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Abstract. Impossible differential (ID) cryptanalysis is one of the most1

important cryptanalytic approaches for block ciphers. How to evaluate2

the security of Substitution-Permutation Network (SPN) block ciphers3

against ID is a valuable problem. In this paper, a series of methods for4

bounding the length of IDs of SPN block ciphers are proposed. From5

the perspective of overall structure, we propose a general framework6

and three implementation strategies. The three implementation strate-7

gies are compared and analyzed in terms of efficiency and accuracy. From8

the perspective of implementation technologies, we give the methods for9

determining representative set, partition table and ladder and integrat-10

ing them into searching models. Moreover, the rotation-equivalence ID11

sets of ciphers are explored to reduce the number of models need to be12

considered. Thus, the ID bounds of SPN block ciphers can be effectively13

evaluated. As applications, we show that 9-round PRESENT, 8-round14

GIFT-64, 12-round GIFT-128, 5-round AES, 6-round Rijndael-160, 7-15

round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 and 10-16

round Midori64 do not have any ID under the sole assumption that the17

round keys are uniformly random. The results of PRESENT, GIFT-128,18

Rijndael-160, Rijndael-192, Rijndael-224, Rijndael-256 and Midori64 are19

obtained for the first time. Moreover, the ID bounds of AES, Rijndael-20

160, Rijndael-192, Rijndael-224 and Rijndael-256 are infimum.21

Keywords: Impossible differential · PRESENT · GIFT · Midori64 ·22

Rijndael · AES23

1 Introduction24

Impossible differential (ID) cryptanalysis [Knu98,BBS99] is one of the most effec-25

tive cryptanalytic approaches for block ciphers. The main idea of it is to utilize26

IDs (differentials with probability 0) to discard wrong keys. So far, ID crypt-27

analysis has been used to attack lots of block ciphers, such as AES [MDRM10].28

For attackers, finding ID plays an important role in ID attack. In [KHS+03],29

Kim et al. proposed the first automatic method for finding IDs, called U-method.30

After that, many improved automatic tools are presented, such as UID-method31

[LLWG14], WW-method [WW12], U?-method [SGWW20], etc. However, all32

these tools treat S-boxes as ideal ones that any nonzero input difference could33
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produce every nonzero output difference. Thus, the IDs obtained by these meth-34

ods may not be the longest for real ciphers. In order to tackle this problem,35

Cui et al. [CJF+16] and Sasaki and Todo [ST17b] independently proposed au-36

tomatic tools based on Mixed Integer Linear Programming (MILP) to search37

IDs for block ciphers with the differential details of S-box considered. With the38

tools based on MILP, they can identify whether a specific differential is ID. In39

theory, the tools based on MILP can find all IDs under the assumption that40

round keys are uniformly random. However, for a block cipher with n-bit block41

size, the number of differentials in the whole search space is about 22n which is42

not affordable to determine all these differentials one by one.43

For designers, it is important to evaluate the security of block ciphers. To44

prove the security of a block cipher against ID attacks, a common way is to give45

an upper bound on the rounds of ID. In [CJZ+17], Cui et al. suggested that the46

differential pattern matrix of the P -layer could be used to deduce all IDs for SPN47

block ciphers. At EUROCRYPT 2016, Sun et al. [SLG+16] associated a primitive48

index with the characteristic matrix of the linear layer. They proved that the49

length of ID for some special SPN block ciphers was bounded by the primitive50

index of the linear layer. In order to obtain the bounds of ID in practical time,51

they proved that under special conditions whether there existed ID depended52

only on the existence of low-weight ID. To overcome the limitations of the above53

methods, Wang and Jin [WJ21] used linear algebra to propose a practical method54

that could give the upper bound on the length of ID for any SPN block cipher55

when treating S-boxes as ideal ones. Since the above methods do not consider56

the differential details of S-box, their bounds may become invalid.57

When the details of S-box are considered, the security bounds of ciphers58

against ID will be more convincing. The difficulty of this problem is that it59

needs to prove that all differentials are possible when the round number of a60

block cipher is not less than a certain integer. If there is no special explanation,61

all the contents of ID considering the details of the S-box in this paper are62

obtained under the assumption that round keys are uniformly random. The63

research progress in this field can be divided into the following three categories.64

- Rigorous mathematical derivation. By revealing some important proper-65

ties of the S-box and linear layer used in AES, Wang and Jin [WJ19] prove66

that even though the details of the S-box are considered, there do not ex-67

ist ID covering more than 4 rounds for AES. However, this method is only68

applicable to AES at present.69

- Bounds on partial search space. The automatic search methods based on70

solvers [CJF+16,ST17b,BC20] can determine whether a concrete differen-71

tial is ID. Thus, the bound on partial search space of differentials can be72

obtained.73

- Bounds on whole search space for special SPN ciphers. At SAC 2022,74

Hu et al. [HPW22] partitioned the whole search space of difference pairs into75

lots of small disjoint sets. When the number of sets is reduced to a reasonable76

size, they can detect whether there exist ID with MILP models. Due to the77
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limitation of huge time complexity, their method currently works only for78

special SPN cipher whose block size is 64 bits.79

1.1 Our Contributions80

In this paper, we propose a series of methods for bounding the length of IDs of81

SPN block ciphers. The contributions can be classified into three parts.82

- A general framework and three implementation strategies. Based on83

our new definition about the set of difference pairs, called ladder (a set84

whose every input difference can propagate to every output difference), we85

propose a general framework for bounding the length of IDs of SPN block86

ciphers. The framework divides the whole cipher into small components and87

constructs a ladder for a middle component. Thus, the input and output88

differences can be considered separately. Then, three implementation strate-89

gies of the framework are introduced. We compare and analyze the three90

implementation strategies in terms of efficiency and accuracy. Thus, we can91

choose appropriate strategy according to specific block ciphers.92

- More efficient and accurate implementation technologies. In order to93

reduce the implementation complexity, we put forward the definitions of94

optimal representative set and optimal partition table. For small-size S-box95

(e.g. 4-bit or 8-bit) and middle-size S-box (e.g. 16-bit), we give corresponding96

algorithms to determine the optimal representative set and partition table.97

For large-size superbox (e.g. 32-bit), a heuristic algorithm is proposed to98

determine a relatively good representative set and partition table. Thus,99

compared with the work in [HPW22], our methods can use fewer or even the100

least models to obtain the security evaluation against ID.101

In addition, we propose the definition of maximal ladder to guide the selec-102

tion of a better ladder. Then, the methods for determining a maximal ladder103

of S-box layer and integrating it into searching model are given. Moreover,104

the rotation-equivalent ID sets of ciphers are explored to reduce the number105

of models need to be considered. Thus, we can bound the length of IDs of106

SPN block ciphers effectively.107

- Applications to SPN block ciphers. Under the sole assumption that108

round keys are uniformly random, we show that 9-round PRESENT, 8-109

round GIFT-64, 12-round GIFT-128, 5-round AES, 6-round Rijndael-160,110

7-round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 and 10-111

round Midori64 do not have any ID. The results of PRESENT, GIFT-128,112

Rijndael-160, Rijndael-192, Rijndael-224, Rijndael-256 and Midori64 are ob-113

tained for the first time. Moreover, the ID bounds of AES, Rijndael-160,114

Rijndael-192, Rijndael-224 and Rijndael-256 are infimum.115

Compared with the methods in [HPW22], our methods have two advantages.116

On one hand, our methods are more general which are no longer limited to special117

SPN ciphers with 64-bit block size. For instance, under the sole assumption that118

round keys are uniformly random, the ID bound of GIFT128 is obtained for the119
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first time. On the other hand, our methods are more efficient. For example, when120

determining whether there is ID for 8-round GIFT-64, the methods in [HPW22]121

need to solve 226 fundamental models, while our methods only need to solve122

224.68 fundamental models. All the application results are shown in Table 1.123

Table 1. The ID results of some SPN block ciphers

Cipher Block size Longest known ID Number of models Bound Reference

PRESENT 64 6 [HLJ+20] - 7? [HLJ+20]
224.68 9 Sect. 5.1

GIFT-64 64 6 [HLJ+20]
- 7? [BPP+17]

226 8 [HPW22]
224.68 8 Sect. 5.2

GIFT-128 128 7 [HPW22] 212.17 8∗ [HPW22]
225.83 12 Sect. 5.2

AES 128 4 [MDRM10] - 5 [WJ19]
(Rijndael-128) 75 +O

(
232
)� 5 Sect. 6.1

Rijndael-160 160 5 [ZWP+08] 217 6 Sect. 6.1

Rijndael-192 192 6 [JP07] - 7† [HPW22]
819 7 Sect. 6.1

Rijndael-224 224 6 [JP07] 2413 7 Sect. 6.1
Rijndael-256 256 6 [ZWP+08] 8925 7 Sect. 6.1

Midori64 64 5 [BBI+15] - 6? [BBI+15]
224 10 Sect. 6.2

? The security bound of the search space where there is only one active S-box for both
the input and output differences.
∗ The security bound of the search space where there is only one active superbox for
both the input and output differences.
† The security bound of truncated ID omitting the details of S-box.
� We need to verify some representatives of 32-bit superboxes in AES.

