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Abstract. We introduce a new primitive called anonymous counting tokens (ACTs) which allows
clients to obtain blind signatures or MACs (aka tokens) on messages of their choice, while at the
same time enabling issuers to enforce rate limits on the number of tokens that a client can obtain for
each message. Our constructions enforce that each client will be able to obtain only one token per
message and we show a generic transformation to support other rate limiting as well. We achieve this
new property while maintaining the unforgeability and unlinkability properties required for anonymous
tokens schemes. We present four ACT constructions with various trade-offs for their efficiency and
underlying security assumptions. One construction uses factorization-based primitives and a cyclic
group. It is secure in the random oracle model under the q-DDHI assumption (in a cyclic group) and
the DCR assumption. Our three other constructions use bilinear maps: one is secure in the standard
model under q-DDHI and SXDH, one is secure in the random oracle model under SXDH, and the most
efficient of the three is secure in the random oracle model and generic bilinear group model.

1 Introduction

Counting unique users can be a useful signal for different applications to measure service usage and user
interest. In many contexts, however, the content for which we want to measure interest may be sensitive,
so we would like to guarantee anonymity for the user while still providing accurate counts. The anonymity
property becomes challenging when untrustworthy users may try to inflate the counts. As a concrete example,
we consider the k-anonymity server developed in the context of Privacy Sandbox [Gra22]. The goal of this
server is to count how many users have joined different user interest groups. Users should not be linkable to
any specific interest groups. At the same time, it is important to obtain an accurate count of the number
of users in each interest group. In particular, each user should not be counted multiple times. In addition,
users should be allowed to join as many interest groups as they wish.

There is seemingly a tension between the desirable anonymity that does not allow mapping the count con-
tribution to the user identity and the ability to bound contributions from each user. Multiparty computation
(MPC) [Ode09] and in particular secure aggregation constructions [BIK+17, BBG+20] enable computing
aggregates over user inputs while maintaining privacy for concrete contributions. However, these solutions
do not allow users to be anonymous while at the same time limiting the rate of their input contributions.

Anonymous credential tools such as blind signatures [Cha82] and anonymous tokens [DGS+18, KLOR20,
SS22] provide capabilities to convey trust across different contexts while providing anonymity. In the setting
of anonymous tokens, during token issuance, the user identity is known to an issuer who can provide a token
that encodes a limited amount of information. The token is associated with a user-provided message or a
random message that the issuer should not learn. In our initial example of counting the number of users in
each interest group, the message would be the interest group name. The token can later be redeemed in a
different context where the user is anonymous. At redemption, the message is revealed. In order to be able
to use these tokens to count the number of users in each interest group, it is crucial that each user can only
contribute a single token. In other words, anonymous tokens redemption (or issuance) should be restricted
(or rate limited) to a single token per user and per message. More generally, anonymous tokens allowing
redemption of a small fixed number of tokens per user and per message can be considered.

A recent IETF draft proposed by four large tech companies (Google, Apple, Cloudflare, Fastly) [HIP+22]
is highlighting two other applications of such rate-limited or counting tokens: rate-limiting anonymous tokens
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per website (or “origin”) to avoid abuse, and implementing metered paywall for a given website. In both cases,
anonymous tokens need to be associated with the website, and rate limits need to be applied per message.
The IETF draft proposes a solution that relies on two non-colluding servers: an attester and an issuer.
The attester sees the information used for rate limiting in the clear (that is the “origin” or website in the
applications above). Instead, if we were able to design an anonymous token scheme restricting each user to
only receive a small number of tokens per (hidden, underlying) message, we could provide a solution for the
IETF draft applications without the need for two separate servers.

The challenge in designing the rate-limiting capability on the private message authenticated in anonymous
tokens lies in the following fact: users should be able to obtain blind tokens for many messages (e.g., be able
to contribute to the counts for many different user interest groups in the first example, or visiting many
different paywall-metered websites in the last example). And all these messages should remain hidden from
the issuer. Only violations of the rate-limiting rules should be detectable before such tokens are redeemed.
At the same time, different users should be able to obtain anonymous tokens for the same message, as many
users will join the same interest group or visit the same website. Therefore tokens for the same message from
different users need to be distinct. In particular, tokens cannot computed deterministically from the message
(as it is the case in Privacy Pass [DGS+18]).

We note that anonymous tokens with public or private metadata such as [SS22, CDV23] do not help
building the applications above. Indeed, in these schemes the metadata needs to be revealed to the issuer
in order for the issuer to be able to apply rate limits. In the interest group example, this means the issuer
would know which interest group a user is joining.
Contributions. In this paper we propose a new notion of anonymous tokens which we call anonymous
counting tokens (ACTs). This primitive offers an additional rate-limiting property that guarantees that no
user will be able to redeem with the same verifier more than one token for the same message. Conceptually
there are two approaches to enforcing the rate-limiting property in the anonymous token functionality. This
can be done either at issuance by enabling the issuer to detect repeated token requests for the same message
from the same user, or at redemption by enabling the verifier to identify if two tokens for the same message
were issued to the same user. With the first approach, the challenge is to preserve the blind property of
the requests as long as there are no repeating message requests, and to reveal only the one bit information
whether a message in a request has been queried before. With the second approach, the challenge is to enable
the verifier to detect when the two tokens for the same message were issued to the same user while preserving
the unlinkability property.

We present two conceptual approaches for building ACTs. One enables rate limiting at issuance and one
enables it at redemption. Both of them assume that each user registers a public key with the issuer and
this public key enables the rate limiting of one token per message per user. Recall that at issuance, users
identify themselves to the issuer and can thus be associated to their registered public keys. Note that such
registration is necessary: if there was no registration mechanism, tokens would information theoretically be
completely independent of the user identity and it would be impossible to ensure a given user does not
create and redeem two tokens for the same message (unless tokens are deterministic functions of messages in
which case the issuer could know when two different users ask the same message, which in turn would break
unlinkability).

Our first construction uses a PRF evaluation as the token issuance mechanism. This mechanism has been
leveraged in previous anonymous token constructions [DGS+18, KLOR20, SS22]. Our first construction is
in the random oracle model (ROM) and relies on the q-Decisional Diffie-Hellman Inversion assumption
(q-DDHI) assumption in a group of prime order.

Our second set of constructions leverages the notion of equivalence class signatures (EQS) [FG18, FHS19]
to construct an ACT scheme. Existing EQS schemes rely on bilinear maps. We present three instantiations
of our EQS-based ACT construction. The first one is in the standard model and assumes the SXDH and
q-DDHI assumptions over bilinear groups to support short O(log λ) messages (λ is the security parameter).
The second instantiation is proven in the ROM under just the SXDH assumption and supports any length
of message. The last instantiation uses much stronger security assumptions: it is only proven in the ROM
and generic bilinear group model (GBGM) but achieves significantly shorter tokens. Our three instantiations
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are based on two generic transforms of EQS into ACT, however, our third instantiation is an optimization
whose security is proven directly in the ROM and GBGM and does not directly follow from the security of
the generic transform.

Tables 1 and 2 summarize the communication costs and assumptions trade-offs of our constructions.
Our four constructions are the four first constructions of anonymous counting tokens: there are no prior
such constructions. We provide four different constructions as parties implementing anonymous counting
tokens may have different preferences for cryptographic assumptions and tools used in the constructions. For
example, in enterprise products (targeted by the IETF draft [HIP+22]), adding pairing-based libraries can
be quite challenging due to non-technical reasons (e.g., audit requirements, complex approval process, etc).

Tables 1 and 2 also contain comparisons to selected related works which do not achieve the anonymous
counting tokens property. We include them for an informative comparison of what it takes to add the
additional properties we need. Privacy Pass [DGS+18] achieves unforgeability and unlinkability, but has
no notion of an underlying message on which rate limiting can be done. [TCR+22] extends Privacy Pass
to support public metadata, which can be viewed as a message. However, the public metadata is revealed
to both the issuer and the verifier and thus cannot be used in our context. [FHS19] enables multi-show
anonymous credentials, a very different primitive that allows a user to get a credential on a set of messages,
but without blind issuance. The credential can be redeemed multiple times while remaining unlinkable with
the issuance and the other redemptions. Several of our constructions can be seen as extensions of [FHS19] to
support blind issuance and a throttling mechanism, so we include it to give a sense of the extra cost incurred
for these additional properties. We note that the costs in Table 2 for [FHS19] are for a single message or
attribute, but their scheme supports vectors of messages/attributes.

Table 1: Summary of our constructions and selected previous work
Cons. PubV Assumptions |msg| Extra

4.3 × DCR + q-DDHI any counting
5.1 ✓ SXDH + 2|msg|-DDHIG1

O(log(λ)) counting
6.3 ✓ ROM + SXDH any counting
8.1 ✓ ROM + GBGM any counting

[DGS+18] × ElGamal-OMD n/a n/a
[TCR+22] × ROM + OM-Gap-SDHI any public metadata
[FHS19] ✓ ROM + GBGM any multi-show

Extra properties are properties beyond anonymous token base properties. Our constructions are the only anonymous counting tokens.
See text for detail. PubV refers to public verifiability (i.e., whether anyone can verify a token from the public parameters).
Assumptions: DCR = decisional composite residuosity assumption, SXDH = symmetric external decisional Diffie-Hellman assumption,
q-DDHI = decisional Diffie-Hellman inversion assumption (q is the number of signature queries made by the adversary), ROM = random
oracle model, GBGM = generic bilinear group model, all of our constructions but the first one use pairings. ElGamal-OMD = ElGamal
One-More-Decryption assumption. OM-Gap-SDHI = (m,n) One-More-Gap-Strong Diffie-Hellman Inversion assumption.

1.1 Technical Approach

Next, we overview the main technical challenges and ideas for our constructions.

ACT from PRF. We start with our first construction. It follows the idea of previous anonymous tokens
schemes to make the tokens be PRF evaluations under the issuer’s secret key. A first construction attempt
might be to make the anonymous tokens deterministic. This is what Privacy Pass [DGS+18] does, where
tokens are PRF evaluations of the users’ messages. This, however, is possible in Privacy Pass only because the
tokens there do not correspond to messages that have meaning for the application and instead are sampled
at random for every token issuance. For our ACT scheme, we need the user to be able to choose the message.
If the tokens are a deterministic function of the message alone (and not of the user identity), then the issuer
will know when two users ask for the same message which would violate the unlinkability. Thus, we need to
have a randomized issuance algorithm.
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Table 2: Performance of our constructions and selected previous work
Cons. |blindRequest| |blindToken| |tok|

4.3 5 × Ped + 4 × CS + 12 × Zp + 11 × ZN 1 × Ped + 1 × Zp + 3 × ZN 1 × G
5.1 7 × G1 + 6 × G2 5 × G1 + 1 × G2 23 × G1 + 12 × G2

6.3 2 × Zp + 3 × G1 5 × G1 + 1 × G2 23 × G1 + 12 × G2

8.1 2 × Zp + 2 × G1 2 × G1 + 1 × G2 3 × G1 + 1 × G2

[DGS+18] 1 × G 1 × G + 2 × Zp λ

[TCR+22] 1 × G + 1 × Zp 1 × G + 2 × Zp 1 × G
[FHS19] Zp + G1 2 × G1 + G2 3 × G1 + G2 + 2 × Zp

Only our four constructions are anonymous counting tokens. The other constructions are just for reference and do not achieve the
counting property. See text for detail.
Constructions 5.1 and 6.3 (long version) are instantiated using the EQS construction from 7.1, and the element M′

1 and M′
3 are not

included in tok as they can be recomputed.
G denotes a cyclic group (and by extension a group element from G) with order p, G1 and G2 are asymmetric bilinear maps groups, CS
is a Camenish-Shoup ciphertext, Ped is a Pedersen commitment on a strong RSA group.
Using Edwards25519 [BDL+12] for G, 1 × G = 32 bytes. Using BLS12-381 [Bow17] as bilinear group, 1 × G1 = 48 bytes, 1 × G2 = 96
bytes. For both Edwards25519 and BLS12-381, 1 × Zp = 32 bytes. Using the NIST recommendation [Bar16] for 128-bit safe-RSA
modulus (that is 3072 bits), 1 × Ped = 384 bytes and 1 × CS = 1, 536 bytes. N refers to this RSA modulus, and log(N) = 3072 bits.

To give insight into our construction, we start with an overview of some unsuccessful ideas for build-
ing anonymous counting tokens from the randomized version of the Okamoto-Schnorr Privacy Pass tokens
introduced by Kreuter et al. [KLOR20]. Contrary to Privacy Pass, tokens generated by these schemes are
randomized (and not deterministic). Like in Privacy Pass, the client sends the following blinded request to
the issuer: r · H(msg), where r is chosen a random in Zp by the client and where H is a hash function into a
cyclic group G of order p (where DDH is hard). H is modeled as a random oracle in the proof and we use
the additive notation for G.

A first idea to construct an ACT is to have each client always use the same fixed randomness r to blind
their requests. This would allow the issuer to detect when the same user makes two requests for the same
message. We would argue the unlinkability of the requests by remarking those can also be seen as PRF
evaluations using the key r, which is only known by the client. The client could provide the issuer with a
commitment to this PRF key r (as part of the registration process). And the client would then prove the
correctness of the message included in each blinded request with respect to the committed key, using a
zero-knowledge proof.

This idea would actually work. Unfortunately, the resulting protocol would be quite inefficient as the
zero-knowledge proof made by the client requires proving the correct evaluation of the hash function H.
We note that the Pedersen hash (H(m) = m1G1 + · · · +mnGn, where mi is the i-th bit of the message m
and Gi is a generator of G) has good algebraic properties which may allow for an efficient zero-knowledge
proof. However, it cannot be used in this setting since its linear properties enable an attack on the rate
limiting as follows: H(1||0|| . . . ||0) + H(0||1||0|| . . . ||0) = H(1||1||0|| . . . ||0), which allows to get a fresh token
on 1||1||0|| . . . ||0 by querying messages 1||0|| . . . ||0 and 0||1|| . . . ||0.

Another option could be to use SNARK/STARK/Bulletproofs-friendly hash functions such as MiMC [AGR+16]
and Poseidon [GKR+21]. However, this would first introduce the new non-standard assumptions that are
used for the security of these hash functions. Additionally, depending on the proof system used, there will be a
need for more assumptions (for example non-falsifiable assumptions for SNARKs). Furthermore, those proof
techniques are generic and use circuits. This significantly increases the prover’s complexity (which is used
in the token request that is computed by weak user devices, in many cases). Furthermore, the proof needs
to prove not only correct hash evaluation, but also mapping to the elliptic curve, and exponentiation/scalar
multiplication. The Poseidon costs in Section 6 of [GKR+21] report around 40ms for a SNARK just proving
correct Poseidon hash evaluation: the subsequent scalar multiplication would at least double this time to >
80ms. These costs appeared to be much higherthan our approach. In addition, without a trusted setup, only
STARKs and Bulletproofs can be used and they are about 10x more expensive than SNARKs for Poseidon
evaluation.

Yet another tempting way to get an efficient scheme would be to only require the client to prove the
blinded request is of the form r · T for some group element T, and not proving knowledge of msg such that
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T = H(msg). We may think we can argue unforgeability since the client will only be able to extract a valid
signature if they know a correct hash preimage of T (due to the form of the tokens in [KLOR20]).

While the above reasoning does guarantee the regular unforgeability property, it fails to protect against
the adversary being able to obtain two tokens for the same value, which is required by ACT. The issue stems
from the fact that the resulting tokens are of the form xH(msg) + yS where (x, y) is the secret key of the
issuer and S is a random element that comes with the token. Now, we can observe that the token is additively
homomorphic with respect to the hash of the message. With this observation, an attacker can obtain a token
for message msg without directly asking for it, by additively sharing H(msg) as A+B = H(msg). Then the
client can request two tokens, sending blind requests rA and rB. The client can prove correctness for its
requests as long as it does not have to prove knowledge of hash preimages of A and B. Then, using the
additive properties of the tokens, it can recover a token for H(msg) which will be different from any previous
token issued directly for that value.

Thus, we adopt a different pseudorandom function which has a structure that facilitates composition with
sigma protocols for proof of correctness of evaluation (in particular, it does not involve a hash function).
This is the Dodis-Yampolskiy verifiable pseudorandom function [DY05]. We instantiate it in a single group
as a PRF without public verifiability, as in the work of Miao et al. [MPR+20]. However, this on its own
does not solve the question of the randomized issuance algorithm. One option is to add to the message a
random value, which changes for every issuance, and make the token the PRF evaluation under the issuer’s
key on the message plus randomness. To ensure the rate limiting we will use a different PRF which the user
evaluates only on the message under its registered key and provides this to the issuer during issuance to
prove non-repeating message requests.

The way we choose to combine message and randomness as input for the PRF evaluation (to generate
the token) leverages the function F(sk = (u, y),msg; r) = (msg+ u+ r · y), which is used by Boneh and Boyen
to construct short signatures without random oracle [BB04]. In the proof of their construction, they show
how this function no longer has the limitation to short messages of the Dodis-Yampolskiy’s variant as long
as r is chosen at random and can be controlled by the reduction.

