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Abstract. The learning with errors (LWE) problem is one of the fun-
damental problems in cryptography and it has many applications in
post-quantum cryptography. There are two variants of the problem, the
decisional-LWE problem, and the search-LWE problem. LWE search-to-
decision reduction shows that the hardness of the search-LWE problem
can be reduced to the hardness of the decisional-LWE problem. The effi-
ciency of the reduction can be regarded as the gap in difficulty between
the problems.
We initiate a study of quantum search-to-decision reduction for the LWE
problem and propose a reduction that satisfies sample-preserving. In
sample-preserving reduction, it preserves all parameters even the number
of instances. Especially, our quantum reduction invokes the distinguisher
only 2 times to solve the search-LWE problem, while classical reductions
require a polynomial number of invocations. Furthermore, we give a way
to amplify the success probability of the reduction algorithm. Our ampli-
fied reduction works with fewer LWE samples compared to the classical
reduction that has a high success probability. Our reduction algorithm
supports a wide class of error distributions and also provides a search-
to-decision reduction for the learning parity with noise problem.
In the process of constructing the search-to-decision reduction, we give
a quantum Goldreich-Levin theorem over Zq where q is prime. In short,
this theorem states that, if a hardcore predicate a · s (mod q) can be
predicted with probability distinctly greater than 1/q with respect to a
uniformly random a ∈ Zn

q , then it is possible to determine s ∈ Zn
q .

Keywords: Learning with errors · Learning parity with noise · Search-
to-decision reduction · Goldreich-Levin theorem · Quantum reduction
· Query complexity · Sample complexity.

1 Introduction

Quantum algorithms run on a quantum computer and they have the potential
to solve some problems faster than classical computation, for example, Shor’s
algorithm has been shown to solve factorization efficiently. In the same way,
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we can investigate a quantum reduction algorithm that could be more efficient
than the known classical reduction algorithms. Reduction algorithms play an
important role in cryptography to transform one problem into another problem.
Intuitively, problem A is reducible to problem B, if an algorithm for solving
problem B could also be used as a subroutine to solve problem A. In this sense,
search-to-decision reduction for the learning with errors (LWE) problem is to
show the decisional-LWE problem is as hard as the search-LWE problem.

The LWE problem introduced by Regev [27] is one of the fundamental com-
putational problems in cryptography. The LWE samples consist of a pair (A, y)
of a uniformly random matrix A ∈ Zm×n

q together with y = A·s+e for randomly
chosen error term e← χm (small Gaussian noise is commonly used) where m is
the number of samples. LWE has two main variations: The search-LWE problem
asks to find a secret string s ∈ Zn

q , given a system of noisy linear equations (A, y),
while the decisional-LWE problem asks to distinguish between the distribution
of the LWE samples {(A, y)|s $←− Zn

q , A
$←− Zm×n

q , e ← χm, y := A · s + e} and
uniformly random distribution {(A, r)|A $←− Zm×n

q , r
$←− Zm

q }.
There are two standard facts in LWE hardness. The first is more trivial,

which says that there is a reduction from the decisional-LWE to the search-
LWE: Whenever the pair (A, b) is randomly chosen A

$←− Zm×n
q , b

$←− Zm
q , then

with overwhelming probability the vector b is going to be far away from the
lattice, thus there does not exist a coordinates vector s such that A · s is close to
b, thus if we can break search-LWE and find s, we can check whether b is close
to A · s or not, which constitutes an algorithm that breaks decisional-LWE. The
second known fact is less trivial and says that the search-LWE can be reduced
to the decisional-LWE. These previously known reductions use a distinguisher
for the decisional-LWE to extract the secret string s and break the search-LWE.
More delicately, the way that these reductions work is that the search-LWE
adversary uses classical oracle access to the distinguisher.

There exist hardness proofs based on reductions from worst-case lattice prob-
lems (BDD/gapSVP), which are considered to be hard not only for classical
computers but also for quantum computers. As a consequence, the hardness of
the decisional-LWE problem serves as the security source of many post-quantum
cryptographic primitives, such as oblivious transfer [26], identity-based encryp-
tion [4, 13, 17], fully homomorphic encryption [11], etc.

Prior works. There are various incomparable search-to-decision reductions for
the LWE problem [27, 25, 7, 22, 23, 10]. Regev [27] who introduced the LWE prob-
lem showed search-to-decision reduction in [27]. It imposes constraints that mod-
ulus q must be prime and bounded by poly(n). Research on search-to-decision
reduction has been conducted in the direction of loosening the restriction on
modulus q, but they incur some loss in the LWE parameters. Peikert [25] ex-
tends Regev’s reduction for the case where q can be expressed as a product of
distinct prime numbers in poly(n), but it requires the error distribution to be
Gaussian. Applebaum, Cash, Peikert, and Sahai [7] give a reduction for the case
where the modulus can be a prime power q = pe. The above algorithms have
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the property that the run-time scales linearly with q in common. It could make
the reductions meaningless for large q. Micciancio and Peikert [23] give a reduc-
tion that runs in poly(log q). Micciancio and Mol [22] give a search-to-decision
reduction in another direction. They show a sample-preserving reduction, which
shows that if the pseudorandomness of the LWE problem holds, the LWE prob-
lem with the same number of samples is invertible. The state-of-the-art results
constitute an adversary that makes polynomially many such classical queries
to the distinguisher in order to break search-LWE, and the extra computations
that the search-LWE adversary makes on the side (between its queries to the
decisional-LWE adversary) are also classical. What this work aims to do is to use
quantum computations and quantum queries to the decisional-LWE adversary
in order to speed up the reduction - use fewer queries and less computation time.

Practical importance of quantum search-to-decision reduction. The
LWE challenge [1] is the foundation for ensuring the difficulty of the LWE prob-
lem. In practice, the LWE challenge is intended to solve search LWE problems.
Based on the results of the LWE challenge, the parameter size n is selected, at
which we can trust that the search-LWE problem is hard enough.

Suppose that there is a cryptographic scheme whose security is reduced to
the hardness of the decisional-LWE problem. Intuitively, if the security of the
scheme is to be ensured based on the LWE challenge of size n, the size of the
scheme should be losss2d(n) plus the security loss of the scheme itself, where
losss2d(·) is the reduction loss in a search-to-decision reduction.

