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Abstract. The classical “BGW protocol” (Ben-Or, Goldwasser and Wigderson, STOC 1988)
shows that secure multiparty computation (MPC) among n parties can be realized with perfect
full security if t < n/3 parties are corrupted. This holds against malicious adversaries in the
“standard” model for MPC, where a fixed set of n parties is involved in the full execution of the
protocol. However, the picture is less clear in the mobile adversary setting of Ostrovsky and
Yung (PODC 1991), where the adversary may periodically “move” by uncorrupting parties and
corrupting a new set of t parties. In this setting, it is unclear if full security can be achieved
against an adversary that is maximally mobile, i.e., moves after every round. The question is
further motivated by the “You Only Speak Once” (YOSO) setting of Gentry et al. (Crypto
2021), where not only the adversary is mobile but also each round is executed by a disjoint set
of parties. Previous positive results in this model do not achieve perfect security, and either
assume probabilistic corruption and a nonstandard communication model, or only realize the
weaker goal of security-with-abort. The question of matching the BGW result in these settings
remained open.
In this work, we tackle the above two challenges simultaneously. We consider a layered MPC
model, a simplified variant of the fluid MPC model of Choudhuri et al. (Crypto 2021). Layered
MPC is an instance of standard MPC where the interaction pattern is defined by a layered
graph of width n, allowing each party to send secret messages and broadcast messages only to
parties in the next layer. We require perfect security against a malicious adversary who may
corrupt at most t parties in each layer. Our main result is a perfect, fully secure layered MPC
protocol with an optimal corruption threshold of t < n/3, thus extending the BGW feasibility
result to the layered setting. This implies perfectly secure MPC protocols against a maximally
mobile adversary.

1 Introduction
The goal of classic Secure Multiparty Computation (MPC) protocols is for a set of n mutually
distrusting parties to jointly compute a function on their secret inputs without revealing anything
but the output of the function. The protocols are typically run in the presence of an adversary and
security is guaranteed if no more than t out of the n parties in the system are compromised for
the duration of the entire protocol. In this setting, the well known result by Ben-or, Goldwasser and
Wigderson [BGW88] (BGW) shows that it is possible to achieve perfect full security when t < n/3, i.e.
security against an unbounded active adaptive adversary corrupting t < n/3 parties with guaranteed
output delivery (G.O.D.).

Inspired by real-world scenarios with long-running computations where parties may recover from
corruptions, Ostrovsky and Yung [OY91] put forward a notion of a mobile adversary that is able to
compromise all parties eventually but is limited to a threshold of t out of n parties at any given time. In
this setting, an execution is divided in rounds that are grouped into epochs. The adversary can “move”
at the onset of every epoch by choosing a new set of parties to corrupt and remains static for the
remainder of the epoch. Former corrupted parties are “rebooted” into a clean initial state (or, equiva-
lently, update their internal state and securely erase past state). In [OY91], it is proven that there ex-
ists a fully secure proactive MPC protocol in the presence an active mobile adversary but allowing only
a small constant fraction of corrupted parties. Subsequent works [HJKY95,ADN06,BELO15,ELL20]
explored more efficient protocols with other security guarantees under further restrictions to the mo-
bile adversary but still fell short of 1-round epochs or achieving the optimal corruption threshold
t < n/3 of BGW.

Departing from the player replaceability3 and anonymous committees of distributed ledgers, the
notion of You Only Speak Once (YOSO) MPC (introduced in [GHK+21]) takes proactive security
one step further, by having a freshly elected anonymous committee of parties execute each round of
the protocol. As an extra restriction, parties are only allowed to send messages once (i.e. when they
3 A term from [GHM+17] for protocols where a new set of parties executes each round.
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execute their role in the protocol). However, YOSO assumes parties can use ideal target-anonymous
channels to send messages to parties who are elected to execute a role in any future round without
learning their identities. The fact that each round is executed by anonymous parties elected at ran-
dom turns the corruption model probabilistic: even though an adaptive adversary may corrupt any
party at any time (up to a corruption threshold t), it only successfully corrupts a party executing
a certain round with some small constant probability (given that committees are large enough). In
this setting, it was shown [GHK+21] that statistically secure MPC with G.O.D. is possible when the
adversary corrupts t < n/2 parties, albeit not for constant n due to probabilistic corruptions. Fluid
MPC [CGG+21] is a variant of this model without target-anonymous channels where parties may
act in more than one round before being substituted, but their results fall short of full security, as
they do not achieve G.O.D.. Another variation was shown in SCALES [AHKP22], which allows for
special clients who provide an input and receive an output to act in more than one round (while
server committees may only act once), focusing on protocols with computational security.

Inspired by the original mobile adversary characterized by [OY91] and the recent line of work on
MPC with dynamic committees [GHK+21,CGG+21,AHKP22], we ask again the question originally
settled in BGW [BGW88] but now in a more challenging setting:

Is it possible to construct MPC with dynamic committees achieving perfect full security against an
adaptive rushing adversary and with optimal corruption threshold?

1.1 Our Contributions

Layered MPC. We first define layered MPC, which captures the most stringent setting in the
intersection of the mobile adversary and the YOSO models. In layered MPC, parties communicate
through a directed layered graph of d layers corresponding to each protocol round. Each round is
executed by a unique set of n parties sitting at a layer, which is disjoint from all other sets of parties
in other layers. Parties in one layer can only receive messages from parties in the immediately previous
layer and send messages to the parties in the immediately next layer. We consider an active, adaptive,
rushing adversary that corrupts up to t out n parties in each layer. We write (n, t, d)-layered MPC
as shorthand for a layered MPC protocol with d layers (i.e. rounds) of n parties out of which t may
be corrupted. We provide a formalization of this model and show that layered MPC protocols can
be analyzed within well established frameworks such as the real/ideal world paradigm [Can00,Gol09]
and Universal Composability [Can01].

Layered MPC is similar to fully Fluid MPC [CGG+21] with parties only executing one round. We
show that a secure layered MPC protocol is also secure against a maximally mobile adversary [OY91]
that moves after every round. In comparison to YOSO [GHK+21], layered MPC imposes stronger
restrictions on honest parties, who cannot receive a message from a party in an arbitrary past com-
mittee or send a message to a party in an arbitrary future committee. Moreover, the adversary is
not restricted to probabilistic corruptions but is limited to corrupting t out n parties in each layer,
allowing for threshold-optimal protocols.

Main Results. In Section 3 we construct basic primitives that help realize layered VSS based on
CNF4 (replicated) secret sharing. We present a nontrivial adaptation of a VSS protocol of Gennaro
et al. [GIKR01] to the layered setting. The main challenge is to eliminate the repeated interaction
between the parties and the dealer, which is not possible in the layered setting. While CNF-based
protocols scale exponentially with n, they are simpler than the Shamir-based counterparts that we
will present next, and can have efficiency advantages for small values of n, especially when settling
for computational security.

Theorem 1 (CNF-Based Layered VSS). For any n, t such that t < n/3, and d ≥ 5, there
exists an (n, t, d)-layered MPC protocol realizing CNF-VSS. For d = O(1) and secrets of length ℓ, the
protocol requires ℓ ·2O(n) bits of communication, counting both point-to-point messages and broadcast.
When settling for computational security with perfect correctness and using a black-box PRG with
seed length λ, there is a protocol with λ · 2O(n) +O(nℓ) bits of communication.

4 In CNF-based secret sharing, the secret is first split into
(
n
t

)
additive shares–a share rT for each set T ⊂ [n]

of size t–and party i receives all shares rT such that i ̸∈ T .
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In Section 4 we build on the above VSS protocol to obtain a general layered MPC protocol based
on CNF secret sharing. The protocol applies to layered arithmetic circuits, in which each layer of
the circuit only takes inputs from the previous layer. Every circuit of depth D can be converted to a
layered circuit with D layers, incurring at most a quadratic but typically (nearly) linear overhead to
the circuit size. Building on a constant-round protocol from [DI05], in Section 6 we describe how to
amortize the overhead of CNF secret sharing by settling for computational security.

Theorem 2 (CNF-Based Layered MPC). Let f be an n-party functionality computed by a
layered arithmetic circuit C over a finite ring, with D layers and M gates. Then, for any t < n/3,
there is an (n, t, O(D))-layered MPC protocol for f . The communication consists of 2O(n) ·M ring
elements. Alternatively, settling for computational security with perfect correctness and using a black-
box PRG with seed length λ, there is a (n, t, O(1))-layered MPC protocol for a Boolean circuit (i.e.,
the ring is F2) with M gates with λ · 2O(n) +O(n5 ·M) bits of communication.

While the CNF-based protocols are relatively simple and have concrete efficiency benefits for small
values of n, they do not yield a general feasibility result that scales polynomially with n. In Section 5
we establish such a result using (the bivariate version of) Shamir’s secret-sharing scheme.

Theorem 3 (Efficient Layered MPC). Let f be an n-party functionality computed by a layered
arithmetic circuit C over a finite field F, with D layers and M gates. Then, for any t < n/3, there
is a polynomial-time (n, t, O(D))-layered MPC protocol for f . More concretely, the communication
consists of M ·O(n9) field elements.

Proactive MPC. The original concept of proactive MPC put forward by [OY91] considered an
adversary that has the ability to move in every round of the protocol. We define such an adversary
in Definition 2 and label it maximally mobile while protocols that can thwart such an adversary are
called maximally proactive. We show that a secure layered MPC protocol is a maximally proactively
secure protocol in Lemma 1. This allows us to extend our security analysis from the layered to the
proactive setting. We define maximally Proactive Secret Sharing and MPC in Definition 5 and provide
the following threshold-optimal results by combining Theorem 3 and Lemma 1.

Corollary 1 (Perfectly Secure Maximally Proactive MPC). Let f be an n-party functionality
computed by a layered circuit C over a field F, with D layers. Then, for t < n/3, there is an efficient
maximally proactive MPC protocol computing f in r = O(D) rounds.

Secure Message Transmission and Broadcast. Sending a message to a party that acts in an
arbitrary future round is a recurring problem in settings such as layered MPC. In YOSO [GHK+21]
it is circumvented by assuming target-anonymous channels, an ideal resource that allows a party in
round r to send a message to a party who is elected to perform a certain role in round r′ > r + 1
without learning its identity. We take steps to obtain a similar primitive (although without anonymity
guarantees) by relying only on the parties in the layered graph to carry the message forward, despite
our much more restrictive interaction pattern that precludes such communication. In Section 3.1 we
provide a thorough analysis of an important primitive in layered MPC called Future Messaging. The
functionality fFM is described in Functionality 3.1. Future Messaging takes as input a message m from
a sender in L0 and, if the sender is honest, the message m arrives at the recipient. In the context
of layered MPC this primitive is close to an instance of 1-way Secure Message Transmission (SMT)
over a directed graph. We show that it is possible to self-compose this primitive to carry a message
from a sender in L0 to a designated receiver in Ld for d > 1. The following theorem characterizes our
construction.

Theorem 4 (Restatement of Theorem 6). For any d > 0, any n and t where t < n/3, and
message domain M , there exists a protocol ΠFM that realizes fFM from L0 to Ld with perfect t-security
and communication complexity O(n⌈log d⌉ log |M |).

Using the layered protocol for Shamir VSS and resharing, which we construct building on Future
Messaging, we can make the dependence of the communication cost of Future Messaging on d linear.
This is achieved by having the sender verifiably secret the message using VSS and then reshare it
repeatedly until reaching the layer previous to that of the receiver, at which point the shareholders of
the value can reveal the message to the receiver by transferring all its shares. Communication cost of
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VSS and of resharing across a constant number of layers is poly(n), making the communication cost
of Future Messaging linear in d.

The layered model allows for layer-to-layer broadcast. That is, any party in La may broadcast
to parties in La+1. It turns out that this assumption is necessary, since we prove that any deter-
ministic broadcast in the setting of layered MPC is possible only if t = 0. Our analysis is shown in
Appendix A.3, where we cast the result of [Gar94] to the setting of layered MPC and obtain the
following result.

Theorem 5. Deterministic perfect Broadcast in the setting of layered MPC is possible iff t = 0.

1.2 Related Work

We summarize the relationship between previous works in similar settings and our results in Table 1.2.
We discuss further related works below.

Results for Maximally Proactive MPC with Dynamic Committees
Functionality Reference Level Security Complexity Threshold
Future Messaging Section 3.1 perfect full poly(n) t < n/3

VSS
[BGG+20] computational full poly(n) t < n/4∗

Section 4.2 perfect full 2O(n) t < n/3
Section 5 perfect full poly(n) t < n/3

MPC

[GHK+21] (YOSO) statistical full (w/setup†) poly(n) t < n/2∗

[CGG+21] (Fluid) statistical w/abort poly(n) t < n/2
[OY91] perfect full poly(n) t < n/d

Section 4.4 perfect full 2O(n) t < n/3
Section 5 perfect full poly(n) t < n/3

Table 1. Protocols realizing primitives in the most extreme proactive settings.
(∗protocol security relies on the adversary only doing probabilistic corruption,
†assumes access to ideal target-anonymous channels for future messaging)

Proactive Secret Sharing (PSS). PSS protocols aim at solving the problem that shares learned by
the adversary are compromised forever by resharing the secret periodically. The static group setting
where resharing is done among the same set of parties is considered in [HJKY95, CH01, ADN06,
BELO15]. However, this is often insufficient since it assumes a world where a server never fails to the
extend that it cannot recover again. The setting of dynamic groups where resharing is done towards a
different (possibly disjoint) set of parties is considered in [DJ97,WWW02,ELL20]. Finally, proactive
techniques in asynchronous settings have been treated in [CKLS02,SLL10].
Permissionless Networks. In the context of permissionless networks where parties are allowed to
join and leave as they wish, the dynamic group property has taken on a new meaning. The recent
focus on this setting spurred new interest in (dynamic) proactive techniques [MZW+19,GKM+22].
Particularly interesting, is the definition of evolving committee secret sharing [BGG+20] that places
the responsibility of keeping a tolerable corruption threshold on the protocol designer.
Maximally PSS and MPC with Dynamic Committees. Recently, a number of works [GHM+17,
GHK+21,CGG+21,AHKP22] have considered extreme settings with dynamic committees, where each
round of a protocol is executed by a new set of parties considering maximally mobile (or even adap-
tive) adversaries. In YOSO [GHK+21], an ideal mechanism guarantees that a set of anonymous
parties is selected at random to execute each round, effectively limiting the adversary to probabilis-
tic corruptions. Hence, YOSO is incompatible with settings where n and t are constant. Moreover,
parties have access to ideal target-anonymous channels allowing for communication to any party in
the future. Hence, results in the YOSO model do not directly translate to our setting even if we
settle for non-optimal corruption thresholds, as YOSO protocols may crucially rely on the ability
to send messages across many layers. For example, in the information theoretical signature protocol
of [GHK+21, Section 3.3], a cut-and-choose mechanism is realized assuming that a sender can commit
to a set of message authentication codes (MACs) by sending them directly to a receiver, after which
verifiers broadcast random subsets of keys, which the receiver uses to check these MACs. The security
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of this technique crucially relies on the fact that using ideal target-anonymous channels guarantees
that the sender cannot changes the MACs sent to the user after the verifiers announce the checking
keys. This technique does not work in the layered MPC setting with our weaker Future Messaging
protocol, which does not commit a corrupted sender to the messages it transmits to future layers.

Closest to layered MPC is Fluid MPC [CGG+21] in its most extreme configuration (fully fluid),
where parties can execute a single round of the protocol and immediately leave but are not necessarily
selected anonymously and at random. Curiously, one of the goals of Fluid MPC is maintaining a small
state complexity. In particular, the computation and communication of each committee in Fluid MPC
is independent of the size of the circuit. While this is attractive, we do not make any such claims
and we also only consider already layered circuits5. Finally, a crucial difference is that the protocols
presented for Fluid MPC only enjoy security-with-abort while we aim for full security.

While the use of an arbitrary interaction pattern in layered MPC is similar to [HIJ+16], our focus
is on a specific interaction pattern capturing extreme cases of MPC with dynamic committees and a
maximally mobile adversary.

1.3 Technical Overview

The goal of this paper is to build a layered MPC protocol that takes inputs from a set of clients in the
input layer and securely delivers a function of the inputs to a set of output clients in a later layer. For
t < n/3, we present two layered protocols for general MPC with t-security: a simple but inefficient
construction based on CNF secret sharing and a more complex but efficient construction based on
Shamir secret sharing.

Owing to a highly restrictive communication pattern and the presence of a very powerful adversary,
implementing layered MPC with optimal corruption threshold presents several interesting challenges.
The most apparent is the complete prohibition of interaction, as parties executing the protocol do
not persist. We emulate a limited kind of interaction by having a party who wants to speak a second
time hide all possible messages it may want to convey in a future layer and selectively reveal the
appropriate message to the next layer. In such cases, it is imperative to the security of the party
that only the appropriate message is revealed while the other messages are effectively destroyed.
Interestingly, realizing this limited form of interaction takes us a long way in implementing layered
MPC. This leads us to the first primitive we construct in this presentation:
Future Messaging. Future messaging allows a party (sender) to securely send a message to another
party (receiver) situated in a later layer. To send a message two layers down, the sender can secret
share the message onto the next layer using any t-secure secret sharing scheme; parties in the next layer
can then forward these shares to the receiver who can recover the message by robust reconstruction
of the received shares. We extend this intuition to allow a sender to securely send a message to a
designated receiver in any future layer. This protocol is non-commiting; hence, a corrupt sender can
choose the message to deliver to the receiver based on the adversary’s view until the layer in which
the receiver is situated. Effectively, future messaging allows rushing till the receiver’s layer! Future
messaging allows a sender to distribute a secret sharing of a value onto a future layer; parties in this
layer can disclose this value to a receiver (or broadcast it to all parties) in the next layer based on a
unanimous decision (potentially depending on computation that was carried out in an intermediate
layer). In this manner, we emulate the aforementioned (limited) interaction by the sender.
MPC using CNF Shares. Equipped with a protocol for future messaging, we set out to build a
layered protocol for verifiable secret sharing (VSS). We will then follow the standard approach for
secure function evaluation, where a layered arithmetic circuit computing the function is evaluated by
progressively and securely computing secret shares of the value on the output wire of each gate using
the secret shares of the values on the input wires, finally revealing the values on the output wires of
the circuit to the output clients.
Verifiable CNF secret sharing. To achieve verifiable CNF secret sharing, it suffices to implement a
seemingly simpler primitive, namely future multicast, which allows a dealer to securely send a message
to a designated subset of receivers in a later output layer with the guarantee that all receivers get
the same message even if the sender is corrupt. Verifiable CNF secret sharing is achieved by having
5 The inherent issue with state complexity originates from a common misconception (see fx [DEP21]) that

any general arithmetic circuit can be transformed into a layered circuit with same depth and only linear
overhead in width.
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the dealer split the secret into
(
n
t

)
additive shares (a share rT for each n − t sized set T ⊂ [n]) and

multicast rT to all output clients in T .
While implementing multicast, we encounter many challenges inherent to layered MPC. When

realizing multicast, the sender sends the same message to a (sub)set of parties in the next layer, who
raise a complaint if they receive distinct messages, in which case the sender publicly discloses the
message. Clearly, this sequence of interactions is non-trivial to realize in a layered network, where the
sender cannot speak a second time and the parties in a layer cannot communicate with each other.
Hence, we use a weak notion of secure addition (See Section 3.2) to allow the receiving parties to
securely reveal the difference between the values they received to all parties two layers down. If the
difference is non-zero for any pair of values, the layer that learns this difference collectively decides
to disclose the sender’s message using the trick we previously outlined.

Having implemented verifiable CNF secret sharing, we proceed to secure computation of arith-
metic gates. Since the secret sharing is linear, addition and multiplication-by-constant gates can be
computed by local processing, which leaves us with the secure computation of the multiplication gate
that takes the secret shares of two values and computes a secret sharing of their product.
Multiplication. Our layered protocol for multiplication is built by porting the classic protocol for
secure multiplication in the standard (non-layered) setting. In this process, we face all the challenges
we encountered while realizing future multicast. Suppose a value is secret shared on a layer and is
also required in another layer. Naively replicating the same share in the later layer is insecure since
the adversary can reconstruct the secret by corrupting t parties in each of these layers and obtaining
2t shares. We get around this problem with a simple trick that avoids using a full-fledged protocol
for resharing CNF shares.

We realize secure computation by evaluating a layered arithmetic circuit using the protocols we
constructed so far. To properly process the layered circuit, we rely on the invariant that the secret
shares of the values on all the input wires to any layer of the circuit are simultaneously available on
the same layer of the layered network. However, secret shares of the output of a linear gate (addition
or multiplication-by-constant) can be computed locally while those of a multiplication gate using our
protocol consume several layers. To keep the invariant, we need the outputs of the linear gates to
be available on the output layer of multiplication. Once again, the shares of the outputs cannot be
naively secret shared. Instead, we attach a multiplication gate to the output wire of linear gate that
takes identity as the other input; this ensures that the shares of the values on all output wires are
available simultaneously on the same layer.
Composability of layered protocols. We use simpler layered protocols as subroutines for building more
complex ones. For example, the multiplication protocol uses a protocol for verifiable secret sharing
(among others) as a subroutine. Hence, it is necessary that the concurrent execution of layered proto-
cols preserve their security guarantees under concurrent composition. We refrain from first proving UC
security of our building blocks and then using modular composition theorems since such an analysis
will be cumbersome over a synchronous layered graph. Instead, we prove the security of our protocols
by constructing simulators and carefully arguing their security. We establish game based properties of
layered protocols that are preserved when they are used as subroutines and prove the security using
hybrid arguments that exploit these properties. Finally, a few of our constructions make exclusively
sequential (non-concurrent) calls to subroutines that have been proven to be standalone secure; in
such instances, we use the sequential composition theorem of Canetti [Can00] to argue security (see
the security proofs for future messaging and secure function evaluation protocols).

