
CaSCaDE: (Time-Based) Cryptography from
Space Communications DElay

Carsten Baum1, Bernardo David2, Elena Pagnin3, and Akira Takahashi4

1 Technical University of Denmark
2 IT University of Copenhagen

3 Chalmers University
4 The University of Edinburgh

March 21, 2023

Abstract. Time-based cryptographic primitives such as Time-Lock Puz-
zles (TLPs) and Verifiable Delay Functions (VDFs) have recently found
many applications to the efficient design of secure protocols such as ran-
domness beacons or multiparty computation with partial fairness. How-
ever, current TLP and VDF candidate constructions rely on the average
hardness of sequential computational problems. Unfortunately, obtaining
concrete parameters for these is notoriously hard, as there cannot be a
large gap between the honest parties’ and the adversary’s runtime when
solving the same problem. Moreover, even a constant improvement in
algorithms for solving these problems can render parameter choices, and
thus deployed systems, insecure - unless very conservative and therefore
highly inefficient parameters are chosen.
In this work, we investigate how to construct time-based cryptographic
primitives from communication delay, which has a known lower bound
given the physical distance between devices: the speed of light. In order
to obtain high delays, we explore the sequential communication delay
that arises when sending a message through a constellation of satellites.
This has the advantage that distances between protocol participants are
guaranteed as positions of satellites are observable, so delay lower bounds
can be easily computed. At the same time, building cryptographic prim-
itives for this setting is challenging due to the constrained resources of
satellites and possible corruptions of parties within the constellation.
We address these challenges by constructing efficient proofs of sequential
communication delay to convince a verifier that a message has accrued
delay by traversing a path among satellites. As part of this construc-
tion, we propose the first ordered multisignature scheme with security
under a version of the the discrete logarithm assumption, which enjoys
constant-size signatures and, modulo preprocessing, computational com-
plexity independent of the number of signers. Building on our proofs
of sequential communication delay, we show new constructions of Pub-
licly Verifiable TLPs and VDFs whose delay guarantees are rooted on
physical communication delay lower bounds. Our protocols as well as
the ordered multisignature are analysed in the Universal Composability
framework using novel models for sequential communication delays and
(ordered) multisignatures. A direct application of our results is a ran-
domness beacon that only accesses expensive communication resources
in case of cheating.

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 3
1.2 Technical Overview . 5

2 Preliminaries . 8
2.1 Modelling Time and Global Clocks . 8

3 Modeling Communication Delays . 9
4 Proofs of Sequential Communication Delays . 11

4.1 Modelling Proofs of Sequential Communication Delay 12
5 Ordered Multi-Signatures . 19
6 Verifiable Delay Functions . 24
7 Publicly Verifiable Time-Lock Puzzles . 26
8 Delay Encryption and Stateless VDF . 30
A Auxiliary Functionalities and other Preliminaries 37

A.1 UC Secure Public-Key Encryption with Plaintext Verification . . . 40
A.2 Global Clocks and Global tickers . 42

B Delayed Communication - Proofs and more details 43
B.1 Realizing F f∆

mdmt . 43
B.2 Proof of Theorem 4.1 . 44
B.3 Computing channel delays . 45
B.4 Proof of Theorem 4.4 . 46

C Proof of Theorem 7.1 . 47
D UC Treatment of Delay Encryption . 47
E More on OMS . 49

E.1 Preliminaries for our OMS construction . 49
E.2 Proof of Theorem 5.4 . 51
E.3 Three OMS Variants . 57

F Multi-Signatures in the UC Framework . 60
F.1 Ideal Functionality for Multi-Signatures . 60
F.2 UC Security of Interactive Multi-Signatures 61
F.3 UC Security of Interactive Ordered Multi-Signature Scheme 70
F.4 Integrating FOMS into πMulti−SCD . 72

1 Introduction

Time-based primitives such as Time-Lock Puzzles (TLPs) [65] and Verifiable
Delay Functions (VDFs) [15] have received a lot of attention recently as building
blocks for efficient protocols that e.g. realize randomness beacons and multiparty
computation with partial fairness. TLPs allow a sender to commit to a message
in such a way that a receiver can obtain it only after a certain (polynomial)
amount of time. A VDF works as a pseudorandom function whose evaluation
requires at least a certain (polynomial-bound) amount of time, after which it
generates both an output and a proof that the output was obtained after at
least this amount of time has elapsed. Similarly, a publicly verifiable TLP (PV-
TLP) also produces a proof that a certain message was contained in the puzzle.
In both cases, verifying these proofs takes time essentially independent of the
time needed to evaluate the VDF or solve the PV-TLP.

Although a lot of theoretical work has been done on constructing TLPs [9,12,
18,40,47,65] and VDFs [8, 15,36,38,61,68], all of these constructions are based
on the average hardness of sequential computational problems. The rationale
behind these constructions is that the the minimum delay in evaluating a VDF
or solving a TLP is obtained by forcing parties to solve computational prob-
lems that require a number of sequential steps that cannot be computed more
efficiently in parallel. Hence, the more steps needed to solve the problem, the
higher the minimum delay provided by the VDF/TLP. Unfortunately, very little
is known about concrete parameters and lower bounds for such computational
problems. At the same time, slight inaccuracies in estimating the hardness of
the underlying problems can easily render constructions insecure - even constant
improvements in algorithms which solve them can break parameters. Given this
small room for errors, finding constructions which realize TLPs or VDFs from
different assumptions is deemed prudent.

Since computational assumptions inherently have this disadvantage when be-
ing used for time-based primitives, an alternative is to rely on physical assump-
tions instead. First, the inherent noise in communication channels was shown to
yield primitives such as Oblivious Transfer [33], Commitments [33] and Key Ex-
change [55]. Similar results were later obtained from physically-unclonable func-
tions [21, 60, 66] and tamper-proof tokens [45, 46]. More recently, secure vaults
and one-time programs were constructed from protein polymers [3]. However,
none of these assumptions seems to be useful when building time-based cryp-
tography. Hence, we consider the minimal communication delay guaranteed by
special relativity, which was first proposed as a way to construct commitments by
Kent [49] in 1999. Recently, this assumption was used to construct more efficient
commitments [52] and multi-prover Zero-Knowledge proofs [34], which have been
experimentally demonstrated [2,67]. However, these constructions only guarantee
security to verifiers who interact with provers via ideal secure channels, whereas
the primitives we consider require non-interactive public verifiability.

1.1 Our Contributions
In this work, we investigate a new way of constructing time-based cryptographic
primitives from physical assumptions (while additionally leveraging a classical

3

trust assumption). Our constructions derive their delay guarantees from special
relativity, which posits that communication cannot happen faster than the speed
of light. Thus, the communication delay between two parties is precisely lower
bounded by their relative distance. However, this well known lower bound is
practically meaningless when considering devices in close proximity. On the other
hand, this fundamental physical delay becomes apparent when transmitting data
over large distances, as it is the case for satellites in space. Delay guarantees may
not hold if both devices are corrupted, but are achievable with at least one honest
participant.

In order to obtain a delay lower bound sufficiently high for the usual appli-
cations of time-based cryptography, we consider the delay incurred by sending
messages across a constellation of satellites placed far from each other. While
this may seem far-fetched, the advent of relatively cheap CubeSats [63] has
made it possible to easily deploy sizable constellations for specific applications,
sparking initiatives towards satellite-based cryptographic applications [1]. It is
therefore not unthinkable that satellite time could be rented from different satel-
lite providers in the future, similar to how one rents cloud servers today5. Using
satellites also allows any third party verifiers to ascertain communication delay
lower bounds, since satellite positions are publicly observable6. However, our fo-
cus on satellites directly imposes a number of challenges. This is because their
computational and communication resources are extremely limited, so our con-
struction must be implementable from “cheap” cryptographic primitives. At the
same time, potential corruptions of a subset of satellites within a larger constel-
lation have an impact on the minimal delay that can be guaranteed.

From a cryptographic perspective, our work makes the following contributions:

Modelling dynamic delayed channels: We introduce a model for com-
munication channels whose delay evolves with time in the UC framework [24].
For this, we use a Global clock to establish synchrony. As we rely on messages
being transmitted through a constellation of satellites, our formal model can
express communication delay among parties whose position changes over time,
thus affecting the delay when transmitting a message between them.

Proofs of Sequential Communication Delay: Building on our model, we
introduce techniques for proving that a certain message has been sequentially
transmitted among a number of parties. We analyse the delay bounds obtained
by composing delayed channels and propose the notion (and a construction) of
proofs of sequential communication delay using signatures.

The first Ordered Multisignature based on OMDL: As a tool for ef-
ficient proofs of sequential communication delay, we introduce the first ordered

5 Having satellites owned by different companies participating also shows that an
assumed threshold on corruptions in a constellation of satellites is realistic.

6 There are many ways to track satellites and learn their positions. Even
spy satellites are tracked by amateur enthusiasts (e.g. https://gizmodo.com/

how-you-can-track-every-spy-satellite-in-orbit-1685316357). This shows it
is possible to keep track of satellite positions that determine communication delays.

4

https://gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357
https://gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357

multisignature (OMS) scheme based on the hardness of the One-More Discrete
Log assumption. Assuming broadcasting and preprocessing, our OMS enjoys
constant-size signatures and computational complexity independent of the num-
ber of signers in the online phase. Previous non-interactive OMS or Sequential
Aggregate Signature (SAS) constructions with constant-size signatures rely ei-
ther on bilinear pairings [10,14,39,51,53] or trapdoor permutations [20,43,53,57].
The existing Schnorr-based SAS [32] has a linear growth of the signature size.
We take a different approach by lifting the bandwidth-efficient Schnorr-based
interactive multi-signature of [58] to OMS. We also revisit the OMS security
model of [14] and put forth a general framework that handles complex corrup-
tion and forgery patterns. Our security model and construction are contributions
of independent interest.

UC (Ordered) Multisignatures: We present the first formalization of
(Ordered) Multisignatures in the UC model, and prove that our game-based
construction fulfills it. This allows us to easily integrate it into our UC-secure
proofs of sequential communication delay. Along the way, we also propose UC
formalisations of multisignatures (MS) and interactive multisignatures (IMS).

(Stateful) VDF and PV-TLP based on Communication Delay: We
use our proofs of communication delay to introduce the first constructions of
VDFs and PV-TLPs based on communication delay and analyse their security
in the UC framework. We directly construct VDFs from proofs of sequential
communication delay (in the random oracle model) by extracting randomness
from such proofs. While trapdoor VDFs [68] are sufficient for constructing a PV-
TLP [8,40], we opt for constructing those directly from sequential communication
delays in order to obtain more efficient schemes. As an application, we show
that our PV-TLPs can be used to efficiently instantiate the randomness beacon
from [8] so that expensive resources are only used in case of cheating.

Delay Encryption and Stateless VDF from Threshold Identity Based
Encryption (IBE): We obtain Delay Encryption [22] by combining our proofs
of sequential communication delay and an IBE scheme endowed with a threshold
identity secret key generation protocol. To the best of our knowledge, this is the
first Delay Encryption scheme not based on supersingular isogeny assumptions.
We also use a similar technique to obtain a more efficient construction of VDFs.

1.2 Technical Overview
Modelling Communication Delays: We model delays in the Abstract Com-
posable Time [9] framework with synchrony provided by a global clock GClock
inspired by [50], which we realize in the aforementioned framework. We start

by modelling a single-use ideal functionality F∆lo,∆hi

dmt for delayed message trans-
mission with fixed minimum (∆lo) and maximum (∆hi) delay parameters. This
functionality guarantees that the adversary does not learn the message until at
least ∆lo ticks after it is sent by the sender. At the same time, the functionality
guarantees that the receiver gets the message at most ∆hi ticks after sending.
This means that as long as at least one of the channel participants is honest, the
channel guarantees delay. Next, we model a multiple use delayed channel func-
tionality F f∆

mdmt where the minimum and maximum delays for a message sent at

5

time t are dynamically determined by a function (∆lo, ∆hi) ← f∆(t) according
to the current time provided by GClock. We show that F f∆

mdmt can be realized

based on F∆lo,∆hi

dmt . These functionalities can be composed in order to obtain a
minimum delay guarantee for a message transmitted among multiple parties.

Proofs of Sequential Communication Delay: We define the notion of a
proof of sequential communication delay πlo, which allows a third party verifier
Vi to check that a given message m has been sent from PS to PR while incurring
a minimum delay of ∆lo. This is modelled using the functionality F f∆

SCD. As

we construct this functionality from F f∆
mdmt, we inherit security guarantees of

minimal delay even if one of the participants (sender or receiver) is dishonest.
We then construct a simple protocol realizing F f∆

SCD in a synchronized setting with
a global clock GClock, public key infrastructure FReg, a unique digital signature

scheme FSig and a delayed channel F f∆
mdmt. In this protocol, PS signs (m, t),

i.e. the message to be sent concatenated with the time t when the message is
sent, obtaining a signature σPS

. PS sends (m, t, σPS
) through F f∆

mdmt to PR, who
checks that σPS

is valid w.r.t. (m, t) and PS ’s verification key. Moreover, PR

checks that it has received the message at a time t′ such that t + ∆lo ≤ t′ ≤
t+∆hi, where (∆lo, ∆hi)← f∆(t), i.e. it checks that the claimed sending time t is
consistent with the channels parameters and the time t′ when it actually receives
the message. If the checks pass, PR generates a signature σPR

on (m, t, σPS
), and

a proof πPS→PR

∆lo
= (σPS

, σPR
) along with m, t,∆lo. Any third party can verify

whether the proof is valid w.r.t. a message m and parameters t,∆lo by checking
that PS ,PR are the parties transmitting through F f∆

mdmt, that (∆lo, ∆hi)← f∆(t)
and that σPS

, σPR
are valid. While it is clear that the guarantees of πlo do not

hold if both PS and PR collude (and e.g. pool their signing keys), we show that
delay of proof is still guaranteed if at most one of the parties is corrupted.

We then show how this simple protocol can be generalized to a chain of delay
channels with multiple intermediate parties and optimized to obtain proofs of
constant size (the size of a signature) by using SAS [53] or OMS [14]. Our
definition of F f∆

SCD is broad enough that this functionality can also model this
setting. Here, the parameters of the individual delay channels of the participating
parties, their number as well as the threshold of parties that can be corrupted
allow us to prove which delay function f∆(·) the sequential proof will guarantee.

Interactive Ordered Multi-Signature from OMDL: Our OMS con-
struction can be seen as a round-efficient interactive Schnorr-based multisigna-
ture where order is enforced by having each signer check the so-far aggregated
signature (created by the preceding co-signers). It is obtained by carefully ad-
justing the recent MuSig2 [58] to comply with the ordered-signing setting. This
yields constant-size signatures while keeping the computational complexity of
each signer in the online phase (i.e. once they receive a message to be signed)
independent of the total number of parties. We inherit the offline-online setup of
MuSig2, and signers can preprocess the first round of communication before re-
ceiving the message. This motivates us to revisit existing (game-based) security
models for OMS and introduce a generalized syntax that captures interactive
OMS and explicitly supports this setting.

6

UC-security for (Ordered) Multi-Signatures: While it is possible to
directly use our OMS construction to obtain an efficient proof of sequential
communication, reducing security of the overall UC protocol to the game-based
security is cumbersome. To circumvent this, we present formalizations of Mul-
tisignatures, Interactive Multisignatures as well as OMS in the UC framework,
and show that our Interactive OMS from OMDL realizes the functionality. These
differ quite strongly from existing models of UC-secure signatures [4, 23, 26] or
threshold signatures [29], so we devise a new framework to model dynamic key
registration, preprocessing as well as order during signing accurately.

Verifiable Delay Functions from Sequential Communication: We ob-
tain a direct construction of a VDF from proofs of sequential communication de-
lay. Our construction departs from F f∆

SCD, a random oracle and a bulletin board
FBB, which is used to keep the state of VDF evaluations. The core idea is to
send the VDF input in from a sender PS to a receiver PR via F f∆

SCD, obtaining
a proof of sequential communication delay πlo, which is also the proof of VDF
evaluation. The output of the VDF is determined by querying the random oracle
on in|πlo. Verification can be done by checking πlo is valid for a given minimal
delay ∆lo and recomputing the output. The first πlo is written to the bulletin
board and retrieved for future evaluations of the VDF to avoid multiple valid
evaluations (i.e. sending in through F f∆

SCD again to get a different πlo).

Publicly Verifiable Time-Lock Puzzles from Sequential Communi-
cation: We construct a PV-TLP protocol where a puzzle is a ciphertext puz

obtained by encrypting a message m under the public key pk of a threshold en-
cryption scheme. The parties Pi who have the corresponding secret key shares
ski are connected via delayed channels F f∆

mdmt. A PV-TLP is solved by thresh-

old decrypting puz via delayed channels F f∆
mdmt following a specific sequence of

parties {P1,P2, . . . ,Pn} where Pi aggregates its decryption share to Pi−1’s de-
cryption share before passing it on to Pi+1. The delay guarantee comes from our
analysis of sequential communication delay, as honest parties Pi check that the
ciphertext has traversed the path from P1 to Pi−1 before aggregating their de-
cryption share, which guarantees a minimum delay. In order to obtain a publicly
verifiable proof that a puzzle puz contained a message m, we employ the random
oracle based transformation of [42, 62], where decryption yields not only m but
the unique randomness used to generate puz. This randomness constitutes our
proof, since together with m it can be used to do a re-encryption check.

Delay Encryption and Stateless VDF from Threshold IBE: We use
an IBE scheme with a protocol that allows parties who hold shares of the master
secret key to efficiently generate the secret key for a given identity. In order
to construct Delay Encryption, we define encryption under a given identity as
IBE encryption under that identity. Later on, key extraction is done by having
parties jointly generate the secret key for that identity in a round-robin manner
along with a proof of sequential communication delay showing that this key
generation had a certain minimum delay. We then adapt this technique to obtain
a unique signature using Naor’s transform from IBE to signatures, which yields
a threshold unique signature with a proof of sequential communication delay

7

attesting the minimum delay for signature generation. The final VDF can be
constructed by applying a random oracle to the signature and using the signature
of communication delay and the signature itself to verify the VDF output. This
construction solves the caveat of our first simple construction, since it always
yields the same output for each input without requiring any parties to keep state.

2 Preliminaries

Notation We denote the computational (resp. statistical) security parameter by
τ (resp. λ), the concatenation of two strings a and b by a|b, and compact multiple
concatenations by (ai)

n
i=1 = a1|a2| . . . |an.

Auxiliary Background Material. In Appendix A, we give an overview of the UC
framework [24] and present standard functionalities for Public Key Infrastruc-
tures (FReg), (unique) digital signatures (FSig), bulletin boards (FBB) and global
random oracles (GrpoRO), which we will use in our constructions.

UC Secure Public-Key Encryption with Plaintext Verification. It is observed
in [7] that it is possible to UC-realize public-key encryption with a plaintext
verification property using the random oracle-based IND-CCA secure public-
key encryption schemes of [42, 62]. This plaintext verification property allows a
party who decrypts a ciphertext to generate a non-interactive publicly verifiable
proof that a certain plaintext was obtained. We will apply the approach of [7]
to obtain a threshold public-key encryption scheme with the same plaintext
verification property. In order to do so, we use the fact that the encryption
schemes of [42,62] can be obtained from any partially trapdoor one-way function,
which allows us to depart from a simple threshold version of El Gamal to obtain
a UC-secure theshold encryption scheme with plaintext verification. In Appendix
A.1 we recall in verbatim form the definitions of the schemes from [42, 62] and
the necessary properties for obtaining plaintext verification as presented in [7].

2.1 Modelling Time and Global Clocks

Previous works on universally composable PV-TLPs and VDFs based on sequen-
tial computation [8,9] have been cast in the abstract composable time model from
TARDIS [9]. This model expresses time within the GUC framework in such a
way that protocols can be made oblivious to clock ticks, which allows for mod-
elling the passage of time without implying synchronicity, a generality that has
also been exploited, e.g., in the context of delayed adaptive corruptions [54].
Although we work with physical delay rather than sequential computation as-
sumptions, we cast our results in the TARDIS model so that our results can be
compared and/or combined7 with those of [8,9] and extended to models of [54].
7 For example, since it is hard and costly to tamper with a satellite in orbit, one can
combine the physical delay guarantees of special relativity with computational delay
guarantees provided by an on-board non-programmable computational device (e.g.
an ASIC) that solves hard sequential problems (e.g. iterated squaring) with well-
known runtimes. Since it is infeasible to update the internal device, later advances
that speed up these runtimes do not affect the on-board computation.

8

Functionality GClock
GClock is parameterized by a variable ν, sets P,F of parties and functionalities
respectively. It keeps a Boolean variable dJ for each J ∈ P ∪F , a counter ν as well
as an additional variable u. All dJ , ν and u are initialized as 0.

Clock Update: Upon receiving a message (Update) from J ∈ P∪F : Set dJ = 1.
If dF = 1 for all F ∈ F and dp = 1 for all honest p ∈ P, set u← 1 if it is 0.

Clock Read: Upon receiving a message (Read) from any entity: If u = 1 then
first send (Tick, sid) to S. Next set ν ← ν +1, reset dJ to 0 for all J ∈ P ∪F and
reset u to 0. Answer the entity with (Read, ν).

Fig. 1: Functionality GClock for a Global Clock.

Global Tickers: In [8, 9], a global ticker functionality Gticker (see Appendix A.2)
keeps track of “ticks” representing a discrete unit of time. When activated by
another ideal functionality, the global ticker answers whether or not a new “tick”
has happened since the last time it was activated by this ideal functionality but
does not provide a synchronized clock value. To ensure that all honest parties
can observe all relevant timing-related events, Gticker only progresses if all honest
parties have signaled that they have been activated (in arbitrary order). Parties
do not get outputs from Gticker. Ticked functionalities can freely interpret ticks
and perform arbitrary internal state changes. Upon each activation, any ticked
ideal functionality first checks with Gticker if a new tick has happened and if
yes, executes code in a special Tick interface. In a protocol realizing a ticked
functionality, parties activate the global ticker after executing their steps, so that
a new tick is allowed to happen. We refer to [9] for more details.

Global Clocks: We need to assume that honest parties have synchronized clocks.
This is necessary to argue about evolving communication delays with respect
to specific instants in time, which we need to construct proofs of sequential
communication delays. We capture this notion of synchronicity by using a global
clock functionality GClock (see Fig. 1), following the ideas of [5,48,50]. GClock allows
parties and functionalities to request the current value of a synchronized time
counter, which is only incremented if all honest parties agree to update the
clock. This also means that e.g. ticks cannot happen randomly in protocol steps,
unless parties in the protocol explicitly query GClock to continue. We explain in
Appendix A.2 how GClock can be realized in the framework of [9].

3 Modeling Communication Delays

We model physical communication between two parties as authenticated message
transmission ideal functionalities that ensure both minimal and maximal com-
munication delays. This is in line with communication in the UC framework, that
always happens through channel functionalities. Moreover, we allow any third
party to observe the minimum and maximum delay bounds for a message trans-
mitted through the functionality. This implicitly assumes that the parties know
each others’ positions (in order to compute the delays) which is a reasonable
assumption for satellites and base stations as outlined in the introduction.

9

Functionality F∆lo,∆hi

dmt

This functionality is parameterized by a minimal delay ∆lo > 0 and a maximal
delay ∆hi > ∆lo; it interacts with a sender PS , a receiver PR, an adversary S, and
the clock GClock. At initialisation t is set to 0, and the flags msg, released, done to ⊥.

Send: Upon receiving an input (Send, sid,m) from party PS , do:
– If msg = ⊥, record m and set msg = ⊤.
– If msg = ⊤, send (None, sid) to PS .

Receive: Upon receiving (Rec, sid) from PR, do:
– If released = ⊥ and done = ⊥, then send (None, sid) to PR.
– If released = ⊤ and done = ⊥, then msg = ⊤ and there exists a recorded

message m. Set done = ⊤ and send (Sent, sid,m) to PR.
– If done = ⊤, then send (done, sid) to PR.

Release message: Upon receiving an input (ok, sid) from S, do:
– If msg = ⊥ or t < ∆lo, then send (None, sid) to S.
– If msg = ⊤, t ≥ ∆lo and released = ⊥, then set released = ⊤.
– If released = ⊤, then send (None, sid) to S.

Tick: Sends (Read) to GClock, receiving (Read, t) as answer. If t has changed since
the last activaction:
– If msg = ⊥, then send (None, sid) to S.
– If msg = ⊤ and released = ⊥, then set t = t+ 1:
• If t = ∆lo then send (Sent, sid,m, t) to S.
• If t = ∆hi, set released = ⊤ and send (Released, sid) to S.

Fig. 2: Ticked ideal functionality F∆lo,∆hi

dmt for authenticated message transmission
with minimal delay ∆lo and maximal message delay ∆hi.

We start by modelling a single-use delayed channel with fixed minimum and
maximum delay parameters for simplicity. This channel captures the transmis-
sion of a single message between two parties at an specific point in time, which
determines the delay parameters. As parties’ relative positions evolve with time,
so do the communication delay bounds as their relative distances change. We
therefore, based on the single-use delayed channel, construct a multi-use func-
tionality whose delay bounds can evolve with the ticks of GClock. This multi-use
channel allows other parties to observe the delay bounds for a message trans-
mitted at a given (past or future) point in time, which will later be necessary for
verifying the output of a time-based primitive constructed over the channels, as
well as estimating the delay guaranteed by a future evaluation of such a primitive.