When a quantum computer arises, a quantum version of the LWE challenge
will be held and the parameter nQ (≥ n) will be determined for the LWE prob-
lem to be hard for the quantum computer. Then, should the size of the scheme
be selected based on losss2d(nQ)? If we know the efficiency lossQs2d(·) of quan-
tum search-to-decision reduction, we know that we can actually implement the
scheme with a size based on lossQs2d(nQ), which is expected to partially mitigate
the effect of the increase of nQ over n.

1.1 Our contribution

Quantum search-to-decision reduction. In this work, we investigate a quan-
tum search-to-decision reduction for the LWE problem and we discuss the ef-
ficiency of our algorithm and classical ones. We compare the efficiency of our
reduction and the classical ones by three aspects, success probability, query com-
plexity, and sample complexity. We treat the distinguisher as a blackbox and the
query complexity of an algorithm is measured by the number of queries to the
distinguisher in the algorithm while it finds the secret string s of the search-LWE
problem. The sample complexity of an algorithm is measured by the number of
LWE instances that it takes. In this paper, we propose three variations of the
reduction algorithms.

– The first one is an algorithm that also serves as the basis for the other two. It
finds s with probability at least 4q2ϵ3

27m3(q−1)5 using distinguisher 2 times. And it
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is also a sample-preserve reduction, i.e., it needs m sample of LWE instances
to find s where m is the number of instances required by the distinguisher
to solve the decisional-LWE problem.

– The second algorithm is an evolution of the sample-preserve one. It amplifies
the probability of success of the first algorithm instead of increasing the
complexities. It finds s with probability Ω( ϵ

qm ) using distinguisher O( qmϵ )
times.

– The third algorithm is a version of a higher probability of success through
further iterations. It finds s with probability 1 − o(1) using distinguisher
O( q

2m2 logn
ϵ2 ) times.

We remark that our reductions have some constraints on parameters. Our re-
ductions require q to be prime. The second and third require that we can verify
from the instances of the LWE problem whether it is the correct answer for the
LWE problem given some input s′ ∈ Zn

q . We believe that this condition does
not impose a strong limitation on the use of LWE as a basis for cryptographic
primitives. The existence of more efficient or less restrictive classical/quantum
search-to-decision reduction is an open problem.

Success probability Query complexity Sample complexity Classical/Quantum

Reg05*[27] 1− o(1) Õ(nq
ϵ2
) Õ(mnq

ϵ2
) Classical

MM11**[22] 1
poly(n)

poly(n) m Classical

Th.2 4q2ϵ3

27(q−1)5m3 2 m Quantum

Th.3 Ω( ϵ
qm

) O( qm
ϵ
) m+O(n) Quantum

Cor.1 1− o(1) O( q
2m2 logn

ϵ2
) Õ( qm

2

ϵ
) Quantum

Table 1. Comparison of the algorithms performance. n is a size of the LWE problem,
m is the number of instances required by the distinguisher to solve the decisional LWE
problem, ϵ is the advantage of the distinguisher.
* The numbers in this line are from a simplified version of the reduction by Regev. The
specific construction of the algorithm is described in Appendix B.
** The success probability and the query complexity of this algorithm are very complex.
The specific values are given in Appendix B.

Extension of quantum Goldreich-Levin theorem. The Goldreich-Levin
Theorem [18] is a cornerstone theorem in computer science and has been studied
from various aspects [3, 18, 19, 21, 24]. This theorem states that any (strong)
one-way function f can be easily transformed into a function of the required
form g(a, r) := (f(a), r) where a, r ∈ Zn

2 and it has a hard-core predicate a · r
(mod 2). Roughly speaking, a (strong)one-way function is a function that can be
efficiently computed but is hard to compute in the reverse direction, and a hard-
core predicate of a function is a bit that can be efficiently computed from the
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input to the function and no efficient algorithm can guess it from the output of
the function with probability distinctly higher than one-half. Adcock and Cleve
investigate a quantum Goldreich-Levin theorem [3]. Roughly, they show that the
reduction from quantum one-way functions to quantum hard-core predicates is
quantitatively more efficient than the classical version.

In the process of constructing the quantum search-to-decision reduction, we
give a further generalized theorem of the quantum Goldreich-Levin theorem by
Adcock and Cleve. Namely, we show that if there exists a predictor that predicts
a · s (mod q) where a, s ∈ Zn

q and q to be prime with probability 1
q + δ over

the choice of a← Zn
q , then we can find s with probability at least ( qδ

q−1 )
2 while

accessing the predictor 2 times.

Concurrent work of quantum Goldreich-Levin theorem. Recently, Ananth
et al. [6] independently investigated a quantum Goldreich-Levin theorem for the
field Zq. They obtain this result by converting the classical Goldreich-Levin the-
orem for the field Zq by Dodis et al. [15] into quantum reduction, by using the
recent work of Bitansky et al. [9]. Specifically, they show that a distinguisher
D that, given auxiliary input Aux, can distinguish between (a, a · s) and (a, r)
where s is randomly chosen from H ⊂ Zn

q can be converted into a quantum
extractor that can extract s given Aux.

While their quantum algorithm relies on the classical Goldreich-Levin theo-
rem for the field Zq by Dodis et al. [15], in which the distinguisher with advantage
ϵ is used poly(n, |H|, 1

ϵ ) times to extract s and its success probability is ϵ3

512·n·q2 .
On the other hand, our quantum algorithm can find s by accessing the distin-
guisher D 2 times with probability 4q2ϵ3

27(q−1)5 , and there is no need to make the
subset from which s is chosen small.

Improvements from Previous Version This paper is the full version of
Africacrypt2023[2]. As a significant update, the Africacrypt version included
the same method of a prediction-to-decision reduction as in [8, 16], but it was
found that this method had incomplete proof. This approach may also work well
using the proposition proposed by [14]. Therefore, a new reduction method was
introduced(in Section 3, lemma 1 to lemma 3).

