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Abstract. In recent history of fully homomorphic encryption, boot-
strapping has been actively studied throughout many HE schemes. As
bootstrapping is an essential process to transform somewhat homomor-
phic encryption schemes into fully homomorphic, enhancing its perfor-
mance is one of the key factors of improving the utility of homomorphic
encryption.
In this paper, we propose an extended bootstrapping for TFHE, which
we name it by EBS. One of the main drawback of TFHE bootstrapping
was that the precision of bootstrapping is mainly decided by the polyno-
mial dimension N . Thus if one wants to bootstrap with high precision,
one must enlarge N , or take alternative method. Our EBS enables to use
small N for parameter selection, but to bootstrap in higher dimension to
keep high precision. Moreover, it can be easily parallelized for faster com-
putation. Also, the EBS can be easily adapted to other known variants
of TFHE bootstrappings based on the original bootstrapping algorithm.
We implement our EBS along with the full domain bootstrapping meth-
ods known (FDFB, TOTA, Comp), and show how much our EBS can
improve the precision for those bootstrapping methods. We provide ex-
perimental results and thorough analysis with our EBS, and show that
EBS is capable of bootstrapping with high precision even with small N ,
thus small key size, and small complexity than selecting large N by birth.

Keywords: Homomorphic encryption, TFHE, Precision

1 Introduction

Fully homomorphic encryption (FHE) is a powerful cryptographic scheme that
allows to compute on encrypted data with unlimited depth, without leaking
any information about it. Nonetheless, performing homomorphic operations on
ciphertext accumulates noise or consumes certain amount of levels, and can
only evaluate circuits with bounded depth. Thus to support unlimited level of
computation, these schemes come with an operation called bootstrapping, which
follows from the blueprint of Gentry [18]. Bootstrapping refreshes a possibly
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noisy, or level-consumed ciphertext into a fresh ciphertext, and allows further
computation.

The FHEW/TFHE [11, 16] style bootstrapping methods are still known to
be one of the most efficient bootstrapping methods. These algorithms refers to
the blind rotation algorithm, which refreshes the noisy ciphertext, and evaluates
pre-computed lookup table at the same time. From its name, the blind rotate al-
gorithm rotates a polynomial of degree N , power-of-2, by certain amount blind-
folded, over 2N -th cyclotomic ring. The LUT of a function is encoded as the
coefficients of the polynomial, and the blind rotation homomorphically selects
the value from the encoded LUT by rotating the polynomial. The amount of ro-
tation is decided by the message encrypted inside the ciphertext, with rounding
error added due to the scaling-and-rounding of (n+1) coefficients in T into Z2N .
Due to this rounding, bootstrapping in FHEW/TFHE style can only preserve
at most (log2 N + 1)-bits of precision of the input ciphertext, and the precision
is actually much smaller in practice due to the summation of those rounding
errors, restricting the high precision usage of these schemes. Thus, it is believed
that one should select huge N to bootstrap with high precision.

To manage real world applications with low precision ciphertexts, the most
familiar, but powerful solution is to decompose the message by some base, and
encrypt each of the decomposed message in a single ciphertext. The original
binary logic of TFHE is a special case of this decomposition, where the base
is 2. Clearly, the smaller the base is, the number of bootstrapping increases for
performing arithmetic operations on decomposed ciphertexts. If larger base is
used to decrease the number of bootstrapping, the bootstrapping precision works
as an upper-bound of the size of the base, as the bootstrapping must preserve
precision at least log2(base). This forces to use larger N , where one can gain 1 bit
of precision by doubling N . Nonetheless, quasi-linear growth in bootstrapping
time is accompanied, and the public key size also doubles. Thus, the most efficient
usage of TFHE for large precision and corresponding parameter selection is still
an open problem.

1.1 Our Contributions and Technical Overview

In this paper, we propose a large precision bootstrapping algorithm for TFHE,
which we name it by EBS. Compared to the previous literature of TFHE boot-
strapping with large precision, our EBS can bootstrap TFHE ciphertext without
enlarging the ring dimension N . Rather, we can keep N as small as possible as
long as the (bootstrapping) error doesn’t damage the message in the MSB part.
Working with small N has lots of advantage in TFHE literature since the time
complexity of bootstrapping grows quasi-linearly by N , and the public key size
grows linearly. Thus, it is recommended to use small N for efficiency, and our
EBS can solve that problem, while still preserving the precision.

Our EBS inherits the idea to use larger N to hold larger information of the
ciphertext. Nonetheless, rather than increasing N itself, we use the fact that N
is selected as a power of 2 in TFHE and its variants. We induce a homomorphism
to a larger ring from dimension N to 2νN , where we call ν ∈ N the extension
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factor. The homomorphism is actually a zero padding, and does not affect the
security, nor the information of the ciphertext. With the homomorphism, the bits
extracted from the ciphertext increases by (log2 N + 1) bits to (log2 N + ν + 1)
bits, and thus we can bootstrap with additional ν bits of precision.

For efficiency reasons, we also use the fact that our induced homomorphism
is actually a zero padding. Thanks to the zeros, the bootstrapping in dimension
2νN can be converted to 2ν times of parallel bootstrappings in dimension N .
The advantage in this is that we can perform the bootstrappings simultaneously,
where we can save much time with proper parallelization. Also, the asymptotic
complexity decreases compared to when performing the bootstrapping in dimen-
sion 2νN .

Also, we provide a proof-of-concept implementation over the TFHE library
[12] along with the three variants of the state-of-the-art full-domain functional
bootstrapping algorithms. With our implementation, we provide detailed noise
analysis, benchmarks with eight sets of parameters with N = 1024, 2048 and
4096 that achieves λ = 80 or 128 bits of security. We also evaluate functions
over the torus and provide detailed precision improvements with four sets of
parameters. With our EBS, we show that even with N = 1024 and 2048, it is
possible to achieve over 8 bits of precision, which is known to be possible with
at least N = 214 = 16386. Thus, with our EBS, we can enhance not only the
exact computation of TFHE, but also the approximate computation combined
with other homomorphic encryption schemes like in [30].

1.2 Related Works

High precision bootstrapping is a common problem throughout homomorphic
encryption literature. For approximate homomorphic encryption schemes, the
high precision bootstrapping is required to evaluate huge depth circuits such
as deep neural network training and inference [25, 26], or retrieve statistical
information from a dataset. Starting from the dawn of CKKS bootstrapping
of 10 to 15 bit of precision [9], many optimizations and better approximations
have been studied, and reached 90 to 110 bit of precision [27], or even higher
precision of 420 bits which takes 903 seconds [2]. The bootstrapping in CKKS
takes much longer than FHEW/TFHE style bootstrappings, but their SIMD
(Single Instruction, Multiple Data) structure enables them to bootstrap multiple
messages, and usually presented in terms of amortized latency.

Nonetheless, the FHEW/TFHE style bootstrapping still has its own advan-
tages, its significantly low latency, and its capability to evaluate even nonlinear
functions with lookup table evaluation. These versatility even brought bridges
to approximate homomorphic encryption schemes, to evaluate polynomial func-
tions by approximate schemes, and bring them to TFHE to evaluate nonlinear
functions [5, 30]. The enhancements in the usage of FHEW/TFHE itself has
also been studied throughout many works, including the extension of binary
keys to general keys (ternary, Gaussian, etc.) [20,32], or improved FHEW boot-
strapping with ring automorphisms [28]. When it come to high precision TFHE,
most of the works select decomposition of plaintext message [15, 19, 22, 29, 34],
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with low precision TFHE bootstrapping, and no algorithm was known to boot-
strap a single ciphertext with large precision except using large N . Recently,
Bergerat et al. [3] proposed an algorithm called WoP-PBS (WithOut Padding -
Programmable BootStrapping), extracting each bit of the message as a RGSW
ciphertext with circuit bootstrapping [10] and evaluate function with vertically
packed lookup table. Together with their algorithm, they provided a detailed
noise analysis of their WoP-PBS, and a publicly available implementation1. It is
estimated that their WoP-PBS has noise variance bound larger than our EBS by
factor of at least O(κN) when they bootstrap with κ-bits of precision. Nonethe-
less, their time complexity is linear to κ while our EBS is exponential. This makes
their bootstrapping more efficient when κ is sufficiently large. But until certain
level, our EBS is more efficient as the circuit bootstrapping is itself quite costly.

