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Introduction

Homomorphic encryption is a method of encrypting plaintext that allows users to compute
directly with the ciphertext. This has many interesting applications, including being able to
engage in cloud computing without giving up your data to the owner of the cloud. Scientifically,
the premise is easy to describe: Suppose that the plaintext and the ciphertext space both have
a ring structure, and that we encrypt plaintext via a map between these spaces. If this map is a
ring homomorphism, then this describes a fully homomorphic encryption scheme. Creating such
a ring homomorphism that describes secure encryption (requiring, for example, that such a map
should be efficiently computable and hard to invert) is, however, much harder than describing
its properties. The closest the scientific community has come to constructing an example of
fully homomorphic encryption is using maps based on (variants of) the Learning With Errors
(LWE) problem from lattice-based cryptography [18, 16, 9, 6, 4]. However, all known LWE-based
constructions are not truly fully homomorphic: Decrypting a message that was encrypted using
LWE relies on the ‘error’ that was used in the encryption being small, and adding and multiplying
∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf.
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encrypted messages together causes the error to grow. Once the error is too large, the data can
no longer be decrypted, so methods such as bootstrapping need to be employed to correct this
growth (see e.g. [6]). These methods may lead to practical fully homomorphic encryption in the
future, but more research is needed.

In this paper, we explore an alternative approach for homomorphic encryption, introduced
by Leonardi and Ruiz-Lopez in [15]. Their construction relies on the Learning Homomorphisms
with Noise (LHN) problem introduced by Baumslag, Fazio, Nicolosi, Shpilrain, and Skeith in [1]:
Roughly speaking, this is the problem of recovering a group homomorphism from the knowledge
of the images of certain elements multiplied by noise. The focus of [15] is on the difficulty of
constructing post-quantum secure instantiations of their primitive, but we believe the construc-
tion is interesting even in a classical setting. A big advantage of the LHN approach over a LWE
approach is that the noise, which plays the role of the errors in LWE-based homomorphic encryp-
tion, does not grow with repeated computation in the way that the errors grow in lattice-based
constructions. As such, there is no limitation on the number of additions that can be computed
on encrypted data. However, it is less clear how to extend this construction to a multiplicative
homomorphism. As such, the LHN approach is akin in some sense to the Benaloh [2] or Pail-
lier [17] cryptosystems. In the nonabelian setting, Leonardi and Ruiz-Lopez’s construction has
some hopes of being post-quantum secure unlike the Benaloh or Paillier constructions, but as
they explored already in their work this is nontrivial to instantiate, and our work only strengthens
this claim as we show that even solvable groups may admit quantum attacks.

Our main contributions address finite groups and include:

1. Reducing the security of the abelian group instantiation of Leonardi and Ruiz-Lopez’s public
key homomorphic encryption scheme to the discrete logarithm problem in 2-groups (under
certain plausible assumptions); this gives a polynomial-time classical attack if the 2-part of
the relevant group is cyclic, and a practical classical attack if it is a product of a small number
of cyclic groups.

2. Highlighting an abelian group instantiation of Leonardi and Ruiz-Lopez’s homomorphic en-
cryption scheme where there is no known practical classical attack, namely, the product
of many cyclic 2-groups. This may be of interest to the community as a new example of
unbounded additively homomorphic encryption.

3. Highlighting assumptions that need to be made in order to apply any discrete-logarithm
derived attack, with a view to constructing (more) examples of groups on which there is no
known practical attack on Leonardi and Ruiz-Lopez’s homomorphic encryption scheme.

4. A description of a quantum attack on an instantiation with solvable groups, under certain
assumptions.

The layout of this paper is as follows: In Section 1, we recap the public key homomorphic
encryption scheme proposed by Leonardi and Ruiz-Lopez in [15]. In Section 2, we discuss some
simple instantiations: The abelian case, the noiseless case, and we give some basic security re-
quirements (including some recalled from [15]). In Section 3 we describe our reduction from the
abelian group instantiation of the Leonardi Ruiz-Lopez primitive to the (extended) discrete log-
arithm problem, under certain assumptions. In Section 4, we describe some ways of instantiating
the primitive with nonabelian groups to which our attack on abelian groups would also apply. In
Section 5, we describe our quantum attack on instantiations with solvable groups, under certain
assumptions on how such groups would be represented. In Section 6, we outline our plans for
future work.
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1 Preliminaries

In this section, we describe the public key additive homomorphic encryption of Leonardi and
Ruiz-Lopez [15, Sec. 5.2]; we will refer to this throughout this work as Leonardi–Ruiz-Lopez
encryption.

