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Abstract. The Restricted Syndrome Decoding Problem (R-SDP) cor-
responds to the Syndrome Decoding Problem (SDP) with the additional
constraint that all entries of the solution error vector must live in a fixed
subset of the finite field. In this paper, we study how this problem can be
applied to the construction of signatures derived from Zero-Knowledge
(ZK) protocols. First, we show that R-SDP appears to be well-suited
for this type of application: ZK protocols relying on SDP can easily be
modified to use R-SDP, resulting in significant reductions in the commu-
nication cost. We then introduce and analyze a variant of R-SDP, which
we call R-SDP(G), with the property that solution vectors can be rep-
resented with a number of bits that is slightly larger than the security
parameter (which clearly provides an ultimate lower bound). This en-
ables the design of competitive ZK protocols. We show that existing ZK
protocols can greatly benefit from the use of R-SDP, achieving signature
sizes in the order of 7 kB, which are smaller than those of several other
schemes submitted to NIST’s additional call for post-quantum digital
signatures.

Keywords: Code-based Cryptography · Post-Quantum Cryptography ·
Restricted Errors · Signature Scheme · Syndrome Decoding Problem.

1 Introduction

In 2023, the National Institute of Standards and Technology (NIST) reopened
the standardization call for post-quantum cryptography, targeting solely signa-
ture schemes, preferably not based on structured lattices.3 Arguably, this addi-
tional call has shifted the focus of the cryptographic community to finding new
and efficient post-quantum signature schemes.

In particular, over the last years, significant attention has been dedicated
to schemes obtained via the Fiat-Shamir transform on a Zero-Knowledge (ZK)
interactive protocol. As a matter of fact, signatures derived from this paradigm
are now perceived as one of the most promising solutions. This is visible within

3 See, e.g., the official NIST call https://csrc.nist.gov/csrc/media/Projects/
pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
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the round 1 submissions to NIST’s additional call: out of the 40 submitted
schemes, 15 candidates are based on such a paradigm.

The Fiat-Shamir transform works by making a ZK protocol non-interactive:
The signer simulates an execution of the protocol, binding it to the message-to-
be-signed (thanks to the one-wayness of hash functions), and the signature is
composed by the transcript, i.e., the list of messages that are exchanged during
the protocol execution. When the soundness error of the considered protocol is
too high, a certain number of repetitions is needed to avoid efficient forgeries; in
such a case, the number of exchanged messages increases, and the signature size
grows, as well.

Historically, the large signature size has been the Achilles’ heel of these types
of signature schemes. However, the panorama has greatly changed in the past
few years thanks to various techniques and optimizations capable of compressing
signatures. One of the most popular approaches consists of designing protocols
with very low soundness error ; this reduces the number of repetitions and, con-
sequently, leads to shorter transcripts. In particular, for problems related to de-
coding (e.g., the Syndrome Decoding Problem (SDP) and the Permuted Kernel
Problem (PKP)), popular approaches are the so-called protocol-with-helper [17]
and the Multi-Party Computation (MPC) in-the-Head (MPCitH) paradigm [33].

1.1 Our Contribution

In this paper, we study ZK protocols derived from the Restricted Syndrome
Problem (R-SDP), introduced in [11]4, which adds to the classical SDP the
constraint that each entry must live in a fixed subset E of the underlying finite
field. We first describe the problem in its full generality and then move to the
particular version with full Hamming weight and E being a cyclic subgroup of
the multiplicative group.

We show that the restricted setting can be tailored so that many existing
ZK protocols receive a significant reduction in the communication cost. This
happens because of two phenomena. First, in R-SDP the error can have a much
larger Hamming weight, even maximum (that is, no null entry), while still having
a unique solution to the problem. This increases the cost of Information Set
Decoding (ISD) algorithms, and, as a matter of fact, with R-SDP we can achieve
the same security level using smaller codes. Another important improvement is
due to the transformations used in ZK protocols. For the classical SDP, they
are given by a monomial transformation (a permutation with scaling factors), as
these are the transitive linear maps acting on the Hamming sphere. For the new
R-SDP, component-wise multiplication with restricted vectors is enough since
these linear maps act transitively on the set of restricted vectors. This yields
another significant reduction in the communication cost.

Then, we derive a special version of R-SDP, called R-SDP(G), with which
the performances of ZK protocols can be further boosted. With R-SDP(G), the

4 A similar idea was already mentioned in [42], but it was not used in conjunction
with a decoding problem.
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solution space is a subgroup G ≤ En, whose size can be tuned to minimize
the communication cost. Namely, for a security of λ bits, R-SDP(G) uses a
solution space G of size 2(1+α)λ, where α ≥ 0 is a small constant (say, α ≤ 1).
From a mathematical point of view, G is a group that acts transitively and
freely on itself: this implies that we can sample any restricted object (i.e., secret
keys and hiding transformations) from G and represent its elements using only
(1 + α)λ ≤ 2λ bits. The value of α is chosen from a conservative perspective so
that existing attacks cannot be sped up considering the knowledge of G.

Finally, we apply R-SDP and R-SDP(G) on modern ZK protocols, namely the
GPS scheme [31] and BG scheme for the Permuted Kernel Problem (PKP) [18].
We call the newly derived schemes R-GPS and R-BG, respectively, and show
that moving to R-SDP and R-SDP(G) leads to significant reductions in the
communication cost and in signature sizes, as well. In fact, for R-GPS, we almost
halve the signature sizes, while for R-BG we achieve important savings: using
R-SDP(G), we obtain signatures with a size of 7.8 kB (instead of 10.0 kB) for the
fast variant, and 7.2 kB (instead of 8.9 kB) for the short variant. We also provide
timings for a (non-optimized) Proof of Concept implementation for R-BG, which
confirms that the proposed protocols are practical.

The work in this paper lies the foundation of CROSS [10], one of the schemes
submitted to the NIST call for additional signatures. CROSS uses R-SDP and
R-SDP(G), applied to a basic ZK protocol inspired from [20], with soundness
error ≈ 1/2. Signature sizes are in the same ballpark as those of other ZK/M-
PCitH schemes, but CROSS is one of the fastest schemes in this category. This is
made possible by using R-SDP and R-SDP(G). Indeed, techniques to reduce the
soundness error normally come with the price of some significant computational
overhead. Since using R-SDP and R-SDP(G) leads to very compact messages,
CROSS can use a simple but highly efficient protocol and still achieve sufficiently
short signatures.

1.2 Paper Organization

Section 2 settles the notation we use and gives (minimal) preliminaries about
linear codes and ZK protocols. In Section 3, we formally introduce R-SDP, show
how it can be solved using Information Set Decoding (ISD), and show that
R-SDP can be much harder than SDP. We then move to the special case of
full-weight vectors and E being a subgroup of F∗

q , describing generic decoders
tailored to this setting. In Section 4, we show how R-SDP can be applied to ZK
protocols, using the well-known example of CVE [20], and argue why this leads
to very promising schemes. In Section 5, we introduce another variant of R-SDP,
called R-SDP(G), and analyze its security.

In Section 6, we apply R-SDP and R-SDP(G) to modern protocols, namely
GPS [31] and BG [18], resulting in the schemes called R-GPS and R-BG. We
compare the two schemes to existing ones in Section 7 and show their competi-
tiveness. Finally, Section 8 concludes the paper.



4 M. Baldi et al.

2 Notation and Preliminaries

We use [a; b] to denote the set of all reals x ∈ R such that a ≤ x ≤ b. For a finite
set A, the expression a

$←− A means that a is chosen uniformly at random from
A. In addition, we denote by |A| the cardinality of A, by AC its complement
and by A0 = A ∪ {0}. As usual, for q being a positive integer, we denote by
Zq = Z/qZ the ring of integers modulo q. For a prime power q, we denote by
Fq the finite field of order q and by F∗

q its multiplicative group. For g ∈ F∗
q , we

denote by ord(g) its multiplicative order.
We use uppercase (resp. lowercase) letters to indicate matrices (resp. vectors).

If J is a set, we use AJ to denote the matrix formed by the columns of A indexed
by J ; analogous notation will be used for vectors. The identity matrix of size
m is denoted as Im. We use 0 to denote the null matrix or the null vector
without specifying dimensions (which will always be clear from the context). We
denote by Sn the symmetric group of order n. Finally, we denote by hq(x) =
x logq(q − 1)− x logq(x)− (1− x) logq(1− x) the q-ary entropy function.

2.1 Cryptographic Tools

Throughout the paper, we adopt conventional cryptographic notations, e.g., λ
denotes the security parameter. Standard functions are always implicitly defined,
e.g., Hash indicates a secure hash function with digests of size 2λ. We focus on
Zero-Knowledge (ZK) protocols, that is, interactive protocols in which a prover
aims to convince a verifier that she knows a secret that verifies some public
statement. Informally, a protocol achieves the ZK property when the interaction
between the two parties reveals no information about the specific secret held by
the prover. We say that a protocol has soundness error ε if a cheating prover,
i.e., someone that does not know the secret, can convince the honest verifier
with probability ε. When t parallel repetitions of a (public coin) ZK protocol
with soundness error ε are considered, and the verifier only accepts if each of
the repetitions is accepted, we obtain a new protocol with soundness error εt.
Due to lack of space, we do not provide formal definitions for such properties,
as they are standard and can be found in the literature (e.g., [28] nicely recaps
all the necessary background).

ZK protocols can be turned into signature schemes with the Fiat-Shamir
transform [30]. For 5-pass protocols (i.e., the number of messages that are ex-
changed in each execution is 5), the number of parallel executions shall be cho-
sen taking into account the attack in [35]. Namely, setting εt < 2−λ may not be
enough to protect against forgery attacks. The authors of [35] describe how to
properly choose t, and when needed, we use their formula (see Equation (9)).

2.2 Linear Codes

A linear code C over the finite field Fq with length n and dimension k is a k-
dimensional linear subspace of Fn

q . We say that a code of length n and dimension
k has rate R = k

n and redundancy r = n− k.
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A compact representation for a code is a generator matrix, that is, a full-
rank G ∈ Fk×n

q such that C =
{
uG | u ∈ Fk

q

}
. Equivalently, one can represent

a code through a full-rank H ∈ Fr×n
q , called parity-check matrix, such that

C =
{
c ∈ Fn

q | cH⊤ = 0
}
. The syndrome of some x ∈ Fn

q is the length-r vector
s = xH⊤. A set J ⊆ {1, . . . , n} of size k is called information set for C if
|CJ | = qk, where CJ = {cJ | c ∈ C}. It directly follows that GJ and HJC are
invertible matrices. We say that a generator matrix, respectively, a parity-check
matrix, is in systematic form (with respect to the information set J), if GJ = Ik,
respectively HJC = Ir.

We endow the vector space Fn
q with the Hamming metric: given x ∈ Fn

q ,
its Hamming weight wt(x) is the number of non-zero entries. The minimum
distance of a linear code is given by d(C) = min{wt(c) | c ∈ C, c ̸= 0}. The
relative minimum distance of a code is then denoted by δ = d(C)/n. It is well
known that random codes with sufficiently large length n attain the Gilbert-
Varshamov (GV) bound: for a random code, we may assume δ = h−1

q (1−R).
Code-based cryptography usually relies on the following NP-complete prob-

lem [13,16].

Problem 1 Syndrome Decoding Problem (SDP)
Given H ∈ Fr×n

q , t ∈ N, s ∈ Fr
q, decide if there exists e ∈ Fn

q , such that wt(e) ≤ t

and eH⊤ = s?

We usually assume that the instance of the SDP is chosen uniformly at random,
thus also that the code with parity-check matrix H attains the GV bound. If the
target weight t is less than the minimum distance δn of the GV bound, we expect
to have on average a unique solution, since the average number of solutions is
given by qn(hq(δ)−1+R) ≤ 1.

3 The Restricted Syndrome Decoding Problem

Let us consider some subset E of F∗
q , denote by E0 = E ∪ {0} and by

SE
w := {x ∈ En

0 | wt(x) = w}

the Hamming sphere with radius w and restriction E. Clearly, for E of size z,
we have

∣∣SE
w

∣∣ = (nw)zw. The Restricted Syndrome Decoding Problem (R-SDP),
introduced in [11], reads as follows.

Problem 2 Restricted Syndrome Decoding Problem (R-SDP)
Given H ∈ Fr×n

q , s ∈ Fr
q and w ∈ N, decide if there exists e ∈ SE

w, such that
eH⊤ = s.

It is easy to see that R-SDP is strongly related to other well-known hard prob-
lems. For instance, when E = F∗

q , the R-SDP corresponds to the classical SDP
and if E = {1}, the R-SDP is similar to the Subset Sum Problem (SSP) over
finite fields.
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Consequently, it is unsurprising that R-SDP is NP-complete for any choice
of E. The proof is essentially the same as in [11], where the authors focus on
the case E = {±x1,±x2, . . . ,±xa}. Another proof can be immediately obtained
from [43], whenever 1 ∈ E.

We always consider that the R-SDP instance is chosen uniformly at random.
We expect to have on average (at most) a unique solution if w is such that(

n

w

)
zwqk−n ≤ 1. (1)

Let W = w/n ∈ [0; 1]; since
(
n
w

)
= 2n·h2(W )·

(
1+o(1)

)
, we rewrite Equation (1) as

2n(h2(W )+W log2(z)−(1−R) log2(q)) ≤ 1.