We further observe that the randomness r for the issuance needs to be chosen jointly by the client and
the issuer. If the client can choose the randomness on its own, then it can force homomorphism of the tokens,
which could create forgery issues similar to the one discussed above. If the issuer controls the randomness,
then this becomes an easy fingerprinting mechanism, which violates unlinkability. While we can generate the
randomness with an interactive coin-tossing protocol, we observe that the issuer’s randomness does not need
to be private with respect to the client since we just want to enforce that the randomness is chosen honestly.
Thus, we apply the Fiat-Shamir transformation to generate the issuer’s randomness in a non-interactive
manner [FS87, AFK22].

ACT from EQS. The second general construction approach for ACT that we present views the tokens as
signatures with certain homomorphic properties which allow the client to adapt a signature for a message
M⃗ to a signature of a transformed message M⃗′ = f(M⃗). The set of allowed transformation f is limited and
fixed. In particular, equivalence class (EQS) signatures [FG18, FHS19] enable the client to sign vectors of
messages and the adaptation functionality allows the client to transform the signature into a signature of
a new vector that is in the linear span of the signed message. This transformation is used as part of the
blinding and unblinding operations in previous anonymous tokens and blind signatures constructions.

Taking this approach, of course, creates challenges for the rate-limiting property. Seemingly a client might
be able to create multiple tokens from the same initial signature. To prevent this we need to embed the rate-
limiting check but this time during redemption. This can be achieved similarly to the above construction
using a PRF evaluation on the message with a key that each user commits with the issuer. The challenge
when doing this check during redemption is to remove the link to the client identity while maintaining the
ability to verify that the PRF value was generated by a key registered by a real client.

Our approach to satisfy the above requirements is to have the client embed a PRF evaluation on the
message under their registered key in the blind signature request. We show how we can do this using two
different PRF constructions PRF(u,msg) = u · H(msg) and PRF(u,msg) = (msg + u)−1 · G (the latter being
the Dodis-Yampolskiy PRF). In the first case, unlike our first PRF-based ACT construction, we are able
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to use a random-oracle-based PRF without having to proof correct evaluation (in zero-knowledge) of the
hash function H. Concretely, the EQS construction allows us to sign vectors of messages. And we sign a
vector of the form µ · (G,H(msg), u ·H(msg)). Thus, the client just needs to prove the DDH relation between
(H(msg), u·H(msg)) and the registered client key (G, u·G). Combining the unforgeability of EQS (for messages
that are not a multiple of a signed message) with a check by the verifier that the first message in the redeemed
token signature is G, we can guarantee that the client can create only one valid token from each blinded
response it gets from the issuer. In the second case (i.e., the Dodis-Yampolskiy PRF case), the client can
directly efficiently prove that the message in its blinded request is of the form µ · (G, (msg + u) · G,msg · G).

The above two constructions are generic transformations from any EQS to ACT. Instantiating them yields
multiple concrete efficient ACT constructions under various security assumptions. In particular, we obtain an
ACT construction with security in the standard model based on the SXDH and q-DDHI assumption, using
the Dodis-Yampolskiy PRF construction together with the following EQS construction. The EQS signature
is a normal signature. The adaptation of the signature of a message M⃗ to a message M⃗′ = ρM⃗ is a ZK proof
of knowledge of a valid signature on M⃗ and of a scalar ρ such that M⃗′ = ρM⃗. For the concrete efficient
instantiation of this EQS construction we use the efficient Jutla-Roy structure-preserving signatures [JR17]
together with Groth-Sahai zero-knowledge proofs [GS08, EG14]. This construction has a restriction that it
can support only short messages of length O(log λ) because the Dodis-Yampolskiy function is an adaptively
secure PRF only over polynomial-size domains. The message length restriction can be solved by hashing the
message using a hash function modeled as a random oracle. Hashing the message this way makes Dodis-
Yampolskiy adaptively secure because, instead of having to guess the message forged by the adversary, the
reduction just needs to guess which random oracle query will be used for the forgery. However, if we are
willing to use the random oracle model, our second generic transformation (based on the random-oracle-based
PRF PRF(u,msg) = u · H(msg) instead of the Dodis-Yampolskiy PRF) is more efficient.

Finally, we present an optimized ACT construction with security in the generic bilinear group model
(GBGM) and random oracle model (ROM). Conceptually this construction can be viewed as an optimization
of the instantiation of our ACT from EQS which relies on u·H(msg) as PRF and uses the EQS from Fuchsbauer
et al. [FHS19] and Fiat-Shamir transforms of Sigma protocols as ZK proofs. We prove the resulting scheme
directly in the ROM and GBGM.

Other Related Work. We remark that the EQS scheme from [FHS19] has been used in [HS21] to construct
anonymous credentials that are also “tag-based” and “aggregatable”. However, we do not know how to use
these extra properties to construct anonymous counting tokens, because, like metadata, the tag has to be
known by the issuer, which would break unlinkability.

1.2 Organization of the Paper

After recalling preliminaries in Section 2, we define formally the notion of ACT in Section 3. We then present
our construction of anonymous counting tokens (ACT) from Oblivious PRF in Section 4 and our two generic
transforms of ACT from equivalence-class signature schemes (EQS) in Section 5. Combined with the EQS
schemes in the full version of the paper [BRS23], these two generic transforms yield our concrete constructions
of ACT from EQS that do not rely on the generic bilinear group model (GBGM). In Section 8 we show that
an optimization of the second transform from Section 5 can be instantiated very efficiently in the GBGM.
We conclude with a generic transformation that enables ACTs with different rate limits in Section 9.

2 Preliminaries

We denote by λ the security parameter. PPT means probabilistic polynomial time. negl(λ) indicates a
quantity negligible in the security parameter, that is, for any positive integer k and for any large enough λ,
negl(λ) ≤ 1/λk.
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2.1 Cyclic Groups, Bilinear Groups, and Associated Assumptions

Our constructions make use of cyclic groups and bilinear groups. We denote by G the generator of a cyclic
group G of prime order p. We use additive notation. We denote by G∗ the set G \ {0}.

A bilinear group is a set of three groups (G1,G2,GT ), all of order p with generators (G1,G2,GT ), so that
there exists an efficient bilinear map e : G1 × G2 → GT (called a pairing) such that e(G1,G2) = GT . The
target group GT is also denoted additively and we use • to denote the pairing operation: e(G1,G2) = G1 •G2.

The symmetric external Diffie-Hellman (SXDH) assumption in a bilinear group (G1,G2,GT ) states that
the decisional Diffie-Hellman (DDH) assumption holds in G1 and G2. The DDH assumption in G states that
PPT adversaries A:∣∣∣Pr[x, y ← Zp, A(G, xG, yG, (xy) · G) = 1]− Pr[x, y, z ← Zp, A(G, xG, yG, z · G) = 1]

∣∣∣ ≤ negl(λ).

The q-decisional Diffie-Hellman inversion (q-DDHI) assumption in the group G states that for any PPT
adversaries A:∣∣∣Pr[x← Zp, A(G, xG, . . . , xqG, (1/x) · G) = 1]− Pr[x, y ← Zp, A(G, xG, . . . , xqG, y · G) = 1]

∣∣∣ ≤ negl(λ).

2.2 Pseudorandom Function

A pseudorandom function PRF : K ×X → Y is a function such that∣∣∣Pr[K←$ K, APRF(K,·)(1λ) = 1
]
− Pr

[
AO(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

where O : X → Y is a random oracle.
We need to consider a stronger definition where A is also given some public information pkK derived from

K←$ K, e.g., pkK = K · G where G is a generator of a cyclic group:∣∣∣Pr[K←$ K, APRF(K,·)(pkK) = 1
]
− Pr

[
K←$ K, AO(·)(pkK) = 1

]∣∣∣ ≤ negl(λ) (1)

Finally, we also consider a selective version where A must make all its query to its oracle PRF/O before
receiving any answer and before seeing pkK.

Dodis-Yampolskiy Pseudorandom Function. The Dodis-Yampolskiy function [BB04, DY05] is defined
by FDY(u,msg) = 1

u+msgG, with key K = u. We recall the following two lemmas that follow from the proof
of weakly unforgeable signature scheme in Boneh-Boyen [BB04] and the pseudorandomness of the VRF in
Dodis-Yampolskiy [DY05].3

Lemma 2.1. If the q-DDHI assumption holds in group G with generator G, the function FDY(u,msg) =
(u+msg)−1 ·G is a selectively pseudorandom function (when the adversary can make up to q queries), even
when the adversaries sees pku = u · G after its selective queries.

Using the same idea as in [DY05], we also get the following lemma:

Lemma 2.2. If the 2α-DDHI assumption holds in group G with generator G, the function FDY(u,msg) =
(u + msg)−1 · G is pseudorandom function when msg ∈ {0, 1}α, even when the adversaries sees pku = u · G
(see Eq. (1)).

In particular, the Dodis-Yampolskiy PRF is pseudorandom under a standard assumption for input mes-
sage sizes that are logarithmic in the security parameter.
3 Contrary to [BB04], we use a decisional assumption instead of the computational q-SDH because we want pseu-

dorandomness and not unpredictability. Contrary to [DY05], we have the PRF value in G1 instead of GT and our
assumption is thus q-DDHI instead of q-DBDHI, and we do not need to have a bilinear map. Appendix A of Miao
et al. [MPR+20] shows the proof under q-DDHI. The only difference with our case is that we allow the adversary
to see pk = u · G, which can easily be simulated the same way as in [DY05]. Simulating pk = u · G is why we rely
on q-DDHI instead of just (q − 1)-DDHI as would [MPR+20] require.
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2.3 Camenisch-Shoup Encryption

The homomorphic encryption introduced by Camenisch and Shoup [CS03] is an additively homomorphic
encryption. It additionally supports verifiable decryption, which enables a party holding the decryption
key to prove the correctness of the decryption of a given ciphertext. Here, we define the encryption and
decryption algorithms. We use the verifiable decryption proofs implicitly in our constructions. We use the
additive notation for the CS algorithms except for decryption. That is, we write the multiplicative group
Z∗
N2 additively, except in the description of the decryption algorithm. Later, in our constructions, we will

refer only to the decryption algorithm by name and never use the multiplicative notation.

– CS.Gen(1λ): Generate two ℓ-bit primes p′ and q′ such that p = 2p′+1 and q = 2q′+1 are primes and set
N = pq. Choose random R←$ Z∗

N2 and set G = 2NR be a 2N -th residue.4 Choose random x←$ Z⌊N/4⌋
and set Y = xG. Set H = 1+N mod N2, PK← (N,G,Y,H) and SK← x. Remark that H is a generator
of the subgroup of order N of Z∗

N2 .
– CS.Enc(PK,m ∈ Zn): Output (rG,mH+ rY) ∈ Z∗

N2 × Z∗
N2 where r ←$ Z⌊N/4⌋.

– CS.Dec(SK, ct = (u, e)): Output m =
( e
ux −1) mod N2

N (in multiplicative notation).

2.4 Non-Interactive Zero-Knowledge Argument of Knowledge

A (non-interactive) zero-knowledge argument has the following algorithms:

– crs← ZK.Setup(R): generates public parameters (common random string) ZK.crs for the prove relation-
ship R. (We assume R implicitly defines the security parameter λ).

– π ← ZK.Prove(R, crs, ϕ, w): generates a proof π that the prover knows a witness w such that the input
statement ϕ satisfies the relation R(ϕ,w).

– false/true← ZK.Verify(R, crs, ϕ, π): verifies the correctness of the proof for a statement ϕ.

Relation R and CRS ZK.crs are omitted when clear from the context (or not used). To simplify notation,
we also often write:

ZK{∃w : ϕ} or ZK{ Kw : ϕ}

instead of ZK.Prove(R, crs, ϕ, w). “ K” is used instead of “∃” when the ZK argument is an argument of
knowledge and satisfies computational knowledge soundness. We abuse notation and do not explicitly include
as part of the witness random coins of algorithms in the statement. For example, we may write:

ZK{∃x : c = Enc(pk, x), com = Commit(prm, x)}

without making explicit the randomness used by the encryption and commitment algorithms.
For some of the ZK arguments in this work, completeness holds for a smaller language than soundness.

In that case, the notation above corresponds to the soundness language. The language for completeness is
implicitly defined by the way the statement is constructed.

2.5 Zero Knowledge

ZK has the following properties.

Perfect Completeness. This property guarantees that an honestly generated proof for a true statement passes
verification. For all relations R and (ϕ,w) ∈ R, for all crs ← ZK.Setup(R) and honestly generated proofs
π ← ZK.Prove(R, crs, ϕ, w), the verification passes:

true = ZK.Verify(R, crs, ϕ, π).
4 Recall this is using additive notation for Z∗

N2 . In usual multiplicative notation, this corresponds to: G = R2N mod
N2.
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Computational Zero-knowledge. This property refers to the fact that the proof does not reveal any additional
information about the witness apart from the correctness of the statement. For all relations R and all PPT
adversaries A, there exists a simulator Sim that can generate public parameters together with a trapdoor
trap which can enable it to generate verifying proofs without knowing a witness.∣∣∣Pr[crs← ZK.Setup(R), AZK.Prove(R,crs,·,cot)(crs) = 1

]
− Pr

[
(crs, trap)← Sim(R), ASim′(R,trap,·,·)(crs) = 1

]∣∣∣ ≤ negl(λ)

where Sim′(R, trap, ϕ, w) ignores its last argument w and returns Sim(R, trap, ϕ).

Computational Soundness. This property captures the idea that no adversary can generate a proof on a false
statement. For all relationships R and for every PPT adversary A:

Pr[crs← ZK.Setup(R), (ϕ, π)← A(crs) :
true = ZK.Verify(R, crs, ϕ, π) and ∄w, (ϕ,w) ∈ R] ≤ negl(λ). (2)

Computational Knowledge Soundness. This property is stronger than computational soundness. It says that
for all relationships R and for every PPT adversary A there exists an extractor Extract such that for every
valid proof that the adversary generates, the extractor can extract a valid witness (potentially by running the
adversary multiple times) and the extractor-generated CRS is indistinguishable from an honestly generated
CRS. The definition is adapted from [BPW12] removing the access to a simulation oracle, simplifying it by
allowing the extractor to select the random coins of the adversary and allowing the use of a CRS (the latter
is to allow constructions in the standard model). Concretely, we have:

Pr
[
(crs, trap)← Extract(R), ρ← rndA, (ϕ, π)← A(crs; ρ),

w ← ExtractA(trap, ϕ, π, ρ) :

true = ZK.Verify(R, crs, ϕ, π)and (ϕ,w) /∈ R
]
≤ negl(λ)

(extractability) where rndA is the distribution of random coins of the adversary, and for every arbitrary
adversary B (even non-polynomial time):∣∣∣Pr[crs← ZK.Setup(R) : 1 = B(crs)]

− Pr[(crs, trap)← Extract(R) : 1 = B(crs)]
∣∣∣ ≤ 1

2
+ negl(λ)

(statistical setup indistinguishability).
Note that setup indistinguishability is only needed for constructions with a CRS and is trivial for con-

struction like Fiat-Shamir. We require statistical setup indistinguishability because in our equivalence-class
signature construction, setup indistinguishability is used between two non-polynomial-time games.

In the random oracle model, the extractor sees all random oracle queries made by A in the first step and
controls the random oracle in the second step. Note that we do not require the existence of a straightline
extractor, so we can use Fiat-Shamir arguments based on Sigma protocols in the random oracle model
(without assuming algebraic adversaries or generic group model). However, this means that our security
reductions can only extract one (or a logarithmic number of) adversarially-generated proofs at a time.

We also assume that ZK arguments for different relationships R use different random oracles. In practice,
this just means prefixing hash queries for different relationships by different values (i.e., domain separation).

Construction of ZK Arguments. We now recall the two constructions we will be using in this paper:
one from Sigma protocol and one based on Groth-Sahai proofs [GS08, EG14].
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Sigma Protocols. A Sigma protocol [Cra97, CDS94] for a relationship R is a 3-move public coin protocol
between a prover and a verifier both of which know an input ϕ and the prover knows w such that R(ϕ,w).
The prover sends the first message, which most often is some type of a commitment to a random value, the
verifier provides a challenge as a second message and the third message is the prover’s response computed
based on the first two messages and the witness w.

Sigma protocols provide knowledge soundness as long as the prover can answer with verifying proofs more
than one different challenge for the same first message. There exists an extractor that, given two transcripts
with a common first message extracts a witness.

The Fiat-Shamir transform [FS87] can be applied to obtain a non-interactive version of any public coin
protocol including the Sigma protocols. When analyzed in the random oracle (RO) model this transformation
preserves the knowledge soundness property. The knowledge extractor needs to rewind the adversary and
knowledge soundness is proven using the forking lemma [PS96, BPW12]. While interactive Sigma protocols
are only proven to be zero-knowledge for honest verifiers, their non-interactive versions with Fiat-Shamir
provide regular zero-knowledge.

Sigma protocols allow proving knowledge of committed or encrypted values as well as some classes of
relations between those values. We will use several instances of Sigma protocols in our constructions.

Groth-Sahai Proofs. Groth-Sahai proofs are (non-interactive) ZK arguments invented by Groth and Sahai
in [GS08] and fine-tuned by Escala and Groth in [EG14]. They allow to efficiently prove any set of pairing
equations over a bilinear group. Contrary to Fiat-Shamir proofs, they are in the standard model with a
common reference string. In addition, they are arguments of knowledge (with straightline extractor) when
witnesses are restricted to be group elements in G1 or G2 (as opposed to scalars in Zp).