Fix three finitely generated groups G,H,K and probability distributions ξ on G and χ on
H. This data should be chosen in such a way that operations can be performed efficiently in
the groups and we can sample from both distributions efficiently. A natural choice could be, for
instance, to take G,H,K finite and ξ, χ to be uniform distributions. The groups G,H,K and
the distributions ξ, χ are public. In the following sections we will mostly work with finite groups
and we will always make it clear when this is the case.

For the key generation, Alice

– chooses efficiently computable secret homomorphisms φ : G → H and ψ : H → K such that
she can efficiently sample from ker(ψ) and such that the center Z(H) of H is not contained
in ker(ψ);

– chooses a natural number m;
– samples elements g1, . . . , gm ∈ G via ξ and secret elements h1, . . . , hm ∈ ker(ψ) via χ;
– chooses an element τ ∈ Z(H)\ ker(ψ) of order 2.

Alice computes the public key as the set

{(g1, φ(g1)h1), . . . , (gm, φ(gm)hm), τ}.

Note that, whereas the elements g1, . . . , gm are public, both φ and h1, . . . , hm are private (as are
also ψ and ker(ψ)).

For encrypting a one-bit message β ∈ {0, 1}, Bob chooses a natural number ℓ, then samples a
word w = w1 · · ·wℓ over the indices {1, . . . ,m} and using Alice’s public key, he computes

(g, h′) = (gw1
· · · gwℓ

, φ(gw1
)hw1

· · ·φ(gwℓ
)hwℓ

).

He then sends (g, h) = (g, h′τβ) to Alice.

For decrypting (g, h), Alice computes ν = ψ(φ(g))−1 ·ψ(h) ∈ K and deduces that the message
β equals 0 if ν equals 1K (and else, β equals 1).

To see that the decryption indeed produces the correct message β, recall that h1, . . . , hm are
contained in ker(ψ). Hence ν = ψ(τ)β and, since τ is not contained in ker(ψ), the element ν
equals 1 if and only if β equals 0.

For the convenience of the reader, we give a schematic summary of the data described above:

Public information Alice’s private information Bob’s private information

G,H,K, ξ, χ φ : G→ H

(g1, φ(g1)h1), . . . , (gm, φ(gm)hm) ψ : H → K β ∈ {0, 1}

τ ∈ Z(H) \ ker(ψ) ker(ψ) word w

(g, h) = (g, h′τβ) ∈ G×H h1, . . . , hm ∈ ker(ψ)
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1.1 Homomorphic properties

The primary selling point of Leonardi–Ruiz-Lopez encryption is that it is unbounded additive
homomorphic. We say that an encryption function E from plaintext to ciphertext space is additive
if the plaintext space admits an additive operator + and, given encryptions E(β) and E(β̃) of
messages β and β̃ respectively, one can compute a valid encryption E(β + β̃) of β + β̃ (without
the knowledge of the plaintext β + β̃). We say that E is unbounded additive homomorphic if
such additions can be performed an unbounded number of times without introducing systematic
decryption failures.1

The reader may have observed that τ having order two is not necessary for successful decryp-
tion; this property is needed to make the encryption additive, as we now recall from [15].

Write the encryptions of β and β̃ sampled from {0, 1} as

(g, h′τβ) = (gw1
· · · gwℓ

, φ(gw1
)hw1

· · ·φ(gwℓ
)hwℓ

τβ)

and
(g̃, h̃′τ β̃) = (gw̃1

· · · gw̃ℓ̃
, φ(gw̃1

)hw̃1
· · ·φ(gw̃ℓ̃

)hw̃ℓ̃
τ β̃)

respectively. Then, as τ is central in H and has order 2, we can construct a valid encryption of
β + β̃ via the observation that

φ(gw1)hw1 · · ·φ(gwℓ
)hwℓ

τβφ(gw̃1)hw̃1 · · ·φ(gw̃ℓ̃
)hw̃ℓ̃

τ β̃

=φ(gw1
)hw1

· · ·φ(gwℓ
)hwℓ

φ(gw̃1
)hw̃1

· · ·φ(gw̃ℓ̃
)hw̃ℓ̃

τβ+β̃ ;

this encryption is given by

(g, h′τβ)(g̃, h̃′τ β̃) = (gg̃, h′τβh̃′τ β̃) = (gg̃, h′h̃′τβ+β̃).