2 Preliminaries

2.1 Notations

We introduce the notations used throughout this paper. The real torus T denotes
the real set R/Z, which is also interpreted as a half open interval

[
− 1

2 ,
1
2

)
. Each

set RN [X], ZN [X], and TN [X] denote the set R[X]/
〈
XN + 1

〉
, Z[X]/

〈
XN + 1

〉
,

and T[X]/
〈
XN + 1

〉
.

For a set S, x $← S implies that x is sampled from S from uniform distribu-
tion. Also, for a distribution D, x← D implies that x is sampled from a distribu-
tion D. Next, Err (c) represents the error in the ciphertext c, and Var (Err (c)) de-
notes the variance of error of the ciphertext c. The parentheses Ja, bK for a, b ∈ Z
denotes the set {x ∈ Z | a ≤ x ≤ b}. All indices starts with 0 unless mentioned
otherwise.

2.2 TFHE Ciphertext

The security of TFHE is based on the hardness of the Learning with Errors
(LWE) problem [35] and its ring variant, Ring-Learning with Errors (RLWE)
[31, 36]. More precisely, the generalization of those problems over the real torus
T.

TLWE Let n ∈ N be the TLWE dimension, and σTLWE be the standard deviation.
Then for a discrete message space M ⊂ T, the TLWE encryption of a message
m ∈M under the key s ∈ Bn is

TLWEs(m) = (a, b) ∈ Tn+1,

with a
$← Tn, and b = ⟨a, s⟩+m+ e where e← N (0, σTLWE). Given arbitrarily

many TLWE samples with the key s, the (torus) LWE problem [11] assures that if

1 https://github.com/zama-ai/tfhe-rs/blob/main/tfhe/src/core_crypto/

algorithms/lwe_wopbs.rs
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it is λ-secure, it requires at least 2λ operations to distinguish TLWE samples from
uniform distribution over Tn+1, or to find s. We now denote that the parameter
achieves λ-bit of security if it is λ-secure.

The decryption of a TLWE ciphertext first begins with calculating its phase

φs((a, b)) = b− ⟨a, s⟩ ,

and round it to its closest element inM.

TRLWE For N = 2β , k ∈ N, and the standard deviation σTRLWE, the TRLWE
encryption of a message m(X) in a discrete message space M ⊂ TN [X] under
the key K ∈ BN [X]k is

TRLWEK(m(X)) = (A0(X), · · · , Ak−1(X), B(X)) ∈ TN [X]k × TN [X],

where Ai(X)
$← TN [X], B(X) = ⟨(A0(X), · · · , Ak−1(X)) ,K⟩ + m(X) + e(X),

with each coefficients of e(X), ei ← N (0, σTRLWE). The decryption of a TRLWE
ciphertext rounds its phase φK((A0(X), · · · , Ak−1(X), B(X))) to the closest el-
ement inM.

TRGSW Given an integer base BG = 2γ ∈ N and decomposition length ℓG ∈ N,
first define the gadget matrix H.

Definition 1 (Gadget Matrix). For an integer base BG = 2γ ∈ N and de-
composition length ℓG ∈ N, we call H the gadget matrix given as

H =

1/BG · · · 0

...
. . .

...

1/BℓG
G · · · 0

...
. . .

...

0 · · · 1/BG

...
. . .

...

0 · · · 1/BℓG
G





∈ TN [X](k+1)ℓG×(k+1)

The TRGSW ciphertext encrypts a integer polynomial q(X) ∈ ZN [X]. The
TRGSW encryption of q(X) under the key K ∈ BN [X]k is

TRGSWK(p(X)) = Z+H · q(X) ∈ TN [X](k+1)ℓG×(k+1),

where Z is a vector of (k + 1)ℓG-TRLWEK(0)’s. Chillotti et al. [11] defined an
external product � between TRGSWK(ma) and TRLWEK(mb) ciphertext, which
gives

TRGSWK(ma) � TRLWEK(mb) = TRLWEK(ma ·mb),

for ma ∈ ZN [X], and mb ∈ TN [X].

5



2.3 Bootstrapping in TFHE

The bootstrapping in TFHE is a homomorphic calculation of (discretized) phase
of the TLWE ciphertext, and aims to reduce internal noise of the ciphertext.
Moreover, it simultaneously evaluates a look-up table (LUT) of a function over
the torus, and is also known as the functional bootstrapping [4], or programmable
bootstrapping [13].

To bootstrap a ciphertext, one needs two kinds of public key, namely the
bootstrapping key, and the keyswitch key. We will denote each of them as BSK,
and KSK. For two secret keys s ∈ Bn (TLWE key), K ∈ Bk

N [X] (TRLWE,TRGSW
key), the two public keys are defined as follows:

BSK = {TRGSWK(si)}i∈J0,n−1K ,

KSK =

{
TLWEs

(
Ki

Bj
KS

· k

)}
i∈J0,N−1K,j∈J1,ℓKSK,k∈J0,BKS−1K

,

where BKS, ℓKS is the decomposition base, and the length of the keyswitch key.
Starting from TLWEs ciphertext c = (a, b), bootstrapping consists of four con-
secutive procedures.

• ModSwitch: transforms c = (a, b) ∈ Tn+1 into c̄ = (ā, b̄) ∈ Zn+1
2N by com-

puting āi = ⌊2Nai⌉ for i ∈ J0, n− 1K, and b̄ = ⌊2Nb⌉. From [11, 22], the
variance after ModSwitch comes with

Var

(
Err

(
ā

2N
,

b̄

2N

))
≤ Var (Err (a, b)) +

n+ 1

48N2
,

and we denote

VMS =
n+ 1

48N2
.

• BlindRotate: homomorphically rotates the (possibly noiseless) TRLWE en-
cryption of the test polynomial tv ∈ TN [X] by −m̄ = ⟨ā, s⟩ − b̄ (mod 2N).
This process be viewed as a function evaluator for a function f : Z2N → T
by setting tvi = f(i) for i ∈ J0, N − 1K. The rotation is done by computing
the controlled MUX (CMux) n times:

ACC← TRGSWK(si) � (X āi − 1) · ACC+ ACC.

Each execution of the CMux multiplies X āisi to the accumulator with a
certain level of noise growth. Thus, after the BlindRotate, the accumula-
tor is multiplied by X⟨ā,s⟩ (mod 2N) blindfolded, and outputs the rotated
TRLWE ciphertext TRLWE(X−m̄ ·tv). After BlindRotate, the variance of ACC
is bounded by

Var (Err (ACC)) ≤ Var (Err (ACCinit))+

n

(
(k + 1)NℓBS

(
BBS

2

)2

Var(Err(BSK)) +
1 + kN

4 ·B2ℓBS
BS

)
,
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where the result comes from [11]. Note that BBS, ℓBS is the decomposition
base, and the length of the bootstrapping key. Usually, we start off with a
noiseless accumulator with Var (Err (ACCinit)) = 0. We now denote

VBR = n

(
(k + 1)NℓBS

(
BBS

2

)2

Var(Err(BSK)) +
1 + kN

4 ·B2ℓBS
BS

)
.

• SampleExtract: extracts TLWE ciphertext from the rotated TRLWE accumula-
tor ACC. Considering tvi as the i-th coefficient of tv, it gives TLWEK′(tvm̄) =
TLWEK′(f(m̄)) (resp. TLWEK′(−tvm̄−N ) = TLWEK′(f( ¯m−N))) if m̄ ∈
J0, N − 1K (resp. m̄ ∈ JN, 2N − 1K) under the keyK′ ∈ BkN . The SampleExtract
does not accumulate any noise to the ciphertext, so the variance maintains
the same.

• KeySwitch: converts the keyK′ of extracted c′ = TLWEK′(m) into s, and gives
c = TLWEs(m) that encrypts the same message. Since the KeySwitch adds
noise to the ciphertext, there have been attempts to remove the KeySwitch
error by eliminating the need for KeySwitch by using s = K′ [22], or by
moving around the KeySwitch before BlindRotate [3,6]. Here, we refer to the
TLWE-to-TLWE KeySwitch, and the error accumulation is given as

Var (Err (c)) ≤ R2Var (Err (c′)) + kNℓKSVar(Err(KSK)) +
1

12
kNB−2ℓKS

KS ,

where R is the Lipschitz constant for functional public keyswitching (in our
work, R = 1). We now denote

VKS = kNℓKSVar(Err(KSK)) +
1

12
kNB−2ℓKS

KS .