2.6 Signature Schemes

A signature scheme is defined as follows:

– (pk, sk)← KGen(1λ) generates a public/secret key pair.
– ρ← Sign(sk,msg) outputs a signature ρ for message msg.
– false/true← Verify(pk,msg, ρ): verifies the signature ρ.

Correctness ensures that for any key pair (pk, sk) ← KGen(1λ), for any message msg, for any signature
ρ← Sign(sk,msg), the signature passes the verification: true = Verify(pk,msg, ρ).

A signature scheme is said existentially unforgeable under chosen-message attacks (EUF-CMA) if for any
PPT adversary A:

∣∣∣Pr[(pk, sk)← KGen(1λ), (msg, ρ)← ASign(sk,·)(pk) :

true = Verify(pk, ρ,msg) and msg /∈ QSign]
∣∣∣ ≤ negl(λ)

where QSign is the set of all messages queried to the oracle Sign(sk, ·).

2.7 Commitment Schemes

We define commitment schemes as a pair of two algorithms COM = (COM.Setup,Commit) where Setup(1λ)
outputs (public) commitment parameters prm, and Commit(prm,msg; t) returns a commitment com of mes-
sage msg using randomness t. Public parameters are often omitted when clear from the context.
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Pedersen Commitments. We will use the Pedersen commitment scheme when we need binding and hiding
properties. We use Pedersen commitment over a group G where the Strong RSA assumption [BP97, FO97]
holds. This will be needed since, in some cases, the committed values come from groups of different orders.
The parameters for the commitment are group generators G,H ∈ Z∗

N , where N is a Strong RSA modulus.
As for Camenisch-Shoup (Section 2.3), we use the additive notation for Z∗

N instead of the multiplication
notation. The commitment of a value x is of the form Commit(x; r) = xG + rH where r ←$ Z⌊N/4⌋. The
binding property of the commitment scheme requires that the prover does not know the discrete log relation
between the generators G and H.

Extractable Commitments. These are commitments that have an extractable mode in which the commit-
ment parameters are generated together with a trapdoor trap. There exists an extractor E which can extract
the committed value m ← E(trap,Commit(m)) using the trapdoor trap. We will use the Camenisch-Shoup
encryption as an extractable commitment where in the normal mode, the secret key (i.e. the discrete log of
Y) is not known, while in the trapdoor mode, the secret key is the trapdoor.

2.8 Equivalence-Class Signature Schemes (EQS)

Equivalence class signatures (EQS) [FHS19] are signatures for equivalence classes where a signature for a
representative of the equivalence class can be transformed into a signature for any other representative in
the same class using only public parameters. The EQS schemes that we use allow signing messages that are
vectors of group elements M⃗ ∈ G∗ℓ

1 and provide the following signature adaptation property: a signature
for M⃗ can be adapted into signatures of any multiple µM⃗, for µ ∈ Z∗

p. We exclude the 0 element for all
coordinates of M⃗ as well as for µ to match [FHS19].

As in [FG18], we use a slightly weaker definition than the original EQS notion: we allow the adapted
signatures to be of a different format than the original signatures. The original signatures are called pre-
signatures. We also only require computational signature adaptation instead of perfect signature adaptation:
an adversary cannot computationally distinguish an (adapted) signature on the same message computed
from two different pre-signatures, even if the adversary generated the secret key. We also allow for a common
reference string (that is generated by a trusted party).

EQS. An equivalence class signature scheme consists of the following algorithms:

– crs← EQS.Setup(PG): on input a bilinear group PG, generate a CRS crs.
– (pk, sk)← EQS.KGen(crs): on input a CRS crs generates secret and public keys which define pre-signature

space R and signature space S.
– ρ ← EQS.Sign(crs, sk, M⃗ ∈ G∗ℓ

1 ): generates a pre-signature ρ for the representative M⃗ = m⃗G1 ∈ G∗ℓ
1 of

the class Span(M⃗) = Span(m⃗) ·G1.
– σ ← EQS.Adapt(crs, pk, M⃗ ∈ G∗ℓ

1 , ρ ∈ R, µ ∈ Z∗
p): transforms a pre-signature ρ for a representative M⃗

into a signature for M⃗′ = µ · M⃗.
– false/true ← EQS.Verify(crs, pk, M⃗′ ∈ G∗ℓ

1 , σ ∈ S): verifies signature σ for representative M⃗′ using the
public key pk.

When clear from the context, crs is omitted. Compared with [FG18], EQS.Adapt also takes as input M⃗

(wlog since M⃗ could also be included in ρ).

Perfect Correctness. An EQS is correct if, for any honestly generated pre-signature, any resulting adapted
signature verifies. That is, for any M⃗ ∈ G∗ℓ

1 and µ ∈ Z∗
p:

crs← EQS.Setup(PG), (pk, sk)← EQS.KGen(crs),

ρ← EQS.Sign(crs, sk, M⃗), σ ← EQS.Adapt(crs, pk, M⃗, ρ, µ)

we have:
true = EQS.Verify(crs, pk, µ · M⃗, σ).
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Game EUF-CMAA(λ)

PG ← GGen(λ)

(crs, trap)← EQS.Setup(PG)
(pk, sk)← EQS.KGen(crs)

QSign := ∅

(M⃗′∗ ∈ G∗ℓ
1 , σ∗ ∈ S)← ASign(·)(crs, pk)

return true = Verify(pk, M⃗′∗, σ∗) and

∀M⃗ ∈ QSign, M⃗
′∗ /∈ Span(M⃗)

Oracle Sign(M⃗ ∈ G∗ℓ
1 )

QSign := QSign ∪ {M⃗}

ρ← EQS.Sign(crs, sk, M⃗)

return ρ

Game SIG-ADPA(λ)

PG ← GGen(λ)

crs← EQS.Setup(PG)

(pk, M⃗, ρ, µ, ρ′, state)← A(crs)
bchl ←$ {0, 1}

σ0 ← EQS.Adapt(crs, pk, M⃗, ρ, µ)

σ1 ← EQS.Adapt(crs, pk, µM⃗, ρ′, 1)

abort if σ0 =⊥ or σ1 =⊥
bguess ← A(state, σbchl)

return (bchl == bguess)

Fig. 1: EUF-CMA and signature adaptation security game for EQS

Existential Unforgeability. We recall the notion of existential unforgeability under chosen-message attacks
from [FHS19].

Definition 2.3. An EQS scheme EQS = (Setup,KGen,Sign,Adapt,Verify) satisfies existential unforgeability
under chosen-message attacks (EUF-CMA) if for all PPT adversaries A:

Adveuf-cma
EQS,A (λ) := Pr[EUF-CMAA(λ) = 1] = negl(λ),

where EUF-CMAA(λ) is defined in Fig. 1.

Fuchsbauer and Gay introduced a weaker EUF-CoMA notion in [FG18]. This notion requires the adver-
sary in the security game to provide the discrete logarithms of all group elements. In our first construction
of ACT from EQS (Construction 5.1), we could use this weak EUF-CoMA definition if we add a ZK proof of
knowledge of the discrete logarithms of the message elements. However, such proof is very expensive (unless
using Fiat-Shamir in the generic group model or the algebraic group model, but such proofs are much harder
since extraction in the GGM or the AGM requires careful consideration of how the proof of the full scheme
works).

Signature Adaptation. An EQS satisfies signature adaptation if a malicious signer cannot distinguish be-
tween two signatures on the same message M⃗′ ∈ G∗ℓ

1 adapted from two pre-signatures on two potentially
different messages. Contrary to [FHS19], we allow signature adaptation to hold only computationally. We
also implicitly assume that EQS.Adapt fails if the pre-signature ρ is invalid, which is why we don’t have a
verification algorithm for ρ. More formally, we define signature adaptation as follows.

Definition 2.4. An EQS scheme EQS = (Setup,KGen,Sign,Adapt,Verify) satisfies signature adaptation if
for all PPT adversaries A:

Advsig-adpEQS,A (λ) := |Pr[SIG-ADPA(λ) = 1]− 1/2| = negl(λ),

where the game SIG-ADPA(λ) is defined in Fig. 1.

3 Definitions

In this section, we define anonymous counting tokens (ACTs) with public (respectively private) key verifia-
bility. The private key verifiability version includes the grey-background text, while the public verifiability
version does not.
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Definition 3.1 (ACT). An anonymous counting token (ACT) scheme with private key verifiability consists
of the following algorithms:

– (pprmS, privprmS)← ACT.GenParam(1λ): generates parameters for the ACT scheme. These are parame-
ters that will be reused throughout the execution of token issuance. Outputs private parameters privprmS

for the token issuer and public parameters pprmS for the ACT scheme.
– (pprmC, privprmC) ← ACT.ClientRegister(pprmS): on input the public parameters for the ACT scheme,

this algorithm generates private parameters privprmC for the client and public parameters pprmC.
– (blindRequest, randmsg) ← ACT.Request(pprmS, privprmC,msg): on input the public parameters pprmS for

the ACT scheme, the private parameters for a client pprmC and a message msg, generate a blinded token
issuance request blindRequest and state information randmsg.

– (blindToken, tag ) ← ACT.Sign(privprmS, pprmC, blindRequest) on input the private parameters for the
issuer server privprmS, the public parameters for the client pprmC and the blinded request blindRequest,
generate a blinded token. There is an optional output tag which the issuer can use for throttling one token
per message per client.

– (msg, tok) ← ACT.Unblind(pprmS, privprmC, blindToken, randmsg): on inputs the public parameters pprmS

for the ACT scheme and the private parameters for a client pprmC and a blind token blindToken and
randomness randmsg used to blind the request for the message, generate the unblinded token tok for
message msg).

– (bit, tag ) ← ACT.Verify(vrfyprm,msg, tok): on input the verification parameters for the ACT scheme
vrfyprm := (pprmS, privprmS), which consist of the public parameters pprmS for the ACT scheme, the
private parameter for the issuer server privprmS, a message msg and a token tok, output verification bit
bit. There is an optional output tag which the issuer can use for throttling one token per message per
client.

Figure 2 presents the interactions between a client and an issuer server during token issuance and verifi-
cation using the algorithms of the ACT scheme. The client has the public parameters of the scheme and the
server has the public keys C registered by clients as well as a set of tags T which it uses to throttle issuance
at a single token per message per client. In order for the server to be able to enforce that each client gets
at most one token per message, the server will obtain a tag that allows it to detect when the same client
tries to obtain more than one token per message. This tag will be related to the message and the client’s
registered key but will only reveal whether more than one token per message is obtained/used by the same
client. An ACT construction may enforce the throttling property either at issuance (i.e., the client cannot
obtain a second token for the same message) or during verification where a client cannot redeem more than
one token for the same message. For each of our constructions, we will specify which of the two functionalities
it provides.

ACT Correctness. An ACT scheme is correct if any honestly generated token verifies. That is for any sets
of issuer’s and client’s parameters

(pprmS, privprmS)← ACT.GenParam(λ),

(pprmC, privprmC)← ACT.ClientRegister(pprmS),

and any message msg, the following holds

(blindRequest, randmsg)← ACT.Request(pprmS, privprmC,msg)

blindToken← ACT.Sign(privprmS, pprmC, blindRequest)

(msg, tok)← ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

true← ACT.Verify(vrfyprm,msg, tok).
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Client(pprmS, privprmC,msg) Issuer(privprmS, C, T )

(bR, r)← ACT.Request(pprmS, privprmC,msg)

state← state ∪ (msg, r)

bR

(bT, tag )

← ACT.Sign(privprmS, pprmC, bR)

if ∃ tag,

if tag ∈ T , abort, else T = T ∪ tag

bT

(msg, t)← ACT.Unblind(pprmS, privprmC, bT, r)

msg, t

(bit, tag )← ACT.Verify(vrfyprm,msg, t)

if ∃ tag,

if tag ∈ T , ;abort, else T = T ∪ tag

if bit = false,abort

Fig. 2: Token issuance and verification for ACT (Definition 3.1).

3.1 Security Properties

Unforgeability. The first security property is unforgeability, which guarantees that an adversary cannot
generate tokens for more messages than the ones it has requested signatures and it also cannot generate
more than one signature for a message per registered client key. This holds even when the adversary can
register public parameters for many clients.

Definition 3.2 (Unforgeability). An anonymous counting token scheme ACT is unforgeable if for any
PPT adversary A and any max(T) ≥ 0, max(R) ≥ 0 (the maximum number of queries):

Advomuf
ACT,A(λ) := Pr

[
OMUFACT,A(λ) = 1

]
= negl(λ).

where OMUFACT,A(λ) is defined in Figure 3.

Unlinkability. The next ACT property is unlinkability which guarantees that even the issuer cannot link client
token requests with redeemed tokens, except if it can trivially do so. Definition relies on UNLINKACT,A(λ)
is defined in Figure 4.

The high-level idea of the game is the following. The adversary plays the role of the issuer, can register as
many clients as it wants in via the GetPrm oracle, and can ask those clients to generate blind token requests
for messages of its choice via the Request oracle. It needs to be distinguish blind token requests bT for two
different client/message pairs (oracle Chlissue); or it needs to distinguish redeemed/unblind tokens for the
same message but two different issuance sessions (oracle Chlredeem). As the adversary can always provide
wrong blindToken (as issuer), in that latter, we request that ACT.Unblind succeeds on both the blind tokens
provided by the adversary.

Our unlinkability notion assumes that the issuer parameters pprmS and privprmS are honestly generated.
We informally discuss how to remove this requirement in each of our constructions.

Definition 3.3 (Unlinkability). An anonymous token scheme ACT is unlinkable if for any PPT adversary
A:

AdvunlinkACT,A(λ) := |2Pr
[
UNLINKACT,A(λ) = 1

]
− 1| = negl(λ),

where UNLINKACT,A(λ) is defined in Figure 4.
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Game OMUFACT,A(λ)

(pprmS, privprmS)← ACT.GenParam(1λ)

R← 0, T← 0, state← {}, tags← {}

output← ARegister(·),Sign(·),Verify(·)(pprmS)

(msgi, toki)i∈[T+1] := output

return

∀ i ̸= j ∈ [T+ 1], (msgi, toki) ̸= (msgj , tokj)

and(
// Type 1 forgery:(

∀i ∈ [T+ 1],

ACT.Verify(vrfyprm,msgi, toki) = (true, tagi ),

∀ i ̸= j ∈ [T+ 1], (msgi, tagi) ̸= (msgj , tagj)
)

or
// Type 2 forgery:(

∃ S ⊂ [T], ∃msg : |S| > R and

∀i ∈ S,msgi = msg and

∀i ∈ S,ACT.Verify(vrfyprm,msgi, toki) = true
)

)

Oracle Register(pprmC)

state← state ∪ pprmC

R← R+ 1

Oracle Sign(pprmC, bR)

if pprmC /∈ state, return ⊥
T = T+ 1

(bT, tag )

← ACT.Sign(privprmS, pprmC, bR)

if tag ∈ tags, return ⊥

tags← tags ∪ tag

return bT

Oracle Verify(msg, tok)

bit← ACT.Verify(vrfyprm,msg, tok)

return bit

Fig. 3: Unforgeability game for an ACT scheme. The appropriate boxed instructions are included depending
on whether rate limiting is done at issuance (boxed instructions in Sign) or at redemption (boxed instruction
in main game).

4 Anonymous Counting Tokens from Oblivious PRF

In this section, we present our first anonymous counting tokens construction which leverages oblivious pseu-
dorandom functions. We make use of the extended Boneh-Boyen PRF function F(sk = (u, y),msg, r) =
(msg+u+ r ·y)−1 ·G where G is a generator of a group G, which was used by Boneh and Boyen [BB04] to con-
struct short signatures without oracles. The Dodis-Yampolskiy function [DY05] FDY(u,msg) = (msg+u)−1 ·G
can be viewed as a special case of this function where the key y is set to zero. For our construction and
proofs, we need the property that F is pseudorandom when evaluated on adversarially chosen messages and
on randomness that is sampled uniformly at random.

4.1 Extended Boneh-Boyen Pseudorandom Function

In this section, we prove the pseudorandom properties we will use for the Boneh-Boyen PRF function
F(sk = (u, y),msg, r) = (msg + u+ r · y)−1 · G. Concretely, we prove the following lemma:

Lemma 4.1. If FDY(msg, u) = (msg + u)−1 · G is a selectively pseudorandom function over the group G
with generator G, the function F(sk = (u, y),msg, r) = (u + msg + r · y)−1 · G is an extended pseudorandom
function, that is:

AdveprfPRF,A(λ) := Pr[EPRFA(λ) = 1] = negl(λ),

where EPRFA(λ) is defined in Fig. 5.