Remark 1 Note that, for Leonardi–Ruiz-Lopez encryption to be fully homomorphic, it would
also need to be multiplicative: That is, at the very least, given valid encryptions of E(β) and
E(β̃), we should be able to deduce a valid encryption of ββ̃. It is not at all obvious if this is even
possible. On an abstract level our encryption function from plaintext to ciphertext space maps

E : {0, 1} → G×H,

where the domain can be naturally endowed with a ring structure using addition and multiplication
mod 2, but there seems to be no natural extra operation on G×H that would allow us to deduce
a valid encryption of ββ̃. We stress that in the case of LWE-based homomorphic encryption,
both plaintext and ciphertext spaces come equipped with a ring structure, so the equivalent of our
function E is generally taken to be a ring homomorphism.

The map E being a ring homomorphism is, however, not always strictly necessary to deduce a
valid encryption of ββ̃. If in future work we were to succeed in deducing a valid encryption of ββ̃,
we expect that this will only apply to a specific instantiation of Leonardi–Ruiz-Lopez encryption,
not one for abstract groups, where there is more structure to be exploited.

1.2 Remarks on Leonardi–Ruiz-Lopez encryption

Some remarks on the construction above:
1 The number of additions is bounded in, for example, LWE-based homomorphic encryption, where the

error grows too large.
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(R1) The underlying hard problem of this encryption scheme is described as the LHN-PKE problem,
so named as it is based on the Learning Homomorphisms with Noise problem (LHN) but is
adapted to this Public Key Encryption scheme (PKE).
Definition 2. Let G,H,K, ξ, and χ be as above. We define the LHN-PKE problem for
G,H,K, ξ, and χ to be: Given G,H,K, ξ, and χ, for any
– φ sampled uniformly at random from Hom(G,H),
– ψ sampled uniformly at random from the elements of Hom(H,K) whose kernel does not

contain Z(H),
– g1, . . . , gm sampled from G using ξ,
– h1, . . . , hm sampled from ker(ψ) using χ,
– τ sampled from the order 2 elements of Z(H) \ ker(ψ) using χ,
– β sampled uniformly at random from {0, 1},
– small ℓ and word w = w1 · · ·wℓ sampled uniformly at random from {1, · · · ,m}ℓ,

recover β from the following information:
– (g1, φ(g1)h1), . . . , (gm, φ(gm)hm),
– τ ,
– g = gw1 · · · gwℓ

,
– h = h′τβ = φ(gw1)hw1 · · ·φ(gwℓ

)hwℓ
τβ.

(R2) In order for the encryption and decryption to work, the assumptions that τ is central or of
order 2 are not necessary. The reason we work under these assumptions is, as explained in
Section 1.1, that in this case, the cryptosystem is unbounded additive homomorphic.

(R3) Once Alice has fixed the elements g1, . . . , gm and determined the public key, all computations
inside G actually take place inside the subgroup ⟨g1, . . . , gm⟩ that is generated by g1, . . . , gm.
So for cryptanalysis, we may and will assume that G is generated by g1, . . . , gm, i.e. that
G = ⟨g1, . . . , gm⟩.

(R4) The work of [15] was inspired by [1], which introduces the Learning Homomorphisms with
Noise problem in order to construct a symmetric primitive. However, the noise accumulates in
the construction of [1] in a manner akin to the error growth in LWE constructions. Leonardi
and Ruiz-Lopez also introduce a symmetric primitive in [15], but we focus on the PKE
construction in this work.

(R5) The noise consists of the elements h1, . . . , hm that are mixed into the product h′ in the
second component h of the ciphertext. These elements are chosen to be in the kernel of ψ
and therefore get erased during decryption. ‘Being contained in the kernel’ of ψ can thus be
thought of as an equivalent of ‘the error being small’ in the LWE-based encryption of [18] or
‘the noise being small’ in LHN-based encryption of [1]. The strength of Leonardi–Ruiz-Lopez
encryption is that the noise does not accumulate and will not lead to systematic decryption
errors, since in the decryption process, we can erase the noise neatly by applying ψ.

