
A weakness in OCB3 used with short nonces allowing for a break of
authenticity and confidentiality

Jean Liénardya,∗, Frédéric Lafittea

aRoyal military Academy, Rue Hobbema 8, 1040, Bruxelles, Belgium

Abstract

OCB3 is a mature and provably secure authenticated encryption mode of operation which allows
for associated data (AEAD). This note reports a small flaw in the security proof of OCB3 that
may cause a loss of security in practice, even if OCB3 is correctly implemented in a trustworthy
and nonce-respecting module. The flaw is present when OCB3 is used with short nonces. It has
security implications that are worse than nonce-repetition as confidentiality and authenticity are
lost until the key is changed. The flaw is due to an implicit condition in the security proof and to
the way OCB3 processes nonce. Different ways to fix the mode are presented.

1. Introduction

Authenticated encryption (AE) is the process of ensuring the confidentiality and authenticity
of plaintexts using a single algorithm with a single symmetric key. Modern AE algorithms allow
for associated data (AD) to be authenticated along with the plaintext, in which case we refer to
the algorithm as AEAD.

Designed in early 2000’s, OCB1 is the first generation of a series of variant of OCB which
provides a provably-secure AE mode for a blockcipher [1]. Although initially encumbered by
patents, the designers of OCB have since renounced to all intellectual property related to OCB1
and successors.

The authors of OCB1 published a second version of OCB in 2004 called OCB2 to allow for
the authentication of AD [2]. They have recast the security proof of the mode into the framework
of tweakable blockcipher [3, 4]. Modifications to the mode itself were made in order to achieve
better performances. The mode was standardized in ISO/IEC 19772 [5]. It was shown that the
very changes from OCB1 to OCB2 caused the mode to have a fatal flaw that allows to break its
authenticity and confidentiality (see [6] for a comprehensive review).

This note focuses on OCB3, the final version of OCB, that has been published in 2011 [7].
This last generation fixes the bug of OCB2 and has the best performance amongst its predecessors,
mainly due to a convoluted pretreatment of its nonce.

The mode is now seen as mature and is well accepted by the cryptographic community. It
has been specified in RFC 7253 [8] and has been selected in 2019 in the final portfolio of the
CAESAR competition, which aimed to identify several AE schemes in order to replace AES-GCM,
for use in high-performance applications. Moreover, the mode OCB3 has also been used as a
building block by candidates of the NIST Lightweight Cryptography Standardization Process

∗Corresponding author
Email addresses: jean.lienardy@mil.be (Jean Liénardy), frederic.lafitte@mil.be (Frédéric Lafitte)

Preprint submitted to Information Processing Letters March 6, 2023

such as Pyjamask [9]. OCB3 is implemented in widespread cryptographic libraries such as Botan,
Bouncy Castle, Crypto++, Libgcrypt or OpenSSL.

The outline of this note is as follows. Section 2 describes OCB3 and recalls its security claim.
In section 3, we present a rather trivial forgery that was not previously reported in the literature.
Essentially, the attacker uses short nonces of less than 6 bits to cause internal collisions in the
mode and forge authentication tags. We spot that the flaw in the security proof is due to a
somewhat hidden restriction in the proof that is not respected by OCB3. While the weakness
may appear harmless, we show in section 4 that a single query is sufficient to loose all security
(both confidentiality and authenticity) with high success probability, and we present some use
cases where this flaw could be exploited in practice. Ways to fix OCB3 are proposed in section 5.

2. Description of OCB3

In this section, we introduce preliminary material. We give the description of the mode in
section 2.1 and recall the security claim of OCB3 in section 2.2.