1.2 Technical overview

We describe our techniques for proving our results on quantum search-to-decision
reduction for the LWE problem. Our construction of the search-to-decision re-
duction consists of two parts. For the first part, we construct a predictor from
the distinguisher of the decisional-LWE problem, and for the second part, we
construct an algorithm that finds s using the predictor. This reduction strategy
can be interpreted as making a prediction-to-decision reduction and a search-to-
prediction reduction. We note that the idea of the search-to-decision reduction
via unpredictability is the same as that of classical reduction by Micciancio and
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Mol [22], Applebaum, Ishai, and Kushilevitz [8]. We found a quantum speed-
up in the second part of the reduction and we call it as generalized quantum
Goldreich-Levin theorem. Then we provide an overview of this theorem.

Quantum Goldreich-Levin theorem. We first review the quantum Goldreich-
Levin theorem by Adcock and Cleve [3]. We call an unitary operation UP is a
quantum (s, q, ϵ)-predictor, if the last register of UP |a〉 |0l〉 |0〉 is measured in
computational basis, yielding the value P (a), then Pr[P (a) = a · s (mod q)] >
1
q+ϵ holds where a, s ∈ Zn

q and the probability depends on over choice of a $←− Zn
q .

We denote

UP |a〉 |0l〉 |0〉 = αa,0 |ϕa,0〉 |a · s〉+ αa,1 |ϕa,1〉 |a · s+ 1〉

where UP is a (s, 2, ϵ)-predictor, αa,0 and αa,1 are complex number. Since for
a random uniformly distributed a

$←− {0, 1}n, measuring the last register of
UP |a〉 |0l〉 |0〉 yields a · s (mod 2) with probability at least 1

2 + ϵ, it follows that

1

2n

∑
a∈{0,1}n

|αa,0|2 ≥
1

2
+ ϵ (1)

and
1

2n

∑
a∈{0,1}n

|αa,1|2 <
1

2
+ ϵ. (2)

We explain their quantum reduction algorithm step by step. First, pass the
superposition states 1√

2n

∑
a∈{0,1}n |a〉 |0l〉 |0〉 through the (s, 2, ϵ)-predictor UP ,

multiply the phase by (−1)y according to the value of the last register y, pass
the states through conjugate transpose of the predictor U†

P and we get the
states 1√

2n

∑
a∈{0,1}n

(∑
b∈{0,1}(−1)a·s+b|αa,b|2

)
|a〉 |0l〉 |0〉. By measuring the

first register in Fourier basis, we could obtain s. The probability of yielding
s when the first register is measured in the Fourier basis, is the square of the
inner product of this state and QFT⊗n |s〉 = 1√

2n

∑
a∈{0,1}n(−1)a·s |a〉, which

is | 12n
∑

a∈{0,1}n(|αa,0|2 − |αa,1|2)|2. Using the fact of (1) and (2), we can find s

with probability at least
∣∣( 1

2 + ϵ
)
−
(
1
2 − ϵ

)∣∣2 = 4ϵ2.

Difficulty. Next, we show that naive expansion of the quantum Goldreich-Levin
results in a (s, q, ϵ)-predictor where q 6= 2 does not work. As in the quantum
Goldreich-Levin algorithm, pass the superposition states 1√

qn

∑
a∈Zn

q
|a〉 |0l〉 |0〉

through the predictor UP , multiply the phase by ωy
q according to the value of the

last register y, pass the states through conjugate transpose of the predictor U†
P

and we get the states 1√
qn

∑
a∈Zn

q

(∑
j∈Zq

ωa·s+j
q |αa,j |2

)
|a〉 |0l〉 |0〉. If we measure

the first register in the Fourier basis, the probability of yielding s is the square
of the inner product of this state and QFT⊗n |s〉 = 1√

qn

∑
a∈Zn

q
ωa·s
q |a〉, which
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is | 1qn
∑

a∈Zn
q

∑
j∈Zq

ωj
q |αa,j |2|2. Define Pr(j) := Pr[P (a) = a · s+ j (mod q)] as

a probability of the gap between the predictor’s prediction and inner product is
j, then this probability can be written as |

∑
j∈Zq

ωj
q Pr(j)|2. This value cannot

be guaranteed some lower bound unless the advantage is very high such that
ϵ ≥ 1

2 −
1
q + δ.

Solution. To get around this obstacle, our key idea is to use the property of
cyclic group Z∗

q . For all element j ∈ Z∗
q , j determines a bijection r 7→ rj on Zq

and it maps 0 to 0. Using this property, we can say that

1

q − 1

∑
r∈Z∗

q

ωrj
q Pr(j) =

{
Pr(0) if j = 0
−1
q−1 Pr(j) if j 6= 0.

(3)

We will use this property to improve the algorithm. First, prepare the superposi-
tion states 1√

qn(q−1)

∑
a∈Zn

q

∑
r∈Z∗

q
|r〉 |a〉 |0l〉 |0〉 through the predictor UP (apply

the second to the last register), multiply the last register by the first register
r, multiply the phase by ωy

q according to the value of the last register y, di-
vide the last register by the first register r(multiply r−1), pass the states through
conjugate transpose of the predictor U†

P (apply the second to the last regis-
ter), multiply the second register by the first register r and we get the states

1√
qn(q−1)

∑
a,r,j ω

r(a·s+j)
q |αa,j |2 |r〉 |ra〉 |0l〉 |0〉. If we measure the second register

in Fourier basis, the probability of yielding s is the square of the inner product of
this state and (I⊗QFT⊗n)( 1√

q−1

∑
r∈Z∗

q
|r〉) |s〉 = 1√

qn(q−1)

∑
b∈Zn

q

∑
r∈Z∗

q
ωb·s
q |r〉 |b〉 =

1√
qn(q−1)

∑
a,r ω

r(a·s)
q |r〉 |ra〉 |0l〉 |0〉. Finally, we get

Pr[s is measured] =

∣∣∣∣∣∣ 1

qn(q − 1)

∑
a,r,j

ωrj
q |αa,j |2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣Pr(0)− 1

q − 1

∑
j ̸=0

P (j)

∣∣∣∣∣∣
2

≥
(

qϵ

q − 1

)2

.

This result is consistent with quantum Goldreich-Levin results and is a successful
generalization.