2 Simple instantiations and security

In this section, we describe some simple instantiations of Leonardi–Ruiz-Lopez encryption. The
abelian case is a central focus of this paper as it is much simpler to describe than the general case;
the description below is for the reader who wishes only to understand the abelian case. We also
describe the noiseless case in order to highlight the role that the noise plays in the encryption.
Finally we discuss the requirements on the setup parameters of Leonardi–Ruiz-Lopez encryption
in order to achieve security against some naive classical attacks, concluding this section with a
list of properties that the groups must have for any classically secure instantiation.
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2.1 The abelian case

If H is abelian, we can rewrite (g, h) = (gw1
· · · gwℓ

, φ(gw1
)hw1

· · ·φ(gwℓ
)hwℓ

· τβ) as

(g, h) = (gw1
· · · gwℓ

, φ(gw1
) · · ·φ(gwℓ

)hw1
· · ·hwℓ

· τβ) = (g, φ(g)hw1
· · ·hwℓ

· τβ).

If both G and H are abelian, it makes sense to switch to the following notation: Instead of
choosing indices w1, . . . , wℓ, Bob just chooses non-negative integers r1, . . . , rm and encrypts β to

(g, h) = (gr11 · · · grmm , φ(gr11 ) · · ·φ(grmm )hr11 · · ·hrmm · τβ) = (g, φ(g)hr11 · · ·hrmm · τβ).

This system has been claimed to not be quantum secure in [15, Section 8.2], cf. also Section 3.4,
while we discuss security in the classical sense in Section 3.2. Moreover, in Section 4 we describe
instantiations of the LHN-PKE problem in which G andH are nonabelian but the security reduces
to the case in which they are.

2.2 The noiseless case

Let us assume that h1 = h2 = · · · = hm = 1. Then the public key consists of all pairs (gi, φ(gi))
together with τ and Bob would encrypt the message β ∈ {0, 1} to

(g, h) = (gw1 · · · gwℓ
, φ(gw1) · · ·φ(gwℓ

)τβ) = (g, φ(g)τβ).

Let Eve be an attacker who is aware of the fact that Alice decided to work in a noiseless setting.
Then Eve knows all gi’s as well as their images φ(gi) from the public key. If she can write g as a
product in g1, . . . , gm, then she can compute φ(g). Knowing τ from the public key, Eve can then
decrypt (g, h) = (g, φ(g)τβ). Note that even if Eve did not use the same word w1 · · ·wℓ as Bob
to write g as a product in g1, . . . , gm, she would nonetheless obtain the correct value of φ(g).

Of course, finding such a word might still be a hard problem, even if m = 1. For example, if
G is the multiplicative group of a finite field and g1 is a generator, finding a word in g1 defining
g is the same as solving the discrete logarithm problem, which is known to be hard for classical
computers (though there are quantum algorithms to solve it, see [19, 20]). Alice, on the other
hand, will probably have a closed form describing φ that does not require to write elements as
products in g1, . . . , gm when she applies φ in the decryption process (and similarly for ψ). In the
m = 1 example above, she would choose φ to take every element to a certain power.

For attacking the cryptosystem in the general case, a possible strategy is to construct attacks
that reduce to the noiseless case. We will come back to such attacks in Section 2.3.

2.3 Security

In all that follows, let λ be the security parameter.2

2.3.1 Many homomorphisms First of all, note that an attacker who can guess both φ and
ψ can decrypt in the same way Alice does. Denote the set of all possible choices for ψ by

Hom(H,K)− = {ψ ∈ Hom(H,K) : Z(H) ̸⊆ ker(ψ)}.

To avert brute force attacks, the groups G,H,K should be chosen in such a way that Hom(G,H)
and Hom(H,K)− are of size at least Θ(2λ),3 and φ and ψ should be sampled uniformly at random
from Hom(G,H) and Hom(H,K)− respectively. This ensures that if an attacker guesses φ she
succeeds with probability 2−λ, and similarly for ψ.
2 Typically, we want any computations undertaken by the user to have complexity that is polynomial

in λ, and an attacker who attempts to decrypt by guessing any unknowns should only succeed with
probability at most 2−λ.

3 We are using Bachmann-Landau notation for complexity, see for example Section 1.2.11.1 of [13].
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2.3.2 Words As we already saw in the noiseless case, there are links between the LHN-PKE
problem and the ability of an attacker to write g as an expression in the generators g1, . . . , gm.
Assume for instance that Eve wants to decrypt the cyphertext (g, h). She knows that g is a
product in g1, . . . , gm and recall that g1, . . . , gm are public. If she knows the exact expression
of g as a product in g1, . . . , gm that Bob used in the encryption process, then she can compute
h′ from the public key, erase it from h = h′τβ , and recover the message β. It is important to
note that other than in the noiseless case, it is in general not enough to find any expression
of g as a product in g1, . . . , gm, because that product will in general not produce the correct
term h′ yielding to a different accumulation of the noise. That is, the attacker needs to recover
the correct word w, not just any expression of g in g1 . . . , gm. In the cryptanalysis we carry out
in Section 3 for finite abelian G, H, and K, we give a reduction of LHN-PKE to the extended
discrete logarithm problem for finite 2-groups; our reduction circumnavigates the issue of finding
the correct word.