Single-Use Channel ideal functionality F∆lo,∆hi

dmt : As a warm-up example,

we present the functionality F∆lo,∆hi

dmt for delayed authenticated message trans-
mission in Fig. 2. The message delivery is at least ∆lo ticks (i.e. the physical
bound for message transmission), and this delay holds also for an adversarial
receiver. The adversary cannot force transmission to be delayed by more than
∆hi ticks if it is the sender, and cannot force delivery before ∆lo ticks.

Multiple-Use Channel ideal functionality F f∆
mdmt:Manually keeping track of

what instance of F∆lo,∆hi

dmt to use (along with its parameters ∆lo, ∆hi) every time
a message needs to be sent between two parties, as well as the current time, would

10

make protocol descriptions very cumbersome. Hence, we present a higher level
abstraction of a multiple-use delayed authenticated channel that automatically
assigns minimum and maximum delays to each message according to the time
it is sent. In Fig. 3 we present the functionality F f∆

mdmt for multiple-use delayed
authenticated message transmission. The main parameter of this functionality is
a function f∆ that takes as input a time t and outputs the minimum delay∆lo and
maximum delay∆hi for a message sent at time t. When it is requested to transmit
a message, F f∆

mdmt determines the current time by contacting GClock and computes
(∆lo, ∆hi) ← f∆(t). Next, the functionality registers the message in a list and
ensures that it is not revealed to the adversary before a minimum delay ∆lo,
while guaranteeing delivery to an honest receiver within a maximum delay ∆hi.
Moreover, F f∆

mdmt allows for any third party to obtain the delay parameters for
messages sent at a given clock tick, as f∆ is a public parameter of the functionality
(similar to ∆lo, ∆hi in F∆lo,∆hi

dmt).
To model predictability of delay, we require that the variance between any

two ticks in delay - as modeled by f∆ - cannot be too much: no adversary should
be able to send a message faster by waiting until a later tick (i.e. time travel of
messages is not possible). To capture this, we give the following definition:

Definition 3.1 (Permissible Delay Function). A function
f∆ : {0, . . . , poly(τ)} → N× N models permissible delay if

∀t ∈ N : (∆lo, ∆hi)← f∆(t), (∆′
lo, ∆

′
hi)← f∆(t+ 1)⇒ ∆′

lo −∆lo > −1.

Realizing F f∆
mdmt from F∆lo,∆hi

dmt In Appendix B.1 we present a protocol that
realises the multiple-use ideal functionality for authenticated delayed message
transmission using GClock and multiple F∆lo,∆hi

dmt , and prove its security. The pro-
tocol uses one instance of F ·

dmt· for each possible timestamp. The sender simply
picks the correct instance for message transmission, while the verifier for every
clock tick tests 1. if any of the instances delivers a message to him; and 2. if the
message’s time of sending and delay are consistent.

4 Proofs of Sequential Communication Delays

In this section, we introduce techniques for producing a publicly verifiable proof
πlo that a message m has incurred a certain minimum delay due to being trans-
mitted from party PS to party PR. Such a proof, when using the delay channel
functionalities from Section 3, requires that at least one of the two parties in-
volved in the process was honest. The idea is to have both the sender PS and
receiver PR of a delayed channel sign the input message and the initial times-
tamp when this message was sent (provided that the message is received within
reasonable time constraints such that the initial timestamp is not too far in the
future or past). Both signatures and the initial timestamp form the proof πlo
showing that the message was sent from PS to PR incurring a given minimum
delay as observed by an honest party. This is guaranteed by the delayed channel,
whose minimum delay is determined by the timestamp.

11

Functionality F f∆
mdmt

This functionality is parameterized by a computational security parameter τ and
a permissible delay function f∆ : {0, . . . , poly(τ)} → N× N; it interacts with GClock,
sender PS , receiver PR and adversary S. At initialisation the list L is empty.
In any call below, F f∆

mdmt first sends (Read) to GClock and obtains (Read, t).

Send: Upon first message (Send, sid,m) for t from party PS add (m, t,⊥) to L.
Receive: Upon receiving (Rec, sid) from PR, for every (m, t, released) ∈ L, if

released = ⊤ (i.e. the maximum delay has passed or the adversary released
the message), remove (m, t, released) from L and send (Sent, sid,m, t) to PR.

Release message: Upon receiving an input (ok, sid, t) from S compute (∆lo, ·)←
f∆(t). If there is (m, t, released) ∈ L such that t ≥ t+∆lo then set released = ⊤.

Tick: For every (m, t, released) ∈ L compute (∆lo,∆hi)← f∆(t) and do as follows:
– If t+∆lo = t, send (Sent, sid,m, t) to S.
– If t+∆hi = t, set released = ⊤.

Fig. 3: Ticked functionality F f∆
mdmt for authenticated message transmission with

evolving delays.

We then use a sequence of consecutive communication channels between mul-
tiple parties in order to obtain a larger provable minimum delay than that pro-
vided by a single channel without intermediaries. Here, a message m travels from
sender P1 to receiver Pn, through hops Pi. Each intermediate party Pi sends to
Pi+1 not only the original message m, but also a proof showing that m travelled
from P1 to Pi. If m and the proof arrive at Pi at a certain time that is not
consistent with the minimum and maximum delays of the channels connecting
P1 to Pi (i.e. it is too far in the future or in the past), Pi aborts. This construc-
tion can be leveraged to obtain a final proof of sequential communication delay
consisting of (m, t, σ1, . . . , σi−1), where signature σi is generated by party Pi,
and t is the initial timestamp when m was sent. Finally, we discuss how to use
sequentially aggregate signatures (SAS) and ordered multi signatures (OMS) to
optimize this construction and avoid proofs of sequential communication delay
of size linear in the number of network nodes.

4.1 Modelling Proofs of Sequential Communication Delay

We begin by modeling a publicly verifiable proof of delay through an ideal func-
tionality F f∆

SCD depicted in Fig. 4. This functionality incorporates the delayed

channel modelled by F f∆
mdmt, and proof generation/verification mechanisms simi-

lar to those of the unique digital signature functionality FSig (Fig. 16). Departing

from F f∆
mdmt, which allows for a PS to send a message m to PR with minimum

and maximum delays (∆lo, ∆hi)← f∆(t) depending on time t, F f∆
SCD delivers to

PR the proof πlo that m was sent at time t with a minimum delay ∆lo.
In F f∆

SCD, the adversary may only generate valid proofs of delay after the
minimal delay of πlo, but it learns m earlier than the honest receiver. This makes
sense because the statement that the message m has traveled for a certain delay
does not mean that m was only learnt by the adversary with that delay. For

12

Functionality F f∆
SCD

F f∆
SCD keeps initially empty lists L,Lπ, and is parameterized by a computational

security parameter τ and a permissible delay function f∆. F f∆
SCD interacts with GClock,

sender PS , receiver PR, verifiers V and adversary S.
In any call below, F f∆

SCD first sends (Read) to GClock and obtains (Read, t).

Send: Upon receiving an input (Send, sid,m) from an honest PS and if this is the
first such message in this tick-round:
1. Compute (∆lo,∆hi)← f∆(t) and add (t,m,⊥,∆lo) to L.
2. Output (message, sid, t,m) to S.

If PS is corrupted, then upon input (Send, sid,m, t) from S compute (∆lo,∆hi)←
f∆(t). If ∆hi + t− t ≥ ∆lo then add (t,m,⊥,∆lo) to L.

Receive: Upon receiving (Rec, sid) from PR, for every (t,m,⊤, cnt) ∈ L:
1. Remove (t,m, released, cnt) from L and recompute (∆lo,∆hi)← f∆(t).
2. If (m, t,∆lo,∆hi, πlo, 1) ∈ Lπ send (Sent, sid,m, t, t− t, πlo) to PR.
3. Else, send (Proof, sid,m, t, t− t) to S. Upon receiving (Proof, sid,m, t, πlo)

from S, check that (m, t,∆lo,∆hi, πlo, 0) /∈ Lπ. If yes, output⊥ to PS/PR and
halt. Else, add (m, t,∆lo,∆hi, πlo, 1) to Lπ and send (Sent, sid,m, t, t−t, πlo)
to PR. If S sends (NoProof, sid) then output (NoProof, sid).

Release message: Upon receiving an input (ok, sid, t) from S compute (∆lo, ·)←
f∆(t). If there is (t,m, released, cnt) ∈ L such that t ≥ t+∆lo and cnt = 0 then
set released = ⊤.

Verify: Upon receiving (verify, sid,m, t,∆, πlo) from Vi, send (verify,
sid,m, t,∆, πlo) to S. Upon receiving (verified, sid,m, t,∆, πlo, ϕ) from S do:
1. If (∆lo,∆hi) ← f∆(t) and ∆ /∈ [∆lo,∆hi] or then set f = 0. Otherwise set

f = 1. (is delay in allowed interval?)
2. If t +∆lo > t then set f = 0 (no verification request can be positive, unless

m has circulated for at least ∆lo ticks)
3. If ϕ = 1 and there is an entry (m, t,∆lo,∆hi, π

′
lo, 1) ∈ Lπ where π′

lo ̸= πlo

then set f = 0. (any proof of delay must be unique)
4. If there is an entry (m, t,∆lo,∆hi, πlo, f

′) ∈ Lπ, let b = f∧f ′. (All verification
requests with identical parameters will result in the same answer.)

5. If no such entry is present, set b = f ∧ϕ and add (m, t,∆lo,∆hi, πlo, b) to Lπ.
(Add for consistency)

Output (verified, sid,m, t,∆, b) to Vi.
Tick: For every (t,m, released, cnt) ∈ L compute (∆lo,∆hi)← f∆(t). If t+∆hi = t,
set released = ⊤. If cnt > 0 then reduce cnt by 1.

Fig. 4: Ticked functionality F f∆
SCD for proofs of sequential communication delay.

an example in practice, consider a chain of 4 parties with 3 intermediate delay
channels. If e.g. P2 and P4 = PR are both corrupted, then the adversary must of
course learn m once it arrives at P2. The guarantee of the functionality is that
the proof of delay will only arrive at the adversary with the required minimal
delay, and that an honest receiver will have to potentially wait longer to receive
it and m. This is because the message still has to pass through channels that
have honest parties as senders and receivers before a proof is generated.

A second interesting property is that a corrupted sender is allowed to date
back message sending by a certain amount of ticks, i.e. at time t it is allowed

13

to say that it sent the message already at time t < t. It can do so as long as
F f∆

SCD can still delay proof (and message) delivery by ∆lo ticks without exceeding
time t +∆hi during delivery. The reason for this “time traveling” of dishonest
senders is the multiparty protocol. For example, consider a chain of parties where
P1 = PS and P2 are corrupted. In that case the simulator cannot extract any
information from the channel between P1 and P2 as the adversary is of course
not bound to use this channel. But it can still guarantee message delay as parties
later on in the chain are honest, so their delay channels must have been used.

A third important property is that a proof that m was sent through the
channel with a certain delay that is within [∆lo, ∆hi] is unique to the tuple
(m, t), where t is the time when m was supposed to be sent. Moreover, F f∆

SCD

allows any verifier Vi to check that a proof πlo of delay in [∆lo, ∆hi] for message
m sent at time t is indeed valid (i.e. it has been generated honestly). Here, the
adversary may define validity of a proof during verification even if F f∆

SCD did not
output the proof itself at that time. This is an artifact of our protocol, as a
dishonest receiver PR must not make his contributions public until when the
proof gets verified. This is standard behavior in other UC functionalities, such
as the signature functionality FSig.

Proofs of Sequential Communication Delay with 2 parties. We con-
struct a simple protocol that realizes F f∆

SCD between two parties by leveraging

a delayed channel F f∆
mdmt, a Public Key Infrastructure FReg and a unique dig-

ital signature FSig on a synchronized network (with synchrony maintained by
GClock). In it, both the sender PS and receiver PR sign the message m being
transmitted. However, we need to take steps to guarantee that an honest PR

does not inadvertently help a corrupted PS forge a proof for an invalid initial
timestamp t or minimum delay ∆lo. In order to to avoid this issue, PR needs
to verify that m has been received through an instance of F f∆

mdmt where PS acts
as sender at a timestamp between t + ∆lo and t + ∆hi, where t is the initial
timestamp when the message was sent and (∆lo, ∆hi) ← f∆(t). Since PR needs
to know t in order to obtain (∆lo, ∆hi), we have PS sign not only m but (m, t),
allowing PR to perform its delay consistency checks. If PR is satisfied, it then
signs (m, t, σS), where σS is PS ’s signature, and outputs both PS ’s signature and
its own as the proof of sequential communication delay. Verifying such a proof
of sequential communication delay can be done by any third party by simply
verifying the signatures generated PS and PR, as well as checking consistency
of the timestamps. The protocol is presented in Figure 5.

Theorem 4.1. πSCD (Fig. 5) UC-realizes F f∆
SCD in the GClock,F f∆

mdmt,FSig, FReg-
hybrid model against a static active adversary corrupting at most one of PS ,PR.

The proof can be found in Appendix B.2 and is rather straightforward. For a
corrupted sender, extract the message m from F f∆

mdmt but ensure that verification
keys are registered and that it would later be accepted by an honest receiver.
For a corrupted receiver, program F f∆

mdmt to output the correctly signed message
at the right time. In this case, verification is more involved as upon querying
Verify the signature used by the dishonest receiver might be undefined.

14

Protocol πSCD

Protocol πSCD is executed by a sender PS , a receiver PR and a set of verifiers V
interacting with each other and with GClock,F f∆

mdmt,FSig
S ,FSig

R,FReg.
In every step, the activated party sends (Read) to GClock to obtain (Read, t).

Setup: Upon first activation, party Pi ∈ {PS ,PR} proceeds as follows:
1. Send (keygen, sid) to an instance of FSig

i where it acts as signer;
2. Upon receiving (verification key, sid, SIG.vki) from FSig

i, Pi sends
(register, sid, SIG.vki) to FReg.

Send: Upon receiving first input (Send, sid,m) for t, PS proceeds as follows:
1. Send (sign, sid, (m, t)) to FSig

S , receiving (signature, sid, (m, t), σS).
2. Send (Send, sid, (m, t, σS)) to F f∆

mdmt.

Receive: Upon receiving (Rec, sid), PR sends (Rec, sid) to F f∆
mdmt and proceeds as

follows for every (Sent, sid, (m, t, σS), t
′) received from F f∆

mdmt:
1. Check that t = t′ and verifySigs(PS, (m, t), σS, t) evaluates to true.
2. If the checks pass, send (sign, sid, (m, t, σS)) to FSig

R, receiving (signature,
sid, (m, t, σS), σR). Output (Sent, sid,m, t, t− t, (σS , σR)).

3. If a check fails, then output (NoProof, sid).
Verify: Upon receiving (verify, sid,m, t,∆, πlo), Vi ∈ V parses πlo = (σS , σR)
and proceeds as follows:
1. Compute (∆lo,∆hi)← f∆(t). Check that ∆ ∈ [∆lo,∆hi] and t ≥ t+∆lo.
2. Check that verifySigs(PS, (m, t), σS, t) and verifySigs(PR, (m, t, σS), σR, t)

both evaluate to true.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,∆, πlo, b).

Tick: Send (Update) to GClock.
Function verifySigs(Pi,m, σ, t):

1. Send (Retrieve, sid,Pi) to FReg, receiving (Retrieve, sid,Pi, SIG.vk, tReg)
as answer. Check that tReg ≤ t and output false if not.

2. Send (verify, sid,m, σ, SIG.vk) to FSig
i, receiving (verified, sid,m, σ, f) as

response. Output true if f = 1, otherwise false.

Fig. 5: Protocol πSCD realizing F f∆
SCD.

Proofs of Sequential Communication Delay with > 2 parties. We will
now realize F f∆

SCD using a longer chain of parties. There, the sender P1 = PS is

connected to P2 using a delayed channel F f∆
mdmt with delay function f∆,1, P2 is

connected to P3 via F f∆
mdmt with f∆,2 until Pn−1, which is connected via F f∆

mdmt

to Pn = PR with delay function f∆,n. As before, P1 signs m, t before sending it

through F f∆
mdmt, while P2 signs the output of F f∆

mdmt if it is valid and then forwards

it with the signature via F f∆
mdmt to P3 etc. We will prove that such a chain again

realizes an instance of F f∆
SCD, but with different delay parameters.

We consider malicious adversaries that can interrupt signature generation by
refusing to execute the protocol. We assume that each party in the chain knows
all the delay functions f∆,i for each of the F f∆

mdmt instances in the chain, which
allows them to compute delay bounds for incoming messages. In our protocol,
Pi must establish that the message m that it obtained – which was supposedly
initially sent at time t by P1 – could be delivered to Pi−1 via instances of F f∆

mdmt

15

with delay functions f∆1, . . . , f∆i−2 and incurring the respective delay, such that

Pi−1 sending it at time ti−1 via F f∆
mdmt with a delay modeled by f∆i−1 is plausible.

As an example, assume a chain of 3 parties where only P3 is honest. Let
(1, 3) = f∆,1(t) = f∆,2(t) for every t, and assume that P3 obtains m from P2,
which was supposedly sent at t = 0 by P1. P3 knows that m must travel a
minimum time of 1 tick from P1 to P2 or at most 3 ticks. If the channel from P2

to P3 incurs delay between 1 and 3 ticks, but P3 obtains m at tick 7, then P2 has
sent m the earliest at tick 4. This means that P2 is cheating as it delayed delivery
of m. Alternatively, if P3 had obtained m at tick 1 then P2 must have sent the
message at tick 0 (by the minimum delay f∆,2), which is also impossible as the
message would have needed at least 1 tick from P1 to P2. Hence, we carefully
specify what each party verifies before signing about timestamps and delivery
times and how it impacts the proven delay given the corruption thresholds.

Plausible delays. We now introduce the plausible delay predicate isP(t1, f∆,1, . . . ,
f∆,ℓ−1, tℓ). It is defined for ℓ > 1 as follows:

ℓ = 2: true if ∃∆ ∈ f∆,1(t1) : t1 +∆ = t2.
ℓ > 2: true if ∃∆ ∈ f∆,1(t1): isP(t1 +∆, f∆,2, . . . , f∆,ℓ−1, tℓ).

As we constrain the output of each f∆,i to only be defined on polynomially many
inputs, isP can be computed in polynomial time as long as ℓ = O(log(τ)). This
can be improved if, e.g. all f∆ functions are constant in an obvious way.

We now show that we can combine two instances of isP into one:

Proposition 4.2. Let f∆,1, . . . , f∆,n−1 be permissible delay functions and let
t1, ti, tn be such that isP(t1, f∆,1, . . . , f∆,i−1, ti) and isP(ti, f∆,i, . . . , f∆,n−1, tn).
Then isP(t1, f∆,1, . . . , f∆,n−1, tn) holds.

Conversely, we can also decompose every isP chain into its parts.

Proposition 4.3. Let f∆,1, . . . , f∆,n−1 be permissible delay functions and t1, tn
be such that isP(t1, f∆,1, . . . , f∆,n−1, tn) holds. For every i ∈ {2, . . . , n− 1} there
exists a ti such that isP(t1, f∆,1, . . . , f∆,i−1, ti) and isP(ti, f∆,i, . . . , f∆,n−1, tn) hold.

Proof. (of Propositions 4.2 & 4.3) The definition of isP implies that isP(t1, f∆,1, . . . ,

f∆,n−1, tn) returns true if and only if ∃ ∆1, . . . ,∆n−1 : t1+
∑n−1

i=1 ∆i = tn∧∆i ∈
f∆,i

(
t1 +

∑i−1
j=1 ∆j

)
. Proposition 4.2 follows by combining both existential state-

ments into one. Proposition 4.3 follows from setting ti+1 = t1+∆1+ · · ·+∆i. ⊓⊔

We stress that verifying that a message arrived at the receiver with plausible
delay does not imply that it indeed incurred the delay during delivery. The
reason for this is that if a sequence of parties are corrupted, then they may
not use delayed channels for communication among each other. Going back to
the aforementioned example, if m arrives at tick-round 2 at P3 and is claimed
to have been sent at tick round t = 0 by P1, then this is not what must have
happened as we first must consider the corruption threshold. If both P1,P2 are
corrupted then an adversary could have only gotten m at tick round 1, signed

16

(m, 0) using both signing keys and make P2 send it to P3. Hence, if we consider a
corruption model where 2 parties out of 3 can be corrupted, the overall channel
built by P1,P2,P3 cannot guarantee a minimum delay that is longer than 1, if
by minimum delay we mean time spent for m to travel as observed by honest
parties. This is of course different if only 1 out of P1,P2 can be corrupted.

We now describe how the proven minimal delivery time can be computed. If
both P1 & Pn are honest, then Pn would only sign if isP is true when the message
arrives at it. This means that the message must have incurred a delay from P1 to
Pn that is at least the sum of minimal delays on each intermediate channel: P1

is honest and must have sent it at the right time. Therefore, the longest chain
of delay observed by the honest parties in this case spans the whole message
delay from P1 to Pn and is the lower-bound on provable message delay. This
observation extends to any chain between the first Pi and last Pj honest party
within P1, . . . ,Pn, if either of P1,Pn was not honest. Therefore, to determine the
minimal guaranteed delay in case of k corruptions, we only need to consider the
cases where all of P1, . . . ,Pi−1 are dishonest and send the message later than
allowed, or where Pj+1, . . . ,Pn are all dishonest and sign the messages earlier
than allowed, or both. Only these can reduce proven delay time.

Next, consider the setting where honest parties appear in sequences of at
least n − k > 1 consecutive parties in the network, i.e. there is no isolated
honest party. Let Pi, . . . , Pi+n−k−1 be such an honest chain of parties. Then
the minimal delay cannot be reduced by placing a dishonest party within this
chain. This follows because then either Pi−1 or Pi+n−k become honest, and the
minimal honest delay then consists of the minimal delay on Pi, . . . ,Pi+n−k−1

plus the extra party (as the additional delay due to f∆ will be non-negative.
Therefore, to reduce the minimal delay to a minimum, exactly n−k consecutive
parties must be honest.

Moreover, it is not sufficient if only P1 or Pn is dishonest, followed or preceded
by honest parties. This is because an honest P2 by observing F f∆

mdmt would ensure
that the message was sent early enough given the delay of the channel (similarly
for an honest Pn−1 and corrupt Pn). Thus, to minimize delay, an adversary will
not only corrupt the first or last party in the chain, but also the adjacent one.

Bounding the channel delays. Using Propositions 4.2, 4.3 and the afore-
mentioned observations, we can compute the minimal and maximal delay by
decomposing an isP sequence into all possible partitions of up to 3 plausible
subsequences, one of which is of length n− k and represents the honest parties.
There are at most poly(τ) many such decompositions. In Appendix B.3 we show
how to find sequences that realize the shortest observable minimal delay, or the
maximal delay, in time polynomial in the number of isP calls.

Putting things together. We present a detailed description of our protocol
for sequential communication delays πMulti−SCD in Fig. 6. The protocol realizes
the delay function delays computable as outlined previously.

Theorem 4.4. The protocol πMulti−SCD UC-securely implements F f∆
SCD in the

GClock,FReg,FSig,F f∆
mdmt-hybrid model with security against any adversary actively

corrupting up to k = n−1 parties with permissible delay function given by delays.

17

The proof can be found in Appendix B.4 and follows a similar outline as the
one for Theorem 4.1. The key difference is that there might be a dishonest
PS , followed by a chain of dishonest P2,P3, . . . that do not necessarily have to
communicate via their F f∆

mdmt instances. Hence, when the first honest (simulated)

party obtains an output from F f∆
mdmt, then the message that S enters into F f∆

SCD

has to have an earlier timestamp than the current one, based on the claim when
the dishonest P1 originally “sent” the message.

Protocol πMulti−SCD

This protocol is executed by a sender P1, a set of intermediate parties P2, . . . ,Pn−1

and a receiver Pn, as well as a set of verifiers V interacting with each other and

with GClock,FReg,FSig
1, . . . ,FSig

n. Each pair Pi,Pi+1 is connected by F f∆,i

mdmt.
In every step, the activated party sends (Read) to GClock to obtain (Read, t).

Setup: Upon first activation, each Pi proceeds as follows:
1. Send (keygen, sid) to FSig

i where Pi acts as signer.
2. Upon receiving (verification key, sid,SIG.vki) from FSig

i, Pi sends
(register, sid, SIG.vki) to FReg.

Send: Upon receiving first input (Send, sid,m) for t, P1 proceeds as follows:
1. Send (sign, sid, (m, t)) to FSig

1, receiving (signature, sid, (m, t), σ1).

2. Send (Send, sid, (m, t, σ1)) to F
f∆,1

mdmt.

Receive: Upon receiving (Rec, sid), Pn sends (Rec, sid) to F f∆,n−1

mdmt and proceeds

as follows for the first (Sent, sid, (m, t, σ1, . . . , σn−1), t
′) received from F f∆,n−1

mdmt :

1. Check if isP(t, f∆,1, . . . , f∆,n−2, t
′).

2. For each i ∈ [n− 1] check if verifySigs(i, (m, t, σ1, . . . , σi−1), σi, t) is true.
3. If all checks pass, send (Sign, sid, (m, t, σ1, . . . , σn−1)) to FSig

n to ob-
tain (Signature, sid, (m, t, σ1, . . . , σn−1), σn). Output (Sent, sid,m, t, t −
t, (σ1, . . . , σn)). If a check fails, then output (NoProof, sid).

