̃). c̃ ?
= H(µ ∥w1).

w = Az− ct. ∥z∥∞

?
< γ1−β

w1 = HighBits(w).
µ = H(H(ρ ∥ t)∥M).

We first describe a high-level overview of the orga-
nization of the signature verification RAP and then de-
scribe in detail how each of the above checks is carried
out.

6

Cost Dilithium2 zkDilithium zk20Dilithium

BKZ block-size b to break SIS 417 417 430
Best Known Classical bit-cost 121 121 125
Best Known Quantum bit-cost 110 110 114
Best Plausible bit-cost 86 86 89

BKZ block-size b to break LWE 422 422 427
Best Known Classical bit-cost 123 123 124
Best Known Quantum bit-cost 111 111 113
Best Plausible bit-cost 87 87 88

Figure 3: Security estimates generated using [25].

RAP Organization. In Fig. 4, we pictorially represent
the execution trace and show areas in which various com-
ponents are executed. The figure is approximately to
scale where size of each component denotes the num-
ber of registers used in the trace. We require 408 rows
to implement the constraints but pad this to 512 rows
as the Winterfell library requires all execution traces to
be padded to a power of two. The main trace con-
tains 701 columns and the auxiliary trace contains 14
columns. The main trace is part of the first message
from the prover to the verifier who responds with uni-
formly random coins and the auxiliary trace is part of the
second message from the prover which can make use of
verifier injected randomness. The protocol is made non-
interactive using the Fiat–Shamir transformation.

We divide the trace into two parts a) sample in ball
and b) polynomial multiplication separated by a green
line in Fig. 4. Throughout the trace we have a dedicated
set of registers for storing the challenge polynomial c and
a set of registers where the Poseidon hash is being con-
tinuously computed. All areas shaded by red lines are
unused registers.

During the sample in ball phase, we use a set of n
registers denoted by SWAP to aid in the computation by
lowering the maximum degree of transition constraints.
Finally, a set of registers are used for range proofs to em-
ulate non-native modular arithmetic. In the polynomial
evaluation phase, we evaluate polynomials at a random
point in the extension field using the auxiliary trace af-
ter the coefficients have been committed to in the main
trace. Simultaneously we carry out range proofs on the
coefficients of z and hash the coefficients of w.

Poseidon Hash. We use a Poseidon hash function over
the appropriate field for zkDilithium and zk20Dilithium,
with a state width of 35 registers, out of which 11 reg-
isters are for the capacity and 24 are for the rate. The
shuffle boxes are implemented using the inverse opera-
tion as it minimizes the total number of rounds and the
constraint relations have multiplicative degree 3. Indeed

our state width is quite wide but this allows us to reduce
the total depth of our computation and hence improve
the prover time at the cost of slightly larger proofs. Us-
ing the security estimates from [32] and the scripts pro-
vided in [47], we determine that 14 full rounds and 6
partial rounds is the minimum required to protect against
all known attacks in the literature. The authors in [32]
state that “. . . the same number of full rounds can be used
instead of the partial rounds without decreasing the secu-
rity, but this leads to substantially higher costs in our tar-
get applications”. Since we are using zkSTARKs which
enforce uniform computation, switching between partial
and full rounds is actually more expensive than using full
rounds throughout as in every round both the full and par-
tial rounds are computed, except a selector wire is used
to project out the rounds of interest. Thus, we use 21 full
rounds which is one more than the minimum required.
We compute a full hash cycle in 7 execution steps of the
AIR by computing three rounds in each step3. To pre-
vent the degree from blowing up we also triple the state
width to ensure the maximum degree of constraints re-
mains the same. The execution trace is divided into two
phases: sampling in ball and polynomial multiplication,
which are discussed next.

Sample in Ball: The goal is to prove the correctness
of the modified sampling algorithm described in Sec-
tion 3.4. We allocate n = 256 resisters in every row to
store the coefficients of the challenge polynomial c. We
start with the all-zeros string in the first row and use Po-
seidon as an extendable-output function (XOF) with c̃
as the seed to compute random field elements that de-
termine the positions to swap and signs in Algorithm 1.
Recall, that the XOF outputs field elements on every 8-
th step at the end of 7 hash cycles. We use one field
element each to determine the positions to swap for the
next 8 iterations by computing the modulus with respect

3We remark that our implementation can support 24 rounds without
affecting prover performance where a full hash cycle can be computed
in 8 steps of the AIR.

7

5
1
2

6
4

3
4
4

256 256 105 8484 14

CHALLENGE

CHALLENGE

SWAP

RANGE PF

for z,w1,w0

HASH

HASH

RANGE PF

+
MISC.

w
(·)

,q
w
(·)

,z
(·)

P
O
L
Y
E
V
A
L

Figure 4: Execution trace for the signature verification RAP. Sizes of components are roughly to scale.

to the appropriate base and then using another field ele-
ment to sample 8 bits for the signs. Unfortunately, this
uses O(n.T) space in the execution trace, for T execu-
tion steps and reducing this would indeed help reduce
the overall proof size. Ideally, we would store the chal-
lenge in column format occupying only one register per
row. But this makes it difficult to assert correctness
of the computation c = SampleInBall(c̃) as one would
now need to write constraints with low multiplicative de-
gree only involving adjacent coefficients of the challenge
polynomial.