Algorithm 1 sums up the gate bootstrapping procedure from [11], mainly
used to refresh the ciphertext after homomorphic operations (e.g. Homomorphic
NAND). From Algorithm 1, the variance of the error of the output ciphertext c
is given by

Var (Err (c)) ≤ VBR + VKS,

and we denote VBS = VBR + VKS.

3 Modified TFHE Bootstrapping

3.1 Functional Bootstrapping

Functional bootstrapping, which is the generalization of the gate bootstrapping
in Algorithm 1, evaluates the LUT of the target function f : T → T, and gives
the TLWEs encryption of f( m̄

2N ) for m̄ ∈ [0, N − 1]. The procedure is depicted
in Algorithm 2. Here, we name it by the half-domain functional bootstrapping
since it only uses the half of the torus [0, 1

2 ) due to the negacyclic BlindRotate
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Algorithm 1: Gate Bootstrapping Algorithm (from [11])

Input: TLWE ciphertext (a, b) ∈ TLWEs

(
m · 12

)
with m ∈ B

Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs ((−1)m · µ)
1 āi = ⌊2Nai⌉ for i ∈ J0, n− 1K, and b̄ = ⌊2Nb⌉ ▷ ModSwitch ((a, b), 2N)

2 Let tv = X
N
2 · (1 +X + · · ·+XN−1) · µ for µ ∈ T

3 Let ACCinit = (0, tv) ∈ TRLWEK(tv)

4 ACCBR ← BlindRotate((ā, b̄),BSK,ACCinit)

5 c′ ← SampleExtract(ACCBR) ▷ Extract TLWEK((−1)m · µ)
6 return c = KeySwitch(c′,KSK) ▷ TLWEs((−1)m · µ)

Algorithm 2: Half-Domain Functional Bootstrapping (from [4,19])

Input: TLWE ciphertext (a, b) ∈ TLWEs (m) with m ∈
[
0, 1

2

)
Input: A L-Lipschitz morphism f : T→ T
Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f
(

m̄
2N

))
1 (ā, b̄) = ModSwitch ((a, b), 2N) ▷ m̄ = b̄− ⟨ā, s⟩mod 2N

2 Let tv = ΣN−1
i=0 f

(
i

2N

)
Xi

3 Let ACCinit = (0, tv) ∈ TRLWEK(tv)

4 ACCBR ← BlindRotate((ā, b̄),BSK,ACCinit)

▷ ACCBR = TRLWE(X−m̄ · tv)
5 c′ ← SampleExtract(ACCBR) ▷ Extract TLWEK

(
f
(

m̄
2N

))
6 return c = KeySwitch(c′,KSK) ▷ TLWEs

(
f
(

m̄
2N

))

(i.e., it gives the encryption of −f
(
m̄−N
2N

)
if m̄ ∈ [N, 2N −1]). Thus, the domain

can be naturally extended to the full torus for any negacyclic function h(x) =
−h
(
x+ 1

2

)
.

In Proposition 1, we analyze the error of the functionally bootstrapped ci-
phertext with L-Lipschitz function f evaluated on an arbitrary message m ∈
[0, 1

2 ). From the result, we observe that the rounding error from the ModSwitch
affects the value of the function itself by directly changing the message of the
original ciphertext. The rounding error is thus highly related to the maximal pre-
cision a ciphertext can have, and has been pointed out to be the major reason
for the severe precision loss in TFHE based applications [13,22].

Nonetheless, this rounding error was not a serious problem for the gate boot-
strapping since it only needed 1-bit of precision after the ModSwitch to assure its
correctness. However, functional bootstrapping works on larger plaintext space
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M, which usually has the size of power of 2 (i.e., |M| = 2π). Thus, to correctly
bootstrap a ciphertext TLWEs(m) with full precision π (with high probability),
the errors should satisfy

ϵpre, ϵBS ≤
1

2|M|
,

with high probability for pre-BootStrap and BootStrap errors ϵpre, ϵBS.

Proposition 1 (Functional Bootstrapping Error) Let c be the output of
functional bootstrapping with a L-Lipschitz morphism f : T → T. Then the
variance of the error between φs(c) = f(m+ ϵr) + ϵBS and f(m) is bounded by

Var (φs(c)− f(m)) ≤ L2VMS + VBS.

Proof. During the ModSwitch, the message m is rounded into m̄
2N = m + ϵMS,

where ϵMS is the rounding error. Then during the BlindRotate, the function f is
evaluated on m̄

2N , with the BlindRotate error ϵBR. Thus, after the KeySwitch, the
phase of the output ciphertext c from line 6 of Algorithm 2 will be

φs(c) = f(m+ ϵMS) + ϵBR + ϵKS,

where ϵKS is the error from the KeySwitch. Then by the L-Lipschitz condition,
we have

Var (φs(c)− f(m)) ≤ Var (f(m+ ϵMS)− f(m)) + Var (ϵBR) + Var (ϵKS)

≤ Var (LϵMS) + VBR + VKS

≤ L2Var (ϵMS) + VBS

≤ L2VMS + VBS.

3.2 Large precision TFHE with functional bootstrapping

We revise the major branches of TFHE based applications which attempts to
operate with large precision. The functional bootstrapping plays an essential
role in all of these works, and sometimes appropriately modified to fulfill their
required functionality.

Radix-based decomposition with multiple ciphertexts In this branch,
the plaintext m is decomposed into several digits (m0,m1, · · · ,md) of certain
base(s) B, and each mi’s are encrypted as a single TLWE ciphertext. Usually,
small power-of-2 integers (2π = 21, 22) are used as a base [3, 7, 11, 15, 19, 37], or
decomposed by co-prime integer bases for the CRT representation [3, 24].

To collaborate with the vector of ciphertexts (i.e., addition, multiplication,
function evaluation), tree-based [19] and chaining [7] method are known as two
major solutions. Both methods lookup to huge LUT (encoded in multiple TRLWE
ciphertexts) by applying the functional bootstrapping consecutively. The chain-
ing method is known to have lower complexity and output noise compared to the
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tree-based method, but can only evaluate restricted types of function. Recently,
Clet et al. [15] generalized the chaining method and enabled to evaluate any
function by the cost of larger plaintext modulus (i.e., 3 · ⌈log2 B⌉ + 1 bits, or
2 · ⌈log2 B⌉+ 1 bits with additional bootstrapping) to work with base B.

Using larger N As the variance of the rounding error was bounded by Var (ϵMS) ≤
n+1
48N2 , if we double N , the bound halves [7, 22, 24, 30]. However, using large N
brings superlinear growth in BlindRotate due to the expensive polynomial multi-
plication with complexity O(N logN). Moreover by doubling N , the size of the
public key (e.g., BSK,KSK, etc) exactly doubles which can be a burden for both
the client and the server using TFHE based applications.

Small Hamming weight Ham(s) Similar to the case of using large N , by
restricting the hamming weight of h = Ham(s), the rounding error gets bounded
by ϵr ≤ h+1

4N [8,24]. Nonetheless, large TLWE dimension n is required to achieve
the same security level with small hamming weight compared to when using
uniform binary key, worsening the performance of bootstrapping as well as its
output noise.

VP-LUT evaluation and Circuit Bootstrapping Recent approach of Berg-
erat et al. [3] employed the TLWE-to-TRGSW circuit bootstrapping from Chillotti
et al. [10]. For ciphertext(s) with total κ bit of precision, their method ex-
tracts a single bit TLWE encryption with κ functional bootstrappings (i.e.,

m =
∑κ−1

i=0 mi·2i extracted into TLWEs

(
mi

2κ−i

)
’s). Then the circuit bootstrapping

transforms each ciphertexts into TRGSWK(mi)’s. These TRGSW ciphertexts are
used to evaluate the VP-LUT (Vertical Packing LUT), which costs 2κ

N +log2 N−1
CMux evaluations. Note that the circuit bootstrapping before the VP-LUT is a
costly operation that contains multiple functional bootstrappings, and the out-
put error of the VP-LUT evaluation can be larger than works featured above.