Efficient MPC using Shamir Secret Sharing. We build layered protocols whose communication
complexity scales polynomially with the number of parties per layer. This is achieved by porting the
cannonical secure function evaluation protocol using Shamir secret shares into the layered model. In
order to achieve this, we first develop a layered protocol for verifiable Shamir secret sharing.
Verifiable Shamir secret sharing. We “port” the classic protocol for VSS in the standard setting to
the layered setting using the tools we developed in the previous sections along the way to tackle the
usual challenges faced in the process. At the end of this process, the parties in the layer right after the
input layer hold the purported shares of the dealer’s secret and parties 5 layers down publicly hold
the updates to the purported shares such that, they together form a valid secret sharing. The parties
cannot transfer these shares to the shareholders in the output layer without causing duplication. To
get around this, the dealer secret shares coefficients of random a degree t polynomial they wish to
use for Shamir secret sharing; the evaluation of the polynomial at distinct points is computed using
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linear operations and securely delivered to the shareholders in the output layer. This ensures privacy
of the secret when the dealer is honest.

Equipped with a layered protocol for Shamir VSS, we use known techniques to realize resharing
which allows a layer holding valid shares of a value to securely deliver fresh shares of the same value
to a later layer. Using VSS and resharing, porting protocols for secure multiplication and then secure
function evaluation into the layered setting is relatively straightforward. We depart form the protocol
for general MPC provided in [CDN15]. The protocol uses a form of reinforced secret sharing where
the shares of a secret are further secret shared among the shareholders, which is straightforward to
implement using VSS and resharing.

2 Preliminaries

2.1 Layered MPC

A layered MPC protocol can be viewed as a special case of standard MPC with a general adversary
structure, specialized in the following way: (1) the interaction pattern is defined by a layered graph;
(2) the adversary can corrupt at most t parties in each layer. This is illustrated in Figure 1 and
formalized below.

Definition 1 (Layered MPC). Let n, t, d be positive integers. An (n, t, d)-layered protocol is a
synchronous protocol Π over secure point-to-point channels and a broadcast channel, with the following
special features.

– Parties. There are N = n(d + 1) parties partitioned into d + 1 layers Li, 0 ≤ i ≤ d, where
|Li| = n. Parties in the first layer L0 and the last layer Ld are referred to as input clients and
output clients, respectively.

– Interaction pattern. The interaction consists of d rounds, where in round i parties in Li−1 may
send messages to parties in Li over secure point-to-point channels. By default, we additionally
allow each party in Li−1 to send a broadcast message to all parties in Li.

– Functionalities. We consider functionalities f that take inputs from input clients and deliver
outputs to output clients.

– Adversaries. We consider adversaries who may corrupt any number of input and output clients,
and additionally corrupt t parties in each intermediate layer Li, 0 < i < d. We consider active,
rushing, adaptive6 adversaries.

We say that a protocol Π is a layered MPC protocol for f if it realizes f in the standard sense of
(standalone) secure MPC with general adversary structures [Can00,Gol09,HM00]. We require perfect
full security (with guaranteed output delivery).
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Fig. 1. Layered MPC computing function f with n = 4

6 In the coming sections our security analysis is with respect to non-adaptive adversaries for simplicity. In
Section 2.3 we justify this leap appealing to the work of [CDD+04].
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Remark 1 (Generalized layered MPC). The above definition is meant to give the simplest formaliza-
tion of the core problem we study. It can be naturally extended to allow a different number of parties
ni and a different corruption threshold ti in each layer (our main feasibility result extends to the case
where ti < ni/3), and to allow inputs and outputs from parties in intermediate layers. Our strict
notion of perfect full security can also be relaxed in the natural ways. In some cases, we will present
efficiency improvements that achieve computational (full) security with perfect correctness, meaning
that the effect of a computationally unbounded adversary on the outputs of honest parties can be
perfectly simulated.

The need for ideal broadcast: In Appendix A.3 we show that broadcast for layered MPC is
impossible if t > 0. Hence, we must assume ideal broadcast.
Layered MPC implies Proactive Security: In Appendix 2.2 we precisely define maximally
proactive security and prove that it is implied by layered MPC.

2.2 Security in Layered MPC Implies Proactive Security

The original definition of a Mobile Adversary [OY91] gives the adversary t pebbles at the outset of
the protocol. It can then place the pebbles freely at the beginning of every round among the parties
involved where a pebble represents fully corrupting a party. If a pebble is removed from a party, at the
beginning of next time period the party will “reboot” into a pre-specified state and its random tape
will be renewed. As such, this pebble game represents the race between corruption and recovery and
results in a system where a bound is given on the number of corrupted parties which holds in each
time period, but in each period the set of corrupted parties can change. We now define the mobile
adversary and the execution of a protocol in the context of a mobile adversary.

Definition 2 (Mobile Adversary). A (t, ρ)-mobile adversary, with corruption threshold t and
roaming speed (mobility) ρ, is an adversary that can corrupt at most t parties in each time period
where a time period consists of ρ rounds. If ρ = 1, we say that the adversary has maximal roaming
speed or is a maximally mobile t-adversary.

Definition 3 (Maximally Proactive Security). Let r be the round number and Tr the set of
at most t parties that is corrupted in round r. In each round the parties can communicate using
pairwise secure point-to-point channels or broadcast. An execution of a protocol Π with R rounds of
communication in the presence of a maximally mobile t-adversary proceeds as follows.

0. All parties receive inputs. Adversary chooses an initial set T0 of t parties to corrupt.
1. Initialize a round counter r = 1.
2. Parties send messages of round r (including to themselves), and honest parties update their state.
3. Adversary chooses a new set Tr of t parties to corrupt.
4. Parties receive messages of round r.
5. If r < R, increment r and go to (2). Otherwise, honest parties compute an output from messages

received in round R.

A protocol that is secure when executed in the presence of a maximally mobile t-adversary is called
maximally proactive.

We wish to characterize the relationship between layered and maximally proactive security. Intu-
itively it is clear, that each layer in the context of layered MPC represents a new round in a maximally
proactive protocol and the maximally mobile adversary corrupts a (possibly) new set of parties in
every round. In Lemma 1 we capture this intuition in a more formal way. Of course, a necessary
assumption is the protocol’s ability to include special erasure instructions whereby parties remove
sensitive data from the their local state.

Lemma 1 (Layered and Maximally Proactive Security). Secure layered MPC implies secure
maximally proactive MPC under the assumption of secure erasures.

Proof. Let Π be an (n, t, d)-layered protocol for computing the functionality f with N = n(d + 1)
parties partitioned into layers L0, . . . ,Ld (Definition 1). And let Amobile be a maximally mobile t-
adversary (Definition 2). We prove the implication by constructing a simulator S that perfectly
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emulates Amobile, effectively reducing security for maximally proactive MPC to security for layered
MPC.

First, we argue that the interaction pattern induced by layered MPC is equivalent to that of the
virtual model (transmission graph) of maximally proactive MPC. Consider the parties P0

1, . . . ,P
d
n

computing Π and assume a maximally proactive setting with n parties labeled as Q1, . . . ,Qn. Due
to the assumption of secure erasure, we can associate a virtual party Qr

i with each round 0 ≤ r < d.
Unless, Qi is corrupted in both round r− 1 and r, the party Qr−1

i shares no state with Qr
i apart from

the messages received over broadcast or secure point-to-point channels. Similarly, from the definition
of layered MPC Pr

i shares no state with Pr−1
i unless both are corrupted. Finally, we observe that the

interaction pattern between parties P0
1, . . . ,P

d
n is equivalent to the interaction pattern induced by the

virtual model connecting the virtual parties Q0
1, . . . ,Q

d
n.

We now sketch the simulator S. Let Alayered be the following (n, t, d)-layered MPC adversary during
an execution of protocol Π. Alayered runs Amobile internally and sets r = 0 before the first round starts.
Then, Alayered does the following, for each 0 ≤ r ≤ d: (1) it receives from Amobile a set of parties to
corrupt Tr = {Qr

0, . . . ,Q
r
t} (2) it corrupts corresponding parties {Pr

0, . . . ,P
r
t} in the execution of Π.

(3) it returns the state of the corrupted parties in round r to Amobile.
Since Π is a protocol for layered MPC there exists a simulator Slayered for Alayered which we will

use to construct our final simulator S. S runs Slayered internally in the following way for each round
0 ≤ r ≤ d. (1) S receives from Slayered a request to corrupt parties {Pr

0, . . . ,P
r
t}. (2) S sends to the

functionality a request to corrupt Tr = {Qr
0, . . . ,Q

r
t}. (3) S provides the state of the parties from the

functionality to Slayered. Finally, S outputs whatever Slayered outputs.

We note that while Lemma 1 characterizes a strong relation between the layered MPC model and
security in the presence of a maximally mobile adversary, the existing literature generally considers
proactive security against a slower-moving adversary. In [ADN06, BELO15, MZW+19, ELL20], the
protocol time-line is split into phases where each protocol round belongs to exactly one phase and
between each pair of consecutive phases a refresh protocol is run to ensure re-randomization and
redistribution of the secret. Typically, the adversary can then adaptively corrupt at most t parties
between the start of one refresh until the end of the next, effectively, halving the mobile adversary’s
corruption budget during the run of a refresh protocol. Finally, the assumed mobility of the adversary
often, somehow conveniently, aligns with the round complexity of computing a single layer of the
layered circuit.

We do not make such assumptions about the maximally mobile adversary and, as such, designing
secure protocols for maximally proactive MPC is significantly more challenging.

Definition 4 (Maximally Proactive MPC). If Π is a protocol that securely (with erasures)
computes any functionality f while executing in the presence of a maximally mobile adversary. Then,
Π is a protocol for maximally proactive MPC.

A protocol for maximally proactive secret sharing is an instance of maximally proactive MPC that
allows a dealer to share a secret s among a group of n parties such that the secret remains secure
against a maximally mobile adversary and allows the final shareholder set of n parties to open the
secret. A refresh protocol prevents the adversary from discovering and destroying the secrets.

Definition 5 (Maximally Proactive Secret Sharing). A maximally proactive secret sharing
protocol is a set of instances of maximally proactive MPC, each associated with a phase and executing
algorithms of a robust secret sharing scheme S. The initial phase is the Share phase, then a sequence
of Refresh phases are executed, and finally the Open phase. Each phase is described below.

– Share. The instance of maximally proactive MPC for the Share phase has a designated input client
PD (the dealer) giving secret s as input and output clients P1, . . . ,Pn receiving shares s1, . . . , sn
as output. In this phase, the maximally proactive MPC instance executes the Sh algorithm of the
robust secret sharing scheme on input s to obtain s1, . . . , sn.

– Refresh. In the refresh phase maximally proactive MPC takes as input shares s1, . . . , sn from the
parties P1, . . . ,Pn and outputs new and independent shares ŝ1, . . . , ŝn to the same parties such
that if Rec({si}i∈[n]) = s, then Rec({ŝi}i∈[n]) = s. That is, the MPC executes Sh(Rec({si}i∈[n]))
of S under fresh randomness and securely distributes the resulting shares to P1, . . . ,Pn.

– Open. The final phase involves all n parties broadcasting their shares. Then, all honest parties
run the reconstruction algorithm Rec of the underlying scheme S on the set of shares.
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2.3 Adaptivity and Composability in Layered MPC

Let Πg be a layered protocol realizing functionality g with standalone t-security, and let Πf be another
layered protocol in which Πg is used as a subroutine to implement g. Suppose the layers where g is
computed using Πg do not execute any other protocol in parallel; i.e., only a single invocation of Πg

is made in such layers. Then, to prove the security of Πf , it is sufficient to show that Πf is t-secure
in the so called g-hybrid model, where the calls to the sub routine Πg is replaced with calls to the
functionality g itself. This allows for a modular construction and analysis of protocols.

Formally, the g-hybrid model involves a communication protocol as well as calls to functionality
g. Suppose l is the designated output layer of g. In a protocol Πf in g-hybrid model, parties in layer
i− 1 can send their inputs to functionality g in round i. The functionality will deliver the output of
g to receivers in the output layer l in round l which may be used by the parties in executing Πf .

The following proposition adapts the sequential composability theorem of [Can00] to the layered
setting. The proposition holds simply because a layered protocol with d layers and n parties per
layer is essentially a nd party protocol with communication between a pair of adjacent layers in every
round.

Proposition 1 (Sequential Composability for layered protocols). Suppose a (n, t, d)-layered
protocol Θ implements a functionality g with perfect standalone t-security [Can00,Gol09]. Suppose a
layered protocol Π with input layer L0 and output layer L′

d, d
′ > d invokes Θ as a subroutine from

La to La+d, where 0 ≤ a < a+ d ≤ d′. Π making subroutine calls to Θ is t-secure if it is t-secure in
the g-hybrid model.

Universal Composability. As discussed in Definition 1, we are interested in realizing functionalities
f that take input from the input clients in layer L0 by default and deliver outputs to the output
clients in the last layer (layer Ld) of a layered network. We develop a protocol for computing general
functionalities in the stand-alone model showing perfect security by means of a straight-line black-box
simulator and, thus, we can invoke Theorem 1.2 in [KLR10] and argue that the protocol is, in fact,
secure under the definition of universal composability7.

On Adaptive Adversaries. In Definition 1, we define layered MPC in the presence of a rushing
and adaptive adversary. Clearly, this extra power for the adversary separates layered MPC from
maximally proactive MPC (Definition 3) and shows that layered MPC is strictly stronger. Looking
forward, we will, however, only analyze the layered protocols with respect to static (and rushing)
adversaries. To argue adaptive security, we need to be able to simulate even when the real world
adversary corrupts a party midway through the protocol. [CDD+04] showed an exotic example of
a perfectly secure protocol with static security against malicious adversaries but without adaptive
security. Fortunately, all our protocols are based on linear secret sharing which makes extending our
analysis to layered (and adaptive) MPC significantly easier.

As an example, consider a simulator’s job when a set of parties C is already corrupted during a
protocol execution and a new party Pi has just been added to this set. First, the simulator needs to
construct a complete view (including the input) of the honest Pi that is consistent with all messages
exchanged with the ideal functionality and communication with parties in C. Secondly, the simulator’s
state needs to be “extended” with this new information. Concretely, the state should be as if Pi has
been corrupted from the start of the protocol but behaved honestly until this point. In our protocols
for perfect layered MPC, we let the simulator handle this challenge using conditional sampling. Since
parties in C will only hold shares of a linear secret sharing scheme, even if the newly corrupted Pi

is the dealer of such shares we can simulate the randomness used in the sharing algorithm. This is
feasible since as long as the shares of n − t honest parties are fixing the secret, the simulator is free
to change the randomness to be consistent with the shares of parties in C. Finally we note that when
referring to computationally secure (PRG-based) protocols, we either need to settle for non-adaptive
security or implement the PRG in the random oracle model.

7 While we can meaningfully argue that the final protocol for computing general functionalities is UC-secure,
we do not treat individual components of this protocol in a UC manner. This would require a significant
modelling effort of communication and synchronization for layered MPC and would be counterproductive
in our effort to present layered MPC as a simple special case of secure MPC as in [Can00,Gol09].
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3 Basic Primitives

We introduce the basic primitives Future Messaging (fFM) and Multiparty Addition (fadd) that that
serve as building blocks for later constructions. In the layered model, Future Messaging is a primitive
which allows an input client S to securely send a message m to an output client R in a later layer.
Multiparty Addition allows a subset of parties in a layer to broadcast the sum of their inputs to all
parties in a later layer.

3.1 Future Messaging

Future Messaging emulates a secure channel between a sender S and a receiver R in a future layer.
As such, the primitive is similar8 to Secure Message Transmission (SMT) over the specific directed
and layered network where intermediate nodes may take part in the protocol and not merely forward
messages from adjacent nodes. The functionality is presented in Functionality 3.1.

Figure 3.1 (Future Messaging functionality fFM)

Public parameters: Sender S ∈ L0, receiver R ∈ Ld for d > 0 and
message domain M .

Secret inputs: S has input m ∈M .

fFM receives m from S, and delivers m to R.

Parallel Composition. Functionality fFM delivers a message from a sender to a receiver in a
later layer Ld. However, when our protocol implementing fFM is composed in parallel, the resulting
functionality is not the natural parallel composition of fFM which takes the input from each sender
to each receiver and delivers them.

In fact, this functionality is impossible to realize even in the trivial case of messaging from one
layer to the very next using the provided secure communication link. As an example, suppose com-
munication from S1 ∈ L0 to R1 ∈ L1 and from S2 ∈ L0 to R2 ∈ L1 are composed in parallel. Now,
a rushing adversary corrupting S1 and R2 can collect the message from S2 to R2 and set this as the
message from S1 to R1. Interestingly, this limitation persists when parallely composing our proto-
col for realizing fFM from L0 to Ld (even for d > 1) with t-security for t < n/3. See Remark 2 in
Appendix B for more details.

We capture the functionality realized by parallel execution of our future messaging protocol using
a corruption aware functionality in Figure 3.2.

A Protocol for Future Messaging. Realizing Future Messaging from a sender in L0 to a receiver
in L1 is trivial since there is a secure communication link between any such pair.

A (n, t, 2)-layered protocol for Future Messaging from a sender in L0 to a receiver in L2 can be
achieved as follows. Sender S ∈ L0 shares the message m among the parties in L1 using a t-secure
robust secret sharing scheme. The parties in L1 forward their shares to the receiver R ∈ L2 who uses
the reconstruction algorithm on the received shares to recover the message. By t-security of the secret
sharing scheme, an adversary corrupting at most t parties in L1 learns nothing about the message.
However, since the secret sharing scheme is t-robust, R correctly reconstructs m even if at most t
corrupt parties send incorrect shares.

This idea can be generalized to construct Future Messaging from L0 to Ld for any d > 2 using the
secure (n, t, ℓ)-layered protocol for Future Messaging from L0 to Lℓ and then from Lℓ to Ld. Here,
ℓ is any number such that 0 < ℓ < d; specifically, we can take ℓ =

⌊
d
2

⌋
. This is achieved as follows.

The sender S ∈ L0 produces shares (s1, . . . , sn) of its message m, and sends the share si to the i-th
party (Pℓ

i) in Lℓ using Future Messaging from L0 to Lℓ. Each party in level ℓ forwards its share to
the receiver using Future Messaging from Lℓ to Ld.

8 The instance of Future Messaging with honest sender in L0 and honest receiver in L2 is equivalent to
perfect 1-way SMT.
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Figure 3.2 (Corruption-aware parallel Future Messaging functionality fn
FM)

Public parameters: Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Ld

where d > 0. The domain Mi,j of message from Si to Rj .
Secret inputs: Each Si wants to send each Rj a message m(i,j) ∈Mi,j .
Additional input to functionality: Set of corrupted parties I0 ⊆ L0

and corrupted receivers Id ⊆ Ld.

1. For each honest Si /∈ I0 and each Rj ∈ Ld, fn
FM receives message m(i,j) from Si to Rj .

2. For each honest Si /∈ I0 and corrupt Rj ∈ Id, fn
FM forwards m(i,j) to the (ideal) adversary.

3. For each corrupt Si ∈ I0 and each Rj ∈ Ld, fn
FM receives from the (ideal) adversary the

message m(i,j) that Si wants to send to Rj .
4. For each Si ∈ L0 and Rj ∈ Ld, fn

FM sends m(i,j) to Rj as message from Si.

This protocol can be executed in parallel, for each sender in L0 and receiver in Ld, in order to
realize the corruption aware (parallel) functionality fn

FM (Figure 3.2) from L0 to Ld using fn
FM from

L0 to Lℓ and from Lℓ to Ld. The protocol is formally described in Figure 3.3.

Lemma 2 (Layered protocol for fn
FM). Let (Sh,Rec) be a robust (t, n) secret-sharing scheme

(Definition 6), the (n, t, d)-layered protocol in Figure 3.3 realizes the functionality fn
FM in Figure 3.2

with perfect security for t < n/3.

Proof. We formally describe the simulator and provide a formal proof in Appendix B.2.

Going forward, we will focus on the (non-parallel) Future Messaging functionality fFM in Figure
3.1 from a designated sender in a layer to a designated receiver in a later layer. This is, indeed, a
special case of fn

FM (n = 1) and a protocol was outlined informally in the beginning of this section.

Theorem 6. For any d > 0, and message domain M , there exists an (n, t, d)-layered protocol
ΠFM that realizes fFM from a sender in L0 to a receiver in Ld with communication complexity
O(n⌈log d⌉ log |M |).

Proof. For d = 1, there is a trivial protocol that realizes fFM in which the sender sends the message
(from a domain M) directly to the receiver using the provided secure communication link. The
communication complexity of realizing this is simply log |M |.

Suppose d > 1 and ℓ =
⌊
d
2

⌋
. Consider protocols Π and Π ′ that realize functionalities fn

FM from
L0 to Lℓ and from Lℓ to Ld, respectively for message domain Mn. In the protocol in Figure 3.3, the
fn
FM from L0 to Lℓ and fn

FM from Lℓ to Ld are called, sequentially. Hence, by the sequential modular
composition theorem for layered protocols in Proposition 1, the protocol obtained by replacing these
oracle calls with subroutine calls to Π and Π ′, is secure against any layered adversary that corrupts at
most t parties in layers 1 to ℓ−1 and ℓ+1 to d−1 in addition to corrupting at most t parties in layer
ℓ. The communication complexity of the resulting protocol is the sum of communication complexity
of Π and Π ′. The statement of the theorem is obtained by recursion using this observation and the
existence of the trivial protocol for realizing fFM from L0 to L1. ⊓⊔

Figure 3.3 (Πn
FM, an (n, t, d)-layered protocol realizing fn

FM)

Public parameters: Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Ld

where d > 1.
Secret inputs: Each Si wants to send m(i,j) ∈M to a each receiver Rj .
Resources: fn

FM (with message domain Mn) from L0 to Lℓ and Lℓ to Ld.