Polynomial multiplication: At the end of the Sample
in Ball stage we have the challenge polynomial stored
in n registers. We now need to prove correctness of the
computation w = Az− ct. One can compute the prod-
uct of two polynomials which are elements of the ring
R = Fq[x]/(xn + 1) in O(n logn) time using the Num-
ber Theoretic Transform (NTT). However, implementing
NTT in zkSTARKs is non-trivial due to the requirement
of uniform computation. We sidestep this issue by ob-
serving that the prover can compute w = Az− ct in the
clear using NTT and then use polynomial identity test-
ing to prove the correctness in O(n) time which is actu-

ally asymptotically optimal. The prover first computes
the quotient polynomials qw such that qw(xn +1)+w =
Az− ct and places the coefficients of each of the poly-
nomials qw,w,z in a column of the execution trace using
one register per row per polynomial. In the auxiliary ta-
ble, the verifier evaluates these polynomials at a random
point in the extension field chosen by the verifier. At the
end of n rows, we assert that both sides of the following
equation are equal

A(r).z(r)− c(r).t(r) = w(r)+qw(r)(r256 +1).

Note that the maximum number of bad challenge points
for which the prover can cheat is the degree of the poly-
nomial. Applying a union bound we can see that the
probability with a cheating prover will fail in an inter-
active proof4 is 1−1020/|Fq6 | since we use a sextic ex-
tension field.

Computing c̃ and z-check While the values of w and z
are available to us in the main trace, we immediately take

4The interaction in the IOP is removed through the Fiat-Shamir
transformation but this allows a cheating prover to locally make multi-
ple attempts at cheating with different randomness. Indeed this allows
the prover to try multiple times but they are still bound to run in poly-
nomial time.

8

care of ∥z∥∞ ≤ γ1−β and the computation of c̃. The z-
check is performed by a straight-forward range proof.
Recall that c̃ = H(µ∥w1), where w1 = HighBits(w). We
reuse the hashing registers used earlier for the compu-
tation of c. We process four coefficients of w per row,
so that we have 24 coefficients of w1 ready to absorb
per Poseidon cycle. The computation of HighBits is
somewhat tricky because of the corner case −γ2, where
HighBits(−γ2) = 0 and LowBits(−γ2) = −γ2. To ac-
count for it, we use the following constraints:

w0 +w12γ2−w2γ2 = w w2(w2−1) = 0

0≤ w1 <
q−1
2γ2

w1w2 = 0

−γ2 < w0 ≤ γ2 w0w2 = 0

where w1 contains HighBits(w), w0 contains
LowBits(w), and w2 is binary a flag that is true
when in the corner-case w = −γ2. A proof that these
constraints do their job can be found in appendix A.

4 Implementation and Evaluation

We implemented our anonymous credential scheme
using the Winterfell library [40] for STARKs and
can be found at https://github.com/guruvamsi-policharla/
pq-anon-creds. We chose zkSTARKs as the post-
quantum proof system, mainly because the availability of
an open-source, actively maintained library called Win-
terfell [40] for STARK proofs, which we extend and
modify to fit our needs. Other proof systems exist such
as plonky2 [51], which combines PLONK and FRI, how-
ever we found it less accessible as it lacks documentation
and also did not have an open source license at the time
of development of this work. Exploring alternate proof
systems, such as [11, 20, 30], is an interesting direction
for future work.

Although there are tool chains for a more natural pro-
gramming model instead of AIRs such as Cairo5 in com-
bination with Giza6 they come with high overheads. Our
primary goal is efficiency and hence we take up the te-
dious task of manually optimizing the AIR for our de-
sired circuit.

Currently, the Winterfell library does not support com-
puting proofs with zero-knowledge but they have plans to
add this feature in the future. The performance of a zero-
knowledge STARK version will be very close to that of
plain STARK as the missing operations add very little
overhead in comparison to the rest of the proof genera-
tion7. All experiments related to proof performance tar-
get 115 bits of conjectured proof security [50] and were

5https://github.com/starkware-libs/cairo
6https://github.com/maxgillett/giza
7See https://github.com/facebook/winterfell/issues/9.

run on a 2019 MacBook Pro with a 2.4 GHz Intel Core i9
processor and 16 GB of DDR4 RAM in single threaded
mode8. All constraints are written in the prime field with
q= 223−220+1 to verify zk20Dilithium as it allows for a
larger depth of the trace table and hence more flexibility
for showing arbitrary predicates on anonymous creden-
tials. For simplicity and ease of comparison with related
work, we focus on the simpler case of blind signatures
but emphasize that our framework is much more pow-
erful and is therefore not entirely a fair comparison, yet
performance is comparable. We refer the reader to Sec-
tion 7 for more details on a comparison.

Scheme Signature (KB) Transcript (KB)

[1] 45 1.5
[24] 100 850
[10] 22 200†

Better size 85.6
2.4Balanced 112.3

Better time 173.3

Table 1: Comparison between blind signature schemes
and our work, separated by a gap. † denotes a conserva-
tive estimate.

Scheme Prover Verifier Prover RAM
(ms) (ms) (MB)

Better size 4822 19.8 235
Balanced 660 22.0 40

Better time 304 31.4 19

Table 2: Run times and peak memory usage for our blind
signature scheme. Peak verifier RAM usage is under
5MB. Prior work does not have an implementation for
comparison.

STARK proofs can be tuned for a trade-off between
the size of proof and the time taken to create proofs.
Given that there is no one-size (time) that fits all appli-
cations we provide three different variants of our Anony-
mous Credential scheme which are a) Size optimized b)
Time optimized and c) Balanced between time and size.
The size optimized variant is useful in low bandwidth sit-
uations and the time optimized variant is useful in weak
device situations. Table 1 contains a comparison with
prior work on blind signature schemes where Transcript
size denotes the communication during the interactive
protocol for obtaining a blind signature and Signature

8Although Winterfell supports multi-threading execution, the per-
formance does not seem to be consistent with the expectation that zk-
STARKs are massively parallelizable. An optimized implementation
of a multi-threaded prover is left as a future work.