Let W ∗ be the maximum value of W for which a random instance of R-SDP is
expected to have a unique solution, that is

W ∗ = max {W ∈ [0; 1] | h2(W ) +W log2(z)− (1−R) log2(q) ≤ 0} . (2)

Comparing this to the GV bound, we can see that with the R-SDP, we can choose
a much larger weight w and still guarantee the uniqueness of the solution. This
is a crucial difference with SDP, since a high Hamming weight corresponds to
an exponentially large number of solutions [24]. Note that if log2(z) ≤ (1 −
R) log2(q), we even have uniqueness for full-weight vectors.

3.1 Solving R-SDP

To compare the computational complexity of R-SDP with classical SDP, we
provide an adaption of the Stern/Dumer algorithm [26,40], which works for any
choice of E. Notice that, depending on the structure of E, this algorithm can be
improved using representations. For this, we refer to Appendix B.

Although the Stern/Dumer algorithm is well-known, we will provide full de-
tails in the following for the sake of completeness. As a first step, we choose a
set J ⊂ {1, . . . , n} of size k+ ℓ which contains an information set and perform a
Partial Gaussian Elimination (PGE) on H in the columns indexed by J , obtain-
ing H̃, and perform the same operations on the syndrome. For simplicity, let us
assume that J is chosen in the first k + ℓ positions, thus

eH̃⊤ = (e1, e2)

(
H1 Ir−ℓ

H2 0

)⊤

= (s1, s2),

where e1 ∈ Ek+ℓ
0 , e2 ∈ Er−ℓ

0 ,H1 ∈ F(r−ℓ)×(k+ℓ)
q ,H2 ∈ Fℓ×(k+ℓ)

q , s1 ∈ Fr−ℓ
q and

s2 ∈ Fℓ
q. Thus, we get two syndrome equations, being

e1H
⊤
1 + e2 = s1, e1H

⊤
2 = s2.
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We solve these equations by requiring that e1 has weight v; for each such e1, it
is enough to check that s1 − e1H

⊤
1 has weight w− v and entries in E0. To solve

the smaller instance given by H2, s2 and v, we use a collision search.
To improve readability, we drop any rounding operations and implicitly as-

sume that all parameters can be chosen as integers. For this, we write e1 =
(x1,x2) with xi of length (k + ℓ)/2 and weight v/2. Thus, we also split H2 =
(A1,A2) and construct the two lists

L1 := {(x1,x1A
⊤
1 ) | x1 ∈ E(k+ℓ)/2

0 ,wt(x1) = v/2},

L2 := {(x2, s2 − x2A
⊤
2 ) | x2 ∈ E(k+ℓ)/2

0 ,wt(x2) = v/2}.

We then check for collisions, that is, all pairs (x1,a) ∈ L1, (x2,a) ∈ L2. The
sought-after error vector is then given by e1 = (x1,x2) and e2 = s1 − e1H

⊤.

Proposition 1. The cost of the restricted Stern/Dumer algorithm given in Al-
gorithm 1 is in

O

((
n

w

)(
(k + ℓ)/2

v/2

)−2(
r − ℓ

w − v

)−1

·
((

(k + ℓ)/2

v/2

)
zv/2 +

(
k + ℓ

v

)
zvq−ℓ

))
.

Proof. The two lists are of size L =
(
(k+ℓ)/2

v/2

)
zv/2 and the collision search costs

approximately L2q−ℓ =
(
k+ℓ
v

)
zvq−ℓ, as the probability of a random vector having

a fixed syndrome of length ℓ is q−ℓ. The number of iterations required, is given
by the inverse of the success probability of one iteration, namely that the error
vector is such that e1 = (x1,x2) with xi of weight v/2. Thus, the probability
is
(
(k+ℓ)/2

v/2

)2( r−ℓ
w−v

)(
n
w

)−1
. The cost of this restricted Stern/Dumer algorithm is

then given by the number of expected iterations, times the cost of one iteration,
which consists of constructing the lists Li and the collision search. ⊓⊔

Remark 1. Let L = ℓ/n, then in the case of w = n, the optimized cost of Stern’s
algorithm is in O

(
2F (R,q,z)n

)
, where

F (R, q, z) = min
0≤L≤1−R

{(
R+L
2

)
log2(z), (R+ L) log2(z)− L log2(q)

}
.

In Figure 1, we give the cost of Stern’s algorithm for random R-SDP in-
stances, where we choose W = W ∗, i.e., the maximal weight that guarantees
uniqueness. Note that the cost at the point z = q − 1 corresponds to the cost of
Stern on a random SDP instance and thus, we can see that R-SDP with z < q−1
has a much larger cost than the SDP with the same parameters q, n, R.

The security of R-SDP highly depends on the exact shape of E. There are,
indeed, several choices that lead to a somewhat easier problem. For instance, one
can choose an extension field Fpm , for some prime p and integer m and E ⊂ F∗

pm .
In this case, several choices of E lead to an easier problem, e.g. E = F∗

p. To avoid
this possibility, we directly restrict our considerations to prime fields.
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Algorithm 1: Restricted Stern/Dumer algorithm
Input H ∈ Fr×n

q , s ∈ Fr
q, v < w ∈ N.

Output e ∈ En
0 such that wt(e) = w, s = eH⊤.

1: Choose a set J ⊂ {1, . . . , n} of size k + ℓ.

2: Find U ∈ Fr×r
q such that (UH)JC =

(
Ir−ℓ

0

)
and (UH)J =

(
H1

H2

)
.

3: Compute sU⊤ =
(
s1 s2

)
, where s1 is of size r − ℓ and s2 is of size ℓ.

4: Set H2 =
(
A1 A2

)
, for Ai of size ℓ× (k + ℓ)/2.

5: Set L1 = {(x1,x1A
⊤
1 ) | x1 ∈ E(k+ℓ)/2

0 ,wt(x1) = v/2}.
6: Set L2 = {(x2, s1 − x2A

⊤
2 ) | x2 ∈ E(k+ℓ)/2

0 ,wt(x2) = v/2}.
7: for ((x1,a), (x2,a)) ∈ L1 ×L2 do

if wt(s1 − (x1,x2)H
⊤
1 ) = w − v then

Return eJ = (x1,x2) and eJC = s1 − (x1,x2)H
⊤
1 .

8: Start over with Step 1 and a new selection of J .
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R = 1/4
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Fig. 1: Cost of Stern’s algorithm for random R-SDP instances with q = 251,
n = 256, W = W ∗ and several rates R.

As another suboptimal choice, one can choose rather large values for q and
E0 = {0, 1}. Thus, solvers for subset sum problems may be used [14], where one
adds some elements to the search space.

To circumvent possible speedups from such techniques, we restrict ourselves
to particular choices of error sets E of relatively large size. For more details on
safe choices of E and attacks using [14], we refer to Appendix B.

Let us also quickly comment on other solvers for R-SDP. Note that statistical
decoding for SDP [19, 25, 34] is based on the bias towards 0 of ⟨e,h⟩ for sparse
vectors e and h. For R-SDP with full weight vectors, the sought error vector
e is not sparse, and the multiplicative structure of E is lost in the additions
of the inner product. On the other hand, algebraic attacks that exploit the
small order of the entries of e cannot be mounted straightforwardly, as the
multiplicative structure of E is incompatible with the additive linearity of the
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syndrome computation. Also, Gröbner bases attacks do not give any speed up
over the considered ISD algorithms as observed in [10].

4 Building ZK Protocols from the R-SDP: a Preliminary
Analysis

This section describes how standard approaches to building ZK protocols can be
converted to use R-SDP.

The protocols we consider achieve zero knowledge thanks to the following
fundamental property: there must be a set X and a set of maps T that act
transitively on X, with the property that

∀x ∈ X, σ(x) is uniformly distributed over X when σ
$←− T. (3)

Consequently, when x ∈ X is the secret key, revealing y = σ(x) without revealing
σ leaks no information about x.

For schemes based on the SDP, Property (3) is satisfied by choosing X as
the Hamming sphere with some radius w and T as the set of linear isometries,
i.e., the set of monomial transformations. A monomial transformation can be
described as (π,v) with π ∈ Sn a permutation and v ∈ (F∗

q)
n. The action of

σ = (π,v) on a vector a = (a1, . . . , an) ∈ Fn
q corresponds to

σ(a) =
(
v1aπ−1(1), . . . , vnaπ−1(n)

)
= π(a) ⋆ v,

where ⋆ denotes component-wise multiplication.

4.1 Zero Knowledge Masking of Restricted Vectors

To use R-SDP, we will make use of the following choices. First, we set

E =
{
gj | j ∈ {0, 1, . . . , z − 1}

}
,

where g ∈ F∗
q has multiplicative order z < q − 1. In other words, we choose E

as the cyclic subgroup of F∗
q which is generated by g and, to have E ̸= F∗

q , we
require that g is not primitive. Then, we set X := SE

w, i.e., choose the secret
key as an element of the restricted Hamming sphere with radius w. Also, we
set T := Sn × En, which contains only the monomial transformations having
restricted scaling coefficients. It is easy to see that, with these choices, Property
(3) holds. Notice that the action of any σ := (π,v) ∈ T is given by

σ(a) = π(a) ⋆ v = π(a) ⋆
(
gi1 , . . . , gin

)
, (4)

with (i1, . . . , in) ∈ Zn
z . We refer to En as restricted group and to T as the group

of restricted maps. Notice that (En, ⋆) is an abelian group: we investigate its
properties in Section 5.
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We observe that, when w = n, i.e., we have full weight, we can choose a
simpler description for T. Indeed, we have SE

w = En and T := En, that is, the
restricted maps can be represented by restricted full-weight vectors. In fact, for
any e, e′ ∈ En, there exists a unique σ ∈ T such that e′ = σ(e). Moreover,
σ := v for some v ∈ En and σ(e) = e ⋆ v. More interesting properties of this
setting can be found in Section 5. For the moment, it is sufficient to anticipate
that this choice is the one that will yield the best performances for ZK protocols.

4.2 The Case Study of CVE with R-SDP

The CVE protocol [20] has been, historically, the first ZK protocol based on
non-binary SDP with low Hamming weight. It has been derived from the famous
protocol by Stern [41] and Shamir’s permuted kernel protocol [39]. Modern solu-
tions, such as [31], are built on CVE. Hence, it makes sense to start by adapting
this protocol to the R-SDP setting as a preparatory step. This shows that the
most common techniques to build a ZK protocol in the SDP setting also hold
for the R-SDP setting. The CVE based on R-SDP is depicted in Figure 2.

Private Key e ∈ SE
w

Public Key E, w,H ∈ Fr×n
q , s = eH⊤ ∈ Fr

q

PROVER VERIFIER

Choose u
$←− Fn

q , σ $←− T

Set c0 = Hash
(
σ,uH⊤)

Set c1 = Hash
(
σ(u), σ(e)

) Com=(c0,c1)−−−−−−−−→
β←−− Choose β

$←− F∗
q

Set y = σ(u+ βe)
y−−→
b←−− Choose b

$←− {0, 1}
If b = 0, set Rsp := σ

If b = 1, set Rsp := e′ = σ(e)
Rsp−−→ If b = 0, accept if:

c0 = Hash
(
σ, σ−1(y)H⊤ − βs

)
If b = 1, accept if:

e′ ∈ SE
w and c1 = Hash

(
y − βe′, e′)

Fig. 2: R-CVE: CVE scheme based on R-SDP

It is easy to see that, as the original CVE scheme, also the R-CVE protocol
achieves ZK. Indeed, u is chosen uniformly at random in Fn

q and the same holds
for e′ = σ(e), thanks to Property (3). Also, the soundness error remains the
same as in CVE, that is, ε = q

2(q−1) , and an adversary achieving a larger success
probability is either able to solve R-SDP or find hash collisions. A rigorous proof
of this fact would be identical to the one in [20] and is hence omitted. Finally,
using the Fiat-Shamir transform on this q2-identification scheme, due to [32] we
get EUF-CMA security.

We consider two possible choices for R-SDP.
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Table 1: Comparison between communication costs for SDP and R-SDP, for the
case of λ = 128 and R ≈ 0.5; all sizes are expressed in bytes.

q z n k w Size(σ) Size(e′) Size(y)

SDP
512 511 196 92 84 372.4 118.1 220.0
256 255 207 93 90 369.3 115.0 207.0
128 127 220 101 90 367.3 105.0 192.5

R-SDP I
677 26 84 42 73 102.0 48.5 105.0
379 21 103 52 82 124.8 54.0 108.1
197 14 103 51 91 117.1 49.6 103.0

R-SDP II
2017 63 70 32 70 52.5 52.5 96.3
1021 30 79 40 79 49.4 49.4 98.8
197 14 102 51 102 51.0 51.0 102.0

Choice I Values of z such that W ∗ < 1. We set w = W ∗n < n and T := Sn×En.
Representing σ and e′ requires{
Size(σ) = ⌈log2(n!) + n log2(z)⌉,
Size(e′) = ⌈log2

((
n
w

))
+ w log2(z)⌉.

(
Choice I

)
The sizes are derived considering that σ and e′ are uniformly distributed in two
sets with sizes |T| = |Sn| · |En| = n! · zn and |SE

w | =
(
n
w

)
zw.