1. Each Si, i ∈ [n] samples (s(i,j),1, . . . , s(i,j),n)← Sh(m(i,j)) for each j ∈ [n].
2. For k ∈ [n], Si sets the message to Pℓ

k ∈ Lℓ in fn
FM from L0 to Lℓ to

(
s(i,1),k, . . . , s(i,n),k

)
.

3. Each party Pℓ
k : k ∈ [n] receives (ŝ(i,1),k, . . . , ŝ(i,n),k) from Si, i ∈ [n] (delivered by fn

FM).
4. Pℓ

k, k ∈ [n] sets the message to Rj ∈ Ld in fn
FM from Lℓ to Ld to (ŝ(1,j),k, . . . , ŝ(n,j),k).

5. Each receiver Rj : j ∈ [n] computes the message from Si : i ∈ [n] as Rec(ŝ(i,j),1, . . . , ŝ(i,j),n).
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Corollary 2. Suppose ΠFM is a (n, t, d)-layered protocol realizing fFM from a sender S ∈ L0 to a
receiver R ∈ Ld. The following statements hold when ΠFM is executed in the presence of any adversary
A described in Definition 1:

(a) If S is honest, R correctly recovers the input of S at the end of ΠFM.
(b) When S and R are honest, and for any pair of inputs m,m′ ∈M ,

ADVRΠFM,A,I(m) ≡ ADVRΠFM,A,I(m
′).

3.2 Multiparty Addition

The Multiparty Addition functionality fadd takes inputs from a set of input clients and delivers the
sum of the inputs to all output clients in L2. However, fadd allows the adversary to choose the inputs
of corrupt input clients after learning the sum of the inputs of the honest clients. Hence, if at least one
party with input to fadd is corrupt, the adversary can choose the value that fadd outputs. Note that,
this necessarily makes fadd a corruption aware functionality. The functionality is formally defined in
Figure 3.4.

Figure 3.4 (Multiparty Addition functionality fadd)

Public parameters: Input clients S ⊆ L0, output clients L2, input
domain is some finite group G.

Secret inputs: Each Si ∈ S has input xi ∈ G.
Additional input: Set of corrupt input clients I ⊆ S.

1. fadd receives input xi from each honest Si ∈ S.
2. If I ≠ ∅, fadd leaks the sum of the inputs of honest Si to the (ideal) adversary and receives a

value y ∈ G from the adversary.
3. To all output clients in L2, fadd delivers y if I ≠ ∅ and

∑
i:Si∈S xi otherwise.

The functionality described in Figure 3.4 can be realized by an (n, t, 2)-layered protocol in the
following way. Each party in Si ∈ S secret shares its input xi to the parties in next layer using a
t-robust linear secret sharing scheme. Parties in L1 broadcasts the sum of their respective shares for
each of the inputs. Each party in L2 recovers the output by running the reconstruction algorithm on
the received sum of shares. A formal description of the protocol is presented in Figure 3.5.

Figure 3.5 (Πadd, an (n, t, 2)-layered protocol for fadd)

Public parameters: Input clients P0
i , i ∈ S, output clients L2, input

domain is some finite group G.
Robust (n, t) secret-sharing scheme (Sh,Rec) with secret domain M .

Secret inputs: Each Si ∈ S has input xi ∈ G.

1. Each P0
i , i ∈ S samples (xi,1, . . . , xi,n)← Sh(xi), and sends xi,j to P1

j for each j ∈ [n].
2. Each P1

j , j ∈ [n] broadcasts yj =
∑

i∈S xi,j to L2.
3. Each party outputs Rec(y1, . . . , yj). We use a reconstruction function that outputs a valid

element of G even when y1, . . . , yn is not a valid secret sharing with at most t corruptions.

Clearly, all honest parties output the same value at the end of the protocol, irrespective of the
number of corruption in S. If all parties in S are honest, each party in L2 receives a share of

∑
Si∈S xi

for each party in L1. Although corrupt parties in L1 can potentially send invalid shares, by t-robustness
of the secret sharing scheme all honest parties in L2 correctly reconstruct the sum of the inputs.
Finally, the adversary who corrupts a non-empty set of parties in L2 only learns the sum of the shares
of the honest parties’ inputs. Since the secret sharing scheme is linear, this would only reveal the sum
of the honest parties’ inputs.

The following lemma formally states the game based security guarantees of any (n, t, d)-layered
protocol realizing Multiparty Addition as per above.
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Lemma 3. Let t, n, d ∈ N and suppose protocol Πadd is an (n, t, d)-layered protocol realizing fadd.
The following statements hold when Πadd is executed in the presence of any adversary A described in
Definition 1:

1. All honest clients output the same value at the end of Πadd. If all input clients are honest, this
value coincides with the sum of the inputs.

2. The view of A only reveals the sum of the inputs of the honest parties.

4 Layered MPC based on CNF Secret Sharing

In this section, we start by building a protocol for Future Multicast based on primitives from Section 3.
The protocol is then used in a simple way to obtain VSS using CNF-shares. We will build on this
VSS protocol in order to realize secure multiplication and, finally, a protocol for layered MPC for any
function.

4.1 Future Multicast

Future Multicast fFMcast allows a sender S to send a secret to a set of receivers R located in a later
layer. It guarantees that all honest receivers output the same value even if the sender is corrupt; if the
sender is honest, this value coincides with the sender’s input. Finally, if all receivers (and the sender)
are honest, the secret remains hidden from the adversary. This primitive will be the backbone of
our layered VSS protocol. Standard (Secure) Multicast is often described as the simplest non-trivial
example of secure computation. Also, in layered MPC, Future Multicast generalizes Future Messaging
and Future Broadcast9 but is substantially harder to realize. The functionality is described in Figure
4.1.

Figure 4.1 (Future Multicast functionality fFMcast)

Public parameters: Sender S ∈ L0, receiving set of parties R ⊆ Ld, d ≥ 5,
message domain M .

Secret inputs: S has input m ∈M .

fFM receives m from S, and delivers m to all parties in R.

A protocol for Future Multicast. As a first step towards realizing fFMcast, we construct a protocol
that achieves a weaker notion of Future Multicast. In this protocol, sender S in layer L0 sends a share
to a set of intermediaries UT = {P1

i : i ∈ T} ⊂ L1, in the next layer, who communicate it to the
receivers R ⊆ L5. The protocol for weak Future Multicast provides the following guarantees which are
formally stated in Lemma 4.

1. (Agreement). If a majority of the intermediaries are honest, all honest receivers output the same
value at the end of the protocol even if S is corrupt; if the sender is honest, this value coincides
with the sender’s input.

2. (Security). If the sender, all the intermediaries in UT and all the receivers are honest, a layered
adversary does not learn the sender’s secret.

Observe that, when t < n/3, each subset UT of n − t parties in L1 contains a strict minority of
corrupt parties. Furthermore, there is at least one such set that contains only honest parties. Given
these observations, realizing fFMcast from the weaker notion is straight forward: For each set UT ⊂ L1

of n − t parties, S sends rT to the receivers using parties in UT as intermediaries, where rT for all
possible T , form an additive secret sharing of the sender’s secret. When the sender is honest and each
set of intermediaries has an honest majority, by (1), all rT reach the receivers correctly. Furthermore,
for one set of intermediaries UT∗ , by (2), rT∗ remains hidden from the adversary. Thus, receivers can
compute the sum of rT for distinct sets T to obtain the secret, which will remain hidden from the
9 Here, we refer to the primitive in the setting of layered MPC that ensures termination, validity and agree-

ment among all parties located in some layer d > 1. Not Future Broadcast as defined in [GHK+21].
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layered adversary if all receivers are honest. Finally, by (2), the outputs of all honest receivers are
consistent even if the sender is corrupt.

Weak Future Multicast. With the aid of a set of intermediaries UT = {P1
i : i ∈ T} ⊂ L1, weak

Future Multicast can be achieved as follows: S sends the message rT to every party in UT . In addition,
S distributes a robust secret sharing of rT among the parties in L3 using Future Messaging. Every
pair of intermediaries broadcasts the difference between the values they received to all parties in L3

using a protocol for the fadd functionality. Additionally, each intermediary distributes a secret sharing
of the value they received among the parties in L4. If the difference comes out non-zero for any pair,
the parties in L3 effectively reveals rT to all parties in L4 by broadcasting the shares of rT that S
distributed. Parties in L4 then forwards (using layer-to-layer broadcast) rT to all the receivers in R.
By robustness of the secret sharing scheme, parties in L4 recover rT if it was secret shared properly by
the sender; moreover, even if S sent invalid shares, all honest parties recover the same value. Hence,
receivers recover rT from this because at most t < n/3 parties in L4 are corrupt. If the difference
is zero for every pair of intermediaries, each party in L4 reveals the share sent to them by every
intermediary to all the receiver in R. Using these shares, each receiver reconstructs the value that
was shared by each intermediary. If the difference was zero for every pair of intermediaries, then all
honest intermediaries must have received the same value from S (which is rT if S is honest). Hence,
a majority of the values recovered by every receiver coincides with this value. This ensures (1). If S
and all intermediaries are honest, rT is not revealed to parties in L4, and, hence, is disclosed only to
the receivers ensuring (2).

An (n, t, 5)-layered protocol for Future Multicast ΠFMcast is formally described in Figure 4.2.
Importantly, it includes the sub-protocol for weak Future Multicast Πweak-FMcast. We identify two
important properties of ΠFMcast that will be used going forward. The properties are stated in Lemma 4
and a formal proof is provided in Appendix C.1.

Lemma 4. For any T ∈ T , the following properties hold for Πweak-FMcast with UT as intermediaries
when executed in the presence of any adversary A:

(a) There exists r̂ such that all honest receivers in R output r̂ at the end of Πweak-FMcast. Furthermore,
if S is honest, r̂ = r.

(b) If S, and all intermediaries and receivers are honest, for any r, r′ ∈M ,

ADVRΠ,A(r) ≡ ADVRΠ,A(r
′).

Theorem 7. Protocol ΠFMcast in Figure 4.2 is a secure (n, t, 5)-layered protocol realizing fFMcast with
input client S and output clients in R.

Proof. By statement (a) in Lemma 4, for every set of intermediaries {P1
i : i ∈ T}, there exists r̂T

such that all honest receivers in R output r̂T at the end of Πweak-FMcast. Furthermore, if S is honest,
r̂T = rT , for each T ∈ T . Hence, the outputs of all receivers are the same at the end of ΠFMcast and
coincides with the input of an honest S.

It remains to show that if the sender and all receivers are honest, A does not learn the sender’s
input. We sketch the intuition: Consider T ∗ ∈ T such that the parties UT∗ are all honest; such a
set exists because there are at most t corruptions in each layer. By statement (b) in Lemma 4, view
of A interacting with Πweak-FMcast with intermediaries in UT∗ is independent of the input rT∗ of S.
But then, the view of A in the entire protocol ΠFMcast does not depend on m since (rT , T ∈ T ) is an
additive secret sharing of m. We formally prove security of ΠFMcast by demonstrating a simulator S
in Appendix C.2.
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Figure 4.2 (ΠFMcast, an (n, t, 5)-layered protocol for fFMcast)

Public parameters: Sender S ∈ L0, receivers R ⊆ Ld, where d = 5,
A (t, n) robust linear secret sharing scheme (Sh,Rec).

Definitions: T = {T ⊂ [n] : |T | = n− t} (Definition 7).
Secret inputs: S has input m ∈M .
Subroutines: Protocol ΠFM realizing fFM and Πadd realizing fadd.

1. S samples {rT }T∈T uniformly at random conditioned on m =
∑

T∈T rT . For each T ∈ T ,
execute protocol Πweak-FMcast (described below) with UT = {P1

i : i ∈ T} as intermediaries and
rT as input from S.

2. For each T ∈ T , suppose r̂T is the output of receiver P5
i ∈ R at the end of Πweak-FMcast with UT

as intermediaries. P5
i outputs m̂ =

∑
T∈T r̂T .

Sub-protocol: Πweak-FMcast with public input UT and r as input from S.

(i). Layer 0:
1. S sends r to parties in UT ⊂ L1 over the secure channel.
2. S samples (r1, . . . , rn)← Sh(r). For k ∈ [n], S sends rk to P3

k using ΠFM.
(ii). Layer 1:
1. Denote the value received by P1

j ∈ UT by rj . For each j, j′ ∈ T such that j < j′, execute Πadd

to compute rj − rj
′
and broadcast the result to L3.

2. Each intermediary P1
j ∈ UT samples (rj1, . . . , r

j
n) ← Sh(rj) and sends rji to P4

i , i ∈ [n] using
ΠFM.

(iii). Layer 3:
1. Each party P3

k, k ∈ [n] recovers r̂k as the output of ΠFM (see step (i).2). P3
k broadcasts a

complaint and r̂k to all parties in L4 if rj − rj
′ ̸= 0 (output of Πadd) for some j, j′.

(iv). Layer 4:
1. If at least n − t parties in L3 broadcasted a complaint, each P4

i , i ∈ [n] computes r̂ =
Rec(r̂1, . . . , r̂n). P4

i forwards the complaint to all receivers in R and sends r̂ to all receivers.
2. Else, P4

i recovers r̂ji as the output of ΠFM (see step (ii).2) with P1
j as sender (with message rji )

and sends it to all receivers.
(v). Layer 5:
1. If at least n− t parties in L4 reported a complaint, each P5

i ∈ R outputs the unique value that
is sent by at least n− t parties in L4.

2. Else, P5
i recovers r̂j = Rec(r̂j1, . . . , r̂

j
n), where r̂ji was sent by P4

i and outputs the unique value r̂
such that r̂ = r̂j for at least n− 2t distinct values of j ∈ T .

L1 L2 L3 L4 L5subtract
reveal r if
∃j : rj ̸= rj

′
P5
i ∈ R

recovers r̂

ΠFM from S of rk to P3
k

ΠFM from P1
j ∈ UT of rji to P4

i

Πadd of rj − rj
′

to L3

Fig. 2. Execution flow of Πweak-FMcast in Protocol 4.2
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4.2 Verifiable Secret Sharing

Using the FMcast primitive presented in Section 4.1, realizing verifiable secret sharing (VSS) is rela-
tively straight-forward. The sender distributes the additive shares of the secret to each set of receivers
using Future Multicast. The protocol in Figure 4.3 realizes VSS from a dealer in L0 to shareholders
in L5.

Figure 4.3 (ΠVSS, an (n, t, 5)-layered protocol for fVSS )

Public parameters: Sender S ∈ L0, shareholders L5.
Definitions: Let T = {T ⊂ [n] : |T | = n− t}.
Secret inputs: S has input m ∈M .
Subroutines: Protocol ΠFMcast realizing fFMcast functionality.

Layer L0:
1. S samples (rT )T∈T as additive secret sharing of m.
2. For each T ∈ T , execute ΠFMcast with S as sender with input rT and {P5

i : i ∈ T} as receivers.
Layer L5:
1. Each party P5

i , i ∈ [n] recovers rT as the output of ΠFMcast with S as sender if i ∈ T . P5
i outputs

(rT )i∈T as its share.

The protocol described in Figure 4.3 is a (n, t, 5)-layered protocol realizing VSS. This follows
from the definition of Future Multicast. The following theorem proves a stronger result: Suppose n
protocols are executed in parallel with P0

i as dealer and L5 as shareholders for each i ∈ [n], then
we achieve a parallel (n, t, 5)-layered protocol for VSS functionality for t < n/3. The parallel VSS
fuctionality is formally described below.

Figure 4.4 (Parallel VSS functionality fparallel-VSS)

Public parameters: Senders S1, . . . ,Sn ∈ L0, shareholders R1, . . . ,Rn ∈ L5.
The domain M of secrets.

Definitions: Let T = {T ⊂ [n] : |T | = n− t}.

1. Each Si, i ∈ [n] sends (riT )T∈T to the functionality.
2. For each i ∈ [n] and T ∈ T , functionality sends (i, T, riT ) to {P5

j : j ∈ T}.

Theorem 8. The protocol in Figure 4.3 executed in parallel realizes fparallel-VSS with perfect t-security
for t < n/3 by consuming 5 layers, and by communicating

(
n
t

)3 ·O(n2) field elements over the point-
to-point channels and over the broadcast channels for each secret.

Proof. The VSS protocol is essentially several multicast protocols executed in parallel. The security
of the construction follows from the security of the multicast protocol, once we ensure that the
adversary cannot correlate the shares of the corrupt parties with those of the honest parties across
parallel executions of multicast protocols. The simulator for multicast extracts the input of a corrupt
sender in L0 from the view of the honest parties in the protocol up to L4. This allows the simulator
we build for parallel VSS to extract the shares of the corrupt dealers after simulating the protocol till
L4 and provide them to fparallel-VSS. Whereas, a multicast from an honest sender to a set of receivers,
potentially containing corrupt receivers, does not reveal the sent message to the corrupt parties until
L4. Hence, the adversary chooses shares for corrupt parties before getting to see the shares chosen by
the honest parties. This guarantees that the adversary cannot correlate the shares of the corrupted
parties with the shares of the honest parties. We show a simulator and full proof in Appendix C.3. ⊓⊔

Addition and multiplication-by-constant for CNF shares. The CNF secret sharing scheme
is linear; hence, parties holding valid CNF shares of a value s can locally transform it into a valid
secret sharing of αs when α is a publicly known constant. In detail, let si be the share of s held by
party i. Then, there exist (δT )T∈T such that

∑
T∈T δT = s, and si = (δT )T :i∈T for each i ∈ [n]. Then

s′1, . . . , s
′
n such that s′i = (αδT )T :i∈T is a CNF secret sharing of αs. Additionally, suppose a value
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r is secret shared as (r1, . . . , rn) where ri = (γT )T :i∈T for each i ∈ [n], and
∑

T∈T γT = r. Then,
s′′1 , . . . , s

′′
n such that s′′i = (δT + γT )T :i∈T is a CNF secret sharing of r+ s. In conclusion, addition and

multiplication by constant of CNF shares can be computed locally.

4.3 Multiplication

The multiplication functionality takes valid CNF secret shares of two values r and s and computes a
fresh CNF secret shares of rs. This functionality requires that the input clients hold valid CNF secret
sharing of the individual values to be multiplied, and that at most t input clients are corrupt. Recall
that, a default layered adversary is allowed to corrupt arbitrarily many input and output clients. The
functionality is formally defined as follows:
Implementing fmult. Suppose r1, . . . , rn and s1, . . . , sn are CNF secret shares of two values r and
s, respectively. Recall that, when T = {T1, . . . , TN} = {T ⊂ [n] : |T | = n − t}, for each i ∈ [n],
ri = (γj)j:i∈Tj

and si = (λj)j:i∈Tj
, where

∑N
i=1 γj = r and

∑N
i=1 λj = s. To compute a secret sharing

of rs, it suffices to compute the secret sharing of γiλj for every i, j ∈ [N ]; secret shares of rs can
be computed as the sum of these secret shares, which can be obtained by local computations. This
follows from the fact that, rs =

∑N
i=1

∑N
j=1 γiλj .

The main challenge in implementing multiplication is in obtaining correct secret shares of γiλj ,
for all i, j ∈ [N ]. In the non-layered setting, classic protocols tackle this by having all parties who
have access to γi and λj secret share their product. The parties then compute the difference between
the values shared as purported product γiλj by securely computing their differences. If all differences
come out to be 0, since at least one of the parties secret sharing the product is honest, all the remaining
parties must also have correctly shared the secret. Hence, one of these CNF-shares can be taken as a
valid secret sharing of λiγj . Whenever the difference is non-zero, both γi and λj are publicly revealed,
and a trivial secret sharing of γiλj is taken instead of the ones submitted by the parties. Finally, these
shares are ‘added’ together to get a secret sharing of rs.

Figure 4.5 (Multiplication functionality fmult)

Public parameters: Input layer L0, output layer L7.
Secret inputs: Each P0

i , i ∈ [n] receives (ri, si), where (ri)i∈[n] and (si)i∈[n]

are valid CNF secret sharing of r and s, respectively.

1. Each party P0
i , i ∈ [n] sends (ri, si) to fmult, who reconstructs r from (ri)i∈[n] and s from

(si)i∈[n]. This is possible since at most t parties are corrupt and CNF secret sharing is t robust.
2. fmult samples (u1, . . . , un) as a fresh CNF secret sharing of rs. For each i ∈ [n], fmult delivers ui

to P7
i , i ∈ [n] in the output layer.

The above protocol is clearly correct. The security of the protocol follows from the fact that,
whenever all the parties submitting shares of γiλj for some i, j are honest, the protocol never reaches
the public reveal phase. A formal description of the protocol in the standard setting as constructed
in [Mau06] is provided in Figure C.1 in Appendix C.4. Our multiplication protocol is a porting of the
above protocol to the layered setting. In the process, we face two main challenges.

Firstly, when the public check of equality between purported shares of γj · λj′ provided by a pair
of parties fails in step 2, γj and λj′ need to be revealed by every party (in the input layer) with access
to these values. This is tackled exactly as in the Future Multicast protocol. Using Future Messaging,
all parties in the input layer secret share each γi and λi they hold to the layer where the equality
check is made; the parties in this layer then selectively reveal the additive shares for which any of the
equality checks fails.

The second challenge is less straightforward to handle. If the protocol is naively ported to the
layered model, VSS of γj · λj′ will be available in two different layers: once in the layer that initiates
the equality check, and then again in the final layer that computes the VSS of r · t as the sum of
VSS of γj · λj′ for all j, j′ ∈ [N ]. But then, the adversary can corrupt t parties in both these layers,
and recover γj · λj′ for each (j, j′). This is overcome as follows: For each j, j′, consider the special
party whose share of γj · λj′ will be chosen in the final addition (if the all equality checks for γj · λj′

succeeds). This party samples (δk)k∈[N ] as additive secret shares of γjλj′ , and verifiable secret share
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each δk instead of directly secret sharing γj · λj′ . The equality check is now carried out to check if∑
k δk shared by the special party equals the value shared by every other party. Finally, parties in

the output layer receive a VSS of γj · λj′ in which the ith share is (δk)k:i∈Tk
. This avoids reuse of the

same VSS in two layers. The protocol is presented in Figure 4.6.