Recall that Lemma 2.1 shows that FDY satisfies the premise.
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Game UNLINKACT,A(λ)

(pprmS, privprmS)← ACT.GenParam(1λ)

bchl ←$ {0, 1}

bguess ← AO(pprmS, privprmS)

return (bchl == bguess)

GetPrm()

(pprmC, privprmC)

← ACT.ClientRegister(pprmS)

return pprmC

Request(pprmC,msg)

abort if pprmC not from GetPrm

abort if (pprmC,msg) ∈ Q′

(bR, r)

← ACT.Request(pprmS, privprmC,msg)

Q = Q∪ (pprmC,msg, bR, r)

Q′ = Q′ ∪ (pprmC,msg)

return bR

Chlissue(pprmC,msg0,msg1)

abort if pprmC not from GetPrm

abort if (pprmC,msg0) or (pprmC,msg1) ∈ Q
′

abort if msg0 = msg1

(bR, r)← ACT.Request(privprmC,msgbchl)

Q′ = Q′ ∪ (pprmC,msg0) ∪ (pprmC,msg1)

return bR

Chlredeem(pprm0, pprm1, bR0, bR1, bT0, bT1)

abort if (pprm0, ⋆, bR0, ⋆) /∈ Q
abort if (pprm1, ⋆, bR1, ⋆) /∈ Q
Find (pprmb,msgb, bRb, rb) ∈ Q

and delete them (for b ∈ {0, 1})
(msg′0, tok0)←

ACT.Unblind(pprmS, privprm0, bT0, r0)

(msg′1, tok1)←
ACT.Unblind(pprmS, privprm1, bT1, r1)

abort if msg0 ̸= msg1

abort if msg′0 ̸= msg0 or msg′1 ̸= msg1

return tokbchl

Fig. 4: Unlinkability game for an ACT scheme, where A has access to oracles O =
GetPrm(·),Request(·),Chlissue(·),Chlredeem(·)

Proof. Assuming there exists an adversary A that distinguishes F from random with T evaluations and
R challenge queries, we build and adversary B that distinguishes FDY with the same number of selective
evaluation and challenge queries as follows. Here, we consider a variant of the selective version of Eq. (1),
where B also is given access to an evaluation oracle Eval(msg) (instead of a single Challenge oracle that either
matches PRF = F or O in Eq. (1)). Usual hybrid techniques can reduce this variant to the selection version
of Eq. (1).
B generates a random y ∈ Zp and provides y ·G to A. B makes T evaluation queries on random messages

(msgi)i∈[T] to obtains (Fi)i∈[T] and R challenge queries on random messages (msg′j)j∈[R] to obtain (Ej)j∈[R].
On the i-th evaluation query mi from A, B chooses ri = y−1 · (msgi −mi), and returns (ri,Fi). Similarly, on
the j-th challenge query m′

j from A, B chooses r′j = y−1 · (msg′j −m′
j), and returns (r′i,Ei). B returns the

same guess as the guess of A.
The view of A is identical to the one in experiment EPRFA(λ) in Lemma 4.1 since all values ri and r′j

are distributed uniformly at random since the messages msgi, msg′j are random. Therefore, the probability
of success of A is bounded by the probability of the selective adversary against the Dodis-Yampolskiy
pseudorandom function.

⊓⊔

4.2 Verifiable Oblivious Pseudorandom Function

We will need to evaluate obliviously the function F(sk = (u, y),msg, r) = (msg + u + r · y)−1 · G: one party
has the secret key sk while the other party has a message (msg, r) as input. We call the resulting protocol a
verifiable oblivious pseudorandom function (VOPRF).

We do not prove separate properties for the VOPRF and we prove everything the ACT security properties.
Informally, the security property that we will be proving is that given public parameters and committed input,
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Game EPRFA(λ)

(u, y)←$ Z2
p

sk← (u, y)

bchl ←$ {0, 1}

bguess ← AEval(·),Challenge(·)(u · G, y · G)
return (bchl == bguess)

Oracle Eval(msg)

r←$R
return F(sk,msg, r)

Oracle Challenge(msg)

r←$R
E0 ← F(sk,msg, r)

E1 ←$ V
return Ebchl

Fig. 5: Extended pseudorandom function

the protocol that consists of the steps: the client runs EncodeMsg, the server runs Eval and the clients runs
Decode to obtain its output, is a malicious secure computation protocol where the clients receives output
F(msg, r) and the server learns nothing.

The protocol is used as part of the final ACT protocol, where we implicitly assume inputs and keys to
be previously committed.

Definition 4.2 (Verifiable Oblivious Pseudorandom Function). A verifiable oblivious pseudoran-
dom function (VOPRF) for the function F defined in Section 4.1 consists of the following algorithms
(VOPRF.GenParam, VOPRF.EncodeMsg, VOPRF.Eval, OPRF.Decode):

– (pprm, privprm)← VOPRF.GenParam(1λ) takes an input the security parameter and generates public and
private parameters

– (digest, state)← VOPRF.EncodeMsg(pprm, (msg, r), (tmsg, tr)) takes as input a message, randomness r, as
well as randomness tmsg, tr used to commit msg and r (defined in this way for composition with other
protocols), and outputs a digest and a state. The digest includes a proof of correct evaluation with respect
to committed input and public parameters.

– blindPRF ← VOPRF.Eval(privprm, digest) takes a digest with a proof of correctness and PRF private
parameters, and outputs a value blindPRF. The value blindPRF includes a proof of correct evaluation.

– τ ← VOPRF.Decode(state, blindPRF) takes a value blindPRF, and outputs the value τ = F(sk,msg, r) (at
least if everything was generated honestly).

Client(pprmS, (msgi)i∈[T]) Issuer(privprmS)(
(bRi, statei)← OPRF.EncodeMsg(pprmS,msgi, ri, tmsgi , tri)

)
i∈[T]

(bRi)i∈[T]

(
r′i ← OPRF.Eval(privprmS, bRi)

)
i∈[T]

(r′i)i∈[T]

(
ri ← OPRF.Decode(statei, r

′
i)
)
i∈[T]

)

Fig. 6: Oblivious Evaluation of PRF.
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4.3 ACT Construction

Assuming we have a VOPRF (with the right properties) for the extended Boneh-Boyen PRF function F(sk =
(u, y),msg, r) = (msg + u+ r · y)−1 · G, we construct an ACT from this VOPRF.

Construction 4.3 (ACT from VOPRF). Let G be a cyclic group of prime order p with generator G,
VOPRF = (VOPRF.GenParam,VOPRF.EncodeMsg,VOPRF.Eval,VOPRF.Decode) be the verifiable oblivious
pseudorandom function defined in Construction 4.4, COMPed = (COMPed.Setup,CommitPed) be the Peder-
sen commitment scheme over a strong-RSA group (a hiding and binding commitment scheme), COMExt =
(COMExt.Setup,CommitExt) be an extractable commitment scheme defined as the CS encryption scheme (see
Section 2.7), FDY be the Dodis-Yampolskiy (selective) PRF over G,5 and ZK be a sound zero-knowledge
argument scheme. We construct an anonymous counting token scheme ACT as follows:

ACT.GenParam(1λ): Generate

1. (PKVOPRF,SKVOPRF) ← VOPRF.GenParam(1λ). Note that PKVOPRF contains (public) parameters prmExt

for the extractable commitment scheme and prmPed for the Perdersen hiding and binding commitment.

Output: pprmS ← PKVOPRF

privprmS ← SKVOPRF

ACT.ClientRegister(pprmS): Generate

1. a Dodis-Yampolskiy PRF key uC ←$ Zp,
2. a commitment comuC ← CommitPed(uC; tuC)

Output: pprmC ← comuC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC,msg):

1. Compute a commitment to the message commsg ← CommitExt(H(msg); rmsg).
2. Compute

– Dodis-Yampolskiy PRF evaluation v← FDY(uC,H(msg)).
– Proof of correct PRF evaluation

πv : ZK{∃h, uC, tmsg, tuC : v = FDY(uC, h),

commsg = CommitExt(h; tmsg), comuC = CommitPed(uC; tuC)}

3. Generate a random rC and commitment comrC ← CommitExt(rC; trC).
4. Hash the transcript to get random value rS ← H(trnc) where

trnc = (pprmS, comuC , commsg, v, comrC).

5. Compute r← rC + rS, commit comr ← CommitPed(r; tr) and generate a proof:

πr : ZK{∃ rC, trC , tr : r = rC + rS,

comrC = CommitExt(rC, trC), comr = CommitPed(r; tr)}.

(The above 3 steps are used to create a random value r that neither the issuer nor the client control as
explained in Section 1.1.)

5 This PRF is used for the rate limitation of the client. VOPRF does not evaluate this PRF but rather evaluates F
defined in Section 4.1.
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6. Compute first OPRF message on input msg with randomness r

(VOPRF.state,VOPRF.digest)← VOPRF.EncodeMsg(PKVOPRF, (H(msg), r), (tmsg, tr)).

Output: blindRequest← (commsg, v, πv, comrC , comr, πr,VOPRF.digest)

randmsg ← (msg, r,VOPRF.state)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (commsg, v, πv, comrC , comr, πr,VOPRF.digest).
2. Parse privprmS = skOPRF.
3. Compute rS ← H(trnc) as in ACT.Request.
4. Verify the proofs πv and πr and abort if any of them doesn’t verify.
5. Compute the second message of the VOPRF evaluation

blindPRF← VOPRF.Eval(skVOPRF,VOPRF.digest).

Output: blindToken← blindPRF

tag← v

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse blindToken = blindPRF.
2. Parse randmsg = (msg, r,VOPRF.state).
3. Decode the returned token (implicitly verifying its correctness):

τ ← VOPRF.Decode(VOPRF.state, blindPRF).

4. Set the signature tok← (r, τ)

Output: (msg, tok)

ACT.Verify(pprmS, privprm,msg, tok)

1. Parse privprmS = skVOPRF and tok = (r, τ). Set bit← false.
2. If F(skVOPRF,H(msg), r) = τ , set bit← true.

Output: bit

4.4 Verifiable Oblivious Pseudorandom Function Construction

Next, we present our construction of a verifiable oblivious pseudorandom function which closely follows the
construction of distributed oblivious PRF of Miao et al. [MPR+20]. The main difference is that [MPR+20]
relies on the selective pseudorandom property of the Dodis-Yampolskiy function while we use the extended
Boneh-Boyen PRF function F(sk = (u, y),msg, r) = (msg + u+ r · y)−1 · G.
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Construction 4.4. Let COMPed be the Pedersen commitment scheme, CS be the Camenisch-Shoup encryp-
tion scheme, and COMExt be extractable commitment instantiated as CS encryption (but with a different
public key, whose secret key is known by the issuer, contrary to the secret key of COMExt).We assume
for simplicity that we use the same modulus N for CS, COMExt, and COMPed. We construct an VOPRF
(VOPRF.GenParam, VOPRF.EncodeMsg,VOPRF.Eval, VOPRF.Decode) as follows:

VOPRF.GenParam(1λ):

1. Generate CS parameters (pkCS ← (N,GCS,YCS,HCS), skCS ← x)← CS.Gen(1λ).
2. Generate extractable commitment parameters prmExt ← COMExt.Setup(1

λ).
3. Generate Pedersen commitment parameters prmPed ← COMPed.Setup(1

λ). We use the same modulus N
for the two commitment schemes and the CS scheme above.

4. Sample random keys u, y←$ Z|G| for the function F .
5. Encrypt ctu ← CS.Enc(pkCS, u) = (ru · GCS, u · HCS + ru · YCS) where ru ←$ Z⌊N/4⌋.
6. Encrypt cty ← CS.Enc(pkCS, y) = (ry · GCS, y · HCS + ry · YCS) where ry ←$ Z⌊N/4⌋.

Output: pprmS ← (pkCS, prmPed, prmExt, ctu, cty)

privprmS ← (u, y, skCS)

VOPRF.EncodeMsg(pprmS, (msg, r) ∈ Z2
|G|, (tmsg, tr)):6

1. Commit commsg ← CommitExt(msg; tmsg), comr ← CommitPed(r; tr).
2. Sample a←$ Zp and b←$ Zp2·2λ .
3. Compute commitments with randomness ta, tb, tr ←$ Z⌊N/4⌋

coma ← CommitExt(a; ta), comb ← CommitPed(b; tb),
comr ← CommitPed(r; tr).

4. Let α = a ·msg, γ = a · r. Compute commitments:

comα ← CommitPed(α, tα), comα ← CommitPed(γ, tγ)

5. Compute encryption of β = a ·msg + a · (u+ r · y) + b · p (implicitly defined):

ctβ = CS.Enc(pkCS, β) = Enc(pkCS, a ·msg + b · p) + a · ctu + a · r · cty.

6. Generate a ZK proof

π = ZK{∃ a, b,msg, r, α, γ, ta, tb, tmsg, tr, tα, tγ s.t. :
ctβ = Enc(pkCS, a ·msg + b · p) + a · ctu + a · r · cty,
coma = CommitExt(a; ta), comb = CommitPed(b; tb),

comr = CommitPed(r; tr), commsg = CommitExt(msg; tmsg),

comα = CommitPed(a ·msg; tα), comγ = CommitPed(a · r; tγ),
a < p · 22λ+1, α < p · 22λ+1, r < p · 22λ+1, b < p2 · 23λ+1}.

Output: digest← (ctβ , coma, comb, commsg, comr, comα, comγ , π)

state← (a, b)

VOPRF.Eval(privprmS, digest):
6 Note that when called from the ACT, msg will actually be a hash of some message H(msg).
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1. Parse digest← (ct, π). If π does not verify, abort.
2. Compute β ← CS.Dec(skCS, ct). If β ≥ p32λ+1, abort.
3. Compute commitment comβ = CommitPed(β; rβ) where rβ ←$ Z⌊N/4⌋.
4. Set F = β−1 · G.
5. Generate a ZK proof

π = ZK{β, rβ , skCS s.t. : ct = (G′, β · HCS + skCS · G′),YCS = skCS · GCS,

comβ = CommitPed(β; rβ),F = β−1 · G, β < p3 · 23λ+1}.

Output: blindPRF← (F, comβ , π)

VOPRF.Decode(state, blindPRF):

1. Parse blindPRF = (F, comβ , π), state = (a, b).
2. If π does not verify, abort.
3. Set F′ = a · F.

Output: τ ← F′

Security Proof. We start with the intuition for our security proof. The first observation is that in the case
of a single client, an ACT forgery corresponds to generating a new evaluation of the PRF F on a message
that has not been queried. To formalize this, we leverage the result of Miao et al. [MPR+20, Theorem B.1]
which constructs a distributed oblivious PRF evaluation protocol with malicious security on committed
inputs for the Dodis-Yampolskiy PRF. Their result essentially shows that the VOPRF Construction 4.4
with FDY(u,msg) = (u + msg)−1 · G is a secure two-party computation protocol where the client obtains
PRF(u,msg) and the server has no output. This means that if we instantiated the ACT construction with
this VOPRF construction, then the ACT scheme will be unforgeable for a single client who chooses its
messages selectively. Then, we show how we can reduce the unforgeability of the ACT construction with
PRF FDY(u, y,msg, r) = (u + msg + r · y)−1 · G to the single client unforgeability of the ACT with the
Dodis-Yampolskiy PRF. This reduction will follow the ideas of the reduction from unforgeability to weak
unforgeability for the Boneh-Boyen signatures [BB04].

The unlinkability of the scheme follows from the selective pseudorandom property of the Dodis-Yampolskiy
PRF. It indeed shows that the unlinkability adversary only obtains pseudorandom tokens that do not reveal
any information about the underlying input messages.

We start by recalling the theorem of Miao et al. [MPR+20].

Theorem 4.5 ([MPR+20, Theorem B.1]). The constructions of Figure 6 instantiated with F(u,msg) =
FDY(u,msg) = (u+msg) ·G (instead of the extended Boneh-Boyen function F as written in Construction 4.4)
and the algorithms from Construction 4.4 for oblivious evaluation, is a secure two-party computation protocol
for which there exist simulators SimC which simulates the view of the client and SimS which simulate the
view of the server.

We proceed to formalize the single client unforgeability security which the above theorem will enable us
to prove. The main difference of this weaker unforgeability notion, apart from considering a single user, is
the following: it requires that the user commits to all messages it will use to query for tokens before the PRF
key is chosen.

Definition 4.6 (Single Client Unforgeability). An anonymous counting token scheme ACT is single
client unforgeable if for any PPT adversary A and any T ≥ 0

Advsc−omuf
ACT,A,T(λ) := Pr

[
SC-OMUFACT,A,T(λ) = 1

]
= negl(λ).

where SC-OMUFACT,A,T(λ) is defined in Figure 3.
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Game SC-OMUFACT,A,T(λ)

prmExt ← GenExt(1
λ)

(msgi,CommitExt(msgi, tmsgi))i∈[T], pprmC ← A(prmExt)

(pprm′
S, privprmS)← ACT.GenParam′(1λ)

/Generates all ACT parameters except prmExt, which was generated above/
pprmS = pprm′

S ∪ prmExt

(blindRequesti)i∈[T], pprmC ← A(pprm) where blindRequesti[1] = CommitExt(msgi)

/Each blindRequesti is generated with respect to one of the committed messages/

output← A
(
pprmS, (ACT.Sign(privprmS, pprmC, blindRequesti))i∈[T]

)
(msg′i, tok

′
i)i∈[T+1] := output

return(
∀i ∈ [T+ 1], ACT.Verify(vrfyprm,msg′i, tok

′
i) = true

)
Fig. 7: (Selective) Single Client unforgeability game for an ACT scheme

We translate Theorem 4.5 into a statement about single client unforgeability in the next lemma.

Lemma 4.7. The ACT scheme from Construction 4.3 instantiated with the VOPRF from Construction 4.4
with y = 0 satisfies single client unforgeability.