2.3.3 An attack on instances with few normal subgroups The idea behind the following
attack is to replace Alice’s secret ψ : H → K with some new ψ̄ : H → L erasing the noise without
erasing τβ (for instance L could be a quotient of H, as described below). A similar attack was
also described in Section 7.2 of [15]. Assume that Eve knows a normal subgroup N of H that
contains all elements h1, . . . , hm but does not contain τ . She can then define ψ̄ : H → H/N as
the natural projection and by applying ψ̄ to all second coordinates of the elements (gi, φ(gi)hi)
in the public key and to the second coordinate of the encrypted message (g, h) she can switch to
the noiseless case; cf. Section 2.2. We deduce in particular, that there should be at least Θ(2λ)
normal subgroups in H, so that if an attacker guesses ker(ψ) she succeeds with probability 2−λ.

2.3.4 An attack on instances with weak normal subgroups Now suppose that an at-
tacker can find a normal subgroup N of H that contains φ(gi)hi for all i = 1, . . . ,m but does not
contain τ (note that these elements are all public so it is easy to check these conditions). Then
she can directly apply the projection H → H/N to the second coordinate in the encrypted mes-
sage (g, h) and can deduce that β equals zero if and only if she obtained the neutral element in
H/N . To avoid such an attack it seems that Alice should check, after the key generation process,
whether the normal closure of ⟨φ(g1)h1, . . . , φ(gm)hm⟩ contains τ and if it doesn’t she should
choose a different key. For cryptanalysis, we may thus assume that H equals the normal closure
of ⟨φ(g1)h1, . . . , φ(gm)hm⟩ (as otherwise, we can just work in this smaller group). In particular,
if H is abelian, we may assume H = φ(G) kerψ.

2.3.5 A summary of the discussed security assumptions We conclude this section with
a list of necessary properties for security deduced from the list of naive attacks above:

(S1) Hom(G,H) and Hom(H,K)− are of size exponential in the security parameter;
(S2) finding the precise word w used to express g as a product in the gi’s in the encryption phase

has complexity that is exponential in the security parameter;
(S3) the number of normal subgroups in H is exponential in the security parameter;
(S4) the normal closure of ⟨φ(g1)h1, . . . , φ(gm)hm⟩ contains τ .

3 Cryptanalysis in the finite abelian case

In this section, we discuss the hardness of LHN-PKE under the assumption that G and H are fi-
nite and that H is abelian. Leonardi and Ruiz-Lopez [15] dismissed the abelian instantiation due
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to an argument that there should exist a polynomial-time quantum algorithm for the LHN-PKE
problem; the reduction is more complex than is suggested in [15] but their statement is true
as we show in Section 3.4. Nevertheless, the unbounded homomorphic property of the proposed
cryptosystem is sufficiently powerful that a classically secure construction would also be of great
interest to the cryptographic community. We show that, if H is abelian, under some mild as-
sumptions that we introduce in Section 3.2, the LHN-PKE problem for G and H can be reduced
to the extended discrete logarithm problem (cf. Definition 4) in some specific abelian 2-group.

Assume that G and H are finite and that H is abelian. Given the following public information

1. {(g1, φ(g1)h1), . . . , (gm, φ(gm)hm), τ} and
2. (g, h) = (g, h′τβ) ∈ G×H

one can proceed as follows:

– In case G is not abelian, the LHN-PKE problem for G,H,K, ξ, and χ is reduced to the
LHN-PKE problem for G = G/[G,G], H,K, ξ, and χ following Lemma 3: Here [G,G] denotes
the commutator subgroup of G, so G is abelian.

– In case G is also abelian and satisfies some additional assumptions presented in Section 3.2,
the LHN-PKE problem for G,H,K, ξ, and χ is reduced to the eDLP problem in G, as defined
in Section 3.2.

– In case G is also abelian and satisfies some additional assumptions presented in Section 3.2,
the LHN-PKE problem forG,H,K, ξ, and χ reduces to the LHN-PKE problem forG2, H2,K, ξ,
and χ, where G2 and H2 are the Sylow 2-subgroups of G and H, respectively.