Figure 4.6 (Πmult, an (n, t, 7)-layered protocol for realizing fmult)

Public parameters: Input layer L0, output layer L7. A (t, n) robust
perfectly secure secret sharing scheme (Sh,Rec)

Inputs: Party P0
i , i ∈ [n] has inputs (ri, si), where (ri)i∈[n] and (si)i∈[n] are

CNF secret shares of r and s, respectively.
Definitions: Let T = {T1, . . . , TN} = {T ⊂ [n] : |T | = n− t}.

For each i ∈ [n], si = (γj : i ∈ Tj , j ∈ [N ])
and ri = (λj : i ∈ Tj , j ∈ [N ]), where

∑
j∈[N ] γj = r and

∑
j∈[N ] λj = s.

Subroutines: Protocols ΠFM, ΠVSS.

1. For each j, j′ ∈ [N ], concurrently execute protocol Πj,j′ (described below).
2. For each j, j′ ∈ [N ], let (δj,j

′

k )k:i∈Tk
be the output of party P7

i , i ∈ [n] at the end of Πj,j′ . Then,
P7
i stores (δk)k:i∈Tk

as their shares of rs, where δk =
∑

j,j′∈[N ] δ
j,j′

k .

Sub-Protocol: Πj,j′ for j, j′ ∈ [N ]

Notations: Let I = Tj ∩ Tj′ ; i.e., P0
i has both γj and λj′ if and only if

i ∈ I. Fix i∗ ∈ I. To avoid redundancy, denote γj by γ and λj′ by λ.

(i). Layer L0:
1. P0

i∗ samples δ1, . . . , δN as additive secret shares of γλ. For each k ∈ [N ], execute ΠVSS with P0
i∗

as dealer with input δk and L5 as shareholders. For each i ∈ I, i ̸= i∗, execute ΠVSS with P0
i as

dealer with input γλ and L5 as shareholders.
2. Each P0

i , i ∈ Tj samples (γi,1, . . . , γi,n) ← Sh(γ). For each k ∈ [n], execute ΠFM with P0
i as

sender with input γi,k and P6
k as receiver.

3. Similarly, Each P0
i , i ∈ Tj′ samples (λi,1, . . . , λi,n)← Sh(λ). For each k ∈ [n], execute ΠFM with

P0
i as sender with input λi,k and P6

k as receiver.
(ii). Layer L5:
1. For each i ∈ I, i ̸= i∗, we will denote the value verifiably secret shared by P0

i in step (i).1 by
(γλ)(i). If P0

i is honest, (γδ)(i) = γλ. Parties in L5 locally compute that shares of (γλ)(i)−
∑N

l=1 δl
and broadcast the shares of the sum to L6.

2. For each k ∈ [N ], P5
l , l ∈ [n] reveals their share of δk to each party P7

i , i ∈ Tk using Future
Messaging ΠFM.

(iii). Layer L6:
1. Each P6

k, k ∈ [n] recovers γi,k as the output of ΠFM with P0
i , i ∈ Tj as sender and P6

k as receiver
initiated in step (i).2. Similarly, P6

k recovers λi,k as the output of ΠFM with P0
i , i ∈ Tj′ as sender

and P6
k as receiver initiated in step (i).3.

2. If there exists i ̸= i∗ such that (γλ)(i) −
∑N

l=1 δl ̸= 0, then P6
k sends a complaint along with

(γi,k)i∈Tj
and (λi,k)i∈Tj′ to all parties in the next layer.

(iv). Layer L7:
1. If at least n − t complaints are received, P7

l , l ∈ [n] recovers γi = Rec(γi,1, . . . , γi,n) for each
i ∈ Tj , and recovers λi = Rec(λi,1, . . . , λi,n) for each i ∈ Tj′ . Set γ as the unique value such that
γ = γi for at least n − 2t distinct i ∈ Tj ; similarly, set λ as the unique value such that λ = λi

for at least n− 2t distinct i ∈ Tj′ . Finally, P7
l sets the share (rs)j,j

′

l to be the trivial sharing of
γλ; i.e., (rs)j,j

′

l = (δk)k:l∈Tk
, where δk = γλ , if k = 1 and δk = 0 otherwise.

2. If less than t complaints were received, each party P7
i , i ∈ [n] recovers the CNF share of δk (for

each k such that i ∈ Tk) sent by P5
l , l ∈ [n] using ΠFM in step (ii).2. Using these shares, P7

i

recovers δk and sets the share (rs)j,j
′

i to be (δk)k:i∈Tk
.
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We first establish properties of the subroutine Πj,j′ that computes CNF shares of γj · λj′ for each
j, j′ ∈ [N ]. in the lemma below, proven in Appendix C.5.

Lemma 5. For any j, j′ ∈ [N ], the following properties hold for Πj,j′ when executed in the presence
of an adversary A:

(a) There exists (δk)k∈[N ] such that
∑N

k=1 δk = λjγj′ , and each honest party P7
i , i ∈ [N ] outputs

(δk)k:i∈Tk
at the end of Πj,j′ .

(b) Suppose parties P0
i , i ∈ H are honest, then for any a, b, a′, b′,

ADVRΠj,j′ ,A(γj = a, λj′ = b) ≡ ADVRΠj,j′ ,A(γj = a′, λj′ = b′).

By statement (a) in Lemma 5, for each j, j′ ∈ [N ], parties in the output layer correctly receive a
CNF secret sharing of γjλj′ . Hence, the output of the parties at the end of the protocol is a CNF
secret sharing of

∑N
j=1

∑N
j′=1 γjλj′ = rs. By statement (b) in Lemma 5, if λj′ or γj is not known to

the adversary, the output of Πj,j′ does not reveal γjλj′ . This ensures that the protocol is secure. The
following theorem formally proves the security of the protocol.

Theorem 9. Πmult in Figure 4.6 is an (n, t, 7)-layered protocol realizing fmult, for t < n/3.

Proof. We prove the security by constructing a simulator S. In each layer Ll, 0 ≤ l ≤ 7, let Pl
i, i ∈ Cl,

where Cl ⊂ [n], be the set of corrupt parties. For each corrupt party P0
i , i ∈ Cl, S receives (γk)k:i∈Tk

and (λk)k:i∈Tk
from the environment. S chooses γk arbitrarily for each k such that γk is not provided by

the functionality. The simulator then emulates all the honest parties and interacts with the adversary.
For this, S is required to set the input to the honest parties in L0 (these are the only parties with
inputs). For each i /∈ C0, S sets the shares of r and s of honest emulated party P0

i to be (γk)k:i∈Tk

and (λk)k:i∈Tk
, respectively.

For each pair j, j′ such that γj and λj′ are known to some corrupt party, i.e., both C0 ∩ Tj and
C0∩Tj′ are non-empty, the execution of Πj,j′ is identical in both the simulation and a real execution.
Furthermore, by statement (a) in Lemma 5, in each such Πj,j′ , all honest parties in L7 output valid
CNF shares of γjλj′ . The view of the adversary in the protocol and in the simulation differ only in
that the view in each Πj,j′ such that Tj ∩ C0 or Tj′ ∩ C0 is empty. However, by statement (b) in
Lemma 5, the view of the adversary is identically distributed irrespective of the value of γj and λj′ .
That these properties hold even when Πj,j′ is executed in parallel for each j, j′ can be argued using
a hybrid argument along the lines of our previous proofs. This concludes the proof. ⊓⊔

Executing this in parallel realizes a parallel multiplication functionality.

4.4 Realizing MPC from Layered Multiplication and Addition

In this section, we construct a secure (n, t, d)-layered protocol for computing any given function f
by evaluating an layered arithmetic circuit computing the function. Suppose each party P0

i , i ∈ [n]
in the input layer has xi ∈ F as input, and each party in the output layer (specified later) wants
to compute f(x1, . . . , xn). The secure computation of f proceeds in three phases: an input sharing
phase, a circuit evaluation phase and an output reconstruction phase.

In the input sharing phase, each input client verifiably CNF secret shares their input. In the circuit
evaluation phase, the layered protocol traverses the layered circuit that evaluates f and evaluates every
gate in the circuit. Evaluating a gate amounts to securely computing a CNF secret sharing of the
value on the output wire of each gate using the CNF secret sharing of the values on its input wires.
Finally, in the output reconstruction phase, the secret sharing of the value on the output wire is
revealed to the output clients.

We elaborate on the circuit emulation phase below. Let C be a layered arithmetic circuit (Defi-
nition 9) over a field F with D layers that computes f . At the end of the input phase, the values on
the input wires of all gates in layer one of C are simultaneously made available on the same layer of
the protocol graph. In the circuit evaluation phase, the protocol keeps the invariant that, if a layer
i ∈ [D] of C is processed, then the values on all the output wires from layer i of C are simultaneously
available of a specific layer of the protocol graph. The protocol can then process all gates in layer
i+ 1 of C preserving the invariant.
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Recall that every gate in C is either a multiplication-by-constant gate, an addition gate or a
multiplication gate. Given a CNF secret sharing of the value on the input wire(s) of a multiplication-
by-constant gate or an addition gate, a secret sharing of the value on the output wire can be computed
by locally processing the share. That is, the value on the output wire of the gate is available on the
same layer (of the protocol graph) on which the values on the input wires have been secret shared.
However, for a multiplication gate, computing a CNF secret sharing of the product of the values on
the input wires using a t-secure protocol for multiplication consumes 7 layers. This poses a challenge
when ensuring the invariant that the values on the output wires of all gates in a layer (of C) are
made available on the same layer of the protocol graph. We get around this obstacle as follows: for
a multiplication-by-constant or an addition gate G, after locally computing the secret sharing of the
value on the output wire, we further compute a multiplication gate with value on the output wire of
G as one input and the other input value being fixed to one (identity). This is achieved by using a
trivial secret sharing of one as the other input and executing the layered protocol for multiplication
which consumes d = 7 layers. Hence, we ensure the invariant we require. The protocol is formally
described in Figure 4.7.

Protocol 4.7 (A layered protocol computing any n-ary function f)

Public parameters: A layered arithmetic circuit C over F with D levels
that computes f . Output layer is d = 7D + 6.

Secret inputs: Each input client P0
i , i ∈ [n] has input xi.

Outputs: Each output client receives f(x1, . . . , xn).
Subroutines: Protocols ΠVSS, and Πmult realizing functionalities fVSS,

and fmult, respectively.

Input sharing phase:
1. For each i ∈ [n], execute in parallel ΠVSS with P0

i as dealer with input xi and L5 as
shareholders.

Circuit evaluation phase:
Invariant: For 1 ≤ i ≤ D, parties in L5+7(i−1) hold verifiable secret shares of the values on

the input wires of any gate in layer i of C. The parties in L5+7(i−1) process any gate Gj in
layer i of C as follows.

(i). Gi is a multiplication-by-constant or addition gate:
1. Parties in L5+7(i−1) locally compute the CNF secret shares of the value on the output

wire of Gj using CNF secret shares of the value(s) of the input wires of Gj .
2. Securely compute the product of the value on the output wire of Gj and one. This is

achieved as follows: Execute Πmult with L5+7(i−1) as input layer and L5+7i as output
layer. Parties in L5+7(i−1) use the CNF secret sharing of the value on the output wire
of Gj and a trivial CNF secret sharing of 1 as inputs to the computation.

(iii). Gi is a multiplication gate:
1. Execute Πmult with L5+7(i−1) as input layer as L5+7i as output layer. Here, each party

in L5+7(i−1) uses their respective CNF shares of the input wires as inputs. Each party
in L5+7(i−1) receives CNF shares of the product of these values at the end of Πmult.

Output reconstruction phase:
1. The parties in L5+7D reveal the CNF shares of value on the output wire of the output gate

to every output client in the next layer.
2. Each output client in L6+7D recovers the value from the CNF shares.

Theorem 10. Let f be an n-party functionality computed by a layered arithmetic circuit C over a
finite field F and gates partitioned into layers L1, . . . , LD. Then, for any t < n/3, the protocol in
Figure 4.7 is an (n, t, 6 + 7D)-layered MPC protocol for f .

Proof. We argue the security of the protocol in (fn
VSS, f

n
mult)-hybrid model and appeal to sequential

composition to prove security of the entire protocol. This is possible since the protocol essentially
uses execution of (parallel) ΠVSS from L0 to L5, and then only parallel invocations of Πmult from
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L5+7(i−1) to L5+7(i) for each 1 ≤ i ≤ D. Thus, the protocol amounts to sequential invocations of
secure protocols implementing parallel VSS, addition and multiplication functionalities.

Consider the protocol in (fn
VSS, f

n
mult)-hybrid model obtained from the protocol in Figure 4.7 by

replacing executions of VSS and multiplication with fn
VSS and fn

mult, respectively. First, all inputs are
CNF secret shared to L5. The protocol ensures that the value on the output wire of every gate is
freshly and randomly secret shared before being consumed by gates in the next layer of the circuit.
Thus, for each 1 ≤ i ≤ D, parties in layer 5+7(i−1) hold fresh CNF shares of the values on the input
wires of gates G ∈ Li. Proceeding in this manner, it can be seen that the parties in layer 5+7D hold
the value on the output wire of the circuit. The parties in L6+7D recover this value by reconstructing
the shares provided by the parties in the previous layer.

5 Efficient Layered MPC

In this section, we present an efficient implementation of perfectly t-secure layered MPC when t < n/3.
To achieve this, we first build verifiable Shamir secret sharing. As in our previous implementation of
MPC, the only non-trivial step in developing a protocol for general MPC after implementing VSS is
that of achieving perfectly secure multiplication of two values that are secret shared. We build the
multiplication protocol by porting a multiplication protocol of [CDN15,CDM00] from the standard
setting to the layered setting. For want of space, we present the formal constructions and proofs of
their security in the appendix. The security of the protocols is argued along the lines of our previous
constructions, albeit, with slightly more complex proofs.

5.1 Verifiable Shamir Secret Sharing

In this section, we implement verifiable Shamir secret sharing in the layered setting with perfect
t-security for t < n/3. This is realized by porting a protocol from the standard setting to the layered
setting. We mostly face the same set of challenges that we encountered while implementing future
multicast in the previous section. Recall that (t, n)-Shamir secret sharing of a secret s in a field F
involves sampling a random polynomial q(x) of degree at most t under the constraint q(0) = s and
setting the ith share to be q(i). We consider an equivalent functionality fShamirVSS that allows a dealer
to distribute the evaluation of a degree (at most) t polynomial on distinct non-zero points. A formal
description of the parallel fShamirVSS functionality is given in Figure 5.1.

Figure 5.1 (Parallel fShamirVSS functionality for sharing polynomials of degree at most t.)

Public parameters: Dealers S1, . . . ,Sn ∈ L0, shareholders P6
1, . . . ,P

6
n. A finite field F of size

more than n.

1. fShamirVSS receives coefficients ci,l ∈ F for 0 ≤ l ≤ t from each Si, i ∈ [n]. fShamirVSS ignores any
extra values sent by Si and sets missing values as 0.

2. For each i ∈ [n], define polynomial qi(x) = ci,tx
t + . . .+ ci,1x+ ci,0, and send qi(j) to each

P6
j , j ∈ [n].

Implementing fShamirVSS. The layered protocol realizing fShamirVSS is provided in Figure 5.2. We
provide an outline and the intuition behind its construction.

The classic protocol for Shamir VSS in the standard setting proceeds as follows. Suppose the
dealer wants to share a secret s from a field F such that |F| > n with t-security for t < n/3. The
dealer samples a random bi-variate polynomial S(x, y) of degree at most t in both the variables such
that S(0, 0) = s, and transfers fi(x) = S(x, i) and gi(y) = S(i, y) to party Pi. If the polynomials
were appropriately sampled, fi(j) = S(i, j) = gj(i) for every i, j. Each pair of parties Pi, Pj check if
fi(j) = gj(i) and fj(i) = gi(j); Pi raises a complaint by broadcasting (i, j, fi(j), gi(j) if this check
fails for Pj . The dealer addresses every valid complaint–a complaint of the form (i, j, u, v) such that
u ̸= fi(j) or v ̸= gi(j)–and broadcasts (fi, gi); otherwise, the dealer dismisses that complaint. This is
followed by parties casting votes to accept or disqualify the dealer. Pi votes to accept the dealer if all
the following conditions are met: dealer addressed one of every inconsistent mutual complaint–i.e.,
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a pair of complaints (i, j, u, v) and (j, i, u′, v′) such that u ̸= u′ or v ̸= v′; Pi itself did not issue a
complaint; and for each broadcasted (fj , gj), fi(j) = gj(i) and gi(j) = fj(i). If the dealer receives less
than n− t votes, it is declared to be corrupt. Otherwise, each Pi updates (fi, gi) if it was broadcasted
by the dealer and sets fi(0) as their share.

Using selective reveal in future messaging and checking equality using fadd as done in future mul-
ticast, we can port the above protocol into the layered setting. The protocol obtained in this manner
is used as sub-protocol Π in our final construction in Figure 5.2. Interestingly, this construction by
itself is not a layered protocol for verifiable secret sharing. However, Π guarantees the following: Let
H1 ⊆ [n] such that P1

i is honest iff i ∈ H1; parties in L5 hold a secret sharing of a value ŝi such that,
all such ŝi (there are at least n − t of them) define a valid secret sharing of a value ŝ. Further, if
the dealer is honest, ŝ = s and ŝi is the same as the value that the dealer transferred to P1

i . This is
formally stated in Lemma 6.

Lemma 6. The following properties hold for an execution of Π in the presence of a layered adversary
A:

(a) Let G ⊆ [n] such that P1
i is honest if and only if i ∈ H1. There exist polynomials ĝ(x) and

ĝi(x), i ∈ H1, each of degree at most t, such that ĝi(0) = ĝ(i) and αk
i output by each honest party

P5
k coincides with ĝi(k). Furthermore, if S is honest, ĝ(x) = F (x, 0).

(b) If S is honest, for any r, r′ ∈ F,

ADVRΠ,A(r) ≡ ADVRΠ,A(r
′).

Protocol 5.2 (An (n, t, 6)-layered protocol for realizing fShamirVSS.)

Public parameters: Dealer S ∈ L0, shareholders P6
1, . . . ,P

6
n ∈ L6. A finite

field F, |F| > n. A (t, n)-Shamir secret sharing scheme (Sh,Rec).
Secret inputs: Dealer holds a polynomial q(x) = ctx

t + . . .+ c1x+ c0 of
degree at most t over F.

Subroutines: Protocol ΠFM realizing fFM functionality and Πadd realizing
fadd functionality.

1. For each 0 ≤ l ≤ t, concurrently execute protocol Π (described below) with ci as input of S.
2. Each P5

k, k ∈ [n] stores the output at the end of execution l of Π as (αk
l,i)i∈[n] for each 0 ≤ l ≤ t.

To each P6
j , j ∈ [n], P5

i sends γk
i,j =

∑t
l=0 α

k
l,ij

l for each i ∈ [n].
3. Each P6

j reconstructs γi,j = Rec(γ1
i,j , . . . , γ

n
i,j) for each i ∈ [n]. Finally, P6

j outputs γj =
Rec(γ1,j , . . . , γn,j).

Sub-Protocol: Π with S as dealer with input s.

(i). Layer 0.
1. S samples a random bivariate polynomial F (x, y) of degree at most t in both variables conditioned

on F (0, 0) = s. Let fi(x) = F (x, i) and gi(y) = F (i, y) for each i ∈ [n]. S privately sends (fi, gi)
to P1

i .
2. For each i, j ∈ [n], S samples (F 1(i, j), . . . , Fn(i, j)) ← Sh(F (i, j)). For each k ∈ [n], S sends

F k(i, j) to P4
k using future messaging (ΠFM).

3. For each i ∈ [n], let fi(x) =
∑t

l=0 αi,lx
l and gi(x) =

∑t
l=0 βi,ly

l. S samples (α1
i,l, . . . , α

n
i,l) ←

Sh(αi,l), and (β1
i,l, . . . , β

n
i,l) ← Sh(βi,l) for each 0 ≤ l ≤ t. For each i, k ∈ [n] and 0 ≤ l ≤ t, S

sends αk
i,l and βk

i,l to P5
k using future messaging.

(ii). Layer 1.
1. For each i, j ∈ [n], execute Πadd to compute fi(j) − gj(i) and gi(j) − fj(i) and broadcast the

results to L3.
2. P1

i samples (f1
i (j), . . . , f

n
i (j)) ← Sh(fi(j)), (g1i (j), . . . , gni (j)) ← Sh(gi(j)) for each j ∈ [n], and

sends both fk
i (j) and gki (j) to P3

k and to P4
k using future messaging.

3. P1
i samples (g1i (0), . . . , g

n
i (0))← Sh(gi(0)) and sends gki (0) to P5

k using future messaging.
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Figure 5.2 (Continued...)

(iii). Layer 3.
1. Each P3

k, k ∈ [n] recovers
(a) F k(i, j) as the output of future messaging initiated in step (i). 2. for each i, j ∈ [n].
(b) For each j ∈ [n], P3

k recovers fk
i (j) and gki (j) as the output of future messaging initiated in

step (ii).2 by P1
i , i ∈ [n].

2. Using the output of Πadd, P3
k computes and broadcasts the set

S = {{i, j} : fi(j)− gj(i) ̸= 0 or fj(i)− gi(j) ̸= 0},

and F k(i, j), F k(j, i), fk
i (j), g

k
i (j), f

k
i (j) and gki (j) for each {i, j} ∈ S.