1.2 Outline124

This paper is organized as follows: Sect. 2 introduces the notations, definitions125

and related works. In Sect. 3, we propose a general framework and three imple-126

mentation strategies for bounding the length of IDs. In Sect. 4, the implemen-127

tation technologies are detailed. In Sect. 5 and 6, we apply our methods to two128

types of SPN block ciphers. In Sect. 7, we conclude the paper.129

2 Preliminaries130

2.1 Notations and Definitions131

Some notations used in this paper are defined in Table 2.132
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Table 2. Some notations used in this paper

F2 The finite field {0, 1}
x ∈ Fn

2 An n-bit vector or difference
x⊕ y Bitwise XOR of x and y

x≪ i Left rotation of x by i-bit position
x≫ i Right rotation of x by i-bit position
x||y The concatenation of x and y

xn|| The concatenation x||x|| · · · ||x whose number of x is n
∅ Empty set
A Set is denoted as uppercase letter such as A
|A| The number of elements in the set A

A ∩B The intersection of two sets A and B

A ∪B The union of two sets A and B

A+B If A ∩B = ∅, we denote the union of A and B as A+B

A−B The set {a|a ∈ A and a /∈ B}
A⊗B The set {(a, b) |a ∈ A, b ∈ B}
An The set A⊗A⊗ · · · ⊗A whose number of A is n

Definition 1. (Expected Differential Probability [CR15]). Let fk : Fn2 ×133

Fκ2 → Fm2 be a keyed vectorial boolean function with κ-bit key size. Then, the134

expected probability of differential (a, b) ∈ Fn2 × Fm2 over fk is defined as:135

EDP (a
fk7−→ b) = 2−κ

∑
k∈Fκ2

DP (a
fk7−→ b),

where DP (a fk7−→ b) = 2−n × |{x ∈ Fn2 |fk (x)⊕ fk (x⊕ a) = b}| is the differential136

probability of (a, b) over fk.137

If EDP (a fk7−→ b) = 0, the differential (a, b) is an ID over fk, denoted as138

a
fk9 b. Otherwise, if EDP (a fk7−→ b) > 0, the differential (a, b) is a possible139

differential pattern, denoted as a fk→ b. For two sets of differences A and B, if140

a
fk→ b holds for all (a, b) ∈ A⊗B, we denote it as A fk→ B. Otherwise we denote141

it as A fk9 B. Moreover, a fk→ B and A
fk→ b are equivalent to {a} fk→ B and142

A
fk→ {b}, respectively.143

In this paper, we are only interested in the bit-wise XOR difference. On this144

condition, we introduce the following definition and theorem.145

Definition 2. (Markov Cipher [LMM91]). An iterated cipher with round146

function fk (x) = f (x⊕ k) is a Markov cipher, if for all choices of a and b147

(a 6= 0, b 6= 0), the probability148

P (fk (x)⊕ fk (x′) = b|x⊕ x′ = a, x = c)

is independent of c when the round key is uniformly random.149
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Theorem 1. (EDP of Markov Cipher [LMM91]). Let Ek = fkr−1
◦ fkr−2

◦150

· · · ◦ fk0 be an r-round Markov cipher, where ki is the round key and fki (x) =151

f (x⊕ ki) holds for all 0 ≤ i ≤ r − 1. Then, under the assumption that round152

keys are uniformly random, the EDP of (a0, ar) over Ek can be calculated as153

EDP (a0
Ek7−→ ar) =

∑
a1

∑
a2

· · ·
∑
ar−1

EDP (a0
fk07−→ a1

fk17−→ · · ·
fkr−17−→ ar), (1)

where EDP (a0
fk07−→ a1

fk17−→ · · ·
fkr−17−→ ar) =

∏r−1
i=0 EDP (ai

fki7−→ ai+1) is the EDP154

of the r-round differential trail a0 7−→ a1 7−→ · · · 7−→ ar over Ek.155

According to Eq. (1), for an r-round Markov cipher Ek, if we want to156

prove a0
Ek→ ar, we need to find an r-round possible differential trail satisfy-157

ing EDP (a0
fk07−→ a1

fk17−→ · · ·
fkr−17−→ ar) > 0. If we want to prove that there does158

not exist any ID for cipher Ek, we have to prove that a0
Ek→ ar holds for every159

concrete differential (a0, ar). As far as we know, almost all SPN block ciphers160

(such as AES [DR02]) are Markov ciphers. For those SPN ciphers that are not161

Markov ciphers (such as SKINNY [BJK+16]), we should not misuse the result162

of Theorem 1.163

2.2 Current Automatic Methods for Finding IDs164

In [MWGP11,SHW+14], MILP based methods for searching differential distin-165

guishers were proposed. By adding additional constraints on the input and out-166

put differences, Cui et al. [CJF+16] and Sasaki and Todo [ST17b] independently167

proposed MILP models to search IDs for block ciphers with the details of S-box168

considered. Using MILP tools, they are able to identify whether a differential is169

ID or not. However, when we want to find all the IDs or to know whether there170

exist longer ID for a block cipher, we have to solve about 22n models for a cipher171

with n-bit block size to check all input and output difference pairs. The search172

space far exceeds the existing computing power.173

In order to tackle this problem, Hu et al. [HPW22]) partitioned the whole174

search space into many small disjoint sets and then excluded the sets containing175

no ID. Thus, when their methods have determined that all differentials are not176

IDs, the provable security of ciphers against ID can be obtained. We will intro-177

duce their methods from the perspective of bounding the length of IDs which is178

also the main topic of this paper.179

Definition 3. (Representative Set [HPW22]). For a function f , let A and180

B be the sets of input and output differences, respectively. If the following con-181

dition is satisfied,182

∀a ∈ A,∃b ∈ B satisfying a f→ b

we call B the representative set of A over f , denoted as A f→ ∃B.183
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Definition 4. (Partition Table [HPW22]). If A f→ ∃B, then184 ⋃
b∈B

{a ∈ A|a f→ b} = A.

For any a ∈ A, we remove the overlapping elements and make it exist in only one185

set of {a ∈ A|a f→ b}, b ∈ B. Thus, we get a partition of A which can be stored in186

a hash table H with b ∈ B as key and the value H[b] is the set {a ∈ A|a f→ b} after187

removing. Thus, A =
∑
b∈B H[b] is a partition table, denoted as PT [A,B,H, f ].188

However, it is very difficult to determine the representative sets and partition189

tables of a cipher directly. By dividing a large-dimension function into small190

parts, Hu et al. [HPW22] proposed a solution as follow.191

Theorem 2. ([HPW22]). For a function S comprising of m parallel S-boxes,192

denoted as S = sm−1|| · · · ||s1||s0, let A = Am−1 ⊗ · · · ⊗ A1 ⊗ A0 be the input193

difference set of S, where Ai is the input difference set of si, i ∈ {0, 1, . . . ,m−1}.194

If we obtain the partition tables PT (Ai, Bi, Hi, si) , i ∈ {0, 1, . . . ,m− 1}, then195

A =
∑

bm−1∈Bm−1

· · ·
∑
b1∈B1

∑
b0∈B0

Hm−1[bm−1]⊗ · · · ⊗H1[b1]⊗H0[b0]

Thus, we obtain the partition table of A over S.196

Then, Hu et al. [HPW22] proposed a framework for bounding the length of197

IDs as showed in the following theorem (also illustrated in Fig. 1)198

Theorem 3. (Bounding the Length of IDs [HPW22]). For a cipher E =199

E2 ◦ E1 ◦ E0 and partition tables PT [A0, A1, H0, E0] and PT [A3, A2, H2, E
−1
2 ],200

the set A0 ⊗A3 is the union of smaller sets as follows,201

A0 ⊗A3 =
∑

a1∈A1,a2∈A2

H0[a1]⊗H2[a2].