Verify: Upon receiving (verify, sid,m, t,∆, πlo), Vi ∈ V parses πlo = (σ1, . . . , σn)
and proceeds as follows:
1. Check that t+∆ ≥ t and isP(t, f∆,1, . . . , f∆,n, t+∆) is true.
2. For each i ∈ [n] check if verifySigs(i, (m, t, σ1, . . . , σi−1), σi, t) is true.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,∆, πlo, b).

Tick: Proceed as follows and then send (Update) to GClock.
1. Each Pi ∈ {P2, . . . ,Pn−1} sends (Rec, sid) to F f∆,i−1

mdmt .
2. If Pi obtains (Rec, sid, (m, t, σ1, . . . , σi−1), ti−1) then check if isP(t, f∆,1, . . . ,

f∆,i−2, ti−1) is true and if for each j ∈ [i − 1] it holds that
verifySigs(j, (m, t, σ1, . . . , σj−1), σj , t) is true.

3. If the checks pass, send (Sign, sid, (m, t, σ1, . . . , σi−1)) to FSig
i to obtain

(Signature, sid, (m, t, σ1, . . . , σi−1), σi) if this is the first message for t.

4. Send (Send, sid, (m, t, σ1, . . . , σi)) to F
f∆,i

mdmt.
Function verifySigs(ℓ,m, σ, t):

1. Send (Retrieve, sid,Pℓ) to FReg, receiving (Retrieve, sid,Pℓ, SIG.vk, tReg)
as answer. Check that tReg ≤ t and output false if not.

2. Send (verify, sid,m, σ, SIG.vk) to FSig
ℓ, receiving (verified, sid,m, σ, f) as

response. Output true if f = 1, otherwise false.

Fig. 6: Protocol πMulti−SCD realizing F f∆
SCD with multiple intermediate parties.

18

Optimizing πMulti−SCD While πMulti−SCD realizes F f∆
SCD using only simple prim-

itives, it incurs a large overhead for the proof of sequential communication: one
proof consists of n nested signatures, and each party Pi forwards i signatures
to party Pi+1. We want to obtain a proof size and communication complexity
independent from the number of parties, preferably close to the size of a single
signature. To do so, we face a main hurdle: it seems that we cannot eliminate
a signature by any intermediate party, since that would allow the adversary to
forge proofs by making the eliminated party be the honest party in πMulti−SCD.
Hence, we focus on techniques that allow us to aggregate signatures by each
party Pi involved in πMulti−SCD in such a way that we obtain a compact proof
of size independent from n. A conceptually simple way to achieve this is using a
sequentially aggregate signature scheme [53] (SAS), which allows for aggregating
a number of signatures generated in sequence into a single signature (i.e. with
the same size as a single signature). However, the SAS notion is too strong, since
it allows the messages of each signer to be different. A better approach is us-
ing the notion of Ordered Multisignature (OMS) schemes [14]. An OMS scheme
allows a sequence of signers to compute a compact representation of signatures
on a single message under each of their signing keys. Later on, a verifier can
check both that the OMS is valid w.r.t. the message and public keys, and that
it was generated in a certain order. This directly fits our use of signatures in
πMulti−SCD, where enforcing the order of signing is solved by the OMS property
of allowing verifiers to check the order with which each party generated its sig-
nature on (m, t). In the next section we construct an efficient OMS under weak
assumptions and show how to use it to improve πMulti−SCD.

5 Ordered Multi-Signatures
In this section, we provide the syntax for Ordered Multi-Signatures (OMS), a
game-based security notion for OMS and a construction secure under OMDL.
Appendix F.3 contains the corresponding formulations in the UC model and a
proof that any scheme secure according to our game-based OMS security notion
also UC-realizes FOMS (Fig. 29, Theorem F.4).
Syntax and Security Model. For the syntax, our starting point are the
(unordered) multi-signatures MuSig2 [58] and MuSig-L [19], where we shed al-
gorithms related to key aggregation but keep the two-phase signing (through the
algorithms SignOff and SignOn). This allows for offloading most of the overhead
to the offline phase (SignOff), which can be preprocessed before the messages
are known. Unlike the usual multi-signatures, SignOn now takes an aggregate
so-far as input and updates it with contribution by the current signer. For the
the security model, we adapt the security game of [14] so as to capture inter-
active and offline-online signing as required by our syntax. Notably, in OMS
signatures not only need to be unforgeable in the standard sense but must also
enforce the ordering on the signers. In [14], this last requirement is considered
for the worst case where all but one co-signer are corrupted. In our application,
however, this setting is too limited. Thus our security model is more complex
and takes into account forgeries that involve at least one, but potentially more
honest co-signers, a more realistic and general setting than the one in [14].

19

Definition 5.1 (Ordered Multi-Signature Scheme (OMS)). An ordered
multi-signature OMS consists of a tuple of algorithms OMS = (Setup,KeyGen,
SignOff, SignOn,Vrfy) with the following input-output behavior. To formally han-
dle the interactive signing, SignOff and SignOn share a common state st.

Setup(1τ): on input the security parameter τ , this algorithm outputs a handle
of public parameters pp. Throughout, we assume that pp is given as implicit
input to all other algorithms.

KeyGen(): on input the public parameters, the key generation algorithm outputs
a key pair (pk, sk).

SignOffst(sk, aux): on input a secret key sk and a string of auxiliary informa-
tion aux, the offline signing algorithm outputs an offline token off. This is a
stateful algorithm, and updates st at every execution. According to the con-
struction, aux may be an ordered list of public keys L, or an empty string.
We note that this algorithm is agnostic of the message m to be signed, and
runs independently of m.

SignOnst(sk,m,L, offs, σ): on input a secret key sk, a message m, an ordered
list of public keys L, some offline-token information offs, and a so-far-
aggregated online signature σ, the online signing algorithm outputs a new
so-far-aggregated signature σ′, which may contain a special symbol: σ′ = ε
if the inputs are not well-formed, or σ′ = ⊥∗ if the input σ does not verify
w.r.t. L and m. If σ′ /∈ {⊥∗, ε}, it is assumed to be a valid so-far aggregate.

Vrfy(L,m, σ): on input an ordered list of public keys L, a message m, and a
signature σ, the verification algorithm outputs 1 (accept) or 0 (reject).

In the remainder of the paper, we assume the order of the signing parties is
known a-priori and given in input to SignOff as aux = L = (pk1, . . . , pkn). This
is in line with our specific application scenario, since in πMulti−SCD all partici-
pants must agree on complete signing order (route) before launching the OMS
signing protocol. Moreover, it allows us to label the offline tokens and the so-far-
aggregated online signatures according to the position of the signer in the chain
L. For instance, for the signer in position i of L = (pk1, . . . , pkn) we get: offi ←
SignOffst(sk, aux = L) and σi ← SignOnst(ski,m,L, offs = (off1, . . . , offn), σi−1).

We remark that SignOff and SignOn share the state information of signer i.
While SignOff can run without a specified signer order, e.g., in cases where aux =
ε, honest executions of OMS demand SignOn be run in a sequential manner. That
is to say, SignOn takes in input offline tokens offs (usually one for each co-signer
in L) and the online output σi−1 of co-signer i − 1, and passes their output σi

on to the co-signer in position i+ 1. The signer in position i = 1 receives σ0 as
initial input, where σ0 is some constant specified in pp, and the signer in position
i = n outputs σn = σ as the final OMS. Finally we highlight that our syntax is
general and accommodates for several settings, including: identifying the order
of signing parties on-the-fly, so that each signer only learns the partial order
aux = Li−1 in the offline phase, and then checks that the full list L received in
the online phase has Li−1 as prefix, similar to [14]; unsynchronized offline-phase,
when aux = ε; known co-signer order, aux = L both for out-and-back topologies
and round-robin. We discuss some of variants in more detail in Appendix E.3.

20

Correctness demands that Vrfy accepts as long as all signers receive the same
message m and L and execute KeyGen, SignOff, and SignOn honestly. The defi-
nition is straightforward and deferred to Appendix E.1.

Security Model. Our security model for OMS aims at capturing the two following
conditions. The signature shall be unforgeable, that is, as long as at least one
signer in L is honest (i.e., the adversary has no access to the signer’s secret key) it
should be computationally infeasible to generate a signature σ∗ that verifies for
a new message (not queried during the game) or against a new list of co-signers
L∗. Moreover order matters, so an adversary A that has access to a subset C of
the keys identified by an ordered signer list L should be unable to generate a
signature σ∗ that verifies for a list L∗ ̸= L where the public keys differ, or the
position of some honest signers is changed. That is to say, we expect to detect
all order changes except for shuffling of dishonest parties. This latter property
separates OMS from MS: in the OMS security game, A may win by outputting
a valid signature on (m,L∗ = (pk, pk′)) after querying (m,L = (pk′, pk)) to the
signing oracle; whereas in the usual MS security game L∗ is not considered new,
and thus the adversary cannot win with such an output.

Following [14], we require the key pairs to be registered, that is,Amust inform
the knowledge of its secret keys in advance, moreover any query or forgery at-
tempt that involves at least one unregistered key in L gets rejected. This require-
ment essentially models the situation where users are asked to prove knowledge
of their secret keys during public-key registration with a CA. Such registered
key (RK) model is weaker than the typical plain public key (PPK) model, where
A may use arbitrary public keys for which it may not know the corresponding
secret keys. In our case, this is not a drawback since we will use OMS in the
protocol πMulti−SCD that already employs a key registration functionality FReg

and it can easily be extended to FvReg performing an additional well-formedness
check. In Appendix E.3 we also sketch how to strengthen this basic construction
to meet security under the PPK model using existing tricks of MuSig2.

Definition 5.2 (OMS Security). An ordered multi signature OMS is said to
be secure if for any probabilistic polynomial time adversary A and ∀τ it holds
that: AdvOMS-UF-CMA

OMS (A, τ) := Pr[1 ← OMS-UF-CMA(A, τ)] ≤ negl(τ), where
OMS-UF-CMA is the security-game for unforgeability under chosen-message at-
tack of ordered multi-signatures defined in Figure 7.

Remark 5.3. While we take inspiration from the OMS security model of [14], we
also identify a weakness that motivates our new model. In [14] security holds for
one single honest signer in L. While this setting may seem stronger than ours,
it does not capture more complex scenarios where the adversary tries to swap
the signing order of honest parties, which is the goal of this work. In particular,
in [14] a signature output by an honest signer authenticates the message m and
the signer’s position i in the chain, but not the order of honest signers that
contribute before and after position i. In more detail, [14] considers a forgery to
be successful if (among other trivial checks) A never queried the signing oracle
with (m∗, σ′, L′) for the same m∗ as in the forgery, |L′| = i∗ − 1 and i∗ is the

21

Security Model for OMS

Game OMS-UF-CMA(A, τ)
1: pp← Setup(1τ)
2: K := ∅; T := ∅; Q := ∅; S := ∅;
3: win := 0
4: O := {OKeyReg,OSignOff,

OSignOn} ▷ RO in O if needed
5: (L∗,m∗, σ∗)← AO(pp)

6: if win = 1 then return 1 ▷
win is updated by OSignOn

7: parseL∗=(pk1, . . . , pkn)
8: if ∃pk ∈ L∗s.t.(·, pk,·) /∈ K then

return 0 ▷ Unregistered keys

9: for i, j ∈ [1, |L∗|] do
10: if pki = pkj and i ̸= j then

return 0 ▷ Same signer

11: H := ε ▷ Honest signer key list
12: for i = 1, . . . , n do
13: if (1, pki,·)∈K thenH:=H|pki
14: if H = ε then return 0 ▷ L∗

must contain one honest signer

15: if ∃pk ∈ H : (pk,m∗, L∗) /∈ Q[·]
then return Vrfy(L∗,m∗, σ∗)

▷ Standard unforgeability
16: else return 0

Oracles

OKeyReg(uid, aux)

1: if K[uid] ̸= ϵ then return uid
already registered

2: if aux = ϵ then
3: (pk, sk)← KeyGen()
4: K[uid] := (1, pk, sk) ▷ honest
5: else use aux to run (pk, sk) ←

KeyGen()
6: K[uid] := (0, pk, sk) ▷ corrupt

7: return (uid, pk) registered

OSignOff(sid, L, i)

1: if (1, pki, ·) /∈ K then return illicit

signer

2: if (pki, ·) ∈ T [sid] then return
session already initialised

3: if ∃pk ∈ L : (∗, pk, ∗) /∈ K then return
unregistered key

4: sti ← ε
5: offi ← SignOffsti

(ski, L) ▷ state update
6: T [sid] := T [sid]|(pki, sti)
7: return offi

OSignOn(sid,m, L, offs, σi−1, i)

1: if (1, pki, ·) /∈ K then return illicit

signer

2: if (pki, ·) /∈ T [sid] then return
offline session not initialised

3: if ∃pk ∈ L : (∗, pk, ∗) /∈ K then return
unregistered key

4: if (pki, ·) ∈ Q[sid] then return used

session

5: retrieve (pki, sti) from T [sid]
6: retrieve (1, pki, ski) from K
7: σi ← SignOnsti(ski,m, L, offs, σi−1)

▷ Lines 8-13: check winning conditions
8: H := ε ▷ Honest signer key list
9: for j = 1, . . . , i− 1 do
10: if (1, pkj , ·) ∈ K then
11: H := H|pkj
12: if σi /∈ {ε,⊥∗}∧∃pk ∈ H : (pk,m, L) /∈
Q[·] then

13: win := 1 ▷ order
forgery: party i signs but honest party
j < i has not signed yet

14: Q[sid] := Q[sid]|(pki,m, L)
15: return σi

Fig. 7: Security definition for ordered multi-signatures: unforgeability under cho-
sen message attack. L is always assumed to be parsed as L = (pk1, . . . , pkn). We

frame the branches in the security experiment where A may win.

position of the honest signer in L∗, and σ′ ∈ {0, 1}∗ is arbitrary. This constraint
is needed as in [14] extensions of an ordered multi signature to a longer set of
signers L′ = L|pk′ are trivial, which is not the case in our construction.

22

Ordered Multi-Signature from the One-More Discrete Log Assumption

Setup(1τ) :

1: (G, p, g)← GroupGen(1τ)
2: (n, ℓ)← poly(τ)
3: Hnon,Hch : {0, 1}∗ → Z∗

p

4: σ0 := (1G, 0) ∈G× Zp

5: return pp := (G, g, p, n, ℓ,H, σ0)

KeyGen() :

1: sk
$← Zp; pk := gsk

2: return (pk, sk)

Vrfy(L,m, σ) :

1: Parse L = (pk1, . . . , pkn) ∈ Gn

2: for i, j ∈ [1, n] do
3: if pki = pkj ∧ i ̸= j then return 0

4: Parse σ = (R, z) ∈ G× Zp

5: c← Hch(m,R,L)
6: if gz = R · (

∏n
i=1 pki)

c then return 1

7: return 0

Two-phase interactive singing run in a loop determined by L = (pk1, . . . , pkn). Note
that the first part of SignOn (lines 1-8) can be preprocessed given all offline tokens
from the co-signers and independently of the message.

For i ∈ [1, n] do

SignOffsti
(ski, L) :

1: for j ∈ [1, ℓ] do

2: ri,j
$← Zp

3: Ri,j := gri,j

4: sti := sti|ri,j |Ri,j

5: offi := (Ri,1, . . . , Ri,ℓ)
6: return offi

offs := (off1, . . . , offn)

For i ∈ [1, n] do

SignOnsti(ski,m, L, offs, σi−1) :

▷ Lines 1-8: processing independent of m,σi−1

1: Parse sti = (ri,j |R′
i,j)

ℓ
j=1 ∈ (Zp ×G)ℓ

2: Parse offs=((R1,j)
ℓ
j=1, . . . , (Rn,j)

ℓ
j=1)∈Gℓ×n

3: if R′
i,j ̸= Ri,j then return ε

4: p̃k :=
∏i−1

k=1 pkk
5: for j ∈ [1, ℓ] do
6: Rj :=

∏n
k=1 Rk,j

7: R̃j :=
∏i−1

k=1 Rk,j ▷ So-far aggregation

8: if Rj = 1G or R̃j = 1G then return ε

▷ Lines 9-20: processing that depends on m,σi−1

9: Parse σi−1 = (R, z̃) ∈ G× Zp

10: v ← Hnon(m, offs, L)
11: if i = 1 then
12: R :=

∏ℓ
j=1 R

vj−1

j

13: c← Hch(m,R,L)
14: else ▷ Check so-far aggregation

15: if R ̸=
∏ℓ

j=1 R
vj−1

j then return ε

16: R̃ :=
∏ℓ

j=1 R̃
vj−1

j

17: c← Hch(m,R,L)

18: if gz̃ ̸= R̃ · p̃k
c
then return ⊥∗

19: zi := c · ski +
∑ℓ

j=1 v
j−1 · ri,j

20: z := z̃ + zi return σi = (R, z)

Fig. 8: Our OMS construction. In the description, L is always assumed to be
parsed as L = (pk1, . . . , pkn) ∈ Gn for some known public parameter n ≥ 2.

Schnorr-based OMS Construction. We present a modified version of MuSig2
in Figure 8. This construction is tailored to the application scenario considered
in this work: the set of co-signers and the signing order are known a priori. This
information is conveyed to SignOff via aux = L = (pk1, . . . , pkn). Following the
route given by L in a round-Robin fashon, the signer in position i is able to send

23

messages to the signer in position i+1. This setting makes the algorithms simpler
and more efficient. In particular, each signer can compute its so-far accumulated

public key p̃k =
∏i−1

k=1 pkk, and reuse it for later OMS signing instances, making
running time in the online phase independent of n, the total number of co-signers,
and i, the signer’s position in L.

Following the security model defined earlier we assume that an adversary
only outputs a forgery with a key list L∗ consisting of pre-registered public keys.
That is, the reduction knows secret keys associated with all public keys in L∗

except for the challenge key pk∗. In the proof we will make use of the General
Forking Lemma and the One-More Discrete Log (OMDL) Assumption available
in Appendix E.1. While this proof strategy closely follows that of MuSig2, guar-
anteeing correct order of honest signers turns out non-trivial. In fact, it is easy
to see that the original MuSig2 doesn’t qualify as a secure OMS, since an ad-
versary can easily swap the order of honest parties’ contribution by querying
signing oracles in different order than what’s specified in L. To overcome this
hurdle, our proof makes use of the so-far aggregation check (L.18). The full proof
is deferred to Appendix E.2.

Theorem 5.4 (Informal, see Theorem E.4 for the formal statement).
Our OMS scheme with ℓ = 2 is OMS-UF-CMA secure under the OMDL assump-
tion, in the programmable random oracle model.

Integrating the OMS into πMulti−SCD Integrating our OMS construction
into the protocol πMulti−SCD from the previous section is rather straightforward,
so we will only sketch it here. During Setup, each party will register its key
pair with an extended key registration functionality (that also requires proof
of secret key knowledge). Then, each Pi will run SignOff for a nonce sid =
0. Upon completion, during Send P1 will sign m, t using SignOn for the last
initialized sid as offline state, and additionally run SignOff for sid+1. Thereafter,
during Tick each party will do the same. Finally, during Receive Pn will output
its SignOff output for sid + 1 to P1, and will output the proof for m, t if it
verifies. The modified protocol will only check that all keys were registered at the
correct time during verifySigs, as the aggregation check is already done during
SignOn. In Appendix F.4 we give a more detailed construction using the UC OMS
functionality and prove it secure. We want to stress that SignOff can run during
idle time and must not be parallelized with proof-generation instances.

6 Verifiable Delay Functions
We construct a VDF from proofs of sequential communication delays. Our con-
struction can be obtained in a black-box manner from any proof of sequential
delay, yielding a VDF with a proof size equal to that of the underlying proof
of communication delay. The main idea is to sequentially send the input of the
VDF among nodes in a network while having them compute a proof of sequen-
tial communication delay for this message. The output is computed by querying
a global random oracle on the input concatenated with the proof of sequential
communication delay. Verification can be easily achieved by first verifying the
proof of sequential communication delay and then recomputing the output. We
realize a VDF functionality presented in Figure 9, which is adapted from [8].

24

Functionality FVDF

FVDF is parameterized by a computational security parameter τ , and input space
ST , a proof space PROOF , a slack parameter 0 < ϵ ≤ 1 and a delay parameter Γ .
FVDF interacts with a set of parties P = {P1, . . . ,Pn}, and an adversary S. FVDF

maintains a initially empty lists L (proofs being computed), and OUT (outputs).

Solve: Upon receiving (Solve, sid, in) from Pi ∈ P where in ∈ ST and Γ ∈ N, add
(Pi, sid, in, 0,⊤) to L and send (Solve, sid, in) to S.
Tick: For each (Pi, sid, in, c, b) ∈ L, update (Pi, sid, in, c, b) ∈ L by setting c = c+1
and proceed as follows:

1. If c ≥ ϵΓ sample out
$← ST , send (GetStsPf, sid, in, out) to S and wait for an

answer. If S answers with (Abort, sid), update (Pi, sid, in, c, b) ∈ L by setting
b = ⊥. If S answers with (GetStsPf, sid, π), FVDF halts if π /∈ PROOF or there
exists (in′, out′, π) ∈ OUT, else, it appends (in, out, π) to OUT.

2. If c = Γ , remove (Pi, sid, in, Γ, b) ∈ L. If there was an abort (i.e. b = ⊥), send
(NoProof, sid, in) to Pi. Otherwise, send (Proof, sid, in, out, π) to Pi.

Verification: Upon receiving (Verify, sid, in, out, π) from Pi ∈ P, set b = 1 if
(in, out, π) ∈ OUT, otherwise set b = 0 and output (Verified, sid, in, out, π, b) to Pi.

Fig. 9: Ticked Functionality FVDF for Verifiable Delay Functions.

We present our VDF protocol in Figure 10. The construction assumes access
to a bulletin board where we store attempts at jointly evaluating the VDF by
sending a message via F f∆

SCD. When evaluating the VDF we consider as valid
only the first evaluation attempt registered in the bulletin board with a valid
proof of sequential delay generated by F f∆

SCD. This significantly simplifies our

analysis since the adversary can no longer send the same input to F f∆
SCD multiple

times and obtain multiple proofs of sequential delay and thus produce several
valid VDF outputs, which deviates from the standard behavior expected from
this primitive. The same effect could be obtained by assuming either PS or
PR are honest and do not accept to interact with F f∆

SCD to transmit the same
message more than once, thus guaranteeing only one proof of sequential delay is
generated, which means a single valid VDF output exists.

Theorem 6.1. Protocol πVDF UC-realizes FVDF in the F f∆
SCD,GrpoRO,FBB-hybrid

model against an active static adversary corrupting a majority of parties in P.
The delay parameter is Γ = ∆hi and the slack parameter is ϵ = ∆lo

∆hi
where

(·, ∆hi) = maxt∈{0,...,poly(τ)}{f∆(t)} and (∆lo, ·) = mint∈{0,...,poly(τ)}{f∆(t)}.

Proof. It is simple to construct a simulator S for πVDF by having S interact
with an internal copy of A towards which it simulates honest parties executing
exactly as in πVDF and simulating F f∆

SCD,GrpoRO,FBB exactly as they are described

except when explicitly stated. S forwards every message sent to simulated F f∆
SCD

to be evaluated by FVDF and provides matching proofs to F f∆
SCD and FVDF when

requested. If A causes an evaluation to abort, S correspondingly aborts the
same evaluation at FVDF. Whenever FVDF leaks to S that an evaluation on a
new input has been requested, S simulates this evaluation in the simulation.

25

Protocol πVDF

Protocol πVDF is executed by a set of parties P = {P1, . . . ,Pn} interacting with
a bulletin board functionality FBB and with F f∆

SCD, where party PR ∈ P acts as
receiver and party PS ∈ P as sender. They additionally use a random oracle GrpoRO.

Solve: A party Pi interacts with PS ,PR as follows to evaluate the VDF on in:
1. On input (Solve, sid, in), Pi sends (Read, sid) to FBB and checks whether a

record (c, in, t,∆, πlo) is returned (if multiple (c, in, t,∆, πlo) for different c
and πlo are returned, consider the one with the lowest c and a valid πlo w.r.t
F f∆

SCD). If yes, skip to step 5.

2. Pi sends (Send, sid, in) to PS and PS forwards (Send, sid, in) from Pi to F f∆
SCD.

3. Upon receiving (Sent, sid, in, t,∆, πlo) from F f∆
SCD, PR send (Write,

sid, (in, t,∆, πlo)) to FBB. If instead PR receives (NoProof, sid), it forwards
this message to all parties in P.

4. If it received (NoProof, sid) from PR, Pi outputs (NoProof, sid, in). Other-
wise, it sends (Read, sid) to FBB and retrieves (c, in, t,∆, πlo).

5. Pi sends (Hash-Query, in|πlo) to GrpoRO, receiving (Hash-Confirm, out).
Pi sends (IsProgrammed, in|πlo) and aborts if the response is
(IsProgrammed, 1). Pi outputs (Proof, sid, in, out, π = πlo).

Verification: On input(Verify, sid, in, out, π), Pi proceeds as follows:

1. Send (Read, sid) to FBB and check that there is a record (c, in, t,∆, π), if mul-
tiple (c, in, t,∆, π) for different c are returned, consider the one with the lowest
c and a valid π w.r.t. to F f∆

SCD.