Aforementioned approaches can be combined together for further improve-
ments if needed (e.g., selecting larger N to attain larger plaintext modulus for
the chaining method). However, this can reduce the overall usability of TFHE,
and should be selected with care.

3.3 Extended BlindRotate for Larger Precision

In this section, we introduce a strategy that can be adapted during the BlindRotate
that allows to attain full precision a single ciphertext can have, even when using
small N . In other words, our method can make the error from the ModSwitch
quite negligible without using larger N , and enlarge the precision as long as it
is affected the after-bootstrap error, ϵBS.

The main idea of our algorithm is to crank up the BlindRotate into a larger
auxiliary ring dimension of 2νN using a homomorphism, which is actually sent
back to 2ν-rings of dimension N for efficient calculation. We first investigate
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on how to crank up the BlindRotate into a larger space. Note that here, we use
an uppercase to clarify the polynomial dimension of TRLWE ciphertext. To be
specific, TRLWEN

K implies that each of the polynomial elements in this TRLWE

ciphertext is an element of TN [X], while TRLWE2νN
K̂ comes from T2νN [X].

BlindRotate in larger dimension Recall that the main precision drop comes
from the ModSwitch, where the elements of TLWEs(m) = (a, b) are rounded
into Z2N . A simple intuition is to pretend we are using 2νN instead of N for
ν ∈ N ∪ {0}, and round the coefficients into Z2ν+1N . The variance of error from
the ModSwitch can now be written as

Var

(
Err

(
ā

2ν+1N
,

b̄

2ν+1N

))
≤ Var (Err (a, b)) +

n+ 1

48 · 22νN2
,

where the variance decreased by VMS/2
2ν . What is left is on how to evaluate

the BlindRotate on dimension 2νN . Thus, we induce a module homomorphism
ι : TN [X]→ T2νN [X] by

ι : TN [X] −→ T2νN [X],

p(x) =

N−1∑
i=0

piX
i 7−→ pext(X) =

N−1∑
i=0

piX
2ν i,

which is actually a zero padding. We now write the undercase ext to denote the
polynomials zero-padded in a similar way. By applying ι on each torus polynomi-
als of ciphertext, which we denote by ι (TRLWEK(p(X))) and ι (TRGSWK(q(X))),
are also extended to

ι
(
TRLWEN

K (p(X))
)
= TRLWE2νN

Kext
(pext(X)) for p(X) ∈ TN [X],

ι
(
TRGSWN

K (q(X))
)
= TRGSW2νN

Kext
(qext(X)) for q(X) ∈ ZN [X],

for extended key Kext ∈ B2νN [X]. Also, since ι does not add any noise, the
noise variance of the ciphertext stays the same. The external product � follows
naturally

TRGSW2νN
Kext

(qext(X)) � TRLWE2νN
Kext

(p(X))

= TRLWE2νN
Kext

(p(X) · qext(X)).

Thanks to the zero padding in TRGSW ciphertext, the error propagation of the
external product is exactly the same with computing the external product in
dimension N whether the TRLWE message p(X) is an extended polynomial or
not. Thus, by extending the bootstrapping key BSK with ι, we can evaluate the
BlindRotate with reduced ModSwitch error with exactly same error propagation,
i.e., VBR. Note that the test vector of the accumulator should be generated in
T2νN [X], so the accumulator is a TRLWE encryption under the key Kext, but the
message is not an extended torus polynomial.

11



After the extended BlindRotate, the SampleExtract follows. However, due to
the extension, the SampleExtract now gives TLWEK′

ext
= (a, b) ∈ T2νkN × T.

Notice that the key K′
ext ∈ B2νkN is just a TLWE representation of the extended

key Kext, and are all 0 except for the indices multiple of 2ν . Thus we extract only
the 2νi-th coefficients from a for i ∈ J0, kN − 1K and attain TLWEK′ , which can
now be keyswitched. The full Algorithm is depicted in Algorithm 3.

Algorithm 3: Large Precision Bootstrapping (without parallelization)

Input: TLWE ciphertext (a, b) ∈ TLWEs (m) with m ∈
[
0, 1

2

)
Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T→ T
Input: Extended Bootstrapping key BSKext =

{
TRGSW2νN

Kext
(si)
}

i∈J0,n−1K
Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f
(

m̄
2ν+1N

))
1 (ā, b̄) = ModSwitch

(
(a, b), 2ν+1N

)
▷ m̄ = b̄− ⟨ā, s⟩mod 2ν+1N

2 Let tv = Σ2νN−1
i=0 f

(
i

2ν+1N

)
Xi

3 Let ACC = (0, tv) ∈ TRLWE2νN
Kext

(tv)

4 ACCBR ← BlindRotate((ā, b̄),BSKext,ACC) ▷ ACCBR = TRLWE2νN
Kext

(X−m̄ · tv)
5 c′ ← SampleExtract(ACCBR)

6 return c = KeySwitch(c′,KSK) ▷ TLWEs

(
f
(

m̄
2ν+1N

))

Parallelization of extended BlindRotate Still, the extended BlindRotate con-
tains lots of polynomial multiplications in dimension 2νN , which is quite costly.
Therefore, we bring back the calculation of BlindRotate into multiple polyno-
mial multiplications in dimension N , which can be easily parallelized. First, we
introduce a module isomorphism τ : T2νN [X]→ T2ν

N [X] defined by

τ : T2νN [X]→ T2ν

N [X]

p(x) =

2νN−1∑
i=0

piX
i 7−→

(
p(0)(X), · · · , p(2

ν−1)(X)
)

=

(
N−1∑
i=0

p2ν iX
i, · · · ,

N−1∑
i=0

p2ν i+2ν−1X
i

)
.

Then for TRLWE2νN
Kext

ciphertext encrypted under extended key Kext, we apply
τ on each torus polynomial elements in T2νN [X], creating (k + 1) vectors of
torus polynomials in T2ν

N [X]. Due to the zero padding in Kext, collecting i-th

entries from the (k + 1) vectors naturally induces a TRLWEN
K ciphertext for

i ∈ J0, 2ν − 1K. We denote the whole process by τ
(
TRLWE2νN

Kext
(m)

)
:

τ
(
TRLWE2νN

Kext
(m)

)
=
(
TRLWEN

K (m0), · · · ,TRLWEN
K (m2ν−1)

)
.

12



for m ∈ T2νN [X] and τ(m) = (m0, · · · ,m2ν−1). Since τ is rearrangement of
coefficients, the noise variance of TRLWE ciphertexts generated by τ is at most
the noise variance of original ciphertext TRLWE2νN

Kext
(m).

Then with two constraints that the TRGSWN
K (z) encrypts an integer z ∈ Z

(which is quite common in TFHE literature) and that the TRGSW2νN
Kext

(z) is

extended from TRGSWN
K (z), we can perform the parallel external product on

the decomposed TRLWE ciphertext by

TRGSW2νN
Kext

(z) � TRLWE2νN
Kext

(m)

∼=
(
TRGSWN

K (z) � TRLWEN
K (m0), · · · ,

TRGSWN
K (z) � TRLWEN

K (m2ν−1)
)

∼=
(
TRLWEN

K (z ·m0), · · · ,TRLWEN
K (z ·m2ν−1)

)
,

where each external product in dimension N can be all performed in parallel.
Moreover, with the inverse mapping τ−1, the output exactly maps to

τ−1
(
TRLWEN

K (z ·m0) , · · · ,TRLWEN
K (z ·m2ν−1)

)
= TRLWE2νN

Kext
(z ·m),

for z ∈ Z and m ∈ T2νN [X]. Keeping this in mind, we now suggest a parallelized
extended BlindRotate, which we now denote as ExtBlindRotate in Algorithm 4.
From our construction, the 2k external products in line 6 used to compute the
CMux gate can be computed in parallel.

Remark 1. In Algorithm 4, the rotation of the accumulator was represented by
rotating in large dimension, and sending back to its vector of dimension N
with the isomorphism τ . We used this representation for simplification, which
in practice can actually be rotated by changing the order of polynomial vector,
and rotating the polynomials.

With the parallel ExtBlindRotate, we now present our final extended boot-
strapping algorithm EBS in Algorithm 5.