9

https://github.com/guruvamsi-policharla/pq-anon-creds
https://github.com/guruvamsi-policharla/pq-anon-creds
https://github.com/starkware-libs/cairo
https://github.com/maxgillett/giza
https://github.com/facebook/winterfell/issues/9

size denotes the size of the final signature. We also dis-
cuss performance metrics in Table 2, where Prover is the
work done by a client who requested a blind signature
and Verifier is the server who finally verifies the signa-
ture at the end of a blind signature scheme. RAM usage
for the verifier is low (< 5 MB) which is conducive for
deployment on server-less architectures such as Cloud-
flare Workers, AWS Lambda or Google Cloud Functions.
In Fig. 5 we plot the trade-off between prover time and
proof size by increasing the blowup-factor parameter
but decreasing number-of-queries for a fixed target
conjectured security level of 115 bits9.

0

1

2

3

4

5

80 100 120 140 160 180

Ti
m

e
(s

)

Proof Size (KB)

Figure 5: Trade-off between prover time and proof size.
Towards the periphery, marks by dotted red boxes, the
trade-off is unfavorable and we start to pay too much in
proof size/time for too little return in proof time/size.

5 Improved Rate-Limiting for Privacy Pass

One of the main applications of the Privacy Pass proto-
col is to provide users a means for avoiding CAPTCHAs.
A Client obtains anonymous tokens from an Issuer after
establishing trust and redeems these tokens in place of
solving CAPTCHAs. However, the basic Privacy Pass
protocol [23] is stateless as there are no persistent client
identifiers. This makes it difficult to enforce limits on the
number of tokens that any individual client receives. In
practice, such limits are quite useful. They can be used
to implement application rate limits such as those found
in “metered paywalls.” They can also limit abusive be-
havior by individual clients, such as fraudulent account
creation or token hoarding10.

9See https://github.com/facebook/winterfell/tree/main/air for de-
tails on STARK parameters.

10Token hoarding is an attack wherein the adversary hoards tokens
over a prolonged period of time and later uses them all at once to over-
whelm an Origin server.

5.1 Existing work
To support per-client rate limits, a rate-limited version of
Privacy Pass has been proposed [33]. This is a three party
protocol involving an Attester, Issuer(s), and Clients and
offers the capability to limit the number of tokens a par-
ticular Client can obtain for a particular Origin within a
given window of time. We briefly summarize the pro-
tocol below, omitting some details but refer the reader
to [33] for a detailed specification.

Similarly to the basic version, Clients interact with Is-
suers to obtain tokens. However, the Attester now acts as
an intermediary party between the Client and Issuer, and
performs an active role in token issuance. In particular,
a) the Attester maintains a persistent identifier (unknown
to the Issuer and Origin) for each client which enables
rate-limiting11 and b) the Attester serves as a proxy to
hide the Origins for which a Client obtained tokens for
while also not learning any information about Origins.

Clients initiate the protocol by sending a request for a
token to the Attester who validates this request against an
expected per-Client public key before forwarding the re-
quest to the Issuer. The Issuer processes and validates the
request and, if valid, produces a token response for the
Client. Composed with this token request and response
transaction is a secure computation protocol to evaluate
y = PRF(x,k), where x (Client’s input) is a per-Client
secret known only to the Client that corresponds to the
Client’s public key, k (Issuer’s input) is a per-Origin se-
cret known only to the Issuer. The Attester receives the
output y without learning anything about x or k. Every
time a Client visits the same origin, the Attester receives
the same y and hence can measure the number of times
a Client requested a token for an Origin in a given time
frame. The Attester can now enforce rate-limiting poli-
cies on Clients by not forwarding the response from the
Issuer if a Client exceeds its quotas.

The above solution requires additional trust assump-
tions beyond the basic version of Privacy Pass – non-
collusion between the Attester and Issuers/Origins. Re-
call that in the basic Privacy Pass protocol the Issuer and
Origin can collude and yet cannot identify which Client
made a particular redemption request. In contrast, if the
Attester colludes with the Issuer in the rate-limited pro-
tocol they can actually learn the Origins visited by a par-
ticular Client. If the Attester and Origin collude, they
can correlate a Client’s identity and Origin access pat-
terns through timestamp correlation. Even without col-
lusion, it is possible for a malicious Attester to combine
the access pattern information it learns through the proto-
col with additional auxiliary information to try and learn
the Origins associated with Client requests.

Moreover, the rate-limiting mechanism is simple and

11The persistent identifier must be resistant to Sybil attacks.

10

https://github.com/facebook/winterfell/tree/main/air

Figure 6: Protocol flow for rate-limited Privacy Pass with anonymous credentials.

inflexible in nature. From a functional perspective, rate
limits are expressed in terms of integer quotas for a pe-
riod of time, and thus cannot be used to support dynamic
policies, such as those that actively adapt to changing
traffic patterns. From a privacy perspective, the rate limit
for a specific Origin cannot be unique as this would leak
information about Client browsing behavior to the At-
tester. Finally, there is an inherent centralization prob-
lem as the number of issuers must be small in order to
maintain a large anonymity set for Origins visited by a
client [42].

5.2 Our proposal

Recall that in Privacy Pass (without rate-limiting), every
time a client wishes to authenticate they must use a fresh
token obtained from an issuer. In our proposal, the client
is given one credential per origin by the issuer, which has
hidden attributes containing details of user access pat-
terns that will be used for rate-limiting. When the client
visits an origin, the client must spend this credential and
is in return issued a new credential with updated rate-
limiting information. In effect, the rate limiting state of
the client is stored in the tokens themselves rather than
in a trusted Attester.