Choice II Values of z for which (2) returns W ∗ = 1. Remember that, asymptot-
ically, this is guaranteed when z ≤ q1−R. In this case, we can choose T := En,
and consequently have

Size(σ) = Size(e′) = ⌈n log2(z)⌉.
(
Choice II

)
When SDP is used, we instead have{

Size(σ) = ⌈log2(n!)⌉+ n log2(q − 1)⌉,
Size(e′) = ⌈log2

((
n
w

))
+ w log2(q − 1)⌉.

(
SDP

)
In Table 1, we have compared how the above sizes behave when targeting a

security level of λ = 128 bits. For SDP, we have used the parameters which are
recommended in [31], while for R-SDP we have designed some instances taking
into account the attacks described in Appendix B and the attack of [35] (see
Equation (9)). Table 1 shows that R-SDP yields much smaller sizes than SDP
for the same security level. In particular, Choice II seems to be better suited for
ZK protocols. Indeed, we are able to completely avoid the use of permutations
and thus reduce the original cost of sending a map to ⌈n log2(z)⌉.

We would like to point out that, in modern protocols, several techniques can
be applied to reduce the communication cost, the simplest one being sending
generating seeds instead of random objects. However, almost every scheme (apart
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from those based on MPCitH) makes use, at some point, of messages containing
the objects we have considered in Table 1. As the sizes of these objects are
significantly smaller for R-SDP, the problem is very promising.

For the remainder of the paper we will only focus on R-SDP Choice II, i.e., we
will consider R-SDP with maximum Hamming weight w = n, since this allows
for greater reductions.

Remark 2. For SDP and R-SDP Case I, we have considered optimal (i.e., as
small as possible) sizes for σ and e′. Notice that, to achieve such sizes, one
should use encoding/decoding schemes (e.g., the Lehmer code) which require
rather involved operations. In certain applications, these schemes may not be
applicable, as the resulting protocol would become too slow: in such cases, the
sizes for SDP and R-SDP Case I would get larger than those in Table 1. For
instance, the standard encoding for permutations is through a list of n integers
in the range [0;n−1], thus taking n log2(n) bits (instead of the optimal log2(n!) ≈
n log2(n/e) bits).

4.3 MPCitH based on R-SDP

To reduce the soundness error of a ZK protocol, one can use a (N − 1)-private
MPC. For SDP, the MPCitH paradigm has been first employed in the SDItH
scheme [29], and then improved in [4]. In Appendix C we briefly discuss how
existing MPCitH schemes may be adapted to use R-SDP. In particular, we argue
that the PKP protocol in [27, Section 6] seems to be the best choice. Since PKP
is essentially a decoding problem, this is not surprising.

As we show later, we will also adapt the BG protocol, introduced in [18,
Figure 3] and based on PKP, to the use of R-SDP. We postpone the presentation
of the resulting protocol to Section 6, and continue describing how R-SDP can be
made even more powerful with an ad-hoc choice for the set of restricted vectors.

5 R-SDP(G): Using Subgroups of the Restricted Group

In this section, we present a generalization of R-SDP, which allows to represent
objects in an even more compact way. The idea consists of identifying a set of
restricted maps that i) has small cardinality (but not too small, since this may
facilitate attacks), and ii) admits a compact and easy-to-compute representation.
We extend this reasoning to restricted vectors, and in the end obtain that, for a
security level of λ bits, we can represent any restricted object with (1+α)λ bits,
with α being a small positive constant. Since we are reducing the space from
which secret keys and ephemeral objects are sampled, security issues may arise.
Yet, with coding theory arguments, we argue that incorporating this information
into existing attacks does not lead to significant speed-ups.

5.1 Properties of the Restricted Group

Let us make some observations on the properties of En, seen as a group.
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Recall that E =
{
gi | i ∈ {0, . . . , z − 1}

}
is the cyclic subgroup of F∗

q gener-
ated by g, with order z. We focus on the case n = w, so that restricted vectors
are given by e = (gi1 , . . . , gin) ∈ En, for ij ∈ {0, . . . , z − 1}.

Also this particular case of R-SDP is still NP-hard, see Appendix A.
As we have already shown in the previous section, in such a setting also

the restricted maps can be represented by restricted vectors. In fact, any map
sending e = (gi1 , . . . , gin) to e′ = (gj1 , . . . , gjn) is simply given by component-
wise multiplication with (gj1−i1 , . . . , gjn−in). Indeed, one can simply check that

σ(e) = (gj1−i1 , . . . , gjn−in) ⋆ (gi1 , . . . , gin) = (gj1 , . . . , gjn) = e′.

We thus use restricted maps σ in En and write σ(e) to mean σ ⋆ e. Notice that
En acts transitively and freely on itself: for any pair e, e′ ∈ En, there is a unique
map σ ∈ En such that e′ = σ(e).

There exists a natural bijection ℓ : En → Zn
z , which allows for a compact

representation of the restricted vectors in En, as

ℓ
(
(gi1 , . . . , gin)

)
= (i1, . . . , in).

It is easy to see that (En, ⋆) is isomorphic to (Zn
z ,+), and that both groups

are abelian. This also allows for a more efficient computation of σ(e). Indeed, if
σ = (gs1 , . . . , gsn) ∈ En and e = (gi1 , . . . , gin) ∈ En, instead of computing

σ(e) = (gs1 , . . . , gsn) ⋆ (gi1 , . . . , gin) = (gs1+i1 , . . . , gsn+in),

one can simply add the two exponents over Zz as

ℓ(σ) + ℓ(e) = (s1, . . . , sn) + (i1, . . . , in) = ℓ(σ(e)).

Any restricted vector e ∈ En generates a cyclic subgroup
{
ei | i ∈ N

}
< En.

Due to the isomorphism to Zn
z , the order of e is the same as the order of ℓ(e) in

(Zn
z ,+). Recall that x ∈ Zz has order z

gcd(x,z) . Thus, for e = (gi1 , . . . , gin), we
have that

ord(e) = lcm
(
ord(i1), . . . , ord(in)

)
= lcm

(
z

gcd(i1,z)
, . . . , z

gcd(in,z)

)
,

where lcm denotes the least common multiple.
One can easily construct a restricted vector e with maximum order z, e.g.,

by taking one of the ij which is coprime to z.

5.2 Cyclic Subgroups of the Restricted Group

We now consider the subgroup G of (En, ⋆) which is generated by m many
restricted vectors x1, . . . ,xm ∈ En. In other words,

G = ⟨x1, . . . ,xm⟩ = {xu1
1 ⋆ · · · ⋆ xum

m |uj ∈ {0, . . . , z − 1}} .
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In the following, we will call G the restricted subgroup. To any a ∈ G, we can
associate a vector representation through ℓG : G→ Zm

z , as follows

ℓG (xu1
1 ⋆ · · · ⋆ xum

m ) = (u1, . . . , um). (5)

Clearly, (G, ⋆) is a subgroup of (En, ⋆) and ℓG is a group homomorphism. Thus,
for any a,b ∈ G, we have

ℓG(a ⋆ b) = ℓG(a) + ℓG(b) mod z.

Note that a priori the elements of G do not have a unique representation in Zm
z .

We later give a condition to have a unique ℓG(a) ∈ Zm
z .

In the following proposition we show the connection between ℓ and ℓG.

Proposition 2. Let MG ∈ Zm×n
z be the matrix whose j-th row is ℓ(xj), and

B = {uMG | u ∈ Zm
z } . Then, ℓ(a) = ℓG(a)MG mod z, for any a ∈ G and

|B| = |G|.

Proof. Let xj =
(
gi

(j)
1 , . . . , gi

(j)
n

)
, hence ℓ(xj) =

(
i
(j)
1 , . . . , i

(j)
n

)
, and a ∈ G.

Then, it holds that

a = ⋆mj=1

(
guji

(j)
1 , . . . , guji

(j)
n

)
=
(
g
∑m

j=1 uji
(j)
1 , . . . , g

∑m
j=1 uji

(j)
n

)
.

By construction, the element in the j-th row and v-th column of MG is i
(j)
v .

Hence, for u = ℓG(a) = (u1, . . . , um) ∈ Zm
z we get

ℓ(a) =

 m∑
j=1

uji
(j)
1 , . . . ,

m∑
j=1

uji
(j)
n

 = uMG ∈ Zn
z .

The second claim follows, since ℓ : En 7→ Zn
z is a bijection. ⊓⊔

Remark 3. When z is a prime number, we can easily construct a G of maximal
order zm, by taking x1, . . . ,xm ∈ En such that {ℓ(x1), . . . , ℓ(xm)} are linearly
independent. This is equivalent to asking for a full-rank matrix MG.

Note that MG acts like the generator matrix of G and for ℓ(a) = uMG we
have that u = ℓG(a) is the information vector. Thus, if we require z to be prime
and MG ∈ Fm×n

z to have full rank m, then for any a ∈ G we have a unique
ℓG(a) = u, which is such that uMG = ℓ(a) ∈ Fn

z . We thus from now on focus
on prime order z.

To summarize, in order to represent a vector e ∈ G, respectively a transfor-
mation σ ∈ G, it is enough to use ℓG(e), respectively ℓG(σ). Given the matrix
MG, containing all the ℓ(xi) of the generators, the ℓG(e) is the length-m vector
of coefficients in Fz required to generate ℓ(e) ∈ Fn

z .
This will also have an impact on the sizes of restricted vectors and restricted

transformations, as now elements of G are represented with an element of Zm
z ,

of size m⌈log2(z)⌉.
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5.3 Solving R-SDP with Restricted Subgroup

In this section, we focus only on restrictions E = {gi | i ∈ {0, . . . , z − 1}}
such that z is prime, w = n and restricted subgroups with |G| = zm. We now
introduce R-SDP with the additional constraint that the solution is an element
of G.

Problem 3 R-SDP(G): SDP with Restricted Diagonal Subgroup G
Let G = ⟨x1, . . . ,xm⟩, H ∈ Fr×n

q and s ∈ Fr
q. Does there exist a vector e ∈ G

with eH⊤ = s?

Note that as R-SDP(G) includes R-SDP as a special case (for G = En) also
R-SDP(G) is NP-complete. Since |G| = zm, the criterion to have (on average) a
unique solution gets modified as follows

m log2(z) ≤ (1−R)n log2(q).

Since the subgroup G possesses some additional structure and introduces
a smaller solution space, we argue in the remainder of this section on how to
choose parameters properly, such that attacks exploiting this structure can be
ruled out. First, it is obvious that G must have a sufficiently large order, i.e.,

|G| ≥ 2λ. Indeed, if |G| is too small, then R-SDP(G) can be solved with a trivial
brute-force attack over G, taking time O

(
|G|
)
.

On the other hand, one can also disregard G, find all candidate solutions
e ∈ En and check their validity, i.e., whether e ∈ G, afterwards. Such attacks can
be thwarted by choosing instances which have more than 2λ solutions in En. In
this case, checking for all the candidate solutions whether e ∈ G guarantees the
security level. Notice that this choice is rather conservative: we are neglecting
the cost of actually finding these solutions, using the exponential solvers, e.g.
restricted Stern/Dumer. It follows that any efficient solver for R-SDP(G) has
to directly take G into account. Since this is not possible for the algorithm
presented in Appendix B, we only consider a solver based on restricted Stern in
the following.

ISD attacks for R-SDP(G) An improved collision search requires a method
to enumerate parts of the solution vector with length t ≥ k/2 in time smaller
than zt (since else one could just enumerate all eT ∈ Et). This can be done with
the following procedure, which starts from a set T ⊆ {1, . . . , n} of size t and
returns all candidates for eT :

1) set M′ ∈ Fm×t
z consisting of the columns of MG indexed by T ;

2) enumerate all length-t vectors which can be obtained as linear combinations
of the rows of M′;

3) use any such vector as exponents for a candidate eT . To do this, one first
enumerates B′ = {uM′ | u ∈ Fm

z } ⊆ Ft
z. Then, to each x ∈B′, associates a

candidate eT = ℓ−1(x).
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k
t

H =

e = eT

MG = M′

Information set J

Set T

List {(x1, · · · , xt) ∈ B′} with size zm
′

Candidates for eT as (gx1 , · · · , gxt)

(a)

t t′

H =

e = eT eT ′

MG = M′

In−(t+t′)

0

Set T ∪ T ′

Set T

List {(x1, · · · , xt) ∈ B′} with size zm
′

Candidates for eT as (gx1 , · · · , gxt)

(b)

Fig. 3: Strategies to speed-up ISD with the knowledge about G.

With the above approach, one can enumerate all candidates for eT in time
O(|B′|) = O

(
zm

′
), where m′ = rank(M′) ≤ min{m, t}. If m′ = t, we have that

enumeration takes time O(|B′|) = O(zt), and as we already chose zt > 2λ, we
can ignore this case. Consequently, an attacker can only hope for a speed-up if
m′ < t.

The problem of finding a set T with the desired properties can be stated as
follows.

Problem 4 (Submatrix Rank Problem) Let MG ∈ Fm×n
z , with m < n and

m′ ≤ m. Is there a set T ⊂ {1, . . . , n} of size t, such that rk((MG)T ) = m′?