2.1. Description of OCB3
Notation. OCB3 consists of an encryption algorithm E and a decryption algorithm D. The
underlying blockcipher is written E : {0, 1}k × {0, 1}n → {0, 1}n. In this note, a block refers
to a bitstring of length n whereas it refers to a bitstring of length at most n in [7]. We also
fix n = 128. We write 0i the bitstring made of i ≥ 0 zeros, ε the empty bitstring, ∥ bitstring
concatenation, and |x| the bitlength of bitstring x. When the context is clear, the symbol ∥ is
omitted. The function msbi(x) (resp. lsbi(x)) outputs a bitstring composed of the i > 0 left-most
(resp. right-most) bits of x. Shifting x by i positions to the left is written x≪ i (the bits msbi(x)
are lost and the bits lsbi(x≪ i) are 0). The function ntz(x) returns the number of trailing zeros
in the binary encoding of x. Finally, the function double(x) returns the value (x≪ 1) when the
block x has most significant bit 1 and (x≪ 1) ⊕ 012110000111 otherwise, with ⊕ the bitwise
exclusive OR.

Input of E. A key K ∈ {0, 1}k, a nonce N ∈ {0, 1}≤120, a plaintext M = M1 ∥ · · · ∥ Mm ∥ M∗,
and associated data A = A1 ∥ · · · ∥ Aa ∥ A∗. Here, M1, . . . , Mm, A1, . . . Aa are blocks whereas
M∗, A∗ ∈ {0, 1}<n

Output of E. Ciphertext C = C1 ∥ · · · ∥ Cm ∥ C∗ of same bitlength as that of the input plaintext,
and an authentication tag T of predefined length τ ∈ {0, . . . , 128}.

Description of E.
1. Compute L∗ = EK(0n), L$ = double(L∗), and Li for i ∈ {0, 1, 2, ...}:

L0 = double(L$)
Li = double(Li−1), i > 0.

2. Compute blocks ∆′
i for i ∈ {0, . . . , a} and ∆i, i ∈ {0, . . . , m} as follows:

∆′
0 = 0n

∆′
i = ∆′

i−1 ⊕ Lntz(i)

∆0 = InitK(N)
∆i = ∆i−1 ⊕ Lntz(i)

in order to process the blocks of associated data and plaintext.
3. Compute the ciphertext and tag as shown in Figure 1 where 10∗ denotes the padding (a

single bit 1 followed by as many zero bits as needed to form a block). The tag is then
truncated to its predefined length τ .

2

M1

EK

∆1

∆1

C1

M2

EK

∆2

∆2

C2

Mm

EK

∆m

∆m

Cm

EK

C∗

. . .

A1

EK

∆′
1

A2

EK

∆′
2

Aa

EK

∆′
a

EK

∆′
a

A∗10
∗

0n

0n

. . .

M∗10
∗

EK

T

L∗

∆m

L$

L∗

Figure 1: OCB3 encryption with 128 bit tag. The parts in green and blue are only performed when A∗ ̸= ε and
M∗ ̸= ε, respectively.

This note focuses on the function InitK(N) which performs the following steps:

1. PadN ← lsb7(τ) ∥ 0120−|N | ∥ 1 ∥ N

2. Top ← msb122(PadN) ∥ 06

3. Bot ← lsb6(PadN)
4. KTop ← EK(Top)
5. Stretch ← KTop ∥ (KTop⊕ (KTop≪ 8))
6. Return msb128(Stretch≪ Bot)

Decryption algorithm D. The decryption algorithm takes in (K, N, A, C, T), computes a message
M and returns either M or ⊥ (“authentication failure”) whether or not the tag computed with
M corresponds to T . The precise description of D is straightforward from the definition of E .

2.2. Security claim
The security of OCB3 is expressed in terms of advantages in the concrete security framework

[10]. The security model considers the key K to be a random variable and gives the adversary
access to encryption and decryption oracles. The adversary must distinguish the case where
these oracles correspond to EK and DK from the case they are their ideal counterparts, denoted
$ and ⊥. The oracle $ returns a random string of expected length and the oracle ⊥ always
returns “authentication failure”. The advantage of an attacker A in breaking the authenticity
and confidentiality is defined as

Advae(A) = PK [AEK ,DK ⇒ 1]−PK [A$,⊥ ⇒ 1].

Here and in the following, all probabilities are taken over the random variable K, unless otherwise
stated. Furthermore, the attacker A does not make a decryption query (N, A, C, T) if (C, T) is
the output of a previous encryption query (N, A, M).