2. Send (Verify, sid, in, t,∆, π) to F f∆
SCD expecting (Verified, sid, in, t,∆, 1).

3. Send (Hash-Query, in|π) to GrpoRO, receiving (Hash-Confirm, out′). Check
that out = out′. Send (IsProgrammed, in|π) expecting (IsProgrammed, 0).

4. If all checks pass set b = 1, else set b = 0, and output (Verified, sid, in, out, π, b)

Fig. 10: Protocol πVDF.

Moreover, S programs GrpoRO so that outputs of simulated VDF evaluations
match the outputs provided by FVDF. ⊓⊔
7 Publicly Verifiable Time-Lock Puzzles

We construct a publicly verifiable time-lock puzzle (PV-TLP) based on sequen-
tial communication delays. The main idea is to use a threshold encryption scheme
and generate a puzzle by encrypting a message under the public key. The se-
cret key is in turn shared among a set of nodes connected by delayed channels.
The TLP is opened by having these nodes perform threshold decryption via
sequential communication. By having the nodes which hold the key shares com-
municate in a round-robin manner, the individual channel delays then add up
to the overall delay of the TLP.

In our construction, the sizes of both the proof and the messages exchanged
among each pair of parties involved in solving the puzzle are independent from
the number of parties. In order to do so, we relax our output guarantee by only
detecting dishonest behavior after the decryption protocol is finished without

26

Functionality FDKG

FDKG is parameterized by a cyclic group G of order q with generator g and interacts
with a set of parties P = {P1, . . . ,Pn}, among which a subset of solvers W ⊂ P.

Key Generation The first time it is activated, FDKG samples ski
$← G for i ∈ W,

computes sk =
∑

i∈W ski and pk = gsk.
SK Request: Upon (SecKey, sid) from Pi ∈ W, return (SecKey, sid, ski).
PK Request Upon (PubKey, sid) from Pi ∈ P, return (PubKey, sid, pk).

Fig. 11: Functionality FDKG for distributed key generation.

identifying cheaters, which allows for the adversary to cause aborts without
revealing the corrupted parties. In case aborts happen, we can fall back to a more
expensive protocol using NIZKs of valid decryption share generation in order to
identify the corrupted parties and eliminate them. This yields low overhead in
the optimistic case (which is the most likely to happen in practice) while still
attaining guaranteed output delivery.

In order to achieve constant communication, we have each decryption node
aggregate its decryption share to the share received from the previous party
along with a proof of sequential communication showing that the ciphertext
being decrypted has traversed a pre-defined path through a certain sequence of
decryption nodes. This step avoids attacks where the adversary obtains several
decryption shares from different honest nodes in parallel or out of order.

We use the generic Public Key Cryptosystem with Plaintext Verification
construction from Definition A.4 together with a simple threshold version of El
Gamal to verify that the final decrypted message is indeed the message that was
originally encrypted (i.e. the message inside the PV-TLP). Hence, the verifier
only has to perform a re-encryption check in order to assert that a given PV-
TLP has been correctly solved. This optimized construction realizes the PV-
TLP functionality defined in Fig. 12, which follows [8] but supports only a fixed
delay Γ . Our construction, πTLP−Light, is depicted in Fig. 13 and employs a
Distributed Key Generation functionality, FDKG, in the setup (Fig. 11). The
FDKG functionality can be UC-realized by a number of protocols that compute
a public key gsk and secret key shares ski such that sk = sk1 + · · ·+ skn.

We capture the security of Protocol πTLP−Light in Theorem 7.1. The proof
obtains loose bounds for the minimum and maximum delay guarantees provided
by this protocol since πTLP−Light only uses the decryption validity proof as a
publicly verifiable proof of a TLP solution, which allows for a unique and easily
verifiable proof. If the TLP proof instead also consisted of the proofs provided
by the parties in the set W by using F f∆

SCD instead of F f∆
mdmt and for correct

decryption, we would be able to condition the minimum and maximum delays
guaranteed by a TLP solution on the exact time when it is solved, which would
give tighter delay bounds. However, the latter approach requires an intricate
reworking of Ftlp that would also require a more expensive protocol to realize
as the communication per party becomes linear in |W|. Hence, we present this
simpler construction in order to highlight our main techniques.

27

Functionality Ftlp

Ftlp is parameterized by a computational security parameter τ , a message space
{0, 1}τ , a tag space T AG, a proof space PROOF , a slack parameter 0 < ϵ ≤ 1 and
a delay parameter Γ . Ftlp interacts with a set of parties P = {P1, . . . ,Pn} and an
adversary S. Ftlp maintains initially empty lists omsg (output messages and proofs)
and L (puzzles being solved).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid,m) from Pi

where m ∈ {0, 1}τ , proceed as follows:

1. If Pi is honest, sample puz
$← T AG and proof π

$← PROOF .
2. If Pi is corrupted, let S provide puz and π. If (puz, π) /∈ T AG ×PROOF or

there exists (puz′,m′, π) ∈ omsg, then Ftlp halts.
3. Append (puz,m, π) to omsg, set and output (CreatedPuzzle, sid, puz, π) to Pi

and (CreatedPuzzle, sid, puz) to S.
Solve: Upon receiving (Solve, sid, puz) from Pi ∈ P, add (sid, puz, 0) to L and send

(Solve, sid, puz) to S.
Public Verification: Upon receiving (Verify, sid, puz,m, π) from a party Pi ∈
P, set b = 1 if (puz,m, π) ∈ omsg, otherwise set b = 0 and output
(Verified, sid, puz,m, π, b) to Pi.

Tick: For all (sid, puz, c) ∈ L, update (sid, puz, c) ∈ L by setting c = c + 1 and
proceed as follows:
– If c ≥ ϵΓ and (puz,m, π) ∈ omsg, output (Solved, sid, puz,m, π) to S.
– If c ≥ ϵΓ and there does not exist (puz,m, π) ∈ omsg, let S provide π ∈
PROOF and add (puz,⊥, π) to omsg.

– If c = Γ , remove (sid, puz, c) ∈ L and send (Proceed?, sid, puz,m, π) to S,
where m,π are such that there is (puz,m, π) ∈ omsg and proceed as follows:
• If S sends (Abort, sid, π′), output (Solved, sid, puz,⊥, π′) to all Pi.
• If S sends (Proceed, sid), output (Solved, sid, puz,m, π) to all Pi.

Fig. 12: Ticked Functionality Ftlp for publicly verifiable time-lock puzzles.

Theorem 7.1. Protocol πTLP−Light UC-realizes Ftlp in the GClock,GrpoRO, FDKG,

F f∆
mdmt-hybrid model against an active static adversary A corrupting a majority of

parties inW. The parameters of Ftlp are tag space T AG = G×G×{0, 1}2τ , proof
space G× {0, 1}τ , slack parameter ϵ = ∆lo

∆hi
and delay parameter Γ = ∆hi where

(∆lo, ·) ← mint∈{0,...,poly(τ)}{delays(t, f∆,1, . . . , f∆,|W|−1, |W| − 1)}, (·, ∆hi) ←
maxt∈{0,...,poly(τ)}{delays(t, f∆,1, . . . , f∆,|W|−1, |W| − 1)} and f∆,1, . . . , f∆,|W|−1

are the delay functions of the instances of F f∆,1

mdmt, . . . ,F
f∆,|W|−1

mdmt where Pj ∈ W
acts as receiver.

The proof can be found in Appendix C. The core tasks of its simulator S are
making sure that: 1) every puzzle generated by A is created at Ftlp; and 2) every
puzzle that is solved by Ftlp in the ideal world is simulated towards A. The
first task is accomplished by S by extracting the message m and proof π from
every puzzle generated by A and sending it to Ftlp. The second task is achieved
by simulating an execution of πTLP−Light for solving TLPs provided by Ftlp and
later using the leakage of m,π from Ftlp to program the restricted programmable
random oracles such that the output of the protocol matches m,π.

28

Protocol πTLP−Light

πTLP−Light is parameterized by a cyclic group G of order q with generator g. πTLP−Light

is executed by parties P = {P1, . . . ,Pn}, among which a subset of solvers W ⊂ P,
interacting with GClock, GrpoRO1 with output in Zq, GrpoRO2 with output in {0, 1}2τ ,
FDKG and instances F f∆,i

mdmt where Pi is sender and Pi+1 is receiver for all Pi ∈ W.

Setup: When first activated, all Pi ∈ P send (PubKey, sid) to FDKG, receiving pk,
and all Pi ∈ W additionally send (SecKey, sid) to FDKG, receiving ski.

Create puzzle: On input (CreatePuzzle, sid,m), Pi encrypts m using pk following
the steps of Definition A.4:

1. Sample r
$← G, s

$← {0, 1}τ and send (Hash-Query, r) to GrpoRO2, receiv-
ing (Hash-Confirm, pad). Then send (Hash-Query,m|s) to GrpoRO1, receiving
(Hash-Confirm, ρ).

2. Send (IsProgrammed,m|s) (resp. (IsProgrammed, r)) to GrpoRO1 (resp.
GrpoRO2) and abort if either of the responses is (IsProgrammed, 1).

3. Compute puz = (c1 = gρ, c2 = r · pkρ, c3 = (m|s)⊕ pad).
4. Output (CreatedPuzzle, sid, puz, π = (pk, r, s)).

Solve: On input (Solve, sid, puz), Pi sends (Solve, sid, puz) to the first Pj ∈ W
(i.e. j = min{j | Pj ∈ W}). Upon receiving (Solved, sid, puz,m, π) from the
last Pℓ ∈ W (i.e. ℓ = max{ℓ | Pℓ ∈ W}), perform Public Verification on
puz,m, π and set m = ⊥ if it does not succeed. Output (Solved, sid, puz,m, π).

Public Verification: On input (Verify, sid, puz = (c1, c2, c3),m, π = (pk, r, s)),
Pi executes Steps 2 to 5 of Create Puzzle with pk,m, r, s to obtain
puz′. If puz′ = puz, Pi sets b = 1, else, it sets b = 0, outputting
(Verified, sid, puz,m, π, b).

Tick: Parties in W proceed as follows and then send (Update) to GClock:
Starting Solution: For all (Solve, sid, puz = (c1, c2, c3)) received in this tick,
the first Pi ∈ W proceeds as follows: 1. Send (Read) to GClock, obtaining

(Read, ν1); 2. Compute ĉ2 = c2 ·c−ski
1 ; 3. Send (Send, sid, (ν1, puz, ĉ2)) to F

f∆,1

mdmt.

Ongoing Solution: Every party Pj ∈ W \Pi sends (Rec, sid) to F f∆
mdmt where

they act as receivers and, for every message (Sent, sid, (ν1, puz, ĉ2), ν) received
as answer, proceed as follows:

1. Given the current time ν obtained from GClock, ν and all the delay functions
f∆,1, . . . , f∆,j−1 associated to the previous instances of F f∆

mdmt, check that
isP(ν1, f∆,1, . . . , f∆,j−1, ν) is true, aborting otherwise.

2. Parse puz = (c1, c2, c3) and compute c̃2 = ĉ2 · c
−skj
1 .

3. If Pj is not the last party Pℓ ∈ W, send (Send, sid, (ν1, puz, c̃2)) to F
f∆,j

mdmt.

Delivering Result: The last party Pℓ ∈ W obtains r = c̃2 = c2 · c
−

∑
j∈W skj

1 ,
sends (Hash-Query, r) to GrpoRO1, receiving (Hash-Confirm, pad), computes
m|s = c3 ⊕ pad and broadcasts (m,π = (pk, r, s)) to all Pi ∈ P.

Fig. 13: Protocol πTLP−Light for Publicly Verifiable Time Lock Puzzles.

Constructing a Random Beacon. Notice that our Ftlp can be used to in-
stantiate the random beacon construction of [8]. In this construction, parties
generate randomness by broadcasting (or posting to a public ledger) a PV-TLP
containing a random input. After a majority of parties have provided their PV-
TLPs, these PV-TLPs are opened by their owners, who present their random

29

input along with a proof that it was contained in their PV-TLP. In case one
of the owners does not follow the protocol, the other parties can solve the un-
opened PV-TLP to obtain the remaining random input. Finally all parties hash
all random inputs to obtain a random output. In our setting, this is particularly
advantageous, since potentially sequential communication delay channels only
needs to be used in case a party misbehaves. When there is no misbehavior, ran-
domness can be obtained cheaply by locally verifying PV-TLP proofs without
accessing delayed channels. Otherwise, if sequential communication delay must
be used, a party who failed to open their PV-TLP is identified, so it can be
excluded in future executions and/or made to pay for access to delay channels.

8 Delay Encryption and Stateless VDF

In this section, we extend our PV-TLP construction to obtain a related primitive
called Delay Encryption [22]. A Delay Encryption scheme allows for encrypting
many messages under a certain identity in such a way that a secret key allowing
for decrypting all such messages can be obtained after a certain delay, a notion
akin to an “identity based TLP”. We construct this primitive by combining an
IBE scheme with a distributed (identity) key generation protocol and our proofs
of sequential communication delay. This Delay Encryption construction can also
be converted into a stateless VDF. Since we combine standard results in order
to obtain this construction, we only informally sketch it here.

Assume IBE = (Setup, KG, Enc, Dec) is an Identity-based encryption scheme
where: IBE.Setup on input the security parameter τ outputs the master secret
key msk and the public key pk; IBE.KG on input an identity string ID ∈ {0, 1}∗
and msk outputs the identity decryption key skID; IBE.Enc on input the plain-
text m, public key pk and identity ID outputs the ciphertext c; IBE.Dec on
input the identity decryption key skID and the ciphertext c outputs either a
message m or ⊥. First, observe that many IBE schemes (e.g. [17]) are essentially
a version of El Gamal. This means that Setup, KG can easily be “thresholdized”
to allow for generating identity secret keys from shares of msk, and that skID is
unique for each ID. As an example, consider [17] which uses two source groups
G, a target group GT and a pairing e : G×G 7→ GT . Setup creates pk = gmsk

for master secret key msk using a public generator g ∈ G. KG creates a ran-
dom generator h = H(ID) ∈ G based on a hash of the identity ID using a
random oracle H to G, and lets skID = hmsk. Clearly, skID is unique for ID.
Enc generates a ciphertext c = (c1, c2) from m and ID by computing c1 = gr

c2 = m ·e(H(ID)r, pk), and Dec decrypts c by computing m = c2 ·e(c1, skID)−1.
It is easy to “thresholdize” such an IBE scheme with UC security. To imple-

ment Setup, parties use standard semi-honest El Gamal distributed key genera-
tion to create a Shamir sharing of a random secret msk and then raise g to msk
using standard techniques. Additionally, they commit to their shares of msk and
use UC NIZKs to prove execution correctness. Implementing KG as a distributed
protocol is again straightforward as ID is public, since each protocol participant
can compute H(ID) locally, raise it to its committed share of msk and prove
correctness of this using a UC NIZK. Then, by reconstruction in the exponent,

30

one can obtain the unique H(id)msk. By using a CCA secure version of Enc, Dec,
e.g. [17] as shown in [59], we obtain UC security for the full encryption scheme.

Our crucial observation is that we can run a distributed key generation
(DKG) protocol outputting the secret key for a given ID via delayed channels
F f∆

SCD that generate proofs of sequential communication. By letting intermediate
parties check the key shares and proofs of delay, we can provably lower-bound
the delay for creating skID. Notice that this idea gives us a natural construction
of Delay Encryption. To encrypt, we let a party knowing pk first choose an iden-
tity ID and let the ciphertext be ID, Enc(m, pk, ID). To decrypt one or more
ciphertexts for the same ID, parties obtain the secret key skID by running the
DKG and then decrypt using skID. The delay directly follows from the bound
on the execution time of the DKG. We provide an ideal functionality for Delay
Encryption in Appendix D and formalize this observation in the following the-
orem, which is conservatively phrased in terms of the [17] IBE, although it can
be generalized to any IBE that supports distributed key generation.

Theorem 8.1. If the IBE scheme of [17] is IND− ID− CCA2 secure, there
exists a protocol that UC-realizes FDE in the F f∆

SCD,FNIZK,GrpoRO-hybrid model
against an active static adversary corrupting a majority of parties in P. The
delay parameter is Γ = ∆hi and the slack parameter is ϵ = ∆lo

∆hi
where (·, ∆hi) =

maxt∈{0,...,poly(τ)}{f∆(t)} and (∆lo, ·) = mint∈{0,...,poly(τ)}{f∆(t)}.

Stateless VDF: In Section 6 we have described a VDF construction that cre-
ates the random value from a proof of sequential delay. Unfortunately, in order
to achieve uniqueness we have to use a bulletin board to keep track of previous
VDF inputs. Departing from our Delay Encryption construction, obtaining a
stateless VDF is possible as follows: assume that a threshold instance of IBE is
set up such that Setup was run and pk is known. To evaluate the VDF, consider
the VDF input x as an ID and run the threshold version of KG to generate skx.
Then, hashing x, skx using a random oracle yields the VDF output, while skx
serves as the publicly verifiable proof8. Unpredictability follows due to the Naor
transform [35], since each skx can be considered as a signature of an EUF-CMA
secure signature scheme (which is therefore UC secure). Uniqueness of the sig-
nature follows from the El Gamal-type of IBE, as each skx is unique. The VDF
delay is then identical with the runtime of KG. We formalize this result in the
following theorem, which is conservatively phrased in terms of the [17] IBE, al-
though it can be generalized to any IBE that yields a unique signature via the
Naor Transform and supports distributed key generation.

Theorem 8.2. If the IBE scheme of [17] is IND− ID− CCA2 secure, there
exists a protocol that UC-realizes FVDF in the F f∆

SCD,FNIZK,GrpoRO-hybrid model
against an active static adversary corrupting a majority of parties in P. The
delay parameter is Γ = ∆hi and the slack parameter is ϵ = ∆lo

∆hi
where (·, ∆hi) =

maxt∈{0,...,poly(τ)}{f∆(t)} and (∆lo, ·) = mint∈{0,...,poly(τ)}{f∆(t)}.
8 Which can be checked by encrypting a random value to identity x, decrypting using
skx and checking for consistency

31

Acknowledgment

The work described in this paper has received funding from: the Protocol Labs
Research Grant Program PL-RGP1-2021-064, the Protocol Labs-CryptoSat SpaceVDF
program, and the Independent Research Fund Denmark (IRFD) grants number
9040-00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B.

References

1. Cryptosat. https://cryptosat.io. Accessed: 2022-10-07.

2. Pouriya Alikhani, Nicolas Brunner, Claude Crépeau, Sébastien Designolle, Raphaël
Houlmann, Weixu Shi, Nan Yang, and Hugo Zbinden. Experimental relativistic
zero-knowledge proofs. Nat., 599(7883):47–50, 2021.

3. Ghada Almashaqbeh, Ran Canetti, Yaniv Erlich, Jonathan Gershoni, Tal Malkin,
Itsik Pe’er, Anna Roitburd-Berman, and Eran Tromer. Unclonable polymers
and their cryptographic applications. In Orr Dunkelman and Stefan Dziem-
bowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I, vol-
ume 13275 of Lecture Notes in Computer Science, pages 759–789. Springer, 2022.

4. Christian Badertscher, Ueli Maurer, and Björn Tackmann. On composable security
for digital signatures. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part I, volume 10769 of LNCS, pages 494–523. Springer, Heidelberg, March 2018.

5. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356.
Springer, Heidelberg, August 2017.

6. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure
under the discrete logarithm assumption and a generalized forking lemma. In Peng
Ning, Paul F. Syverson, and Somesh Jha, editors, ACM CCS 2008, pages 449–458.
ACM Press, October 2008.

7. Carsten Baum, Bernardo David, and Rafael Dowsley. (Public) Verifiability for
Composable Protocols Without Adaptivity or Zero-Knowledge. In Chunpeng Ge
and Fuchun Guo, editors, Provable and Practical Security - 16th International
Conference, ProvSec 2022, Nanjing, China, November 11-12, 2022, Proceedings,
volume 13600 of LNCS, pages 249–272. Springer, 2022.

8. Carsten Baum, Bernardo David, Rafael Dowsley, Ravi Kishore, Jesper Buus
Nielsen, and Sabine Oechsner. CRAFT: Composable randomness beacons and
output-independent abort mpc from time. Cryptology ePrint Archive, Paper
2020/784, 2020. To Appear at PKC 2023. https://eprint.iacr.org/2020/784.

9. Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. TARDIS: A foundation of time-lock puzzles in UC. In Anne Can-
teaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, vol-
ume 12698 of LNCS, pages 429–459. Springer, Heidelberg, October 2021.

10. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggre-
gate signatures. In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej
Tarlecki, editors, ICALP 2007, volume 4596 of LNCS, pages 411–422. Springer,
Heidelberg, July 2007.

32

https://cryptosat.io
https://eprint.iacr.org/2020/784

11. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model
and a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 390–399. ACM Press, Oc-
tober / November 2006.

12. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Madhu Sudan, editor, ITCS 2016, pages 345–356. ACM, January 2016.

13. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, January 2003.

14. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered
multisignatures and identity-based sequential aggregate signatures, with applica-
tions to secure routing. In Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson, editors, ACM CCS 2007, pages 276–285. ACM Press, October
2007.

15. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

16. Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 435–464. Springer, Hei-
delberg, December 2018.

17. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–
229. Springer, Heidelberg, August 2001.

18. Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 236–254. Springer, Heidelberg, Au-
gust 2000.

19. Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-based
multi-signature with single-round online phase. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 276–
305. Springer, Heidelberg, August 2022.

20. Kyle Brogle, Sharon Goldberg, and Leonid Reyzin. Sequential aggregate signatures
with lazy verification from trapdoor permutations - (extended abstract). In Xi-
aoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS,
pages 644–662. Springer, Heidelberg, December 2012.

21. Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Phys-
ically uncloneable functions in the universal composition framework. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 51–70. Springer,
Heidelberg, August 2011.

22. Jeffrey Burdges and Luca De Feo. Delay encryption. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of
LNCS, pages 302–326. Springer, Heidelberg, October 2021.

23. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

24. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

33

25. Ran Canetti. Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239, 2003. https://eprint.iacr.org/

2003/239.

26. Ran Canetti. Universally composable signature, certification, and authentication.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

27. Ran Canetti. Universally composable signature, certification, and authentication.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

28. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

29. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi
Peled. UC non-interactive, proactive, threshold ECDSA with identifiable aborts.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM
CCS 2020, pages 1769–1787. ACM Press, November 2020.

30. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 380–403. Springer, Heidelberg,
March 2006.

31. Pyrros Chaidos and Aggelos Kiayias. Mithril: Stake-based threshold multisigna-
tures. Cryptology ePrint Archive, Report 2021/916, 2021. https://eprint.iacr.
org/2021/916.

32. Yanbo Chen and Yunlei Zhao. Half-aggregation of schnorr signatures with tight
reductions. Cryptology ePrint Archive, Report 2022/222, 2022. https://eprint.
iacr.org/2022/222.

33. Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened secu-
rity assumptions (extended abstract). In 29th FOCS, pages 42–52. IEEE Computer
Society Press, October 1988.

34. Claude Crépeau, Arnaud Massenet, Louis Salvail, Lucas Shigeru Stinchcombe, and
Nan Yang. Practical relativistic zero-knowledge for NP. In Yael Tauman Kalai,
Adam D. Smith, and Daniel Wichs, editors, ITC 2020, pages 4:1–4:18. Schloss
Dagstuhl, June 2020.

35. Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. Formal
security treatments for signatures from identity-based encryption. In Willy Susilo,
Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS, pages
218–227. Springer, Heidelberg, November 2007.

36. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay
functions from supersingular isogenies and pairings. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
248–277. Springer, Heidelberg, December 2019.

37. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. On the security of two-round multi-signatures. In
2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE Computer
Society Press, May 2019.

38. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Contin-
uous verifiable delay functions. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 125–154. Springer,
Heidelberg, May 2020.

34

https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2021/916
https://eprint.iacr.org/2021/916
https://eprint.iacr.org/2022/222
https://eprint.iacr.org/2022/222

39. Marc Fischlin, Anja Lehmann, and Dominique Schröder. History-free sequential
aggregate signatures. In Ivan Visconti and Roberto De Prisco, editors, SCN 12,
volume 7485 of LNCS, pages 113–130. Springer, Heidelberg, September 2012.

40. Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable
time-lock puzzles and applications. In Kobbi Nissim and Brent Waters, editors,
TCC 2021, Part III, volume 13044 of LNCS, pages 447–479. Springer, Heidelberg,
November 2021.

41. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its
applications. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

42. Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key
encryption at minimum cost. In Hideki Imai and Yuliang Zheng, editors, PKC’99,
volume 1560 of LNCS, pages 53–68. Springer, Heidelberg, March 1999.

43. Craig Gentry, Adam O’Neill, and Leonid Reyzin. A unified framework for trapdoor-
permutation-based sequential aggregate signatures. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 34–57. Springer,
Heidelberg, March 2018.

44. Shafi Goldwasser and Rafail Ostrovsky. Invariant signatures and non-interactive
zero-knowledge proofs are equivalent (extended abstract). In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 228–245. Springer, Heidelberg,
August 1993.

45. Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer,
Heidelberg, February 2010.

46. Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 115–128. Springer, Heidelberg, May 2007.

47. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part III, volume 12552 of LNCS, pages 390–413. Springer, Heidelberg, November
2020.

48. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, Heidelberg, March 2013.

49. Adrian Kent. Unconditionally secure bit commitment. Physical Review Letters,
83(7):1447, 1999.

50. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

51. Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Se-
quential aggregate signatures and multisignatures without random oracles. In
Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 465–485.
Springer, Heidelberg, May / June 2006.

52. Tommaso Lunghi, Jedrzej Kaniewski, Felix Bussières, Raphael Houlmann, Marco
Tomamichel, Stephanie Wehner, and Hugo Zbinden. Practical relativistic bit com-
mitment. Physical Review Letters, 115(3):030502, 2015.

53. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequen-
tial aggregate signatures from trapdoor permutations. In Christian Cachin and

35

Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 74–90.
Springer, Heidelberg, May 2004.

54. Christian Matt, Jesper Buus Nielsen, and Søren Eller Thomsen. Formalizing de-
layed adaptive corruptions and the security of flooding networks. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of
LNCS, pages 400–430. Springer, Heidelberg, August 2022.

55. Ueli M. Maurer. Protocols for secret key agreement by public discussion based on
common information. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of
LNCS, pages 461–470. Springer, Heidelberg, August 1993.

56. Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisigna-
tures: Extended abstract. In Michael K. Reiter and Pierangela Samarati, editors,
ACM CCS 2001, pages 245–254. ACM Press, November 2001.

57. Gregory Neven. Efficient sequential aggregate signed data. In Nigel P. Smart, edi-
tor, EUROCRYPT 2008, volume 4965 of LNCS, pages 52–69. Springer, Heidelberg,
April 2008.

58. Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr
multi-signatures. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I,
volume 12825 of LNCS, pages 189–221, Virtual Event, August 2021. Springer,
Heidelberg.

59. Ryo Nishimaki, Yoshifumi Manabe, and Tatsuaki Okamoto. Universally com-
posable identity-based encryption. In Phong Q. Nguyen, editor, Progress in
Cryptology - VIETCRYPT 2006, pages 337–353, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

60. Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-
way functions. Science, 297(5589):2026–2030, 2002.

61. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

62. David Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages
129–146. Springer, Heidelberg, January 2000.

63. J. Puig-Suari, C. Turner, and W. Ahlgren. Development of the standard cubesat
deployer and a cubesat class picosatellite. In 2001 IEEE Aerospace Conference
Proceedings (Cat. No.01TH8542), volume 1, pages 1/347–1/353 vol.1, 2001.

64. Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Se-
curing multiparty signatures against rogue-key attacks. In Moni Naor, editor,
EUROCRYPT 2007, volume 4515 of LNCS, pages 228–245. Springer, Heidelberg,
May 2007.

65. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto, 1996.

66. Ulrich Rührmair and Marten van Dijk. On the practical use of physical unclon-
able functions in oblivious transfer and bit commitment protocols. Journal of
Cryptographic Engineering, 3:17–28, 2013.

67. Ephanielle Verbanis, Anthony Martin, Raphaël Houlmann, Gianluca Boso, Félix
Bussières, and Hugo Zbinden. 24-hour relativistic bit commitment. Phys. Rev.
Lett., 117:140506, Sep 2016.

68. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 379–407. Springer, Heidelberg, May 2019.

36

A Auxiliary Functionalities and other Preliminaries

We use the (Global) Universal Composability or (G)UC model [24, 28] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1,
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition A.1. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time.

The Global Random Oracle. In Figure Fig. 14 we present the restricted observ-
able and programmable global random oracle ideal functionality from [23]. It
follows the standard notion of a random oracle, when defined in the UC frame-
work.

Key Registration Ideal Functionality FReg. The key registration functionality
FReg is presented in Figure 15. This ideal functionality captures a public key
infrastructure, allowing parties to register their public keys in such a way that
other parties can retrieve public keys with the guarantee that they belong to
the party who originally registered them. FReg is inspired by the functionality
from [30], but additionally supports timestamps on registered keys.

Unique Digital Signatures Ideal Functionality FSig. The standard digital signa-
ture functionality FSig from [27] captures a randomized signature scheme where
the signer may influence the generation of a signature by choosing the random-
ness used by the signing algorithm. This particularity is captured by allowing
the ideal adversary S choose a new string σ to represent a signature on a mes-
sage m every time the signer Ps (a special party who has the right to generate
signatures, i.e., who holds the signature key) makes a new request for a sig-
nature on m. This process allows for multiple valid signatures to be produced
for the same message. However, we require a unique signature scheme [44] for

37

Functionality GrpoRO

GrpoRO is parameterized by an output size function ℓ and a security parameter τ ,
and keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}ℓ(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s ̸= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.

3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.
Program: On input (Program-RO,m, h) with h ∈ {0, 1}ℓ(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}ℓ(τ) where (m,h′) ∈ ListH and h ̸= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.
IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s ̸= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Fig. 14: Restricted observable and programmable global random oracle function-
ality GrpoRO from [23].

Functionality FReg

FReg interacts with a set of parties P and an ideal adversary S as well as a global
clock GClock as follows:

Key Registration: Upon receiving a message (register, sid, pk) from a party
Pi ∈ P:
1. Send (Read) to GClock, waiting for response (Read, ν).

2. Send (Registering, sid, pk,Pi, ν) to S. Upon receiving (sid, ok,Pi) from S, and
if this is the first message from Pi, then record the tuple (Pi, pk, ν).

Key Retrieval: Upon receiving a message (Retrieve, sid,Pj) from a party
Pi ∈ P, send message (Retrieve, sid,Pj) to S and wait for it to return a message
(Retrieve, sid, ok). Then, if there is a recorded tuple (Pj , pk, ν) output (Retrieve,
sid,Pj , pk, ν) to Pi. Otherwise, if there is no recorded tuple, return (Retrieve,
sid,Pj ,⊥).

Fig. 15: Functionality FReg for Key Registration.

our applications to proofs of sequential communication. In a unique signature
scheme, only one signature may be produced for a given message m under a
signing key. In the UC formalization of signature schemes, an instance of the
functionality FSig itself represents each different signing key by allowing only a
special party Ps (i.e. the holder of a signing key) to produce signatures. Hence,
we capture the notion of unique signatures by only allowing one signature on a

38

Functionality FSig

Given an ideal adversary S, verifiers V and a signer Ps, FSig performs:

Key Generation: Upon receiving a message (keygen, sid) from Ps, verify that
sid = (Ps, sid

′) for some sid′. If not, ignore the request. Else, hand (keygen, sid)
to the adversary S. Upon receiving (verification key, sid, SIG.vk) from S, output
(verification key, sid, SIG.vk) to Ps, and record the pair (Ps,SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid

′) for some sid′ . If not, then ignore the request. Else, if an
entry (m,σ,SIG.vk, 1) is recorded, output (signature, sid,m, σ) to Ps and ignore
the next steps (this condition guarantees uniqueness). Else, send (sign, sid,m) to S.
Upon receiving (signature, sid,m, σ) from S, verify that no entry (m,σ,SIG.vk, 0)
is recorded. If it is, then output an error message to Ps and halt. Else, output
(signature, sid,m, σ) to Ps, and record the entry (m,σ, SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ, SIG.vk′)
from some party Vi ∈ V, hand (verify, sid,m, σ, SIG.vk′) to S. Upon receiving
(verified, sid,m, ϕ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f = 1.
(This condition guarantees completeness: If the verification key SIG.vk′ is the
registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the en-
try (m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is
the registered one, the signer is not corrupted, and never signed m, then the
verification fails.)

3. Else, if there is an entry (m,σ,SIG.vk′, f ′) recorded, then let f = f ′. (This
condition guarantees consistency: All verification requests with identical pa-
rameters will result in the same answer.)

4. Else, let f = ϕ and record the entry (m,σ, SIG.vk′, ϕ).

Output (verified, sid,m, f) to Vi.

Fig. 16: Functionality FSig for Unique Digital Signatures. Modifications with re-
spect to the functionality of [27] are written in this font.

given message m to be produced by the same instance of FSig. The remainder
of this functionality still follows the same steps as the standard one from [27].
Our modified FSig capturing unique signatures is presented in Figure 16, where
modifications with respect to [27] are written in this font.

It is shown in [27] that any EUF-CMA signature scheme UC realizes the
standard signature functionality where multiple valid signatures may be pro-
duced for the same message under the same signing key (i.e. the same instance
of FSig may generate multiple signatures for the same message, as long as they
have not been flagged as invalid signatures by a previous unsuccessful verifica-
tion procedure). We observe that this fact trivially extends to the case of unique
signatures, i.e., any EUF-CMA signature scheme UC realizes our FSig capturing

39

unique signatures, since the only restriction in this case is that a single signa-
ture is produced for each message by a single instance of FSig (which represents
a signer’s signing key).

Bulletin Board Ideal Functionality FBB. In Fig. 17 we describe an authenticated
bulletin board functionality which is used throughout this work. Authenticated
Bulletin Boards can be constructed from regular bulletin boards using FSig,FReg

and standard techniques.

Functionality FBB

FBB interacts with a set of parties P and keeps a counter c initially set to 0,
proceeding as follows:

Write: Upon receiving (Write, sid,m) from Pi ∈ P, store the message (c,m) and
increment c.

Read: Upon receiving (Read, sid) from Pi ∈ P, return all messages (·,m) that are
stored.

Fig. 17: Functionality FBB for an authenticated Bulletin Board.

A.1 UC Secure Public-Key Encryption with Plaintext Verification

Semantics of a public-key encryption scheme. We consider public-key encryption
schemes PKE that have public-key PK, secret key SK, messageM, randomness
R and ciphertext C spaces that are functions of the security parameter τ , and
consist of a PPT key generation algorithm KG, a PPT encryption algorithm Enc

and a deterministic decryption algorithm Dec. For (pk, sk)
$← KG(1τ), any m ∈

M, and ct
$← Enc(pk,m), it should hold that Dec(sk, ct) = m with overwhelming

probability over the used randomness.

Moreover, we extend the semantics of public-key encryption by adding a
plaintext verification algorithm {0, 1} ← V(ct,m, π) that outputs 1 if m is the
plaintext message contained in ciphertext ct given a valid proof π that also
contains the public-key pk used to generate the ciphertext. Furthermore, we

modify the encryption and decryption algorithms as follows: (ct, π)
$← Enc(pk,m)

and (m, π) ← Dec(sk, ct) now output a valid proof π that m is contained in ct.
The security guarantees provided by the verification algorithm are laid out in
Definition A.2.

Definition A.2 (Plaintext Verification). Let PKE = (KG,Enc,Dec,V) be
a public-key encryption scheme and τ be a security parameter. Then PKE has
plaintext verification if for every PPT adversary A, it holds that:

40

Pr

V(ct,m′, π′) = 1

∣∣∣∣∣∣
pk

$← PK, (m, π,m′, π′)
$← A(pk),

π = (pk, r), π′ = (pk, r′) ∈ PK ∪R,
m,m′ ∈M, (ct, π)← Enc(pk,m; r),m′ ̸= m

 ∈ negl(τ)

IND-CCA secure Cryptosystem with Plaintext Verification based on [62] from [7].
This cryptosystem can be constructed from any Partially Trapdoor One-Way
Injective Function in the random oracle model. Moreover, as observed in [7],
it can be instantiated in the restricted observable and programmable global
random oracle model of [23]. First we recall the definition of Partially Trapdoor
One-Way Functions.

Definition A.3 (Partially Trapdoor One-Way Function [62]). The func-
tion f : X × Y → Z is said to be partially trapdoor one-way if:

– For any given z = f(x, y), it is computationally impossible to get back a
compatible x. Such an x is called a partial preimage of z. More formally, for
any polynomial time adversary A, its success, defined by SuccA = Prx,y[∃y′,
f(x′, y′) = f(x, y)|x′ = A(f(x, y))], is negligible. It is one-way even for just
finding partial-preimage, thus partial one-wayness.

– Using some extra information (the trapdoor), for any given z ∈ f(X ×Y), it
is easily possible to get back an x, such that there exists a y which satisfies
f(x, y) = z. The trapdoor does not allow a total inversion, but just a partial
one and it is thus called a partial trapdoor.

As observed in [62], the classical El Gamal cryptosystem is a partially trap-
door one-way injective function under the Computational Diffie Hellman (CDH)
assumption, implying an instantiation of this cryptosystem under CDH. We will
later exploit this fact to apply this transformation to a simple threshold version
of El Gamal where the encryption procedure and the public key are exactly
the same as in the standard scheme, allowing for the construction below to be
instantiated. We now recall this generic construction.

Definition A.4 (Pointcheval [62] IND-CCA Secure Cryptosystem with
Plaintext Verification). Let T D be a family of partially trapdoor one-way
injective functions and let H : {0, 1}|m|+τ → Y and G : X → {0, 1}|m|+τ be
random oracles, where |m| is message length. This cryptosystem consists of the
algorithms PKE = (KG,Enc,DecV) that work as follows:

– KG(1τ): Sample a random partially trapdoor one-way injective function f :
X ×Y → Z from T D and denote its inverse parameterized by the trapdoor by
f−1 : Z → X . The public-key is pk = f and the secret key is sk = (f, f−1).

– Enc(pk,m): Sample r
$← X and s

$← {0, 1}τ . Compute a← f(r,H(m|s)) and
b = (m|s) ⊕ G(r), outputting ct = (a, b) as the ciphertext and π = (pk, r, s)
as the proof.

41

– Dec(sk, ct): Given a ciphertext ct = (a, b) and secret key sk = f−1, compute
r ← f−1(a) and M ← b ⊕ G(r). If a = f(r,H(M)), parse M = (m|s) and
output m and the proof π = (pk, r, s) . Otherwise, output ⊥.

– V(ct,m, π): Parse π = (pk, r, s), compute ct′ ← Enc(pk,m, (r, s)) and output
1 if and only if ct = ct′.

A.2 Global Clocks and Global tickers

The TARDIS [9] global ticker functionality Gticker is depicted in Fig. 18.

Functionality Gticker

Initialize a set of registered parties Pa = ∅, a set of registered functionalities Fu = ∅,
a set of activated parties LPa = ∅, and a set of functionalities LFu = ∅ that have
been informed about the current tick.

Party registration: Upon receiving (register, pid) from honest party P with pid
pid, add pid to Pa and send (registered) to P.
Functionality registration: Upon receiving (register) from functionality F ,
add F to Fu and send (registered) to F .
Tick: Upon receiving (tick) from the environment, do the following:
1. If Pa = LPa, reset LPa = ∅ and LFu = ∅, and send (ticked) to the adversary S.
2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from functionality F ∈ Fu: If F /∈ LFu,
add F to LFu and send (ticked) to F. Otherwise send (notticked) to F.
Record party activation: Upon receiving (activated) from party P with pid
pid ∈ Pa, add pid to LPa and send (recorded) to P.

Fig. 18: Global ticker functionality Gticker(from [9]).

Synchronicity and Global Clocks As mentioned in Section 2 we need to assume
that honest parties have synchronized clocks. This is necessary to argue about
communication delays that depend on the relative position of two parties, which
evolves in time. We capture this notion of synchronicity by using a global clock
functionality GClock (see Fig. 1). In the definition that we use throughout the
main body, GClock allows users to query the current time and increments an in-
ternal time counter once all functionalities and honest parties activate a clock
update interface after the last update. However, to realize GClock in the abstract
composable time model we update its internal time counter when Gticker issues a
new tick.

Global Clocks in the TARDIS [9] model: In order to integrate the global
functionality GClock into the abstract composable time model, we modify it as
outlined above. This modification captures the fact that GClock exposes towards
the parties and other ideal functionalities the number of ticks issues by Gticker

42

since the beginning of the execution. However, it is not a separate clock that is
executed independently from Gticker. Since we wish GClock to count the ticks issued
by Gticker, our modified version of GClock requires all honest parties to activate the
global ticker every time they would update the global clock (i.e. when they have
executed all their instructions for a given round). This modification can be seen
in Fig. 19. It is immediate how this clock functionality can be used to replace the
global GClock throughout our protocols by replacing Update messages to GClock
by activated calls to Gticker.

Functionality GClock

GClock interacts with a sets P,F of parties and functionalities, respectively, as well
as with Gticker. It keeps a counter ν initially set to 0.

Clock Read: Upon receiving (Read) from any entity, answer with (Read, ν).

Tick: Increment ν, i.e. set ν ← ν + 1.

Fig. 19: Functionality GClock for a Global Clock in the TARDIS model.

B Delayed Communication - Proofs and more details

B.1 Realizing F f∆
mdmt

The multiple-use ideal functionality F f∆
mdmt for authenticated delayed message

transmission can be realized in the GClock,F∆lo,∆hi

dmt -hybrid model. Assume access

to many instances of the single-use functionality F∆lo,∆hi

dmt , one fresh instance of

F∆t
lo,∆

t
hi

dmt associated to t for each message to be sent at time t ∈ {0, . . . , poly(τ)}
with parameters (∆t

lo, ∆
t
hi) ← f∆(t). Upon receiving an input (Send, sid,m), a

sender PS determines (∆t
lo, ∆

t
hi) ← f∆(t) and uses the instance of F∆t

lo,∆
t
hi

dmt to
send (m, t). Upon receiving input (Rec, sid), a receiver PR queries all instances

of F∆t′
lo,∆

t′
hi

dmt associated to a time t′ smaller than current time t in order to retrieve
messages that might have been sent. It then has to establish correctness of the
delay.

Theorem B.1. The protocol πmdmt in Figure 20 GUC-securely implements F f∆
mdmt

in the GClock,F ·
dmt-hybrid model against a static active adversary.

Proof. We now construct a PPT simulator S for a corrupted sender or receiver.
In both cases, the simulator will simulate all hybrid instances of F ·

dmt, which can
be done in time polynomial in τ as there are only poly(τ) such instances.

If PS is corrupted then we construct S as follows: S acts like an honest PR,
but it additionally observes all inputs (Send, sid,m) to any instance of F ·

dmt that

it simulates. Any input of the form (m, t) to F∆lo,∆hi

dmt with (∆lo, ∆hi) = f∆(t)

is forwarded as (Send, sid,m) to F f∆
mdmt during the same tick of GClock. When

43

Protocol πmdmt

For each t ∈ {0, . . . , poly(τ)} let (∆t
lo,∆

t
hi) ← f∆(t). In the protocol two parties

PS ,PR interact via functionalities F∆t
lo,∆

t
hi

dmt . In addition, they use a global clock
GClock. Upon any activation that is not related to a message below, parties send
(Update) to GClock.

Send: Upon input (Send, sid,m) PS acts as follows:
1. Send (Read) to GClock and obtain (Read, t).
2. Determine (∆lo,∆hi)← f∆(t).
3. Send (Send, sid, (m, t)) to F∆lo,∆hi

dmt and (Update) to GClock.
Receive: Upon input (Rec, sid) PR acts as follows:
1. Send (Read) to GClock and obtain (Read, t).
2. For each t ∈ {0, . . . , t} compute (∆t

lo,∆
t
hi)← f∆(t).

3. Send (Rec, sid) to each F∆t
lo,∆

t
hi

dmt and wait for responses (Sent, sid, (m, t′)) from

F∆t
lo,∆

t
hi

dmt . If t ̸= t′ then PR ignores (m, t′).
4. If ∆lo + t ≤ t ≤ ∆hi + t then PR outputs (Sent, sid,m, t).

Fig. 20: Protocol πmdmt for authenticated message transmission with evolving
delay bounds.

the adversary makes this F∆lo,∆hi

dmt output the message (m, t′), then S makes

F f∆
mdmt output m in the same tick round of GClock by sending (ok, sid, t′). This

simulation is perfect, as F f∆
mdmt will output any message in the same round where

the respective instance of F ·
dmt would have released it to an honest receiver.

Moreover, only those messages are forwarded by S to F f∆
mdmt that wouldn’t be

ignored by an honest receiver.
If PR is corrupted then S sends (Rec, sid) to F f∆

mdmt in every tick round. Upon

obtaining (Sent, sid,m, t′) from F f∆
mdmt in tick round t, S computes (∆lo, ∆hi)←

f∆(t
′) and programs the respective instance F∆lo,∆hi

dmt to contain the message
(m, t′) and have msg = released = ⊤ so that the honest receiver can pick
up the message. Again, the simulation is perfect because the instance that is
reprogrammed by S is the one an honest sender would provide the respective
input to. Moreover, given the construction of F ·

dmt the dishonest receiver would
not be able to obtain the message any earlier than in this round in the real
protocol. ⊓⊔

B.2 Proof of Theorem 4.1

Proof. We construct a PPT simulator S that emulates the protocol interaction
for a corrupted PS or PR. S will simulate the instances of FSig,FReg,F f∆

mdmt.
During Setup, S will in either case of corruption act like an honest party, setting
up both instances FSig

S ,FSig
R and will simulate posting its key on FReg.

If PS is corrupted, then S during Send extracts the message m from F f∆
mdmt

and checks that PS has a key SIG.vkS registered with FReg before the current tick

round. If the signature verifies with FSig
S , then forward it to F f∆

SCD as (Send,

44

sid,m) in the same tick round. When the adversary makes F f∆
mdmt output the

message and if an honest verifier would have accepted it, then S computes πlo
as in the protocol using FSig

R for its signature. Finally, it lets F f∆
SCD deliver

the message to the honest receiver and sends (Proof, sid,m, t, πlo) to F f∆
SCD.

If the timestamp in F f∆
mdmt does not coincide with when the message was sent,

it instead lets F f∆
SCD deliver the message and sends (NoProof, sid). For any

message (verify, sid,m, t,∆, πlo) where S did generate πlo for this m, t and
(∆lo, ∆hi) ← f∆(t), ∆ ∈ [∆lo, ∆hi] send (verify, sid,m, t,∆, πlo, 1), otherwise
send (verify, sid,m, t,∆, πlo, 0) to F f∆

SCD.

If instead PR is corrupted, wait until F f∆
SCD outputs (Sent, sid,m, t), then cre-

ate a valid signature σS using FSig and make F f∆
mdmt output (Sent, sid, (m, t, σS), t)

to PR in the same tick round. In addition, send (NoProof, sid) to F f∆
SCD. Then,

upon query (Verify, sid,m, t,∆, πlo) from F f∆
SCD and if πlo can be parsed as

(σ′
S , σR), check that σS = σ′

S . If not, then send (verified, sid,m, t,∆, πlo, 0) to

F f∆
SCD. Otherwise emulate the call (verify, sid, (m, t, σS), σR,SIG.vkR) on FSig

R

with the adversary, which will ultimately output (verified, sid, (m, t, σS), f) to
S. Send (verified, sid,m, t,∆, πlo, f) to F f∆

SCD.
Clearly, the simulation runs in polynomial time. For a corrupted PS , we

only make F f∆
SCD output a proof (and let it later verify a proof positively) if the

message from PS via F f∆
mdmt was well-formed. This is identical to the protocol,

and also the proof πlo is identical. For the corrupt PR we make the simulated
protocol output the correctly signed message to it in the same round as it would
in the real protocol. Moreover, F f∆

SCD’s Verify responses are consistent with the
outputs from the protocol by letting S verify signatures with FSig first. Hence
both cases are perfectly indistinguishable. ⊓⊔

B.3 Computing channel delays

We now define the algorithm delays(t1, f∆,1, . . . , f∆,n−1, k) that works for any
threshold k < n of corrupted parties to determine the minimal and maximal
observable delay as follows:

1. For ı ∈ [n− 1] let ∆i
hi = maxj∈poly(τ){∆hi | (∆lo, ∆hi)← f∆,i(j)}. Then

∆hi = max
j∈[∆1

hi+···+∆n−1
hi]
{j | isP(t1, f∆,1, . . . , f∆,n−1, t1 + j)}

2. First party honest:

a1 = min
t1≤t≤t1+∆hi

{t− t1 | isP(t1, f∆,1, . . . , f∆,n−k, t1 + t)}

3. Last party honest:

a2 = min
t1≤t<tn≤t1+∆hi

{
tn − t

∣∣ isP(t1, f∆,1, . . . , f∆,k, t)∧
isP(t, f∆,k+1, . . . , f∆,n−1, tn)

}

45

4. First and last two corrupt:

a3 = min
i∈{2,...,k−2},t1≤t<t′≤t1+∆hi

t′ − t

∣∣∣∣ isP(t1, f∆,1, . . . , f∆,i, t)∧
isP(t, f∆,i+1, . . . , f∆,i+n−k, t

′)∧
isP(t′, f∆,i+n−k+1, . . . , f∆,n−1, tn)


5. Set ∆lo = min{a1, a2, a3} and output (∆lo, ∆hi).

Clearly, each step of delays makes only polynomially many calls to isP, so the
algorithm remains efficient for n = poly(log τ).

Proposition B.2. The algorithm delays computes the minimal and maximal ob-
servable delay for k corruptions of n parties given delay functions f∆,1, . . . , f∆,n−1.

Proof. Clearly, ∆hi cannot be larger than the sum of the largest individ-
ual delays that any f∆,i can contribute. Hence, ∆hi as computed is the largest
achievable delay in any observable protocol.

a1 considers the case where the first n− k parties are honest. That the given
statement finds the smallest possible delay in this case follows directly.

Step a2 considers the case where the last n−k parties are honest. Here, since
Pk+1 can observe the behavior of Pk (which is dishonest), the minimal delay
includes the delay from Pk to Pk+1.