To conclude, in Section 3.3 we discuss the genericity and limitations of the assumptions made in
Section 3.2, as well as the impact of the reductions made.

3.1 A simplified setting for LHN-PKE when H is abelian

In this section we take H to be abelian and we show that, for cryptanalysis, one can can consider,
instead of G, its abelianization G/[G,G].

Lemma 3. Assume H is abelian. Then the LHN-PKE problem for G,H,K, ξ, and χ is at most
as hard as the LHN-PKE problem for G = G/[G,G], H,K, ξ, and χ.

Proof. Since H is abelian, the commutator subgroup [G,G] of G is contained in the kernel of φ.
Define G = G/[G,G]. Then φ : G → H induces a well-defined homomorphism φ : G → H and
any ciphertext (g, h) can be interpreted as the ciphertext (ḡ, h) in the cryptosystem given by
φ : G → H, ψ : H → K as before and public key given by (gi, φ̄(gi)hi) for i = 1, . . . ,m together
with the same τ as before. Indeed, if Bob used the word w1 · · ·wℓ to encrypt (g, h), then the
same word gives rise to the encryption (ḡ, h) in the new cryptosystem of the same message. ⊓⊔

3.2 Cryptanalysis for abelian groups

In Section 3.2 we discuss the LHN-PKE problem for G,H, and K finite and abelian. In each
subsection, we explicitly mention under which assumptions from the following list we are working.
For a group Γ and γ1, . . . , γm ∈ Γ , we are interested in the following properties:

(A1) Γ is abelian;
(A2) the largest positive odd factor of the order |Γ | of Γ is known (or easily computable);
(A3) γ1, . . . , γm ∈ Γ are such that Γ = ⟨γ1⟩ ⊕ . . .⊕ ⟨γm⟩;
(A4) The orders |γ1|, . . . , |γm| of γ1, . . . , γm are known (or easily computable).
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Under Assumptions (A1), (A3), and (A4) the following problem is well-posed.

Definition 4. The extended discrete logarithm problem (eDLP) for Γ is the problem of determ-
ining, for each x ∈ Γ , the unique vector

(α1, . . . , αm) ∈ Z/|γ1|Z× . . .× Z/|γm|Z

such that
x = γα1

1 · · · γαm
m .

Note that eDLP is just called discrete logarithm problem (DLP) in [23]. For a discussion of
existing algorithms to solve it, we refer to Section 3.3.1.

3.2.1 From LHN-PKE to eDLP In this section, we work under Assumptions (A1), (A3),
and (A4) of Section 3.2. More precisely, we assume that G and H are abelian, G is finite and
satisfies G = ⟨g1⟩ ⊕ . . .⊕ ⟨gm⟩, and the orders of g1, . . . , gm are known.

Proposition 5. The LHN-PKE problem for G,H,K, ξ, and χ is at most as hard as the eDLP
problem in G.

Proof. Let r1 . . . , rm ∈ Z be the non-negative integers chosen to write

g = gr11 · · · grmm and h = φ(g)hr11 · · ·hrmm · τβ .

For each i ∈ {1, . . . ,m}, set ℓi = φ(gi)hi and, given that the order of φ(gi) divides |gi|, compute

ℓ
|gi|
i = (φ(gi)hi)

|gi| = h
|gi|
i .

As a consequence, the subgroup M of H that is generated by Y = {ℓ|gi|i : i = 1, . . . ,m} is
contained in ker(ψ) and thus does not contain τ . Since the orders of the gi’s are known, the
subgroup M can be easily determined.

We show that, eDLP being solvable in G yields also LHN-PKE being solvable in this context.
To this end, let s1, . . . , sm be such that, for any choice of i, one has si ≡ ri mod |gi|. From the
public information, one easily computes

X =

m∏
i=1

(ℓsii )−1 · h =

m∏
i=1

ℓri−si
i · τβ =

m∏
i=1

φ(gi)
ri−sihri−si

i · τβ .

Since ri − si is a multiple of |gi|, it is straightforward to see that X ∈ M if and only if β = 0,
i.e., working modulo the subgroup M , one can recover β from the public information. ⊓⊔

3.2.2 From abelian groups to 2-groups In this section, we assume that (A1) and (A2)
from Section 3.2 hold, i.e. we assume that both G and H are finite abelian groups and that the
odd parts of |G| and |H| are known. We let G2 and H2 denote the unique Sylow 2-subgroups of
G and H, respectively. In the new language, τ and τβ belong to H2. In the following, we show
that in the case of abelian groups, the LHN-PKE problem for the original data reduces to the
LHN-PKE problem for the 2-parts G2 and H2 (with the induced data).