For each element (a1, a2) ∈ A1⊗A2, the model is built to detect whether a1
E1→ a2.202

If A1
E1→ A2, the cipher E has no ID over A0 ⊗ A3. Thus, the ID bound of E203

can be obtained. Otherwise, if there exists a1
E19 a2, the set of difference pairs204

H0[a1]⊗H2[a2] may contain some IDs.205

The above framework considers the input difference set and output differ-206

ence set together. In order to get the ID bound of E, at least |A1| × |A2| models207

need to be solved. The number of models may not affordable. A natural ques-208

tion is whether we can consider input difference set and output difference set209

separately. Following this initial idea, we propose a general framework and its210

implementation strategies in Sect. 3.211

3 Overall Structure of Bounding the Length of IDs212

In this part, we propose a general framework for bounding the length of IDs.213

Based on the framework, three implementation strategies are showed.214
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Fig. 1. The framework for bounding the length of IDs in [HPW22]

3.1 A General Framework215

Definition 5. (Ladder) For a function f , let A and B be sets of input and216

output differences, respectively. If the condition A f→ B is satisfied, we call A⊗B217

the ladder of f .218

Theorem 4. For a bijective function f , if A⊗ B is a ladder of f , then B ⊗ A219

is also a ladder of f−1, where f−1 is the inverse function of f .220

Proof. Because A f→ B, for any (a, b) ∈ A⊗B, there exists x satisfying f (x)⊕221

f (x⊕ a) = b. For the element y = f (x), we have f−1 (y) ⊕ f−1 (y ⊕ b) =222

x⊕ (x⊕ a) = a. Thus, for any (b, a) ∈ B ⊗A, we have b f
−1

→ a. �223

Based on the definitions of representative set, partition table and ladder, we224

propose a general framework for bounding the length of IDs as showed in the225

following theorem (also illustrated in Fig. 2).226

Theorem 5. Let E = E4 ◦E3 ◦E2 ◦E1 ◦E0 be a cipher, where Ei, 0 ≤ i ≤ 4 are227

all bijective functions. if there exist the sets of differences A0, A1, A2, A3, A4, A5228

and partition tables PT [A0, A1, H0, E0], PT [A5, A4, H4, E
−1
4 ] satisfying229 

A1
E1→ ∃A2,

A2
E2→ A3,

A4
E−1

3→ ∃A3,

(2)

we have A0
E→ A5. That is, the cipher E has no ID over A0 ⊗A5.230

Proof. Because PT [A0, A1, H0, E0], we have A0 =
∑
a1∈A1

H0[a1]. For any dif-231

ference a0 ∈ A0, there exists a1 ∈ A1 satisfying a0
E0→ a1. According to Definition232

3, if A1
E1→ ∃A2, for any a1 ∈ A1, there exists a2 ∈ A2 satisfying a1

E1→ a2. There-233

fore, for any difference a0 ∈ A0, there exists a2 ∈ A2 satisfying234

a0
E1◦E0−→ a2. (3)
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Similarly, for any a5 ∈ A5, there exists a3 ∈ A3 satisfying a5
E−1

3 ◦E
−1
4−→ a3. Because235

E−13 ◦ E−14 is a bijective function, according to Theorem 4, for any difference236

a5 ∈ A5, there exists a3 ∈ A3 satisfying237

a3
E4◦E3−→ a5. (4)

Because A2
E2→ A3, we have238

a2
E2→ a3. (5)

Combining the Eq. (3), (4) and (5) together, for any a0 ∈ A0 and a5 ∈ A5, there239

exist a2 ∈ A2 and a3 ∈ A3 satisfying240

a0
E1◦E0−→ a2

E2→ a3
E4◦E3−→ a5.

Thus, we have A0
E→ A5. �241

According to Eq. (2), the partition tables of input difference set A0 and242

output difference set A5 can be considered separately. This will improve the243

efficiency of security evaluation against ID. Moreover, if the functions E1 and244

E3 are identical permutation, the framework degenerates into the method as245

shown in Theorem 3. Thus, our framework is more general.246

Fig. 2. A general framework for bounding the length of IDs

3.2 Three Implementation Strategies247

In this part, three implementation strategies are proposed to bound the length248

of IDs. To facilitate the description of the strategies, we introduce an indicator249

variable flag to denote the results of ID as following:250

flag =

0, if there is no ID,
1, if there is at least one ID,
2, if cannot determine whether there is ID.

When we cannot get the value of flag due to the limited storage and computing251

capacity, we set flag = 2.252
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3.2.1 Partition First Implementation Strategy This strategy will first253

obtain the partition tables of the input and output difference sets. Then, if every254

representative difference of input differences can propagate to every representa-255

tive difference of output differences, we can obtain the ID bound. This strategy is256

similar to the method shown in Theorem 3. However, we introduce this strategy257

from the perspective of ladder. Moreover, when there are some uncertain IDs,258

we adopt a different enhance stage.259

For a cipher E = E2◦E1◦E0, we construct partition tables PT [A0, A1, H0, E0]260

and PT [A3, A2, H2, E
−1
2 ], where A0 and A3 are the input and output difference261

sets of E, respectively. In the fundamental stage, if A1 ⊗ A2 is a ladder of E1,262

according to Theorem 5, there is no ID for E over A0 ⊗ A3. If A1 ⊗ A2 is263

not a ladder of E1, we obtain a set I = {(a1, a2) ∈ A1 ⊗ A2|a1
E19 a2}. And264

we need to further determine whether H0[a1] ⊗ H2[a2], (a1, a2) ∈ I are lad-265

ders of E. In the enhance stage, we construct a set I1 = {a1 ∈ A1| (a1, a2) /∈266

I holds for every a2 ∈ A2}. Because for any a1 ∈ I1, we have a1
E1→ A2. Thus,267 ∑

a1∈I1 H0[a1]
E→ A3. Therefore, for any a1 ∈ A1, we can reduce the hash table268

H0[a1] to H ′0[a1] = H0[a1] −
∑
a∈I1 H0[a]. Similarly, for any a2 ∈ A2, we can269

obtain the reduced hash table H ′2[a2]. Then, for any (a1, a2) ∈ I, we further270

explore whether H ′0[a1]
E→ H ′2[a2]. The whole procedure for obtaining the ID271

result of E over A0 ⊗A3 is demonstrated in Algorithm 1.272

From Line 3 in Algorithm 1, we know that |A1| × |A2| models need to be273

build to obtain ID result of E. The partition tables PT [A0, A1, H0, E0] and274

PT [A3, A2, H2, E
−1
2 ] will have an important influence on the time complexity275

of Algorithm 1. In [HPW22], Hu et al. proposed an intuitive algorithm which276

could generate representative sets and partition tables. Just as they write in the277

paper, their algorithm is not very efficient. On one hand, their method cannot278

be applied into large-size S-box (e.g. 32-bit). On the other hand, their method279

cannot guarantee the obtained representative sets and partition tables are opti-280

mal representative sets and partition tables. Thus, we propose the definitions of281

optimal representative set and partition table in Sect. 4.1. Compared with the282

methods proposed in [HPW22], our methods can use fewer or even least models283

to obtain the ID bound.284

3.2.2 Ladder First Implementation Strategy Different from partition285

first implementation strategy, ladder first implementation strategy directly con-286

struct a ladder to separate the input difference set and output difference set.287

Thus, we can obtain the ID result by independently researching the input differ-288

ence set and output difference set. This divide and conquer method will greatly289

reduce the number of models need to be solved.290

For a cipher E = E4 ◦E3 ◦E2 ◦E1 ◦E0, we construct a ladder A2
E2→ A3 and291

two partition tables PT [A0, A1, H0, E0] and PT [A5, A4, H4, E
−1
4 ], where A0 and292

A5 are the input and output difference sets of E, respectively. In the fundamental293

stage, if A1
E1→ ∃A2 and A4

E−1
3→ ∃A3, according to Theorem 5, there is no ID294

for E over A0 ⊗ A5. Otherwise, we obtain two sets I = {a1 ∈ A1|a1
E19 ∃A2}295
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Algorithm 1 Partition first implementation strategy
Input: The cipher E = E2 ◦ E1 ◦ E0, input and output difference sets A0 and A3

Output: flag . Return the ID result of E over A0 ⊗A3

———————————— Fundamental Stage ————————————
1: PT [A0, A1, H0, E0] and PT [A3, A2, H2, E

−1
2 ] . Obtain two partition tables

2: Allocate I ← ∅
3: for (a1, a2) ∈ A1 ⊗A2 do
4: if a1

E19 a2 then . Build a model to determine whether a1
E1→ a2

5: I ← I ∪ {(a1, a2)}
6: end if
7: end for
8: if I = ∅ then
9: return flag = 0 . E has no ID over A0 ⊗A3

10: end if
————————————– Enhance Stage ————————————–

11: I1 = {a1 ∈ A1| (a1, a2) /∈ I holds for every a2 ∈ A2}
12: I2 = {a2 ∈ A2| (a1, a2) /∈ I holds for every a1 ∈ A1}
13: H ′0[a1] = H0[a1]−

∑
a∈I1 H0[a] for any a1 ∈ A1

14: H ′2[a2] = H2[a2]−
∑

a∈I2 H2[a] for any a2 ∈ A2

15: for (a1, a2) ∈ I do
16: for (a0, a3) ∈ H ′0[a1]⊗H ′2[a2] do
17: if a0

E9 a3 then . Build a model to determine whether a0
E→ a3

18: return flag = 1 . E has at least one ID
19: end if
20: end for
21: end for
22: return flag = 0 . E has no ID over A0 ⊗A3

and J = {a4 ∈ A4|a4
E−1

39 ∃A3}. In the enhance stage, similarly to partition296

first implementation strategy in Sect. 3.2.1, we can obtain the reduced hash297

tables H ′0[a1] and H ′4[a4] for any a1 ∈ A1 and a4 ∈ A4, respectively. Then,298

for any a1 ∈ I and a4 ∈ J , we further explore whether H ′0[a1]
E1◦E0−→ ∃A2 and299