Proof. Assume there is an adversary A that wins the single client unforgeability game in Figure 3 where A
declares all of its queries together non-adaptively, with non-negligible probability. We construct two PPT
adversaries BZK, which breaks the soundness of the ZK scheme, and BOPRF which breaks the security of the
protocol for the distributed oblivious PRF evaluation.
BOPRF interacts with its challenger to obtain PRF parameters which it sends to A. It invokes the client

simulator SimC that exists from Theorem 4.5 to interact and answer the signing queries from A. Let A
returns output (msgi, τi)i∈[T+1], then B returns (msgi, τi)i∈[T+1] as a forgery for the PRF.

We analyze the probability of success for BOPRF. Assuming the soundness of the ZK protocol, all re-
quested messages msgi must be different since corresponding tagi = FDY(uC,H(msg)) are different. Therefore,
(msgi, τi)i∈[T+1] are valid forgeries for the PRF.

Thus, we can bound the success probability for A as follows:

Advomuf
ACT,A(λ) ≤ Advomuf

OPRF,A(λ) + T · Advsnd
ZK,BZK

(λ). (3)

This concludes the proof. ⊓⊔

Next, we proceed to prove the ACT unforgeability using the single user unforgeability from above.

Theorem 4.8. The ACT scheme from Construction 4.3 instantiated with the VOPRF from Construction 4.4
with y ̸= 0 satisfies unforgeability from Definition 3.2.

Proof. Let us assume there is an adversary A against the unforgeability game for ACT, we show how we can
construct an adversary B against the construction with single user unforgeability above (which sets y = 0).

We note that as in Lemma 10 of [BB04], there are actually 2 classes of adversaries that require 2 different
types of reductions to single user unforgeability. For simplicity of exposition, B will give a reduction to single-
user unforgeability that addresses only the first type of adversary. We will point out where this reduction
can fail, and then give a second reduction for adversaries that consistently cause the first reduction to fail.

We first assume, without loss of generality, that A only makes successful queries to the Verify oracle on
tokens that it received as the output of Sign. An A that makes successful queries to Verify on tokens not
received from Sign can directly be turned into one that creates a successful forgery of Type 1 or 2 by guessing
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which of A’s calls to Verify would succeed and using the input to the call as a forgery together with T honest
calls to Sign.

With this restriction in mind, we give our construction of B breaking single user unforgeability. B re-
ceives from its challenger extractable commitment parameters prmB

Ext. It generates new T random messages
(msgi)i∈[T] and commits to them (comi = CommitExt(H(msgi)))i∈[T]. B receives the rest of the parameters
pprm′ for the ACT from its challenger and interacts with its challenger to obtain tokens (τi)i∈[T] for the
committed messages. Let (ai)i∈[T] be the randomness B used to compute EncCS(pkCS, ai(H(msgi) + u) + bq)
in its requests and (blindPRFi)i∈[T] be the responses it received from its challenger for the PRF evaluation
on all messages.
B simulates public parameters for A as follows: it generates parameters for an extractable commitment

together with a trapdoor prmA
Ext, trap

A
Ext, generates y ←$ Zp, and provides pprm ← (pprm′, prmA

Ext, cty =
Enc(pkCS, y)) to A as public parameters.
B initializes Q = ∅ and answers the i-th random oracle query from A as follows: on input trnc =

(pprm, comuC , commsg, v, comrC), extracts H(msg) (just the hash value, not the preimage msg) and rC from
the commitments commsg and comrC , sets the RO answer rS = (H(msgi) − H(msg)) · y−1 − rC (i.e., msgi =
msg + (rC + rS) · y). It adds (commsg,H(msg),H(msgi)) to Q.
B answers signing queries from A as follows: it extracts H(msg) as above. It verifies the proof of correct

evaluation of the PRF FDY(uC,H(msg)), and if it fails or shows repeating messages, aborts. It extracts the
value a from coma. If ∃ (commsg,H(msg),H(msgi)) ∈ Q, return ai · a−1 · blindPRFi. If (commsg, H(msg),
H(msgi)) /∈ Q, B aborts. B uses a commitment to 0 as the commitment to β in the rseponse, and uses the
ZK simulator to simulate the proof of response.
B answers verification queries fromA as follows: on input (msg, r, τ), check whether ∃ (commsg,H(msg),H(msgi)) ∈

Q. If this does not hold, return false. If it holds, check whether H(msg) + r · y = H(msgi). If the check fails,
return false. Otherwise, if τ = toki, return true, else return false.

Let (msg′i, r
′
i, τ

′
i)i∈[T+1] be a successful forgery returned by A. B returns the same set to its challenger.

We argue that the view of A is indistinguishable from that in the security game OMUFACT,A,R,T(λ) in
Definition 3.2. For all signing queries for which A queries the random oracle with the correct transcript,
the responses are the correct PRF evaluation. Assuming the soundness of the ZK, signing queries where the
adversary has not queried the RO for the corresponding randomness value, cannot have valid ZK proofs in
the query. Assuming the ZK soundness and the pseudorandom function properties, A will not be able to
guess a correct token for a message if it has not queried the RO on the corresponding randomness and then
the OPRF for the corresponding evaluation.

We now analyze the probability of success for B. We first consider the case when all the values τ ′i output
by A are distinct. This implies that the values msg′i + y · r′i are also all distinct (except when y is 0, which
happens with probability 1

p ). If A generated Type 1 forgery, then assuming ZK soundness all msg′i are
different and hence this is also a valid forgery for B. Now we argue that if the ZK protocol is sound, then
A could not have generated a forgery of Type 2, which is of the form (msg′, r′i, τ

′
i)i∈[R+1]. The ZK soundness

guarantees that B would not have answered more than R requests for the same message. Then the only
other option for forgery is if A made another query for message msg′j and ∃ k ∈ [R + 1] made such that
H(msg′k) + y · r′k = H(msg′j) + y · r′j , which we have, for the time being, assumed does not happen.

Thus, we can bound the success probability for A as:

Advomuf
ACT,A(λ) ≤ Advsc-omuf

ACT,A (λ) + T · Advsnd
ZK,BZK

(λ) (4)

We now consider the case when the values τ ′i output by A are not all distinct. Since this is a successful
forgery, this implies ∃i, j ∈ [T+ 1] such that (msg′i, r

′
i) ̸= (msg′j , r

′
j) but msg′i + y · r′i = msg′j + y · r′j . If there

exists an adversary A⋆ that produces such a forgery with non-negligible probability, then we show how to
construct an adversary B⋆ that breaks single user unforgeability. As in Lemma 10 of [BB04], we will show
that A⋆ can learn something extra about y that it shouldn’t learn.

We construct B⋆ as follows. B⋆ initally proceeds exactly as B: B⋆ receives extractable commitment
parameters prmB⋆

Ext. It generates new T random messages (msgi)i∈[T], receives the rest of the parameters
pprm′ for the ACT from its challenger and interacts with its challenger to obtain tokens (τi)i∈[T] for the
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committed messages. As earlier, let (ai)i∈[T] be the randomness B⋆ used in its requests and (blindPRFi)i∈[T]

be the responses it received from its challenger for the PRF evaluation on all messages.
As earlier, B⋆ generates fresh parameters for the extractable commitment together with a trapdoor

prmA
Ext, trap

A
Ext, but instead of generating y ←$ Zp, B⋆ instead uses the encryption ctu = EncCS(pkCS, u) re-

ceived from its challenger as part of pprm′ as y, and generates a fresh u′ ←$ Zp. It forwards these parameters to
A⋆ as public parameters (that is, it provides the freshly generated prmA

Ext as the extractable commitment pa-
rameters, provides ctu received from the challenger as the encryption of y, and provides ctu′ = EncCS(pkCS, u

′)
as the encryption of u).
B⋆ initializes Q = ∅ and answers the i-th random oracle query from A⋆ as follows: on input trnc =

(pprm, comuC , commsg, v, comrC), extracts H(msg) and rC from the commitments commsg and comrC . If commsg =
−u′ or H(msgi) = 0, B⋆ aborts. Otherwise, it computes ri = (H(msg)+u′)·H(msgi)

−1 and sets the RO answer
rS = ri − rC. Note that this makes it so that H(msg) + u′ + ri · u = ri · (H(msgi) + u).
B⋆ answers signing queries from A⋆ as follows: it extracts H(msg) as above. It verifies the proof of correct

evaluation of the PRF FDY(uC,H(msg)), and if it fails or shows repeating messages, aborts. It extracts the
value a from coma. If ∃ (commsg,H(msg),H(msgi)) ∈ Q, return ai ·r−1

i ·a−1 ·blindPRFi in the VOPRF response,
using a commitment to 0 as the commitment to β in the reponse, and using the ZK simulator to simulate
the proof of response. If (commsg,H(msg),H(msgi)) /∈ Q, B⋆ aborts.

We observe that in the returned value, blindPRFi = a−1
i · (u+H(msgi))

−1 ·G, so ai · r−1
i ·a−1 ·blindPRFi =

a−1 · r−1
i · (u+H(msgi))

−1 ·G. Since we chose ri so that H(msg) + u′ + ri · u = ri · (H(msgi) + u), we have that
the returned value corresponds to a−1 · (H(msg) + u′ + ri · u)−1 · G, which is of the correct form.
B⋆ answers verification queries fromA⋆ as follows: on input (msg, r, τ), check whether ∃ (commsg,H(msg),H(msgi)) ∈

Q. If this does not hold, return false. If it holds, check if r = ri and if τ = tokrii . If these both hold, return
true, else return false.

Now, whenever A⋆ outputs a forgery with (msg, r, τ) and (msg′, r′, τ) that are both correctly verifying
tokens, this implies that msg+ u′ + u · r = msg′ + u′ + u · r′. B⋆ can therefore solve for u and use it to create
a forgery for the underlying single-user game.

We show that B⋆ has a similar advantage in the SC-OMUF game as A⋆ has in the OMUF game.
We do so by defining a sequence of hybrid games as below:

Hyb1 The real execution of A⋆ with the OMUF challenger.
Hyb2 Same as above, but the OMUF challenger keeps track of the queries Q made to the RO, and aborts if

A⋆ makes a successful Sign call with a valid ZK proof, with commsg and comrC that it has never queried
to the RO.

Hyb3 Same as above, but the OMUF challenger extracts all witnesses from A⋆’s ZK proofs and checks them
for soundness, aborting otherwise.

Hyb4 Same as above, except the OMUF challenger uses the ZK simulator for the proofs it sends to A⋆. (In
particular, the proof for the VOPRF response in Sign)

Hyb5 Same as above, except the OMUF challenger uses a commitment to 0 instead of a commitment to β in
the VOPRF response (but continues simulating the proof with the correct PRF output)

Hyb6 Same as above, except the OMUF challenger pre-selects T messages msgi at the start of the inter-
action, and programs the RO to generate r as B⋆ does. Namely, on the i’th RO query with pass-
ing proofs containing, say, commsg, comrC , the OMUF challenger extracts H(msg) and rC and computes
ri = (H(msg) + u) · H(msgi)

−1 and sets the RO answer rS = ri − rC.
Hyb7 Same as above, except that the OMUF challenger precomputes blindPRFi on the values msgi at the start,

and uses these in the responses to Sign as B⋆ does. Namely, the OMUF challenger looks up the Sign
query in the RO query list Q to find the correspond msgi, blindPRFi and ri, extracts a from the query,
and uses ai · r−1

i · a−1 · blindPRFi in its Sign response.
Hyb8 Same as above, except the OMUF uses an internally simulated SC-OMUF challenger to generate τi and

blindPRFi at the start of the interaction. The OMUF also forwards the ctu from the internal SC-OMUF
challenger to A⋆ in the position of cty, as B⋆ does.

Hyb9 The interaction of B⋆ with the SC-OMUF challenger.
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We can see that each sequence of hybrids above is indistinguishable. Hyb1 and Hyb2 are indistinguishable
based on soundness of the ZK proof in Sign together with the negligible collision probability of the RO. The
indistinguishability of Hyb3 and Hyb4 directly follow from the security of the corresponding ZK proofs. Hyb5
depends on the hiding property of com. Hyb6 is identical except when H(msg) = u which should happen
with negligible probability by the exponential size of p and the security of ctu. The remaining hybrids are
identically distributed using our initial assumption that A⋆ never makes successful Verify queries except on
tokens that were received via Sign.

Putting these together, ifA⋆ interacting with the OMUF challenger can produce a forgery (msg′i, r
′
i, τ

′
i)i∈[T+1]

such that ∃i, j ∈ [T+1] such that (msg′i, r
′
i) ̸= (msg′j , r

′
j), then B⋆ can produce a similar output with negligibly

close probability while interacting with the SC-OMUF challenger, and can use this forgery to extract the u
of the SC-OMUF challenger to win the SC-OMUF game.

This concludes the proof of unforgeability.
⊓⊔

Unlinkability. Next we prove the unlinkability of ACT Construction 4.3.

Theorem 4.9. If FDY(msg, u) = (msg + u)−1 is selectively pseudorandom, ZK is a zero-knowledge ZK
argument, then the ACT scheme in Construction 5.1 satisfies unlinkability from Definition 3.3, when H is
modelled as a random oracle.

Recall that FDY is selectively pseudorandom. Note that we do not need FDY to be pseudorandom since
it is always evaluated on hashes of messages and not messages themselves.

Proof. We consider the following hybrids

Hyb1 This is the regular execution of the unlinkability game.
Hyb2 In this game we start to simulate the ZK that the client provides for the honest evaluation of v =

FDY(uC, h) in Request (with h = H(msg)). This indistinguishability follows from the ZK properties.
Hyb3 In this game instead of v = FDY(uC,H(msg)), the client provides a truly random value. The indistin-

guishability follows from the selective pseudorandom property of FDY and the fact H is modeled as a
random oracle. More precisely, using a classical hybrid argument, we just need to handle a single client
C at a time. Let us show a reduction from selective pseudorandom of FDY to distinguishing when v
is uniformly random or computed honestly for C. Assuming qH requests are made to H in total, the
reduction first generates qH random scalars h1, . . . , hqH and ask the PRF oracle their PRF value. Then
the reduction starts simulating the game. For each query to H on a new input of the form msg, the
reduction answers with the next available hi. This allows the reduction to use the PRF values output by
the PRF oracle to compute the value v. If the PRF oracle actually evaluated FDY, then the reduction
would perfectly simulate the game when v are honestly computed for C. Otherwise, it would perfectly
simulate the game when v is chosen uniformly at random for C.

Hyb4 In this game we choose a set of fixed messages msg′i and then program the random oracle H so that it
determines the randomness ri for each execution in such a way that for the i-th execution (bRi, ri) ←
ACT.Request(pprmS, privprmC,msgi) (which includes the calls ACT.Request(pprmS, privprmbchl ,msgbchl) from
the challenge oracle) we have that msg′i = H(msg) + ri · y.

Hyb5 In this game we use the issuer simulator from Theorem 4.5 to generate the response for the ACT.Request
oracle calls and answer ACT.Unblind queries by returning F((u, y),H(msg), ri) = FDY(u,msg′i) the random
value ri associated with the respective execution. The indistinguishability follows from the security of
the simulator.

The answers to the oracle queries in this hybrid are independent of the value bit (we have mapped the
challenge queries to the same fixed messages). Therefore, the adversary succeeds with only negligible prob-
ability. ⊓⊔
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Parameter Generation for Unlinkability. Unlinkability assumes that the ACT parameters are gener-
ated honestly and the issuer only sees the secret key. These parameters include Camenish-Shoup encryption
parameters (twice, one for the CS encryption for which the issuer knows the secret key, and one for the
extractable commitment for which the issuer does not know the secret key and Pedersen commitment pa-
rameters over a group where the Strong RSA holds, as well as encryption of the issuer’s private keys for
Boneh-Boyen function. We can distribute the generation of these parameters across multiple parties. Both
CS and Pedersen parameters require the generation of group where the Strong RSA assumption holds. This
can be done in a distributed way leveraging proof techniques for showing that the modulus N is a product of
two large safe primes [GMR98, CM99]. The public parameters for the CS encryption and extractable com-
mitment can be generated by sampling in a distributed manner the CS private key (which for CS encryption
will be given to the issuer) and of the extractable commitment secret key (which is destroyed), and then
computing the shares of the corresponding public keys.

Instantiation. We recall that we use a single RSA modulus N for all the RSA-based primitives. We estimate
the communications costs of blindRequest sent from the user to the server which consists of

– VOPRF.digest and the message and randomness commitments which amounts to 4 Pedersen commit-
ments, 3 CS ciphertexts and 13 scalars of total 9 log(p) + 7 log(N) + 27λ bits (see Appendix A for
description of the sigma protocol in Construction A.4 and the cost estimate.)

– v, πv which is 1 additional Pedersen commitment, and 4 scalars of total size 2 log(p) + 2 log(N) + 8λ (we
note that we can optimize the Pedersen commitment and the scalars to be smaller here but we will count
them as the ones above for simplicity). Alongside this, we also send 1 group element corresponding to
the actual VRF output.

– comrC , πr which contains 1 additional extractable commitment, and 3 scalars of total size log(p) +
2 log(N) + 6λ.

So we have a total for blindRequest: 5 Pedersen commitments,4 CS ciphertexts, 1 group element and 20
scalars of total size 12 log(p) + 11 log(N) + 41λ.