Proposition 2 (EBS) The EBS in Algorithm 5 with the extension factor ν ∈
N∪{0} allows to bootstrap a ciphertext with reduced ModSwitch error with vari-
ance 1

22ν VMS. The variance of error of the bootstrapped ciphertext is exactly same
as VBS.

Proof. From line 1 and 2 of Algorithm 5, the reduced ModSwitch error variance
naturally follows

Var

(
Err

(
ā

2ν+1N
,

b̄

2ν+1N

))
≤ Var (Err (a, b)) +

n+ 1

48 · 22νN2

≤ Var (Err (a, b)) +
VMS

22ν
.
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Algorithm 4: Parallel ExtBlindRotate

Input: (ā, b̄) ∈ Zn
2ν+1N × Z2ν+1N

Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T→ T
Input: Bootstrapping key BSK

Output:
−−→
ACC with τ−1

(−−→
ACC

)
= TRLWE2νN

Kext
(X−b̄+⟨ā,s⟩ mod 2ν+1N · tv)

1 Let tv = Σ2νN−1
i=0 f

(
i

2ν+1N

)
Xi

2
−−→
ACC← τ

(
TRLWE2kN

Kext
(X−b̄ · tv)

)
3 for i ∈ J0, n− 1K do

4
−−−−−→
RotACC← τ

(
X āi · τ−1

(−−→
ACC

))
5 for j ∈ J0, 2ν − 1K do

6
−−→
ACCj ← BSKi �

(−−−−−→
RotACCj −

−−→
ACCj

)
+
−−→
ACCj ▷ Parallel comp.

7 end

8 end

9 return
−−→
ACC

Now we show the correctness of ExtBlindRotate in Algorithm 4 and analyze its
error propagation. Starting from line 4 of Algorithm 4, we see that it is a rotation

of
−−→
ACC by āi in T2νN [X] and does not add any noise since it only rearranges the

coefficients.
In line 6 of Algorithm 4, the CMux gate is evaluated on each row of the

accumulator using the external product. Thus if BSKi encrypts 1, the āi-rotated

accumulator
−−−−−→
RotACC is selected for the next accumulator. If not (i.e., if BSKi

encrypts 0),
−−→
ACC is selected. Thus after each i-th loop, the merged accumulator

τ−1
(−−→
ACC

)
is rotated by X āisi , and hence encrypts X−b̄+

∑i
p=0 āi·si · tv for i ∈

J0, n− 1K.
For the error propagation of ExtBlindRotate, the errors only comes from the

CMux evaluation. More specifically, from the decomposition of the TRLWE ci-
phertext for the external product, and the external product itself. Thus the error
propagation for a single CMux evaluation is exactly the same as the BlindRotate
error VBR. After the ExtBlindRotate, the error is once more accumulated from
the KeySwitch in line 5 of Algorithm 5, whose variance is same as VKS. Thus the
variance of error after bootstrapping is exactly bounded by VBS.

Remark 2. The homomorphism ι and isomorphism τ was defined on module
since TN [X], T2νN [X] are not rings. Nonetheless, this can be easily associated
to rings, using the isomorphism between Zq and 1

qZq ⊂ T. Thus, our method
can naturally be used in ring-based TFHE bootstrapping implementations like
in [24,30,37].
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Algorithm 5: EBS

Input: TLWE ciphertext (a, b) ∈ TLWEs (m) with m ∈
[
0, 1

2

)
Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T→ T
Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f
(

m̄
2ν+1N

))
1 (ā, b̄) = ModSwitch

(
(a, b), 2ν+1N

)
▷ m̄ = b̄− ⟨ā, s⟩mod 2ν+1N

2
−−→
ACC← ExtBlindRotate((ā, b̄), ν, f,BSK)

3 c′ ← SampleExtract(
−−→
ACC0) ▷ Extract TLWEK′

(
f
(

m̄
2ν+1N

))
4 return c = KeySwitch(c′,KSK) ▷ TLWEs

(
f
(

m̄
2ν+1N

))

3.4 Large Precision in Full Domain TFHE Bootstrapping

Recall that the aforementioned functional bootstrapping algorithms (including
our EBS) only works with half domain of the torus

[
0, 1

2

)
to evaluate arbitrary

function f : T → T. These algorithms consumes 1 additional bit in front of
the MSB of the message, and bootstrapping requires p + 1 bits of precision to
successfully bootstrap messages of p bit precision.

Luckily, it is always possible to evaluate arbitrary function f : T → T in
the full domain of the torus with extra operations. From the state-of-the-art
full domain functional bootstrapping algorithms, we observed that our EBS can
cooperate with most of these algorithms [14, 15, 24, 37], as they all contain the
ModSwitch to 2N orN . TheWoP-PBS from [3] uses the functional bootstrapping
for extracting bits from the ciphertext and during the circuit bootstrapping.
Nonetheless, neither the bit extraction nor the the circuit bootstrapping require
high precision. As a result, even if our EBS is adaptable, there would be no need
to adapt it to their method. Thus, we first briefly explain and compare three full
domain bootstrapping algorithms from [15,24,37].

FDFB The idea of full domain bootstrapping of FDFB [24] is to select between
two test vectors p+, p− ∈ TN [X] based on the sign of message ct encrypts. The
selection is done by public Mux evaluation, PubMux, with the external product.
First, the sign of ct is first encrypted in a TRGSW-like ciphertext with the circuit
bootstrapping [11] (like) procedure. We refer to it as a (T)RLev ciphertext [14],
which equals to the last ℓPM rows of the TRGSW ciphertext. Note that the
multiplication between a torus polynomial p(X) and a TRLev encryption of
q(X) ∈ ZN [X] outputs a TRLWE encryption of q(X) · p(X).

The transformation to TRLev starts with ℓPM-functional bootstrappings to
extract the sign from ct. Then each ciphertexts are TLWE-to-TRLWE keyswitched,
which we denote it as RS. For specific information about the algorithm, refer to
Algorithm 2 of [11]. This ends the conversion to TRLev, and the error in TRLev
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is bounded by
Var (Err (TRLev(sign(ct))) ≤ VBS + VRS,

and where VRS denotes

VRS = nℓRSVar(Err(RSK)) +
1

12
nB−2ℓRS

RS .

The TRGSW′ encrypts 1 (resp. 0) if the sign of ct is positive (resp. negative).
Then the evaluation of the PubMux follows by

ACC = (0, p+ − p−) �′ TRLev(sign(ct)) + (0, p−).

Then ACC is initialized as a TRLWEK encryption of p+ or p− according to the
sign of the input ciphertext ct. The error of ACC is given as

Var (Err (ACC)) ≤ NℓPM

(
BPM

2

)2

(VBS + VRS) +
1 + kN

4 ·B2ℓPM
PM

,

which we will now denote it as VFDFB−ACC. What is left is to bootstrap ct with
the accumulator, and the final error after bootstrap is bounded by

VFDFB−ACC + VBS.

The full algorithm of FDFB(-EBS) is shown in Algorithm 6.

TOTA The main intuition for TOTA [37] bootstrapping is the ModSwitch to
ZN , since N is the maximal number of coefficients a test vector tv ∈ TN [X] can
hold. This makes the quadruple growth to the variance ofModSwitch (i.e., 4VMS).
Also, the decryption in Z2N during BlindRotate with elements that lied in ZN

adds unwanted term pN to the message, for p ∈ {0, 1}. Thus TOTA computes
the pN with the sign bootstrapping. The term pN is removed by subtracting the
ModSwitch-ed sign bootstrapped ciphertext, which adds additional ModSwitch
error VMS and the bootstrapping error VBS before the final bootstrapping. After
removing the pN , the ciphertext is then finally bootstrapped with the test vector
encoding the function f .

To sum up, TOTA involves two bootstrappings. First bootstrapping to cal-
culate pN with pre-bootstrapping error variance

≤ Vct + 4VMS,

followed by the second bootstrapping to evaluate the function f , with pre-
bootstrapping error variance

≤ VBS + Vct + 5VMS.