Assuming that one is able to find a set T such that M′ := (MG)T has rank
m′ < t, one can possibly speed-up ISD algorithms:

- if t > k, then T contains5 an information set J ⊆ T . So, we can enumer-
ate all candidates for eJ in time zm

′
. If m′ is particularly low (say, lower

than λ logz(2)) the attack can use a single list of size zm
′

in which we put
candidates for eJ . See Figure 3a for a representation of this strategy;

- if t < k, then we can use the zm
′
candidates for eT to build one of the lists

for Stern’s algorithm. However, we also require an enumeration of all eT ′ ,
with T ′ disjoint from T , of size t′, such that t + t′ ≥ k. Thus, a collision
search leads to a cost of max

{
zm

′
, zt

′
, zm+m′

qk−(t+t′)
}
. So, this approach

can be convenient only if t ≥ k/2. See Figure 3b for a representation of this
strategy;

5 Unless all k×t matrices are singular, however, a random k×t matrix has probability∏k−1
i=0 (1− qi−t) ≥ (1− q−(t−k+1))k to be invertible.
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- assume that one is able to find several sets T of size t such that m′ < t. Then,
we can enumerate several portions of the solution e, of size t, in time zm

′
.

We can use them to build several lists, which we can combine with a collision
search approach with more than one level. Again, there is no guarantee that
this yields an attack with overall cost zm

′
since we also need to consider how

list sizes grow after merging.

5.4 Criteria to Design R-SDP(G)

We will adopt the following very conservative criterion to completely cut out all
the above possibilities.

Requirement 1 Let rk((MG)T ) = m′. For any t ∈ {1, . . . , n} and any set
T ⊆ {1, . . . , n} of size t, we want that m′ ≥ min

{
t, λ

log2(z)

}
.

In the case of full rank, one cannot improve over enumerating all errors in the
space. Regarding rank deficiency, Requirement 1 ensures that the enumeration
of possible error vectors exceeds the security level.

This implies that any strategy that exploits the structure of G to speed up
ISD attacks will not be more efficient than generic ISD attacks and we choose
our instances such that these have a cost of at least 2λ.

We now provide strong evidence that Requirement 1 is rather conservative.
First, we show that Problem 4 is NP-hard. This implies that, even if some set
T with the desired properties exists, finding it is hard. The NP-hardness proof
will make use of the following result.

Theorem 1. Relation between m′ and subcodes of B

Let MG ∈ Fm×n
z and B = ⟨MG⟩ ⊆ Fn

z be a linear code of dimension m. Then,
there exists T ⊆ {1, . . . , n} of size t, such that m′ = rk((MG)T ), if and only if

i) m′ ≤ t ≤ m, then B⊥ contains a subcode with dimension t−m′ and support
size ≤ t;

ii) m′ ≤ m ≤ t, then B contains a subcode with dimension m−m′ and support
size ≤ n− t.

Proof. We start with the case m′ ≤ t ≤ m. Since M′ = (MG)T has m rows and
t ≤ m columns, if its rank is lower than t this implies that there exist k′ = t−m′

linearly independent vectors x1, . . . ,xk′ ∈ Ft
z such that M′x⊤

i = 0. We can use
such vectors to define a generator matrix X ∈ Fk′×t

z for the right kernel of M′.
Now, let C ∈ Fk′×n

q be a matrix such that CT = X and CTC = 0 ∈ Fk′×(n−t)
z .

By construction, it holds that C has rank k′ and is such that MGC
⊤ = 0, so

C is a generator matrix for a k′-dimensional subcode of B⊥. Since C has at
least n− t null columns (the ones indexed by TC), we know that C generates a
code with dimension k′ and support size not greater than t. For the proof of the
other direction, one can proceed in the same way. If there is a subcode of B⊥ of
dimension t−m′ and support size ≤ t, we can find a generator matrix C, which
has (at least) n− t zero columns and denote these indices by TC .
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The case of m′ ≤ m ≤ t is treated analogously, with the only difference that
we need to focus on the left kernel of M′. ⊓⊔

Theorem 2. The Submatrix Rank Problem is NP-complete.

Proof. We present a reduction from the low weight codeword finding problem,
which is NP-complete [16]: given d ∈ N and G ∈ Fk×n

z , are there codewords in
C = ⟨G⟩ with weight ≤ d? Due to the Singleton bound, we focus on d < n−k+1.
We show that any instance {G, d} can be transformed, in polynomial time,
into an instance of the Submatrix Rank Problem. We will denote by Solve an
algorithm that, on input a matrix MG ∈ Fm×n

z and two integers t,m′ ∈ N,
returns “yes” if T ⊆ {1, . . . , n} of size t and m′ = rk((MG)T ) exists, and “no”
otherwise. We can set MG := G and t := n − d. Notice that m := k and
t > n− (n− k + 1) = m− 1. We run Solve for all m′ ≤ m− 1.

– Assume that the call for m⋆ on Solve returns a “yes”. Since t ≥ m, we apply
ii) of Theorem 1 and learn that C = ⟨G⟩ has a subcode C′ of dimension
m −m⋆ with support size s ≤ n − t = d. Since d(C) ≤ d(C′) ≤ s ≤ d, we
return “yes” for the original problem.

– Assume that none of the calls on Solve return a “yes”, then all subcodes have
a support size greater than t− n = d. Notice that we also tried m′ = m− 1,
so Solve has also considered existence of subcodes of dimension m−m′ = 1,
that is, codewords. So, we return “no” for the original problem.

⊓⊔

Notice that, as a consequence of Theorem 1, finding sets T with the desired
properties implies finding subcodes with small supports. This can be done using
ISD, with a time complexity that (more or less) grows exponentially with the
desired support size. Thus, finding a set T is also inefficient. However, we describe
how to choose the value of m so that such useful subcodes are not expected to
exist. For a random code with length n and dimension k, over Fz, the average
number of subcodes with dimension k′ and support size w is well estimated
by [38, Theorem 1]

Nk(k
′, w) =

(
n

w

)
(zk

′
− 1)w−k′ [ k

k′

]
z
[ nk′ ]

−1
z . (6)

Since for MG we do not impose any structure, apart from the full rank prop-
erty, we can safely study its row space B as a random code with dimension m.
Analogously, we can treat its dual B⊥ as a random code, with dimension n−m.
So, we can update Requirement 1 as follows.

Requirement 2 We set m > λ logz(2) as the minimum integer such that

- for any m′ ≤ t ≤ m with
∑t

i=1 Nn−m(t−m′, i) < 1, we have m′ > λ logz(2);
- for any m′ ≤ m < t with

∑n−t
i=1 Nm(m−m′, i) < 1, we have m′ > λ logz(2).

Thus, even if such subcodes exist, the enumeration cost zm
′
exceeds the security

level.
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5.5 R-SDP(G) in Practice: Easy to Implement and Tight
Parameters

Let us first briefly comment on some implementation aspects for R-SDP(G).
When R-SDP(G) is used, the generators x1, . . . ,xm must be publicly known.

To do so, one can use a matrix MG in systematic form, i.e., MG = (Im,U) with
U ∈ Fm×(n−m)

z sampled at random from the seed. Since MG is guaranteed to
have full rank, we can then take its rows mi and define the generators x1, . . . ,xm

as the vectors with exponents m1, . . . ,mm respectively. The seed can also be
used to sample H ∈ Fr×n

q (again, one can conveniently use the systematic form).
This way, the public key is {s, Seedpk} and has size (n − k) log2(q) + |Seedpk|;
we will use Seedpk with λ bits.

We consider that both restricted maps and vectors are always sampled from
G. Property (3), which guarantees ZK, holds since G acts transitively and freely
on itself. In other words, for any e ∈ G, σ(e) is uniformly random over G when
σ

$←− G. When e and ẽ are two restricted vectors, the map σ that maps ẽ into e
is ℓG(e)− ℓG(ẽ) and it can be represented using only m log2(z) bits. To sample
uniformly at random some a ∈ G, a convenient procedure is:

1. sample u
$←− Fm

z ,
2. obtain the exponents x = uMG ∈ Fn

z ,
3. set a =

(
gx1 , . . . , gxn

)
∈ Fn

q .

Using MG in systematic form, we have some computational advantages since
x = (u,uU) and computing uU requires only O

(
m(n−m)

)
operations over Fz.

To verify that some a ∈ Fn
q is indeed in G, it is enough to check that ℓ(a) is a

linear combination of the rows of MG. This can be done using a parity-check
matrix C ∈ F(n−m)×n

z for ⟨MG⟩: a ∈ G, if and only if ℓ(a)C⊤ = 0. We can set
C = (−U⊤, In−m), which speeds up the computation of ℓ(a)C⊤.

We show that even with the conservative Requirement 2, R-SDP(G) allows
us to use much more aggressive parameters than those for R-SDP. From now,
on we will write |G| = zm = 2(1+α)λ: the value of α gives an idea of how tight
we can be, when representing elements of G. We clearly require α > 0 to thwart
brute-force attacks, yet, by choosing 0 < α < 1, we can have restricted objects
with sizes that are not greater than 2λ, that is, the binary size of a digest. In
other words, we are making restricted objects smaller than some of the objects
that the parties cannot avoid exchanging (e.g., the initial commitments). As we
show in the following, we can use α in the range 0.2 to 0.6: which means we are
very close to achieving security with the minimum amount of required bits, i.e.,
λ bits.

Some example instances for R-SDP(G) used in CVE are shown in Table 2.
The parameters are chosen according to the cost of the ISD algorithm presented
in Section 5.3 and Requirement 2. Recall from Figure 2 that y and σ have size
n log2(q), respectively, m log2(z) and that the parameters m, z are chosen such
that zm > 2λ.
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Table 2: Instances of R-SDP(G) for λ = 128 and corresponding sizes for objects
expressed in bytes.

Range for q z
q−1

q z n k m α Size(σ) Size(y)

28 < q < 210

1/2
1019 509 40 16 18 0.2644 20.2 49.9
347 173 41 20 23 0.3359 21.4 43.2
719 359 49 17 20 0.3262 21.2 58.1

< 1/2
971 97 44 26 26 0.3406 21.4 54.8
643 107 60 25 26 0.3604 21.9 70.0
269 67 52 27 29 0.3743 21.9 52.5

26 < q < 28

1/2
227 113 43 22 24 0.2789 20.5 42.1
107 53 53 26 31 0.3872 22.2 44.7
83 41 73 28 35 0.4650 23.4 58.2

< 1/2
223 37 56 33 34 0.3838 22.1 54.6
103 17 76 44 48 0.5328 24.5 63.5
79 13 82 49 54 0.5611 25.0 64.6

24 < q < 26
1/2

59 29 63 31 38 0.4422 23.1 46.3
47 23 69 34 42 0.4843 23.7 47.9
23 11 93 46 61 0.6486 26.4 52.6

< 1/2 53 13 82 47 54 0.5611 25.0 58.7

We see that there are several trade-offs in how parameters can be chosen. For
instance, large values of q lead to slightly smaller sizes for y, while the arithmetic
over Fq becomes slower. Another degree of freedom is in the choice of z: setting
z = q−1

2 leads to smaller sizes, but choosing large z might make the arithmetic
over Fz slower. Comparing these numbers with those in Table 1, we see that
using R-SDP(G) allows for a significant reduction of the communication cost. In
the next sections, we apply the problem to existing ZK schemes and derive their
performances in terms of signature size.

6 ZK Protocols from the R-SDP: Modern Protocols

This section presents concrete ZK protocols based on R-SDP and R-SDP(G).
Note that one can replace the SDP with R-SDP or R-SDP(G) in any ZK protocol,
however, in the following, we only present the two schemes which result in the
smallest signature sizes, namely the GPS [31] and BG protocol [18].

6.1 R-GPS: the GPS Scheme with R-SDP

The GPS scheme [31] applies the protocol-with-helper paradigm to the CVE
scheme. In a nutshell, the idea is that of simulating a trusted third entity (the
helper), which generates some of the messages which would be exchanged be-
tween the prover and the verifier. The helper is asked to generate the commit-
ments and the first public response (that is, c0, c1 and y for the scheme in Figure
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2). The cut&choose technique is used to remove the helper. The helper is first
simulated by the prover for N rounds, generating random objects from seeds
and committing to the obtained quantities. The verifier will ask to open only
M < N rounds: she will receive the verifying maps for the chosen rounds and
the seeds for the other N −M rounds.

Since GPS is based on SDP, converting it to R-SDP is rather straightforward;
for the sake of completeness, the resulting protocol is presented in Figure 4. As
applying the Fiat-Shamir transform on a ZK protocol is straightforward and a
well-known procedure, we omit to write out the resulting signature scheme.

Private Key e ∈ G

Public Key G = ⟨x1, . . . ,xm⟩, H ∈ Fr×n
q , s = eH⊤ ∈ Fr

q

PROVER VERIFIER
For i = 1, . . . , N :

Sample {Seedi}1≤i≤N
$←− {0; 1}λ

Compute ui
Seedi←−−− Fn

q

Compute ẽi
Seedi←−−− G

For all v ∈ Fq :

Compute rv
Seedi←−−− {0; 1}λ

Compute cv = (rv,ui + vẽi)
Set ai = (cv)v∈Fq
Compute σi ∈ G, s.t. σi(ẽi) = e

Sample ri
$←− {0; 1}λ

Set ci = (ri, σi, σi(ui)H
⊤)

Set Com = ((ai)1≤i≤N , (ci)1≤i≤N )
Com−−→

Sample i
$←− {1, . . . , N}

Sample β
$←− Fq

Compute rβ
Seedi←−−− {0; 1}λ i,β←−−

Compute yi = ui + βẽi

Set Rspi = (ri, rβ , σi,yi)
Rspi,Seedℓ ̸=i−−−−−−−→

For all j ∈ {1, . . . , N} \ {i} :
For all v ∈ Fq :

Compute rv
Seedj←−−− {0; 1}λ

Compute cv = (rv,uj + vẽj)
Set a′

j = (cv)v∈Fq
Check a′

j = aj

Check σi ∈ G

Compute t = σi(yi)H
⊤ − βs.