We now work through a concrete example to high-
light the utility of anonymous credentials over blind sig-
natures. Clients receive credentials with the following
attributes:

1. Nonce. To prevent double spends.

2. Timestamp this token was last (re)issued.

3. Number of times the client used a token in
the 5-minute window12 when the token was last
(re)issued.

125-minute windows start at round times, such as 17:05 and 17:10
(or more elegantly when the UNIX timestamps are zero mod 300), so
that the state can be updated properly.

4. Number of times the client used a token in the one
hour window, but not 5-minute window, when the
token was last (re)issued.

5. Number of times the client used a token on the day,
but not the one-hour window, when the token was
last (re)issued.

To get a completely new token, the client first estab-
lishes trust with an issuer, e.g., by solving a CAPTCHA.
The client then sends a commitment with a new nonce,
the current time, and zero counters, all as state, to the is-
suer, along with a proof that the counters are indeed all
zero and that reveals the timestamp to the issuer. After
verifying the proof, the issuer returns a signature on the
commitment.

To redeem the token with an origin, the client first cre-
ates a new state, with a new nonce, the current time, and
appropriately updated counters. Then it sends a commit-
ment to the new state and the nonce of the old state to the
origin together with a proof that

1. It knows a signature of either the origin or issuer on
a commitment on the old state, revealing only the
nonce therein.

2. That the counters under the new commitment are
updated appropriately with respect to the old state,
revealing only the new timestamp.

3. That the issuance satisfies a prescribed rate-limiting
policy, for instance:

(a) That the token was last used within three days;

(b) that the number of uses per 5 minutes doesn’t
exceed 300;

(c) that the number of uses per hour doesn’t ex-
ceed 1000 and

(d) that the number of uses in the last day doesn’t
exceed 5000.

11

The origin checks the proof; that it has not seen the re-
vealed old nonce before and that the revealed new times-
tamp is close to the current time. If all checks pass, it al-
lows the request and returns a signature on the new com-
mitment. The client then uses this new commitment and
signature in subsequent redemption requests to the ori-
gin. The example policy, in the Privacy Pass case, still
allows hoarding within a three day period and requires
sybil attack prevention which can be achieved by having
the Issuer uniquely identify the client.

6 Practical proof sizes for Privacy Pass

As we have seen, there is a trade-off between proof size
and creation/verification time. To pick the right one for
Privacy Pass, we executed the following experiment.

6.1 Setup
We modified Cloudflare challenge pages, so that on a
small fraction of them, an experimental background re-
quest is sent, that uploads a dummy token of between 1
and 40 kilobytes. We time the upload and stored those
for which the challenge was successful. This resembles
the Privacy Pass flow. There are two notable limitations.
First, we aborted a request if it took longer than one sec-
ond, so that users are not unduly affected by the exper-
iment. Secondly, we sent the request to a separate do-
main13 that describes the experiment. The latter adds a
significant amount of noise to the timing, as it is very
likely the request also involves a DNS query and extra
TLS handshake.

6.2 Results
During October 2022, 750,000 experimental requests
were initiated. Of those 190,000 were aborted, because
they didn’t finish within a second. Fig. 7a shows the
median duration by token size. Aborted requests are in-
cluded as having a duration of a single second.

The jump at around 14kB is due to an extra round
trip required when the client congestion window fills
up. The lines are fit using ordinary linear regression,
with a dummy factor to account for the congestion win-
dow jump. From this, we can estimate that the me-
dian effective upload speed is roughly 2.6Mbit/s 95% CI
[2.4,3.0]. If we do the same for the other percentiles, we
get Fig. 7b, with 95% CI shaded.

Above the 60th percentile, the fraction aborted re-
quests is too high for a meaningful analysis.

Extrapolating by eye, it seems generous to assume
the vast majority of users has an effective upload speed

13https://privacy-pass-size-experiment.cloudflareresearch.com

of more than 1Mbit/s, which would limit proof sizes to
100kB if we give ourselves a time budget of one second.

7 Related Work

Post-quantum key-agreement [14] and signatures [8, 26,
29] have received a lot of attention in response to the
NIST PQC standardization efforts which resulted in very
efficient constructions, albeit still worse than classical
counterparts based on DDH/RSA [52]. The situation
for advanced cryptography such as vOPRFs and blind
signatures is more complicated and more dire. Even if
constructions being currently used are not future-proof,
at the very least, capturing communication today should
not allow an adversary, who later gains access to a quan-
tum computer, to violate privacy guarantees. Fortu-
nately, properties such as unlinkability of blind signa-
tures or obliviousness of evaluation points in OPRFs
are typically information-theoretically guaranteed in ex-
isting constructions [19, 36]. However, post-quantum
schemes with performance comparable to counterparts
based on DDH/RSA do not exist.

There has been a long line of theoretical work but we
restrict our comparison to constructions which aim to be
practical as they are most relevant to our work. We refer
the reader to [1] for a more detailed survey. Recently, the
problem has gained renewed attention with three some-
what practical proposals for lattice-based blind signa-
tures [1,10,24] and one based on isogenies [5]. Unfortu-
nately, none of the proposed solutions meet the require-
ments for a post-quantum variant of privacy-pass.