The communication for blindToken is the same as that for Eval in the underlying VOPRF. This consists
of 1 group element of log(p) bits and a Sigma protocol. The Sigma protocol is the same as the proof in
Figure 14, Section C.7.2 [MPR+20]. Applying the optimization described in Appendix A, this sigma protocol
has communication cost 1 Pedersen commitment and 3 scalars of total size 3 log(N)+ 6λ bits. Therefore the
total for Eval is 1 group element, 1 Pedersen commitment, and scalars of total size 3 log(N) + 6λ.

5 ACTs from Equivalence-Class Signature

In this section, we present ACT constructions from equivalence-class signatures (EQS). Note that these
constructions will have the functionality where the rate-limiting of a single token per message per client
will be enforced during token redemption. In particular, the ACT verification will output the verification bit
of the validity of the token and a tag that is a pseudorandom value derived from the client’s key and the
message. The issuer can compare this tag against its database of redeemed message tags and reject the token
if this value occurs there. However, this latter rate-limiting step is not part of the ACT verification algorithm
itself.

We present two ACT constructions which differ in the type of PRF used to enforce the rate-limiting
property. The first one is based on the Dodis-Yampolskiy PRF and can be instantiated in the standard
model but is limited to messages of size logarithmic in the security parameter. The second one has two
versions: the long version is provably secure in the random oracle model, while the short version is provably
secure in the generic bilinear group and random oracle model when instantiated with a specific scheme.

5.1 ACT from EQS and Dodis-Yampolskiy PRF for Small Messages

We start with an ACT construction from EQS and the Dodis-Yampolskiy PRF.
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Construction 5.1 (ACT from EQS and Dodis-Yampolskiy). Let EQS = (EQS.Setup,EQS.KGen,
EQS.Sign,EQS.Adapt,EQS.Verify) be an equivalence-class signature scheme over a bilinear group PG =
(G1,G2,GT ). We use the Dodis-Yampolskiy pseudorandom function FDY(u, x) = (u + x)−1 · G1 over the
cyclic group G1. We assume messages msg are in a subset of Z∗

p of size polynomial in the security parameter
λ. An anonymous counting token construction ACT consists of the following algorithms:

ACT.GenParam(1λ): Generate

1. a bilinear group PG ← GGen(1λ) and an extra random generator G′
1 ∈ G1

2. ZK argument CRS ZK.crs← ZK.Setup(R) where R is implicitly defined in ACT.Request (ZK.crs is used
implicitly when generating and verifying ZK proofs),

3. EQS CRS crs← EQS.Setup(PG), and EQS keys (pk, sk)← EQS.KGen(crs).

Output: pprmS ← (ZK.crs, crs, pk)

privprmS ← (pprmS, sk).

ACT.ClientRegister(pprmS):

1. Generate a Dodis-Yampolskiy PRF key uC ←$ Zp,
2. Set UC = uC · G1.

Output: pprmC ← UC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC, msg ∈ Z∗
p):

1. Generate a random value µ←$ Z∗
p.

2. Set M⃗← (M1 = µ−1 · G1, M2 = µ−1 · FDY(uC,msg), M3 = (µ−1msg) · G′
1).

3. Generate a proof πM⃗:

πM⃗ : ZK
{
∃ µ−1, uC ∈ Zp : M′

1 = µ−1 · G1, M
′
2 = µ−1(uC +msg)−1 · G1,

M3 = (µ−1msg) · G1, UC = uC · G1

}
Output: blindRequest← (M⃗, πM⃗)

randmsg ← (msg, M⃗, µ)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (M⃗, πM⃗).
2. If verification of πM⃗ fails, abort.
3. Run ρ← EQS.Sign(crs, sk, M⃗).

Output: blindToken← ρ

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse randmsg = (msg, M⃗, µ), blindToken = ρ.
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2. Set M⃗′ ← (G1, FDY(uC,msg), msg · G′
1).

3. Compute σ ← EQS.Adapt(crs, pk, M⃗, ρ, µ).
4. If σ =⊥, abort.

Output:
(
msg, tok← (M⃗′, σ)

)

ACT.Verify(pprmS, privprm,msg, tok)

1. Set bit← true.
2. Parse tok = (M⃗′ = (M′

1,M
′
2,M

′
3), σ).

3. If M′
1 ̸= G1 or M′

3 ̸= msg · G′
1, set bit← false.

4. If false = EQS.Verify(pk, M⃗′, σ), set bit← false.

Output: (bit, M2)

Perfect correctness is straightforward.

6 Proofs for ACT from EQS Constructions

Unforgeability.

Theorem 6.1. If EQS provides EUF-CMA security, ZK is a sound ZK argument, then the ACT scheme in
Construction 5.1 satisfies unforgeability from Definition 3.2.

Note that unforgeability does not rely on the pseudorandomness of the Dodis-Yampolskiy PRF.

Proof. Assume there is an adversary A that wins the unforgeability security game in Figure 3 with non-
negligible probability. We construct two PPT adversaries: BEQS which breaks the EUF-CMA security of the
EQS and BZK which breaks the soundness of the ZK scheme. We show that:

Advomuf
ACT,A(λ) ≤ (T+ R+ 1) · Adveuf-cma

EQS,BEQS
(λ) + T · Advsnd

ZK,BZK
(λ). (5)

where Advsnd
ZK,BZK

(λ) is the probability defined in Eq. (2) on Page 9 (which itself implicitly defines a soundness
game SNDBZK

(λ)), T is the number of queries to the Sign oracle and R is the number of queries to the Register
oracle.

Construction of the adversaries. Let us first construct BEQS. BEQS obtains pk from the challenges for the
EQS scheme and provides it as public parameters to A. BEQS answers signing queries M⃗j , πM⃗j

from A as
follows. If πM⃗j

fails to verify, abort. Else A queries the EQS challenger for signatures and returns the result.

We consider the output T = (msgi, toki)i∈[T+1] that A generates. We write toki = (M⃗′
i, σi). At the end, BEQS

does the following:

– If A produced a Type-1 forgery, it uniformly at random chooses i∗ ∈ [T+ 1] and return the i∗-th token
toki∗ = (M⃗′

i∗ , σi∗) to the EQS challenger as its forgery.
– If A produced a Type-2 forgery with set S ⊂ [T]. Assume without loss of generality that |S| = R+1. BEQS

select uniformly at random i∗ ∈ S and outputs the i∗-th token toki∗ = (M⃗′
i∗ , σi∗) to the EQS challenger

as its forgery.

Now, let us construct BZK. BZK runs the ZK challenger from the soundness game and get the CRS (if
any). Then it simulates perfectly the EQS game to A. At the end, BZK does the following:
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– If A produced a Type-1 forgery, it outputs ⊥ to the ZK soundess challenger.
– If A produced a Type-2 forgery with set S ⊂ [T]. Assume without loss of generality that |S| = R+1. BZK

select uniformly at random j∗ ∈ [T] and outputs the j∗-th query (M⃗j∗ , πM⃗j∗
) made by A to ACT.Sign to

the ZK challenger (as a proof of an invalid statement).

Remark that BEQS and BZK cannot know (in polynomial time) whether the output to their EQS/ZK
challenger is valid, i.e., if they will win the EQSBEQS

(λ) and SNDBZK
(λ) games. However, this is not an issue

to prove that the advantage of at least one of those two adversaries is non-negligible if the advantage of A
in OMUFA(λ) is non-negligible.

Our proof strategy is the following. We define events E1EQS,i, E2EQS,k, E2ZK,j for i ∈ [T + 1], k ∈ [R],
j ∈ [T] so that:

– Exactly one of these events must happen if the adversary wins.
– Conditioned on any of these events, either BEQS or BZK wins EUF-CMA or soundness respectively.

Note that we do not need that these events can efficiently be checked for the proof to go through.

Definition of Events. Let us first define events E1EQS,i that are associated with a Type-1 forgery In that case,
A generated T+ 1 token by doing T signature queries. Vectors M⃗′

i in tokens toki are of the form (G1,Fi,Ei)

and are such that all pairs (Fi,Ei) are distinct. Therefore, vectors M⃗′
i and M⃗′

j from two different tokens toki

and tokj cannot be in the span of the same element M⃗ ∈ G3
1 Since A queries Sign only T times and there are

T+ 1 valid tokens toki, there exists i ∈ [T+ 1] so that M⃗′
i is not in the span of any M⃗ queried to Sign. And

toki = (M⃗′
i, σi) is a forgery for the EQS scheme.

We define E1EQS,i the event that A produced a Type-1 forgery and M⃗′
i is not in the span of any M⃗ queried

to Sign, and no event E1EQS,i′ happened for i′ < i. (This last constraint is to ensure that the events E1EQS,i

are disjoint.) Equivalently, E1EQS,i is defined as the event that A produced a Type-1 forgery and M⃗′
i if the

first of the vectors
{
M⃗′

i′

}
i′

that is not in the span of any M⃗ queried to Sign.
Let us now consider Type-2 forgeries. Let us show that at least one of the following events must happen:

– Event E2EQS,k: A made a Type-2 forgery (and not a Type-1 forgery) for a set S = {i1, . . . , iR} with
i1 < · · · < iR, so that M⃗′

ik
is not in the span of any M⃗ queried to Sign, and so that no event E2EQS,k′

happened for k′ ≤ k.
– Event E2ZK,i:
• A made a Type-2 forgery (and not a Type-1 forgery) and
• its i-th signing query is (M⃗i,G1, πM⃗i

) where πM⃗i
is valid but proves a wrong statement, that is

M⃗i ̸= (µ−1G1, µ
−1(u + msg)−1G1, µ

−1msg) for u such that the client public parameter is U = uG1

and
• no event E2EQS,k nor E2ZK,j happened for j′ < j and any k.

Let us assume by contradiction that none of the events happened (assuming A made a Type-2 forgery).
Then since no E2EQS,k happened, each M⃗′

ik
is in the span of some queried message M⃗jk (in the jk-th query

to Sign). As before, we can prove that jk are necessarily all distinct. Since there are R+1 of them and there
are only R clients, at least two of them (for k = α and β) were made for the same client U∗ = u∗G1. We can
write these two queries as follows for some µ1, µ2, ζ1, ζ2 ∈ Zp

M⃗jα = µ1M⃗
′
kα

= µ1(G1, ζ1 · G1,msg · G1) (6)

M⃗jβ = µ2M⃗
′
kβ

= µ2(G1, ζ2 · G1,msg · G1), (7)

where msg is the message on which the Type-2 forgery was made. Since tags must be different, we have
ζ1 ̸= ζ2. But since the zero-knowledge proofs were all proving valid statements (as no event E2sk,i occurred),
we also have that:

ζ1 = (msg + u∗)−1 = ζ2.

This is a contradiction. So at least one of the events must happen.
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Conclusion of the Proof. Since at least one of the events E1,i, E2EQS,k, E2ZK,i must happen and these events
are disjoint, we have that from the total probability rule:

Advomuf
ACT,A(λ) = Pr[OMUFA(λ) = 1]

=

T+1∑
i=1

Pr[OMUFA(λ) = 1 and E1EQS,i] +

R∑
k=1

Pr[OMUFA(λ) = 1 and E2EQS,j ]

+

T∑
j=1

Pr[OMUFA(λ) = 1 and E2EQS,j ]

In addition, looking at the definition of BEQS and from the fact this reduction perfectly simulates the
oracles for A:

T+1∑
i=1

Pr[OMUFA(λ) = 1 and E1EQS,i]

=

T+1∑
i=1

Pr
[
EUF-CMABEQS

(λ) = 1 and E1EQS,i

∣∣∣ i∗ = i
]

= Pr[i∗ = i]
−1

T+1∑
i=1

Pr
[
EUF-CMABEQS

(λ) = 1 and E1EQS,i and i∗ = i
]

≤ Pr[i∗ = i]
−1

T+1∑
i=1

Pr
[
EUF-CMABEQS

(λ) = 1 and i∗ = i
]

= (T+ 1) · Pr
[
EUF-CMABEQS

(λ) = 1
]
.

Similarly, we have:

R∑
k=1

Pr[OMUFA(λ) = 1 and E2EQS,k] ≤ R · Pr
[
EUF-CMABEQS

(λ) = 1
]

T∑
j=1

Pr[OMUFA(λ) = 1 and E2ZK,j ] ≤ T · Pr
[
SNDBZK

(λ) = 1
]

Together this yields Eq. (5).
⊓⊔

Unlinkability.

Theorem 6.2. If EQS provides signature adaption, ZK is a zero-knowledge ZK argument, the Dodis-Yampolskiy
FDY(u,msg) = (1/(u+msg)) · G1 is pseudorandom even when uG1 is public, and the DDH assumption holds
in G1 (which is implied by the SXDH assumption), then the ACT scheme in Construction 5.1 satisfies un-
linkability from Definition 3.3.

Recall from Section 2.2 that Dodis-Yampolskiy is pseudorandom under the 2α-DDHI assumption in G1

when the input messages come from a subset of size 2α of Z∗
p.

Proof. We do the proof using hybrid games:

Hyb0 This hybrid is the unlinkability security game.
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Hyb1 This hybrid is the same as the previous one with the following syntactic change: in any token request
(whether to Request oracle or Chlissue oracle), M⃗ is computed as M⃗ = µ−1M⃗′ where:

M⃗′ = (M′
1, M

′
2, M

′
3) = (G1, FDY(uC,msg), msg · G1)

And in any associated Unblind computation (via a query to Chlredeem), the same M⃗′ as the one used in
the token request is used instead of re-computing M⃗′.

Hyb2 This hybrid is similar to the previous one except now all the ZK CRS and all ZK proofs are simulated.
This hybrid is computationally indistinguishable from the previous one thanks to the zero-knowledge
property of the ZK argument.

Hyb3 This hybrid is similar to the previous one except that for every token request and associated unblind
query to Chlredeem (if any), M′

2 is chosen uniformly at random. This hybrid is indistinguishable from the
previous one assuming FDY is pseudorandom.

Hyb4 This hybrid is similar to the previous one except that in any Unblind computation, instead of computing
σ as:

σ ← EQS.Adapt(crs, pk, M⃗, ρ, µ)

it is computed as:

ρ′ ← EQS.Sign(crs, sk, M⃗′), σ ← EQS.Adapt(crs, pk, M⃗′, ρ′, 1)

Remember that in the unlinkability game, privprmS is chosen by the challenger so the challenger knows
privprmS = sk.
This hybrid is computationally indistinguishable from the previous one under signature adaptation of
the EQS scheme.
Given another generator G′′

1 of G1, we can write:

M⃗′ = (G1, βG
′′
1 , msgG′

1)

where we set M′
2 = βG′′

1 as a uniformly random element from G1. We can then write

M⃗ = (νG1, β · (ν · G′′
1), msg · (ν · G′

1)) (8)

where ν = µ−1 is uniformly random in Z∗
p and different for each token request. Remark indeed that in

this hybrid µ is only used once per token request when setting M⃗ = µ−1M⃗′.
Hyb5 This hybrid is similar to the previous one except that in any token request computation, M⃗ is now chosen

uniformly at random from G3
1 instead of as specified in Eq. (8).

This hybrid is computationally indistinguishable from the previous one under the DDH assumption in
G1. Indeed, the DDH assumption can be used to show that (νG1, ν · G′′

1 , ν · G′
1) are indistinguishable

from random group elements in G3
1.

In the last hybrid, the output of any token request is independent of the inputs msg and uC. The output of
an unblind request only includes the underlying message and is independent of the output of the associated
token request: no element from the computation of the token request is used when unblinding in the last
hybrid except the message. Thus from the adversary point of view, in the last hybrid bchl is uniformly random
and the adversary’s advantage is 0. This concludes the proof. ⊓⊔

Parameter Generation for Unlinkability. Unlinkability assumes that the ACT parameters are generated
honestly and the issuer only sees the secret key. To alleviate this requirement, we can instead work in the
CRS model, where the ZK and EQS CRS are put in the CRS and generated by a trusted party. The EQS
signature adaptation holds even for maliciously generated pk, but our unlinkability proof uses sk. Therefore,
we would also need that the issuer includes in pprmS a zero-knowledge proof of knowledge of the EQS secret
key sk for the unlinkability proof above to go through. This can be done efficiently using either Groth-Sahai
proofs or Fiat-Shamir proofs.

The same discussion applies to Construction 6.3.
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Instantiation. The construction in Construction 5.1 can be instantiated in the standard model using the
EQS from Section 6.1. in the full version of the paper [BRS23] and using Groth-Sahai proofs for the ZK
argument. Following the notations from [EG14], the Groth-Sahai proof will need to make (with the cost in
the number of group elements):

– 3× scaG2
for the commitments to µ−1, uC, and msg

↬ cost = 6×G2

– 4×MConstG2
to prove the following 4 equations:

M′
1 • G2 = G1 • (µ−1 · G2) M′

2 • (uC · G2) +M′
2 • (msg · G2) = G1 • (µ−1 · G2)

M′
3 • G2 = M′

1 • (msg · G2) UC • G2 = G1 • (uC · G2)

↬ cost = 4×G1

6.1 ACT from EQS and a Random-Oracle-Based PRF

The second ACT construction from EQS leverages the PRF in the RO model PRF(K, x) = K · H(x) where
H : {0, 1}∗ → G1 is a hash function that can be modeled as a random oracle. This PRF was folklore and has
been formally defined in [NPR99].