2 Preliminaries

2.1 Notation and definitions

In this paper, we use the following notations and definitions. For a finite set
S, s

$←− S denotes choosing an element s from S uniformly at random. For a
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distribution D, d← D denotes sampling an element d according to distribution
D. We denote Zq for the cyclic group {0, 1, ..., q1} with addition modulo q. We
also denote T for R/Z, in other words, the segment [0, 1) with addition modulo 1.
We use standard asymptotic notations O(·), o(·), Ω(·), Θ(·), etc. We use Õ (resp.
Θ̃) notation which overlooks quantities poly-logarithmic in appearing arguments,
that is, Õ(x) := O(x(log x)Θ(1)) (resp. Θ̃(x) := Θ(x(log x)Θ(1))). We denote by
ωn the complex root of unity of order n: ωn := e

2πi
n . For α ∈ R+ the distribution

Ψα is the distribution on T obtained by sampling from a normal variable with
mean 0 and standard deviation α√

2π
and reducing the result modulo 1 (i.e., a

periodization of the normal distribution),

∀r ∈ [0, 1), Ψα(r) =

∞∑
k=−∞

1

α
exp−π

(
r − k

α

)2

.

We define its discretization Ψα as the discrete probability distribution obtained
by sampling from Ψα, multiplying by q, and rounding to the closest integer
modulo q. That is,

Ψα(i) =

∫ (i+ 1
2 )/q

(i− 1
2 )/q

Ψα(x)dx.

2.2 Quantum computing

Let I be the identity operator. We denote U† as the Hermitian conjugate of
a unitary operation U. For operations that use auxiliary inputs |0l〉, we often
omit them for simplicity. Quantum Fourier transformation QFT over Zq is a
map |x〉 7→

∑
y∈Zq

ωxy
q |y〉. We use the fact QFT⊗n |x〉 =

∑
y∈Zn

q
ωx·y
q |y〉 where

x ∈ Zn
q . We use the fact that there is a phase kickback algorithm and it maps

|x〉 |0l〉 7→ ωx
q |x〉 |0l〉. This algorithm can be achieved by controlled-U where

unitary U has eigenvalue ωq.

3 Search-to-decision reduction for the learning with
errors problem

The learning with errors (LWE) problem has two main variants, the search-LWE
problem and the decisional-LWE problem. The search LWEn,m,q,χ problem asks
to find s chosen uniformly random from Zn

q given m LWE samples LWEn,s,q,χ :=

{(a, y)|a $←− Zn
q , e ← χ, y := a · s + e}. The decisional LWEn,m,q,χ problem asks

to distinguish between LWEn,s,q,χ and a uniformly random distribution R :=

{(a, r)|a $←− Zn
q , r

$←− Zq} by using m samples. We often represented samples from
LWEmn,s,q,χ (resp. Rm) in matrix form. For (A, y)← LWEmn,s,q,χ, each row of the
matrix A and each row of the vector y correspond to an LWE sample.

The learning parity with noise (LPN) problem is the special case of LWEn,m,q,χ

problem for q = 2 and the error distribution χ is the Bernoulli distribution Berµ.
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In this section, we show a search-to-decision reduction using quantum com-
puting. Our construction of the search-to-decision reduction consists of two
parts. For the first part, we construct a predictor from the distinguisher of the
decisional-LWE problem, and for the second part, we construct an algorithm that
finds s using a predictor. This reduction strategy can be interpreted as making
a search-to-prediction reduction and a prediction-to-decision reduction. We note
that the idea of the search-to-decision reduction via prediction is the same as
that of classical reduction by Micciancio and Mol [22], Applebaum, Ishai, and
Kushilevitz [8] and Dottling [16].

We define a quantum distinguisher for the decisional-LWE problem.

Definition 1. A quantum ϵ-distinguisher for the decisional LWEn,m,q,χ prob-
lem is unitary operation UD such that, the last register of UD |A, y〉 |0l〉 |0〉 is
measured in computational basis, yielding the value D(A, y) ∈ {0, 1}, then

Pr[D(A, y) = 0|s $←− Zn
q , (A, y)← LWEmn,s,q,χ}]−Pr[D(A, r) = 0|(A, y)← Rm] > ϵ

holds.

As in the definition, the last register of UD |A, y〉 |0l〉 |0〉 is measured in the
computational basis, in this paper, we denote this as D(A, y).

Next, we define a quantum predictor for the LWE problem.

Definition 2. A quantum (s, δ)-predictor is unitary operation UP such that,
the last register of UP |a〉 |0l〉 |0〉 is measured in computational basis, yielding the
value P (a), then

Pr[P (a) = a · s (mod q)] >
1

q
+ δ

holds.

3.1 Sample-preserve reduction

In this section, we propose a quantum sample-preserve reduction between the
search-LWE and the decisional-LWE.

The following Lemma states that there is a prediction-to-decision reduction
for the LWE problem.

We define Xm,j as an intermediate distribution between the LWE distri-
bution LWEmn,s,q,χ and Rm. In other words, Xm,j := {(Lm−j , Rj)|Lm−j ←
LWEm−j

n,s,q,χ, Rj ← Rj}. We note that Xm,0 is equal to LWEmn,s,q,χ, and Xm,m

is equal to Rm.

Lemma 1. For j
$←− {0, 1, ...,m− 1},

Pr[D(A, y) = 1|(A, y)← Xm,j ]− Pr[D(A, y) = 1|(A, y)← Xm,j+1] >
ϵ

m

holds.
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Proof. From the definition of the distinguisher UD,

Pr[D(A, y) = 1|(A, y)← LWEmn,s,q,χ]− Pr[D(A, r) = 1|(A, y)← Rm] > ϵ

holds. From the triangular inequalities,

Pr[D(A, y) = 1|(A, y)← LWEmn,s,q,χ]− Pr[D(A, y) = 1|(A, y)← Rm]

≤
m∑
i=1

Pr[D(A, y) = 1|(A, y)← Xm,i]− Pr[D(A, y) = 1|(A, y)← Xm,i+1]

holds. Therefore,

Pr[j = i](Pr[D(A, y) = 1|(A, y)← Xm,i]− Pr[D(A, y) = 1|(A, y)← Xm,i+1])

1

m
(Pr[D(A, y) = 1|(A, y)← Xm,i]− Pr[D(A, y) = 1|(A, y)← Xm,i+1])

>
ϵ

m

holds. ut
Lemma 2. There exists a unitary operation UP using UD once, it satisfies for
j

$←− Zq, Lm−j−1 ← LWEm−j−1
n,s,q,χ , Rj ← Rj, a

$←− Zn
q , c

$←− Zq, e ← χ and
r

$←− Zq, the last qubit of UP |Lm−j−1, (a, c⊕ e), Rj〉 |0l+1〉 |0〉 is measured in
computational base, yielding the value P (Lm−j−1, (a, c⊕ e), Rj), then
Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s] > 1

q + ϵ
(q−1)m holds.