The variance of error of the output ciphertext is bounded by VBS. The full
algorithm of TOTA-EBS is shown in Algorithm 7. For the EBS in line 3 of Algo-
rithm 7, the ciphertext (ā, b̄) is already in Z2ν+1N , and we assume thatModSwitch
is skipped during the EBS in Algorithm 5.
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Algorithm 6: FDFB-EBS

Input: TLWE ciphertext (a, b) ∈ TLWEs (m)
Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T→ T
Input: Bootstrapping key BSK
Input: Keyswitch key KSK
Input: TLWE-to-TRLWE Keyswitch key RSK
Input: PubMux parameter ℓPM, BPM

Output: Refreshed TLWE ciphertext TLWEs

(
f
(

m̂
2ν+1N

))
1 for i ∈ J1, ℓPMK do

2 (ai, bi)← EBS
(
(a, b), ν, 1

2Bi
PM

fsign,BSK,KSK)
)
+
(
0, 1

2Bi
PM

)
▷ (ai, bi) = TLWEs

(
sign(ct)
Bi

PM

)
3 PubACCi ← RSs→K

(
(ai, bi),RSK

)
▷ PubACC = TRLevK (sign(ct))

4 end

5
−−→
ACC← PubMux

(
PubACC, f(x),−f

(
x− 1

2

))
▷ τ−1

(−−→
ACC

)
= TRLWE2νN

Kext
(tvsign(ct))

6 for i ∈ J0, n− 1K do

7
−−−−−→
RotACC← τ

(
X āi · τ−1

(−−→
ACC

))
8 for j ∈ J0, 2ν − 1K do

9
−−→
ACCj ← BSKi �

(−−−−−→
RotACCj −

−−→
ACCj

)
+
−−→
ACCj

10 end

11 end

12 c′ ← SampleExtract(
−−→
ACC0)

13 return c = KeySwitch(c′,KSK)

Comp Using the fact that every function f can be written as the sum of (pseudo)
odd and even functions, the Comp method [15] decomposes a function f as the
sum of odd and even functions fg, and fh. They aim to compute odd/even
functions within 2 bootstrappings each, which can be performed in parallel, and
combine them together with simple addition. In total, they can compute any
function with 4 functional bootstrappings. The first bootstrapping contains pre-
bootstrapping error bounded by

≤ Vct + VMS,

and the second bootstrapping bounded by

≤ VBS + VMS.

Due to the addition of two ciphertexts encrypting the value of the odd/even func-
tion, the final error of the Comp method is bounded by 2VBS. The full algorithm
of Comp(-EBS) is shown in Algorithm 8.
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Algorithm 7: TOTA-EBS

Input: TLWE ciphertext (a, b) ∈ TLWEs (m)

Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T→ T
Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Output: Refreshed TLWE ciphertext TLWEs

(
f
(

m̂
2νN

))
1 (ā′, b̄′) = ModSwitch ((a, b), 2νN) ▷ m̂ = b̄′ − ⟨ā′, s⟩mod 2νN

2 (ā, b̄) = ModRaise2νN→2ν+1N

(
(ā′, b̄′)

)
▷ m̄ = m̂+ p2νN (in Z2ν+1N )

3 ctsgn ← EBS
(
(ā, b̄), ν, 1

4fsign,BSK,KSK
)
+ (0, 1

4 ) ▷ ctsgn = TLWEs

(
p
2

)
4 (a′, b′)← ModSwitch

(
ctsgn, 2

ν+1N
)

▷ b′ − ⟨a′, s⟩mod 2ν+1N = p2νN

5 (a, b) = (a′, b′) + (ā, b̄) ▷ b− ⟨a, s⟩mod 2ν+1N = m̂

6 return c = EBS ((a, b), ν, f,BSK,KSK)

The whole comparison of three full domain bootstrapping algorithms is shown
in Table 1, and the functional bootstrapping is denoted as BS, and the keyswitch
as KS. Among the three full domain bootstrapping algorithms, TOTA [37] out-
performs other two works in terms of number of operations needed, and also the
error after the bootstrapping. However, the variance of error from the ModSwitch
nearly quadraples, and quintuples compared to other two. This can be effectively
mitigated by our EBS, without changing any of the structure of TOTA. Still, our
EBS can also be adapted to other two methods as they all inevitably bootstrap
with ModSwitch error added.

3.5 Probability of correct bootstrapping with EBS

As formerly mentioned, TFHE based applications usually works on plaintext
space of Zp, with p an integer [15, 23, 33]. Using the isomorphism between Zp

and 1
pZp, the elements m ∈ Zp is encoded as m

p ∈ T (m2p for half domain). Then,
to correctly bootstrap a ciphertext, both pre-bootstrap error and the error after
bootstrapping must be smaller than 1

2p . For a ciphertext whose error variance is
V and plaintext space Zp, the probability of correct decryption is estimated by

p

(
|Err (ct)| ≤ 1

2p

)
= erf

(
1

2p
√
2V

)
,

where erf is the error function. Thus, starting from the half-domain EBS with
extension factor ν, the probability of correct bootstrapping is given as

p(HDEBS) ≥ erf

 1

4p
√

2Vct +
1

22ν−1 VMS

 · erf( 1

4p
√
2VBS

)
,
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Table 1: Comparison of 3 full-domain functional bootstrapping algorithms. Here,
VMS = n+1

48N2 , Vct is the variance of error of input ciphertext ct. The BS denotes
bootstrapping, RS denotes the TLWE-to-TRLWE KeySwitch.

FDFB [24] TOTA [37] Comp [15]

Pre-bootstrap error Vct + VMS
Vct + 4VMS

Vct + VBS + 5VMS

Vct + VMS

VBS + VMS

# of operations
(ℓPM + 1)-BS
+ℓPM-RS

+1-PubMux
2-BS 4-BS

Error after Bootstrap VFDFB−ACC + VBS VBS 2VBS

Parallel Computing Partial ✗ ✓

Compatible with EBS ✓ ✓ ✓

as for successful bootstrapping, both the pre-bootstrap error, and the after-
bootstrap error must both be smaller than 1

2p . Thus, for other three bootstrap-

pings, FDFB-EBS, TOTA-EBS, Comp-EBS, we have

p(FDFB-EBS) ≥ erf

 1

2p
√

2Vct +
1

22ν−1 VMS

 · erf
(

1

2p
√

2VFDFB−ACC + 2VBS

)
,

p(TOTA-EBS) ≥ erf

 1

2p
√

2Vct +
1

22ν−3 VMS

 · erf

 1

2p
√

2Vct + 2VBS + 5

22ν−1 VMS

 · erf
(

1

2p
√
2VBS

)
,

p(Comp-EBS) ≥ erf

 1

2p
√

2Vct +
1

22ν−1 VMS

 · erf

 1

2p
√

2VBS + 1

22ν−1 VMS


2

· erf
(

1

2p
√
4VBS

)
.

Then, the probability of failure is calculated by subtracting the success rate
from 1, e.g., perr(HDEBS) ≤ 1− p(HDEBS).

Remark 3. The above estimation is for when fixed-point arithmetic is used (in
which is IND-CPAD secure), using Zp as a plaintext space. Thus, the functions
are encoded in a staircase-like manner, i.e.,

∑
i f
(
⌊ p
2νN · i⌋

)
for f : Zp → Zp,

that works like a breakwater to prevent pre-bootstrap noise flooding out.

4 Experimental Results

We implemented our (HD)EBS along with the adaptation of EBS to three full-
domain bootstrappings, FDFB-EBS, TOTA-EBS, Comp-EBS. Our implementa-
tions were built upon TFHE library [12], where the torus elements T are rep-
resented as 32-bit integer, Z232 . Our experiments were executed with Intel i9-
13900K running at 5.80GHz with 24 cores (8 performance cores, 16 efficient
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Algorithm 8: Comp-EBS (Modular)

Input: TLWE ciphertext (a, b) ∈ TLWEs (m)

Input: extension factor ν ∈ N ∪ {0}
Input: A L-Lipschitz morphism f : T→ T
Input: Bootstrapping key BSK

Input: Keyswitch key KSK

Input: Plaintext modulus P
Output: Refreshed TLWE ciphertext TLWEs

(
f
(

m̂
2νN

))
1 c1 = EBS

(
(a, b), ν, 1

2P + 1
P ⌊2

νNPx⌋ ,BSK,KSK
)
−
(
0, 1

2P
)

2 c2 = EBS
(
(a, b), ν, 1

2P + 1
4 + 1

P ⌊2
νNPx⌋ ,BSK,KSK

)
−
(
0, 1

2P + 1
4

)
3 c3 = EBS

(
c1, ν,

f(x)−f(−x− 1
P )

2 ,BSK,KSK
)

4 c4 = EBS
(
c2, ν,

f(x)+f(−x− 1
P )

2 ,BSK,KSK
)

5 return c3 + c4

cores) and 32 threads, 128GB RAM, and with 64-bit Ubuntu 22.04 environment.
We compiled our experiment with g++ 11.3.0 with flags -ltfhe-spqlios-fma
-fopenmp -lquadmath, using spqlios FFT in TFHE for fast polynomial multi-
plication, and multi-threading for our parallel EBS. The code we used for experi-
ment is publicly available at https://github.com/Stirling75/Extended-BootStrapping.