H ′4[a4]
E−1

3 ◦E
−1
4−→ ∃A3. The whole procedure for obtaining the ID result of E over300

A0 ⊗A5 is demonstrated in Algorithm 2.301

From Line 3 and Line 8 in Algorithm 2, we know that |A1|+|A4| differential302

patterns need to be determined. For example, in Line 4 of Algorithm 2, we need303

to determine whether a1
E1→ ∃A2. It should be noted that there is no automatic304

method for directly modeling this new kind of differential pattern before. For305

each a2 ∈ A2, previous automatic methods [CJF+16,ST17b] will build a model306

determine whether a1
E1→ ∃a2. Thus, |A2| models need to be solved. This will307

greatly increase the complexity of Algorithm 2. In order to tackle this problem,308

in Sect. 4.2, we propose the definition of maximal ladder to guide the selection of309

a better ladder. Then, the methods for determining a maximal ladder of S-box310
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layer and integrating it into searching model are given. Therefore, we can build311

only one model to determine whether a1
E1→ ∃A2 effectively.312

Algorithm 2 Ladder first implementation strategy
Input: The cipher E = E4 ◦ · · · ◦ E0, input and output difference sets A0 and A5

Output: flag . Return the ID result of E over A0 ⊗A5

———————————— Fundamental Stage ————————————
1: A2

E2→ A3, PT [A0, A1, H0, E0], PT [A5, A4, H4, E
−1
4 ] . ladder and partition tables

2: Allocate I ← ∅ and J ← ∅
3: for a1 ∈ A1 do
4: if a1

E19 ∃A2 then . Build a model to determine whether a1
E1→ ∃A2

5: I ← I
⋃

a1

6: end if
7: end for
8: for a4 ∈ A4 do

9: if a4

E−1
39 ∃A3 then . Build a model to determine whether a4

E−1
3→ ∃A3

10: J ← J
⋃

a4

11: end if
12: end for
13: if I = ∅ and J = ∅ then
14: return flag = 0 . E has no ID over A0 ⊗A5

15: end if
————————————– Enhance Stage ————————————–

16: H ′0[a1] = H0[a1]−
∑

a∈A1−I H0[a] for any a1 ∈ A1

17: H ′4[a4] = H4[a4]−
∑

a∈A4−J H4[a] for any a4 ∈ A4

18: for a1 ∈ I, a0 ∈ H ′0[a1] do
19: if a0

E1◦E09 ∃A2 then
20: return flag = 2 . Cannot determine whether E has ID
21: end if
22: end for
23: for a4 ∈ J, a5 ∈ H ′4[a4] do

24: if a5

E−1
3 ◦E

−1
49 ∃A3 then

25: return flag = 2 . Cannot determine whether E has ID
26: end if
27: end for
28: return flag = 0 . E has no ID over A0 ⊗A5

3.2.3 Dynamic-Ladder-Partition Implementation Strategy Different313

from the above two strategies, this strategy will determine the ladders and par-314

tition tables dynamically. For a cipher E = E2 ◦ E1 ◦ E0, let A0 and A3 be the315

input and output difference sets, respectively. We will dynamically add elements316

into the ladder A1 ⊗ A2 of E1 until A0
E0→ ∃A1 and A3

E−1
2→ ∃A2 are satisfied317

or we obtain an ID. Then, we get the ID result of E over A0 ⊗ A3. The whole318
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procedure for obtaining the ID result of the cipher E is demonstrated in Algo-319

rithm 3. According to Line 4 and Line 13 of Algorithm 3, the elements a0 ∈ A0320

and a3 ∈ A3 are randomly selected. When flag = 2, if we want to get a more321

accurate result, we can call Algorithm 3 again.322

Algorithm 3 Dynamic-ladder-partition implementation strategy
Input: The cipher E = E2 ◦ E1 ◦ E0, input and output difference sets A0 and A3

Output: flag . Return the ID result of E over A0 ⊗A3

1: Allocate A1 ← ∅,A2 ← ∅
2: while A0 6= ∅ or A3 6= ∅ do
3: if A0 6= ∅ then
4: Randomly select an element a0 ∈ A0

5: if there exists a1 satisfying a0
E0→ a1 and A1 ∪ a1

E1→ A2 then
6: A0 ← A0 − {a0 ∈ A0|a0

E0→ a1} . Remove elements represented by a1

7: A1 → A1

⋃
a1 . Add element into the set A1

8: else
9: return flag = 2 . Cannot determine whether E has ID
10: end if
11: end if
12: if A3 6= ∅ then
13: Randomly select an element a3 ∈ A3

14: if there exists a2 satisfying a3

E−1
2→ a2 and A1

E1→ A2 ∪ a2 then

15: A3 ← A3 − {a3 ∈ A3|a3

E−1
2→ a2} . Remove elements represented by a2

16: A2 → A2

⋃
a2 . Add element into the set A2

17: else
18: return flag = 2 . Cannot determine whether E has ID
19: end if
20: end if
21: if A0 = ∅ and A3 = ∅ then
22: return flag = 0 . E has no ID over A0 ⊗A3

23: end if
24: end while

3.2.4 Comparative Analysis of the Three Strategies We will compare323

and analyze the above strategies from efficiency and accuracy. Efficiency is about324

the number of models we need to solve. Accuracy is about whether we can get325

the ID bound of a cipher. Because the enhance stages of Algorithm 1 and 2326

are greatly affected by the properties of specific ciphers and fundamental stages327

play a more important role in most cases. Thus, only the fundamental stages of328

Algorithm 1 and 2 participate in the comparison. The comparison data of the329

three implementation strategies are showed in Table 3.330
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Table 3. The comparison data of the three implementation strategies

Algorithm 1 Algorithm 2 Algorithm 3

Cipher E = E2 ◦ E1 ◦ E0 E = E′4 ◦ · · · ◦ E′1 ◦ E′0 E = E′′2 ◦ E′′1 ◦ E′′0
Partition PT [A0, A1, H0, E0] PT [A′0, A

′
1, H

′
0, E

′
0] PT [A′′0 , A

′′
1 , H

′′
0 , E

′′
0 ]

PT [A3, A2, H2, E
−1
2 ] PT [A′5, A

′
4, H

′
4, E

′−1
4 ] PT [A′′3 , A

′′
2 , H

′′
2 , E

′′−1
2 ]

Ladder A1
E1→ A2 A′2

E′2→ A′3 A′′1
E1→ A′′2

Representative – A′1
E′1→ ∃A′2 –

A′4
E′−1

3→ ∃A′3
Models |A1| × |A2| |A′1|+ |A′4| –

Under normal conditions, all input and output difference sets of the three331

strategies are partitioned over the same functions which means E0 = E′0 = E′′0332

and E2 = E′4 = E′′2 . Thus, |A1| = |A′1| and |A2| = |A′4|.333

Efficiency Comparison. From Table 3, the number of models need to be334

solved in Algorithm 1 is |A1| × |A2|, while the number of models need to be335

solved in Algorithm 2 is |A′1|+ |A′4|. Thus, ladder first implementation strategy336

is more efficient than partition first implementation strategy.337

Accuracy Comparison. If we obtain the result flag = 0 in the fundamental338

stage of Algorithm 2, it means that A′1
E′1→ ∃A′2 and A′4

E′−1
3→ ∃A′3. Because A′2⊗A′3339

is a ladder of E′2, we have A′1
E′3◦E

′
2◦E

′
1−→ A′4 which means that Algorithm 1 will340

also return flag = 0. Thus, if Algorithm 2 can obtain the ID bound of cipher E,341

Algorithm 1 must also obtain the ID bound. But the opposition is not necessarily342

the case. Therefore, partition first implementation strategy is more accurate than343

ladder first implementation strategy. If the time complexity is affordable, we first344

choose partition first implementation strategy.345

It should be noted that the ladders and partition tables of Algorithm 3 are346

determined dynamically, it is difficult for us to theoretically evaluate its efficiency347

and accuracy.348

4 The Implementation Technologies for the Framework349

4.1 Methods for Determining Representative Set and Partition350

Table351

Because the choices of representative set and partition table will have an im-352

portant influence on the number of models need to be solved. Previous methods353

in [HPW22] cannot be applied into large-size S-box (e.g. 32-bit) and cannot354

guarantee the obtained representative sets and partition tables are optimal rep-355

resentative sets and partition tables defined as following.356

Definition 6. (Optimal Representative Set and Partition Table). For an357

S-box S, let A be the set of input differences. For a partition table PT [A,B,H, S],358
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if the number of elements in the set B is the minimum, we call B the optimal359

representative set and PT [A,B,H, S] the optimal partition table of A over S.360

To help readers better understand the significance of the above definition,361

we take Algorithm 1 for example. The number of models need to be solved362

in fundamental stage of Algorithm 1 is |A1| × |A2|. If PT [A0, A1, H0, E0] and363

PT [A3, A2, H2, E
−1
2 ] are optimal partition tables, the number of models to be364

solved in fundamental stage will be minimum. For S-boxes of different sizes,365

we propose corresponding methods for determining their representative sets and366

partition tables as following.367

4.1.1 The Method for Small-Size S-box When the size of an S-box is368

small (e.g. 4-bit or 8-bit), inspired by the method in [ST17a], we propose an369

automatic method based on MILP to obtain its optimal representative set and370

partition table. For an S-box S, let A and B be the input and output difference371

sets, respectively. The overview of our algorithm is as follow. Firstly, for each372

input difference a ∈ A, we compute the set of output differences that can be the373

representative of a, denoted as R[a] = {b ∈ B|a S→ b}. Secondly, for each a ∈ A,374

we construct a constraint such that there must be at least 1 element of R[a]375

belong to the representative set. Finally, we minimize the number of elements in376

the representative set under these constraints.377

378

Constraints. For each b ∈ B we introduce a binary variables vb, where vb = 1379

means that the output difference b is included in the representative set and vb = 0380

means that b is not included in the representative set. The only constraint we381

need is ensuring that each a ∈ A has at least one representative, which can be382

represented by the following |A| constraints.383 ∑
b∈R[a]

vb ≥ 1, a ∈ A.