Check ci = (ri, σi, t).
Check cβ = (rβ ,yi).

Fig. 4: One round of the R-GPS protocol

The ZK property, as well as soundness and EUF-CMA security, are obtained
in the exact same way as for the original GPS scheme. Also, the security analysis
and signature size easily follow from [31].

To prevent the attack in [35], N and M must be such that

max
x∈{0,...,M}

(
N − x

M − x

)(
N

M

)−1

(q − 1)x−M ≥ 2λ. (7)
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When R-SDP(G) is used, the communication cost of an opened round is

L = n log2(q)︸ ︷︷ ︸
y∈Fn

q

+ 2λ︸︷︷︸
Randomness

+m⌈log2(z)⌉︸ ︷︷ ︸
σ∈G

. (8)

When relying on R-SDP, the resulting communication cost is obtained by replac-
ing m⌈log2(z)⌉ with n⌈log2(z)⌉. The size of a signature in the resulting R-GPS
signature scheme is

|Signature| = 2λ

(
2 +M log2

(
N(q − 1)

M

))
︸ ︷︷ ︸

Merkle proofs and commitments

+λM log2

(
N

M

)
︸ ︷︷ ︸

Seeds

+M · L.

In Table 3, we report examples for the signature sizes we can achieve and compare
them with the ones in [31, Table 1]. We have chosen the parameters according
to the cost of the generic decoders (Section 5.3 and Appendix B) and the sound-
ness error. Employing R-SDP, we can reduce the signature sizes by a factor of
approximately 0.6. Considering R-SDP(G), the gain becomes more significant,
and, with respect to the instances based on R-SDP, we save approximately 1 to
2 kB.These might not be the optimal parameter choices to obtain the security
level of 128 bits, but already show the great potential of R-SDP.

Table 3: Performances of the GPS scheme [31] based on different problems.
q z n k w m N M Sign. Size (kB)

SDP

128 220 101 90 512 23 24.6
256 207 93 90 1024 19 22.4
512 196 92 84 2024 16 20.6

1024 187 90 80 4096 14 19.5

R-SDP

67 11 147 63 147 512 24 14.8
197 14 105 53 105 1024 19 13.4
991 33 77 48 77 2048 16 12.9
991 33 77 38 77 4096 14 12.5

R-SDP(G)

53 13 82 47 82 54 512 25 12.7
103 17 76 44 76 48 1024 21 12.7
223 37 56 33 56 34 2048 19 11.8

1019 509 40 16 40 18 4096 14 11.5

6.2 R-BG: the BG-PKP Scheme with R-SDP

As another protocol-with-helper, one may consider the FJR scheme [28]. To re-
duce the soundness error, FJR uses the idea of shared permutations: the random
masking is obtained by combining the actions of N random permutations, so that
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a cheating prover cannot cheat for more than one permutation. This reduces the
soundness error of a single round to 1/N . The idea of shared permutations has
been applied also to PKP, for a protocol that we will refer to as BG-PKP [18].
Notice that BG-PKP is the PKP-based scheme with the smallest signatures. We
show that, with minor modifications, the scheme can be adapted to the R-SDP
setting and derive the resulting signature sizes.

Private Key σ ∈ G

Public Key G = ⟨x1, . . . ,xm⟩, e ∈ G, H ∈ Fr×n
q , s = σ(e)H⊤ ∈ Fr

q

PROVER VERIFIER

Sample MSeed
$←− {0; 1}λ

Compute {Seedi}1≤i≤N = SeedTree(MSeed)
For i = 2, . . . , N :

Sample Seed∗i , Salti
Seedi←−−− {0; 1}λ

Sample σi
Seed∗i←−−− G, vi

Seed∗i←−−− Fn
q

Set ci = Hash
(
Salti, Seed

∗
i

)
Set σ1 = σ−1

2 ◦ · · · ◦ σ−1
N ◦ σ

Sample Seed∗1, Salt1
Seed1←−−− {0; 1}λ

Sample v1
Seed∗1←−−− Fn

q

Set c1 = Hash
(
Salt1, Seed

∗
1, σ1

)
Compute v = vN +

∑N−1
i=1 σN ◦ · · · ◦ σi+1(vi)

Set c = Hash
(
vH⊤, {ci}1≤i≤N

) c−−→
Sample β

$←− F∗
q

Set ẽ0 = βe
β←−−

For i = 1, . . . , N :
Set ẽi = σi(ẽi−1) + vi

Set h = Hash
(
{ẽi}1≤i≤N

) h−−→
Sample i

$←− {1, . . . , N}
Compute Seeds = SeedPath(MSeed, i)

i←−−
If i ̸= 1:

Set Resp = {ci, ẽi, σ1, Seeds}
Else:

Set Resp = {c1, ẽ1, Seeds}
Resp−−→

Generate {Seedj}j ̸=i = GenSeeds(Seeds)
For j ̸= i:

Sample Seed∗j , Saltj
Seedj←−−− {0; 1}λ

Sample σj

Seed∗j←−−− G, vj

Seed∗j←−−− Fn
q

Set cj = Hash
(
Saltj , Seed

∗
j

)
If i ̸= 1:

Compute c1 = Hash
(
Salt1, Seed

∗
1, σ1

)
Set ẽ0 = βe
For j ̸= i:

ẽj = σj(ẽj−1) + vj

Compute s̃ = ẽNH⊤ − βs
Verify c = Hash

(
s̃, {cj}1≤j≤N

)
Verify h = Hash

(
{ẽj}1≤j≤N

)
If i ̸= 1: verify also σ1 ∈ G

Fig. 5: One round of the R-BG protocol
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For PKP, the prover first samples a vector e ∈ Fn
q , a full rank H ∈ Fr×n

q , a
permutation π ∈ Sn and computes s = π(e)H⊤. The secret key is the permuta-
tion π and the public key is {H, e, s}. For R-SDP, we can do the same, with the
only difference that e and the map σ are sampled from the restricted subgroup
G; namely, once H and G have been defined, we sample e, σ

$←− G, set the secret
key as σ and the public key as {G, H, e, s = σ(e)H⊤}. To compress the public
key size, everything but s can be generated from a seed Seed(pk).

The resulting protocol is shown in Figure 5. We have implicitly introduced
some additional notation: SeedTree, SeedPath are the functions to operate with
the seed tree (respectively, generate the tree from a master seed, compute a path
and regenerate all seeds but one), while Seed←−−− means sampling with randomness
source Seed. It can be seen that the protocol structure is the same as BG, so it
inherits all of its features, in particular, the soundness error is as in [18, Thm. 2]

ε(N, q) =
1

N
+

N − 1

N(q − 1)
.

Also, the completeness and ZK property follow in a straightforward manner.
Nevertheless, we give the proof for soundness, completeness, and the ZK property
in Appendix E.

Signature scheme To obtain a signature scheme, we consider t parallel execu-
tions and then apply the Fiat-Shamir transform. The corresponding algorithms
for signature generation and verification are given in Figure 6 and 7. In the
algorithms, we have indicated by Msg the message to be signed and by t the
number of executed rounds. The round index has been indicated with u, and
the quantities referred to each round are specified by the superscript (u). For
instance, σ(u)

1 , . . . , σ
(u)
N are the transformations used in the u-th round. The re-

sulting scheme is essentially the repetition of t rounds of the R-BG protocol,
plus some minor modifications which we list below.

- A length-2λ salt is employed for the commitments (namely, in the compu-
tation of each c

(u)
i and c(u)), as well as to generate the challenges. This is

necessary to prevent certain types of attacks (see e.g., [21]).
- As recommended in [21], to compute seeds and commitments, the salt is

concatenated also with the round index u.
- To reduce the signature the signature size, the t commitments c(1), . . . , c(t)

are hashed into a single commitment c. The validity of c is checked at the
end of the verification algorithm. The same optimization is employed for the
t first responses h(1), . . . , h(t).
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Private Key σ ∈ G

Public Key G = ⟨x1, . . . ,xm⟩, e ∈ G, H ∈ Fr×n
q , s = σ(e)H⊤ ∈ Fr

q

PROVER VERIFIER

Sample Salt
$←− {0; 1}2λ

For u = 1, . . . , t:
Sample MSeed(u)

$←− {0; 1}λ

Set MSeed
(u)

=
(
MSeed(u), Msg, Salt, u

)
\\Concatenate salt and round index to master seed

Compute {Seed(u)i }1≤i≤N = SeedTree(MSeed
(u)

) \\Generate seeds for u-th round
For i = 2, . . . , N :

Sample Seed
∗(u)
i , Salt

(u)
i

Seed
(u)
i←−−−− {0; 1}λ

Sample σ
(u)
i

Seed
∗(u)
i←−−−−− G, v(u)

i

Seed
∗(u)
i←−−−−− Fn

q

Set c
(u)
i = Hash

(
Salt

(u)
i , Seed

∗(u)
i , Msg, Salt, u

)
\\Hash also message, salt and round index

Set σ
(u)
1 = σ

(u)−1
2 ◦ · · ·σ(u)−1

N ◦ σ(u)

Sample Seed
∗(u)
1 , Salt

(u)
1

Seed
(u)
1←−−−− {0; 1}λ

Sample v
(u)
1

Seed
∗(u)
1←−−−−− Fn

q

Set c
(u)
1 = Hash

(
Salt

(u)
1 , Seed

∗(u)
1 , σ

(u)
1 , Msg, Salt, u

)
Compute v(u) = v

(u)
N +

∑N−1
i=1 σ

(u)
N ◦ · · · ◦ σ(u)

i+1(v
(u)
i )

Set c(u) = Hash
(
v(u)H⊤, {c(u)i }1≤i≤N , Msg, Salt, u

)
Set c = Hash

(
{c(u)}1≤u≤t

)
\\Single commitment of size 2λ

Set
(
β(1), . . . , β(t)

)
= Hash

(
Msg, Salt, c

)
\\Generate first challenge

For u = 1, . . . , t:
Set ẽ

(u)
0 = β(u)e

For i = 1, . . . , N :
Set ẽ

(u)
i = σ

(u)
i (ẽ

(u)
i−1) + v

(u)
i

Set h(u) = Hash
(
{ẽ(u)

i }1≤i≤N}
)

Set h = Hash
(
{h(u)}1≤u≤t

)
\\Single first response of size 2λ

Set
(
i(1), . . . , i(t)

)
= Hash

(
Msg, Salt, c, h

)
\\Generate second challenge

For u = 1, . . . , t:
Compute Seeds(u) = SeedPath(MSeed

(u)
, i(u)) \\Compute seeds path for u-th round

If i(u) ̸= 1:
Set Resp(u) = {c(u)i , ẽ

(u)
i , σ

(u)
1 , Seeds(u)}

Else:
Set Resp(u) = {c(u)1 , ẽ

(u)
1 , Seeds(u)}

Set Signature =
{
Salt, c, h, {Rsp(u)}1≤u≤t

}
Signature−−−−−→

Fig. 6: The R-BG signature scheme: signature generation

To set the value of t such that the attack in [35] is mitigated, we rely on the
analysis in [18, Section 4.2]. To this end, let

P (t′, t, N) =

t∑
j=t′

(
t

j

)(
1

q − 1

)j (
N − 1

N

)t−j

,

t∗ = arg min0≤x≤t

{
1

P (x, t,N)
+N t−x

}
. (9)

Then, we choose t so that P (t∗, t, N)−1 +N t−t∗ > 2λ.
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Private Key σ ∈ G

Public Key G = ⟨x1, . . . ,xm⟩, e ∈ G, H ∈ Fr×n
q , s = σ(e)H⊤ ∈ Fr

q

PROVER VERIFIER
Signature−−−−−→

Generate first challenge\\ Set
(
β(1), . . . , β(t)

)
= Hash

(
Msg, Salt, c

)
Generate second challenge\\ Set

(
i(1), . . . , i(t)

)
= Hash

(
Msg, Salt, c, h

)
For u = 1, . . . , t:

Generate seeds for u-th round \\ Generate {Seed(u)j }j ̸=i = GenSeeds(Seeds(u))

For j ̸= i(u):

Sample Seed
∗(u)
j , Salt

(u)
j

Seed
(u)
j←−−−− {0; 1}λ

Sample σ
(u)
j

Seed
∗(u)
j←−−−−− G, v(u)

j

Seed
∗(u)
j←−−−−− Fn

q

Set c
(u)
j = Hash

(
Saltj , Seed

∗
j , Msg, Salt, u

)
If i(u) ̸= 1:

Compute c
(u)
1 = Hash

(
Salt

(u)
1 , Seed

∗(u)
1 , σ

(u)
1 , Msg, Salt, u)

Set ẽ
(u)
0 = β(u)e

For j ̸= i(u):
ẽ
(u)
j = σ

(u)
j (ẽ

(u)
j−1) + v

(u)
j

Compute s̃(u) = ẽ
(u)
N H⊤ − β(u)s

Compute c(u) = Hash
(
s̃, {cj}1≤j≤N , Msg, Salt, u

)
Compute h(u) = Hash

(
{ẽ(u)

j }1≤j≤N

)
Reject the signature if σ

(u)
1 is badly formed\\ If

(
i(u) = 1

)
∧
(
σ
(u)
1 ̸∈ G

)
:

Output Reject

Verify single commitment\\ If c ̸= Hash
(
{c(u)1≤u≤t}

)
:

Output Reject

Verify single first response\\ If h ̸= Hash
(
{h(u)

1≤u≤t}
)
:

Output Reject

Signature is valid\\ Output Accept

Fig. 7: The R-BG signature scheme: signature verification

The signature size is given by

|Signature| = 6λ+ t
(
n⌈log2(q)⌉︸ ︷︷ ︸

ẽi

+m⌈log2(z)⌉︸ ︷︷ ︸
σ1

+λ⌈log2(N)⌉︸ ︷︷ ︸
Seeds

+ 2λ︸︷︷︸
ci

)
.