3

The security of OCB3 is summarized by Theorem 1 of [11]. For any 0 ≤ τ ≤ n, this result
states that the advantage of any nonce-respecting adversary A is upper-bounded according to

Advae(A) ≤ 6(σ + 2q)2/2n + 1.1qd/2τ + Advsprp
E (B), (1)

where q denotes the total number of queries, from which qd are decryption queries, and σ is the
total number of blocks queried. Furthermore, Advsprp

E (B) is the advantage of any adversary B
with resources comparable to A in breaking the strong prp-security of the blockcipher E.

3. A distinguisher for OCB3

In this section, we give a distinguisher for OCB3 with τ = n (no truncation of the final tag).
From now, we choose a blockcipher E that is ideal (Advsprp

E (B) = 0) as the attack does not use
any weakness of the blockcipher.

According to equation (1), an attacker that performs a single decryption query (with q =
qd = σ = 1) cannot have an advantage greater than 1/2n−7. However, we present in this section
a simple distinguisher A making a single query that has advantage

Advae(A) = 1/8.

3.1. Observation
We start by observing that, for N = ε, the following equality holds with probability 1/4:

∆0 = L$. (2)

Indeed, for a given key K, the setup phase computes L∗ = EK(0n) and L$ = double(L∗). We note
that, depending on the most significant bit of L∗, we have L$ = EK(0n)≪ 1 with probability
1/2. Moreover, for N = ε, the procedure InitK computes PadN = 0127 ∥ 1, Top = 0n and Bot = 1,
and we have

KTop ← EK(Top) = EK(0n)
Stretch← EK(0n) ∥ (EK(0n)⊕ (EK(0n)≪ 8))
∆0 ← msb128(Stretch≪ 1).

After the initialisation phase, the value of ∆0 is (EK(0n)≪ 1)⊕ (0127 ∥ c) where c ∈ {0, 1} is a
single bit, and thus ∆0 = EK(0n)≪ 1 with probability 1/2.

Therefore, equation (2) holds with probability 1/4. We discuss a similar observation that
holds for every nonce such that |N | < 6 in section 4.3.

3.2. Simple forgery
The following forged message contradicts the theorem claim: choose N = ε, and A = c,

C = c′ = c single bit associated data and ciphertext. We claim that T = 0n is a valid tag for
(N, A, C) with high probability 1/8. Indeed, upon decryption, the ciphertext c′ is decrypted into
c with probability 1/2. The tag T ′ is computed according to

T ′ = EK((c ∥ 10∗)⊕∆0 ⊕ L∗ ⊕ L$)⊕ Auth,

where Auth is
Auth = EK((c ∥ 10∗)⊕ L∗).

As shown in equation (2), ∆0 = L$ holds with probability 1/4, therefore the tag T = 0n = T ′ is
valid with high probability 1/8, and DK will output the message c as valid.

This adversary algorithm requires no encryption query and a single decryption query but
allows the attacker to forge a message with probability 1/8, hence its advantage is exactly
Advae(A) = 1/8 which contradicts the statement of the security claim recalled in section 2.2.

4

3.3. Assumptions used in the proof
In [7] as well as in [12, 11], the mode comes with a proof of security. The proof is done in

two steps: First, prove the security of the mode instantiated with an ideal tweakable blockcipher
(Lemma 2 in [7]). Second, prove that the tweakable blockcipher construction with an ideal
blockcipher is ideal (Lemma 3 in [7]).

In the proof of Lemma 3, the following restriction is introduced: “the adversary [does] not ask
a query with Top = 0”. This constraint is mandatory for the proof of Lemma 3 to hold. As seen in
the previous section, an adversary can violate this requirement by querying nonces with |N | < 6.

The statement of Lemma 3 is therefore incomplete and must be modified in order to account
for the additional restriction on the nonce. Furthermore, the mode itself must have additional
restrictions or must be modified. We discuss this in section 5.