In the following, if the last qubit of UP |Lm−j−1, (a, c⊕ e), Rj〉 |0l+1〉 |0〉 is
measured in computational base, we denote this as P (Lm−j−1, (a, c⊕ e), Rj).
Proof. UP |Lm−j−1, (x, c⊕ e), Rj〉 |0l〉 |0〉 |0〉 is a unitary operation of the follow-
ing procedure.
1. Compute (UD |(Lm−j−1, (a, c⊕ e), Rj)〉 |0l〉 |0〉) |0〉.
2. Apply a control unitary operation as follows; if the second-to-last register is

in state |1〉, output c to the last register, else if it is in state |0〉, output r 6= c
to the last register.

Let us analyze the behavior of UP . Since

Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s ∧ c = a · s]
= Pr[c = a · s] Pr[D(Lm−j−1, (a, c⊕ e), Rj) = 1|c = a · s]

=
1

q
Pr[D(Lm−j , Rj) = 1]

and

Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s ∧ c 6= a · s]
= Pr[r = a · s] (Pr[D(Lm−j−1, (a, c⊕ e), Rj) = 0]− Pr[D(Lm−j−1, (a, c⊕ e), Rj) = 0 ∧ c = a · s])

=
1

q − 1

(
(1− Pr[D(Lm−j−1, Rj+1) = 1])− 1

q
(1− Pr[D(Lm−j , Rj) = 1])

)
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holds,

Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s]
= Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s ∧ c = a · s] + Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s ∧ c 6= a · s]

=
1

q
Pr[D(Lm−j , Rj) = 1] +

1

q − 1

(
(1− Pr[D(Lm−j−1, Rj+1) = 1])− 1

q
(1− Pr[D(Lm−j , Rj) = 1])

)
=

1

q
+

1

q − 1
(Pr[D(A, y) = 1|(A, y)← Xm,j ]− Pr[D(A, y) = 1|(A, y)← Xm,j+1])

>
1

q
+

ϵ

(q − 1)m

holds. The last inequality follows from Lemma 1. In conclusion, we get

Pr[P (Lm−j−1, (a, c⊕ e), Rj) = a · s] > 1

q
+

ϵ

(q − 1)m
. (4)

Next, let’s consider the probability of outputting a · s for a given input x
when the random coins used in the prediction algorithm is fixed. Let U′

P |a〉 is
an unitary operation that performs UP |Lm−j−1, (a, c⊕ e), Rj〉.

Lemma 3. There exist a unitary operation U′
P , it holds that, for a

$←− Zn
q ,

Pr[P ′(a) = a · s] > 1

q
+

2ϵ

3(q − 1)m
(5)

with probability at least ϵ
3(q−1)m over choice of s← Zn

q , j $←− Zq, L← LWEm−j−1
n,s,q,χ ,

R← Rj, c $←− Zq and e← χ, r $←− Zq.

Proof. Define the U′
P to be the same as the one construct in Lemma 2, ex-

cept for some variables, such as j, L,R, c, e, r, are fixed. Define a set G =

{(s, j, L,R, c, e, r)|Inequality (5) holds}. By the definition of G, when s
$←− Zn

q ,
j

$←−, L← LWEm−j−1
n,s,q,χ , R← Rj and x

$←− Zn
q , c $←− Zq and e← χ, r $←− Zq, then

Pr[P (L, (a, c⊕ e), R) = a · s]
= Pr[P (L, (a, c⊕ e), R) = a · s ∧ (s, j, L,R, c, e, r) ∈ G]

+ Pr[P (L, (a, c⊕ e), R) = a · s ∧ (s, j, L,R, c, e, r) /∈ G]

≤ Pr[(s, j, L,R, c, e, r) ∈ G] +
1

q
+

2ϵ

3(q − 1)m

holds. From Lemma 2,

Pr[P (L, (a, c⊕ e), R) = a · s] > 1

q
+

ϵ

(q − 1)m

holds. Therefore Pr[(s, j, L,R, c, e, r) ∈ G] ≥ ϵ
3(q−1)m holds. ut
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We next show a prediction-to-decision reduction, that is, the expansion ver-
sion of the quantum Goldreich-Levin theorem.

Theorem 1 (Expansion version of quantum Goldreich-Levin theorem).
Let q be a prime. If there is a quantum (s, δ)-predictor UP , then there is a quan-
tum algorithm that finds s with probability at least ( qδ

q−1 )
2. It invokes UP and U†

P

once each.

Proof of Theorem 1. We construct a quantum algorithm that finds s using a
quantum (s, δ)-predictor UP .

First, prepare the superposition states 1√
qn(q−1)

∑
a∈Zn

q

∑
r∈Z∗

q
|r〉 |a〉 |0l〉 |0〉

through the predictor UP (apply the second to the last register), multiply the
last register by the first register r, multiply the phase by ωy

q according to the
value of the last register y, divide the last register by the first register r(multiply
r−1), pass the states through conjugate transpose of the predictor U†

P (apply the
second to the last register), multiply the second register by the first register r

and we get the states |ϕ〉 := 1√
qn(q−1)

∑
a,r,j ω

r(a·s+j)
q |αa,j |2 |r〉 |ra〉 |0l〉 |0〉. If we

measure the second register in Fourier basis, the probability of yielding s is the
square of the inner product of this state and (I⊗QFT⊗n)( 1√

q−1

∑
r∈Z∗

q
|r〉) |s〉 =

1√
qn(q−1)

∑
b∈Zn

q

∑
r∈Z∗

q
ωb·s
q |r〉 |b〉 = 1√

qn(q−1)

∑
a,r ω

r(a·s)
q |r〉 |ra〉 |0l〉 |0〉. Finally,

we get

Pr[s is measured] =

∣∣∣∣∣∣ 1

qn(q − 1)

∑
a,r,j

ωrj
q |αa,j |2

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1qn |αa,0|2 +
1

qn(q − 1)

∑
j∈Z∗

q

(
−|αa,j |2

)∣∣∣∣∣∣
2

>

∣∣∣∣(1

q
+ δ

)
− 1

q − 1

(
1−

(
1

q
+ δ

))∣∣∣∣2
=

(
qδ

q − 1

)2

.