The ACT construction is similar to Construction 5.1 but the message M⃗ generated by ACT.Request is
generated as:

M⃗←
(
M1 = µ−1 · G1, M2 = µ−1 · uC · H(msg), M3 = µ−1 · H(msg)

)
instead of

M⃗←
(
M1 = µ−1 · G1, M2 = µ−1 · (uC +msg)−1 · G1, M3 = (µ−1msg) · G1

)
.

Note that in both cases M2 = PRF(uC,msg), but with a different PRF. Importantly the statements proven
by the ZK proof in this new construction do not need to evaluate the hash function H, so they can be still
efficiently instantiated with Fiat-Shamir or Groth-Sahai.

We present two versions: the long version uses dimension-3 vectors M⃗ and includes M1 (like the Dodis-
Yampolkiy-based construction), while the short version uses dimension-2 vectors without M1. The short
version is not proven unforgeable but we show that a specific instantiation of it is unforgeable in Section 8,
in the generic (bilinear) group model.

Construction 6.3 (ACT from EQS and Random Oracle (long and short versions)). Let (EQS.Setup,
EQS.KGen,EQS.Sign,EQS.Adapt,EQS.Verify) be an equivalence-class signature scheme. An anonymous count-
ing token construction ACT consists of the following algorithms:

ACT.GenParam(1λ): Generate

1. a bilinear group PG ← GGen(1λ),
2. ZK argument CRS ZK.crs ← ZK.Setup(R) where R is implicitly define in ACT.Request (ZK.crs is used

implicitly when generating and verifying ZK proofs),
3. EQS CRS crs← EQS.Setup(PG), and EQS keys (pk, sk)← KGen(crs).

Output: pprmS ← (ZK.crs, crs, pk)

privprmS ← (pprmS, sk).

ACT.ClientRegister(pprmS):

1. Generate a PRF key uC ←$ Zp.
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2. Set UC = uC · G1.

Output: pprmC ← UC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC,msg):

1. Generate a random value µ←$ Z∗
p.

2. Compute M′
3 ← H(msg) and M′

2 ← uC · H(msg).
3. Set M⃗← (M1 = µ−1 · G1, M2 = µ−1 ·M′

2, M3 = µ−1 ·M′
3).

4. Generate a proof πM⃗:

πM⃗ : ZK
{
∃uC ∈ Zp : M2 = uC ·M3 and UC = uC · G1)

}
Output: blindRequest← (M⃗, πM⃗)

randmsg ← (msg, M⃗, µ)

ACT.Sign(privprmS, pprmC, blindRequest)

1. Parse blindRequest = (M⃗, πM⃗).
2. If verification of πM⃗ fails, abort.
3. Run ρ← EQS.Sign(crs, sk, M⃗).

Output: blindToken← ρ

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse randmsg = (msg, M⃗, µ), blindToken = ρ.
2. Set M⃗′ ← (G1, uC · H(msg), H(msg)).
3. Compute σ ← EQS.Adapt(crs, pk, M⃗, ρ, µ).
4. If σ =⊥, abort.

Output:
(
msg, tok← (M⃗′, σ)

)

ACT.Verify(pprmS, privprm,msg, tok)

1. Set bit← true.
2. Parse tok = (M⃗′ = (M′

1,M
′
2,M

′
3), σ).

3. If M′
1 ̸= G1 or M′

3 ̸= H(msg), set bit← false.
4. If false = EQS.Verify(crs, pk, M⃗′, σ), set bit← false.

Output: (bit, M2)

Perfect correctness is straightforward.
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Unforgeability of the Long version.

Theorem 6.4. If EQS provides EUF-CMA security, ZK is a sound ZK argument, and H is a collision-
resistant hash function, then the long version of the ACT scheme in Construction 6.3 satisfies unforgeability
from Definition 3.2.

Note that unforgeability does not rely on the pseudorandomness and does not model H as a random
oracle but just requires H to be collision resistant. On the other hand, the theorem only holds for the long
version and not the short version.

Proof. We do a proof by an hybrid argument:

Hyb0 This hybrid corresponds to the unforgeability game.
Hyb1 This hybrid is similar to the first hybrid except the challenger aborts if the adversary produces two

tokens for two messages msg ̸= msg′ so that H(msg) = H(msg′).

The two games are indistinguishable by collision resistance of H.
Now, a similar proof to the one for Theorem 6.1 can be done to reduce EUF-CMA security of EQS

and soundness of the ZK argument to Hyb1. Concretely, the only two changes are in the argument that, at
least one of the E1EQS,i, E2EQS,k or E2ZK,j must happen (recall those events from the proof of Theorem 6.1).
Assuming a Type-1 forgery, one of the E1,i must happen since we ensured that all hashes H(msg) are distinct
and then the argument is the same as in Theorem 6.1. For the Type-2 forgery events, if none happen,
we have a similar arguments as in the previous proof, except that Eqs. (6) and (7) are replaced by: there
µ1, µ2,Z1,Z2,M

′
3 ∈ Zp

M⃗jα = µ1M⃗
′
kα

= µ1(G1, Z1, M
′
3)

M⃗jβ = µ2M⃗
′
kβ

= µ2(G1, Z2, M
′
3),

(where M′
3 = H(msg)) and since tags are different Z1 ̸= Z2. On the other hand, the zero-knowledge proof are

assumed at this point to be proving valid statement which ensures that:

Z1 = u∗ ·M′
3 = Z2

which allows to conclude the proof as before. ⊓⊔

Unlinkability.

Theorem 6.5. If EQS provides signature adaption, ZK is a zero-knowledge ZK argument, and the DDH as-
sumption holds in G1 (which is implied by the SXDH assumption), then the ACT scheme in Construction 5.1
satisfies unlinkability from Definition 3.3, when H is modeled as a random oracle.

Contrary to the construction Construction 5.1, we do not require messages to be short for unlinkability
to hold as PRF : (u,msg) 7→ u ·H(msg) is pseudorandom for any the message input set {0, 1}∗, assuming the
DDH assumption in G1 and when H is modelled as a random oracle (even when u · G1 is public).

The proof of pseudorandomness of PRF is done by a direct reduction to DDH: given a tuple (G1, X, Y, Z) ∈
G4
1 that is either a Diffie-Hellman tuple or a random tuple, set u·G1 = X. For each query msg to H, generate a

fresh tuple (G1, X, Ymsg, Zmsg) using random self-reducibility of DDH (so that (Ymsg, Zmsg) is a fresh random
Diffie-Hellman pair with regards to (G1, X) if (G1, X, Y, Z) was a Diffie-Hellman tuple, and is uniformly
random otherwise). Then set H(msg) = Ymsg. Now for any query PRF(u,msg), simulate a query to H(msg)
if msg was not queried to H, and return Zmsg. When (G1, X, Y, Z) is a Diffie-Hellman tuple, the PRF is
evaluated properly while when it is a random tuple, the queries PRF(u,msg) are all answered uniformly at
random.

Proof. The proof is similar to the one of Theorem 6.2. The main difference is that the Dodis-Yampolkiy PRF
is replaced by the PRF PRF : (u,msg) 7→ u · H(msg) that is proven above pseudorandom even when u · G1 is
public. ⊓⊔
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Instantiation. The long version of Construction 6.3 can be instantiated in the random oracle model using
the EQS from Section 6.1. in the full version of the paper [BRS23] and using a Fiat-Shamir proof for the ZK
argument.

Concretely, the Fiat-Shamir proof needs to prove that logG1
(UC) = logM3

(M2) and consists of the follow-
ing:

– Generate random scalar v ←$ Z∗
p.

– Compute the Fiat-Shamir commitments: V ← v · G1, W ← v ·M3.
– Derive the Fiat-Shamir challenge: c← H′(UC, M⃗, V,W ), where H′ : {0, 1}∗ → Zp is a hash function that

will be modeled as a random oracle.
– Compute the Fiat-Shamir response: ξ ← v + c · uC.
– Set the proof to be: πM⃗ ← (ξ, c) ∈ Z2

p.7

The proof is verified by computing V ′ ← ξ ·G1− c ·UC and W ′ ← ξ ·M3− c ·M2, and then checking whether
c = H′(UC, M⃗, V

′,W ′).

7 Equivalent-Class Signature Constructions

In this section, we present two EQS constructions from bilinear maps: one with security from any signature
scheme and ZK argument of knowledge, and one in the generic bilinear maps model, which achieves better
concrete efficiency. The former construction can be efficiently instantiated in the standard model under the
SXDH assumption.

7.1 EQS in the Standard Model

We formally provide a generic construction of an EQS scheme from any signature scheme and ZK argument.
The idea of the construction was already present for example in the introduction of [FG18].

Construction 7.1. Let (KGen,Sign,Verify) be a (classical) existentially unforgeable (EUF-CMA) signature
scheme with message space Gℓ

1 and ZK be a ZK argument of knowledge system.

EQS.Setup(1λ): Generate

1. ZK parameters crs ← ZK.Setup(R) for the relation R defined implicitly below in EQS.Sign (crs is used
implicitly when generating and verifying ZK proofs)

Output: crs

EQS.KGen(crs):

Output: (pk, sk)← KGen(1λ)

EQS.Sign(crs, sk, M⃗ ∈ Gℓ
1):

Output: ρ← Sign(sk, M⃗)

EQS.Adapt(crs, pk, M⃗, ρ, µ):
7 Actually the challenge c can be reduced to λ bits while keeping the security of the Fiat-Shamir transform.
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1. Immediately return ⊥ if false = Verify(pk, M⃗, ρ).
2. Set Υ ← µG2 and M⃗′ ← µ · M⃗.
3. Generate the ZK proof:

π : ZK
{

K⃗M ∈ Gℓ
1, KΥ ∈ G2, Kρ :

true = Verify(pk, M⃗, ρ) and M⃗′ • G2 = M⃗ • Υ
}

Output: σ ← π

EQS.Verify(crs, pk, M⃗′, σ): runs the ZK verification algorithm on σ.

The reason why we prove knowledge of Υ = µG2 instead of directly µ is that Groth-Sahai proofs allow to
prove efficiently knowledge of group elements but not knowledge of scalar (which would require a bit-by-bit
approach or something similar, which is much less efficient). Note that an argument of knowledge of µ could
be used instead if the ZK proof system is more efficient this way, since knowledge of µ ∈ Zp implies knowledge
of Υ ∈ G2.

EUF-CMA.

Theorem 7.2. If (KGen,Sign,Verify) is an EUF-CMA signature scheme and ZK is a knowledge-sound ZK
argument, then the EQS scheme in Construction 7.1 satisfies EUF-CMA.

Proof. Let us call Condition (⋆) this part of the condition to win the EUF-CMA game:

∀M⃗ ∈ QSign, M⃗
′∗ /∈ Span(M⃗),

where M⃗∗ is the message from the forgery.
We do a proof by hybrid games:

Hyb0 This hybrid corresponds to the EQS EUF-CMA game EUF-CMAA(λ), defined in Fig. 1. Note that the
game is not polynomial time: Condition (⋆) may not be checked in polynomial time without knowing
the discrete logarithm of the forged message (or of the signed messages).

Hyb1 This hybrid is similar to the previous hybrid except the ZK setup is done by the extractor from the
knowledge soundness. This game is statistically indistinguishable from the previous one under setup
indistinguishability from the knowledge soundness. Note that it is important here that setup indistin-
guishability is a statistical property as this hybrid (and the previous one) are not polynomial-time.

Hyb2 This hybrid is similar to the previous hybrid except that after A outputs (M⃗∗, σ∗) and after verifying
σ∗ (but before checking Condition (⋆)), the hybrid aborts (and return 0) if the extractor Extract cannot
extract a valid witness out of σ∗ = π∗.
This hybrid is computationally indistinguishable from the previous one under extractability of the ZK
argument of knowledge, because the added abort event happens with negligible probability (and up to
the abort even, the hybrid runs in polynomial time).
Let M⃗∗ ∈ Gℓ

1, Υ ∗ ∈ G2, ρ∗ be the extracted witness.
Hyb3 This hybrid is similar to the previous hybrid except before checking Condition (⋆), we abort if M⃗∗ is one

of the queries M⃗ ∈ QSign.
This hybrid is perfectly indistinguishable from the previous one since the new abort is only triggered
when Condition (⋆) does not hold. Indeed, validity of the extracted witness implies that M⃗′∗•G2 = M⃗∗•Υ ∗

which in turns implies that M⃗′∗ ∈ Span(M⃗∗) and Condition (⋆) does not hold (for M⃗ = M⃗∗ ∈ QSign).
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Hyb4 This hybrid is similar to the previous hybrid except we do not test Condition (⋆) anymore. The winning
probability of the adversary in this hybrid is at most the one in the previous hybrid.

We now reduce EUF-CMA of the underlying signature scheme to this last hybrid. The extracted ρ∗ is a
valid signature on M⃗∗ that was never queried before.

This concludes the proof. ⊓⊔

Signature Adaptation.

Theorem 7.3. If ZK is a zero-knowledge argument, then the EQS scheme in Construction 7.1 satisfies
signature adaptation.

Proof. We do a proof by hybrid games:

Hyb0 This hybrid corresponds to the EQS signature adaptation game SIG-ADPA(λ), defined in Fig. 1.
Hyb1 This hybrid is similar to the previous one except the two signatures σ0 and σ1 are now simulated using

the ZK simulator (and crs is also simulated). In particular σ0 and σ1 are computed just from M⃗′ = µM⃗
(and pk), without using ρ and ρ′ provided by the adversary.
This hybrid is computationally indistinguishable from the previous one because ZK is zero-knowledge.

We conclude by remarking that σ0 and σ1 are computed exactly the same way in the last hybrid and the
probability of the adversary guessing bchl is therefore exactly 1/2. ⊓⊔

Efficient Instantiation in the Standard Model. To efficiently instantiate the above generic construction,
we need an efficient signature scheme and an efficient ZK proof system. For standard model instantiation, one
solution is to use Groth-Sahai ZK arguments and structure-preserving signature (SPS) schemes. A structure-
preserving signature scheme is such that verification consists in pairing-product equations so that it can be
efficiently verified by Groth-Sahai arguments.

Concretely, we can use the Jutla-Roy SPS scheme from [JR17]. Signatures are vectors ρ ∈ G5
1 × G2

(independent of ℓ) while verification is done using only two pairing-product equation. Following the notations
from [EG14], the Groth-Sahai proof will need to make (with the cost in number of group elements):

– 5× comG1 + 1× encG2 for the commitment to ρ
↬ cost = 10×G1 + 2×G2

– ℓ× comG1
for the commitment of M⃗

↬ cost = 2ℓ×G1 + 0×G2

– 1× scaG2 for the commitment of µ (which can be extracted as Υ = µG2)
↬ cost = 0×G1 + 2×G2

– 1 × PConstG2
+ 1 × PPE proof of equations for the verification of ρ (the former is the left part of the

verification equation in [JR17, Fig. 2] and the latter for the right part of it)
↬ cost = 4×G1 + 6×G2

– 1×MEG1 proof for the equation M⃗′ •G2 = M⃗ • Υ
↬ cost = 2×G1 + 4×G2

In total σ contains (16 + 2ℓ)×G1 + 12×G2 group elements.

7.2 EQS in the Generic Bilinear Group Model

Fuchsbauer, Hanser, and Slamanig constructed an efficient EQS in the generic group model in [FHS19]. This
EQS satisfies our (weaker) security notions when applying the following minor change EQS.Adapt aborts if
the signature does not verify.
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8 ACTs in the Generic Bilinear Group Model

In this section, we show that the short variant of Construction 6.3 is unforgeable in the generic bilinear group
model and random oracle model, when implemented with the EQS scheme from [FHS19] and Fiat-Shamir
for equality of discrete logarithms for the ZK proof in ACT.Sign (as in the instantiation in Section 6.1). It
achieves better concrete efficiency than all our other constructions at the cost of security holding in the
generic bilinear group model (GBGM).

For the sake of completeness, we describe the full protocol below.

Construction 8.1 (ACT in GBGM). Let PG = (G1,G2,GT ) be a bilinear group, H : {0, 1}∗ → G1 and
H′ : {0, 1}∗ → Zp be two hash functions that will be modeled as two random oracles. In this construction,
we denote elements from G2 with a hat, e.g., X̂2, matching notation from [FHS19] (except the generators
G1 and G2). Vectors M⃗ have two elements indexed 2 and to match Construction 6.3. Recall that GT is also
written additively and that we use • to denote the pairing operation e(X, Ŷ) = X•Ŷ. An anonymous counting
token construction ACT consists of the following algorithms:

ACT.GenParam(1λ): Generate

1. a bilinear group PG ← GGen(1λ)
2. EQS secret key sk = (x2, x3)←$ (Z∗

p)
2

3. EQS public key pk← (X̂2 ← x2 · G2, X̂3 ← x3 · G2)

Output: pprmS ← pk,

privprmS ← sk.