4. Security implications

The preceding section showed that the specification of OCB3 has a flaw and we explore in
this section its implications. Let us assume that for a given key, equation (2) is valid. This holds
with probability 1/4. In that case, an attacker can learn the value of L∗ by a single encryption
query with N = A = M = ε. Indeed, ∆0 ⊕ L$ = 0n, Auth = 0n and the output tag is L∗:

T ← EK(0n ⊕∆0 ⊕ L$)⊕ Auth = EK(0n) = L∗.

We show in section 4.1 a few practical scenarios in which this attack is plausible. Section 4.2
presents actual consequences of the adversarial knowledge of L∗, namely the complete loss of
authenticity and confidentiality. In that sense, the leaking of L∗ has a much higher impact on
security than the nonce-reuse [8].

4.1. Practical attack scenario
This section explains why the defect reported in this note is relevant in practice. We do note

that several public implementations check that N ∈ {0, 1}120, thereby preventing an empty nonce
but this is not necessarily the case. To give an example, the widespread cryptographic library
BouncyCastle closely follows OCB3’s specification by just checking that N ∈ {0, 1}≤120.

Where security is critical, it is unlikely that an implementation will rely on these libraries; the
algorithm will more likely be implemented from scratch in a Hardware Security Module (HSM)
that will undergo a formal evaluation process for certification.

Given that nonce-repetition has a critical impact on the security of OCB3, a sound design
choice is to implement the nonce generation process in the HSM. However, in order to make the
product as interoperable as possible, nothing precludes letting the user choose nonce lengths as long
as the HSM checks that chosen lengths comply with algorithm requirements, i.e. N ∈ {0, 1}≤120.

Therefore, an API that offers an encryption function that inputs the nonce length and tag
length, while checking that the nonce bytelength is less than or equal to 15, is an API compliant
with the RFC (the HSM having the role of preventing nonce repetition, for example by keeping
track of a counter for each byte length). Such a scenario would be vulnerable to the presented
flaw.

Learning the value of L∗ may justify the cost of an attack, mainly because the attacker
can exploit the knowledge of L∗ at will until the key is changed. The next section shows that
knowledge of L∗ = EK(0n) is sufficient to break confidentiality and authenticity for a fixed K.

5

4.2. Consequences of the leakage of L∗

The leakage of L∗ = EK(0n), and therefore of L$ and all the Li’s, has disastrous consequences
for the security of the mode that are worse than the nonce reuse: it looses its authenticity and
confidentiality (even for message encrypted before the leak). We illustrate this with some attack
scenarios requiring either none or a few additional queries. We stress that in all cases, the attacker
is nonce-respecting.

Breaking the authenticity. A selective forgery is requiring no additional query is possible for an
attacker that has L∗: given any known ciphertext, he can swap any two ciphertext blocks up to
the addition of a known constant. For example, if T correspond to a ciphertext C1 ∥ C2 ∥ . . . ,
the new ciphertext C2 ⊕ Lntz(2) ∥ C1 ⊕ Lntz(2) ∥ · · · is valid under the same tag.

The knowledge of L∗ also allows for a two-step universal forgery of a tag on any chosen
plaintext blocks M1 ∥ · · · ∥Mm, without constraining the nonce value N (i.e. chosen nonce). The
first step consists in obtaining the value of EK(TopN). Here and in this section, the uppercase
superscripts indicate the corresponding nonce. This can be done by an encryption query under
a nonce Ñ such that |Ñ | < 6 that has not been previously queried. As the value of L0 ⊕∆Ñ

0
is known to the attacker, the query of TopN ⊕ L0 ⊕ ∆Ñ

0 returns to the attacker the value of
EK(TopN).