The second equality follows by the fact that for all elements j ∈ Z∗
q , j determines

a bijection r 7→ rj on Zq and it maps 0 to 0. This result is consistent with the
quantum Goldreich-Levin result where q = 2 and is a successful generalization.

ut

Theorem 2. Let q be a prime. If there is a quantum ϵ-distinguisher UD for the
decisional LWEn,m,q,χ problem, then there is a quantum algorithm that solves the
search LWEn,m,q,χ problem with probability at least 4q2ϵ3

27(q−1)5m3 using UD and U†
D

once each.
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Proof of Theorem 2. This theorem follows immediately from Lemma 1. and
Theorem 1. ut

We stress that Theorem 1 gives a quantum sample-preserving search-to-
decision reduction for the LWE problem, i.e., we can find s with some polyno-
mial probability with sample complexity m, where m is the number of instances
required by the distinguisher to solve the decisional-LWE problem. Next, we con-
sider the complexity of obtaining s with high probability using this algorithm
in the following section. We use this algorithm as a basic building block of the
amplified reduction algorithms.

3.2 Amplify the success probability

We show how to amplify the success probability of the reduction algorithm given
in Section 3.1. However, this process increases query complexity and sample
complexity.

We propose an algorithm, Verify, that tests a candidate solution for the LWE
problem. We first sample (ai, yi)i∈[O(n)] ← LWEO(n)

n,s,q,χ and construct Verify to
test a candidate s′ by simply checking that ai · s ≈ yi. Here, we present the
case where the error distribution is the discrete Gaussian distribution Ψα where
α < 1

8 .

Lemma 4. Let χ = Ψα where α < 1
8 , we can construct an algorithm Verify us-

ing O(n) samples, and it satisfies the following functionality (6) with probability
1− negl(n)(resp. any desired constant 0 < p < 1)

Verify(s′) =

{
1 if s′ = s

0 if s′ 6= s.
(6)

The description of the algorithm Verify that satisfies the conditions of (6) can
be given as follows:
Initially, sample (ai, yi)i∈[cn] ← LWEcnn,s,q,χ. Upon receiving input s′ ∈ Zn

q , Verify
works as follows.
Verify(s′) :

count = 0

for i ∈ {1, 2, . . . , cn}

if |ai · s′ − yi| > q
8 , add 1 to count

if count < cn
2 output 1.

Proof of Lemma 4. Let us analyze the probability that the Verify satisfies the
condition (6).
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Let β = Pr[|χ| ≥ q
8 ](<

1
2 ), δ = 1

2β − 1.

Pr[Verify satisfies (6)] = Pr[Verify(s) = 1 ∧ ∀s′ 6= s,Verify(s′) = 0]

≥ Pr[Verify(s) = 1] · Pr[∀s′ 6= s,Verify(s′) = 0]

≥ (1− Pr[Verify(s) 6= 1]) ·

1−
∑
s′ ̸=s

Pr[Verify(s′) = 1]


≥ (1− e−

δ2βcn
2+δ ) ·

(
1− (qn − 1)e−

cn
24

)
= 1− negl(cn)

The third inequality follows from Chernoff bound. Therefore, Verify satisfies (6)
with probability 1 − negl(n) for sufficiently large constant c. In addition, by
choosing c to be sufficiently large, the success probability of the algorithm can
be increased to any desired constant level regardless of n. ut

We can use this Verify to amplify the success probability of the sample-
preserving reduction algorithm by repetition. However, the success probability
of our reduction can be increased more efficiently by the quantum-specific repeti-
tion technique "amplitude amplification [12]" than by simply judging the answer
each time. We define a quantum version of the verification algorithm UVerify as
follows.

Definition 3. A quantum verification algorithm is a unitary operation UVerify

such that the following functionality (7)

UVerify |s′〉 =

{
− |s′〉 if s′ = s

|s′〉 if s′ 6= s
(7)

holds.

Lemma 5. We can construct a quantum algorithm UVerify from Verify that sat-
isfies the condition (6).

Proof of Lemma 5. This lemma can be achieved by phase kickback. From
Lemma 4 there exists a verification algorithm satisfying (6), then there exist
an unitary operation such that

UVerify |s′〉 |0〉 =

{
|s′〉 |1〉 if s′ = s

|s′〉 |0〉 if s′ 6= s
(8)

holds.
Consider the following quantum operation. When given |s′〉 |0〉, apply UVerify,

multiply the phase by (−1)y according to the value of the second register y and
apply U†

Verify. We get − |s′〉 |0〉 when s′ = s otherwise we get |s′〉 |0〉. ut
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Theorem 3. Let q be a prime and χ = Ψα where α < 1
8 . If there is a quantum

ϵ-distinguisher UD for the decisional LWEn,m,q,χ problem, then there is a quan-
tum algorithm that solves the search LWEn,m′,q,χ problem with probability Ω( ϵ

qm )

using UD and U†
D O(

qm
ϵ ) times, where m′ = m+O(n).

Proof of Theorem 3. Initially, s is chosen uniform random from Zn
q , we get

(A, y)← LWEmn,s,q,χ and samples random coins. From Lemma 1 and Theorem 2
we can construct a quantum algorithm US using UD and U†

D once each, and that
satisfies

| 〈s|US |0n〉 |2 >
4q2ϵ2

9(q − 1)4m2
(9)

with probability ϵ
3m(q−1) over choice of s $←− Zn

q , (A, y) ← LWEmn,s,q,χ and ran-
dom coins. From Lemma 4 and Lemma 5 we can construct a verification algo-
rithm Verify (resp. a quantum algorithm UVerify) that satisfies (6) (resp. (7)) with
constant probability using O(n) samples of LWEn,s,q,χ.