Given that one of the primary applications of anony-
mous tokens is to provide users with a seamless expe-
rience without interruptions in the form of CAPTCHAs
[22], a post-quantum solution must ensure that the signer
(server) workload is as low as possible to prevent denial
of service attacks. Unfortunately, the construction with
the smallest signature size (≈ 22 KB) [10] requires the
signature requester to produce a quantum-safe proof of a
large circuit involving cryptographic hashes (SHA) and
the authors estimate the proof to take under 20 seconds
to create and under 10 seconds to verify using Ligero++
[12] with several hundreds of kilobytes in communica-
tion. The authors do not focus on this aspect as they are
primarily concerned with signature size.

The scheme of [1] is based on a novel cryptographic
assumption titled one-more-ISIS, where signature sizes
are ≈ 45 KB with transcripts of a few kilobytes. Al-
though it is interesting to explore new cryptographic as-
sumptions in order to obtain more efficient constructions,
they require more scrutiny before they can be considered
for deployment in practice.

Finally, [24] introduced a blind signature based on
standard lattice assumptions (SIS + LWE) with signa-

12

https://privacy-pass-size-experiment.cloudflareresearch.com

(a) Median request duration by token size. (b) Estimate of effective upload speed.

Figure 7: Results of experimental measurements.

ture size ≈ 100 KB and total communication under a
megabyte. Indeed this is only construction which a) does
not prove statements involving a Random Oracle and
hence does not resort to heuristic security and b) has a
proof in the Quantum Random Oracle Model. However,
the communication is still quite high and the authors do
not give a performance estimate.

Baretto et al. [5] propose a blind signature scheme
based on isogenies, but their signature size is roughly
half a megabyte and both signing and verification require
over 1000 group actions, each of which takes close to
40 ms [18], making the scheme quite expensive.

An alternate path to anonymous tokens (without pub-
lic verifiability) is via vOPRFs and the only known con-
struction of post-quantum vOPRFs from lattices [2] pro-
vides a crude estimate of > 240 bits of communication
rendering the construction theoretical. Another con-
struction [13] relies on the hardness of SIDH which
was recently shown to be broken [17, 41, 46]. This has
since been revamped by incorporating countermeasures
against such attacks in [6] but the bandwidth require-
ments are still quite large at 8.7 MB per query. We re-
mark here that another promising candidate for some-
what practical post-quantum vOPRFs is via secure two
party computation of a PRF such as AES and prior work
has shown that this can be achieved with≈ 5 MB of com-
munication [38] but this requires more than two rounds.

8 Outlook

We have proposed the first practical post-quantum
anonymous credentials system, which performs compet-
itively against best known constructions for the simpler
case of blind signatures. We emphasize that carefully
combining off-the-shelf constructions with small modifi-

cations can perform surprisingly well. However, we note
that this approach is far from optimal. To name but a few
lines of future research.

1. For this work, we committed to a variant of
Dilithium as the underlying post-quantum signature
scheme. Exploring other signature schemes such
as Falcon [29] is an interesting direction for future
work.

2. Exploring the performance of alternate proof sys-
tems such as [11, 20, 30] or even designing proof
systems for the task of verifying post-quantum sig-
natures is also very promising.

3. Formal verification techniques can be used to guar-
antee soundness of the translation from code to the
AIR.

9 Acknowledgments

Acknowledgements We would like to thank Maria
Eichlseder and Markus Schofnegger for their advise on
STARK friendly hashes; Nikita Borozov for insightful
discussions on rate-limiting; Chris Patton, Avani Wildani
for their reviews; and finally Wouter Geraedts, for Rust
advice.

References

[1] Shweta Agrawal, Elena Kirshanova, Damien
Stehlé, and Anshu Yadav. Practical, round-optimal
lattice-based blind signatures. In CCS, pages 39–
53. ACM, 2022. https://doi.org/10.1145/3548606.
3560650.

13

https://doi.org/10.1145/3548606.3560650
https://doi.org/10.1145/3548606.3560650

[2] Martin R. Albrecht, Alex Davidson, Amit Deo,
and Nigel P. Smart. Round-optimal verifiable
oblivious pseudorandom functions from ideal lat-
tices. In Public Key Cryptography (2), volume
12711 of Lecture Notes in Computer Science, pages
261–289. Springer, 2021. https://doi.org/10.1007/
978-3-030-75248-4 10.

[3] Apple. Challenge: Private access tokens. In Apple
Developer – Discover, Jun 2022. https://developer.
apple.com/news/?id=huqjyh7k.

[4] Foteini Baldimtsi and Anna Lysyanskaya. Anony-
mous credentials light. In CCS, pages 1087–1098.
ACM, 2013. https://doi.org/10.1145/2508859.
2516687.

[5] Paulo L. Barreto and Gustavo H. M. Zanon. Blind
signatures from zero-knowledge arguments. Cryp-
tology ePrint Archive, Paper 2023/067, 2023. https:
//eprint.iacr.org/2023/067.

[6] Andrea Basso. A post-quantum round-optimal
oblivious prf from isogenies. Cryptology ePrint
Archive, Paper 2023/225, 2023. https://eprint.iacr.
org/2023/225.

[7] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Scalable, transparent, and post-
quantum secure computational integrity. Cryptol-
ogy ePrint Archive, Paper 2018/046, 2018. https:
//eprint.iacr.org/2018/046.

[8] Daniel J Bernstein, Andreas Hülsing, Stefan Kölbl,
Ruben Niederhagen, Joost Rijneveld, and Peter
Schwabe. The SPHINCS+ signature framework.
In Proceedings of the 2019 ACM SIGSAC confer-
ence on computer and communications security,
pages 2129–2146, 2019. https://doi.org/10.1145/
3319535.3363229.