384

Objective Function. Our goal is to find an optimal representative set. Thus,385

the objective function can be expressed as386

minimize
∑
b∈B

vb.

By solving the above MILP model, we obtain the solutions of vb, b ∈ B. Thus,387

the optimal representative set is B′ = {b ∈ B|vb = 1}. The whole procedure for388

obtaining the optimal representative set of S is demonstrated in Algorithm 4.389

According to Definition 4 and Definition 6, by removing the overlapping390

elements among sets {a ∈ A|a S→ b′}, b′ ∈ B′, we can get the optimal partition391

table PT [A,B′, H, S].392

4.1.2 The Method for Middle-Size S-box When we use the method in393

4.1.1 to determine the optimal representative set and partition table of middle-394
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Algorithm 4 The optimal representative set of small-size S-box
Input: The S-box S, input and output difference sets A and B
Output: The optimal representative set B′ of A over S
1: LetM be an empty MILP model
2: M.Objective = minimize

∑
b∈B vb . Set the objective function

3: for a ∈ A do
4: M.addConstr

(∑
b∈R[a] vb ≥ 1

)
. Set the constraints

5: end for
6: M.optimize() . Solve the MILP model
7: return B′ = {b ∈ B|vb = 1} . Obtain the optimal representative set

size S-box (e.g. 16-bit), the MILP model are too large to be solved. Thus, we395

propose a method to solve this problem.396

Theorem 6. For an S-box S, let A and B be the input and output difference397

sets, respectively. Selecting a subset A′ ⊆ A, let B′ be the optimal representative398

set of A′. If B′ is a representative set of A, then B′ is an optimal representative399

set of A.400

Proof. Let B′′ be an optimal representative set of A. Since A′ ⊆ A, B′′ is also401

the representative set of A′. Because B′ is the optimal representative set of A′,402

we have |B′| ≤ |B′′|. When B′ is a representative set of A, according to the403

definition of optimal representative set, B′ must be the optimal representative404

set of A. �405

For the small subset A′ ⊆ A, we can use Algorithm 4 to obtain the optimal406

representative set B′ of A′. If B′ is the representative of A, then we obtain an407

optimal representative set of A. If B′ is not the representative of A, we will add408

the elements which cannot be represented by B′ into A′. That is, A′ = A′+{a ∈409

A|a S9 B′}. Using this method, we will keep adding elements into A′ until the410

corresponding B′ is the optimal representative set of A. The whole procedure for411

obtaining an optimal representative set of A over S is demonstrated in Algorithm412

5. Using the same method in Sect. 4.1.1, we can get the optimal partition table413

PT [A,B′, H, S] of A over S.414

4.1.3 The Method for Large-Size Superbox When the size of an S-box415

is large (e.g. 32-bit), it is hard to obtain its optimal representative set. Because416

most S-boxes of large size are superboxes illustrated in Fig 3, where si, 0 ≤ i ≤417

m − 1 are bijective small-size S-boxes and P is a bijective linear function. In418

order to construct a representative set with relatively few elements, we propose419

the following theorem.420

Theorem 7. For an S-box S = (sm−1||sm−2|| · · · ||s0)◦P◦(sm−1||sm−2|| · · · ||s0),421

let A = Am−1⊗Am−2⊗ · · ·⊗A0 and B = Bm−1⊗Bm−2⊗ · · ·⊗B0 be the input422

and output difference sets, respectively. For each 0 ≤ i ≤ m − 1, let B′i be the423

optimal representative set of Ai over si and B′′i ⊆ Bi be the representative of all424
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Algorithm 5 The optimal representative set of middle-size S-box
Input: The S-box S : Fn

2 → Fn
2 , input and output difference sets A and B

Output: The optimal representative set B′

1: Select a subset A′ ⊆ A and let B′ = ∅
2: while B′ is not the representative set of A do
3: Using Algorithm 4 to obtain the optimal representative set B′ of A′

4: if B′ is the representative of A then
5: return B′

6: else
7: A′ = A′ + {a ∈ A|a S9 B′}
8: end if
9: end while

Fig. 3. Large-size superbox

possible differences {a|a ∈ Fn2} over si, where n is the dimension of si. Then, we425

can use Algorithm 4 to obtain a representative set C ⊆ B′′m−1⊗B′′m−2⊗· · ·⊗B′′0426

of B′m−1 ⊗B′m−2 ⊗ · · · ⊗B′0 over (sm−1||sm−2|| · · · ||s0) ◦P . Thus, C is a repre-427

sentative set of A.428

Proof. Because B′′m−1 ⊗ B′′m−2 ⊗ · · · ⊗ B′′0 is the representative set of {a|a ∈429

Fn×m2 } over (sm−1||sm−2|| · · · ||s0) and B′m−1 ⊗ B′m−2 ⊗ · · · ⊗ B′0
P→ ∃{a|a ∈430

Fn×m2 }, we have B′′m−1 ⊗ B′′m−2 ⊗ · · · ⊗ B′′0 is a representative set of B′m−1 ⊗431

B′m−2⊗· · ·⊗B′0 over (sm−1||sm−2|| · · · ||s0) ◦P . Thus, we must be able to select432

a representative set C ⊆ B′′m−1⊗B′′m−2⊗· · ·⊗B′′0 of B′m−1⊗B′m−2⊗· · ·⊗B′0 over433

(sm−1||sm−2|| · · · ||s0)◦P . Because B′m−1⊗B′m−2⊗· · ·⊗B′0 is the representative434

set of Am−1⊗Am−2⊗ · · ·⊗A0 over (sm−1||sm−2|| · · · ||s0), C is a representative435

set of A over S. �436

The representative set C obtained by Theorem 7 may contain redundant437

representative elements, we need to reduce C further. The whole procedure of438

obtaining a representative set of large-size superbox S is demonstrated in Al-439

gorithm 6. Moreover, using the same method in Sect. 4.1.1, we can get the440

corresponding partition table PT [A,C ′, H, S].441
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Algorithm 6 The representative set of superbox
Input: The S-box S = (sm−1||sm−2|| · · · ||s0) ◦ P ◦ (sm−1||sm−2|| · · · ||s0), input and

output difference sets A = Am−1⊗Am−2⊗· · ·⊗A0 and B = Bm−1⊗Bm−2⊗· · ·⊗B0

Output: The representative set of A over S
1: for 0 ≤ i ≤ m− 1 do . Using Algorithm 4
2: Obtain the optimal representative set B′i of Ai over si
3: Obtain the optimal representative set B′′i of {a|a ∈ Fn

2 } over si
4: end for
5: Using Algorithm 4 to obtain the representative set C ⊆ B′′m−1 ⊗B′′m−2 ⊗ · · · ⊗B′′0

of B′m−1 ⊗B′m−2 ⊗ · · · ⊗B′0 over (sm−1||sm−2|| · · · ||s0) ◦ P
6: Allocate C′ = ∅
7: while A 6= ∅ do
8: Select an element a ∈ A and c ∈ C satisfying a

S→ c

9: A← A− {a ∈ A|a S→ c} . Remove the elements which have been represented
10: C′ ← C′ + {c} and C ← C − {c}
11: end while
12: return C′

4.2 Methods for Determining Ladder and Integrating it into Model442

4.2.1 Method for Determining Ladder When we use Algorithm 2 to eval-443

uate the ID bound, we have to construct a ladder. To guide the selection of444

ladders, we propose the following theorem.445

Theorem 8. For cipher E = E4 ◦ E3 ◦ E2 ◦ E1 ◦ E0, let A2 ⊗ A3 and A′2 ⊗ A′3446

be two ladders of E2 satisfying A2 ⊗ A3 ⊆ A′2 ⊗ A′3. When applying Algorithm447

2 to E, if we obtain the ID result flag = 0 when using ladder A2 ⊗ A3, we can448

definitely get the ID result flag = 0 when using ladder A′2 ⊗A′3.449

Proof. According to Algorithm 2, only when a0
E1◦E0→ ∃A2 and a5

E−1
3 ◦E

−1
4→ ∃A3450

hold for all a0 ∈ A0, a5 ∈ A5, the ID result flag = 0 can be obtained. Because451