The second step consists in doing an encryption query under a nonce N ′ such that TopN =
TopN ′

(e.g. N ′ ⊕N = 0∗ ∥ 1). Together with N ′ and A = ε, the message queried is

M ′
1 ∥ · · · ∥M ′

m ∥M ′
m+1 = M1 ⊕ δNN ′

0 ∥ · · · ∥Mm ⊕ δNN ′

0 ∥
⊕m

i=1Mi ⊕ Lntz(m+1) ⊕ δNN ′

0 ⊕ L$,

where δNN ′

0 = ∆N
0 ⊕∆N ′

0 is known to the attacker. The resulting ciphertext blocks C ′
i (i ≤ m)

give the encryption of the message under the nonce N , up to the addition of δNN ′

0 :

C ′
i ⊕ δNN ′

0 = EK(M ′
i ⊕∆N ′

i)⊕∆N ′

i ⊕ δNN ′

0 = EK(Mi ⊕∆N
i)⊕∆N

i = Ci

and C ′
m+1 = EK(

⊕
Mi⊕∆N

m⊕L$)⊕∆N ′

m+1. By construction, the ciphertext C1 ∥ · · · ∥ Cm with
tag T = C ′

m+1 ⊕∆N ′

m+1 is a valid one for the nonce N , that has not been used.

Breaking the confidentiality. The sole knowledge of L∗ allows the attacker to detect relations
between plaintext blocks (akin to the lack of confidentiality of the ECB mode). Indeed, if two
known ciphertext blocks verify Ci ⊕Cj =

⊕j
k=i+1 Lntz(k), a value independent of the nonce; then

the attacker knows that the corresponding plaintext satisfies Mi ⊕Mj = Ci ⊕ Cj .
Moreover, given a known ciphertext (N, C = C1 ∥ · · · ∥ Cm, T) with odd m and the knowledge

of L∗, an attacker can obtain the corresponding plaintext using a few additional queries.
The first step is as in the universal forgery: obtain the value of EK(TopN). The second step

consists in doing a decryption query (N ′, C ′, T) under a nonce N ′ such that TopN ′
= TopN and

with C ′
i = Ci ⊕ δNN ′

0 . The resulting plaintext will be M ′
i = Mi ⊕ δNN ′

0 . As for the tag, it will be
considered as valid as

T ′ = EK(
⊕

(Mi ⊕ δNN ′

0)⊕∆N ′

m ⊕ L$) = EK(
⊕

Mi ⊕∆N
m ⊕ L$) = T.

(For even m, an additional step to compute a valid T in a nonce-respecting setting is required.)

6

4.3. Non-empty nonce generalisation
The attacks of the preceding sections make usage of the rather special case of an empty nonce

N = ε. In that case, the probability of success is 1/4. For the sake of completeness, we show
that if a non-empty nonce has length 0 < |N | < 6, a similar attack can be mounted. Given the
(integer) value Bot = 1 ∥ N for the nonce N (2 ≤ Bot ≤ 63), we have

∆N
0 = (EK(0n)≪ Bot)⊕ (0128−Bot ∥ C)

for a certain C ∈ {0, 1}Bot. This is equal to EK(0n)≪ Bot with probability 1/2Bot. Furthermore,
we have LBot−2 = EK(0n) ≪ Bot which also holds with probability 1/2Bot, hence ∆N

2Bot−1−1 =
∆N

0 ⊕ LBot−2 = 0n with a probability at least 1/22 Bot. One must just query any message such
that the block 2Bot−1 − 1 is 0n. The corresponding ciphertext will have EK(0n) as block indexed
by 2Bot−1 − 1. This variant of the attack is successful with probability at least 1/22 Bot.

5. Fixing OCB3

To make the flaw unexploitable, the mode description must be changed. The most immediate
fix therefore consists in ensuring that the nonce has length |N | ≥ 6 and to make that constraint
mandatory (especially in [8]). Indeed, this ensures that Top is different from the block 0n and
therefore prevents the collision between ∆0 derived from EK(Top) and one of the L’s.

We present another way to fix OCB3 which does not require adding a length constraint, hence
allowing any |N | < 120 (even empty nonces, as permitted in RFC5116 [13]). This fix consists in
randomizing the value of PadN using L∗, a key-dependent value that has been precomputed for the
given key. Therefore, after the line 1 of the procedure Init, we suggest to apply PadN← PadN⊕L∗.
This has the effect of randomizing the value of Top and Bot, hence preventing the attack.

We note that this modification is akin to how the nonce is treated in OCB1 [1]. Indeed, in
OCB1, the nonce is a block N ∈ {0, 1}128 and the value of ∆(OCB1)

0 is obtained through

∆(OCB1)
0 = EK(N ⊕ L∗).