When R-SDP(G) is used, n⌈log2(z)⌉ gets replaced by m⌈log2(z)⌉.
Some instances of the resulting signature scheme are reported in Table 4,

where the parameters are chosen in accordance with the above formula for the
number of executions and the respective generic decoders. Signatures obtained
from R-SDP are slightly larger than those based on PKP; instead, when using
R-SDP(G), we achieve significant reductions with respect to R-SDP and, ulti-
mately, beat PKP. We have considered the case of z = (q − 1)/2 and z ≪ q;
the latter has slightly larger signatures but, when implemented, should lead to
a faster scheme, due to the arithmetics over Fz.

Timings We have developed a Proof of Concept implementation for the R-BG
protocol based on R-SDP(G)6,7. The measured timings are reported in Table 5.
6 https://github.com/secomms/RBG
7 The provided code considers only one round of the protocol. Multiplying the timings

by t (the number of parallel executions), we obtain a very reliable estimate of the
overall required time. Indeed, applying the Fiat-Shamir transform requires only a
negligible overhead (namely, two additional hashes).

https://github.com/secomms/RBG
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Table 4: Performances of the BG scheme [18] based on different problems
q z n k m N t Sign. Size (kB)

PKP 997 61 33 32 42 10.0
256 31 8.9

R-SDP 991 33 77 38 32 42 10.0
256 31 8.9

R-SDP(G)
971 97 44 26 26 32 42 8.1

256 31 7.5

1019 509 40 16 18 32 42 7.8
256 31 7.2

Table 5: Benchmarks for the R-BG protocol based on R-SDP(G), taken on a 3.4
GHz Intel i7-6700 CPU. The reported timings are the average values, measured
with 10 000 tests.

Parameters
(q, z, n, k,m)

variant Sign. Size (kB) KeyGen Sign Verify
MCycles ms MCycles ms MCycles ms

971, 97, 44, 26, 26 fast 8.1 0.06 < 0.1 18.7 5.46 12.2 3.57
small 7.5 0.06 < 0.1 108.4 31.08 72.5 21.3

1019, 509, 40, 16, 18 fast 7.8 0.05 < 0.1 20.4 6.0 12.8 3.8
small 7.2 0.05 < 0.1 117.7 34.5 75.8 22.2

Even though the implementation is very basic and does not use any advanced
optimization (e.g., no AVX2 instructions nor parallelism), the obtained timings
are already very promising. This was expected, as all the required operations are
essentially symmetric primitives and linear algebra (multiplications and sums)
with small vectors and matrices. As expected, choosing small values for z leads to
some speed-ups, since operations over Fz (e.g., sampling from G and combining
restricted objects) get easier.

7 Comparison with NIST Candidates

In this section, compare the schemes discussed in this paper with signature
schemes submitted to the NIST additional call. We first consider code-based
schemes and then widen the comparison to other relevant schemes.

Comparison with code-based signatures In Table 6, we compare the two
schemes R-GPS and R-BG with the code-based signature schemes submitted
to NIST. Data about these schemes are also visualized in Figure 8; Figure 8a
reports signature sizes and public key size, while Figure 8b shows signatures
size and verification times8. All schemes in the category use the ZK/MPCitH
8 Which we have collected from https://pqshield.github.io/nist-sigs-zoo/.

Data are referred to October 15, 2023.

https://pqshield.github.io/nist-sigs-zoo/
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Table 6: Comparison between NIST submissions and R-BG, R-GPS for Level I;
all sizes are expressed in kB.

Problem Scheme Pk size Sign. size Pk+Sign. size Variant

SDP SDitH [3] 0.12 8.24 8.36 small
0.12 10.12 10.24 fast

Rank SDP RYDE [5] 0.09 5.96 6.04 small
0.09 7.45 7.53 fast

Matrix
rank SDP

MIRA [6] 0.08 5.64 5.72 small
0.08 7.38 7.46 fast

MiRitH [2] 0.13 4.54 4.67 small
0.14 9.11 9.25 fast

PKP PERK [1] 0.24 6.10 6.30 small
0.15 8.35 8.50 fast

large weight
(U,U + V )− code WAVE [12] 3677 0.82 3678 -

Code Equivalence LESS [9] 14.03 8.60 22.63 small
98.20 5.33 103.53 fast

Matrix code
equivalence MEDS [23] 9.92 9.90 19.82 small

13.22 12.98 26.20 fast

R-SDP

CROSS [10] 0.06 10.30 10.36 small
0.06 12.94 13.01 fast

R-BG 0.1 8.9 9.0 small
0.1 10.0 10.1 fast

R-GPS 0.1 12.5 12.6 small
0.1 14.8 14.9 fast

R-SDP(G)

CROSS [10] 0.04 7.63 7.66 small
0.04 8.67 8.7 fast

R-BG 0.1 7.2 7.3 small
0.1 7.8 7.9 fast

R-GPS 0.1 11.5 11.6 small
0.1 12.7 12.8 fast

approach and have a signing time that is more or less equal to the verification
time. The only remarkable exception is WAVE, which is a hash&sign scheme, and
for which signing is approximately 5 times slower than verifying. Note that some
of the proposed schemes have more than just the usual two "fast" and "small"
parameter sets, however, in order for all the schemes to fit into one table, we
chose to show for each scheme the smallest and largest total sizes, i.e., signature
size plus public key size. This is a common measure, as for example certificates
would require to download both. We did not include the two broken schemes
FuLeeca [37] and Enhanced pqsigRM [22]. We only compare the schemes for
Level 1, which corresponds to 128 AES gates.

For R-GPS, the fast instances are those with N = 512 and the short ones
have N = 4096; for R-BG, fast instances have N = 32 and t = 42 and short
variants have N = 256 and t = 31. As we see from Table 6, the presented
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Fig. 8: Comparison between R-BG and code-based signature schemes from the
NIST competition.

protocols are very competitive towards the submitted schemes. In particular,
comparing R-BG using R-SDP(G), we are able to achieve signatures that are
smaller than those of SDitH [3], which is based on SDP.

Among the considered schemes, there is also CROSS [10], a NIST candidate
that originated from the work presented in this paper. CROSS uses a very simple
ZK protocol, with soundness error ≈ 1

2 , which can be thought of as an optimized
version of the CVE protocol [20]. It has been designed aiming for algorithmic
efficiency and simplicity, while R-BG aims to reduce signature sizes at the cost
of some computational overhead. The trade-offs achieved by the two schemes
are different, as it is visible in Figure 8. Observe that the only scheme with
faster verification is SDitH. Notice that timings for SDitH are already referred
to those of an optimized implementation; instead, the timings for CROSS are
referred to the reference implementation. Likely, an optimized implementation
can significantly boost timings and make CROSS much faster.

More generally, we see that solutions based on R-SDP and R-SDP(G) com-
pare favorably with the other code-based schemes. Again, a remarkable exception
is WAVE which has much shorter signatures but has much larger public keys and
is slower. LESS and MEDS, instead, have a somewhat similar profile analysis.
They have large public keys and are generically slower than the other schemes.
Signature sizes are in the same ballpark as those of the other schemes, even
though LESS instances with larger public keys have shorter signatures (using
more equivalent codes in the public key reduces linearly the soundness error).
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Fig. 9: Comparison between CROSS, R-BG, and other signature schemes from
the NIST competition

Finally, we remark that we have not explored optimizations for the imple-
mentation of R-BG. We expect that a more careful implementation can receive
a significant boost.

Comparison with signatures based on other problems To see more com-
parisons, in Figure 9 we consider other relevant signature schemes from the NIST
competition. The comparison shows that both CROSS and R-BG have perfor-
mances which are, essentially, analogous to those of FAEST and MQOM (even
though the latter scheme appears to be slower); this was somehow expected,
since also these two schemes are based on ZK/MPCitH paradigms. SQIsign has
signatures which are among the shortest in the competition and very compact
public keys, but pays a significant price in terms of efficiency (it is the slowest
scheme among those in Figure 9b).

The figures show that there is still a significant gap between schemes based on
restricted errors and lattice-based schemes such as HAWK, Falcon and Dilithium
(for both signature sizes and timings). An exception is Raccoon, whose signatures
and timings are in the same range as those of CROSS and R-BG, hence, are
larger than those of typical lattice-based schemes: this is not surprising since,
differently from the other lattice-based schemes, Raccoon has been designed
aiming for inherent protection against side-channel attacks.

Multivariate hash&sign schemes (MAYO and UOV) have shorter signatures
and are faster, but require larger public keys, in particular, UOV. The public
keys of MAYO are significantly shorter but the scheme is based on somewhat
very new security assumptions. MQOM is, instead, a multivariate-based MPCitH
scheme: its performances are essentially analogous to those of CROSS and R-BG.
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Finally, we consider SPHINCS+, which comes with two versions. The short
version has signatures which are essentially as large as those of R-BG (≈ 8 kB),
while the fast version has much larger signatures (≈ 17 kB). Verification for
SPHINCS+ takes time in the same ballpark as both CROSS and R-BG, for
what concerns verification. Signing is, for both the fast and short versions, much
slower.

After these comparisons, we can conclude that using R-SDP and R-SDP(G)
leads to competitive solutions. The performances for what concerns all the rel-
evant figures (public keys, signatures and computational complexity) are anal-
ogous to those of other ZK/MPCitH schemes, even though schemes based on
restricted errors are really promising for what concerns timings.

8 Conclusion

We studied the Restricted Syndrome Decoding Problem (R-SDP) and introduced
a new version of the problem, called R-SDP(G). Both problems are NP-complete,
however, as for most code-based problems it is unknown whether an average case
reduction exists - we leave this as an interesting open problem. These two prob-
lems allow us to represent data to be exchanged in ZK protocols very compactly.
We analyzed the security of these problems and gave conservative criteria for pa-
rameter choices. We adapted some existing ZK protocols to these new problems
and considered the resulting signature schemes, called R-GPS and R-BG. The
resulting schemes are able to achieve signatures in the order of 7 kB, which are
highly competitive and compare well with other signature schemes submitted to
NIST. The theory developed in this paper has been used as a basis for CROSS,
a signature scheme submitted to the NIST call for additional signatures.
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A Appendix: NP-hardness Proof for R-SDP

Problem 1. Let E = {gi | i ∈ {0, . . . , z − 1}}, for some z ∈ Fq of order 1 < z < q − 1.

Given H ∈ F(n−k)×n
q , s ∈ Fn−k

q , is there a e ∈ En such that eH⊤ = s?

Theorem 3. The R-SDP (Problem 1) for n < q is NP-complete.

Proof. Recall the NP-hard 3-Dimensional Matching (3DM) problem, where one is given
the instance T = {b1, . . . , bt}, with |T | = w,U ⊂ T × T × T and |U | = u and asks
whether there exists a W ⊂ U with |W | = w and no two words in W coincide in any
position.

Recall that the original SDP has a reduction from 3DM, through the following
construction: let H ∈ F3w×u

q be the incidence matrix, i.e., each column of H corresponds
to a word in U and the rows correspond to T × T × T , thus the rows {1, . . . , w}
correspond to the first position of the word u, the rows {w+ 1, . . . , 2w} correspond to
the second position of u and the rows {2w+1, . . . , 3w} correspond to the third position
of u. More formally, let T = {b1, . . . , bw}, U = {a1, . . . ,au} and

– for i ∈ {1, . . . , w}, we set hi,j = 1 if aj [1] = bi and hi,j = 0 else,
– for i ∈ {w + 1, . . . , 2w}, we set hi,j = 1 if aj [2] = bi and hi,j = 0 else,
– for i ∈ {2w + 1, . . . , 3w}, we set hi,j = 1 if aj [3] = bi and hi,j = 0 else.

We also set s ∈ F3w
q be the all one vector. From the original reduction, we know that

any solution e ∈ Fu
q with He⊤ = s⊤ has weight w (it has weight at least w as we need

to reach the all one vector in F3w
q and each column gives weight 3, and it has weight

at most w as q is larger than u and else we would get syndrome entries larger than 1)
and its support corresponds to the solution W . That is the columns of H indexed by
the support of e are the w words in W .
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The polynomial reduction from 3DM to R-SDP uses this construction as well. Let
T of size w and U ⊂ T × T × T of size u be an instance of 3DM. Let H ∈ F(3w)×u

q be
the incidence matrix and let

H̃ =

(
H −gH
Idu Idu

)
∈ F(3w+u)×2u

q

be a parity-check matrix. Let us consider the syndrome (s, s′) ∈ F3w+u
q with s =

(1−g2, . . . , 1−g2) ∈ F3w
q and s′ = (1+g, . . . , 1+g) ∈ Fu

q . Thus, the instance of R-SDP
given by H̃ and (s, s′) is asking for (e, e′) ∈ E2u such that

(e, e′)H̃⊤ = (s, s′),

where E = {gi | i ∈ {0, . . . , z − 1}}. By assumption of R-SDP, we use a g of order
2 < z < q − 1.