A2 ⊗ A3 ⊆ A′2 ⊗ A′3, the conditions a0
E1◦E0−→ ∃A′2 and a5

E−1
3 ◦E

−1
4−→ ∃A′3 are met.452

Thus, we can get the ID result flag = 0 when using ladder A′2 ⊗A′3. �453

The goal of the paper is to obtain the ID bounds of block ciphers. Compared454

with ladder A2 ⊗ A3, there is no doubt that A′2 ⊗ A′3 is a better choice. Thus,455

we propose the following definition.456

Definition 7. (Maximal Ladder). Let A ⊗ B be a ladder of function f . If457

there is no other ladder A′ ⊗B′ of f satisfying A⊗B ⊆ A′ ⊗B′, we call A⊗B458

a maximal ladder of f .459

According to Theorem 8, if a ladder A ⊗ B is not a maximal ladder, there460

always exists a better ladder. Thus, when applying Algorithm 2 to ciphers, only461

maximal ladders are used. Generally, we often use the maximal ladder of an462

S-box layer.463
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Theorem 9. (Maximal Ladder of S-box). Let S be a bijective S-box. For464

any input difference a ∈ Fn2 , we can obtain its output difference set, denoted as465

DDTS [a] = {b ∈ Fn2 |a
S→ b}. Thus, A⊗ B is a maximal ladder of S if and only466

if the following conditions are satisfied.467 {
B =

⋂
a∈ADDTS [a],

A =
⋂
b∈B DDTS−1 [b],

where S−1 is the inverse function of S.468

Proof. Sufficiency. Because B =
⋂
a∈ADDTS [a], we have A S→ B and there is469

no element b′ /∈ B satisfying A S→ B
⋃
b′. Similarly, there is no element a′ /∈ A470

satisfying B S−1

→ A
⋃
a′. According to Theorem 4, B S−1

→ A
⋃
a′ is equivalent471

to A
⋃
a′

S→ B. Thus, there does not exist any b′ /∈ B or a′ /∈ A satisfying472

A
⋃
a′

S→ B or A S→ B
⋃
b′. Therefore, A⊗B is a maximal ladder of S.473

Necessity. Because A ⊗ B is a ladder of S, we have B ⊆
⋂
a∈ADDTS [a].474

Since A S→
⋂
a∈ADDTS [a] is also a ladder, the maximal ladder A⊗B must satisfy475

B =
⋂
a∈ADDTS [a]. According to Theorem 4, B ⊗ A is a maximal ladder of476

S−1. Similarly, we have A =
⋂
b∈B DDTS−1 [b]. �477

Based on the above theorem, we propose a heuristic method to obtain a478

maximal ladder of S. The whole procedure is demonstrated in Algorithm 7.

Algorithm 7 Heuristic method for determining a maximal ladder of S-box
Input: The bijective S-box S, initial input difference set A 6= ∅
Output: A maximal ladder of S
1: Allocate B ← ∅
2: while 1 do
3: C =

⋂
a∈A DDTS [a]−B . The set of elements which can be added into B

4: Select a subset C′ ⊆ C
5: B ← B + C′ . Expand the size of B
6: D =

⋂
b∈B DDTS−1 [b]−A . The set of elements which can be added into A

7: Select a subset D′ ⊆ D
8: A← A+D′ . Expand the size of A
9: if B =

⋂
a∈A DDTS [a] and A =

⋂
b∈B DDTS−1 [b] then

10: return A⊗B . If A⊗B is already a maximal ladder of S
11: end if
12: end while

479

Then, we can use the maximal ladders of small-size S-boxes to construct a480

maximal ladder of an S-box layer. The method is shown in Theorem 10.481

Theorem 10. (Maximal Ladder of an S-box Layer). Let S be a function482

comprising of m parallel S-boxes, denoted as S = sm−1||sm−2|| · · · ||s0. For each483
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0 ≤ i ≤ m − 1, if Ai ⊗ Bi is a maximal ladder of si, then
(⊗m−1

i=0 Ai

)
⊗484 (⊗m−1

i=0 Bi

)
is a maximal ladder of S.485

Proof. Because Ai⊗Bi is a ladder of si, for any ai ∈ Ai and bi ∈ Bi, we have ai
si→486

bi. Thus, for any (am−1, am−2, · · · , a0) ∈
⊗m−1

i=0 Ai and (bm−1, bm−2, · · · , b0) ∈487 ⊗m−1
i=0 Bi, we have (am−1, am−2, · · · , a0)

S→ (bm−1, bm−2, · · · , b0). Therefore,488 (⊗m−1
i=0 Ai

)
⊗
(⊗m−1

i=0 Bi

)
is a ladder of S.489

If
(⊗m−1

i=0 Ai

)
⊗
(⊗m−1

i=0 Bi

)
is not a maximal ladder of S, there exists an490

element
(
a′m−1, a

′
m−2, . . . , a

′
0

)
/∈
⊗m−1

i=0 Ai or
(
b′m−1, b

′
m−2, . . . , b

′
0

)
/∈
⊗m−1

i=0 Bi491

satisfying
((
a′m−1, a

′
m−2, . . . , a

′
0

)⋃⊗m−1
i=0 Ai

)
⊗
(⊗m−1

i=0 Bi

)
or
(⊗m−1

i=0 Ai

)
⊗492 ((

b′m−1, b
′
m−2, . . . , b

′
0

)⋃⊗m−1
i=0 Bi

)
is also a ladder of S. Take one of the lad-493

ders
((
a′m−1, a

′
m−2, . . . , a

′
0

)⋃⊗m−1
i=0 Ai

)
⊗
(⊗m−1

i=0 Bi

)
as an example, for each494

0 ≤ i ≤ m − 1, we have a′i
si→ Bi. Because any Ai × Bi, 0 ≤ i ≤ m −495

1 is a maximal ladder of si, we obtain that a′i ∈ Ai. It is contradictory to496 (
a′m−1, a

′
m−2, . . . , a

′
0

)
/∈
⊗m−1

i=0 Ai. Similarly, we can also obtain the contradic-497

tory of
(
b′m−1, b

′
m−2, . . . , b

′
0

)
/∈
⊗m−1

i=0 Bi. Therefore,
(⊗m−1

i=0 Ai

)
⊗
(⊗m−1

i=0 Bi

)
498

is a maximal ladder of S. �499

4.2.2 Methods for Integrating a Ladder into Searching Model After500

obtaining a ladder, we should integrate it into searching model (MILP or SAT).501

For example, in Line 4 and Line 9 of Algorithm 2, we need to determine whether502

a1
E1→ ∃A2 and a4

E−1
3→ ∃A3 or not, where A2 ⊗A3 is a ladder of E2. It should be503

noted that there is no automatic method for directly modeling this new kind of504

differential pattern before. Here, we put forward a solution. Similar to current505

automatic searching models based on MILP or SAT, we introduce a sequence506

of variables and constraints satisfying the differential propagation rules. Take507

a1
E1→ ∃A2 as an example, we can construct a modelM whose solutions are all508

possible differential characteristics of E1. Let x and y = ym−1||ym−2|| · · · ||y0 be509

the variables representing the input and output differences of E1.510

When E2 is a function comprising of m parallel bijective S-boxes, denoted511

as E2 = sm−1||sm−2|| · · · ||s0. For any 0 ≤ i ≤ m − 1, we can construct the512

maximal ladder of si, denoted as A2,i × A3,i. In order to model a1
E1→ ∃A2 =513

A2,m−1 ⊗A2,m−2 ⊗ · · · ⊗A2,0, we add the following constraints intoM:514

C =
{
x = a1,
yi 6= d, where d ∈ {d ∈ Fni2 |d /∈ A2,i}, 0 ≤ i ≤ m− 1,

where ni is the dimension of si.515

Then, if the whole modelM + C is feasible, we have a1
E1→ ∃A2. Otherwise,516

a1
E19 ∃A2517
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4.2.3 Exploring Rotation-Equivalence ID Set In [EME22], Erlacher et518

al. exploited the rotational symmetry of ASCON and reduced the number of519

differential patterns need to be considered. Inspired by their work, we propose520

the rotation-equivalence ID set defined as following.521

Definition 8. (Rotation-Equivalence ID Set). For a cipher E, let Am ⊆522

{a|a ∈ Fm×n2 } and Bm ⊆ {b|b ∈ Fm×n2 } be the input and output difference sets,523

respectively, where n is the dimension of the elements in A and B. Am ⊗ Bm524

is called the rotation-equivalence ID set, if it satisfies the following conditions.525

For any a ∈ Am, if there exists an output difference b ∈ Bm satisfying a E9 b,526

then for each 1 ≤ l ≤ m− 1, there exists an output difference bl ∈ Bm satisfying527

(a≪ l × n) E9 bl.528

For the rotation-equivalence ID set Am ⊗Bm of E, we can divide the input529

difference set Am into many disjoint subsets as following530

Am =
∑
r∈R

Ωr, (6)

where R ⊆ Am and Ωr = {r≪ l×n|0 ≤ l ≤ m− 1}. According to Definition 8,531

all elements in Ωr have the same result of determining whether E has ID. Thus,532

for each Ωr, we only need to consider one element. This will reduce the number533

of differentials need to be considered. In combinatorics terminology, the subset534

Ωr in Eq. (6) is called |A|-ary necklaces of lengthm. According to Refield-Pólya535

theorem [Red27,Pól37], the number of k-ary necklaces of length m is536

Nk(m) =
1

m

∑
d|m

ϕ(d) · kmd , (7)

where ϕ is the Euler totient function and d is the divisor of m. For example, the537

number of 3-ary necklaces of length 4 is538

N3(4) =
1

4

(
ϕ(1) · 3 4

1 + ϕ(2) · 3 4
2 + ϕ(4) · 3 4

4

)
=

1

4

(
34 + 32 + 2× 3

)
= 24.