(iv). Layer 4.
1. For each {i, j} ∈ S and l ∈ [n], F l(i, j) was broadcasted by P3

l , l ∈ [n]. Each P4
k, k ∈ [n] recovers

F (i, j) = Rec(F 1(i, j), . . . , Fn(i, j)). Similarly, P4
k recovers F (j, i), fi(j), gi(j), fj(i), gj(i).

2. Each P3
k recovers αk

i,l and βk
i,l for each 0 ≤ l ≤ t as the output of future messaging initiated in

step (i).3. with S as sender. P3
k also recovers fk

i (j) and gki (j) for each j ∈ [n] as the output of
future messaging initiated in step (ii).2 with P1

i as sender.
3. Define B = {i ∈ [n] : ∃j, {i, j} ∈ S and (F (i, j) ̸= gi(j) or F (j, i) ̸= fi(j))}. For each i ∈ B,

(a) P4
k broadcasts αk

i,l and βk
i,l for each 0 ≤ l ≤ k.

(b) P4
k broadcasts fk

j (i) and gkj (i) for each j ∈ [n].
(v). Layer 5.
1. For each i ∈ B and 0 ≤ l ≤ t, each P5

k recovers αi,l = Rec(α1
i,l, . . . , α

n
i,l) and βi,l =

Rec(β1
i,l, . . . , β

n
i,l). Let f̂i(x) =

∑t
l=1 αi,lx

l and ĝi(y) =
∑t

l=1 βi,ly
l.

2. For each i ∈ B and j ∈ [n], each P5
k recovers fj(i) = Rec(f1

j (i), . . . , f
n
j (i)) and gj(i) =

Rec(g1j (i), . . . , g
n
j (i)).

3. Define set B′ = {j ∈ [n] : ∃i ∈ B, fj(i) ̸= ĝi(j) or gj(i) ̸= f̂i(j)}.
(a) If |B ∪B′| ≥ t, dealer is disqualified. Each P5

k outputs (αk
i )i∈[n], where αk

i = 0 for all i ∈ [n].
(b) Otherwise, for each i ∈ [n] \B, P5

k recovers gki (0) as the output of future messaging initiated
in step (ii).3, and outputs (αk

i )i∈[n] such that αk
i = gki (0) if i ∈ [n] \B and ĝi(0) otherwise.

Using Π as a subroutine, verifiable secret sharing is achieved as follows (in Figure 5.2. Let q(x) =
c0 + c1x+ . . . ctx

t be the polynomial that the dealer wants to secret share. For each 0 ≤ l ≤ t, dealer
S executes Π with ci as its input. When P5

i , i ∈ H5 are the set of honest parties in L5. By Lemma 6,
for each 0 ≤ l ≤ t, there exist polynomials ĝl(x) and {ĝl,i(x)}i∈H1

of degree at most t such that,
ĝl,i(0) = ĝl(i), and for all k ∈ H5 and l ∈ H1, Pk

5 holds αk
l,i = ĝl,i(k). Since |H5| ≥ n − t, each

P6
j , j ∈ [n] recovers

γi,j = Rec(α1
l,j , . . . , α

n
l,j) =

t∑
l=0

ĝl(i)j
l,∀i ∈ H1

But then,

γj = Rec(γ1,j , . . . , γn,j) =
t∑

l=0

ĝl(0)j
l.

Defining q̂(x) = ĝl(0)x
l, we conclude that each P6

j receives q̂(j) as required in verifiable Shamir secret
sharing. When S is honest, by Lemma 6 (a), ĝl(0) = cl for each 0 ≤ l ≤ t. Hence, q̂(x) = q(x).

We next argue that, when S is honest, the view of the adversary is identical irrespective of the value
of q(0). Assume that the guarantee in Lemma 6 (b) is preserved when Π is executed concurrently
as in the protocol. Then, the view of the adversary till L5 are identically distributed in the protocol
irrespective of the values of (cl)0≤l≤t. Hence, the view of the adversary in the protocol only reveals
q(i) for i ∈ C6, where P6

i , i ∈ C6 are the set of corrupt parties in L6.
To formally argue the security of the protocol, we can build a simulator along the line of Theorem 7.

Recall that, in the proof of Theorem 7, we used a hybrid argument to effectively extend the game
based security guarantee of the weak multicast protocol Πweak-FMcast as stated in Lemma 4 (b) to
parallel invocations as used in the protocol in Figure 4.2. A similar argument can be used here.
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In Protocol 5.2, the polynomial secret shared in L6 is exclusively determined by αk
l,i, for i ∈ [n]

and 0 ≤ l ≤ t stored by the honest parties P5
k. In other words, the dealer is committed to polynomial

ĝl(x), 0 ≤ l ≤ t (as described in Lemma 6) when all the honest parties in L5 finish receiving messages
from their predecessors. Furthermore, by Lemma 6, when S is honest, view of the layered adversary is
identically distributed irrespective of input of S in each invocation of Π. This ensures that, when the
protocol for verifiable secret sharing is executed in parallel, the polynomial being secret shared by a
corrupt dealer cannot be correlated with that shared by an honest dealer. In the following theorem,
we state this stronger result: when n verifiable secret sharing protocols are executed in parallel with
P0
i , i ∈ [n] as dealer and L6 as shareholders, we realize a parallel VSS functionality with t-security.

The parallel VSS functionality fShamirVSS is formally described below.

Theorem 11. The protocol in Figure 5.2 executed in parallel realizes fShamirVSS with perfect t-security
for t < n/3 by consuming 6 layers, and by communicating O(n6) field elements over the point-to-point
channels and O(n4) field elements over the broadcast channels for each secret.

Employing the layered protocol for VSS, we proceed to port the protocol for secure computation in
[CDN15] to the layered setting. An important functionality we use extensively for this transformation
is resharing, which allows parties in La with (a valid) secret sharing of a secret s to “handover”
the secret to parties in Lb, for any b > a, by providing a fresh secret sharing of s. Using parallel
invocation of VSS, realizing resharing is straight forward: secret shares of uniformly random secrets
cl, 1 ≤ l ≤ t are made available on the input layer. Then, the secret s is reshared by distributing
f(i) to shareholder i in the output layer; here f(x) = s +

∑t
l=1 clx

l. Distributing secret shares of a
uniformly random secret is achieved by having t+ 1 parties in a previous layer secret share random
secrets and the parties locally computing the shares of their sum (See functionality in Figure D.1 and
its implementation in Figure D.2). The resharing functionality is formally defined in Figure D.3, and
it is implemented as outlined above in Figure D.4.

5.2 Multiplication

The main challenge in realizing general MPC is securely implementing a multiplication protocol that
computes a secret sharing of the product of two values using their shares. Following the outline of
the MPC implementation in [CDN15], we first realize a simpler primitive, namely multiplication with
helper, where the input clients hold secret sharing of a pair of values, and a special input client called
the helper holds both values. This primitive allows the helper to verifiably secret share of the product
of these values onto the output clients. The helper will be disqualified if the value secret shared is not
the product.

Implementing multiplication with helper. We realize this functionality by porting a modified
version of the implementation of the same in standard setting as presented in [CDN15]. The protocol
in the standard setting works as follows: When α, β are the values to be multiplied, helper samples
polynomials f(x) and g(x) of degree at most t conditioned on f(0) = α and g(0) = β. It then
computes h(x) = f(x)g(x); clearly, h(0) = αβ. It then verifiably secret shares (αl)l∈[t], (βl)l∈[t] and
(γl)0≤l≤2t, where

f(x) = α+

t∑
l=1

αlx
l g(x) = β +

t∑
l=1

βlx
l h(x) =

2t∑
l=0

γlx
l.

The parties now enter a verification phase in which f(i), g(i) and h(i) are revealed to Pi for each
i ∈ [n]. Pi is to verify if f(i)g(i) = h(i) and raise a complaint otherwise. For each complaint, f(i), g(i)
and h(i) are publicly revealed; parties unanimously disqualify the helper if any of the complaint is
valid. If all complaints turn out to be bogus, then h(x) is verified to be f(x)g(x) and γ = αβ. The
parties now store the secret shares of γ as the shares of the product.

Our layered protocol follows the same logic with one notable difference. The helper in L0 secret
shares the coefficients of f(x), g(x) and h(x) to L6 using the VSS protocol, with the exception of α
and β. Recall that α and β are secret shared on L0; it is imperative to the correctness of the protocol
that the secret shares of α and β provided to L6 are valid. But, this can be easily ensured by having
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α and β in L0 reshared to L6. In the standard setting, this is realized by “transferring” the secret
sharing of α and β to the helper; resharing ensures the same guarantees. By taking appropriate linear
combinations of the coefficients of the polynomials, parties in L6 then reveal f(i), g(i) and h(i) to
each P7

i , i ∈ [n]. Each P7
i raises a complaint if f(i)g(i) ̸= h(i) to L8. For each i ∈ [n] with a complaint,

parties in L8 selectively reveal f(i), g(i) and h(i) to all parties in L9. This is achieved by the trick we
used in VSS as well as multicast and multiplication in the previous section. Finally, γ secret shared
by the helper onto L6 is reshared to L9 and is used as the secret sharing of αβ if the parties in L8

has not (unanimously) disqualified the helper.
When the helper is honest, throughout the protocol, the adversary only sees at most t shares of

α, β, the evaluation of f, g and h on at most t points, and at most t shares of a sharing and resharing
of γ. This ensures that the view of the adversary is identically distributed irrespective of the values
of α and β. A corrupt helper is disqualified by the parties in L8 if and only if h(x) ̸= f(x)g(x). As
we observed while analyzing the protocol for VSS, the sender commits to these coefficients by L5 as
party of VSS protocol. Hence, when this protocol is executed in parallel, a corrupt helper is unable
to correlate the event of their getting disqualified with the secret sharing of the product achieved in
another parallel execution with an honest helper. Thus, the protocol remains secure under parallel
composition. The protocol is formally described in Figure D.8.

Theorem 12. The protocol in Figure D.8 realizes multiplication with helper functionality in Figure
D.7 with perfect t-security for t < n/3.

Multiplication. We proceed to the main primitive required to implement MPC–secure processing
of the multiplication gate. Suppose two values α, β are Shamir secret shared using polynomials f(x)
and g(x). Since f(x)g(x) is a polynomial of degree at most 2t, given f(i)g(i) for at least 2t+1 distinct
i ∈ [n], there exists a linear transformation that computes f(0)g(0) = αβ. For each i ∈ [n], suppose
we execute the multiplication with helper protocol from the previous section to verifiably secret
shares the product f(i)g(i) with the help of the party holding f(i) and g(i). The protocol guarantees
that the secret sharing of the product is accepted (and the helper is not disqualified) whenever the
helper adheres to the protocol; whereas, if the helper secret shares a value other than the product
then the helper is disqualified. Since at least n − t parties are corrupt, we obtain the correct secret
sharing of f(i)g(i) for n− t ≥ 2t+ 1 distinct values of i, which can be locally transformed using the
aforementioned linear transformation to obtain a secret sharing of αβ.

The above proposal has a clear flaw: to multiply f(i) and g(i) held by a helper, both these values
need to be secret shares in the same layer. Hence, we need each f(i) and g(i) to be further secret
shared onto the input layer. But, this is exactly the ‘data structure’ guaranteed by reinforced secret
sharing in Definition 10. Hence, we define the multiplication functionality to take reinforced secret
shares of two values as input; to promote sequential processing of multiplication we also ensure that
the output of the functionality is a reinforced secret sharing of the product of the input values. The
multiplication functionality is formally described below:

Figure 5.3 (Multiplication functionality)

Public parameters: Output layer L10.
Input: Reinforced secret sharing of two values a, b;

i.e., [[a, f(x), (fi(x))i∈[n])]]0 and [[b, g(x), (gi(x))i∈[n])]]0.

1. Input clients reveal shares ⟨a, f(x)⟩0 and ⟨b, g(x)⟩0 to the functionality who reconstructs a, b.
2. Functionality distributes a reinforced secret sharing of ab onto the output clients. That is, it

distributes ⟨ab, h(x)⟩10, where h(x) is a random polynomial of degree at most t such that
h(0) = ab; for each i ∈ [n], it distributes ⟨h(i), hi(x)⟩b, where hi(x) is a random polynomial of
degree at most t such that hi(0) = h(i).

Implementing multiplication. The protocol takes valid reinforced secret sharing of two values
as input. It then proceeds as outlined above by appropriately executing the multiplication with
helper protocols and then linearly combining the evaluations on the product polynomial to obtain a
Shamir secret sharing of the product of the inputs. It remains to convert the Shamir secret sharing
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to a reinforced secret sharing of the product; this is realized by executing a protocol for reinforced
resharing implemented in Figure D.6. The protocol for secure multiplication is formally presented in
Figure 5.4.

Figure 5.4 (A t-secure protocol for multiplication)

Public parameters: Output layer Ld.
Input: [[α, f(x), (fi(x))i∈[n])]]0 and [[β, g(x), (gi(x))i∈[n])]]0.
Subroutines: Πmulth and Πrreshare implementing multiplication with helper and reinforced
resharing, respectively.
Setup: Random secret shares in appropriate layers as required to execute multiplication with
helper and reinforced resharing.

(i). Product computation
1. For each i ∈ [n], execute Πmulth for multiplication with P0

i as helper to share f(i)g(i) onto
L9. The inputs to the protocol are ⟨f(i), fi(x)⟩0 and ⟨f(i), fi(x)⟩0. Additionally, the helper
holds f(i) and g(i), the shares of P0

i in ⟨α, f(x)⟩0 and ⟨β, g(x)⟩0, respectively.
2. Let G ⊆ [n] such that, for each i ∈ G, at the end Πmulth with P0

i as helper, the parties
stored ⟨f(i)g(i), hi(x)⟩9 as a valid secret sharing of f(i)g(i) (instead of disqualifying the
helper). There exist scalars (ri)i∈G such that

∑
i∈G rif(i)g(i) = f(0)g(0) = αβ. Define

⟨αβ, h(x)⟩9 = ⟨
∑
i∈G

rif(i)g(i),
∑
i∈G

rihi(x)⟩9 =
∑
i∈G

ri⟨f(i)g(i), hi(x)⟩9

(ii). Reinforced resharing of the product
1. Execute the t-secure protocol for reinforced resharing with ⟨αβ, h(x)⟩9 as input from L9

and L10 as the output layer, and random secret shares distributed onto L9 as setup. That
is, execute [[αβ, h′(x), ((h′

i)(x))i∈[n]]]10 ← ⟨αβ, h(x)⟩9.
2. The parties in L4 store their respective shares of [[αβ, h′(x), ((h′

i)(x))i∈[n]]]10.

The protocol inherits t-security from t-security of protocols implementing (parallel) multiplication
with helper and reinforced resharing since the protocol essentially uses these protocols in parallel.
Indeed, the protocol remains secure under parallel composition because both the subroutines remain
secure under parallel composition.

Theorem 13. The protocol in Figure 5.4 realizes multiplication functionality in Figure 5.3 with
perfect t-security for t < n/3.

5.3 MPC

In this section, we construct an efficient t-secure protocol for securely computing any given function
f by evaluating a layered arithmetic circuit C computing the function. Suppose each party P0

i , i ∈ [n]
in the input layer has zi ∈ F as input, and each party in the output layer (specified later) wants to
compute f(z1, . . . , zn). Similar to our CNF secret sharing based construction, the secure computation
of f proceeds in three phases: an input sharing phase, a circuit evaluation phase and an output
reconstruction phase.

In the input sharing phase, each input client secret shares their input using reinforced secret
sharing. In the circuit evaluation phase, the protocol keeps the invariant that, if a layer i of C is
processed, then the values on all the output wires outgoing from layer i of C are simultaneously
available of a specific layer of the protocol graph. Given a reinforced secret sharing of the value on the
input wire(s) of a multiplication-by-constant gate or an addition gate, a secret sharing of the value on
the output wire can be computed by locally processing the share. However, for a multiplication gate,
computing a Shamir secret sharing of the product of the values on the input wires using a t-secure
protocol for multiplication consumes 10 layers. Hence, we once again face the challenge of ensuring
the invariant that the values on the output wires of all gates in a layer (of C) are made available
on the same layer of the protocol graph. We get around this obstacle the same way we did in our
previous construction: for a multiplication-by-constant or an addition gate G, after locally computing
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the reinforced secret sharing of the value on the output wire, we further compute a multiplication
gate with value on the output wire of G as one output and the other value being fixed to one. This
is achieved by taking a trivial secret sharing of one as the other input and executing the t-secure
protocol for multiplication which consumes 10 layers. In this manner, we preserve the invariant we
require.

In the protocol for secure computation of f , we will use the protocol for multiplication presented
in Figure 5.4 and the protocol for reinforced resharing presented in Figure D.6. Both these subrou-
tines use several random secret sharing and random secret sharing with various owners as setup.
We generate the setup needed to execute these protocols using the random secret sharing protocol
presented in Figure 5.4. We will argue that the protocol remains secure when the setup is computed
in parallel. The protocol is formally described in Figure 5.5.

Theorem 14. Let f be an n-party functionality computed by a layered arithmetic circuit C over a
finite field F, with D levels and M gates. Then, for any t < n/3, there is an (n, t, 8 + 10D)-layered
MPC protocol for f in which the communication consists of M ·O(n9) field elements over the point-
to-point channels and M ·O(n7) field elements over the broadcast channels.

Protocol 5.5 (Efficient layered protocol for computing a function f)

Public parameters: A layered arithmetic circuit C over F with D levels that computes the
desired function f . Output layer 10D + 7.

Secret inputs: Each input client P0
i , i ∈ [n] has input zi.

Subroutines: protocols implementing VSS (Figure 5.2), random secret sharing (Figure D.2),
reinforced resharing (Figure D.6) and multiplication (Figure 5.4).

Input sharing stage:
1. For each i ∈ [n], execute verifiable secret sharing with P0

i as dealer with input zi and L7 as
shareholders to distribute ⟨zi, pi(x)⟩6.

2. For each i ∈ [n], execute reinforced resharing protocol from L6 to L7 to realize
[[zi, fi(x), (fi,j(x))j∈[n]]]7 ← ⟨zi, pi(x)⟩6.

Circuit evaluation stage:
Invariant: For 1 ≤ i ≤ D, parties in L7+10(i−1) hold reinforced secret shares of the values on

the input wires of any gate in layer i of C. The parties in L7+10(i−1) process any gate Gj in
layer i of C as follows:

(i). Gj is a multiplication-by-constant or addition gate:
1. Parties in L7+10(i−1) locally compute the reinforced secret sharing

[[oj , gj(x), (gj,k)k∈[n]]]7+10(i−1) of the value on Gj ’s output wire.
2. Securely compute the product of value on the output wire of Gj with identity.

This is achieved as follows: Execute the t-secure protocol for multiplication in with
L7+10(i−1) as input layer and L7+10i as output layer. Parties in L7+10(i−1) use
[[oj , gj(x), (gj,k)k∈[n]]]7+10(i−1) and a trivial reinforced secret share of 1 given by
[[1, 1(x), (1(x))i∈[n]]]7+10(i−1) as inputs to the computation. Here, 1(x) is the constant
polynomial that evaluates to 1 on every point.

(iii). Gi is a multiplication gate:
1. Execute the protocol for multiplication with L7+10(i−1) input layer and L7+10i as output

layer. Parties in L7+10(i−1) use the reinforced secret shares of the values on the input
wires as inputs for this computation.

Output reconstruction phase:
1. The parties in L7+10D reveal the reinforced secret shares of the output wire of C to every

output client in the next layer.
2. Each output client in L8+10D recovers the value on the output wire from the reinforced

secret shares.
Implementing setup:

1. Subroutines for reinforced resharing and for multiplication used setup at various levels. In
order to obtain random secret sharing on La, execute the t-secure protocol in Figure D.2.
This protocol uses verifiable secret sharing to be invoked by parties Pa−7

i , i ∈ [t + 1]. But,
random secret sharing is invoked for the first time in L7.
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6 Efficiency Improvement for Computational Security

We can use standard techniques to improve the efficiency of our constructions if the security guarantee
is relaxed from perfect to computational while maintaining perfect correctness but achieving only
static security. Verifiably secret sharing N distinct values using the scheme we presented in Figure
5.2 requires communicating N ·O(n6) field elements in total. We show a simple scheme that realizes
secret sharing of random secrets with a preprocessing cost of 2O(n) bits but uses no communication
for subsequent sharing of unlimited random secrets.

Let f be a pseudorandom function that takes a λ bit long seed. When T = {T ⊂ [n] : |T | = n− t},
the dealer uses future multicast to transfer a λ-bit seed sT to parties (P6

i )i∈T . This requires 2O(n) · λ
communication in total. Next, to sample the secret share of the ith random secret ri, each party
computes δT = fsT (i) for each T : i ∈ T and stores (δT )T :i∈T as their CNF share. The dealer knows
ri since it has access to (sT )T∈T , so it can broadcast a single value si−ri to L6 using 4n+1 broadcasts,
allowing the parties obtain shares of an arbitrary value si from their shares of ri. In this protocol,
a computationally bounded adversary only learns s − r, which is independent of s. Even when the
dealer is corrupt, since r is correctly secret shared, the shares held by the parties remain valid at the
end of this transformation. Asymptotically, this protocol making black-box use of a PRG uses O(ℓ)
bits of communication per secret.

Theorem 15. There exists a (n, t, 5)-layered protocol with computational t-security against a static
malicious adversary and perfect t-correctness making black-box use of a PRG with seed length λ, that
verifiable secret shares ℓ bits with λ · 2O(n) +O(nℓ) bits of communication.

We now obtain an asymptotically efficient layered protocol for general secure computation with
computational t-security and perfect correctness for t < n/3. In our construction of Figure 5.5, the
O(n3) invocations of VSS per gate dominate the communication cost. We tweak this protocol by
realizing Shamir secret sharing by first distributing CNF shares using the VSS protocol of Theo-
rem 15 and applying share conversion [CDI05] to obtain Shamir secret shares. The resulting protocol
computes each gate using O(n5) bits of amortized communication.