Theorem 6. The LHN-PKE problem for G,H,K, ξ, and χ is at most as hard as the LHN-PKE
problem for G2, H2,K, ξ, and χ.
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Proof. Write the orders of G and H as

|G| = 2nGqG, |H| = 2nH qH

where qG and qH are odd numbers. Define q as the least common multiple of qG and qH or any
other odd common multiple (such as qGqH which might be easier to compute). Then for any
elements g ∈ G and h ∈ H, the orders of gq and hq are both powers of 2, i.e. gq ∈ G2 and
hq ∈ H2. Moreover, G and H being abelian, the assignment x → xq defines homomorphisms
G→ G2 and H → H2.

Equip G2 and H2 with the induced distributions ξ and χ and write φ2 : G2 → H2 and
ψ2 : H2 → K for the restrictions of φ and ψ to G2 and H2, respectively. Assume that β can be
recovered from (G2, H2,K, ξ, χ). We show that β can be determined from (G,H,K, ξ, χ).

Recall that the pair (g, h) = (gr11 · · · grmm , φ(g)hr11 · · ·hrmm · τβ) = (g, h′τβ) ∈ G ×H is public.
Raising both entries to their q-th power, one obtains

(gq, hq) = ((gq1)
r1 · · · (gqm)rm , φ(gq) · (hq1)r1 · · · (hqm)rm · (τ q)β) = (gq, (h′)qτβ) ∈ G2 ×H2.

From the last equation it is clear that the elements g1, . . . , gm ∈ G and h1, . . . , hm ∈ H are
replaced with their q-th powers gq1, . . . , g

q
m ∈ G2 and hq1, . . . , h

q
m ∈ H2. Moreover, as τ = τ q, it

holds that τ ∈ H2 \ ker(ψ) and so the pair (τ, β) is preserved. By assumption β is determined
from the data associated to the 2-parts and so the proof is complete. ⊓⊔

3.3 Assumptions and reductions

Assume in this section that G and H are finite and that H is abelian.
Thanks to (R3), for cryptanalysis purposes, we can replace G with G̃ = ⟨g1, . . . , gm⟩ and we

do so. Moreover, in view of Lemma 3, the LHN-PKE problem on the pair (G̃,H) is reduced to
the LHN-PKE problem on the pair (G,H), where G denotes the abelianization of G̃. Assumption
(A1) holds for the last pair and the elements g1, . . . , gm ∈ G are replaced with their images
g1, . . . , gm in G and the homomorphism φ : G̃ → H with the induced homomorphism G → H,
which we identify with φ, for simplicity.

Assuming now that (A2) holds for H and G, Theorem 6 allows to reduce the LHN-PKE
problem on (G,H) to the LHN-PKE problem on (G2, H2), where G2 and H2 denote the Sylow
2-subgroups of G and H. Here the elements g1, . . . , gm and h1, . . . , hm are replaced by

g1
q, . . . , gm

q and hq1, . . . , h
q
m

where q denotes the least common multiple of the odd parts of |G| and |H|.
Set X2 = ⟨g1q, . . . , gmq⟩ and suppose, at last, that (A3) and (A4) hold for X2 namely that

X2 = ⟨g1q⟩ ⊕ . . .⊕ ⟨gmq⟩

and the sizes of the summands are known. Then, as a consequence of Proposition 5, the LHN-PKE
problem for (G2, H2) is reduced to the eDLP problem in G2.

While assumptions (A1)–(A4) are natural assumptions to make when constructing groups
that both admit efficient computation and satisfy the security requirements (S1)–(S4) of Sec-
tion 2.3.5, there exist examples of groups where these assumptions are not satisfied or may
be at odds with our security requirements. In this section we discuss assumptions (A1)–(A4)
with a view towards constructing instantiations of Leonardi–Ruiz-Lopez encryption to which our
classical attack does not apply, or at least is not polynomial-time.
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3.3.1 The eDLP in finite abelian p-groups Let p be a prime number and let G be a finite
abelian p-group given as

G = ⟨g1⟩ ⊕ . . .⊕ ⟨gm⟩,

where the orders of the summands are known. Let e ∈ Z be such that pe is the exponent of G.
Then, according to [23, Cor. 1], the eDLP in G can be solved using

O

(
log(e+ 1)

log log(e+ 2)
log |G|+

logp |G|
m

pm/2

)
(1)

group operations on a classical computer. In particular, when m is polynomial in log log |G|, the
eDLP has complexity polynomial in log |G|. When p = 2, setting n = logp |G|, we deduce the
following from the performance result in [23, Table 1]:

– When m = 1, 2, 4, 8, the counts are dominated by the first term of (1). This explains the
initial cost decrease when m increases for a fixed n.