Finally, step a3 considers all cases where there are two parties in the beginning
and the end of the chain that are corrupted, and picks the best way of having i
corrupted in the beginning and k − i in the end so that the honest parties have
minimal observable delay. Then, the minimal of all these 3 mutually exclusive
cases yields the minimal channel delay. ⊓⊔

B.4 Proof of Theorem 4.4

Proof. We construct a simulator S that works for every set of corrupted parties.
Let Pi be the first honest party and Pj be the last honest party (where Pi = Pj

is possible). In general, S will run a simulation of πMulti−SCD with the adversary
where it lets every uncorrupted Pi act honestly, subject to the modifications
outlined below.

If P1 is honest then S already initially obtains m from F f∆
SCD and honestly

generates messages and signatures for F f∆,i

mdmt where an honest party is a sender.
If P1 is corrupted then wait until the first honest party Pi obtains the first valid

message m, t from F f∆,i−1

mdmt . If an honest Pi would sign and forward the mes-

sage, then send (Send, sid,m, t) to F f∆
SCD and continue to simulate the protocol

honestly.
Continue simulation for each honest intermediate party until the last honest

party Pj . If Pj = Pn then S makes message delivery of F f∆,n−1

mdmt coincide with

output delivery in F f∆
SCD by using Release message and chooses the proof string

according to all signatures as in the protocol. If some signatures are not valid or
delivery appears too late at the simulated Pn or any honest intermediate receiver

46

then S makes F f∆
SCD output (NoProof, sid). Finally, reject all Verify queries in

case (NoProof, sid) was sent and accept only those for the chosen proof string
otherwise. If Pj ̸= Pn, let all honest parties act like in the protocol. For each
query of Verify, reject if the proof string disagrees with the honestly generated
signatures for the specific message and delay. For all signatures of adversarially
controlled parties Pi, check with FSig

i if they are valid for m, t and only set
ϕ = 1 iff all are valid.

The messages that the adversary obtains in the protocol are perfectly in-
distinguishable from those in the simulation. Moreover, the output of Verify
both in the simulation and in the protocol coincides. If the receiver is honest,
then delivery of message and output is simultaneous with what happens in the
protocol by S using the Release message interface. Moreover the message and
its timestamp are consistent with the simulation, and exactly those get delivered
to an honest receiver that don’t make the protocol abort. If a protocol instead
fails, then S uses (NoProof, sid) to let F f∆

SCD abort. All Verify responses of S
are consistent with what an honest verifier would output in the protocol. ⊓⊔

C Proof of Theorem 7.1

Proof. We prove Theorem 7.1 by constructing a simulator S (presented in
Figure 21) that executes an internal copy of A and interacts with Ftlp in an
ideal world execution that is indistinguishable for the environment Z from the
real world execution of πTLP−Light with A. The core tasks of S are making sure
that every puzzle generated by A in the simulation is created at Ftlp and that
every puzzle that is solved by Ftlp in the ideal world is simulated towards A. The
first task is accomplished by S by extracting the message m and proof π from
every puzzle generated by A and creating a TLP containing m by contacting
Ftlp. The second task is achieved by simulating an execution of πTLP−Light for
solving TLPs provided by Ftlp and later using the leakage of m,π from Ftlp to
program the restricted programmable random oracles such that the output of
the protocol matches m,π. Both simulation strategies are clearly possible and
indistinguishable from a real execution since S has the shared secret key sk
provided by FDKG (which is simulated) and since it can rely on the properties of
the IND-CCA secure (and thus UC-secure) encryption scheme in Definition A.4,
which is used to generate ciphertexts containing TLP messages in πTLP−Light. ⊓⊔

D UC Treatment of Delay Encryption

The notion of Delay Encryption (DE) was introduced in [22], where a game
based security definition is presented. In order to use our proof of sequential
communication delay machinery, we first introduce a treatment of DE in the
UC framework, upon which we have defined and constructed our results. In
Figure 22, We provide an ideal functionality FDE for DE that captures this
notion.

47

Simulator S for πTLP−Light

S interacts with an internal copy of A, towards which it simulates the honest
parties in P = {P1, . . . ,Pn} and functionalities Gticker,GClock, GrpoRO1, GrpoRO2, FDKG,

F f∆,1

mdmt, . . . ,F
f∆,|W|−1

mdmt . Unless explicitly stated, S simulates all functionalities exactly
as they are described.

Setup: S simulates FDKG towards A and honest parties in P interacting with FDKG,
learning all skj and sk =

∑
Pj∈W skj .

Create puzzle: When A outputs puz = (c1, c2, c3), S proceeds as follows:
1. Extract the message m and proof π = (pk, r, s): (a) Ex-

tract message m by computing r = c̃2 = c2 · csk1 , sending
(Hash-Query, r) to GrpoRO1, receiving (Hash-Confirm, pad) and com-
puting m|s = c3 ⊕ pad. (b) Check that the puzzle is valid by send-
ing (Hash-Query,m|s) to GrpoRO1, receiving (Hash-Confirm, ρ) and
checking that puz = (c1 = gρ, c2 = r · pkρ, c3 = (m|s) ⊕ pad).
(c) Send (IsProgrammed,m|s) (resp. (IsProgrammed, r)) to GrpoRO1

(resp. GrpoRO2) and abort if either of the responses is (IsProgrammed, 1).
2. If all checks on m,π passed, send (CreatePuzzle, sid,m) to Ftlp and provide

puz, π when requested.
Solve: Simulate honest parties in P executing as in πTLP−Light. Upon receiving

(Solve, sid, puz) from Ftlp, S forwards (Solve, sid, puz) to the first Pi ∈ W.
Public Verification: Simulate honest parties in P executing as in πTLP−Light.
Tick: S simulates honest parties in W executing as in πTLP−Light, additionally per-

forming the following steps:

Starting Solution: When a corrupted party in P sends (Solve, sid, puz) to the
first Pi ∈ W, S forwards (Solve, sid, puz) to Ftlp.
Ongoing Solution: S answers requests from Ftlp as follows:
– Upon receiving (Solved, sid, puz,m, π) from Ftlp, S programs GrpoRO1 and
GrpoRO2 such that solving puz via the steps of πTLP−Light yields message m
with proof π.

– Upon receiving a request from Ftlp for π for a puz = (c1, c2, c3), S an-
swers with π = (pk, r, s) obtained by computing r = c̃2 = c2 · csk1 , sending
(Hash-Query, r) to GrpoRO1, receiving (Hash-Confirm, pad) and comput-
ing m|s = c3 ⊕ pad.

Fig. 21: Simulator S for πTLP−Light.

Similarly to other timed functionalities in our work, this functionality is de-
fined in the abstract composable time model of TARDIS [9], previously discussed
in Section 2 and Appendix A.2. We essentially adapt our PV-TLP functionality
Ftlp to generate a DE ciphertext as if it was a time-lock puzzle connected to a
certain ID represented by a sub-session ID ssid. Analogously, we modify the puz-
zle solving interface to instead implicitly extract the secret key corresponding to
a ssid, which in the functionality is reflected by allowing honest parties to obtain
the messages in ciphertexts corresponding to that ssid. As is the case in Ftlp and
FVDF, we allow the adversary to decrypt ciphertexts connected to a given ssid
slightly before the same access is given to honest parties (i.e. at time ϵΓ < Γ).

48

Functionality FDE

FDE is parameterized by a computational security parameter τ , a message space
MSG, a tag space T AG, a slack parameter 0 < ϵ ≤ 1 and a delay parameter
Γ . FDE interacts with a set of parties P = {P1, . . . ,Pn} and an adversary S. FDE

maintains initially empty lists omsg (encrypted messages), L (keys being extracted),
EXT (extracted keys).

Encrypt Message: Upon receiving a message (CreatePuzzle, sid, ssid,m) from Pi

where m ∈ MSG, send (CreatePuzzle, sid, ssid) to S and let S provide puz.
If puz /∈ T AG or there exists (ssid, puz,m′) ∈ omsg, then FDE halts. Append
(ssid, puz,m) to omsg, set and output (Encrypt, sid, ssid, puz) to Pi and to S.

Extract Key: Upon receiving (Extract, sid, ssid) from Pi ∈ P, add (ssid, 0) to L
and send (Extract, sid, ssid) to S.

Decrypt Ciphertext: Upon receiving (Decrypt, sid, ssid, puz) from a party Pi ∈
P, ignore the message if Pi is honest and there does not exist a record ssid ∈
EXT or if Pi is corrupted and there does not exist a record (ssid, c) ∈ L for
c ≥ ϵΓ . Otherwise, proceed as follows:

– If (ssid, puz,m) ∈ omsg, output (Decrypt, sid, ssid, puz,m) to Pi.
– If there does not exist (ssid, puz,m) ∈ omsg, let S provide m ∈ MSG, add

(ssid, puz,m) to omsg and output (Decrypt, sid, ssid, puz,m) to Pi.

Tick: For all (ssid, c) ∈ L, update (ssid, c) ∈ L by setting c = c+ 1 and:
– If c ≥ ϵΓ , send (Extracted, sid, ssid) to S.
– If c = Γ , remove (ssid, c) ∈ L, send (Proceed?, sid, ssid) to S and proceed as

follows:
• If S sends (Abort, sid, ssid), output (Abort, sid, ssid) to all Pi.
• If S sends (Proceed, sid, ssid), add ssid to EXT and output

(Extracted, sid, ssid) to all Pi.

Fig. 22: Ticked Functionality FDE for Delay Encryption.

E More on OMS

E.1 Preliminaries for our OMS construction

Correctness of OMS We formally define correctness for a OMS scheme. By
inspection, our construction in Fig 8 satisfies correctness with negligible error,
where an error occurs if aggregated Rj or R̃j which are uniform in G happens
to be 1G (L. 8).

Definition E.1 (OMS Correctness). An ordered multi signature OMS is
said to be correct if ∀τ, n > 0 and for any message m it holds that:

Pr[1← OMS.Correctness(τ, n,m)] = 1− negl(τ)

where the OMS.Correctness experiment is defined in Fig. 23.

Forking Lemma We restate a variant of the general forking lemma from [58].
It differs from the widely used version of [11] in that an algorithm rewound by
the forking algorithm Fork takes additional side inputs vj ’s.

49

OMS.Correctness (τ, n,m)

1: pp← Setup(1τ)
2: for i ∈ [1, n] do
3: (pki, ski)← KeyGen()
4: sti := ε

5: L = (pk1, . . . , pkn)
6: for i ∈ [1, n] do

7: offi ← SignOffsti
(ski, L)

8: offs := (off1, . . . , offn)
9: for i ∈ [1, n] do
10: σi ← SignOnsti(ski,m, L, offs, σi−1)

11: σ = σn

12: return Vrfy(L,m, σ)

Fig. 23: Correctness for ordered multi signatures

Lemma E.2 (General Forking Lemma with side inputs [58]). Fix inte-
gers Q and m and sets C and V of size greater than 2. Let IGen be a randomized
algorithm that we call the input generator. Let B be a randomized algorithm
that on input inp, c1, . . . , cQ ∈ C and v1, . . . , vm ∈ V returns indices i ∈ [0, Q],
j ∈ [0,m] and a side output out. Let Fork be a forking algorithm that works as in
Fig. 24 given inp as input and given black-box access to B. Suppose the following
probabilities.

acc := Pr

[
i ≥ 1 :

inp← IGen(1τ); c1, . . . , cQ
$← C; v1, . . . , vm

$← V ;

(i, j, out)← B(inp, (c1, . . . , cQ), (v1, . . . , vm))

]

frk := Pr

[
b = 1 :

inp← IGen(1τ); v1, v̂1 . . . , vm, v̂m
$← V ;

(b, out, ôut)← Fork(inp, v1, v̂1, . . . , vm, v̂m)

]

Then

frk ≥ acc ·
(
acc

Q
− 1

|C|

)
.

Alternatively,

acc ≤ Q

|C|
+
√
Q · frk.

Fork(inp, v1, v̂1, . . . , vm, v̂m)
1: ρ← {0, 1}∗
2: c1, . . . , cQ ← C
3: (i, j, out)← B(inp, (c1, . . . , cQ), (v1, . . . , vm); ρ)
4: if i = 0 then return (0,⊥,⊥)
5: ĉi, . . . , ĉQ ← C
6: (̂i, ĵ, ôut)← B(inp, (c1, . . . , ci−1, ĉi, . . . , ĉQ), (v1, . . . , vj , v̂j+1, . . . , v̂m); ρ)
7: if i = î ∧ ci ̸= ĉi then return (1, out, ôut)
8: else return (0,⊥,⊥)

Fig. 24: Forking algorithm

50

One-More Discrete Log Assumption We state the one-more discrete log
assumption which our OMS construction inherits from MuSig2 Schnorr-based
(unordered) multi-signature [58].

Definition E.3 (OMDL Assumption). Let (G, p, g) be group parameters
generated by a group generator algorithm GGen(1τ). Let Och be an oracle that
returns a uniformly random element of G, and Odl be an oracle that on input
X ∈ G returns its discrete logarithm x ∈ Zp in base g, i.e., gx = X. The
one more discrete log assumption (OMDL) is true if for any PPT adversary A,
the probability AdvOMDL

GGen (A) that, A outputs solutions to q + 1 DLog instances
produced by Och while having made at most q queries to Odl, is negligible in τ .

E.2 Proof of Theorem 5.4

Here we first provide a high level overview. The reduction has the same structure
(except additional guessing arguments explained below) as the one used in the
proof of MuSig2 [58], with three wrappers around A. The inner-most wrapper,
B, simulates the OMS security game to A by embedding a Dlog challenge in
one of the honest keys registered by A and by answering signing queries using
queries to the Dlog solver oracle through the outer wrappers. Next there is an
algorithm Fork of the forking lemma [11, 58], that passes all Dlog challenges to
B as well as inputs to be used to answer some of A’s oracle queries. The main
task of Fork is to rewind B (and thus A, see Fig. 24) and carefully match inputs
to B with the series of OMDL values obtained by Fork via the final wrapper C,
which is playing the OMDL game (see Def. E.3).

Our proof differs from MuSig2 essentially in two ways due to a different
security model. Since the OMS scheme additionally guarantees a correct sequence
of honest signers unlike usual multi-signatures, we consider a more complex
situation where multiple signing oracles co-exist instead of one. The reduction
embeds a DLog challenge in one of the honest signing oracles and answers queries
to the remaining oracles using self-generated keys. In this way, the reduction still
succeeds using standard guessing arguments. While MuSig2 incurs a quartic
security loss due to double-forking, our proof does not suffer from it since the
security notion of OMS we inherit from [14] is not in the plain-public key model.
Outside the current application context, one may want to guarantee the security
without the key registration requirement, while withstanding the so-called rogue-
key attacks [56]. To retain security in the plain-public key model, the present
construction should be modified by having each party use distinct Fiat-Shamir
challenge insead of single c as in Fig. 26.

Theorem E.4. The OMS scheme of Fig. 8 with ℓ = 2 is OMS-UF-CMA secure
(Fig.7) under the OMDL assumption and in the programmable random oracle
model. Concretely, for any adversary A against OMS-UF-CMA security that re-
ceives at most Qk honest public keys from the key generation oracle, makes at
most Qh queries to the random oracles, and starts at most Qs sessions in to-
tal with OSignOff,OSignOn oracles, there exists an adversary C against OMDL

51

assumption such that

AdvOMS-UF-CMA
OMS (A) ≤ Q(Q+Q2

k)

p
+Q2

k ·

√
Q ·
(
AdvOMDL

GGen (C) + Q2

p

)
where Q = Qs + 2Qh + 1.

Proof. We prove that any successful forger A can be used to break the OMDL
assumption. We consider two types of forgeries: (1) (m∗, σ∗ = (R∗, z∗), L∗) out-
put at the end of the game, and (2) (m∗, L∗, offs∗, σ∗

i∗−1) sent to the OSignOn
oracle with index i∗ (and which triggers the win := 1 flag).

Type-(1) Forgery If the adversary A causes a Type-(1) forgery, we construct
the following reduction to OMDL. Let Qk be the number of queries to OKeyReg
with aux = ε (i.e., maximum number of honest keys). The reduction goes through
multiple layers of wrappers below.

– B(pk∗, U1, . . . , U2Qs
, c1, . . . , cQ, v1, . . . , vQ): A wrapper algorithm that simu-

lates the view of A without using a secret key belonging to one of the uncor-
rupted (honest) parties. B initially picks uniform t ∈ [1, Qk]. Whenever A
submits a new honest signer key request (uid, ϵ), if this is the t-th query, then
it answers with the challenge public key pk∗. Otherwise, it generates a new
key pair using KeyGen algorithm and returns the corresponding public key as
OKeyReg would. In this way, B knows Qk−1 secret keys of honest parties. B
answers queries to Hch, Hnon, OSignOff and OSignOn in the natural way (ex-
plained below). Upon receiving a valid forgery (m∗, L∗, σ∗ = (R∗, z∗)) at the
end of the game, it outputs (ctr ch∗, ctr non∗, out), which are as described
below.

– Fork(pk∗, U1, . . . , U2Qs , v1, . . . , vQ, v̂1, . . . , v̂Q): A forker algorithm that rewinds
B as in Figure 24.

– C: A OMDL adversary again that runs Fork internally. It initially makes
2Qs + 1 queries to Och to obtain DLog instances (pk∗, U1, . . . , U2Qs

). After
sampling v1, v̂1, . . . , vQ, v̂Q ∈ Zp uniformly, C runs Fork(inp, v1, v̂1, . . . , vQ, v̂Q)
where inp = (pk∗, U1, . . . , U2Qs

). Then on receiving (1, out, ôut) from Fork, it
outputs DLog solutions (sk∗, u1, . . . , u2Qs) such that pk∗ = gsk

∗
and Uj = guj

for j = 1, . . . , 2Qs. Note that C is allowed to make at most 2Qs queries to
Odl in order to win the OMDL game.

Description of B B perfectly simulates the view of A in the OMS-UF-CMA game
as follows, except at a few abort events highlighted.

– Initialization: B runs A on input pp. It initially samples uniform t ∈ [1, Qk]
and sets ctr u = 0, ctr ch = 0 and ctr non = 0. It also initializes empty
key-value lookup tables HTch and HTnon.

– Hnon: On receiving a query to Hnon with input X := (m, (R1,1, R1,2, . . . ,
Rn,1, Rn,2), L), if HTnon[X] is already defined B returns this value. Other-
wise, B increments ctr non, and computes R =

∏n
i=1 Ri,1 · (

∏n
i=1 Ri,2)

vctr non ,

52

using the vi values in its input. If
∏n

i=1 Ri,2 ̸= 1G and HTch[m,R,L] is al-
ready defined, B aborts. Assuming vctr non is sampled uniformly from Zp, this
happens with probability at most 1/p for each query and thus overall at most
Q2/p by the union bound. Otherwise, it makes a query to Hch with input
(m,R,L), sets HTnon[X] := vctr non, and returns vctr non. Here we use the
programmability of the random oracle.

– Hch: On receiving a query to Hch with input X := (m,R,L), if HTch[X] is
defined B returns this value. Otherwise, B increments ctr ch, sets HTch[X] :=
cctr ch, and returns cctr ch. Here we use the programmability of the random
oracle.

– OKeyReg: Whenever A queries OKeyReg with new uid with empty aux, if
this is the t-th query with empty aux, B registers (1, pk∗, 0) in K, and returns
pk∗. Otherwise, it proceeds as the actual OKeyReg would.

– OSignOff: Whenever A queries OSignOff with a new session identifier sid and
L with an index i corresponding to one of the honest keys, if pk∗ = pki ∈ L
then B lets Ri,j := Uctr u+j for j = 1, 2, and then sets ctr u = ctr u + 2.
Otherwise, it proceeds as the actual OSignOn would. B also updates T as
OSignOff would and returns offi = (Ri,1, Ri,2).

– OSignOn: Whenever A queries OSignOn with a valid sid, m, L, offs = (R1,1,
R1,2, . . . , Rn,1, Rn,2), σi−1 = (R, z̃) with an index i corresponding to one of
the honest keys, B runs all the sanity checks performed by OSignOn, and
executes the operations of SignOn, except at line 19 where B’s behavior
differs depending on the type of the key:
• If pki = pk∗, B makes a query to Odl with input Ri,1 ·Rv

i,2 ·pk
c
i to obtain

its discrete logarithm: zi.
• Else, B computes zi using the knowledge of ski and ri,1, ri,2 as the actual
SignOn would.

Whenever any of the checks performed by OSignOn fails, B also returns ⊥
to A as OSignOn would.

– When A outputs a forgery tuple (m∗, L∗, σ∗ = (R∗, z∗)), B returns (0,⊥,⊥)
if any of the validity checks in the OMS-UF-CMA game fails. Moreover, if
pk∗ /∈ L∗ or (m∗, L∗) has been signed by pk∗ previously, B aborts. Since the
challenge pk∗ is embedded in one of Qk honest keys uniformly at random,
the probability that B does not abort here is at least 1/Qk. Otherwise, let
ctr ch∗ and ctr non∗ be the values of ctr ch and ctr non at the moment
HTch[m

∗, R∗, L∗] is defined, respectively. That is, HTch[m
∗, R∗, L∗] = cctr ch∗

and v1, . . . , vctr non∗ have been used by the time HTch[m
∗, R∗, L∗] is set.

Moreover let j∗ ∈ [n] be the index such that pk∗ = pkj∗ ∈ L and K∗ be the
list of secret keys corresponding to other public keys L∗ \ {pkj∗}. Finally, B
outputs (ctr ch∗, ctr non∗, out = (ctr ch∗, ctr non∗, j∗, L∗,K∗, R∗, c∗, z∗).

Description of C

– C runs Fork on its input and uniformly sampled v1, . . . , vQ, v̂1, . . . , v̂Q ∈ Zq.
Whenever B asks for a query to Odl through Fork, C forwards that query
and the response accordingly, but in case the second run of B makes a query

53

identical to one of the previous queries, C uses a cached response from the pre-
vious run instead of redundantly querying Odl. After obtaining (b, out, ôut)
from Fork, if b = 0 C aborts. If b = 1, then C parses

out = (ctr ch∗, ctr non∗, (j∗, L∗,K∗, R∗, c∗, z∗))

and
ôut = (ctr ch∗, ctr non∗, (j∗, L∗,K∗, R∗, ĉ∗, ẑ∗)),

from Fork (where ctr ch∗, ctr non∗, j∗, L∗,K∗, R∗ from two outputs are guar-
anteed to be identical thanks to the way B simulates the view and the suc-
cessful run of Fork). Due to the verification condition, if b = 1 we have that

gz
∗
= R∗ ·

(
n∏

i=1

pki

)cctr ch∗

gẑ
∗
= R∗ ·

(
n∏

i=1

pki

)ĉctr ch∗

.

– C extracts the secret key for the challenge public key pk∗ as follows.

sk∗ =

(z∗ − ẑ∗) · (cctr ch∗ − ĉctr ch∗)−1 −
n∑

i=1,i̸=j∗

ski


where co-signers’ secret keys ski for i ̸= j∗ are indeed known thanks to the
key registration requirement.

– Now that C knows DLog of pk, what’s left is computing DLogs of (U1, . . . , U2Qs).
For each ctr u ∈ [0, Qs−2], consider the response zi computed inside OSignOn
by consuming Uctr u+1, Uctr u+2 and querying Odl during the first run of B.
For some ctr ch, ctr non, zi satisfies

zi = ri,1 + vctr non · ri,2 + cctr ch · sk∗ (1)

where ri,1 and ri,2 are DLogs of Ri,1 = Uctr u+1 and Ri,2 = Uctr u+2, and
vctr non = Hnon(m, offs, L). If ctr ch < ctr ch∗ at that moment, then C hasn’t
made any extra query to Odl during the second run of B. Thus, C simply
queries Odl with Ri,1 to learn ri,1 and uses this information to compute
ri,2 := dLog(Ri,2) = dLog(Uctr u+2). If ctr ch > ctr ch∗ at that moment9,
the response ẑi computed in the second run also satisfies

ẑi = ri,1 + v̂ ̂ctr non · ri,2 + ĉ
ĉtr ch

· sk∗ (2)

where ̂ctr non > ctr non∗ and v̂ ̂ctr non = Hnon(m̂, ôffs, L̂). If vctr non = v̂ ̂ctr non

(which happens with probability at most 1/p for each combination of ctr non

9 It must be that ctr ch ̸= ctr ch∗ ifA creates a successful forgery. Otherwise, ctr ch∗ =
Hch(m

∗, R∗, L∗) is used while computing the response, contradicting the winning
condition that (R∗, L∗) has never been signed by the owner of pk∗.

54

and ̂ctr non and thus overall at most Q2/p by the union bound), C aborts.
Otherwise, C can successfully solve the system of two linear equations with
two unknowns ri,1 and ri,2 (recall that at this point sk

∗, vctr non, v̂ ̂ctr non, cctr ch

and ĉ
ĉtr ch

are all known to the reduction).

We now invoke the forking lemma (Lemma E.2). By construction we have that

acc(B) =
(
AdvOMS-UF-CMA

OMS (A)− Q2

p

)
/Qk

by accounting for the abort events happening when queries to Hnon are made and
when the forgery is submitted by A. Since C succeeds in breaking the OMDL
assumption as long as Fork outputs two valid outputs and it doesn’t abort,
overall

AdvOMDL(C) ≥ frk−Q2/p

≥ acc(B) ·
(
acc(B)

Q
− 1

p

)
− Q2

p
.