Theorem 16. Let f be an n-party functionality computed by a layered arithmetic circuit C over
a finite field, with D levels and M gates. Then, for any t < n/3, there is an (n, t, O(D))-layered
MPC protocol for f with computational t-security against a static malicious adversary and perfect
correctness making black-box use PRG with seed length λ, and using λ · 2O(n) + O(n5 ·M) bits of
communication.

Given a Boolean circuit C computing a function f , a constant depth arithmetic circuit with O(c) gates
over a field of characteristic 2 that computes a garbled circuit of C can be constructed as in [DI05].
Using the protocol constructed in the above theorem to evaluate this circuit, we get the following
result:

Corollary 3. Let f be an n-party functionality computed by a Boolean circuit C with M gates. Then,
for any t < n/3, there is an (n, t, O(1))-layered MPC protocol for f with computational t-security
against a static malicious adversary and perfect correctness making black-box use PRG with seed
length λ, and using λ · 2O(n) +O(n5 ·M) bits of communication.
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Supplementary Material

A Preliminaries

A.1 Secret Sharing

A central tool used for securely implementing basic primitives for layered MPC is secret sharing. A
(t, n)-secure secret sharing scheme takes a secret s as input and computes n shares with the secrecy
guarantee that any set of at most t shares reveal nothing about s while any set of t + 1 correct
shares can be used to efficiently reconstruct the secret. A robust secret sharing scheme additionally
guarantees correct reconstruction from n shares, even when an arbitrary set of t out of the n shares
have been tampered. Formally,

Definition 6 (Secret Sharing). A secret sharing scheme with secret domain S and share domain
U is a pair of algorithms (Sh,Rec) called the sharing algorithm and the reconstruction algorithm,
respectively.

– Sharing. Sh takes as input a secret s ∈ S and randomness ρ chosen uniformly from some domain
R and computes Sh(s, ρ) = (s1, . . . , sn), where si ∈ U will be called the ith share of the secret s.
If ρ is clear from the context we just write Sh(s) = (s1, . . . , sn).

– Reconstruction. Rec takes the set of all shares and computes Rec(s1, . . . , sn) = ŝ.

The (t, n)-secret sharing scheme (Sh,Rec) should satisfy the following properties:

Correctness. For all ρ← R, and any s ∈ S, we have Rec(Sh(s, ρ)) = s.
t-security. For any s, s′ ∈ S, and I ⊂ [n], |I| ≤ t,{

{si}i∈I

∣∣ρ← R,Sh(s, ρ) = {si}i∈[n]

}
≡

{
{si}i∈I

∣∣ρ← R,Sh(s′, ρ) = {si}i∈[n]

}
.

The scheme (Sh,Rec) is said to be robust against t corruptions if it additionally satisfies the following
reconstruction property:

t-robustness. For any ρ← R, a secret s ∈ S, a set I ⊂ [n] of size at most t, and shares ŝi ∈ U , for
i ∈ I,

Rec({si}i∈[n]\I , {ŝi}i∈I) = s, where Sh(s, ρ) = (s1, . . . , sn).

We next define two commonly used, robust secret sharing schemes that we extensively use in our
constructions.

Definition 7 (Threshold CNF-Secret Sharing [ISN89]). Let t, n ∈ N and s be an element in
a ring L. Let T be an enumeration of all

(
n

n−t

)
subsets of size n− t such that T = {T ⊆ 2[n] : |T | =

n− t} = {T1, . . . , Tk}. A threshold CNF-secret sharing scheme (Sh,Rec) is defined as follows:

– Sharing. To share a secret s, first sample {rT }T∈T uniformly at random from L subject to
s =

∑
T∈T rT (i.e., obtain a k-out-of-k additive secret sharing of s). Let si consist of all shares

rT such that T ∈ T and i ∈ T . Then, Sh(s, ρ) = (s1, . . . , sn).
– Robust Reconstruction. Let {si}i∈[n] be the set of input shares. For each i ∈ [n] and T ∈ T

such that i ∈ T , denote the additive share rT from si as riT . For each T ∈ T , choose the unique
value r̂T such that |{i ∈ [n] : riT = r̂T }| ≥ n− 2t. Then, Rec({si}i∈[n]) =

∑
T∈T r̂T .

Definition 8 (Shamir Secret Sharing).
For t, n such that t < n/3, a (t, n)-Shamir secret sharing scheme (Sh,Rec) is defined using a finite
field F such that |F| > n and distinct non-zero field elements α1, . . . , αn ∈ F.

– Sharing. Given a secret s ∈ F, Sh samples c1, . . . , ct uniformly and independently from F and
defines the polynomial p(x) = s+

∑t
i=1 cix

i. Then, Sh(s) = (s1, . . . , sn), where si = p(αi).
– Robust Reconstruction. Let {ŝi}i∈[n] be the set of received shares. Rec finds a polynomial p(x)

of degree at most t such that |{i : p(αi) ̸= ŝi}| ≤ t. Then, Rec({ŝi}i∈[n]) = p(0).
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A.2 Layered Circuits

Definition 9 (Layered Arithmetic Circuits). Let F be a field and C : Fn → Fm be an arithmetic
circuit over F of size |C| = M with gates g1, . . . , gM of the following types.

– Addition: Given input wire values x1, . . . , xk ∈ F, the output of the gate is z =
∑

i∈[k] xi.
– Multiplication-by-Constant: Given input wire value x ∈ F and a constant c ∈ F associated

with the gate, output the value z = c · x.
– Multiplication: Given input wire values x1 and x2 from F, the output wire value is the product

z = x1 · x2.

C is a layered arithmetic circuit if the gates can be partitioned into layers L0, . . . , LD such that for
every layer 1 ≤ i ≤ D and every gate g ∈ Li, all inputs to g are outputs of gates in Li−1.

A.3 Layered Broadcast

The definition of layered MPC (Definition 1) assumes layer-to-layer broadcast. This turns out to be a
necessary since deterministic broadcast is impossible in the layered setting even if only considering a
fail-stop adversary. [Gar94] also explored the relation between an adversarial mobility and the ability
to reach agreement in his work on Byzantine Agreement with Mobile Faults (MBA). They identified
a mobile fault setting MF( t

n−1 , ρ) parameterized by the adversarial threshold t of all n parties and
“roaming speed” ρ. Indeed, the setting of MF(·, 1) (full “roaming speed”) is enough to render BA
impossible. We now cast the result of [Gar94] in the setting of layered MPC.

Theorem 17. Deterministic perfect broadcast for layered MPC is possible iff t = 0.

The proof sketch below follows the technique of [FL81]. They use equivalence classes of executions to
argue the lower bound of t+1 on the round complexity of unauthenticated broadcast. This was later
extended to the authenticated setting in the seminal work of [DS83].

Proof Sketch. Assume the existence of a protocol Π for broadcast over a layered graph consuming d
layers i.e. with output being obtained in layer d+1 and assume for simplicity that n = 4. Furthermore,
we assume that a faulty party merely drops a subset of its outgoing messages and will otherwise follow
the protocol.

The idea is to build a chain of “equivalent” executions where each execution has at most one faulty
party in each layer and where (1) the first execution in the chain has 0 as the unique decision value
(2) the last execution has 1 as the unique decision value (3) any two consecutive executions in the
chain are indistinguishable to some honest party in the last layer.

Let the initial execution be the case where the everyone are honest and the dealer has input 0. We
say that a party is “muted” if it has no outgoing messages. Switching the input of a muted party has
no effect on protocol execution. The crux of the proof is to show a sequence of equivalent executions
that mutes a party in S0 and flips its input to 1 and then un-mutes it without violating requirement
(3).

B Basic Primitives

B.1 Details omitted from Section 3.1

We continue the discussion on parallel composition of fFM from Section 3.1 in the remark below.

Remark 2. When our protocol implementing fFM is composed in parallel, the resulting functionality is
not the natural parallel composition of fFM which takes the input from each sender to each receiver and
delivers them. In fact, this functionality is impossible to realize even in the trivial case of messaging
from one layer to the very next using the provided secure communication link. As an example, suppose
communication from S1 ∈ L0 to R1 ∈ L1 and from S2 ∈ L0 to R2 ∈ L1 are composed in parallel.
Now, a rushing adversary corrupting S1 and R2 can collect the message from S2 to R2 and set this
as the message from S1 to R1. Interestingly, this limitation persists when parallely composing our
protocol for realizing fFM from L0 to Ld (even for d > 1) with t-security for t < n/3. Interestingly,
this limitation persists when parallely composing our protocol for realizing fFM from L0 to Ld (even
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for d > 1) with t-security for t < n/3. We demonstrate this for d = 2. In this case, the future
messaging protocol proceeds as follows: The sender in L0 secret shares the message among the parties
in L1 using a (t, n)-robust secret sharing scheme. Parties forward the shares they received from the
sender to the receiver in L2 who reconstructs the secret from the shares. Since at least n − t shares
are forwarded unchanged by the honest parties in L1 the receiver correctly recovers the message;
this follows from the secret sharing scheme being t-robust. However, a corrupt sender can distribute
invalid shares to parties in L1. This allows the corrupt parties (colluding with the sender) to divulge
shares that (together with shares forwarded by the honest parties) reconstruct to a value of their
choosing, which they could decide on after collecting the views of corrupt parties in the next layer by
rushing.

B.2 Proving Lemma 2

Lemma 2 (Layered protocol for fn
FM). Let (Sh,Rec) be a robust (t, n) secret-sharing scheme

(Definition 6), the (n, t, d)-layered protocol in Figure 3.3 realizes the functionality fn
FM in Figure 3.2

with perfect security for t < n/3.

Proof. We prove the security of the protocol by presenting a simulator S which, given oracle access
to fn

FM from L0 to Ld, simulates the view of the adversary interacting with the protocol in Figure 3.3.
The simulator S works in two phases: In the first phase, S emulates fn

FM from L0 to Lℓ. Suppose
the adversary corrupts I = {Pℓ

k, k ∈ I} ⊂ Lℓ. In the protocol, as leakage from fn
FM from L0 to Lℓ,

the adversary expects (s(i,j),k)k∈I among the shares (s(i,j),k)k∈[n] sampled according to Sh(m(i,j)) for
each sender Si and receiver Rj . These messages are simulated (without knowing m(i,j)) by sampling
them according to Sh(m) for an arbitrary member of M . On receiving this leakage, the adversary
sends all messages that each corrupt Si intends to send over fn

FM from L0 to Lℓ. The simulator now
has all the values needed to simulate the output of fn

FM from L0 to Lℓ to all corrupt parties.
In the second phase, simulator emulates fn

FM from Lℓ to Ld. For this, it first invokes fn
FM from L0

to Ld to receive the message m(i,j) from every honest Si to every corrupt Rj . The adversary expects
(s(i,j),k)k∈I received during fn

FM from L0 to Lℓ in the first phase of the simulation, and (s(i,j),k)k/∈I

it will receive in this phase to be jointly distributed according to Sh(m(i,j)). Recall that, S sampled
(si,j),k)k∈I according to Sh(m) in the previous phase. But, since |I| ≤ t, the simulator can patch
(s(i,j),k)k/∈I such that (s(i,j),k)k∈[n] is distributed according to Sh(m(i,j)); this follows from t-privacy
of (Sh,Rec). After resampling (s(i,j),k)k/∈I , the simulator can safely provide the leakage from fn

FM from
Lℓ to Ld. At this point, the adversary reveals the set of all messages that each corrupt Pℓ

k intends to
send over fn

FM from Lℓ to Ld.
The simulator now holds all the messages that are needed to compute the messages from every

corrupt sender to every receiver (corrupt or honest). Hence, it can extract the appropriate inputs
that the corrupt parties need to input to fn

FM from L0 to Ld. It remains to argue that, for any honest
Si and honest Rj , the output of Rj in the protocol coincides with the input of Si. This follows from
t-robustness of (Sh,Rec) since each s(i,j),k sent by Si via an honest Pℓ

k (there are at least n − t of
them) correctly reaches Rj .

Formally, consider any layered adversary A that non-adaptively corrupts a set of parties I ⊂ Lℓ

such that |I| ≤ t and interacts with parties executing Πn
FM. We will show that, for any input m(i,j) ∈

M, i, j ∈ [n],

EXECfn
FM,S,I(m(i,j), i, j ∈ [n]) ≡ EXECΠn

FM,A,I(m(i,j), i, j ∈ [n]). (1)

Here, we used the notation from [Can00] to denote the joint distribution of the honest parties’
outputs and the output of the adversary. When input to Π is (x1, . . . , xn), the random variable
EXECΠ,A,I(m

′
1, . . . ,m

′
n) is the vector

EXECΠ,A,I(m
′
1, . . . ,m

′
n) = (ADVRΠ,A,I(m

′
1, . . . ,m

′
n),

EXECΠ,A,I(m
′
1, . . . ,m

′
n)1,

. . .

EXECΠ,A,I(m
′
1, . . . ,m

′
n)n )

where ADVRΠ,A,I(m
′
1, . . . ,m

′
n) is the output of A, and, EXECΠ,A,P(x1, . . . , xn)i is the output of

party Pd
i for each i ∈ [n] at the end of the interaction between Π invoked with input (x1, . . . , xn) and

A.
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Simulator S works as follows:

Figure B.1 (Simulator S for the protocol in Figure 3.3)

Public parameters: Senders S1, . . . ,Sn ∈ L0, receivers R1, . . . ,Rn ∈ Ld

where d > 0.
Additional inputs to the simulator: Set of corrupt parties I, and

oracle access to adversary A.

1. Emulating fn
FM from L0 to Lℓ.

(a) For each honest Si, S samples (s(i,j),1, . . . , s(i,j),n) according to Sh(m) for every Rj , j ∈ [n].
Here, m is an arbitrary member of M . For each corrupt Pℓ

k, S leaks (s(i,1),k, . . . , s(i,n),k) to
A as message that Si intends to send to Pℓ

k over fn
FM.

(b) For each corrupt Si and each Pℓ
k, S receives (s(i,1),k, . . . , s(i,n),k) from A as the message that

Si intends to send to party Pℓ
k over fn

FM.
(c) Finally, for each corrupt Pℓ

k, S delivers (s(i,1),k, . . . , s(i,n),k) to A as message from Si, i ∈ [n]

to Pℓ
k over fn

FM.
2. Emulating fn

FM from Lℓ to Ld.
(a) For each honest Si and corrupt Rj , S receives the message m(i,j) that Si intends to send to

Rj as leakage from fn
FM from L0 to Ld.

(b) Let I ⊂ [n] such that Pℓ
k is corrupt if and only if k ∈ I. For each honest Si and corrupt Rj ,

resample (s(i,j),k))k/∈I such that (s(i,j),k))k∈[n] is distributed according to Sh(m(i,j)). Such a
“patching” is possible by t-privacy of (Sh,Rec).

(c) For each honest Pℓ
k and corrupt Rj , S delivers (s(1,j),k, . . . , s(n,j),k) to A as message that Pℓ

k

intends to send to Rj over fn
FM.

(d) For each corrupt Pℓ
k, S receives (s(1,j),k, . . . , s(n,j),k) from A as message Pℓ

k intends to send
to each Rj , j ∈ [n] over fn

FM. S updates the values of each s(i,j),k that was changed in this
step.

(e) For each Pℓ
k ∈ Lℓ and corrupt Rj , S delivers (s(1,j),k, . . . , s(n,j),k) as message from Pc

k to Rj

over fn
FM.

3. For each corrupt Si, compute m(i,j) = Rec(s(i,j),1, . . . , s(i,j),n) as the message for Rj . Simulator
sends m(i,j) to fn

FM (from L0 to Ld) as the message Si intends to send to Rj . Finally, S outputs
whatever A outputs.

We now argue that S satisfies Equation (1). We separately analyze the outputs of honest parties
and view of the adversary in both scenarios.

In the protocol, an honest Rj outputs Rec(ŝ(i,j),1, . . . , ŝ(i,j),n) as the message from a sender Si. In
the simulation, output of Rj is the input of an honest Si, but if Si is corrupt, it is Rec(ŝ(i,j),1, . . . , ŝ(i,j),n)
(as chosen by S). In both scenarios, ŝ(i,j),k coincides with s(i,j),k sent by Si to Pℓ

k over fn
FM from L0

to Lℓ if Pℓ
k is honest, and with ŝ(i,j),k sent by Pℓ

k to Rj over fn
FM from Lℓ to Ld if Pℓ

k is corrupt.
This directly implies that the output of Rj in both scenarios coincide when Si is corrupt. When Si is
honest, (s(i,j),1, . . . , s(i,j),n) are shares of its input and ŝ(i,j),k coincides with s(i,j),k for at least n− t
distinct values of k (since there are at most t corrupt parties in Lℓ). Hence, by the robustness of the
secret sharing scheme, the output of Rj coincides with the input of an honest Si.

The view of A consists of the messages sent by corrupt parties in L0, messages sent and received
by corrupt parties in Lℓ and the messages received by corrupt parties in Ld. Note that, in step 3.(a). of
the simulation, (s(i,j),1, . . . , s(i,j),n) is sampled according to Sh(m(i,j)) for any honest Si and corrupt
Rj . Using this observation, and inspecting the protocol and its simulation, we conclude that the view
accumulated by A in both scenarios differ only in the joint distribution of messages sent by each
honest Si to corrupt parties in Lℓ which they are expected to forward to honest receivers. Formally,
the difference is in the generation of the joint distribution of (s(i,j),k) for triples (i, j, k) such that
Si,Rj are honest and Pℓ

k is honest. In the protocol, honest Si samples (s(i,j),1, . . . , s(i,j), n) according
to Sh(m(i,j)) for (honest) Rj and sends s(i,j),k to the corrupt party Pℓ

k. Whereas, in the simulation, for
each honest Si and honest Rj , S samples (s(i,j),1, . . . , s(i,j), n) according to Sh(m) (for some arbitrary
m) and sends s(i,j),k to the corrupt party Pℓ

k. But, there are at most t corrupt parties in Lℓ. Since
the secret sharing scheme is t-robust, any set of t shares is identically distributed irrespective of the
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secret. Hence, we conclude that the distribution of the view of A (jointly, with outputs of honest
parties) coincide in both scenarios, concluding the proof. ⊓⊔

C Layered MPC based on CNF Secret Sharing

C.1 Proof of Lemma 4

Lemma 4. For any T ∈ T , the following properties hold for Πweak-FMcast with UT as intermediaries
when executed in the presence of any adversary A:

(a) There exists r̂ such that all honest receivers in R output r̂ at the end of Πweak-FMcast. Furthermore,
if S is honest, r̂ = r.

(b) If S, and all intermediaries and receivers are honest, for any r, r′ ∈M ,

ADVRΠ,A(r) ≡ ADVRΠ,A(r
′).

Proof. By Lemma 3:(1), every honest party in L3 computes the same output at the end of Πadd.
Hence, all (n− t or more) honest parties broadcasts a complaint (or refrain from doing so) in unison.
In the former case, all receivers get r̂ = Rec(r̂1, . . . , r̂n) from each honest party in L4 and output the
unique value sent by at least n − t parties. Thus, all honest receivers output r̂. When S is honest,
by Corollary 2:(1), in every ΠFM initiated in step (i).2 of Πweak-FMcast from S to P3

i , the output r̂i
coincides with sender’s input ri. Hence, each P4

j , j ∈ [n] receives r̂i = ri from each honest P3
i in the

previous level. Consequently, r̂ = Rec(r1, . . . , rn) = r by t-robustness of the secret sharing scheme.
Thus, (a) holds in this case.

Suppose all honest parties in L3 refrain from registering complaints. Each receiver in R gets
(r̂ji , j ∈ [n]) from every honest P4

i and computes the output according to step (v).2. By Corollary 2:(1),
in each ΠFM (initiated in step (ii).2) from an honest sender P1

j to an honest receiver P4
i , the output

r̂ji coincides with the input rji . Hence, by t-robustness of secret sharing, all honest receivers correctly
recover Rec(r̂j1, . . . , r̂

j
n) = rj for each honest P1

j . Furthermore, if every honest party in layer 3 refrains
from registering a complaint, then the output of Πadd computing rj − rj

′
must have been zero for

every pair j, j′ ∈ T . By Lemma 3:(1), this specifically implies that rj and rj
′

are identical for any
pair of honest parties P1

j and P1
j′ . Thus, there exists r′ such that rj = r′ for all honest P1

j . Finally,
when S is honest, r′ coincides with r, the input of S. Since the set of n − 2t or more honest parties
forms a majority of the intermediaries, all honest receivers output r′. This concludes the proof of (a).

Before proving (b), we informally argue that the sender’s secret is not leaked when intermediaries
and receivers are honest. Assume that the statements about security of ΠFM and Πadd in Corollary 2
and Lemma 3 hold even when they are composed as in Πweak-FMcast. Since rj = r for every intermediary
P1
j , rj − rj

′
= 0 for every pair j, j′. Consequently, every honest party in L3 refrain from broadcasting

a complaint. Hence, the view of A interacting with Πweak-FMcast with honest sender, intermediaries
and receivers consists of the shares of r sent to the corrupt parties in L3 by S using ΠFM in step (i).2,
and the shares of rj(= r) sent to corrupt parties in L4 by P1

j using ΠFM initiated in step (ii).2. But,
since the secret sharing scheme is t-secure, these shares do not reveal any information about r to the
adversary. Thus, r remains private from the adversary.