4.1 TFHE Parameters

As the security of TFHE scheme has its roots in the hardness of (R)LWE prob-
lem, its security level is decided by the dimension of ciphertext (i.e., n, kN),
and its corresponding standard deviation of errors added during encryption (i.e.,
σTLWE, σTRLWE). The security of TRGSW is guaranteed by the security of TRLWE,
as it is a vector of TRLWE ciphertexts. We estimated the cost of attack models
for various instances (n, σTLWE), and (N, σTRLWE) with the lattice estimator [1].
For most of our instances, the cost of the dual-hybrid attack [17] were estimated
to be the cheapest.

In Table 2, we present eight TFHE parameter sets satisfying λ = 80, 128 bits
of security, which implies it requires at least 2λ operations for the attack mod-
els to succeed their attacks. As can been seen from parameter set I1 and III1,
T(R)LWE ciphertexts with same dimension, decreasing the security parameter λ
enables to use small standard deviation for the error which decreases the error af-
ter bootstrapping. Notice that for parameter sets (I1, I2, I3) and (III1, III2, III3),
we used exactly the same parameters except for the ring dimension N , to observe
the effect of using larger N . Nonetheless, the native TFHE library only supports
FFT of dimension 1024, and we made slight changes in their library to enable
FFT on dimension 2048 and 4096 to support fast polynomial multiplication.
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Table 2: TFHE parameter sets. λ indicates the security level of given parameter
set.

Param
Set

λ

TLWE TRLWE KSK BSK

n
σTLWE

(log2)
N k

σTRLWE

(log2)
ℓKS BKS ℓBS BBS

I1 80 750 −21.2 1024 1 −29.3 3 28 7 24

I2 80 750 −21.2 2048 1 −32 3 28 7 24

I3 80 750 −21.2 4096 1 −32 3 28 7 24

II 80 900 −25.7 2048 1 −32 5 26 7 24

III1 128 670 −12.4 1024 1 −20.1 3 25 8 23

III2 128 670 −12.4 2048 1 −32 3 25 8 23

III3 128 670 −12.4 4096 1 −32 3 25 8 23

IV 128 1300 −26.1 2048 1 −32 5 26 7 24

However, this modified FFT still uses 64-bit double with 53 bits of preci-
sion, accumulating non-negligible noise during polynomial multiplication when
N ≥ 2048. We found this inhibits exact noise analysis for cases where polynomial
multiplication over dimension N ≥ 2048 is used. Further details on noise accu-
mulation during FFT and polynomial multiplication can be found in Proposition
1 of [21].

We also describe FDFB parameters in Table 3. These parameters are only
used for FDFB and has no effect on other bootstrapping methods. Using these
parameters, FDFB runs with ℓPM + 1 = 6 (functional) bootstrappings, ℓPM = 5
RS and 1 PubMux operations.

Table 3: Parameters for RSK and PubMux for FDFB.

Parameter
Set

RSK PubMux

ℓRS BRS ℓPM BPM

I1, I2, I3 6 25

5 25
II 4 26

III1, III2, III3 4 26

IV 6 25
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4.2 Performance Results

With the parameters we suggested in Section 4.1, we make a thorough analysis
in terms of public key size, latency, and noise.

Public Key Size Following the footsteps of [11], we measure the size of the
public keys (BSK, KSK, RSK) published for homomorphic operations. First we
measure the size of TLWE, TRLWE, TRGSW ciphertexts and then calculate the
size of each public keys. For example, the size of TLWE ciphertext of parameter
set I1 is (n+ 1)× 32 = 24 032 bits ≈ 3.004 KB. Also, since KSK is composed of
N × ℓKS ×BKS TLWE ciphertexts, the size of the KSK is 2.36 GB.

Likewise, we evaluate the key size for every parameter set and present the
result in Figure 1. As we can observe from the result of parameter sets (I1, I2, I3)
and (III1, III2, III3), the key size doubles as N doubles. Still, with proper ad-
justment of parameters, we can make the public key size ‘sufficiently small ’ (see
BSK and KSK of parameter I1 and II) even with large N .
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Fig. 1: Public key (BSK, KSK, RSK) sizes for our parameters.

Noise Analysis Next, we examine the variance of noise for our parameters.
As our work heavily relies on the noise estimates of variety of algorithms, we
found it necessary to show experimental validation of our estimations proposed
in previous sections. We present our results in Table 4. We calculated (with
label (c)) the standard deviations with our variance estimations, and experimen-
tally validated it (with label (E)) by observing 215 samples for each case. For
bootstrappings, we set the test vector as identity function and calculated the
standard deviations.
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For ModSwitch, we calculated two standard deviations with the conventional

VMS formula n+1
48N2 , and with the hamming weight of the TLWE key s, Ham(s)+1

48N2 .
Our result shows that the experimental error nearly corresponds to the standard
deviation calculated with the hamming weight for all cases. For bootstrapping
(including TOTA and Comp), we observe that for parameter sets I2, I3, II and IV,
their experimental bootstrapping error are larger than expected due to the non-
negligible FFT error accumulated during polynomial multiplication. Nonethe-
less, for parameter set III2 and III3, their main error standard deviations are
dominated by the keyswitching error and seems to follow the estimation well.
We provide detailed error analysis of BlindRotate and KeySwitch in appendix
A.1, Table 5.

To only observe the output noise of each bootstrapping method, we first pre-
computed the rotated amount (during BlindRotate) for given ciphertext. Then
we bootstrapped the ciphertext with each bootstrapping methods, and then sub-
tracted the rotated test vector from the accumulator, thereby eliminating the
effect of the ModSwitch. From the result, FDFB shows larger noise standard de-
viation compared to other bootstrapping methods due to the PubMux operation.
Moreover, from the result of Proposition 1, we claim that until LσMS, where L is
the Lipschitz constant of the function f , is larger than the output bootstrapping
noise standard deviation, there will be room for improvement with our EBS.

Table 4: Estimated noise standard deviation (with label (c)) and experimental
noise standard deviation (with label (E)) of ModSwitch and four bootstrapping
methods. The standard deviations are presented in the form of log2.

I1 I2 I3 II III1 III2 III3 IV

ModSwitch

σ
(c)
MS −8.016 −9.016 −10.016 −8.885 −8.097 −9.097 −10.097 −8.620

Ham(s) 379 379 379 448 330 330 330 645

σ
(c,Ham)
MS −8.508 −9.508 −10.508 −9.387 −8.607 −9.607 −10.607 −9.125

σ
(E)
MS −8.509 −9.506 −10.507 −9.385 −8.601 −9.591 −10.544 −9.116

Bootstrap
σ
(c)
BS −14.411 −14.855 −14.355 −16.614 −6.000 −6.107 −5.607 −16.364

σ
(E,id)
BS −14.882 −14.663 −14.033 −15.293 −6.369 −6.157 −5.654 −15.128

FDFB
σ
(c)
FDFB −4.250 −4.194 −3.193 −5.951 4.161 4.554 5.554 −5.703

σ
(E,id)
FDFB −10.196 −10.010 −8.524 −9.882 −2.152 −1.830 −1.750 −9.753

TOTA
σ
(c)
TOTA −14.411 −14.855 −14.355 −16.614 −6.000 −6.107 −5.607 −16.364

σ
(E,id)
TOTA −14.879 −14.639 −14.063 −15.628 −6.371 −6.160 −5.649 −14.992

Comp
σ
(c)
Comp −13.911 −14.355 −13.855 −16.114 −5.500 −5.607 −5.107 −15.864

σ
(E,id)
Comp −14.581 −14.460 −13.611 −14.796 −6.163 −6.149 −5.645 −14.533
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Fig. 2: Latency for EBS with eight sets of parameters given in Table 2. The x-
axis represents ν+log2(N) for each parameter set, and the y-axis represents the
latency in milliseconds in logarithmic scale of base 2.