For Am ⊗ Bm of E, there are |A|m × |B|m differential. If Am ⊗ Bm is539

rotation-equivalence ID set of E, the number of disjoint subsets Ωr in Eq. (6) is540

|R| = N|A| (m). Thus, when we evaluate the ID bound of E, only N|A| (m)×|B|m541

differentials need to be considered. Moreover, there is algorithm which can gen-542

erating necklaces in constant amortized time, see [CRS+00].543

5 Applications to SPN Ciphers with Bit-Permutation544

Linear Layer545

In order to improve the hardware efficiency, lightweight block ciphers often546

use bit-permutation linear layer. The representative algorithms are PRESENT547

[BKL+07] and GIFT [BPP+17].548
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5.1 Application to PRESENT549

PRESENT [BKL+07] is an important lightweight cipher. It adopts SPN struc-550

ture with 64-bit block size through 31 rounds. Each round has three operations:551

AddRoundKey (XORed with a 64-bit round key), SubBox (16 parallel applica-552

tions of the same 4-bit S-box, denoted by S = s16||), BitPermutation (a bit-wise553

permutation of 64 bits, denoted as P ). PRESENT is a Markov cipher. Under the554

assumption that the round keys are uniformly random, the AddRoundKey opera-555

tion can be omitted. Therefore, the round function of PRESENT can be denoted556

as R = P ◦ S. An illustration for S ◦P ◦S is shown in Fig. 4(a). By introducing557

a bit oriented permutation P1 = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15] and558

a nibble oriented permutation P2 = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15],559

we can get an equivalent representation of S ◦P ◦S as shown in Fig. 4(b). Then,560

561

S ◦ P ◦ S = P2 ◦ S ◦ (P1||P1||P1||P1) ◦ S.

For (r + 4)-round PRESENT Rr+4, because P ◦ P2 is a linear permutation, we562

omit P ◦P2 in the last round. This will not affect the result of ID bound. Thus,563

Rr+4 = S ◦ (P1||P1||P1||P1) ◦ S︸ ︷︷ ︸
E2

◦Rr ◦ P ◦ P2︸ ︷︷ ︸
E1

◦S ◦ (P1||P1||P1||P1) ◦ S︸ ︷︷ ︸
E0

.

(a) S ◦ P ◦ S of PRESENT

(b) P2 ◦ S ◦ (P1||P1||P1||P1) ◦ S of PRESENT

Fig. 4. The functions of PRESENT

564

Next, we use Algorithm 5 to determine the optimal representative sets of565

s4|| ◦ P1 ◦ s4|| and s−4|| ◦ P−11 ◦ s−4||, where s−4|| = s−1||s−1||s−1||s−1. From566

Table 4, we know that the number of elements in the optimal representative567

sets of s4|| ◦ P1 ◦ s4|| and s−4|| ◦ P−11 ◦ s−4|| are 8 and 9, respectively. When568
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applying Algorithm 1 to PRESENT, the number of models needs to be built569

in fundamental stage is
(
84 − 1

)
×
(
94 − 1

)
= 26863200 ≈ 224.68. After the570

fundamental stage of Algorithm 1, for 7-round and 8-round PRESENT, there571

are too many differentials which need to be further determined in enhance stage.572

Due to the limited storage and computing capacity, we cannot determine whether573

there exist IDs for 7-round and 8-round PRESENT. Then, we prove that 9-round574

PRESENT does not exist any ID under the sole condition that round keys are575

uniformly random.576

Table 4. The optimal representative sets for PRESENT

S-box The optimal representative sets (hexadecimal)

s4|| ◦ P1 ◦ s4|| {0, 766, d33, 5060, 7000, 9779, ccee, 0300}
s−4|| ◦ P−1

1 ◦ s−4|| {0, 700, 97a, bb0, 9000, ae55, b0d0, dddd, e7a7}

5.2 Applications to GIFT577

As an improved version of PRESENT, GIFT [BPP+17] is composed of two ver-578

sion: GIFT-64 with 64-bit block size and GIFT-128 with 128-bit block size. The579

only difference between the two versions is the bit permutation to accommodate580

twice more bits for GIFT-128. Both two versions are Markov ciphers. Similar to581

PRESENT, we omit the linear function P ◦ P2 in the last round. The (r + 4)-582

round GIFT-64 can be written as583

Rr+4 = S ◦ (P1||P1||P1||P1) ◦ S︸ ︷︷ ︸
E2

◦Rr ◦ P ◦ P2︸ ︷︷ ︸
E1

◦S ◦ (P1||P1||P1||P1) ◦ S︸ ︷︷ ︸
E0

. (8)

where P1 = [0, 5, 10, 15, 12, 1, 6, 11, 8, 13, 2, 7, 4, 9, 14, 3] is a bit oriented permu-584

tation and P2 = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15] is a nibble oriented585

permutation. Then, we use Algorithm 5 to determine the optimal representative586

sets of s4|| ◦ P1 ◦ s4|| and s−4|| ◦ P−11 ◦ s−4|| shown in Table 5. When applying587

Algorithm 1 to GIFT-64. the number of models needs to be built in fundamental588

stage is
(
94 − 1

)
×
(
84 − 1

)
= 26863200 ≈ 224.68. After the fundamental stage of589

Algorithm 1, for 7-round GIFT64, there are too many differentials which need to590

be further determined in enhance stage. Due to the limited storage and comput-591

ing capacity, we cannot determine whether there exist IDs for 7-round GIFT64.592

Then, we prove that 8-round GIFT-64 does not exist any ID under the sole593

assumption that round keys are uniformly random.594

For GIFT-128, if we apply Algorithm 1 to it, the number of models need to595

be built in the fundamental stage is about (98−1)×(88−1) ≈ 249.36 which is not596

affordable. Thus, we will use Algorithm 2 to evaluate its ID bound. For GIFT-597

128, when we omit the linear function P◦P2 in the last round, (r1 + r2 + 5)-round598
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Table 5. The optimal representative sets for GIFT-64 and GIFT-128

S-box The optimal representative set (hexadecimal)

s4|| ◦ P1 ◦ s4|| {0, 505, 55f, f35, 350f, 50f7, 5f09, 9d9d, b750}
s−4|| ◦ P−1

1 ◦ s−4|| {0, d, f9, d00, 7dda, 9b00, cf9c, fccd}

GIFT-128 can be written as599

Rr1+r2+5 = S ◦ P 8||
1 ◦ S︸ ︷︷ ︸
E4

◦Rr2 ◦ P︸ ︷︷ ︸
E3

◦ S︸︷︷︸
E2

◦Rr1 ◦ P ◦ P2︸ ︷︷ ︸
E1

◦S ◦ P 8||
1 ◦ S︸ ︷︷ ︸
E0

. (9)

where P1 = [0, 5, 10, 15, 12, 1, 6, 11, 8, 13, 2, 7, 4, 9, 14, 3] is a bit oriented permuta-600

tion (same with that in GIFT-64) and P2 = [0, 8, 16, 24, 1, 9, 17, 25, 2, 10, 18, 26, 3,601

11, 19, 27, 4, 12, 20, 28, 5, 13, 21, 29, 6, 14, 22, 30, 7, 15, 23, 31] is a nibble oriented602

permutation. Then, we use Algorithm 7 to find a maximal lader {1, 3, 7} ⊗603

{5, 8, 11, 12} of the 4-bit S-box used in GIFT-128. According to Theorem 10, the604

maximal ladder of S is {1, 3, 7}16 ⊗ {5, 8, 11, 12}16. When we apply Algorithm605

2 to (r1 + r2 + 5)-round GIFT-128, the number of models need to be built in606

fundamental stage is
(
98 − 1

)
+
(
88 − 1

)
= 59823935 ≈ 225.83. By setting r1 = 4607

and r2 = 3, we prove that 12-round GIFT-128 does not exist any ID under the608

sole assumption that round keys are uniformly random.609

6 Applications to SPN Ciphers with Non-Bit-Permutation610

Linear Layer611

6.1 Applications to Rijndael612

Rijndael [DR02] was designed by Daemen and Rijmen in 1998. According to613

block size, Rijndael can be divided into Rijndael-128, Rijndael-160, Rijndael-192,614

Rijndael-224 and Rijndael-256. The 128-bit block size version Rijndael-128 was615

selected as the AES. For Rijndael-32n, n ∈ {4, 5, 6, 7, 8}, the state is viewed as616

4×n rectangle array of 8-bit words. The round function of Rijndael-32n consists617

of the following four operations: SubBox (4×n parallel applications of the same618

8-bit Sbox, denoted as S = s4×n||), ShiftRow (a byte transposition that cyclically619

shifts the rows of the state over different offsets, denoted as SR), MixColumn620

(a linear matrix M is multiplied to each column of the state, denoted as MC),621

AddRoundKey (XORed with a 32n-bit round key). All versions of Rijndael are622

Markov ciphers. When the round keys are uniformly random, we do not need to623

consider the AddRoundKey operation. Therefore, the round function of Rijndael-624