We proceed to formally prove Lemma 4:(b) using a hybrid argument. Fix r, r′ ∈M where r ̸= r′.
Let Θ (resp. Θ′) be the protocol Πweak-FMcast with UT = {P1

i : i ∈ T} as intermediaries and r (resp.
r′) as input of S as described in Figure 4.2. We progressively transform Θ to obtain Θ′ and argue
that the adversary’s view is identically distributed across each of these transformations, proving (b).
Transformation Θ → Θ1. Suppose w.l.o.g. suppose P3

i is honest if i ∈ [k], where k ≥ n − t.
Consider a sequence of protocols (Θ0,i)0≤i≤k, where Θ0,0 is identical to Θ. For i ≥ 1, Θ0,i is obtained
by replacing (r1, . . . , rn) in step (i).2 with (r′1, . . . , r

′
i, ri+1, . . . , rn), where (r′1, . . . , r

′
k, rk+1, . . . , rn) is

distributed according to Sh(r′). Note that (r′1, . . . , r′k) can be sampled in this manner since the secret
sharing scheme is t-secure and k ≥ n − t. Finally, define Θ1 = Θ0,k. Notice that, in Θ1, S sends a
secret sharing of r′ in step (i).2. The following claim suffices to prove that

ADVRΘ,A(⊥) ≡ ADVRΘ1,A(⊥). (2)

Here the argument is ⊥ because neither protocols take any inputs.
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Claim. For any 1 ≤ ℓ ≤ k,

ADVRΘ0,ℓ−1,A(⊥) ≡ ADVRΘ0,ℓ,A(⊥).

Proof. The only difference between Θ0,ℓ−1 and Θ0,ℓ is that the sender’s input in the instance ℓ of
ΠFM from S to P3

ℓ is rℓ in the former and r′ℓ in the latter. Since the sender and all intermediaries are
honest, as we previously observed, all honest parties in L3 refrain from broadcasting a complaint and,
more importantly, refrain from broadcasting the output of ΠFM from S initiated in step (i).2. We will
show that, if Equation (2) does not hold, then Corollary 2:(2) is not satisfied for ΠFM from S to P3

ℓ ;
a contradiction.

Adversary A′ with auxiliary input {ri, i ∈ [n]}, {r′i, i ∈ [k]} non-adaptively corrupting the same
set of parties that A corrupted in L1 and L2 interacts with an execution of ΠFM from honest S to
honest P3

i as follows:

– Let Ii ⊂ Li, 0 ≤ i ≤ 5 be the set of parties corrupted by A. A′ generates dummy corrupt parties
Ii = {Pi

j : P
i
j ∈ Ii, i ∈ {0, 3, 4, 5}} and initialize their random tapes.

– A′ hands over the control of corrupt parties Ii, i = 1, 2 and dummy corrupt parties Ii, i ∈
{0, 3, 4, 5} to A which it internally invokes. A′ also generates dummy honest parties Hi = Li \ Ii
for each 0 ≤ i ≤ 5.

– Using the values of ri, r
′
i, A′ emulates dummy honest parties Hi for each 0 ≤ i ≤ 5 executing

Θ0,ℓ−1 and interacts with A. However, it does not emulate the instance of ΠFM from S to P3
ℓ

initiated in step (i).2. of Θ0,ℓ−1. Instead, A′ interacts with the real execution of ΠFM in parallel,
and forwards the messages from (and to) the honest parties in the real execution to (and from)
the corrupt parties I1 ∪ I2 who A′ has handed over to A. We stress that the output of real P3

ℓ

at the end of the execution ΠFM from S to P3
ℓ is not needed by A′ for this emulation. This is

because, in Θ0,ℓ−1 all honest parties, specifically P3
ℓ , refrains from revealing the output of ΠFM

from S (from step (i).2).
– At the end of Θ0,ℓ−1, A′ outputs whatever A outputs.

In the instance of ΠFM from S to P3
ℓ in step (i).2, if the input S is rℓ, the above interaction is identical

to the interaction with parties executing Θ0,ℓ−1 for adversary A corrupting Ii, 0 ≤ i ≤ 5. This can
be verified as follows: In the former, all instructions in Θ0,ℓ−1 except the ones that are part of ΠFM

from S to P3
ℓ are carried out by dummy honest parties and corrupt parties controlled by A. Whereas,

in the latter, they carried out by the real honest parties and corrupt parties controlled by A. But, A′

emulates all the dummy parties honestly using freshly chosen randomness in the former case just as
the honest parties will in the latter case. Thus,

ADVRΠFM,A′(rℓ) ≡ ADVRΘ0,ℓ−1,A(⊥).

As previously observed, Θ0,ℓ−1 and Θ0,ℓ differ only in the input of the sender in ΠFM from S to P3
ℓ .

Hence, in the instance of ΠFM from S to P3
ℓ in step (i).2, if the input S is r′ℓ, the above interaction

is identical to the interaction with parties executing Θ0,ℓ for adversary A corrupting Ii, 0 ≤ i ≤ 5.
Thus,

ADVRΠFM,A′(r′ℓ) ≡ ADVRΘ0,ℓ,A(⊥).

But, since S and P3
ℓ are honest, by Corollary 2,

ADVRΠS,A′(m′
j) ≡ ADVRΠj ,A(⊥).

This concludes the proof of the claim. ⊓⊔
Transformation Θ1 → Θ2. We construct Θ2 from Θ1 by setting rj = r′ (instead of rj = r) for each
party P1

j in step (ii).1. Intuitively, since all intermediaries are honest, parties in L3 only learn rj−rj
′
,

and hence the view of A will be identical in both cases. To formally prove this, we again consider
a sequence of hybrids which progressively transforms Θ1 to Θ2. In every new hybrid, we change the
inputs used by a new pair of honest parties P1

j ,P
1
j′ (j < j′) to Πadd for computing rj − rj

′
(in step

(i).1) from rj = r,−rj = −r, respectively, to rj = r′,−rj = −r′. Clearly, the final protocol in this
sequence is exactly Θ2. The difference between any pair of consecutive hybrids is the replacement
of the inputs of a specific pair of honest parties P1

j ,P
1
j′ (j < j′) to Πadd from rj = r,−rj = −r,
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respectively, to rj = r′,−rj = −r′. We argue that the view of A remains identically distributed
across any pair of consecutive hybrids by appealing to Lemma 3 using the same line of arguments as
in the above claim. We thus obtain,

ADVRΘ1,A(⊥) ≡ ADVRΘ2,A(⊥). (3)

Transformation Θ2 → Θ3. To obtain Θ3 from Θ2, for each i ∈ T , we replace (ri1, . . . , r
i
n) in step

(ii).2 with (si1, . . . , s
i
n), where (si1, . . . , s

i
n) is distributed according to Sh(r′) and rij = sij for each j

such that P4
j ∈ L4 is corrupt. This is possible since the secret sharing scheme is t-secure and there

are at most t corrupt parties in L4. Arguing that the adversary’s view remains the same across this
transformation is similar to arguing the same for transformation from Θ0 to Θ1. We thus obtain,

ADVRΘ2,A(⊥) ≡ ADVRΘ3,A(⊥). (4)

Θ3 can be transformed to Θ′ by replacing r with r′ in step (i).1. Note that this does not make
any difference to the step (ii), which has already been modified to replace r with r′. Thus, from
Equations (2) to (4), we conclude that

ADVRΘ,A(⊥) ≡ ADVRΘ′,A(⊥).

This proves (b) concluding the proof. ⊓⊔

C.2 Constructing S for Theorem 7

Theorem 7. Protocol ΠFMcast in Figure 4.2 is a secure (n, t, 5)-layered protocol realizing fFMcast with
input client S and output clients in R.

Proof. When S is corrupt, S emulates the honest parties according to the instructions in ΠFMcast and
interact with the adversary. Observe that none of the honest parties have inputs since S is the only
party with input. For each T ∈ T , S extracts an input rT of S in Πweak-FMcast with intermediaries
UT as described below: We observed in the proof of statement (a) of Lemma 4 that, at the end of
Πweak-FMcast, all receivers output r̂ computed in step (iv).1 of the protocol if all the honest parties in
L3 broadcasted a complaint, and otherwise–i.e., if no honest party in L3 broadcasted a complaint–all
receivers output the unique value that was received by all honest intermediaries. Hence, if all emulated
honest parties in L3 broadcasted a complaint, S chooses rT to be r̂ (computed by emulated honest
parties), and otherwise it choose rT as the unique value received by all emulated honest intermediaries.
Finally, it sends

∑
T∈T rT to fFMcast as the input of S. Security follows from statement (a) in Lemma 4.

Next, suppose S is honest. In this case, S emulates all the honest parties and interacts with A.
For this, S sets the input of S to an arbitrary fixed message m∗ ∈M . Since the output of all honest
receivers coincides with the input of the sender, it suffices to show that the output of A is identically
distributed while interacting with ΠFMcast or with S.

Let T ∗ ∈ T such that UT∗ = {P1
i : i ∈ T ∗} are honest. The shares (rT , T ∈ T \ {T ∗}) used in the

simulation is identically distributed as (rT , T ∈ T \ {T ∗}) used in ΠFMcast. This is because, in step 1
of ΠFMcast, (rT , T ∈ T ) is chosen to be an additive secret sharing of the input of S. Hence, for each
T ∈ T \ {T ∗}, execution of Πweak-FMcast with UT as intermediaries in the presence of A is identical in
both the simulation and in ΠFMcast. However, in Πweak-FMcast with UT∗ as intermediaries, the input of
S is m∗ −

∑
T∈T \{T∗} rT in the former and m−

∑
T∈T \{T∗} rT in the latter.

If all the receivers are honest, by statement (b) of Lemma 4, the view of the adversary in
Πweak-FMcast with UT∗ as intermediaries is identical in both the simulation and in ΠFMcast, proving
security.

However, when there are corrupt parties in R, the view of A additionally contains the view of the
corrupt receivers. The view of corrupt receivers in Πweak-FMcast with UT∗ as intermediaries needs to
be made consistent with rT∗ = m−

∑
T∈T \{T∗} rT even though S chose rT∗ = m∗ −

∑
T∈T \{T∗} rT

in the simulation. To ensure this, S tweaks the messages from the emulated honest parties in L4 to
the corrupt receivers in R as follows: S receives the input m of S from fFMcast. In Πweak-FMcast, for
each intermediary P1

i ∈ UT∗ , S samples (r̂i1, . . . , r̂in) according to distribution Sh(m−
∑

T∈T \{T∗} rT )

conditioned on r̂ij = rij for each j such that P4
j in L4 is corrupt. This is possible since the secret

sharing scheme is t-secure and there are at most t corrupt parties in each layer. In step (iv).2 (note
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that parties choose this step since all intermediaries and S are honest as observed in the proof of
Lemma 4), each emulated honest party sends r̂ij instead of rij . This ensures that the view of corrupt
receivers in Πweak-FMcast with UT∗ as intermediaries is consistent with the input of S. This concludes
the proof. ⊓⊔

C.3 Constructing S for Theorem 8

Theorem 8. The protocol in Figure 4.3 executed in parallel realizes fparallel-VSS with perfect t-security
for t < n/3 by consuming 5 layers, and by communicating

(
n
t

)3 ·O(n2) field elements over the point-
to-point channels and over the broadcast channels for each secret.

Proof. We now formally describe the simulator. The parallel VSS protocol with P0
i as dealer consists

of |T | parallel multicast protocols. For T ∈ T , dealer multicasts riT to receivers P5
j , j ∈ T . The

simulator emulates all the honest parties in each of these multicast protocols and interacts with the
adversary. For this, each honest dealer (the honest dealers are the only honest parties with input)
are initialized with uniformly random inputs for every multicast in which they act as sender. For
each corrupt dealer P0

i , the simulator extracts r̂iT as the input in the multicast from P0
i to receivers

P5
j , j ∈ T for each T ∈ T . The simulator then sets (r̂iT )T∈T as the input of corrupt P0

i to fparallel-VSS.
We now argue that the view of the adversary is identically distributed when interacting with

the simulator and with honest parties executing the protocol for parallel VSS. Suppose P5
j , j ∈ T ∗

are honest (such T ∗ exists since the adversary corrupts at most t parties in each layer) and let
T ∗ = T \ {T ∗}. For any honest dealer P0

i and any input to the dealer, the additive share riT∗ of the
input is sent only to honest receivers. Since the additive shares (riT )T∈T ∗ are uniformly distributed,
the only difference between the real protocol and the simulation is that honest P0

i with input m uses
riT∗ = m−

∑
T∈T ∗ riT in the real execution, whereas it uses riT∗ = m∗−

∑
T∈T ∗ riT in the simulation,

where m∗ is the arbitrary input that the simulator assigns to P0
i . Thus, security amounts to showing

that the view of the adversary is identically distributed in the multicast protocol with honest sender
and receivers irrespective of sender’s input, which follows from Theorem 7:(b). Note that, this can
be shown to hold for several parallel executions of multicasts using a hybrid argument in which the
inputs in the multicast protocols are progressively changed one at a time to move from one set of
inputs to a different set of inputs to the senders in the parallel multicasts. Finally, it needs to be
shown that the extracted inputs for the corrupt parties are independent of the shares chosen by the
honest parties in VSS. This follows from the fact that the view of corrupt parties in L0, . . . ,L4 does
not reveal the message that an honest sender multicasts to corrupt receivers and shown in the proof
of Theorem 7.

C.4 Details omitted from Section 4.3

Protocol C.1 (A t-secure protocol for multiplication in the standard setting)

Inputs: Party Pi, i ∈ [n] has inputs (ri, si), where (ri)i∈[n] and (si)i∈[n] are
CNF secret shares of r and s, respectively.

Definitions: Let T = {T1, . . . , TN} = {T ⊂ [n] : |T | = n− t}.
For each i ∈ [n], si = (γj : i ∈ Tj , j ∈ [N ])
and ri = (λj : i ∈ Tj , j ∈ [N ]), where

∑
j∈[N ] γj = r and

∑
j∈[N ] λj = s.

1. Party Pi, i ∈ [n] verifiably shares γj · λj′ for each (j, j′) such that Pi has both γj and λj′ . Party
Pi has γj (resp. λj) if i ∈ Tj .

2. For each (j, j′) ∈ [N ] × [N ], let Pi, i ∈ I be the set of parties that secret shared γj · λj′ . Fix
i∗ ∈ I; for all i ∈ I, i ̸= i∗, publicly check if VSS of γj · λj′ provided Pi∗ and Pi are equal. This
amounts to securely computing the differences between the values CNF shared by both parties.
If true, take the VSS provided by Pi∗ as the secret sharing of γj ·λj′ . Otherwise, disclose γj and
λj′ by having all parties reveal γj and λj′ . The secret sharing of γj · λj′ is trivially computed
from γj · λj′ .

3. Each party computes its share of r · s as the sum of their respective shares of γj · λj′ for all
j, j′ ∈ [N ]× [N ].
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C.5 Proof of Lemma 5

Lemma 5. For any j, j′ ∈ [N ], the following properties hold for Πj,j′ when executed in the presence
of an adversary A:

(a) There exists (δk)k∈[N ] such that
∑N

k=1 δk = λjγj′ , and each honest party P7
i , i ∈ [N ] outputs

(δk)k:i∈Tk
at the end of Πj,j′ .

(b) Suppose parties P0
i , i ∈ H are honest, then for any a, b, a′, b′,

ADVRΠj,j′ ,A(γj = a, λj′ = b) ≡ ADVRΠj,j′ ,A(γj = a′, λj′ = b′).

Proof. By the linearity of CNF secret sharing, and its t-robustness, all honest parties in L6 obtain the
same value for

∑
l∈[N ] δl − (γλ)i for each i ̸= i∗. Hence, all (n− t or more) honest parties broadcasts

a complaint (or refrain from doing so) in unison. In the former case, all honest parties in L7 recover
γ = γj and λ = λj′ . This can be seen as follows: all parties in L7 receive (γi,k)i∈Tj

and (λi,k)i∈Tj′

from each party in P6
k, k ∈ [n]. Since there are at most t corrupt parties in L6, by t robustness of

(Sh,Rec), γi computed as Rec(γi,1, . . . , γi,n) coincides with γ for each i such that P0
i is honest. Since

there are at least n− 2t(> t) honest parties among P0
i , i ∈ Tj , all honest parties correctly recover γ.

Similarly, all honest parties recover λ. But then, all honest parties choose δk = γλ if k = 1 and δk = 0
otherwise. Thus, (a) holds in this case.

When all honest parties in L6 refrain from registering complaints, we will show that
∑N

l=1 δl = γλ.
Furthermore, each party P7

i in the output layer correctly recover δk for each k such that i ∈ Tk. These
two observations directly imply (a). We justify the first observation as follows: since |I| = |Tj ∩Tj′ | ≥
t + 1, there exists î ∈ I such that party P0

î
is honest, and hence correctly carries out VSS. Thus,

depending on the value of î, either
∑N

l=1 δl = γλ (when î = i∗) or (λγ)î = γλ (when î ̸= i∗). In either
case, we get

∑N
l=1 δl = γλ, since all honest parties in L6 refrain from registering complaints only if,

N∑
l=1

δl − (λγ)i = 0,∀i ∈ I, i ̸= i∗.

For each k such that i ∈ Tk, party P7
i , i ∈ [n] correctly receives a CNF share of δk from each honest P5

j

via Future Messaging (see step (ii).2). P7
i can correctly reconstruct δk from these shares; this follows

from CNF VSS being t-robust and the number of corruption is L5 being at most t. This concludes
the proof of (a).

Before proving (b), we informally argue that Πj,j′ does not leak γ and λ when P0
i is honest for

each i ∈ I. Observe that, when parties P0
i for all i ∈ I are honest, irrespective of the value of γ and

λ,
N∑
l=1

δl − (λγ)i = 0,∀i ∈ I, i ̸= i∗.

Hence, each honest party P6
k refrains from broadcasting a complaint, or broadcasting (γi,k)i∈Tj and

(λi,k)i∈Tj′ . Assume that the statements about security of ΠFM and ΠVSS hold even when they are
composed as in Πj,j′ . Then, the view of A interacting with Πj,j′ consists of

1. The shares of λ and γ sent to the corrupt parties in L6 by parties P0
i , i ∈ Tj and P0

i , i ∈ Tj′ using
Future Messaging in step (i).2 and (i).3, respectively.

2. Let P7
i , i ∈ C7 be the corrupt parties in L7. Each corrupt party P7

i receives CNF shares of δk for
each k such that i ∈ Tk from parties in L5 via Future Messaging initiated in step (ii).2. From
this, A can recover δk for each k ∈ [N ] \ {k∗}, where k∗ such that Tk∗ ⊆ [n] \ C7. There exists
such a k∗ ∈ [N ] since |C7| ≤ t and {T1, . . . , TN} consists of all subsets of [n] of size n− t.

3. View of corrupt parties in L6 during the secure computation of
∑N

l=1 δl− (λγ)i for each i ∈ I, i ̸=
i∗.

Here (1) does not reveal γ and λ since (Sh,Rec) is a t-secure secret sharing scheme and there are
at most t corrupt parties in L6. Since δ1, . . . , δN are sampled to be additive secret shares of γλ,
(δ)k∈[N ]\{k∗} revealed to adversary in (2) are uniformly random irrespective of the value of γλ. Finally,
since each P0

i , i ∈ I, i ̸= I∗ provides a fresh VSS of γλ to L5 and
∑N

l=1 δi = γλ, irrespective of the
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value of γλ and (δk)k∈[N ]\{k∗}, the view of parties in L6 during secure computation of
∑N

l=1 δi− (λγ)i

is distributed like the CNF VSS of 0, independently, for each i ∈ I \ {i∗}. Thus, the view of the
adversary is identically distributed irrespective of the value of γ and λ, proving (b).

We proceed to formally proving (b) using a hybrid argument. Fix a, b, a′, b′. Let P7
i , i ∈ C7 be the

corrupt parties in L7 and let k∗ ∈ [N ] such that Tk∗ ∩ C7 = ∅. Let Θ be the protocol obtained from
Πj,j′ when (γ, λ) is set to (a, b) in every step of the protocol. Let Θ′ be the protocol obtained from
Πj,j′ when (γ, λ) is set to (a′, b′) in every step of the protocol. We progressively transform Θ to obtain
Θ′ and argue that the adversary’s view is identically distributed across each of these transformations,
proving (b).
Transformation Θ → Θ1. Θ1 is obtained from Θ by setting γ to a and λ to b in steps (i).2
and (i).3, respectively. As we already observed, since P0

i is honest for each i ∈ I, each honest party
Pa+6
k refrains from broadcasting a complaint, or broadcasting (γi,k)i∈Tj and (λi,k)i∈Tj′ . Hence, the

view of the adversary in Θ and Θ1 are identical; this uses the same line of argument used for the
transformation from Θ to Θ1 in the proof of Lemma 4.
Transformation Θ1 → Θ′. Θ′ is obtained from Θ1 by making the following replacements in step
(i).1: P0

i∗ verifiably secret shares δk∗ − (ab) + (a′b′) instead of δk∗ (δk for k ̸= k∗ remain unchanged);
for each i ∈ I, i ̸= i∗, P0

i verifiably secret shares (a′b′) instead of (ab). Since (δk)k∈[N ]\{k∗} along with
δk∗ − (ab) + (a′b′) forms an additive secret sharing of (a′b′), Θ′ is Πj,j′ with (γ, λ) set to (a′, b′). By
inspecting the protocol, appealing to security of ΠVSS and ΠFM, it is easy to see that the view of A
is identically distributed. This proves (b) concluding the proof. ⊓⊔

D Layered MPC based on Shamir Secret Sharing

D.1 Details omitted from Section 5.1

Proof of Lemma 6

Lemma 6. The following properties hold for an execution of Π in the presence of a layered adversary
A:

(a) Let G ⊆ [n] such that P1
i is honest if and only if i ∈ H1. There exist polynomials ĝ(x) and

ĝi(x), i ∈ H1, each of degree at most t, such that ĝi(0) = ĝ(i) and αk
i output by each honest party

P5
k coincides with ĝi(k). Furthermore, if S is honest, ĝ(x) = F (x, 0).