Assuming that US satisfies (9), Verify satisfies (6), and UVerify satisfies (7),
consider the following procedure. The procedure is to compute

(−US(I− |0n〉 〈0n|)U†
SUVerify)

kUS |0n〉 ,

measures states in the computational basis, test it by Verify. As shown in [12], if
this is carried out for a suitably generated sequence of values of k, we can find
s with the expected total number of executions of US and U†

S until a successful
verification occurs is O( qmϵ ). From the construction of US , we get the following
conclusions. We can find s with probability Ω( ϵ

qm ) using UD and U†
D O(

qm
ϵ )

times, and with sample complexity m+O(n). ut
We remark that our reduction holds for a variety of other error distributions.

It simply requires that we can verify from the samples whether it is the correct
answer or not given some input s′ ∈ Zn

q . For example, the verification algorithm
for the case where q = 2 and the error distributed from the Bernoulli distribution
is given in Appendix A.

Next, we consider how we can raise the success probability of our reduction
algorithm to 1−o(1). Simply repeating the algorithm does not efficiently increase
the success probability. There are two reasons why we cannot simply repeat the
algorithm given in Section 3.1.

– Whether the predictor UP has desired property depends on the choice of
s

$←− Zn
q (see Lemma 1).

– And the amplitude amplification algorithm would keep running until it finds
s in time inversely proportional to the advantage of UP .

We can overcome the first problem by re-randomize the secret s. By sampling
s∗

$←− Zn
q and using (A, y′) := (A, y+A · s∗), easily follows that, the distribution
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{(A, y′)} is equal to the samples of LWEn,s,q,χ. The second problem can be over-
come by parallel computing. For example, if we produce d 3qm log n

ϵ e of predictors
then there exist a predictor UP,i that has advantage 2ϵ

3(q−1)m with probability at
least 1 − 1

n . If any part of the parallel computation has an output that passes
the verification algorithm, it is the answer. Hence we can find s with probability
1− o(1) by computing in parallel. This algorithm is described below.

Reduction Algorithm with high success probability

Choose Õ(n) samples from LWEn,s,q,χ, and construct Verify.

for i = 1, . . . , ⌈ 3q logn
ϵ
⌉ :

Choose m samples of LWE instances (Ai, yi).

Sample a random vector s∗i ← Zn
q , set (Ai, y

′
i) := (Ai, yi +Ai · s∗i ), and construct UP,i

Construct Verifyi(x) := Verify(x− s∗i ) and UV erify,i.

Run the second reduction algorithm in parallel.

If there is a sj that passes the j-th verification test Verifyj , then output s = sj − s∗j .

From Lemma 4, we can construct a verification algorithm Verify that satisfies
(6) with probability 1−o(1) using Õ(n) samples of LWEn,s,q,χ. Hence, The above
algorithm has success probability 1− o(1), invokes UD O( q

2m2 log n
ϵ2 ) times, and

using Õ( qm
2

ϵ ) = O( qm
2 logn
ϵ )+O(n) samples of LWEn,s,q,χ. We get the following

corollary.

Corollary 1. Let q be a prime and χ = Ψα where α < 1
8 . If there is a quantum ϵ-

distinguisher UD for the decisional LWEn,m,q,χ problem, then there is a quantum
algorithm that solves the search LWEn,m′,q,χ problem with probability 1 − o(1)

using UD and U†
D O(

q2m2 log n
ϵ2 ) times, where m′ = Õ( qm

2

ϵ ).

4 Conclusion

In this section, we display the efficiency of our reduction algorithms. We also
give the comparisons listed in Table 1. The sample-preserve one shows that
we can find s with a probability at least 4q2ϵ3

27(q−1)5m3 and query complexity 2.
Compared to the previous sample-preserve reduction by [22], it dramatically
reduces query complexity. The second algorithm give by Theorem 3 performs
amplitude amplification and has O( q

2m2

ϵ2 ) times higher success probability than
the sample-preserve one, but the query complexity is O( qmϵ ) times higher and
the sample complexity increases by O(n). We stress that this trade-off is specific
to quantum computation. Additionally, we get the reduction algorithm that has
success probability 1 − o(1) with query complexity O( q

2m2 log n
ϵ2 ) and sample
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complexity Õ( qm
2

ϵ ). It is characterized by a lower sample complexity than the
classical one, which also has a high success probability. It is interesting to note
that, while our quantum reduction shows an advantage in query complexity in
the comparison of sample preserve reductions, it has an advantage in sample
complexity in the comparison of reductions with a high probability of success.
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A Search-to-decision reduction for the LPN problem

We show that there is a quantum search-to-decision reduction for the learning
parity with noise problem. First, from Theorem 2 we immediately obtain the
following corollary.

Corollary 2. If there is a quantum ϵ-distinguisher UD for the decisional LWEn,m,2,Berµ

problem, then there is a quantum algorithm that solves the search LWEn,m,2,Berµ

problem with probability at least 16ϵ3

27m3 using UD and U†
D once each.

As in the case of the LWE problem, we can amplify the success probability
by constructing an algorithm Verify that judges the solution.
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Lemma 6. We can construct an algorithm VerifyLPN , and it satisfies the fol-
lowing functionality (10) with desired probability 0 < c < 2n−1

2n .
For all x ∈ {0, 1}n,

VerifyLPN (x) =

{
1 if x = s

0 if x 6= s.
(10)

Proof of Lemma 6. Initially, sample (A, y) ← LPN l
s,µ, where A ∈ {0, 1}l×n is

a random Boolean matrix, l =
⌈
−
(

6

( 1
2−µ)

2 loge(
1
2 (

1
2n −

c
2n−1 ))

)⌉
= O(n) and

y = A · s⊕ e is a noisy inner products, note that e ∈ {0, 1}l is errors distributed
from Berlµ. Upon receiving input x ∈ {0, 1}n, VerifyLPN works as follows.