Finally, we remark that the above lower bound is > 0 and can easily be made
noticeable since p’s size is determined directly by the security parameter.

Type-(2) Forgery If the adversary A causes a Type-(2) forgery, we construct
the following reduction to OMDL. The reduction goes through multiple layers
of wrappers analogous to Type-(1) forgery. We will only explain the differences
below.

Description of B

– Initialization: B performs the same initialization operations as before. Ad-
ditionally, it samples uniform s ∈ [1, Qk] \ {t}, indicating one of the honest
public keys whose owner is responsible for detecting Type-(2) forgery. We
call it a detector key.

– Hnon,Hch,OKeyReg,OSignOff: Queries to these oracles are answered as be-
fore. Additionally, if A makes the s-th query with empty aux to OKeyReg,
B remembers an honestly generated key pk′ as the detector key.

– OSignOn: Whenever A queries OSignOn with an valid sid,m∗, L∗ = (pk1, . . . ,
pkn), offs

∗ = (R∗
1,1, R

∗
1,2, . . . , R

∗
n,1, R

∗
n,2), σi∗−1 = (R∗, z̃∗) with an index i∗

corresponding to one of the honest keys, B performs the same operations as
before, except that before sending a response toA, it carries out the following
checks. B verifies the so-far aggregation, i.e., check gz̃

∗
= R̃∗ ·

∏i∗−1
i=1 pkc

∗

i ,

where R̃∗ = (
∏i∗−1

i=1 R∗
i,1)(

∏i∗−1
i=1 R∗

i,2)
v∗
, v∗ = Hnon(m

∗, offs∗, L∗), and c∗ =
Hch(L

∗,m∗, R∗). If the check passes and inputs are well-formed, B proceeds
as follows.

• If there exists some j∗ < i∗ such that pkj∗ has never signed (m∗, L∗)
while the check passes (i.e., the flag win would be set in the OMS-UF-CMA

55

game), then B proceeds as follows. First, if pki∗ ̸= pk′ then B aborts. Sec-
ond, if for all j < i∗ pkj ̸= pk∗ or pk∗ has already signed (m∗, L∗) then
B aborts. Since the challenge pk∗ is uniformly embedded in one of Qk

honest keys and the detector key pk′ is uniformly embedded in one of the
remaining Qk − 1 honest keys, respectively, the probability that B does
not abort here is at least 1/Q2

k. If B does not abort (i.e., pki∗ = pk′ and
∃j∗ < i∗ such that pk∗ = pkj∗ ∈ L∗ and pkj∗ has never signed (m∗, L∗)),
B sets the following variables. Let ctr ch∗ and ctr non∗ be the values of
ctr ch and ctr non at the moment HTch[m

∗, R∗, L∗] is defined, respec-
tively. That is, HTch[m

∗, R∗, L∗] = cctr ch∗ and v1, . . . , vctr non∗ have been
used by the time HTch[m

∗, R∗, L∗] is set. Let K∗ be the list of secret keys
corresponding to the public keys in L∗ \ {pkj∗}. Then B halts by out-

putting (ctr ch∗, ctr non∗, out), where out = (i∗, j∗, L∗,K∗, R̃∗, c∗, z̃∗) .

• Otherwise, B proceeds as in Type-(1) forgery.

Description of C

– C runs Fork as before. After obtaining (b, out, ôut) from Fork, if b = 0 C
aborts. If b = 1, then C parses

out = (ctr ch∗, ctr non∗, (i∗, j∗, L∗,K∗, R̃∗, c∗, z̃∗))

and

ôut = (ctr ch∗, ctr non∗, (i∗, j∗, L∗,K∗, R̃∗, ĉ∗, ̂̃z∗)),
from Fork.

We argue that ctr ch∗, ctr non∗, i∗, j∗, L∗,K∗, R̃∗ from two outputs are guar-
anteed to be identical whenever b = 1, ctr ch∗ is by definition identical due
to the success condition of Fork. In that case, ctr non∗ must also be identical
due to the way B defines it. Since ctr ch∗ is identical and B’s behavior is
identical until the ctr ch∗-th query is made to Hch, it is guaranteed that the
corresponding input (m∗, R∗, L∗) to Hch is the same in the two executions
as in the analysis of Type-(1) forgeries. Since L∗ is identical, K∗ is also iden-
tical. Thanks to the abort condition of B when handling OSignOn queries,
once L∗ is fixed it is guaranteed that i∗ and j∗ are the same in the two
executions.

The crucial difference with the analysis of Type-(1) is that the partial aggre-
gation of Ri,j for i = 1, . . . , i∗−1, denoted by R̃∗, is not included in the input

of Hch. Still, we can make sure that R̃∗ is identical in the two executions.
Thanks to the abort event happening within simulation of Hnon, it is guar-
anteed that the corresponding (m∗, offs∗ = (R∗

1,1, R
∗
1,2, . . . , R

∗
n,1, R

∗
n,2), L

∗)
has been queried to Hnon (which then determines the value of v∗) before Hch

is queried with (m∗, R∗, L∗). Thus, R̃∗ = (
∏i∗−1

i=1 R∗
i,1) · (

∏i∗−1
i=1 R∗

i,2)
v∗

does
not change after forking.

56

Now, due to the verification condition, if b = 1 we have that

gz̃
∗
= R̃∗ ·

(
i∗−1∏
i=1

pki

)cctr ch∗

g
̂̃z∗

= R̃∗ ·

(
i∗−1∏
i=1

pki

)ĉctr ch∗

.

– C extracts the secret key for the challenge public key pk∗ as follows.

sk∗ =

(z∗ − ẑ∗) · (cctr ch∗ − ĉctr ch∗)−1 −
i∗−1∑

i=1,i̸=j∗

ski


where co-signers’ secret keys ski for i ̸= j∗ are indeed known thanks to the
key registration requirement.

– Now that C knows DLog of pk, what’s left is computing DLogs of (U1, . . . , U2Qs
).

This can be done as in Type-(1) forgery with the same additive loss of Q2/p.

By the forking lemma (Lemma E.2) we have that

acc(B) =
(
AdvOMS-UF-CMA

OMS (A)− Q2

p

)
/Q2

k

by accounting for the abort events happening when queries to Hnon are made
and when a forged aggregate so-far is submitted to OSignOn. The rest of the
analysis is identical to Type-(1) forgery. Rearranging the terms, we obtain the
advantage bound of the theorem statement ⊓⊔

E.3 Three OMS Variants

In what follows we describe three flavors of OMSs and show how to tweak the
plain construction in Figure 8 to meet different features.

Out-and-Back topologies We present a variation of our OMS construction that
runs in a out-and-back fashion (instead of round-Robin) and without broadcast.
This is relevant in settings where signers are placed in such a way that the signer
in position i can communicate with signers in positions i+ 1 ≤ n and i− 1 > 0,
but no loop is possible between signer n and signer 1. Setup(1τ),KeyGen(), and
Vrfy(L,m, σ) are the same as in Figure 8. SignOff is essentially as in Figure 8,
except that it takes in input aux = (L, off ′

i−1) where off ′
i−1 = (offj)

i−1
j=1 and

returns the output off ′
i that collects the offline contributions of all singers so-

far. Signer in position i passes the list L together off ′
i to signer i + 1 ≤ n, and

the output of SignOn to signer i − 1 > 0 (out-and-back). Signer in position n
generates σ0 = (1G, 0) and offs = (off1, . . . , offn) and initiates the online phase.
SignOn is very similar to the one in Figure 8, the only difference is that the
index of aggregated items (computed in lines 4, 7) are starting from n down to
i (instead of from 1, up to i). Similarly, line 11 runs for i = n.

57

Determining signers order on-the-fly See Figure 25. Up to now, we considered
settings where L, the list of ordered signers, was known to all parties before the
two-phase interactive signing procedure. Now we propose an OMS scheme that
can work in settings where L is determined on-the-fly during the offline phase.
Here we assume the round-Robin communication model, so the signers’ order is
preserved in the offline and online phases.

Key Aggregation in the Plain Public-Key Model See Figure 26. The construction
closely follows MuSig2, except that an aggregated key pk varies depending on the
order of keys in the list L and SignOn additionally validates an aggregate so-far
as in our basic OMS construction. Essentially, each signer needs to derive joint
aggregate public keys by taking the random linear combination of all public keys,
where coefficients are derived through the random oracle Hagg. To generalize the
security proof of Theorem E.4 to prove security of the present variant in the PPK
model, one should set ℓ = 4 as in [58]. Accordingly, the reduction must invoke
the forking lemma twice, first at an aggregation coefficient ai for honest party’s
pk and second at challenge c. This will lead to a quartic reduction loss similar
to [58], which, howerver, could be circumvent by accepting stronger assumptions
such as the algebraic group model [41].

Setup(1τ),KeyGen(), SignOn and Vrfy(L,m, σ) are the same as in Figure 8.

SignOffst(sk, aux = (L′, offs′)) :

1: i := |L′|+ 1 ▷ Identify signer’s position
2: st := (i, L′) ▷ Store position and so-far signers’

chain
3: for j ∈ [1, ℓ] do

4: ri,j
$← Zp

5: Ri,j := gri,j

6: sti := sti|ri,j |Ri,j

7: offs := offs′|(Ri,1, . . . , Ri,ℓ)
8: L := L′|pk
9: return (L, offs)

Fig. 25: OMS construction for determining signers’ order on-the-fly

58

KeyGen() and SignOff are the same as in Figure 8. Vrfy(pk,m, σ) is identical to the
usual Schnorr verification algorithm. Setup and SignOn are very similar to the ones
in Figure 8, we highlight the lines that differ. KAgg is the additionalkey aggregation
algorithm that combines an ordered list of keys into a single pk that looks like a
usual Schnorr verification key.

Setup(1τ) :

1: (G, p, g)← GroupGen(1τ)
2: (n, ℓ)← poly(τ)
3: Hnon,Hch,Hagg : {0, 1}∗ → Z∗

p

4: σ0 := (1G, 0) ∈G× Zp

5: return pp := (G, g, p, n, ℓ,H, σ0)

KAgg(L, k) :

1: Parse L = (pk1, . . . , pkn) ∈ Gn

2: for i ∈ [1, n] do
3: ai = Hagg(L, pki)

4: pk =
∏k

i=1 pk
ai
i

5: return pk

Vrfy(pk,m, σ) :

1: Parse σ = (R, z) ∈ G× Zp

2: c← Hch(m,R, pk) ∈ Zp

3: if gz = R · pkc then
4: return 1
5: return 0

SignOnsti(ski,m, L, offs, σi−1) :

▷ Lines 1-10: processing independent of
m,σi−1

1: Parse sti = (ri,j |R′
i,j)

ℓ
j=1

2: Parse offs = ((R1,j)
ℓ
j=1, . . . , (Rn,j)

ℓ
j=1)

3: if R′
i,j ̸= Ri,j then return ε

4: for j ∈ [1, ℓ] do
5: Rj :=

∏ℓ
k=1 Rk,j

6: R̃j :=
∏i−1

k=1 Rk,j

7: if Rj = 1G or R̃j = 1G then return ε

8: pk := KAgg(L, n)

9: p̃k := KAgg(L, i− 1)
10: ai := Hagg(L, pki)

▷ Lines 11-22: processing that depends
on m,σi−1

11: Parse σi−1 = (R, z̃)
12: v ← Hnon(m, offs, pk)
13: if i = 1 then
14: R :=

∏ℓ
j=1 R

vj−1

j

15: c← Hch(m,R, pk)
16: else ▷ Check so-far aggregation

17: if R ̸=
∏ℓ

j=1 R
vj−1

j then return ε

18: R̃ :=
∏ℓ

j=1 R̃
vj−1

j

19: c← Hch(m,R, pk)

20: if gz̃ ̸= R̃ · p̃k
c
then return ⊥∗

21: zi := c · ai · ski +
∑ℓ

j=1 v
j−1 · ri,j

22: z := z̃ + zi return σi := (R, z)

Fig. 26: OMS construction supporting key aggregation and security in the PPK
model

59

F Multi-Signatures in the UC Framework

In this section, we formalize variants of multi-signatures in a bottom-up man-
ner. First, we present FMS as generalization of the FSig functionality. Then we
extend it to FIMS to capture interactive multi-signatures with preprocessing. Fi-
nally, we modify it to FOMS to model interactive ordered multi-signatures with
preprocessing.

F.1 Ideal Functionality for Multi-Signatures

As a warm-up, we present an ideal functionality FMS for (non-interactive) multi-
signatures. An ideal functionality for stake-based threshold multi-signatures ex-
ists in the literature [31]. Our functionality is much simpler because it aims to
capture existing schemes in the standard plain-public key model. It can be seen
as a generalization of FSig from [25] with following differences:

– FSig is defined for a single designated signer S and only accepts a key reg-
istration query with sid encoding a signer identity, i.e., sid = (sid′, S) for
some sid′, whereas FMS is defined w.r.t. n signers P1, . . . ,Pn and records an
individual key for every signer.

– FMS’s Sign command takes a key list L together with message m as input.
To capture security in the plain public key model, the functionality does not
validate keys of co-signers. This allows the environment to insert maliciously
created self-chosen keys into L.

– FMS additionally has the Aggregate command, which allows any party to
aggregate n partial signatures into a single combined signature σ. Note that
this command does not perform validity check of individual parial signature.

– FMS verifies a multi-signature analogously to FSig, but its procedures are
more involved due to multiple signers. Essentially, it guarantees completes
by checking that Aggregate command was invoked on some σ1, . . . , σℓ

which have been explicitly created via Sign command on input L and m. To
model unforgeability, if there exists some uncorrupt party Pi that has never
agreed to sign m with L, then it rejects a signature. Otherwise, FMS asks an
ideal adversary to determine the result of verification.

By extending the result of [25] in a straightforward manner, one can show that
non-interactive multi-signature schemes meeting the standard UF-CMA security
in the plain public-key model (e.g. BLS-based scheme of [16]) UC-realizes FMS.
However, FMS does not model many recent schemes requiring interaction between
parties. FIMS (Figure 28) is an extended functionality with a setup phase where
parties register themselves and their intended co-signers (in a way similar to
the ideal functionality for threshold signatures [29]). This phase is necessary
for interactive schemes where each party requires the knowledge of co-signers’
party ID. It also turns out useful for modeling some existing schemes that can
preprocess the first round of interaction without knowing a message to be signed.
Then once the functionality received a message m to be signed, it hands over a

60

partial signature σi to Pi as long as all parties encoded in ssid have completed
the setup phase.

Finally, we present FOMS (Figure 29) to model ordered interactive multi-
signatures. Unlike FMS and FIMS, this functionality verifies that all n keys are
registered and is usable for fixed ordering of exactly n keys, which is sufficient
for our application. This restriction can be dropped in case the plain-public
key model is desired. Note that FOMS has not aggregation interface since OMS
assumes every party in a sequence to perform partial aggregaton as it contributes
to signing. Order of online signing is guaranteed by making sure that all prior
signers in the list have recorded partial signatures for the same (ssid, L,m).

F.2 UC Security of Interactive Multi-Signatures

Game-based Security of Interactive Multi-Signatures We recall the syn-
tax of offline-online interactive multi-signatures and the game-based security
notion.

Definition F.1 (Interactive Multi-Signature Scheme (IMS)). We define
interactive multi-signature IMS as a tuple of algorithms10

IMS = (Setup,KeyGen,SignOff,SignOn,Agg,Vrfy)

with the following input-output behavior. To formally handle the interactive sign-
ing, SignOff and SignOn are stateful algorithms that share a common state st.

Setup(1τ): on input the security parameter τ , this algorithm outputs a handle
of public parameters pp. Throughout, we assume that pp is given as implicit
input to all other algorithms.

KeyGen(): on input the public parameters, the key generation algorithm outputs
a key pair (pk, sk).

SignOffst(sk, aux): on input a secret key sk, and some (possibly empty) auxiliary
information aux; the offline signing algorithm outputs an offline token off.
This is a stateful algorithm, and updates st at every execution. We note that
this algorithm is agnostic of the message m to be signed, and runs indepen-
dently of m.

10 We remark that IMSs as defined in [58] have an additional signing function that
post-processes the aggregated online tokens to generate a signature. We assume this
function to be trivial, meaning that it merely outputs the input aggregated online
tokens as a signature (as MuSig2 does) and therefore can be omitted. Another minor
modification from [58] is that Vrfy explicitly takes a public key list L instead of a
single aggregated key. This does not impact the security claim: since in the EUF-
CMA game of [58] the verifier is guaranteed to receive an output of key aggregation
anyway, we can assume this operation happens inside Vrfy. Finally, we rename the
algorithms involved in the interactive signing procedure to follow the pattern we
introduced for OMS.

61

Functionality FMS

The functionality interacts with n signers in P = {P1, . . . ,Pn}, a verifier V, and a
simulator S. The adversary can corrupt c < n signers, denoted by the set C ⊊ P.
We assume the functionality only accepts a key set L that has cardinality at most
n and does not contain duplicate keys.

Key generation Upon receiving input (KeyGen, sid) from a signer Pi ∈ P:
1. If there exists a record (keyrec,Pi, ∗), then abort. ▷ Prevent overwriting
2. Send (KeyGen, sid,Pi) to S and wait for (KeyConf, sid, pki) from S.
3. If there exists a record (sigrec, L, ∗, ∗, ∗) such that pki ∈ L, then abort. ▷

Enforce distinct public keys
4. Create record (keyrec,Pi, pki) and output (KeyConf, sid, pki) to Pi.

Signature Generation Upon receiving input (Sign, sid, L,m) from any Pi ∈ P:
1. If there exists no record (keyrec,Pi, pki), then abort.
2. Retrieve (keyrec,Pi, pki). If pki /∈ L, then abort.
3. Send (Sign, sid,Pi, L,m) to S, and wait for (Signature, sid, σi) from S.
4. Create a record (psigrec,Pi, L,m, σi).
5. Output (Signature, sid, σi) to Pi.

Signature Aggregation Upon receiving input (Aggregate, sid, L,m, σ1, . . .
. . . , σℓ) from any party:

1. If |L| ̸= ℓ, then abort.
2. Send (Aggregate, sid, L,m, {σ1, . . . , σℓ}) to S, wait for (Aggregated, sid, σ)

from S.
3. Create a record (aggrec, L,m, {σ1, . . . , σℓ}, σ) and output (Aggregated,

sid, σ).

Signature Verification Upon receiving input (Verify, sid, L,m, σ) from V, send
(Verify, sid, L,m, σ) to S. On receiving (Verified, sid, b′) from S:
1. If there exists a record (sigrec, L,m, σ, b), set f := b. ▷ Consistency
2. Let L′ ⊆ L be the maximal subset of L such that for all pk′ ∈ L′ there

exists a record (keyrec,Pi, pki) such that pki = pk′. Let P ′ ⊆ P the set
of parties corresponding to L′ and I ′ ⊆ [n] be the set of index such that
for all i ∈ I ′ Pi ∈ P ′:
– If (i) L′ = L, (ii) for all Pi ∈ P ′, there exists a record

(psigrec,Pi, L,m, σi) for some σi, and (iii) there exists a record
(aggrec, L,m, {σi}i∈I′ , σ), then set f := 1 ▷ Completeness

– Else, if for some Pi ∈ P ′ ∩ (P \ C), there exists no record
(psigrec,Pi, L,m, ∗), then set f := 0. ▷ Unforgeability

– Else, set f := b′.
3. Create a record (sigrec, L,m, σ, f) and output (Verified, sid, f) to V.

Fig. 27: MS ideal functionality in the plain public-key model

62

Functionality FIMS

The functionality interacts with n signers in P = {P1, . . . ,Pn}, a verifier V, and a
simulator S. The adversary can corrupt c < n signers, denoted by the set C ⊊ P.
We assume the functionality only accepts a key set L that has cardinality at most n
and doe not contain duplicate keys. We distinguish different offline phases by using
unique ssids encoding co-signers’ identities.

Key generation Same as FMS.
Signature Setup (Offline Phase) Upon receiving (SignOff, sid, ssid, L) from
Pi ∈ P or (SignOff, sid, ssid, L,Pi) from S:

1. Check that ssid = (ssid′, {Pj}j∈I) for some ssid′, I ⊆ [n], |L| = |I|, and i ∈ I.
If not, then abort. ▷ Check valid signer identities are encoded in ssid

2. If the input is from Pi ∈ P \ C:
– Retrieve (keyrec,Pi, pki) or abort if no such record exists.
– If pki /∈ L, then abort.
– If there exists record (joined, ssid, ∗,Pi), then abort ▷ Honest parties will

only use ssid once.
– Else, send (Join, sid, ssid, L, pki) to S and create record (joined, ssid, L,Pi).

3. If the input is from S:
– If Pi /∈ C, then abort.
– Else, create record (joined, ssid, L,Pi) ▷ Ideal adversary notifies a

corrupt party Pi has joined.
4. If for all j ∈ I, there exists record (joined, ssid, L,Pj) for the same (ssid, L),

create record (sigsetup, ssid, L). ▷ All parties have completed the setup for L
for this ssid.

5. Output (SignedOff, sid, ssid) to Pi.
Signature Generation (Online Phase) Upon receiving (SignOn,

sid, ssid, L,m) from any Pi ∈ P:
1. If no record (sigsetup, ssid, L) exists, return (fail, sid, ssid). ▷ Setup for ssid

must be completed before signing and setup must be fresh.
2. If Pi ∈ P \ C has sent (Signature, sid, ssid, ∗) before, return (fail, sid, ssid). ▷

Honest parties only issue one partial signature per ssid.
3. Send (Sign, sid, ssid,Pi, L,m) to S, and wait for (Signature, sid, ssid, σi) from
S.

4. Create record (psigrec, ssid,Pi, L,m, σi).
5. Output (Signature, sid, ssid, σi) to Pi.

Signature Aggregation Same as FMS.
Signature Verification Upon receiving input (Verify, sid, L,m, σ) from V:
1. If there exists a record (sigrec, L,m, σ, b), set f := b. ▷ Consistency
2. Let L′ ⊆ L be the maximal subset of L such that for all pk′ ∈ L′ there exists

a record (keyrec,Pi, pki) such that pki = pk′. Let P ′ ⊆ P the set of parties
corresponding to L′ and I ′ ⊆ [n] be the set of index such that for all i ∈ I ′

Pi ∈ P ′:
– If (i) L′ = L, (ii) for all Pi ∈ P ′, there exists a record

(psigrec, ssid,Pi, L,m, σi) for the same ssid and for some σi, and (iii) there
exists a record (aggrec, L,m, {σi}i∈I′ , σ), then set f := 1 ▷
Completeness

– Else, if for some Pi ∈ P ′ ∩ (P \ C), there exists no record
(psigrec, ∗,Pi, L,m, ∗), then set f := 0. ▷ Unforgeability

– Else, set f := b′.
3. Create a record (sigrec, L,m, σ, f) and output (Verified, sid, f) to V.

Fig. 28: IMS ideal functionality in the plain public-key model. Differences from
FMS are in this font.

63

Functionality FOMS

The functionality interacts with n signers in P = {P1, . . . ,Pn}, a verifier V, and a
simulator S. The adversary can corrupt c < n signers, denoted by the set C ⊊ P.
We assume the functionality only accepts a key set L that has cardinality at most n
and doe not contain duplicate keys. We distinguish different offline phases by using
unique ssids encoding co-signers’ identities. In what follows, L denotes the list of
signers’ public keys, ordered according to the index of the corresponding signer,
i.e., let pki denote the public key of signer Pi, then L = (pk1, . . . , pkn). Signature
setup, signature generation, and verification only accept input containing L such
that its all n public keys are registered in the functionality.

Key generation Same as in FMS upon receiving input from Pi /∈ C. More-
over, upon receiving (KeyGen, sid,Pi, pki) from S for Pi ∈ C, create record
(keyrec,Pi, pki).

Signature Setup (Offline Phase) Same as FIMS.
Signature Generation (Online Phase) Upon receiving input (Sign,

sid, ssid, L,m, σi−1) from any Pi ∈ P:
1. If no record (sigsetup, ssid, L) exists, return (fail, sid, ssid). ▷ Setup for ssid

must be completed before signing and setup must be fresh.
2. If Pi ∈ P \ C has sent (Signature, sid, ssid, ∗) before, return (fail, sid, ssid). ▷

Honest parties only issue one partial signature per ssid.
3. If 1 < i ≤ n and no record (psigrec, ssid,Pj , L,m, ∗) exists for some 1 ≤ j < i

such that Pj ∈ P \ C, then return (Fail, sid, L,m). ▷ Honest signers prior to i
must have already signed

4. Send (Sign, sid, ssid,Pi, L,m, σi−1) to S, and wait for (Signature, sid, ssid, σi)
from S.

5. If Pi ∈ P \ C and σi ∈ {⊥∗, ε}, then return (Fail, sid, L,m)
6. Create record (psigrec, ssid,Pi, L,m, σi).
7. Output (Signature, sid, ssid, σi) to Pi.