(b) If S is honest, for any r, r′ ∈ F,

ADVRΠ,A(r) ≡ ADVRΠ,A(r
′).

Proof. Suppose S is honest. Then, all the polynomials received by parties in L1 are consistent; i.e,
fi(j) = gj(i) for all i, j ∈ [n]. For any {i, j} ∈ S, by the correctness of future messaging, F (i, j) = gi(j)
and F (j, i) = fi(j), whenever P1

i is honest. Thus, if i ∈ B (defined in (iv).3), then P1
i is necessarily

corrupt. Hence, revealing fi(x) and gi(x) for i ∈ B, provide no information to the adversary in
addition to what it learned in L1. By correctness of future messaging, for each i ∈ B, ĝi(x) and
f̂i(x) recovered in step (v).1 coincide with fi(x) and gi(x), respectively. Hence, for any honest P1

j ,
by correctness of future messaging, f̂i(j) = gj(i) and ĝi(j) = fj(i). In conclusion, i ∈ B′ ∪ B only if
P1
i is corrupt. Thus, |B ∪B′| ≤ t and, hence, the dealer is not disqualified. Finally, by correctness of

future messaging, for each i ∈ H1, gki is a valid Shamir secret share of gi(0) whenever P5
k is honest,

and gi(0) = F (i, 0) for all i ∈ H1. This proves (a) when S is honest.
Suppose S is corrupt. In step (v).3, if |B ∪ B′| > t, then (a) holds with q(x) and gi(x), i ∈ H1 as

zero polynomials. When |B ∪B′| ≤ t, there exist at least t+ 1 distinct i ∈ H1 such that i /∈ B ∪B′.
Define H1 \ (B ∪ B′) = H ′

1. Let i, j ∈ H ′
1. If fi(j) ̸= gj(i) or gi(j) ̸= fj(i), by correctness of

Πadd, {i, j} ∈ S. Furthermore, the purported F (i, j) recovered in step (iv).1 does not coincide with
fi(j) or with gj(i) if fi(j) ̸= gj(i). A similar condition holds when gi(j) ̸= fj(i). Hence, in this case,
{i, j} ∩B ̸= ∅; a contradiction. Hence, for every i, j ∈ H ′

1, the polynomials received by P1
i and P1

j are
pairwise consistent. Additionally, since H ′

1 ∩B′ = ∅, for every i ∈ B, f̂i and ĝi recovered in step (v).1
satisfy f̂i(j) = gj(i) and ĝi(j) = fj(i) for all j ∈ H ′

1. Given these observations, the following claim
implies that there exists a unique bivariate polynomial F̂ (x, y) with degree at most t in both variables
such that, for every i ∈ H ′

1, fi(x) = F̂ (x, i) and gi(y) = F̂ (i, y). This claim is proved in [AL17, Claim
5.3].
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Claim. Let fi(x), gi(y) be polynomials of degree at most t for each i ∈ [m], where m > t. Let
αk, k ∈ [m] be distinct non-zero elements in F. If for all i, j ∈ [m], it holds that fi(αj) = gj(αi), then
there exists a unique bivariate polynomial F (x, y) with degree at most t in both variables such that
fi(x) = F (x, αi) and gi(x) = F (αi, y) for all i ∈ [m].

Finally, we need to argue that if i ∈ H1 ∩ (B ∪ B′), then also fi(x) and gi(x) are consistent with
F̂ (x, y). Suppose i ∈ H1 ∩ (B ∪B′) such that fi(x) ̸= F̂ (x, i). Since fi(x) is of degree at most t, there
are at most t distinct j ∈ H ′

1 such that fi(j) = F̂ (j, i) = gj(i). In other words, there exists j ∈ H ′
1

such that fi(j) ̸= gj(i). Then {i, j} ∈ S; but since j /∈ B, necessarily, i ∈ B. But then, it must be
the case that f̂i and ĝi broadcasted in step (v).1 are compatible with fj(x), gj(x) for each j ∈ H ′

1,
otherwise, we get a contradiction. At this point, we conclude that ĝi(0) = F (i, 0) for all i ∈ H1.
Furthermore, by correctness of future messaging, for each i ∈ H1, gki (0) is a Shamir share of ĝi(0)
whenever P5

k is honest. This proves (a).
We sketch the intuition behind (b). As previously observed, fi(x) and gi(x) are never revealed

if P1
i is honest. Hence, given the security of Πadd and ΠFM, the adversary only learns the values of

F (x, y) on the polynomials that were revealed to corrupt parties in L1. A formal proof of (b) can
be obtained by following a similar line of argument as in proving Lemma 4 (b). We leave this to the
reader.

D.2 Random secret sharing, resharing and reinforced secret sharing

Notation. In the sequel, we will use the following notations to denote secret sharing and their
manipulations.

1. Let s ∈ F and let f(x) be a polynomial of degree at most t such that f(0) = s. Suppose s has
been secret shared on layer a using f(x); i.e., each P a

i , i ∈ [n] gets si = f(i). We denote this
“state” by ⟨s, f(x)⟩a.

2. We will denote the local addition of shares ⟨a, f(x)⟩a and ⟨b, g(x)⟩a by parties in La by ⟨a, f(x)⟩a+
⟨b, g(x)⟩a. By linearity of Shamir secret sharing, that ⟨a, f(x)⟩a+⟨b, g(x)⟩a = ⟨a+b, g(x)+f(x)⟩a.

3. Similarly, the local multiplication of shares ⟨a, f(x)⟩a by a constant α ∈ F is denoted by α⟨a, f(x)⟩a.
Once again, by linearity, α⟨a, f(x)⟩a = ⟨αa, αf(x)⟩a.

4. La, holding shares ⟨s, f(x)⟩a, can privately reveal the secret s to a designated Pb
i for b > a by

securely communicating all the shares to the party. If b > a+ 1, this can be realized using future
messaging. Pb

i can correctly recover s since the secret sharing is t-robust and future messaging
with honest sender can be correctly recovered. We denote this process by (a)Pb

i
⇐ ⟨a, f(x)⟩.

5. La, holding ⟨s, f(x)⟩a, can reveal s to all parties in layer b > a by communicating all the shares
to each Pb

i , i ∈ [n]. If b > a+ 1, this can again be realized using future messaging to ensure that
parties in layer c, for a < c < b, do not learn s. For the same reason as above, all parties in Lb

will correctly recover s. We denote this process by (s)b ⇐ ⟨s, f(x)⟩a.

In this section, we use verifiable secret sharing to implement several useful primitives that we
will use extensively in the secure implementation of secure multiplication and MPC. We will develop
shorthand notations of the kind defined above for each primitive we define in this section, to facilitate
cleaner and shorter representation of these steps in the later protocols.

Random secret sharing. We introduce random secret sharing, in which a random secret is secret
shared onto an output layer. This amounts to sampling a polynomial of degree at most t uniformly at
random, independent of the view of the adversary, and distributing its shares onto the output layer.
This primitive will function as a building block in implement the more complex functionalities we
build in this section.

Figure D.1 (Random secret sharing functionality)

Public parameters: No input layer, output layer Ld, d ≥ 6.
Notation: We will denote this functionality by ⟨s, f(x)⟩d ← $

Functionality samples s← F, and cl ← F for each 1 ≤ l ≤ t. Let f(x) = s+
∑t

l=1 clx
l. The

functionality delivers f(i) to Pd
i for each i ∈ [n]; i.e., distributes ⟨s, f(x)⟩d
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Implementing random secret sharing. Using verifiable secret sharing, implementing this protocol
is straight forward: We can take assistance from t + 1 parties (from a previous layer) to verifiably
secret share a random secret each onto the output layer. The parties take the sum of these shares as
the sampled share. Since at least one amongst t+1 of the parties who supplied shares is honest, and
parallel VSS is secure, the sum of these shares is guaranteed to be random independent of adversary’s
view. Given that our VSS protocol consumes 6 layers, random secret sharing with output layer d
requires the parties in d−6 to supply random secrets. Hence, our resharing protocol works only when
the output layer is L6 or later. This does not pose a limitation since random secret sharing is always
used in L6 or later in all our implementations.

Figure D.2 (A t-secure protocol for random secret sharing)

Public parameters: Output layer Ld for d ≥ 6.
Subroutines: A t-secure protocol ΠShamirVSS that implements fShamirVSS.

1. For each i ∈ [t+ 1],
(a) Pd−6

i samples si ← F and ci,l ← F for each 0 ≤ l ≤ t, and defines fi(x) = si +
∑t

l=1 ci,lx
l.

(b) Execute ΠShamirVSS with Pd−6
i as dealer to verifiably secret share si using fi(x) onto Ld.

2. Parties in Ld store ⟨
∑t+1

i=1 si,
∑t+1

i=1 fi(x)⟩d =
∑t+1

i=1⟨si, fi(x)⟩d.

The security of the protocol follows from the above discussion. In fact, the security of parallel
invocations of the VSS protocol implies that parallel invocations of random secret sharing remain
secure as well.

Theorem 18. Protocol in Figure D.2 realizes random secret sharing functionality in Figure D.1 with
perfect t-security for t < n/3.

All the protocols we construct in the sequel use random secret shares in various ways. For sim-
plicity, we will construct and analyze them assuming that the random secret shares are available as
setup. To realize random secret sharing onto a layer using the protocol in Figure D.2, VSS protocols
need to be invoked with dealers situated 6 layers above the layer that requires the setup. For now, we
overlook this fact and adhere to our convention of having the input client in L0 with random secret
shares as setup made available whenever necessary. This is done to keep the descriptions simple; fur-
thermore, all such protocols are constructed in order to be used as subroutines in the main protocol
which implements efficient layered MPC for general function computation given in Figure 5.5. In our
final construction, we replace the setup with concurrent protocols securely the setup and argue the
security of the ensemble.

Resharing. Going forward, in many protocols, we encounter scenarios where a value that has been
verifiably secret shared in a layer needs to be replicated in a later layer. Naively duplicating the same
secret sharing by sending the shares to the later layer using future messaging is clearly not secure.
The adversary can corrupt t parties each in both the layers and learn 2t shares of the secret, breaking
security. The later layer needs to necessarily receive a fresh resharing of the same value. The resharing
functionality allows parties in La with (a valid) secret sharing of a secret s to “handover” the secret
to parties in Lb, for any b > a, by providing a fresh secret sharing of s. The following functionality
requires that the input clients hold a valid Shamir secret sharing, and that at most t input clients are
corrupt.

Figure D.3 (Resharing functionality)

Public parameters: Output layer Ld for any d ≥ 1.
Secret inputs: ⟨s, f(x)⟩0.
Notation: ⟨s, f ′(x)⟩d ← ⟨s, f(x)⟩0.

1. Input clients reveal ⟨s, f(x)⟩0 to the functionality who reconstructs s. The reconstruction is
correct since at most t parties in L0 are corrupt.

2. Functionality samples cl ← F, 1 ≤ l ≤ t, defines f ′(x) = s+
∑t

i=1 cl, and distributes ⟨s, f ′(x)⟩d.
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Implementing resharing. For implementing resharing, we use a setup in which t random secrets
are secret shared onto the input clients. The protocol works as follows:

Figure D.4 (A t-secure implementation of resharing)

Public parameters: Output layer d ≥ 1.
Secret inputs: ⟨s, f(x)⟩0.
Setup: ⟨αl, fl(x)⟩0 ← $ for 1 ≤ l ≤ t.
Output: ⟨s, f ′(x)⟩d, where f ′(x) = s+

∑t
l=1 αlx

l.

1. For each i ∈ [n], execute

(s+

t∑
l=1

ilαl)Pd
i
⇐ ⟨s, f(x)⟩0 +

t∑
l=1

il⟨αl, fl(x)⟩0

Recall that this involves the following steps:
(a) For each j ∈ [n], let sj = f(j) be the share of s held by P0

j . For each 1 ≤ l ≤ t, let
αl,j = fl(j) be the share of αl held by P0

j . Then, P0
j sends sj +

∑t
l=1 i

lαl,j to Pd
i using

future messaging.
(b) For each j ∈ [n], Pd

i recovers s′i,j as the output of future messaging with P0
j as sender. Pd

i

stores Rec(s′i,1, . . . , s
′
i,n) as their share of s.

Whenever P0
j is honest, si,j = g(i), where g(x) = f(x) +

∑t
l=1 i

lfl(x). Since at most t

parties are corrupt, P0
j correctly recovers si = g(0) = f ′(i), where f ′(x) = s+

∑t
l=1 αlx

l.
2. Each Pd

i stores si = s+
∑t

l=1 i
lαl as their (re)share of s.

The correctness of the above protocol is clear from the description. Since ⟨αl, fl(x)⟩0 ← $ for
1 ≤ l ≤ t are randomly sampled, by linearity of Shamir secret sharing and security of future messaging,
the shares received by corrupt output clients are identically distributed irrespective of s and f(x).
Hence, the view of an adversary can be simulated even if it knows s, f(x). Observe that, assuming
the setup, the protocol necessarily implies parallel future messaging. Since our future messaging
protocol is secure when executed in parallel, the resharing protocol also remains secure under parallel
composition.

Theorem 19. Protocol in Figure D.4 realizes the resharing functionality in Figure D.3 with perfect
t-security for t < n/3.

Reinforced secret sharing. We next define an enhanced form of Shamir secret sharing that we will
refer to as reinforced secret sharing. This notion is defined in [CDN15] as verifiable secret sharing,
which we defined in differently. We will use reinforced secret shares for securely processing the gates
during the circuit evaluation phase of our MPC protocol.

Definition 10. A (t, n)-reinforced secret sharing of s ∈ F consists of the following (n + 1) distinct
Shamir secret shares:

1. Sample a polynomial f(x) of degree at most t uniformly at random under the constraint f(0) = s.
2. For each i ∈ [n], sample a polynomial fi(x) of degree at most t uniformly at random under the

constraint fi(0) = f(i).
3. Distribute shares ⟨s, f(x)⟩ and ⟨f(i), fi(x)⟩.

Reconstruction amounts to applying the reconstruction algorithm for Shamir secret sharing on
shares ⟨s, f(x)⟩.

We will denote a reinforced secret sharing of a secret s using f(x), (fi(x))i∈[n], as defined above,
by [[s, f(x), (fi(x))i∈[n]]].

In our constructions, we build a reinforced secret sharing of a secret from a valid Shamir secret
sharing of the same. This notion is formalized by the reinforced resharing functionality described
below. The functionality requires that the input clients hold a valid Shamir secret sharing, and that
at most t input clients are corrupt.
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Figure D.5 (Reinforced resharing functionality)

Public parameters: Output layer Ld for any d ≥ 1.
Secret inputs: ⟨s, f(x)⟩0.
Notation: [[s, f ′(x), (f ′

i(x))i∈[n]]]d ← ⟨s, f(x)⟩0.

1. Input clients (L0) reveal ⟨s, f(x)⟩0 to the functionality who recovers s. The reconstruction is
correct since at most t parties are corrupt.

2. Functionality samples a random polynomial f ′(x) of degree at most t conditioned on
f ′(0) = s; for each i ∈ [n], it samples a random polynomial f ′

i(x) of degree at most t
conditioned on f ′

i(0) = f ′(i).
3. Functionality distributes ⟨s, f ′(x)⟩d, and ⟨f ′(i), f ′

i(x)⟩d for each i ∈ [n].

Implementing reinforced resharing. Our protocol works as follows: First, the secret s is reshared
to the output clients. This involves sampling secret shares of random secrets αl for each 1 ≤ l ≤ t
and delivering si = f(i) to output client i, where f(x) = s +

∑t
l=1 αlx

l. This is realized exactly
as in our implementation of resharing (Figure D.4). Observe that the input clients possess a secret
sharing of si for each i as well, indeed, si was revealed to output client i by revealing the shares
of si. But then, each si can be reshared onto the output layer using the resharing protocol. This
achieves reinforced resharing of s. The security of the construction follows directly from the security
of resharing. Similar to the resharing protocol, reinforced resharing only uses parallel invocations of
future messaging protocol; hence, it remains secure under parallel composition.

Figure D.6 (A t-secure implementation of reinforced resharing)

Public parameters: Output layer d ≥ 1.
Secret inputs: ⟨s, f(x)⟩0.
Setup: ⟨αl, gl(x)⟩0 ← $ for 1 ≤ l ≤ t and ⟨αi,l, gi,l(x)⟩0 ← $ for i ∈ [n] and 1 ≤ l ≤ t.
Subroutines: A t-secure protocol Πreshare that implements the resharing functionality.
Output: [[s, f ′(x), (f ′

i(x))i∈[n]]]d.

1. For each i ∈ [n], define

⟨si, g′i(x)⟩0 = ⟨s, f(x)⟩0 +
t∑

l=1

il⟨αl, gl(x)⟩0.

Here, f ′(x) = s+
∑t

l=1 αlx
l and si = f ′(i) for all i ∈ [n].

2. For each i ∈ [n], execute (si)Pd
i
⇐ ⟨si, g′i(x)⟩0 (See Figure D.3 step 1).

3. For each i ∈ [n], reshare ⟨si, g′i(x)⟩0 using Πreshare using ⟨αi,l, gi,l(x)⟩0 for 1 ≤ l ≤ t as setup.
For each i ∈ [n], this achieves

⟨si, f ′
i(x)⟩d ← ⟨si, g′i(x)⟩0, where f ′

i(x) = f ′(i) + αi,1x
1 + . . .+ .αi,tx

t.

4. Parties in Ld store [[s, f ′(x), (f ′
i(x))i∈[n]]]d.

Theorem 20. Protocol in Figure D.4 realizes the reinforced resharing functionality in Figure D.3
with perfect t-security for t < n/3.
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D.3 Details omitted from Section 5.2

We define the functionality for multiplication with helper in Figure D.7.

Figure D.7 (Multiplication with helper functionality)

Public parameters: Helper is P0
1 and output layer L9.

Input: ⟨α, f0(x)⟩0, ⟨β, g0(x)⟩0; helper P0
1 holds α, β.

1. Input clients (L0) reveal the shares of α and β to the functionality, who reconstructs α, β.
Additionally, P0

1 sends γ to the functionality.
2. If γ = αβ, functionality distributes a secret sharing of γ onto L3; i.e., ⟨αβ, h(x)⟩9, where h(x)

is a random polynomial of degree at most t conditioned on h(0) = αβ. Otherwise,
functionality delivers ⊥ to all parties.

The protocol for multiplication with helper is formally described in Figure D.8.

Protocol D.8 (t-securely realizing multiplication with helper)

Public parameters: Input layer L0, helper P0
1, output layer L8.

Inputs: ⟨α, f0(x)⟩0, ⟨β, g0(x)⟩0; helper P0
1 holds α, β.

Subroutines: ΠShamirVSS and ΠReshare implementing verifiable secret sharing and resharing
functionality.
Setup: Sufficiently many random secret shares in L0 and L6 required to execute resharing.

1. P0
1 samples αl ← F, βl ← F for each 1 ≤ l ≤ t. Define f(x) = α +

∑t
l=1 αlx

l and g(x) = β +∑t
l=1 βlx

l. Let f(x)g(x) =
∑2t

l=0 γlx
l. Use ΠShamirVSS with P0

1 as dealer and L6 as shareholders,
to distribute shares

⟨αl, fl(x)⟩6,∀1 ≤ l ≤ t ⟨βl, gl(x)⟩6,∀1 ≤ l ≤ t ⟨γl, hl(x)⟩6,∀0 ≤ l ≤ 2t

Finally, execute ΠReshare to realize

⟨α, f ′
0(x)⟩6 ← ⟨α, f0(x)⟩0 ⟨β, g′0(x)⟩6 ← ⟨β, g0(x)⟩0

2. For each i ∈ [n], reveal the following linear combinations of shares to P7
i :

(f̂(i))P7
i
⇐ ⟨α, f ′

0(x)⟩6 + i⟨α1, f1(x)⟩6 + . . .+ it⟨αt, ft(x)⟩6
(ĝ(i))P7

i
⇐ ⟨β, g′0(x)⟩6 + i⟨β1, g1(x)⟩6 + . . .+ it⟨αt, ft(x)⟩6

(ĥ(i))P7
i
⇐ ⟨γ0, h′

0(x)⟩6 + i⟨γ1, h1(x)⟩6 + . . .+ i2t⟨γ2t, ht(x)⟩6

Here, f̂(x) = α +
∑t

l=1 αlx
l, ĝ(x) = β +

∑t
l=1 βlx

l and ĥ(x) =
∑2t

l=0 γlx
l. Further, execute

ΠReshare to realize ⟨γ0, h(x)⟩9 ← ⟨γ0, h0⟩6.
3. Each P7

i , i ∈ [n] checks if f̂(i)ĝ(i) = ĥ(i). Otherwise, broadcast a complaint.
4. For each i ∈ [n], if P7

i registered a complaint, execute public reveal as follows:

(f̂(i))9 ⇐ ⟨α, f ′
0(x)⟩6 + i⟨α1, f1(x)⟩6 + . . .+ it⟨αt, ft(x)⟩6

(ĝ(i))9 ⇐ ⟨β, g′0(x)⟩6 + i⟨β1, g1(x)⟩6 + . . .+ it⟨αt, ft(x)⟩6
(ĥ(i))9 ⇐ ⟨γ0, h′

0(x)⟩6 + i⟨γ1, h1(x)⟩6 + . . .+ i2t⟨γ2t, ht(x)⟩6

Note that, f̂(i), ĝ(i) and ĥ(i) are to be revealed only for i ∈ [n] with a registered complaint.
Since the complaints are available in L8, this can be achieved by having each P6

i secret share
their share of f̂(i) and so on, onto L8 and then having L8 selectively reveal these shares to P9

i

only for i ∈ [n] with a complaint.
5. For each i ∈ [n] with a complaint, all parties in L9 check if f̂(i)ĝ(i) = ĥ(i) If the equality check

succeeds for all complaints, then the parties store ⟨γ0, h(x)⟩9 as shares of αβ.
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