We consider two cases.

1. Assume that the R-SDP solver returns “yes”, i.e., there exists e, e′ ∈ Eu such that
(e, e′)H̃⊤ = (s, s′). Hence,

He⊤ − g ⋆He′⊤ = (1− g2, . . . , 1− g2)⊤,

e+ e′ = (1 + g, . . . , 1 + g).

Hence, for each i ∈ {1, . . . , u} we have ei + e′i = 1 + g. Let us assume (we later
show that this hypothesis is not needed, but it facilitates the proof) that the only
elements in E that add to 1 + g is 1 and g.

Hence, whenever ei = 1, we must have e′i = g and whenever ei = g, we must have
e′i = 1. Thus, we split e = e1 + eg and e′ = e′

1 + e′
g where e1, e

′
1 ∈ {0, 1}u, eg, e

′
g ∈

{0, g}u and supp(e1) = S = supp(e′
g) and supp(e′

1) = SC = supp(eg). From this
also follows that eg = g ⋆ e′

1 and e′
g = g ⋆ e1.

The first parity-check equation can now be reformulated as

He⊤ − g ⋆He′⊤

=He⊤
1 − g ⋆He′⊤

g +He⊤
g − g ⋆He′⊤

1

=He⊤
1 − g2 ⋆He⊤

1 + g ⋆He′⊤
1 − g ⋆He′⊤

1

=(1− g2) ⋆He⊤
1

=(1− g2, . . . , 1− g2) = s′,

thus, He⊤
1 = (1, . . . , 1) is such that supp(e1) corresponds to a solution W of 3DM,

as in the classical reduction.
2. Assume that the R-SDP solver returns “no”, i.e., there exists no e, e′ ∈ Eu such that

(e, e′)H̃⊤ = (s, s′). Let us assume by contradiction, that the 3DM has a solution W.
We can then define S to be the indices of words in U belonging to the solution W .
Let us define e1, e

′
1 ∈ {0, 1}u, eg, e

′
g ∈ {0, g}u with supp(e1) = S = supp(e′

g) and
supp(e′

1) = SC = supp(eg). From this also follows that eg = g ⋆e′
1 and e′

g = g ⋆e1.
Then the vector (e1 + eg, e

′
1 + e′

g) ∈ E2u is a solution to the R-SDP, as in case 1,
which gives the desired contradiction, to the R-SDP solver returning “no”.
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Note that the hypothesis, that only 1 and g in E add up to 1+g is not necessary. For
this assume that there exists gi, gj ∈ E, with 0 ̸= i < j < z such that gi + gj = 1 + g.
Thus, the splitting of e and e′ is a bit more complicated:

e = e1 + eg + ei + ej ,

e′ = e′
1 + e′

g + e′
i + e′

j ,

where e1, e
′
1 ∈ {0, 1}u,eg, e

′
g ∈ {0, g}u,ei, e

′
i ∈ {0, gi}u,ej , e

′
j ∈ {0, gj}u with

supp(e1) = S1 = supp(e′
g),

supp(eg) = S′
1 = supp(e′

1),

supp(ei) = Si = supp(e′
j),

supp(ej) = S′
i = supp(e′

i),

and the supports S1, S
′
1, Si, S

′
i are distinct and partition {1, . . . , u}. Again it follows

that

eg = g ⋆ e′
1,

e′
g = g ⋆ e1,

ej = gj−i ⋆ e′
i,

e′
j = gj−i ⋆ ei.

Thus, rewriting the first parity-check equation, we get

He⊤ − g ⋆He′⊤

=He⊤
1 +He⊤

g +He⊤
i +He⊤

j

− g ⋆He′⊤
1 − g ⋆He′⊤

g − g ⋆He′⊤
i − g ⋆He′⊤

j

=He⊤
1 + g ⋆He′⊤

1 +He⊤
i + gj−i ⋆He′⊤

i

− g ⋆He′⊤
1 − g2 ⋆He⊤

1 − g ⋆He′⊤
i − gj−i+1 ⋆He⊤

i

=(1− g2) ⋆He⊤
1 + (1− gj−i+1) ⋆He⊤

i + (gj−i − g) ⋆He′⊤
i

=(1− g2, . . . , 1− g2) = s′.

Since e1, ei, e
′
i all have different supports, the only way to get 1− g2 in each entry, is

to have ei = e′
i = 0. In fact, any other sum leads to a contradiction:

– If (1 − g2) + (1 − gj−i+1) = 1 − g2 then 1 = gj−i+1 and hence j = i − 1 which
contradicts j > i.

– If (1 − g2) + (gj−i − g) = 1 − g2 then gj−i = g and hence j − i = 1. However, as
then gj + gi = gi(1 + g) = 1 + g, it follows that gi = 1, which contradicts i ̸= 0.

– If (1−g2)+(1−gj−i+)+(gj−i−g) = 1−g2, then 1+gj−i = gj−i+1+g = g(1+gj−i)
and thus g = 1, which contradicts E ̸= F⋆

q .

– If (1 − gj−i+1) + (gj−i − g) = 1 − g2, then gj−i − gj−i+1 = g − g2 and hence
gj−i(1− g) = g(1− g) and thus j − i = 1, which is a contradiction again as in the
second case.

⊓⊔
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B Appendix: Representation Technique for R-SDP

Note that algebraic attacks that try to exploit the small order of the entries of e
cannot be mounted in a straightforward manner. This is mainly due to the fact that
E is a multiplicative group and thus not compatible with the additive linearity of the
syndrome computation. The situation would be different if the restricted error vectors
would be additive, i.e., any e =

∑m
i=1 λixi, for some publicly known xi ∈ Fn

q and
unknown λi ∈ Fq. In this case, one can write the syndrome equation as a linear system
and solve it in polynomial time. As our choice of E is however a multiplicative one,
such an approach is not possible. In this Appendix, we present a generic solver for the
R-SDP, which is an adaption of the BJMM algorithm [15] in combination with the
technique of [14] for subset sum solvers. The security levels provided in this paper are
computed taking also this algorithm into account.

For this section, we require some additional notation. For n ≥
∑m

i=1 ki we denote
by (

n

k1, . . . , km

)
=

m∏
i=1

(∑i
j=1 kj

ki

)(
n

n−
∑m

i=1 ki

)
the multinomial coefficient. Recall that

lim
n→∞

1

n
log2

((
f(n)

f1(n), . . . , fm(n)

))
= F · gm

(
F1
F
, . . . , Fm

F

)
,

with gm(x1, . . . , xm) = −
m∑
i=1

xi log2(xi)−

(
1−

m∑
i=1

xi

)
log2

(
1−

m∑
i=1

xi

)

and F = lim
n→∞

f(n)
n

, Fi = lim
n→∞

fi(n)
n

for all i ∈ {1, . . . ,m}. Notice that g1 = h2 corre-
sponds to the binary entropy function.

After the PGE step, explained in Section 3, we are left with solving the smaller
instance, i.e., e1H

⊤
2 = s2 and e1 ∈ Ek+ℓ

0 has weight v. The main idea of the BJMM
algorithm is to use a sum partition e1 = e

(1)
1 + e

(1)
2 . The number of ways in which we

can write a vector x = x1 + x2, where both the xi have to satisfy certain conditions,
is called the number of representations.

We start with the representation merge: given two lists L1,L2 containing xi of a
certain weight, we add x = x1 + x2 to the resulting list L, whenever x attains some
target weight and some syndrome equations are satisfied. These are xH⊤

2 = t, for
either t = s2, the target syndrome or t = 0, the zero vector. Assume that for any
x ∈ L there are r representations {x1,x2}, which lead to the same x. By checking the
syndrome equations only on u = logq(r) positions, we have with high probability that
one representation for each possible x survives the merge. A representation merge of
two lists L1,L2 on u positions costs

|L1|+ |L2|+ |L1| · |L2| q−u.

After the representation merge, one performs a filtering step, which removes vectors
that are not well-formed, e.g., do not achieve a given weight constraint or do not live
in a desired space. Further steps can then utilize this smaller list.

The representation merge can clearly be used several times, thus we denote by
BJMM(a) an algorithm that has a levels, where in the first level we do a concatenation
merge à la Stern/Dumer. For more details on how exactly the algorithm proceeds, we
refer the reader to [36].
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Since we have many non-zero entries in our solution, we want many representations
of elements in E. For this we have to choose the search space, i.e., where e

(1)
1 , e

(1)
2 live,

in a smart way: we want to choose it large enough to gain representations, but small
enough to have reasonable list sizes.

To get some fixed entry x ∈ E as x = y+y′, we could choose y ∈ E, y′ ∈ D := {a−b |
a, b ∈ E}\{±E0}. If E already has a lot of additive structure, e.g. when z is even, that is
there are many elements y, y′ ∈ E such that y+y′ ∈ E, then D becomes small. Thus, we
only need a few additional elements in the search space to gain many representations
for elements in E. We propose the following search space X = E ∪ D ∪ −E. On each
level i, we are considering vectors x living in X0, with v

(i)
e entries in E, v(i)d entries in

D and v
(i)
m entries in −E.

e(i)

v
(i)
e v

(i)
d

v
(i)
e /2

v
(i)
m

δ(i+1)ε(i+1)

e
(i+1)
2

+

=

e
(i+1)
1

o(i+1)

Fig. 10: Counting the number of representations on level i.

To count the number of representations we use Figure 10. We denote by ε(i+1) the
number of entries which are obtained through a E + E representation. That is, for a
fixed entry x of e(i), we need to compute the number of possible y ∈ E that can reach
x, through addition with E :

ne(q, z, x) :=
∣∣{y ∈ E | ∃y′ ∈ E : y + y′ = x ∈ E}

∣∣ .
We denote by δ(i+1) the number of entries of e(i) obtained through representations

E + D. Hence, for a fixed entry x of e(i), we need to compute the number of possible
y ∈ E that can reach x through addition with D :

nd(q, z, x) :=
∣∣{y ∈ E | ∃y′ ∈ D : y + y′ = x ∈ E}

∣∣ .
Since ne(q, z, x), nd(q, z, x) are independent of x, we just write ne(q, z), nd(q, z). Finally,
outside of the support of e(i), we allow for o(i+1) representations of 0 as 0 = y+(−y) =
(−y) + y, for y ∈ E. We could also allow for cancellations via D, but as these entries
are already only few, they will be optimized to zero.

The vectors e
(i+1)
i have v

(i+1)
e = v

(i)
e /2 + ε(i+1) + o(i+1) entries in E, v

(i+1)
d =

v
(i)
d /2 + δ(i+1) in D and v

(i+1)
m = v

(i)
m /2 + o(i+1) in −E. Hence, we get the number of

representations

r(i) =

(
v
(i−1)
e

v
(i−1)
e /2

)((
v
(i−1)
e /2

δ(i), ε(i)

)
nd(q, z)

δ(i)ne(q, z)
ε(i)

)2

·

(
v
(i−1)
d

v
(i−1)
d /2

)(
v
(i−1)
m

v
(i−1)
m /2

)(
k + ℓ− v

(i−1)
e − v

(i−1)
d − v

(i−1)
m

o(i), o(i)

)
z2o

(i)

. (10)
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After each merge, the obtained lists are filtered, to get rid of vectors that are not
well-formed. After the filtering we are considering vectors in S(i) that have v

(i)
e entries

in E, v(i)d entries in D and v
(i)
m entries in −E. Hence,

∣∣S(i)
∣∣ = ( k + ℓ

v
(i)
e , v

(i)
m , v

(i)
d

)
zv

(i)
e +v

(i)
m |D|v

(i)
d .

To give the asymptotic cost, we need the following notation:

Q = log2(q) V (i)
e = lim

n→∞
v
(i)
e (n)
n

Ne = lim
n→∞

1
n
log2(ne(q, z))

Z = log2(z) V (i)
m = lim

n→∞
v
(i)
m (n)
n

Nd = lim
n→∞

1
n
log2(nd(q, z))

L = lim
n→∞

ℓ(n)
n

V
(i)
d = lim

n→∞

v
(i)
d

(n)

n
Σ(i) = lim

n→∞
1
n
log2

(∣∣S(i)
∣∣)

U (i) = Q lim
n→∞

u(i)(n)
n

∆ = lim
n→∞

1
n
log2(|D|)

D(i) = lim
n→∞

δ(i)(n)
n

E(i) = lim
n→∞

ε(i)(n)
n

O(i) = lim
n→∞

o(i)(n)
n

Theorem 4. The presented BJMM(3) algorithm has a cost of 2nF (R,q,z,ω), where

F (R, q, z,W ) = N(R, q, z,W ) + C(R, q, z,W ),

where N(R, q, z,W ) denotes the number of iterations and is given by

h2(W )− (R+ L)h2

(
V

R+L

)
− (1−R− L)h2

(
W−V

1−R−L

)
and C(R, q, z,W ) denotes the cost of one iteration, which is given by

max
{
Σ(2)/2, Σ(2) − U (2), 2Σ(2) − U (2) − U (1), 2Σ(1) − U (1) − LQ

}
,

where for i ∈ {1, 2} and V
(0)
e = V , V (0)

d = V
(0)
m = 0 we set

U (i) = R+ L−R(i−1) +R(i−1)h2

(
2O(i)

R(i−1)

)
+O(i)

+ V (i−1)
e g2

(
2E(i)

V
(i−1)
e

, 2D(i)

V
(i−1)
e

)
+ 2

(
D(i)Nd + E(i)Ne +O(i)Z

)
,

Σ(i) = (R+ L)g3

(
V

(i)
e

R+L
, V

(i)
m

R+L
,

V
(i)
d

R+L

)
+
(
V (i)
e + V (i)

m

)
Z + V

(i)
d ∆,

R(i) = R+ L− V (i)
e − V

(i)
d − V (i)

m ,

V (i)
e = V (i−1)

e /2 + E(i) +O(i), V
(i)
d = V

(i−1)
d /2 +D(i), V (i)

m = V (i−1)
m /2 +O(i).