Signature Verification Upon receiving input (Verify, sid, L,m, σ) from V:
1. If there exists a record (sigrec, L,m, σ, b), set f := b. ▷ Consistency
2. Let L′ ⊆ L be the maximal subset of L such that for all pk′ ∈ L′ there exists

a record (keyrec,Pi, pki) such that pki = pk′. Let P ′ ⊆ P the set of parties
corresponding to L′ and I ′ ⊆ [n] be the set of index such that for all i ∈ I ′

Pi ∈ P ′:
– If (i) L′ = L, (ii) for all Pi ∈ P ′, there exists a record

(psigrec, ssid,Pi, L,m, σi) for the same ssid and for some σi, and (iii)
σn = σ, then set f := 1 ▷ Completeness

– Else, if for some Pi ∈ P ′ ∩ (P \ C), there exists no record
(psigrec, ∗,Pi, L,m, ∗), then set f := 0. ▷ Unforgeability

– Else, set f := b′.
3. Create a record (sigrec, L,m, σ, f) and output (Verified, sid, f) to V.

Fig. 29: OMS ideal functionality FOMS. Differences from FIMS are in this font.

64

SignOnst(sk,m, offs, L): on input a secret key sk, message m, offline tokens offs =
(off1, . . . , offn), and a list of public keys L = (pk1, . . . , pkn), the online sign-
ing algorithm outputs an online signing token σ, and updates its internal
state st.

Agg(σ1, . . . , σn): on input n partial online tokens, the online aggregation algo-
rithm outputs a signature σ. This algorithm is deterministic.

Vrfy(L,m, σ): on input a list of public keys L, a message m, and a signature σ,
the verification algorithm outputs 1 (accept) or 0 (reject).

Following [58], we recall the game-based security notion tailored to two-round
offline-online IMS, except that we assume that aggregation of offline tokens is
locally performed by each party (which is in fact the setting considered captured
by a more widely used security notion of [11]).

Definition F.2 (IMS Security). An interactive multi signature IMS is said
to be secure if for any probabilistic polynomial time adversary A and ∀τ it holds
that:

AdvIMS-UF-CMA
IMS (A, τ) := Pr[1← IMS-UF-CMA(A, τ)] ≤ negl(τ)

where IMS-UF-CMA is the security-game for unforgeability under chosen-message
attack of interactive multi-signatures defined in Figure 30.

Security Model for IMS

Game IMS-UF-CMA(A, τ)
1: T := ∅; Q := ∅
2: pp← Setup(1τ)
3: (pk, sk)← KeyGen(pp)
4: O := {OSignOff, OSignOn } ▷ If pp

contain hash functions, RO is in O
5: (L∗,m∗, σ∗)← AO(pp, pk)
6: if pk /∈ L∗ then
7: return 0
8: if ∃ sid∗ : Q[sid∗] = (L∗,m∗) then
9: return 0
10: return Vrfy(L∗,m∗, σ∗)

Oracles

OSignOff(sid, aux)

1: if T [sid] ̸= ⊥ then
2: return session exists

3: off ← SignOffst(sk, aux)
4: T [sid] := st

5: return off

OSignOn(sid, L,m, offs)

1: if pk /∈ L then return honest

signer missing

2: if T [sid] = ⊥∨Q[sid] ̸= ⊥ then
3: return invalid session

4: st := T [sid]
5: σ ← SignOnst(sk,m, offs, L)
6: if σ ̸= ⊥ then
7: Q[sid] := (L,m)

8: return σ

Fig. 30: Game-based security model for IMS (IMS-UF-CMA). For each new ses-
sion, st is initially assumed to be empty.

65

Security Proof In Fig. 31 we define πIMS as a direct instantiation of IMS in
the UC model. Note that, as observed in the analysis of standard signature
schemes in the UC framework [23], the proof would go through even if GrpoRO is
replaced with a strict variant of the global random oracle, since the simulator
merely relays random oracle queries made by an algorithm of IMS to the global
functionality.

Theorem F.3. Let IMS be an interactive multi-signature scheme (Definition
F.1) that is IMS-UF-CMA secure in the random oracle model (Definition F.2)
and let n ∈ poly(λ). Then the protocol πIMS (Figure 31) UC-realizes FIMS in the
GrpoRO-hybrid model.

Proof. In Figure 32 we describe a PPT simulator SIMS that has black-box access
to A, and simulates FIMS in a way that is indistinguishable to any efficient
environment. The IMS scheme used in the proof follows the syntax given in
Def. F.1.

The proof closely follows that of [23] for a single-user signature scheme. Let
us go over each interface.

– KeyGen: The only difference is when FIMS aborts after receiving pki from
SIMS. This is negligible assuming sufficiently high min-entropy of honestly
generated pk.

– SignOff, SignOn, Aggregate: Since SIMS runs SignOff,SignOn, Agg as
in πIMS, there is no difference.

– Verify: We consider the following cases:
• If there is no corruption and for input (L,m) SignOn is completed
with partial signatures (σ1, . . . , σℓ) and Aggregate is completed by
an honest party with input (L,m, σ1, . . . , σℓ): By the correctness of IMS,
there is no difference in the view of Z.

• If for input (L,m) all honest parties Pi /∈ C complete SignOn with
partial signature σi: In this case, FIMS asks SIMS to simulate a decision
bit. Since SIMS also runs Vrfy as in πIMS, there is no difference in the view
of Z.

• If for input (L,m) some honest party Pi /∈ C has not completed SignOn:
In this case, there is a potential discrepancy in the view of Z since
FIMS always outputs a decision bit 0 while πIMS returns the output of
Vrfy(L,m, σ). However, if Z manages to come up with (L,m, σ) causing
Vrfy to return 1, this implies Z created a valid forgery in the IMS-UF-CMA
game. That is, using such Z as a subroutine one can construct a reduc-
tion B breaking IMS-UF-CMA. On receiving a challenge public key pk,
B with access to OSignOff,OSignOn and the random oracle H plays the
role of FIMS, SIMS, and GrpoRO and proceeds as follows.

∗ Use pk as a public key for one of the uncorrupted parties. Let i∗ ∈ [n]
be the index of that party. Generate key pairs for all the other honest
parties as SIMS would.

∗ Whenever Z makes a query to GrpoRO, relay queries and responses to
and from H.

66

∗ Whenever SIMS is asked to run Join command for party i∗, query
OSignOff with ssid to receive offi∗ and forwards it to a copy of the
adversary A. Otherwise, Join command is handled as in SIMS.

∗ Whenever SIMS is asked to run Sign command for party i∗, query
OSignOn with input (ssid, L,m, offs) to receive σi∗ . Otherwise, Sign
command is handled as in SIMS.

∗ If Z outputs (L,m, σ) causing Vrfy(L,m, σ) = 1 while pki∗ ∈ L and
(L,m) has never been queried to OSignOn, forward this tuple to the
IMS-UF-CMA game.

In this way, the reduction B succeeds in winning the IMS-UF-CMA game
as long as the party index i∗ is correctly guessed. Hence, with a mul-
tiplicative factor of loss 1/n, the advantage of B is non-negligible if Z
finds inconsistency of verification in real and ideal executions with non-
negligible probability.

⊓⊔

67

Protocol πIMS

The protocol is parameterized by IMS = (Setup,KeyGen, SignOff, SignOn,Agg,Vrfy)
and pp← Setup(1τ) and executed by n signers P = {P1, . . . ,Pn} and a verifier V.
Whenever an algorithm of IMS queries to a random oracle, πIMS relays queries to
and responses from GrpoRO.

Key generation Upon (KeyGen, sid) a signer Pi ∈ P proceeds as follows:
1. If there exists a record (KeyRec, sid, ∗), then abort.
2. Run (sk, pk)← KeyGen(1τ).
3. Create record (keyrec, ski, pki) and output (KeyConf, sid, pki).

Signature Setup (Offline Phase) Upon (SignOff, sid, ssid, L), a signer Pi ∈ P
proceeds as follows:
1. Check that ssid = (ssid′, {Pj}j∈I) for some ssid′, I ⊆ [n], |L| = |I|, and

i ∈ I. If not, then abort.
2. If there exists no record (keyrec, ∗, ∗), then abort.
3. Retrieve (keyrec, ski, pki). If pki /∈ L, then abort.
4. If there exists record (joined, ssid, ∗), then abort.
5. Run offi ← SignOffsti

(ski, aux = L), broadcast (ssid, L,Pi, offi), and create
record (joined, ssid, L).

6. On receiving (ssid,Pj , pkj , offj) for all j ∈ I such that j ̸= i, create a local
record (sigsetup, ssid, L, offs = {offj}j∈I , sti).

7. Output (SignedOff, sid, ssid).
Signature Generation (Online Phase) Upon receiving (SignOn, sid, ssid,

L,m), a signer Pi ∈ P proceeds as follows:
1. If there exists no record (sigsetup, ssid, L, ∗, ∗), then return (Fail,

sid, ssid).
2. If Pi has output (Signature, sid, ssid, ∗) before, return (Fail, sid, ssid).
3. Retrieve record (sigsetup, ssid, L, offs, sti)
4. Run σi ← SignOnsti(ski,m, offs, L).
5. Output (Signature, sid, ssid, σi).

Signature Aggregation Upon receiving (Aggregate, sid, L,m, σ1, . . . , σn), a
party Pi ∈ P runs σ ← Agg(σ1, . . . , σn) and outputs (Agg, sid, σ).

Signature Verification Upon receiving input (Verify, sid, L,m, σ), V runs b ←
Vrfy(L,m, σ) and outputs (Verified, sid, b).

Fig. 31: IMS protocol

68

Simulator SIMS

SIMS interacts with an internal copy of A, towards which it simulates the honest
parties in P = {P1, . . . ,Pn} and relays all the random oracle calls requested by
SignOff, SignOn, and Vrfy externally to the global random oracles functionality
GrpoRO.

KeyGen: On receiving (KeyGen, sid,Pi) from FIMS, run KeyGen to obtain the key
pair (ski, pki). Return (KeyConf, sid, pki) to FIMS.

Sign Setup: On receiving (Join, sid, ssid, L, pki) from FIMS:
1. Store (Join, sid, ssid, L, pki).
2. Run offi ← SignOffsti

(ski, L) and create record (ssid, L,Pi, offi, sti). ▷ sti
is needed for online signing

3. Send (ssid, L,Pi, offi) to A.
On receiving (ssid, L,Pi, offi) from A for corrupted Pi, create record
(ssid, L,Pi, offi) and output (SignOff, sid, L,Pi) to FIMS. Once all offs :=
{offj}j∈I are recorded for the same (ssid, L), create record (ssid, L, offs).

Sign Gen: On receiving (Sign, sid, ssid, pki, L,m) from FIMS, retrieve the corre-
sponding stored sti and offs, then run σi ← SignOnsti(ski,m, offs, L), then
return (Signature, sid, ssid, σi) to FIMS.

Sign Agg: On receiving (aggregate, sid, L,m, σ1, . . . , σn) from FIMS, run σ =
Agg(σ1, . . . , σn), return (Aggregated, sid, σ) to FIMS.

Verify: On receiving (Verify, sid, L, ssid,m, σ), run b← Vrfy(L,m, σ) and return
(Verified, sid, b).

Fig. 32: Simulator SIMS interacting with FIMS.

69

F.3 UC Security of Interactive Ordered Multi-Signature Scheme

In Fig. 33 we define πOMS as a direct instantiation of OMS. To realize a protocol
in the key registration model, we assume parties have access to FvReg.

Protocol πOMS

The protocol is parameterized by OMS = (Setup,KeyGen, SignOff, SignOn,Vrfy) and
pp ← Setup(1τ) executed by n signers P = {P1, . . . ,Pn}. Whenever an algorithm
of OMS queries to a random oracle, πOMS relays queries to and responses from
GrpoRO. We assume that pp includes a description of σ0 and initializates the internal
states sti to empty strings. Signature setup, signature generation, and verification
interfaces validate the input L = (pk1, . . . , pkn) by retrieving a key pk′i for Pi from
FvReg for each i ∈ [n] and checking pki = pk′i. If validation fails, the functionality
returns (Fail, sid).

Key generation Upon (KeyGen, sid) a signer Pi ∈ P proceeds as follows:
1. If there exists a record (KeyRec, sid, ∗), then abort.
2. Run (sk, pk)← KeyGen(1τ ; ρ).
3. Send (register, sid, pki, ski, ρ) to FvReg

4. Create record (keyrec, ski, pki) and output (KeyConf, sid, pki).
Signature Setup (Offline Phase) Same as πIMS.
Signature Generation (Online Phase) Upon receiving (SignOn,

sid, ssid, L,m, σi−1) from a party Pi ∈ P:
1. If there exists no record (sigsetup, ssid, L, ∗, ∗), then return (fail, sid, ssid).
2. If Pi has output (Signature, sid, ssid, ∗, ∗) before, return (fail, sid, ssid).
3. Retrieve record (sigsetup, ssid, L, offs, pki, sti)
4. Run σi ← SignOnsti(ski,m, L, offs, σi−1).
5. If σi ∈ {⊥∗, ε} then return (fail, sid, ssid).
6. Else, output (Signature, sid, ssid, σi).

Signature Verification Same as πIMS.

Fig. 33: OMS protocol. Differences from πIMS are in in this font.

Theorem F.4. Let OMS be an ordered multi-signature scheme (Definition 5.1)
that is OMS-UF-CMA secure in the random oracle model (Definition 5.2). Then
the protocol πOMS (Figure 33) UC-realizes FOMS (Figure 29) in the (GrpoRO,FvReg)-
hybrid model against a static active adversary corrupting a majority of parties
in P.

Proof. In Figure 35 we describe a PPT simulator SOMS that has black-box
access to A, and simulates πOMS in a way that is indistinguishable to any efficient
environment Z. The OMS scheme used in the proof follows the syntax given in
Definition 5.1. The proof closely follows that of Theorem F.3 for an unordered
interactive multi-signature scheme. Let us go over each interface.

– KeyGen: The only difference is when FOMS aborts after receiving pki from
SOMS. This is negligible assuming sufficiently high min-entropy of honestly
generated pk.

70

Functionality FvReg

FvReg is parametrized by some key generation algorithm KeyGen (e.g., signature key
pair generation) and interacts with a set of parties P and an ideal adversary S as
well as a global clock GClock as follows:

Key Registration: Upon receiving a message (register, sid, pk, sk, aux) from a
party Pi ∈ P:
1. Send (Read) to GClock, waiting for response (Read, ν).

2. Use aux to run (pk′, sk′)← KeyGen(). If (pk′, sk′) ̸= (pk, sk), abort.

3. Send (Registering, sid, pk,Pi, ν) to S. Upon receiving (sid, ok,Pi) from S, and
if this is the first message from Pi, then record the tuple (Pi, pk, ν).

Key Retrieval: Upon receiving a message (Retrieve, sid,Pj) from a party
Pi ∈ P, send message (Retrieve, sid,Pj) to S and wait for it to return a message
(Retrieve, sid, ok). Then, if there is a recorded tuple (Pj , pk, ν) output (Retrieve,
sid,Pj , pk, ν) to Pi. Otherwise, if there is no recorded tuple, return (Retrieve,
sid,Pj ,⊥).

Fig. 34: Functionality FvReg for Verified Key Registration, modeling the key reg-
istration oracle of [14]. Differences with FReg are highlighted in this font. The
functionality essentially corresponds to PKI with the knowledge of secret key
(KOSK) requirement [13] or the key verification [6, 37] which can be realized
using efficient non-interactive proof of knowledge [64].

– SignOff: Since SOMS runs SignOff as in πOMS, there is no difference.
– SignOn: If FOMS aborts with output (Fail, sid, ssid) after detecting a bad

sequence, then there is a potential discrepancy in the view of Z since πOMS

may proceed with output (Signature, sid, ssid, σi). However, if Z manages
to come up with an input (L,m, σ∗

i−1) that causes the honest execution
of SignOn to output σi /∈ {⊥∗, ε}, this implies Z created a forged so-far-
aggregated signature that sets the flag win to 1 in the OMS-UF-CMA game
(i.e. detection of bad order). That is, using such Z as a subroutine, one can
construct a reduction B breaking OMS-UF-CMA. This is done in a manner
analogous to the last case of Verify.

– Verify: We consider the following cases:
• If there is no corruption and for input (L,m) SignOn is completed with

partial signatures (σ1, . . . , σn): By the correctness of OMS, there is no
difference in the view of Z.

• If for input (L,m) all honest parties Pi /∈ C complete SignOn with
partial signature σi: In this case, FOMS asks SOMS to simulate a decision
bit. Since SOMS also runs Vrfy as in πOMS, there is no difference in the
view of Z.

• If for input (L,m) some honest party Pi /∈ C has not completed SignOn:
In this case, there is a potential discrepancy in the view of Z since
FOMS always outputs a decision bit 0 while πOMS returns the output of
Vrfy(L,m, σ). However, if Z manages to come up with (L,m, σ) causing
Vrfy to return 1, this implies Z created a valid forgery in the OMS-UF-CMA

71

Simulator SOMS

SOMS interacts with an internal copy of A, towards which it simulates the honest
parties in P = {P1, . . . ,Pn} and relays all the random oracle calls requests from
SignOff, SignOn, and Vrfy to the external global random oracle functionality GrpoRO.
Whenever A queries FvReg, SOMS executes the code of FvReg to simulate its response.

KeyGen: On receiving (KeyGen, sid,Pi) from FOMS, run KeyGen to obtain the key
pair (ski, pki). Return (KeyConf, sid, pki) to FOMS. Upon receiving a key regis-
tration request from corrupt Pi, if the check passes, send (KeyGen, sid,Pi, pki)
to FOMS.

Sign Setup: Same as SIMS.
Sign Gen: On receiving (Sign, sid, ssid, pki, L,m, σi−1) from FOMS, re-

trieve the corresponding stored sti and offs, then run σi ←
SignOnsti(ski,m, offs, L, , σi−1), then return (Signature, sid, ssid, σi) to
FOMS.

Verify: Same as SIMS.

Fig. 35: Simulator SOMS interacting with FOMS.

game. That is, using such Z as a subroutine one can construct a reduc-
tion B breaking OMS-UF-CMA. On receiving public parameters pp, B
with access to OKeyReg,OSignOff,OSignOn and the random oracle H,
plays the role of FOMS, SOMS, and GrpoRO and proceeds as follows.

∗ Upon receiving a key generation request for Pi: If Pi is honest, then
query OKeyReg with uid = i and aux = ε to retrieve a key pki. If
Pi is corrupted and queries FvReg with (register, sid, pki, ski, aux),
then query OKeyReg with uid = i and aux to register a corrupted
key.

∗ Whenever Z makes a query to GrpoRO, relay queries and responses to
and responses from H.

∗ Whenever SOMS is prompt with a Join command for party Pi /∈ C,
query OSignOff with ssid to receive offi and forwards it to a copy of
the adversary A. Otherwise, Join command is handled as in SOMS.

∗ Whenever SOMS is asked to run Sign command for party Pi /∈ C,
query OSignOn with input (ssid, L,m, offs, σi−1) to receive σi. Oth-
erwise, Sign command is handled as in SOMS.

∗ If Z outputs (L,m, σ) causing Vrfy(L,m, σ) = 1 while ∃pki∗ ∈ L
such that Pi∗ /∈ C and (L,m) has never been queried to OSignOn,
forward this tuple to the IMS-UF-CMA game.

In this way, the reduction B succeeds in winning the OMS-UF-CMA game.
Hence, the advantage of B is non-negligible if Z finds inconsistency of
verification in real and ideal executions with non-negligible probability.

⊓⊔

F.4 Integrating FOMS into πMulti−SCD

We now provide a variant of πMulti−SCD that realizes F f∆
SCD using FOMS. It can be

found in Figure 36. Our protocol is a simplified version where the parties run

72

the preprocessing for the next signature during the current signature round. Of
course, this can be preprocessed during idle time instead.

Theorem F.5. The protocol πMulti−SCDOMS UC-securely implements F f∆
SCD in the

GClock,FOMS,F f∆
mdmt-hybrid model with security against any adversary actively

corrupting up to k = n − 1 parties with permissible delay function given by
delays.

The proof for the theorem follows almost verbatim from the proof of Theorem
4.4 in Appendix B.4. While there, an honest party Pi would only sign if isP is
true and all previous parties signed the same message m, t, it now always calls
FOMS to create a signature if isP is true. But FOMS only creates a signature
if honest parties before Pi have signed m, t in correct order as specified by L,
in which case the message m, t must have traveled between them as required
as they will always use the respective delay channels for communication which
guarantees delay. It is immediate that the preprocessing by calls to Signature
Setup (Offline Phase) always succeeds if parties act honestly. An adversary
may not participate in the offline phase for some ssid, but in that case the signing
for this ssid will simply fail.

73

Protocol πMulti−SCD

This protocol is executed by a sender P1, a set of intermediate parties P2, . . . ,Pn−1

and a receiver Pn, as well as a set of verifiers V interacting with each other and

with GClock,FOMS. Each pair Pi,Pi+1 is connected by F f∆,i

mdmt. Let L = (P1, . . . ,Pn)
In every step, the activated party sends (Read) to GClock to obtain (Read, t). Each
party has two counters ssidoff and ssidon initially 0.

Setup: Upon first activation, each Pi proceeds as follows:
1. Send (KeyGen, sid) to FOMS and obtain (KeyGen, sid, pki). Then send

(Ready, sid, i) to each other party.
2. Upon having received (Ready, sid, j) from every other Pj send (SignOff,

sid, 0, L) to FOMS. If the functionality outputs (Fail, sid, 0) then abort. Oth-
erwise wait for the message (SignedOff, sid, 0). Upon receiving it, increase
ssidoff by 1.

Send: Upon receiving first input (Send, sid,m) for t, P1 proceeds as follows:
1. Check if ssidoff > ssidon. Otherwise, abort.
2. Send (Sign, sid, ssidon, L, (m, t), ε) to FOMS. If FOMS outputs (Fail, sid) for

this ssidon then abort. Otherwise, upon receiving (Signature, sid, (ssidon, σ1))

send (Send, sid, (m, t, σ1, ssidon)) to F
f∆,1

mdmt and increase ssidon by 1.
3. Send (SignOff, sid, ssidoff, L) to FOMS. If FOMS outputs the message

(SignedOff, sid, ssidoff). Upon receiving it, increase ssidoff by 1.

Receive: Upon receiving (Rec, sid), Pn sends (Rec, sid) to F f∆,n−1

mdmt and proceeds

as follows for the first (Sent, sid, (m, t, σn−1, ssid
′), t′) received from F f∆,n−1

mdmt :

1. Check if ssidoff > ssid′, otherwise abort.
2. Check if isP(t, f∆,1, . . . , f∆,n−2, t

′), otherwise output (NoProof, sid).
3. Send (Sign, sid, ssid′, L, (m, t), σn−1) to FOMS. If FOMS outputs (Fail, sid) for

this ssid′ then output (NoProof, sid). Otherwise, upon receiving (Signature,
sid, (ssid′, σn) output (Sent, sid,m, t, t− t, σn).

4. Send (SignOff, sid, ssidoff, L) to FOMS. If FOMS outputs the message
(SignedOff, sid, ssidoff) then increase ssidoff by 1.

Verify: Upon receiving (verify, sid,m, t,∆, πlo), Vi ∈ V proceeds as follows:
1. Check that t+∆ ≥ t and isP(t, f∆,1, . . . , f∆,n, t+∆) is true.
2. Send (Verify, sid, L, (m, t), πlo) to FOMS, obtaining (Verified, sid, f). Check

that f = 1.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,∆, πlo, b).

Tick: Proceed as follows and then send (Update) to GClock.
1. Each Pi ∈ {P2, . . . ,Pn−1} sends (Rec, sid) to F f∆,i−1

mdmt . If Pi obtains (Rec,
sid, (m, t, σi−1, ssid

′), ti−1) the first time for t then it proceeds with the re-
maining steps.

2. Check if ssidoff > ssid′, otherwise abort.
3. Check if isP(t, f∆,1, . . . , f∆,i−2, ti−1) is true. If so, then end (Sign,

sid, ssid′, L, (m, t), σi−1) to FOMS. If FOMS outputs (Fail, sid) for this ssid′

then abort. Otherwise, upon receiving (Signature, sid, (ssid′, σi) send (Send,

sid, (m, t, σi, ssid
′)) to F f∆,i

mdmt.
4. Send (SignOff, sid, ssidoff, L) to FOMS. If FOMS outputs the message

(SignedOff, sid, ssidoff) then increase ssidoff by 1.

Fig. 36: Protocol πMulti−SCDOMS composing two πSCD instances into one.

74

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Modelling Time and Global Clocks

	Modeling Communication Delays
	Proofs of Sequential Communication Delays
	Modelling Proofs of Sequential Communication Delay

	Ordered Multi-Signatures
	Verifiable Delay Functions
	Publicly Verifiable Time-Lock Puzzles
	Delay Encryption and Stateless VDF
	Auxiliary Functionalities and other Preliminaries
	UC Secure Public-Key Encryption with Plaintext Verification
	Global Clocks and Global tickers

	Delayed Communication - Proofs and more details
	Realizing [fig:Fmdmt-UC]Fmdmtf
	Proof of Theorem 4.1
	Computing channel delays
	Proof of Theorem 4.4

	Proof of Theorem 7.1
	UC Treatment of Delay Encryption
	More on OMS
	Preliminaries for our OMS construction
	Proof of Theorem 5.4
	Three OMS Variants

	Multi-Signatures in the UC Framework
	Ideal Functionality for Multi-Signatures
	UC Security of Interactive Multi-Signatures
	UC Security of Interactive Ordered Multi-Signature Scheme
	Integrating [fig:Foms]FOMS into Multi-SCD