For this reason, OCB1 is not subject to our attack.

5.1. Specific nonce requirements
We finally acknowledge that the documents [7, 12] include the following footnote: In practice

one would either restrict nonces to byte strings of 1-15 bytes, or else demand that nonces have a
fixed length, say exactly 12-bytes. Under RFC 5116, a conforming scheme should use a 12-byte
nonce. As we have seen, such a restriction is not superfluous and the mode is not secure in the
given form. As for the RFC 5116 [13], while it recommends to fix the nonce bytelength to 12,
it does not include the OCB3 algorithm as an AEAD mode and the fixed nonce-length is not
specified as a requirement (in fact, the variable nonce-length scenario is let as optional). The
RFC 7253 [8] that specifies the OCB mode does not impose any other requirement on the length
of N apart from |N | < 120 and should be modified accordingly.

6. Conclusion

In this short note, we have presented a weakness in OCB3: even if the mode is correctly
implemented, a rather simple attack can be mounted and will likely succeed, breaking both the
confidentiality and authenticity.

7

We have shown that, despite of the mode being provably secure, the security proof hides an
additional internal constraint whose fulfilment is not properly enforced by specification documents.
This highlights the fact that small and seemingly insignificant details can have severe security
consequences and illustrates that all assumptions required by the proof should be exhaustively
listed so that it is sufficient for practitioners to focus on their fulfilment.

In the case of OCB3, it is easy to fix the algorithm’s specification in order to avoid the
weakness and abide to the full assumptions of the security proof. If the description is unchanged,
the requirement N ≥ 6 must become an absolute requirement.

References

[1] P. Rogaway, M. Bellare, J. Black, OCB: A block-cipher mode of operation for efficient
authenticated encryption, ACM Transactions on Information and System Security (TISSEC)
6 (3) (2003) 365–403.

[2] P. Rogaway, Efficient instantiations of tweakable blockciphers and refinements to modes
OCB and PMAC, in: International Conference on the Theory and Application of Cryptology
and Information Security, Springer, 2004, pp. 16–31.

[3] M. Liskov, R. L. Rivest, D. Wagner, Tweakable block ciphers, in: Annual International
Cryptology Conference, Springer, 2002, pp. 31–46.

[4] M. Liskov, R. L. Rivest, D. Wagner, Tweakable block ciphers, Journal of cryptology 24 (3)
(2011) 588–613.

[5] ISO/IEC JTC 1/SC 27, Information technology-Security techniques-Authenticated encryp-
tion, Standard 19772, OCB scheme within standard deprecated (First ed. 2009).

[6] A. Inoue, T. Iwata, K. Minematsu, B. Poettering, Cryptanalysis of OCB2: attacks on
authenticity and confidentiality, Journal of Cryptology 33 (4) (2020) 1871–1913.

[7] T. Krovetz, P. Rogaway, The software performance of authenticated-encryption modes, in:
International Workshop on Fast Software Encryption, Springer, 2011, pp. 306–327.

[8] T. Krovetz, P. Rogaway, The OCB authenticated-encryption algorithm, RFC 2753, RFC
Editor (2014).

[9] D. Goudarzi, J. Jean, S. Kölbl, T. Peyrin, M. Rivain, Y. Sasaki, S. M. Sim, Pyjamask: Block
cipher and authenticated encryption with highly efficient masked implementation, IACR
Transactions on Symmetric Cryptology (2020) 31–59.

[10] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, A concrete security treatment of symmetric
encryption, in: Proceedings 38th Annual Symposium on Foundations of Computer Science,
IEEE, 1997, pp. 394–403.

[11] T. Krovetz, P. Rogaway, The Design and Evolution of OCB, Journal of Cryptology 34 (4)
(2021) 1–32.

[12] T. Krovetz, P. Rogaway, OCB (v1. 1), Submission to the CAESAR Competition (2016).

[13] D. McGrew, An interface and algorithms for authenticated encryption, RFC 5116, RFC
Editor (2008).

8