B.1 Refinements

For large-weight vectors, it makes sense to first shift the considered instance. That is
for a fixed c ∈ Fq, we shift the whole error set E to Ẽ = {a+c | a ∈ E}. Let us denote by
c the all-c vector. Then, such shifting can easily be done by computing the syndrome
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Fig. 11: Comparison of the asymptotic complexity for the restricted Stern/Dumer
algorithm and the restricted BJMM algorithm.

sc of c and adding it to the original syndrome s: (e + c)H⊤ = s + sc. By choosing
c ∈ −E, one can set the error at all positions with value c to zero. Hence, one obtains
Ẽ = {a+ c | a ∈ E} \ {0} of size z̃ = z − 1. With this error set of reduced size, one can
proceed as before. That is we again use the sets

D̃ =
{
a− b | a, b ∈ Ẽ

}
\
{
±Ẽ0

}
and − Ẽ =

{
−e | e ∈ Ẽ

}
\ Ẽ.

Note that for these sets, ne(q, z, x) and nd(q, z, x) are indeed dependent on the element
x. In order to avoid a more complicated analysis, we resolve this issue by defining the
average number of representations for an element in Ẽ as

ñe(q, z, c) =
1

z̃

∑
x∈Ẽ

ne(q, z, x) and ñd(q, z, c) =
1

z̃

∑
x∈Ẽ

nd(q, z, x),

which depends not on the particular element but only on the chosen shift. Hence, ñe

and ñd can be directly used in Theorem 4. In Figure 11, we compare the complexity
coefficients of different information set decoders as a function of the relative error
weight W 9. The considered code rate is R = 0.45. The field size q = 157 allows for
z = 12 and z = 13, which correspond to the solid and dashed lines, respectively.
While the performance of Stern depends only on the size of E, the performance of the
BJMM algorithms depends on its structure. For z = 12, E possesses a lot of additive
structure, which is why BJMM(3) can improve over Stern. In particular, E = −E and
ne(157, 12) = 2 allow for an increased number of representations. This is not the case
for z = 13, where we only improve over Stern in the low-error-weight regime. Finally, we
observe that shifting has to be taken into account for high error weights, but becomes
quickly impractical as the weight decreases. Taking these observations into account,
we avoid choosing instances for which the BJMM algorithm can achieve a significantly
lower complexity than restricted Stern.

9 Code for recreating the figure is available at https://github.com/secomms/RBG.

https://github.com/secomms/RBG
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C Appendix: a Sketch of MPCitH based on R-SDP

We quickly recall the general idea of [29] and, for the sake of simplicity, omit several
technical details. The secret e is split into N shares e(i), which are such that

∑N
i=1 e

(i) =

e and for each share e(i) one computes the broadcast αi = e(i)H⊤. Additionally, the
simulated N parties also check that the shares e(i) sum to a weight-w vector. The
broadcast as well as a commitment ci to each share are then sent to the verifier. A
verifier can challenge any share ℓ and upon this challenge the prover will open all
shares e(i) for i ̸= ℓ. The verifier can then check the commitments ci and broadcasts
αi for i ̸= ℓ. This changes the soundness error to 1

N
. However, the computation of the

broadcasts has still to be done N times during signing as well as N − 1 times during
verification, which makes this approach very slow. As the parties should also check for
the correct weight of the secret, these approaches are also highly complex and difficult
to implement.

For the latter, the authors of [29] propose an MPC protocol which is based on
polynomial relations. The idea is to construct a polynomial whose degree is the same
as the weight of e: the degree verification demands an ad-hoc MPC protocol.

For the case of R-SDP, using just the degree verification will not be enough. Indeed,
the MPC parties should also verify that e has only restricted entries. So, converting
the SDItH protocol to the use of R-SDP seems inappropriate. However, the MPCitH
protocol employed in [27, Section 6] for PKP should better fit our scopes. Indeed, the
author proposes an MPC protocol to verify that the polynomials

P (x) =

n∏
j=1

(x− e(j)), P ′(x) =

n∏
j=1

(x− e(j)′), (11)

for which the parties receive additive shares, have the same roots. A similar idea may
be used also for R-SDP with maximum Hamming weight. In our case, all the roots of
P (x) (which would be the sharing of the secret restricted vector e), as well as those of
P ′(x) (which would be the sharing of e′ = σ(e)) live in E: this is what we can demand
the MPC protocol to verify. Since the protocol also checks that P (0) ̸= 0, this will
convince the parties that e does not have zero entries and, consequently, has maximum
Hamming weight.

D Appendix: Examples of subgroups of En

Example 1 Let q = 13 and g = 5, with multiplicative order z = 4; consequently

E =
{
1 = g0, 5 = g1, 12 = g2, 8 = g3

}
.

Let us consider n = 5 and m = 3. As generating set for G, we take

x1 = (12, 5, 5, 5, 12), x2 = (12, 1, 5, 5, 1), x3 = (8, 12, 1, 1, 1)

with ℓ(x1) = (2, 1, 1, 1, 2), ℓ(x2) = (2, 0, 1, 1, 0), ℓ(x3) = (3, 2, 0, 0, 0).

Each of these vectors has maximum order z and one can check that |G| = |B| is
maximal, i.e., zm = 43 = 64. Each vector in G is associated with a length-3 vector over
Z4. For instance, to (1, 3, 0) we associate the vector

a = ℓ−1
G

(
(1, 3, 0)

)
= x1

1 ⋆ x
3
2 ⋆ x

0
2

=
(
g2, g1, g1, g1, g2

)
⋆
(
g2, g0, g3, g3, g0

)
⋆
(
g0, g0, g0, g0, g0

)
=
(
g0, g1, g0, g0, g2

)
=
(
1, 5, 1, 1, 12

)
.
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Example 2 Let q = 13, n = 5, m = 4 and g = 3, with multiplicative order 3. We
consider the group G whose generating set contains the vectors with ℓ(xi) being

(2, 0, 2, 0, 2), (2, 2, 0, 2, 2), (0, 2, 2, 1, 1), (1, 2, 2, 2, 2).

The resulting MG has full rank, i.e., 4, so B and G contain 34 = 81 elements.

Example 3 Let us consider the case of q = 11 and g = 3, having order z = 5. Let
n = 10 and m = 3, and assume that the considered group G is such that

MG =

1 4 3 4 2 3 2 0 1 0
0 2 1 0 1 2 4 2 3 3
1 3 3 4 3 0 1 4 4 3

 ,

with rank 3. Hence, the group G has maximum order 53. Let t = 4 and consider
T = {1, 2, 3, 4}. The columns of MG which are indexed by T form a matrix M′ with
the three linearly independent rows. Consequently, m′ = rk(M′) = 3 and to enumerate
all candidates for eT it is enough to enumerate all the exponents vectors which can
be generated by linear combinations of the rows of M′. Instead of zt = 54, we can
enumerate all candidates for eT in time zm

′
= 53. However, if T = {4, 6, 7, 9}, then

the corresponding columns form a matrix M′ with rank 2. Thus, we can enumerate all
candidates for eT in time zm

′
= 52.

E Appendix: The R-BG signature scheme

In this section, we prove the soundness, special-soundness, completeness, and zero-
knowledge properties of the proposed R-BG scheme. For this, we closely follow the
proofs given in [18], as all the properties follow directly from the original BG protocol.

Proposition 3. The R-BG scheme presented in Figure 5 is complete.

Proof. The completeness follows from the protocol description, once it is observed that

ẽN = σ(βe) + v

and thus
s̃ = ẽNH⊤ − βs = σ(βe)H⊤ − βσ(e)H⊤ + vH⊤ = vH⊤.

⊓⊔

Proposition 4. The R-BG scheme presented in Figure 5 is (2, 2) out of (q − 1, N)-
special sound.

Proof. For this, we need to build an efficient extractor of knowledge Ext, which returns
a solution of the R-SDP(G) on the instance H, s, e, G with high probability, given
a (q − 1, N)-tree of accepting transcripts. For this we require only four leafs of the
tree, corresponding to (β, i), (β, i′), (β′, i) and (β′, i′) with β ̸= β′ and i ̸= i′. The
extractor Ext computes the solution as follows. First, by taking the responses to the
challenges (β, i) and (β, i′), one can generate σj for all ℓ ∈ {0, . . . , N} and thus also
σ = σN ◦ · · · ◦ σ2 ◦ σ1.

Let us denote by ẽj the vectors for transcripts with challenge β and by ẽ′
j the

vectors for transcripts with challenge β′.
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Using the responses corresponding to the challenges (β, i) and (β′, i) we can also
generate all (σj ,vj) and thus also the commitments cj . Due to the binding property,
the commitments do not depend on β or β′, i.e., generating (σ′

j ,v
′
j) from (β′, i) and

(β′, i′) the commitments must be the same.
Using the transcripts corresponding to the challenges (β, i) and (β′, i) we can com-

pute all ẽj , ẽ
′
j for all ℓ ∈ {0, . . . , N}.

By construction we have ẽ0 = βe is same for the transcripts from (β, i) and (β, i′)
as well as ẽ′

0 = β′e is same for the transcripts from (β′, i) and (β′, i′), the same holds
for the remaining ẽj and ẽ′

j .
Hence, we get ẽNH⊤ − βs = ẽ′

NH⊤ − β′s. From the binding property of the
commitments, (σ(βe) + v)H⊤ − βs = (σ(β′e) + v)H⊤ − β′s. It follows that (β −
β′)σ(e)H⊤ = (β − β′)s. With this we get that σ(e) ∈ G and σ(e)H⊤ = s. Thus, σ(e)
is a solution to R-SDP on the instance H, s, e, G. ⊓⊔

Proposition 5. The R-BG scheme presented in Figure 5 is zero-knowledge.

Proof. A valid transcript upon the challenge (β, i) consists of (c, β, h, i,Rspi), where
the response Rspi = (ci, ẽi, Seedj) for j ̸= i and for i ̸= 1 also includes σ1. In both
cases the verifier has enough information to recover all commitments cj , but does not
know σi for the challenge i.

Thus, having all σj for ℓ ̸= i, one cannot recover σ from σ1 = σ−1
2 ◦ · · · ◦ σN .

We can prove ZK by building a PPT simulator Sim that given the public key
H, s, e, G and challenges (β, i) outputs a transcript (c, β, h, i,Rspi) that is indistin-
guishable from the transcript of an honest execution of the protocol. The simulator
Sim proceeds as follows:

1. Compute σj ,vj and the corresponding commitments cj as in the protocol, except
for σ′

1 which is chosen randomly in G.
2. Compute σ = σN ◦ · · · ◦ σ′

1.
3. Compute v and the commitment c as in the protocol.
4. Compute y such that yH⊤ = βs. This y is not necessarily in G, as else the

simulator has to solve the R-SDP(G).
5. Compute ẽ0 = βe and for all ℓ ∈ {1, . . . , i− 1} the ẽj = σj(ẽℓ−1) + vj .
6. Compute ẽ′

i = σi(ẽi−1) + vi + σ−1
i+1 ◦ · · · ◦ σ

−1
N (y − σ(βe)).

7. Compute the remaining ẽ′
j = σj(ẽ

′
ℓ−1) + vj for all ℓ ∈ {i+ 1, . . . , N}.

8. Compute the commitment h = Hash(ẽ1, . . . , ẽN )
9. If i = 1, respond with Rsp1 = (c1, ẽ1, Seeds) and if i ̸= 1 respond with Rspi =

(ci, ẽi, σ1, Seeds).
10. Output transcript (c, β, h, i,Rspi).

Since ẽ′
i of the simulator and ẽi of an honest prover are masked by a random vi, which

is not known to the verifier, the responses ẽi and ẽ′
i are indistinguishable. Since also

σ′
1 was chosen at random in G, σ′

1 of the simulator and σ1 of an honest prover are also
indistinguishable. Since we assume the commitments are hiding, ci do not leak any
information on σi and vi. Thus, the transcript of the simulator and the transcript of
an honest prover are indistinguishable. ⊓⊔

Proposition 6. The R-BG scheme presented in Figure 5 has a soundness error of

ε(N, q) =
1

N
+

N − 1

N(q − 1)
.
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Proof. Since we have a (2, 2) out of (q − 1, N)-special sound protocol, we get (e.g.,
from [7,8]) that the soundness error is given by

1−
(
1− 1

q − 1

)(
1− 1

N

)
=

1

N
+

N − 1

N(q − 1)
.

⊓⊔
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