[9] Ward Beullens, Samuel Dobson, Shuichi Kat-
sumata, Yi-Fu Lai, and Federico Pintore. Group
signatures and more from isogenies and lattices:
Generic, simple, and efficient. In EUROCRYPT
(2), volume 13276 of Lecture Notes in Computer
Science, pages 95–126. Springer, 2022. https://doi.
org/10.1007/978-3-031-07085-3 4.

[10] Ward Beullens, Vadim Lyubashevsky, Ngoc Khanh
Nguyen, and Gregor Seiler. Lattice-based blind sig-
natures: Short, efficient, and round-optimal. Cryp-
tology ePrint Archive, Paper 2023/077, 2023. https:
//eprint.iacr.org/2023/077.

[11] Ward Beullens and Gregor Seiler. LaBRADOR:
Compact Proofs for R1CS from Module-SIS. Cryp-
tology ePrint Archive, Paper 2022/1341, 2022.
https://eprint.iacr.org/2022/1341.

[12] Rishabh Bhadauria, Zhiyong Fang, Carmit
Hazay, Muthuramakrishnan Venkitasubrama-
niam, Tiancheng Xie, and Yupeng Zhang.
Ligero++: A new optimized sublinear IOP.
In CCS, pages 2025–2038. ACM, 2020.
https://doi.org/10.1145/3372297.3417893.

[13] Dan Boneh, Dmitry Kogan, and Katharine Woo.
Oblivious pseudorandom functions from isogenies.
In ASIACRYPT (2), volume 12492 of Lecture Notes
in Computer Science, pages 520–550. Springer,
2020. https://doi.org/10.1007/978-3-030-64834-3
18.

[14] Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M Schanck, Pe-
ter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: a CCA-secure module-lattice-
based KEM. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 353–
367. IEEE, 2018. https://doi.org/10.1109/EuroSP.
2018.00032.

[15] Zvika Brakerski, Craig Gentry, and Vinod Vaikun-
tanathan. (Leveled) Fully Homomorphic Encryp-
tion without Bootstrapping. In Proceedings of the
3rd Innovations in Theoretical Computer Science
Conference, ITCS ’12, page 309–325, New York,
NY, USA, 2012. Association for Computing Ma-
chinery. https://doi.org/10.1145/2090236.2090262.

[16] Jan Camenisch and Anna Lysyanskaya. Signature
schemes and anonymous credentials from bilinear
maps. In CRYPTO, volume 3152 of Lecture Notes
in Computer Science, pages 56–72. Springer, 2004.

[17] Wouter Castryck and Thomas Decru. An efficient
key recovery attack on sidh (preliminary version).
Cryptology ePrint Archive, Paper 2022/975, 2022.
https://eprint.iacr.org/2022/975.

[18] Wouter Castryck, Tanja Lange, Chloe Martindale,
Lorenz Panny, and Joost Renes. CSIDH: an effi-
cient post-quantum commutative group action. In
ASIACRYPT (3), volume 11274 of Lecture Notes in
Computer Science, pages 395–427. Springer, 2018.

[19] David Chaum. Blind signatures for untrace-
able payments. In CRYPTO, pages 199–203.
Springer, Boston, MA, 1982. https://doi.org/10.
1007/978-1-4757-0602-4 18.

14

https://doi.org/10.1007/978-3-030-75248-4_10
https://doi.org/10.1007/978-3-030-75248-4_10
https://developer.apple.com/news/?id=huqjyh7k
https://developer.apple.com/news/?id=huqjyh7k
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/2508859.2516687
https://eprint.iacr.org/2023/067
https://eprint.iacr.org/2023/067
https://eprint.iacr.org/2023/225
https://eprint.iacr.org/2023/225
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1145/3319535.3363229
https://doi.org/10.1007/978-3-031-07085-3_4
https://doi.org/10.1007/978-3-031-07085-3_4
https://eprint.iacr.org/2023/077
https://eprint.iacr.org/2023/077
https://eprint.iacr.org/2022/1341
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1007/978-3-030-64834-3_18
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1145/2090236.2090262
https://eprint.iacr.org/2022/975
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/978-1-4757-0602-4_18

[20] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhen-
fei Zhang. Hyperplonk: Plonk with linear-time
prover and high-degree custom gates. Cryptol-
ogy ePrint Archive, Paper 2022/1355, 2022. https:
//eprint.iacr.org/2022/1355.

[21] World Wide Web Consortium. Private click
measurement. https://privacycg.github.io/
private-click-measurement/, April 2021.

[22] Alex Davidson, Ian Goldberg, Nick Sullivan,
George Tankersley, and Filippo Valsorda. Privacy
pass: A privacy-enhancing protocol and browser
extension. https://privacypass.github.io.

[23] Alex Davidson, Ian Goldberg, Nick Sullivan,
George Tankersley, and Filippo Valsorda. Privacy
pass: Bypassing internet challenges anonymously.
Proc. Priv. Enhancing Technol., 2018(3):164–180,
2018. https://doi.org/10.1515/popets-2018-0026.

[24] Rafael del Pino and Shuichi Katsumata. A
new framework for more efficient round-optimal
lattice-based (partially) blind signature via trap-
door sampling. In CRYPTO (2), volume 13508
of Lecture Notes in Computer Science, pages
306–336. Springer, 2022. https://doi.org/10.1007/
978-3-031-15979-4 11.

[25] L. Ducas and J. Shanck. PQ-CRYSTALS: Se-
curity estimates. https://github.com/pq-crystals/
security-estimates.