32n can be denoted as R = MC ◦ SR ◦ S. Because SR and MC are linear625

operations, we omit SR operation of the first round and the MC ◦SR operation626

of the last round. This will not affect the result of ID bound. For (r + 4)-round627

Rijndael-32n, we have628

Rr+4 = S ◦MC ◦ S︸ ︷︷ ︸
E2

◦SR ◦Rr ◦MC ◦ SR︸ ︷︷ ︸
E1

◦S ◦MC ◦ S︸ ︷︷ ︸
E0

. (10)
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The functions E0 and E−12 of Rijndael-32n can be seen as n parallel 32-bit629

superboxes s4|| ◦ M ◦ s4|| and s−4|| ◦ M−1 ◦ s−4||, respectively. Next, we use630

Algorithm 6 to determine the representative sets of s4|| ◦M ◦ s4|| and s−4|| ◦631

M−1 ◦ s−4||. From Table 6, we know that both the numbers of elements in the632

representative sets of s4|| ◦MC ◦ s4|| and s−4|| ◦M−1 ◦ s−4|| are 2. Then, we633

explore the rotation-equivalence ID sets of Rijndael-32n shown in Theorem 11.634

Theorem 11. For Rijndael-32n, let a1 and a2 be the input and output differ-635

ences of E1, respectively. If a1
E19 a2, then SRi (a1)

E19 SRi (a2) holds for all i ∈636

{1, 2, . . . , n− 1}, where SRi means cyclically shifting every row of the state over637

i bytes.638

Proof. According to the definitions of SR, MC and S, we have the following639

equations640  SR ◦ SRi = SRi ◦ SR
MC ◦ SRi = SRi ◦MC
S ◦ SRi = SRi ◦ S

Thus, a1
E19 a2 is equivalent to SRi (a1)

E19 SRi (a2) , i ∈ {1, 2, . . . , n− 1}. �641

Table 6. The representative sets of Rijndael-32n

S-box The representative set (hexadecimal)

s4|| ◦M ◦ s4|| {0, f8f9f9f9}
s−4|| ◦M−1 ◦ s−4|| {0, f8faf8f8}

We applying Algorithm 1 to Rijndael-32n. According to Sect. 4.2.3, the num-642

ber of models need to be built in fundamental stage is (N2 (n)− 1) × (2n − 1).643

Then, we prove that 6-round AES (Rijndael-128), 6-round Rijndael-160, 7-round644

Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 do not have any ID645

under the sole assumption that round keys are uniformly random.646

Because the longest known ID of AES (Rijndael-128) is 4 round, the security647

bound obtained by us has room for improvement. Therefore, we apply Algorithm648

3 to AES. The specific process is as follow. Similarly to the above analysis, 5-649

round AES can be written as,650

R5 = S ◦MC ◦ S︸ ︷︷ ︸
E2

◦SR ◦MC ◦ SR ◦ S ◦MC ◦ SR︸ ︷︷ ︸
E1

◦S ◦MC ◦ S︸ ︷︷ ︸
E0

. (11)

Let A0 = A0,3 ⊗ A0,2 ⊗ A0,1 ⊗ A0,0 and A3 = A3,3 ⊗ A3,2 ⊗ A3,1 ⊗ A3,0 be the651

sets of all nonzero input and output differences of AES, respectively. Thus, the652

whole search space A0 ⊗ A3 can be divided into the following 15 × 15 = 225653

disjoint subsets.654

A0 ⊗A3 =∑
(i0,i1,i2,i3)∈F4∗

2 ,(j0,j1,j2,j3)∈F4∗
2
[A0,3]

i3 ⊗ · · · ⊗ [A0,0]
i0 ⊗ [A3,3]

j3 ⊗ · · · ⊗ [A3,0]
j0
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where F4∗
2 = {a ∈ F4

2|a 6= 0} is the set of all nonzero 4-bit vectors. For any655

i ∈ {0, 3} and m ∈ {0, 1, 2, 3}, [Ai,m]0 = {0 ∈ F32
2 } be the set of only 32-bit656

zero difference and [Ai,m]1 = {a ∈ F32
2 |a 6= 0} is the set of all nonzero 32-657

bit differences. Moreover, according to Theorem 11, we only need to consider658

(N2 (4)− 1)× (24 − 1) = 75 disjoint subsets.659

For any of the above subsets, we select a0 = (a0,3, a0,2, a0,1, a0,0) ∈ [A0,3]
i3 ⊗660

· · · ⊗ [A0,0]
i0 and a3 = (a3,3, a3,2, a3,1, a3,0) ∈ [A3,3]

j3 ⊗ · · · ⊗ [A3,0]
j0 and build661

a model to obtain a1 = (a1,3, a1,2, a1,1, a1,0) and a2 = (a2,3, a2,2, a2,1, a2,0) sat-662

isfying a0
E0→ a1, a1

E1→ a2 and a3
E−1

2→ a2. If [A0,3]
i3 ⊗ · · · ⊗ [A0,0]

i0 E0→ a1 and663

[A3,3]
j3 ⊗ · · · ⊗ [A3,0]

j0
E−1

2→ a2, all the differentials in subset [A0,3]
i3 ⊗ · · · ⊗664

[A0,0]
i0 ⊗ [A3,3]

j3 ⊗ · · · ⊗ [A3,0]
j0 over E are possible.665

The method for verifying [A0,3]
i3 ⊗ · · · ⊗ [A0,0]

i0 E0→ a1 and [A3,3]
j3 ⊗ · · · ⊗666

[A3,0]
j0
E−1

2→ a2 is as following. Take [A0,3]
i3 ⊗ · · · ⊗ [A0,0]

i0 E0→ a1 as an example,667

we just need to verify whether [A0,m]im
s4||◦M◦s4||→ a1,m holds for allm = 0, 1, 2, 3.668

For any im, if im = 0, we only need to verify 1 difference and if im = 1, we have669

to verify 232 − 1 input differences in [A0,m]im . In order to improve the success670

rate, if im = 1, we add a constrain to a1,m that every byte of a1,m is nonzero.671

After verifying all the disjoint subsets, we prove that 5-round AES do not have672

any ID under the sole assumption that round keys are uniformly random.673

6.2 Application to Midori64674

Midori64 is a lightweight SPN block cipher with 64-bit block size proposed at675

ASIACRYPT 2015 [BBI+15]. Each round function consists of the following four676

operations: SubBox (16 parallel applications of the same 4-bit Sbox, denoted677

as S = s16||), PermuteNibbles (permutation is applied on the nibble positions678

of the state, denoted as PN), MixColumn (an involutory binary matrix M is679

multiplied to each column of the state, denoted asMC), AddRoundKey (XORed680

with a 64-bit round key). Midori64 is a Markov cipher. When the round keys681

are uniformly random, we do not need to consider the AddRoundKey operation.682

Therefore, the round function of Midori64 can be denoted as R =MC ◦PN ◦S.683

Because PN and MC are linear operations, we omit PN operation of the first684

round and the MC ◦ PN operation of the last round. This will not affect the685

result of ID bound. For (r + 4)-round Midori64, we have686

Rr+4 = S ◦MC ◦ S︸ ︷︷ ︸
E2

◦PN ◦Rr ◦MC ◦ PN︸ ︷︷ ︸
E1

◦S ◦MC ◦ S︸ ︷︷ ︸
E0

. (12)

The functions E0 and E−12 of Midori64 can be seen as 4 parallel 16-bit S-boxes687

s4|| ◦M ◦ s4|| and s−4|| ◦M−1 ◦ s−4||, respectively. Next, we use Algorithm 6 to688

determine the optimal representative sets of s4|| ◦M ◦ s4|| and s−4|| ◦M−1 ◦ s−4||689

shown in Table 7. When we apply Algorithm 1 to (r + 4)-round Midori64, the690

number of fundamental models we need to solve is (84−1)×(84−1) = 16769025 ≈691

224. Then, we prove that 10-round Midori64 does not have any ID under the sole692

assumption that round keys are uniformly random.693
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Table 7. The optimal representative sets of Midori64

S-box The optimal representative set (hexadecimal)

s4|| ◦M ◦ s4|| {0, 66e, 4e9b, 660e, 6e66, b03b, e660, eb19}
s−4|| ◦M−1 ◦ s−4|| {0, 999, 4404, e0ee, e660, ec1e, ecb1, ee6e}

7 Conclusion694

In this paper, a series of methods for bounding the length of IDs of SPN block695

ciphers are proposed. Our methods are widely applicable. We prove that 9-696

round PRESENT, 8-round GIFT-64, 12-round GIFT-128, 5-round AES, 6-round697

Rijndael-160, 7-round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256698

and 10-round Midori64 do not have any ID under the sole assumption that699

round keys are uniformly random. This is of great significance for evaluating700

the security of SPN block ciphers against ID attack. However, for some ciphers,701

there still exist a gap between the ID bounds and the longest known IDs. For702

example, the longest known ID of PRESENT is 6 rounds, while the ID bound703

obtained by our method is 9 rounds. How to reduce the gap between the longest704

known ID and ID bound is our future work.705
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