VerifyLPN (x) :

if |weight(A · x⊕ y)− µl| < 1
2 (

1
2 − µ)l

then output 1

else output 0.
Note that the function weight(·) outputs the Hamming distance. If x = s,

since A·x⊕e = y, A·x⊕y = e. Since e is distributed from the Bernoulli distribu-
tion Berlµ, E(weight(A·x⊕y)) = E(weight(e)) = µl. If x 6= s, A·x⊕y is uniformly
random, since A is sampled uniformly random. Therefore E(weight(A ·x⊕y)) =
1
2 l. Let us analyze the probability that the VerifyLPN satisfies the condition (10).

Pr[VerifyLPN satisfies (10)] = Pr[VerifyLPN (s) = 1 ∧ ∀s′ 6= s,VerifyLPN (s′) = 0]

≥ Pr[VerifyLPN (s) = 1] · Pr[∀s′ 6= s,VerifyLPN (s′) = 0]

≥ Pr[VerifyLPN (s) = 1] ·

1−
∑
s′ ̸=s

Pr[VerifyLPN (s′) = 1]


≥
(
1− 2e−

l
12µ (

1
2−µ)

2)(
1− (2n − 1)

(
2e−

l
6 (

1
2−µ)

2))
≥

(
1−

(
1

2n
− c

2n − 1

) 1
2µ

)(
1− (2n − 1)

(
1

2n
− c

2n − 1

))
≥
(
1−

(
1

2n
− c

2n − 1

))(
1− 2n

(
1

2n
− c

2n − 1

))
≥
(
1− 1

2n

)
2nc

2n − 1

= c

The second inequality follows from union bound, and the third inequality follows
from Chernoff bound. ut

Corollary 3. If there is a quantum ϵ-distinguisher UD for the decisional LWEn,m,2,Berµ

problem, then there is a quantum algorithm that solves the search LWEn,m′,2,Berµ
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problem with probability Ω( ϵ
m ) using UD and U†

D O(m/ϵ) times, where m′ =
m+O(n).

The proof of this corollary is given in the same way as in Theorem 3.

Success probability Query complexity Sample complexity Classical/Quantum

(at least)

KS06[20] ϵ
4

O(n logn
ϵ2

) O(mn logn
ϵ2

) Classical

AIK07[8] Ω( ϵ
3

n
) O(n

2

ϵ2
) m Classical

Cor.2 16ϵ3

27m3 2 m Quantum

Cor.3 Ω( ϵ
m
) O(m

ϵ
) m+O(n) Quantum

Table 2. Comparison of the algorithms performance. n is a size of the LPN problem,
m is the number of instances required by the distinguisher to solve the decisional LPN
problem, ϵ is the advantage of the distinguisher.

B Classical search-to-decision reduction for the LWE

B.1 A simple reduction

In this section we give a simple classical search-to-decision reduction by [28].
It is based on the reduction given by Regev [27] and is useful for comparing
efficiency.

Definition 4. A (classical) algorithm D said to be a ϵ-distinguisher for the deci-
sional LWEn,m,q,χ problem if |Pr[D(A, y) = 1|s $←− {0, 1}n, (A, y)← LWEmn,s,q,χ]−
Pr[D(A, r) = 1|A $←− Zm×n

q , r
$←− Zm

q ]| > ϵ holds.

The algorithm below solves the search LWEn,m′,q,χ problem with probability
1−o(1) using D Õ(nqϵ2 ) times where m′ = Õ(nmq

ϵ2 ). For a detailed analysis, please
refer to [28].

B.2 Complexity of MM11 [22]

In this section, we give a brief analysis of the search-to-decision reduction by
Micciancio and Mol [22]. Their search-to-decision reduction for LWE is shown
via search-to-decision reduction for the knapsack functions. This induces a neg-
ligible fraction of loss in the success probability. Let δ be an advantage of the
distinguisher. From ([22], Proposition3.9 and Lemma3.4) the success probabil-
ity of the search-to-decision reduction for the knapsack functions is ϵ

3 where
ϵ ≥

(
d∗3δ̃

d̃3(d∗−1)

)
(2 − π2

6 ) and δ̃ is some noticeable such that δ̃ ≤ δ. Using the
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Classical reduction algorithm

for i = 1, . . . , n :

for j = 0, . . . , q − 1 :

for l = 1, . . . , L = Õ( 1
ϵ2
) :

Choose a fresh block of LWE instances (Al, yl).

Sample a random vector cl ← Zm
q , and let Cl ∈ Zm×n

q be the matrix whose

i-th row is cl, and whose other entries are all zero.

Let A′
l := Al + Cl, and y′

l := yl + j · cl.

Run the distinguisher D(A′
l, b

′
l) and let the output be called dl.

If maj(d1, ..., dL) = 1 (meaning that the distinguisher guesses LWE) then set si = j.

Else, continue to the next iteration of the loop.

Output s = s1 . . . sn.

fact that d∗ ≥ s and d̃ ≤ 2ms2, we have ϵ
3 = Ω( δ̃

m3s4 ). Substituting q for
s, we get the success probability of their search-to-decision reduction for LWE
Ω( δ̃

m3q4 )− negl(n).
In ([22], Lemma3.4), they use Significant Fourier Transform [5] with τ = ϵ2

4 ,
N = |Zl

d∗ | and ‖f‖2 = ‖f‖∞ = 1. The running time of Significant Fourier Trans-
form is at most Θ̃(logN(

∥f∥2
2

τ )1.5(
∥f∥2

∞
η2 )2 lg 1

µ ) for η = Θ(min{τ,
√
τ , τ

∥f∥∞
}) and

µ = 1/O((∥f∥
2
∞

τ )1.5 logN). Substituting τ = ϵ2

4 , N = d∗m and ‖f‖2 = ‖f‖∞ =

1, we get Θ̃(logN(
∥f∥2

2

τ )1.5(
∥f∥2

∞
η )2 lg 1

µ ) = Õ(
log(d∗l)

ϵ11 ). Hence From ([22], Propo-
sition3.9 and Lemma3.4), the query complexity of the search-to-decision reduc-
tion for LWE is Θ̃( log(d

∗m)
ϵ11 )O(1) = Õ( log(d

∗m)
ϵ11 ) where d∗ is some polynomial

such that d∗ ≥ q.