[26] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim
Lyubashevsky, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Dilithium: A lattice-
based digital signature scheme. IACR Transac-
tions on Cryptographic Hardware and Embedded
Systems, pages 238–268, 2018. https://doi.org/10.
13154/tches.v2018.i1.238-268.

[27] Amos Fiat and Adi Shamir. How to prove yourself:
Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, Advances
in Cryptology — CRYPTO’ 86, page 186–194,
Berlin, Heidelberg, 1987. Springer Berlin Heidel-
berg. https://doi.org/10.1007/3-540-47721-7 12.

[28] Marc Fischlin. Round-optimal composable blind
signatures in the common reference string model.
In CRYPTO, volume 4117 of Lecture Notes in Com-
puter Science, pages 60–77. Springer, 2006. https:
//doi.org/10.1007/11818175 4.

[29] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Prest, Thomas Ricosset, Gregor Seiler, William

Whyte, and Zhenfei Zhang. Falcon: Fast-fourier
lattice-based compact signatures over ntru. Submis-
sion to the NIST’s post-quantum cryptography stan-
dardization process, 2018. https://falcon-sign.info/.

[30] Alexander Golovnev, Jonathan Lee, Srinath Setty,
Justin Thaler, and Riad S. Wahby. Brakedown:
Linear-time and post-quantum SNARKs for R1CS.
Cryptology ePrint Archive, Paper 2021/1043, 2021.
https://eprint.iacr.org/2021/1043.

[31] Google. Private state tokens. In Chrome Develop-
ers, May 2021. https://developer.chrome.com/en/
docs/privacy-sandbox/trust-tokens/.

[32] Lorenzo Grassi, Dmitry Khovratovich, Christian
Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for zero-knowledge
proof systems. Cryptology ePrint Archive, Paper
2019/458, 2019. https://eprint.iacr.org/2019/458.

[33] Scott Hendrickson, Jana Iyengar, Tommy Pauly,
Steven Valdez, and Christopher A. Wood. Rate-
Limited Token Issuance Protocol. Internet-Draft
draft-ietf-privacypass-rate-limit-tokens-00, Inter-
net Engineering Task Force, September 2022.
Work in Progress.

[34] Sharon Huang, Subodh Iyengar, Sundar Jeyara-
man, Shiv Kushwah, Chen-Kuei Lee, Zutian Luo,
Payman Mohassel, Ananth Raghunathan, Shaahid
Shaikh, Yen-Chieh Sung, and Albert Zhang.
Dit: De-identified authenticated telemetry at scale.
Technical report, Facebook Inc., 2021. White Pa-
per.

[35] Subodh Iyengar and Erik Taubeneck. Fraud resis-
tant, privacy preserving reporting using blind sig-
natures, 2021. Accessed 01-December-2021. https:
//github.com/siyengar/private-fraud-prevention.

[36] Stanislaw Jarecki, Aggelos Kiayias, and Hugo
Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-
only model. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT
2014, page 233–253, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-662-45608-8 13.

[37] Panos Kampanakis and Tancrède Lepoint. Do we
need to change some things? open questions posed
by the upcoming post-quantum migration to exist-
ing standards and deployments. Cryptology ePrint
Archive, Paper 2023/266, 2023. https://eprint.iacr.
org/2023/266.

15

https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://privacycg.github.io/private-click-measurement/
https://privacycg.github.io/private-click-measurement/
https://privacypass.github.io
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1007/978-3-031-15979-4_11
https://doi.org/10.1007/978-3-031-15979-4_11
https://github.com/pq-crystals/security-estimates
https://github.com/pq-crystals/security-estimates
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/11818175_4
https://falcon-sign.info/
https://eprint.iacr.org/2021/1043
https://developer.chrome.com/en/docs/privacy-sandbox/trust-tokens/
https://developer.chrome.com/en/docs/privacy-sandbox/trust-tokens/
https://eprint.iacr.org/2019/458
https://datatracker.ietf.org/doc/draft-ietf-privacypass-rate-limit-tokens/00/
https://research.fb.com/wp-content/uploads/2021/04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf
https://research.fb.com/wp-content/uploads/2021/04/DIT-De-Identified-Authenticated-Telemetry-at-Scale_final.pdf
https://github.com/siyengar/private-fraud-prevention
https://github.com/siyengar/private-fraud-prevention
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://eprint.iacr.org/2023/266
https://eprint.iacr.org/2023/266

[38] Jonathan Katz, Samuel Ranellucci, Mike Rosulek,
and Xiao Wang. Optimizing authenticated gar-
bling for faster secure two-party computation. In
CRYPTO (3), volume 10993 of Lecture Notes in
Computer Science, pages 365–391. Springer, 2018.
https://doi.org/10.1007/978-3-319-96878-0 13.

[39] Irakliy Khaburzaniya, Konstantinos Chalkias,
Kevin Lewi, and Harjasleen Malvai. Aggregating
and thresholdizing hash-based signatures using
starks. In AsiaCCS, pages 393–407. ACM, 2022.
https://doi.org/10.1145/3488932.3524128.

[40] Irakliy Khaburzaniya, François Garillot, Kevin
Lewi, Konstantinos Chalkias, and Jasleen Mal-
vai. Winterfell. https://github.com/novifinancial/
winterfell, 2022.

[41] Luciano Maino and Chloe Martindale. An attack
on sidh with arbitrary starting curve. Cryptol-
ogy ePrint Archive, Paper 2022/1026, 2022. https:
//eprint.iacr.org/2022/1026.

[42] Mark McFadden. Privacy Pass: Centralization
Problem Statement. Internet-Draft draft-mcfadden-
pp-centralization-problem-03, Internet Engineering
Task Force, March 2022. Work in Progress.