Benchmarks We now present benchmarks for EBS, and precision growth when
adapted to full-domain bootstrapping methods. We first measure the latency
for computing a single conventional TFHE bootstrapping with EBS. Note that
when the extension factor ν = 0, the EBS becomes exactly same as original
bootstrapping. From the results, we can see that for non-parallelized settings
(depicted in dashed line), using N ′ = 2νN with ν > 0 is slower than using
EBS with dimension N and extension factor ν. Also, since the EBS increases the
number of external products by the factor of 2ν , it is easy to see the exponential
increase in latency with respect to the extension factor ν. For parallelized version
of EBS (depicted in solid line), we found that we lose full parallelization from

24



ν = 3 due to computational limitations. Thus, our results show exponential
growth after ν = 3.

Precision We finally turn to our major contribution of EBS, the precision
enhancement. For three full-domain bootstrapping methods we introduced, we
measured the output noise standard deviations for two functions, the identity
function (with Lipschitz constant L1 = 1) and f(x) = 43 sin(πx/32) (with Lips-
chitz constant L2 ≈ 33.772) by matching the torus

[
− 1

2 ,
1
2

)
to [−64, 64). With the

three sigma rule, we measured the bit precision of the results and presented them
in Figure 3 for four parameter sets I1, II, III1, IV. With the experimental results
from Table 4 and some additional experiments, we also calculated the (ideal)
maximum precision of each parameter set and depicted it as a dash-dot line in
all of the figures. We noticed that the change of function (which changes the test
vector) introduces noticeable changes to the maximum precision to FDFB due
to their PubMux, but is quite negligible to other two full-domain bootstrapping
methods.

From our results, we can see for both parameter sets I1, II and IV, the
precision improvement is significantly clear for TOTA and Comp. Nonetheless,
due to the PubMux in FDFB, the maximum precision for their method is lower
than other two methods. For parameter set III1, due to its large noise standard
deviation (σTRLWE = 2−20.1) for TRGSW ciphertext (since they achieve 128 bits
of security), their output precision is quite lower than other parameter sets. In
this case, it is suggested to increase the size of N and use smaller standard
deviation, like in parameter set IV (N = 2048, σTRLWE = 2−32).

5 Conclusion

In this paper, we suggested a high precision TFHE bootstrapping algorithm EBS,
which can almost remove the affect of ModSwitch during bootstrapping. The
biggest advantage in our scheme is that it allows to bootstrap with large precision
with small public key size compared to when enlarging N . Also, EBS can be
naturally parallelized for fast computation, where no known algorithm is known
to parallelize TFHE bootstrapping. Thus, we can even bootstrap much faster
than previous literature of using large N . We show that our EBS is compatible
with both modular, and approximate arithmetic, as well as previously known
full domain bootstrapping algorithms. We also believe EBS can be one of the
solution for bridging other homomorphic encryption schemes with TFHE, by
allowing high precision, nonlinear function bootstrapping with small cost.

Acknowledgements This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2022R1F1A1074291).
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Fig. 3: Experimental output precision of three full-domain bootstrapping methods (FDFB,TOTA,Comp)
with EBS evaluated with the four parameter sets I1, II, III1, and IV. The id and sin stands for the
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A Appendix

A.1 Noise Analysis

We present detailed analysis of noise for the BlindRotate, KeySwitch, and FDFB-ACC
in Table 5. Due to the error added during polynomial multiplication (with FFT),
the experimental error standard deviation for N ≥ 2048 is larger than estimated
results.

Table 5: Estimated noise standard deviation (with label (c)) and experimental
noise standard deviation (with label (E)). The standard deviations are presented
in the form of log2.

I1 I2 I3 II III1 III2 III3 IV

Bootstrap

σ
(c)
BR −14.620 −16.771 −16.271 −16.640 −6.406 −14.794 −14.295 −16.374

σ
(E,id)
BR −15.355 −15.539 −14.675 −15.297 −7.181 −11.539 −10.682 −15.129

σ
(c)
KS −15.407 −14.907 −14.407 −19.039 −6.607 −6.107 −5.607 −19.439

σ
(E)
KS −15.413 −14.910 −14.419 −19.068 −6.657 −6.157 −5.655 −19.472

σ
(c)
BS −14.411 −14.855 −14.355 −16.614 −6.000 −6.107 −5.607 −16.364

σ
(E,id)
BS −14.882 −14.663 −14.033 −15.293 −6.369 −6.157 −5.654 −15.128

FDFB

σ
(c)
ACC −4.250 −4.194 −3.194 −5.951 4.161 4.554 5.554 −5.703

σ
(E,id)
ACC −10.207 −10.004 −8.546 −9.892 −2.155 −1.838 −1.751 −9.764

σ
(c)
FDFB −4.250 −4.194 −3.193 −5.951 4.161 4.554 5.554 −5.703

σ
(E,id)
FDFB −10.196 −10.010 −8.524 −9.882 −2.152 −1.830 −1.750 −9.753

A.2 Benchmarks

In this section, we present the benchmark results for our parallelized and non-
parallelized EBS along with the benchmarks for three full-domain bootstrapping
methods. Note that none of the operations except the EBS were parallelized for
fair comparison.
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Table 6: Benchmark results for EBS and three full-domain bootstrapping meth-
ods. The NP is for non-parallelized, and P denotes parallelized results. All
results are presented in milliseconds (ms).

ν I1 I2 I3 II III1 III2 III3 IV

HDEBS

NP

0 17.88 36.44 79.28 43.98 18.08 35.84 77.88 62.72

1 31.38 64.4 146.24 77.88 30.58 63.7 145.5 114.74

2 57.04 120.02 284 148.42 56.32 119.88 286.42 211.9

3 107 233.82 537.98 280.32 107.52 236.54 556.74 405.54

4 207.98 458.46 1050.92 550.52 207.48 457.56 1061.12 792.28

5 412.86 910.26 - 1088.24 414.1 904.76 - 1580.92

6 825.16 - - - 819.8 - - -

P

0 17.895 36.67 78.4 43.94 18.205 35.85 78.1 63.21

1 22.12 45.205 96.28 55.16 21.98 44.15 96.12 79.015

2 23.015 45.6 96.62 55.2 23.15 44.55 95.53 79.64

3 28.465 59.235 120.6 67.8 29.79 53.42 118.055 95.545

4 55.305 131.64 406.12 166.36 69.47 132.765 392.385 246.675

5 110.225 243.07 - 290.92 138.865 288.21 - 475.665

6 201.275 - - - 232.34 - - -

FDFB-EBS P

0 130.22 253.78 543.57 303.67 123.02 243.8 529.18 457.89

1 154.42 298.65 605.84 355.07 146.28 295.92 600.24 520.72

2 157.94 307.18 639.79 365.77 150.76 294.27 626.65 532.28

3 239.23 432.24 1016.78 478.13 193.35 443.41 957.79 821.15

4 410.85 854.58 2561.31 1012.06 438.65 833.93 2522.98 1484.04

TOTA-EBS P

0 37.98 75.1 162.64 92.84 37.15 74.9 166.33 134.13

1 44.06 88.56 191.68 113.51 45.33 91.87 193.88 157.56

2 46.77 91.86 196.31 113.15 46.52 91.47 196.84 159.61

3 83.1 134.62 275.54 155.91 59.89 131.12 307.76 258.35

4 153.99 273.6 827 330.39 139.47 268.45 822.79 474.7

Comp-EBS P

0 74.67 150.25 325.02 184.9 74.12 149.96 332.31 267.24

1 89.31 181.11 384.38 226.16 89.9 181.79 394.74 317.37

2 93.24 184.26 391.46 225.2 93.5 182.38 392.45 318.85

3 171.22 308.43 561.69 321.24 152.34 271.53 595.7 460.4

4 303.01 544.15 1650.39 657.29 281.76 541.95 1669.71 964.52
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