ACT.ClientRegister(pprmS):

1. Generate a PRF key uC ←$ Zp,
2. Set UC ← uC · G1

Output: pprmC ← UC

privprmC ← uC

ACT.TokenRequest(pprmS, privprmC,msg):

1. Generate random scalars v, µ←$ Z∗
p.

2. Compute M′
3 ← H(msg) and M′

2 ← uC · H(msg).
3. Set M⃗← (M2 = µ−1M′

2, M3 = µ−1M′
3)

4. Compute the Fiat-Shamir commitments: V = v · G1, W = v ·M3.
5. Derive the Fiat-Shamir challenge: c← H′(UC, M⃗, V,W ).
6. Compute the Fiat-Shamir response: ξ ← v + c · uC.
7. Set the proof to be: πM⃗ ← (ξ, c).

Output: blindRequest← (M⃗, πM⃗)

randmsg ← (msg, M⃗, µ)

ACT.Sign(privprmS, pprmC, blindRequest)
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1. Parse blindRequest = (M⃗, πM⃗ = (ξ, c)).
2. Verify the ZK proof πM⃗: namely compute V ′ ← ξG1 − cUC, W ′ ← ξM3 − cM2, and abort if c ̸=

H′(UC, M⃗,V
′,W′).

3. Generate a random y ←R Z∗
p.

4. Compute the EQS signature: Z← y · (x2 ·M2 + x3 ·M3), Y ← y−1 · G1, and Ŷ ← y−1 · G2.

Output: blindToken← ρ = (Z,Y, Ŷ)

ACT.Unblind(pprmS, privprmC, blindToken, randmsg)

1. Parse randmsg = (msg, M⃗, µ), blindToken = ρ = (Z,Y, Ŷ).
2. Generate a random scalar ψ ←$ Z∗

p.
3. Compute σ ← (Z′ ← µψZ, Y′ ← ψ−1Y, Ŷ′ ← ψ−1Ŷ)

4. Set M⃗′ ← (uC · H(msg), H(msg)).
5. Abort if M′

2 • X̂2 +M′
3 • X̂3 ̸= Z • Ŷ or if Y • G2 ̸= G1 • Ŷ or Y = 0 or Ŷ = 0.

Output:
(
msg, tok← (M′

2, σ ← (Z′,Y′, Ŷ′))
)

ACT.Verify(pprmS, privprm,msg, tok)

1. Parse tok = (M′
2, σ = (Z′,Y′, Ŷ′)).

2. Compute M′
3 ← H(msg).

3. Set bit← true.
4. If M′

2 • X̂2 +M′
3 • X̂3 ̸= Z • Ŷ or Y • G2 ̸= G1 • Ŷ or Y = 0 or Ŷ = 0, set bit← false.

Output: (bit, tag← M′
2).

Correctness and unlinkability follow from correctness and unlinkability of Construction 6.3.

Unforgeability.

Theorem 8.2. If (G1,G2,GT ) is modelled as a generic bilinear group, if H and H′ are modelled as a random
oracle, then the ACT scheme in Construction 6.3 satisfies unforgeability from Definition 3.2.

The generic bilinear group model was introduced in [Nec94, Sho97]. In the generic group model, group
elements are represented by random strings or handles and there is an oracle that returns the handles for
the sum of two group elements X + Y in the same group, and the pairing of a group element in G1 and a
group element in G2.

Proof. The challenger answers every query H(msg) by picking a fresh random scalar hmsg ←$ Zp and setting
H(msg) = hmsg · G1.

We denote by blindRequestj = (M⃗j , πj) the j-th query to Sign, by yj the scalar y ∈ Zp used by the oracle
for this query, and by ρj = (Zj ,Yj , Ŷj) the output of the oracle. We denote by toki = (M′

i,2, σi) the i-th token
output on the adversary, by msgi the associated message, and by M⃗′

i the associated vector M⃗′
i = (M′

i,2, M
′
i,3)

where M′
i,3 = H(msgi).

We represent all group elements that the adversary sees (by query the group oracles or any other oracle)
as (Laurent) polynomial with indeterminate x1, x2, yj (for j ∈ [T]), and hmsg (for queries msg to H). We
recall that the Schwartz-Zippel lemma ensures that working with such Laurent polynomials, instead of their
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actual evaluation is indistinguishable from the adversary point of view, as with overwhelming probability,
two different Laurent polynomials will yield two different elements when evaluated on random points.

Now, we follow the proof of [FHS19]8. The only difference is that the constant terms π⋆ of the polynomials
generated by the adversary (p.17) are no more scalars but instead multilinear polynomials in the {hmsg}.
The other coefficients (ρ⋆, χ⋆, ψ⋆) are all still scalars.

Following the proof, we get that for every message M⃗′
i = (M′

i,2,M
′
i,3), for which the adversary provide a

signature σi = (Z′
i,Y

′
i, Ŷ

′
i), there exists ji ∈ [T], and αi ∈ Zp such that:

M⃗′
i = αi · M⃗ji

(In the proof from [FHS19], αi is the product ρz,nψy,n, and as argued above those coefficients are scalars,
and do not contain any hmsg.)

Type-1 Forgeries. Let us first rule out Type-1 forgeries. If such a forgery happens, since there are T+1 valid
tokens output by the adversary but only T queries to Sign, there must exist i ̸= i′ and j = ji = ji′ , so that:

M⃗′
i = αi · M⃗j and M⃗′

i′ = αi′ · M⃗j

Since M′
i,3 = H(msgi) = hmsgi · G1 and M′

i′,3 = hmsgi′ · G1, we have that:

hmsgi = αiMj,3 and hmsgi′ = αi′Mj,3

which is impossible since hmsgi and hmsgi′ are two different indeterminates.

Type-2 Forgeries. If such a forgery happens, since there are only R registered users but R + 1 forgeries for
the same message msg, there must exist i ̸= i′, j = ji, and j′ = ji′ so that:

M⃗′
i = αi · M⃗j and M⃗′

i′ = αi′ · M⃗j′

and the j-th and j′-th query to Sign were made for the same client C, with public parameters pprmC = U.
With a similar reasoning as for Type-1 forgeries, we get that:

Mj,3 = Mj′,3 = H(msg) = hmsg (9)

Let us now show that logMj,2 · logU = logMj,3 where log represents the discrete logarithm in base
G1 or equivalently, the evaluation of the Laurent polynomials. Since the signing query was successful, the
Fiat-Shamir proof was successful, and the adversary produced V′,W′ so that:

V′ = ξG1 − cU and W′ = ξMj,3 − cMj,2

where c = H′(UC, M⃗j , V
′,W ′). This can be rewritten in matrix form:(

logV′

logW′

)
= Γ ·

(
ξ
−c

)
where Γ =

(
1 logMj,3

logU logMj,2

)
If Γ is invertible, the above system has a unique solution, so the above proof can hold only for a single
c = H′(UC, M⃗j , V

′,W ′). Since H′ is modeled as a random oracle, it would output the only possible c with
probability 1/p. Thus, except with negligible probability, Γ is not invertible and thus logMj,2·logU = logMj,3.

The same holds true for logMj′,2 · logU = logMj′,3.
We conclude using Eq. (9) that M′

j,2 = M′
j′,2. So the tags (tag) of both forgeries are identical, which

means such a Type-2 forgery cannot happen. ⊓⊔
8 Eprint version https://eprint.iacr.org/archive/2014/944/20210121:101436
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Parameter Generation for Unlinkability. Unlinkability assumes that the ACT parameters are generated
honestly and the issuer only sees the secret key. Following the discussion in Section 6, it is sufficient to add
a Fiat-Shamir proof of knowledge of the discrete logarithms x2 and x3 in pprmS to get unlinkability even
for maliciously-generated parameters. Note that we do not need a CRS for this construction and that those
proofs are extremely efficient (namely consisting of two scalars from Zp).

9 General Rate Limiting

Our ACT constructions guarantee that each registered client can obtain a single token per message. A
generalization of this property is to enforce a different threshold of how many tokens per message a client
can obtain. The challenge here is to enforce this without revealing to the issuer or verifier how many tokens
a client has obtained for a specific message, as long as it is below the threshold.

One approach to achieve that from an ACT construction that supports one token per message rate limit
is to change the input on which we evaluate the PRF under the client’s key, which is used to enforce rate
limiting. In particular, if we want to allow 2k different tokens per message, we will evaluate that PRF on
inputs of the form msg||s where msg is the actual message that will be used for the token verification and s
is a value of length k bits which can be chosen by the client. Thus, a client can generate 2k different inputs
for the rate-limiting PRF for each message and hence can obtain 2k tokens per message. The issuer will not
be able to distinguish requests for the same message vs requests for different messages as long as no more
than 2k requests per message have been submitted by a client.

The only remaining part is to have the client give a proof that it has added a suffix of k bits to its message
before evaluating the rate-limiting PRF. Unfortunately providing s in the clear does not preserve unlinkability
across clients. Even though it could be chosen at random in [0, 2k − 1] by the client, the same value s for
the same message can be used only for tokens that belong to different clients. This leaks information about
clients: if the verifier sees two redemptions with the same value s, it learns they correspond to two different
clients.

Thus we need to provide a ZK proof for the correct length of s without revealing it. This can be done
by the client committing to the k bits of its value s = s1∥ . . . ∥sk and proving that given Commit(msg) the
value that is input for the rate-limiting PRF evaluation is of the form 2k ·msg +

∑k−1
i=0 2i · si+1.
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Appendix

A Sigma Protocols

Definition A.1 (Sigma Protocol). A sigma protocol proving a relation R consists of three PPT algorithms
(C,R,V):

– α← C(x,w; r): given a statement x and a witness w output initial message α computed with randomness
r.

– β ← R(x,w, r, e): using the statement x and the witness w together with the randomness used to generate
the first message, compute a response β to a challenge e.

– bit← V(x, α, β, e): compute verification bit bit for a statement x using the initial message α, the random
challenge e and the response β.

Figure 8 show the interactions between a prover P and a verifier V in a sigma protocol. Using the Fiat-
Shamir heuristic sigma protocol can be made interactive by sampling e using a random oracle on the input
and output from the first message.
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P(x,w) V(x)

Sample randomness r

α← C(x,w; r)

α

e Sample challenge e

β ←R(x,w, r, e)

β

bit bit← V(x, α, β, e)

Fig. 8: Interactive Sigma Protocol.

Previous work have proven composition for sigma protocols for AND and OR relations as well as general
monotone formulas [CDS94, AOS02, GMY03]. Here we overview some of the building block sigma protocols
that we use in our constructions. To optimize communication efficiency, we note that the verifier can derive
message α from β, e and the statement, thus α does not need to be sent.

Construction A.2. Sigma protocols for proving knowledge and equality over committed values with Ped-
ersen commitment comx = xG+ rH and Comenisch-Shoup encrypted value Enc(x) = (aGCS, xHCS + aYCS).

– C(x,w; r): Generate random values y, r′, b and output

comr = yG+ r′H, Enc(y) = (bGCS, yHCS + bYCS).

– R(x,w, r, e): Compute and output α = y + e · x, H′ = (r′ + e · r) · H, H′′ = (b+ e · a).
– V(comx,Enc(x), comr,Enc(y), α,H

′,H′′, e): Output the bit of checking that both comparisons hold:

e · (comx) + comr = α · G+ H′

e · Enc(x) + Enc(y) = α · GCS + H′′.

Construction A.3. Let PRF(u,msg) = (u+msg)−1 · G, then we instantiate the proof

πPRF : ZK{ ∃ msg, u : F = (u+msg)−1 · G,
commsg = msg · HCS + rmsg · YCS,

˜commsg = msg · G+ rmsg · H,
comu = u · G+ ru · H}

as a sigma protocol as follows:

– C(F, commsg, ˜commsg, comu, u,msg; r):

α← (com′
msg = msg′ · HCS + r′msg · YCS

˜com′
msg = msg′ · G+ r′msg · H

com′
u = u′ · G+ r′u · H,

F′ = (msg′ + u′)F)
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– R(F, commsg, comu, u,msg; r, e): Output

β ←
(
msg′′ = msg′ + e ·msg, r′′msg = r′msg + e · rmsg

u′′ = u′ + e · u, r′′u = r′u + e · u
)

– V(F, commsg, comu, α, β, e) Check that all of the following hold:

com′
m + e · commsg = msg′′ · HCS + r′′msg · Y′

CS

˜com′
m + e · ˜commsg = msg′′ · G+ r′′msg · H

˜com′
m + e · commsg = msg′′ · HCS + r′′msg · H′

CS

com′
u + e · comu = u′′ · G+ r′′u · HCS

(msg′′ + u′′) · F = F′ + e · G
msg′′ <= q · 22λ+1

u′′ <= q · 22λ+1

The communication of the above protocol is 1 Pedersen commitment (in addition to 1 Extractable
commitment to m and a Pedersen commitment to k, which we assume have already been communicated to
the verifier), and 4 scalars. Of the scalars, 2 are of size log(p) + 2λ bits, and 2 are log(N) + 2λ bits, where
N is the RSA modulus for the Pedersen Commitments and Camenisch Shoup encryption, and p is the size
of the DY-PRF group. The total size of the scalars is 2 log(p) + 2 log(N) + 8λ bits.

Construction A.4. Let CS be the Camenisch Shoup encryption, which is also used for the extractable
commitment CommitExt with a different set of parameters, and CommitPed be the Pedersen commitment,
then we instantiate

π = ZK{∃ a, b,msg, r, ta, tb, tmsg, tr, tar s.t. :
ctβ = Enc(PKCS, a ·msg + b · p) + a · ctu + a · r · cty),
coma = CommitExt(a, ta), comr = CommitPed(r, tr), comar = CommitPed(a · r, tar),
comb = CommitPed(b, tb), commsg = CommitExt(msg, tmsg),

a < p · 22λ+1, r < p · 22λ+1, b < p2 · 23λ+1}.

– C(x,w; r) where:
• statement: commsg, comr, coma, comb, comar, comam, ctβ , ctu = (Uctu ,Wctu), cty = (Ucty ,Wcty)
• witness:

commsg = (Umsg = tmsg · GExt,Wmsg = msg · HExt + tmsg · YExt)

comr = rG+ trH

coma = (Ua = ta · GExt,Wa = a · HExt + ta · YExt)

comb = bG+ tbH

comar = (a · r) · G+ (a · tr) · H
comam = (a ·msg) · HExt + (a · tmsg) · YExt

Enc(PKCS, a ·msg + b · p) = (tEnc · GCS, (a ·msg + b · p) · HCS + (tEnc · YCS))

ctβ = Enc(PKCS, a ·msg + b · p) + a · ctu + a · r · cty = (Uβ ,Wβ)

Uβ = tEnc · GCS + a · Uctu + a · r · Ucty

Wβ = (a ·msg + b · p) · H+ a ·Wctu + (a · r) ·Wcty + tEnc · YCS
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• Generate δ as:

˜commsg = (t′msg · GExt,msg′HExt + t′msgYExt)

˜comr = r′G+ t′rH,

˜coma = (t′aGExt, a
′GExt + t′aHExt),

˜comb = b′G+ t′bH,

˜comar = α′
arG+ t′arH,

ˆcomar = a′comr

˜comam = α′
amHExt + t′amYExt

ˆcomam = a′Wmsg

Ũβ = t′Enc · GCS + a′ · Uctu + α′
ar · Ucty

W̃β = (α′
am + b′ · p) ·H + a′ ·Wctu + α′

ar ·Wcty + t′Enc · YCS

– R(x,w, r, e): Compute and return τ as

msg′′ = msg′ + e ·msg

t′′msg = t′msg + e · tmsg

r′′ = r′ + e · r
t′′r = t′r + e · tr
a′′ = a′ + e · a
t′′a = t′a + e · ta
b′′ = b′ + e · b
t′′b = t′b + e · tb
α′′
ar = α′

ar + e · a · r
t′′ar = t′ar + e · a · tr
α′′
am = α′

am + e · a ·msg

t′′am = t′am + e · a · tmsg

t′′Enc = t′enc+ e · tEnc

– V(x, δ, τ, e): Check:
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(t′′msg · GExt,msg′′ · HExt + t′′msg · YExt) = ˜commsg + e · commsg

r′′G+ t′′rH = ˜comr + e · comr

(t′′a · GExt, a
′′ · HExt + t′′a · YExt) = ˜coma + e · coma

b′′G+ t′′bH = ˜comb + e · comb

a′′ · comr = ˆcomar + e · comar

α′′
ar · G+ t′′ar · H = ˜comar + e · comar

a′′ ·Wmsg = ˆcomam + e · comam

α′′
am · HExt + t′′am · YExt = ˜comam + e · comam

Ũβ + e · Uβ = t′′Enc · GCS + a′′ · Uctu + α′′
ar · Ucty

W̃β + e ·Wβ = (α′′
am + p · b′′) · HCS + a′′ ·Wctu + α′′

ar ·Wcty + t′′Enc · YCS

msg′′ <= q · 22λ+1

r′′ <= q · 22λ+1

a′′ <= q · 22λ+1

b′′ <= 2q · 23λ+1

Using the optimization we discussed above, the communication cost of the above protocol is the size of
the statement, which is 4 Pedersen commitments, 2 extractable commitments and 1 CS ciphertext (assuming
that ctu, cty are known to the verifier), and 13 scalars corresponding to the openings. Of the scalars, we have
3 of size log(p) + 2λ, 2 of size 2 log(p) + 2λ, 1 of size 2 log(p) + 3λ and 7 of size log(N) + 2λ. In total, the
scalars have size 9 log(p) + 7 log(N) + 27λ bits.
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