[43] Ministry of Public Health, Welfare and Sport.
CoronaCheck. https://coronacheck.nl/.

[44] National Institute of Standards and Technology.
NIST announces first four quantum resistant
cryptographic algorithms, jul 2022.
https://www.nist.gov/news-
events/news/2022/07/nist-announces-first-four-
quantum-resistant-cryptographic-algorithms.

[45] Privacy by Design Foundation. IRMA. https:
//privacybydesign.foundation/irma-en/.

[46] Damien Robert. Breaking SIDH in polynomial
time. Cryptology ePrint Archive, Paper 2022/1038,
2022. https://eprint.iacr.org/2022/1038.

[47] Markus Schofnegger. Hadeshash: Reference
implementations for various versions of Starkad
and Poseidon. https://extgit.iaik.tugraz.at/krypto/
hadeshash, 2021.

[48] Brave Software. Basic Attention Token (BAT)
Blockchain Based Digital Advertising, 2021. https:
//basicattentiontoken.org/.

[49] Amber Sprenkels and Bas Westerbaan. Don’t throw
your nonces out with the bathwater: Speeding up
dilithium by reusing the tail of y. Cryptology ePrint
Archive, Paper 2020/1158, 2020. https://eprint.iacr.
org/2020/1158.

[50] StarkWare. ethSTARK Documentation. Cryptol-
ogy ePrint Archive, Paper 2021/582, 2021. https:
//eprint.iacr.org/2021/582.

[51] Polygon Zero Team. Plonky2: Fast Recursive Ar-
guments with PLONK and FRI. https://github.com/
mir-protocol/plonky2, 2022.

[52] Bas Westerbaan. Sizing up post-quantum sig-
natures, Nov 2021. https://blog.cloudflare.com/
sizing-up-post-quantum-signatures/.

A Constraints for HighBits

To prove the constraints used to compute w1 from w
listed at the end of Section 3.5 do their job, let’s start with
the corner case. Assume w2 = 1. Then w1 = w0 = 0 by
the w1w2 = 0 = w0w2 constraints. Hence w =−γ2 by the
first constraint. As mentioned HighBits(−γ2) = 0 = w1,
so that is correct. Conversely, if w = −γ2, then we must
have w2 = 1, for if w2 = 0, then there is not a w0 in
bounds for if w1 = 0 then w0 =−γ2 and if w1 =

q−1
2γ2
−1

then w0 = 1+ γ2.
Now, for the other case, assume w2 = 0. Let some w ̸=

−γ2 be given. Consider w′0 := w mod+ 2γ2, where the
modulus in computed on the standard representative of w
in Z. Set w′′0 = w′0 if w′0 ≤ γ2 and w′0− 2γ2 otherwise.
Note w′′0 satisfies the bounds of w0. Also modulo 2γ2,
we have w′′0 ≡ w′0 ≡ w. Thus (the standard representative

of) w−w′′0 is divisible by 2γ2. Set w′1 =
w−w′′0

2γ2
. Note 0≤

w′1≤
q−1
2γ2

. Set w1 =w′1, w0 =w′′0 if w′1 ̸=
q−1
2γ2

and w1 = 0,
w0 = w′′0 − 1 otherwise. Clearly w0 and w1 satisfy the
constraints if w′1 = w1. In the other case q−1

2γ2
= w′1 ̸=

w1 = 0, we have q− γ2 ≤ w < q. Note w′12γ2 = q− 1
and so w = w′0+w′12γ2 = w′0−1+q = w′′0 = w0+w12γ2,
where w0 is in bounds as w ̸=−γ2.

We have shown that the intended w0 for any w satis-
fies the constraints. Now we need to show it’s the only
that does. Note that there are 2γ2 possible values of w0
by the range constraint. Similarly, there are q−1

2γ2
possible

values for w1. Thus, there are q−1
2γ2
· 2γ2 = q− 1 possi-

ble pairs (w0,w1). That’s exactly the number of possible
values of w, except for the corner case. Thus the repre-
sentation is unique.

16

https://doi.org/10.1007/978-3-319-96878-0_13
https://doi.org/10.1145/3488932.3524128
https://github.com/novifinancial/winterfell
https://github.com/novifinancial/winterfell
https://eprint.iacr.org/2022/1026
https://eprint.iacr.org/2022/1026
https://datatracker.ietf.org/doc/draft-mcfadden-pp-centralization-problem/03/
https://datatracker.ietf.org/doc/draft-mcfadden-pp-centralization-problem/03/
https://coronacheck.nl/
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://privacybydesign.foundation/irma-en/
https://privacybydesign.foundation/irma-en/
https://eprint.iacr.org/2022/1038
https://extgit.iaik.tugraz.at/krypto/hadeshash
https://extgit.iaik.tugraz.at/krypto/hadeshash
https://basicattentiontoken.org/
https://basicattentiontoken.org/
https://eprint.iacr.org/2020/1158
https://eprint.iacr.org/2020/1158
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://github.com/mir-protocol/plonky2
https://github.com/mir-protocol/plonky2
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

	Introduction
	Overview

	zkSTARKs and AIR
	Dilithium
	Parameters
	Underlying identification scheme
	Dilithium signatures
	zkDilithium: a zkSTARK-friendly alternative
	zkDilitihum

	Signature verification RAP

	Implementation and Evaluation
	Improved Rate-Limiting for Privacy Pass
	Existing work
	Our proposal

	Practical proof sizes for Privacy Pass
	Setup
	Results

	Related Work
	Outlook
	Acknowledgments
	Constraints for HighBits