– Using Shank’s algorithm, there is a possibility of improving the factor n/m by
√
n/m though

this is not relevant for applications: these normally require that n/m is close to 1.

To the best of our knowledge, there is no existing work on the eDLP that beats [23].

3.3.2 On the security assumptions (A2) and (A4) In Section 3.2.1 above we described
how and under which assumptions the LHN-PKE problem for G, H, and K can be reduced to
solving the eDLP in G. The necessity for setting assumptions (A2) and (A4) in particular, came
from the fact that there are known examples of abelian groups, some of them already being used
successfully in existing cryptographic protocols, that do not have to obey them.

One type of such groups are the known RSA groups. These are given in the form (Z/NZ)×
where N = pq is hard to factor. In this case, Alice would know the factorisation and hence the
order of the group, but an adversary should not be able to compute it.

Another type of such groups, where even the creators of the cryptosystem might not know the
group’s order, is that of ideal class groups of imaginary quadratic fields. This is an interesting
category of groups for cryptography since it allows one to work in a trustless setup. In other
words, we do not need a trusted third party to generate groups of secure order, in contrast
to cryptosystems that employ RSA groups for example, where a trusted third party needs to
generate a secure, i.e. hard to factor, modulus N ∈ N for the groups (Z/NZ)×. Despite the fact
that neither the structure nor the order of the ideal class group is known, the group operation
is efficient and the elements of the group have a compact representation, via reduced binary
quadratic forms. An excellent reference for trusted unknown-order groups is the paper by Dobson,
Galbraith and Smith [5]; they also take into account Sutherland’s algorithm [22] and they propose
new security parameters for cryptosystems that employ ideal class groups. In the same paper the
authors also discuss other groups of unknown order that can be used, namely genus-3 Jacobians
of hyperelliptic curves, initially introduced by Brent [3]. Even though these groups appear to
have some computational advantages when compared to ideal class groups, these advantages
exist only in theory for now since these genus-3 Jacobians have not yet been implemented.

3.3.3 Regarding Assumption (A3) In this section, we discuss Assumption (A3). For the
sake of simplicity and in view of Section 3.2.2, we restrict to 2-groups but everything can be said
similarly for arbitrary finite abelian groups using Theorem 6.

The case where Assumption (A3) holds for ⟨g1, . . . , gm⟩, i.e., g1, . . . , gm are independent and
satisfy ⟨g1, . . . , gm⟩ = ⟨g1⟩⊕. . .⊕⟨gm⟩, seems to be the key case out of the following reasons. First
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of all, when sampling g1, . . . , gm from G uniformly, it is very likely that these are independent at
least if m is small in comparison with the number of cyclic factors in G. For example, if G = Cλ

2

is a direct product of cyclic groups of order 2, then the probability of sampling g1, . . . , gm that
are independent is

(2λ − 1)(2λ − 2)(2λ − 22) · · · (2λ − 2m−1)

2mλ

which is very close to 1 if m≪ λ. In addition, the case where g1, . . . , gm are independent can be
seen as the generic case and we expect that an attacker could use similar strategies as developed
in Section 3.2 and design an attack for the dependent case. Indeed, if g1, . . . , gm are dependent,
the attacker will obtain more information from the public key as in the independent case.

There is also another strategy for an attack if (A3) does not hold for G and the number of
cyclic factors in H is small. More precisely, assume that |Hom(H,F2)| is sub-exponential. If Eve
can write any element g ∈ G as a product in g1, . . . , gm then she can recover the secret message β
from the ciphertext (g, h) as follows. For every maximal subgroup M of H not containing τ (by
assumption, there are only sub-exponentially many of these) convert h into an element h̃ in H/M .
Decrypt (g, h̃) ∈ G×H̃ as if the noise was erased completely in H/M (as explained in Section 2.2)
and check on a number of self-encrypted messages if this provides a correct decryption function.
Since ker(ψ) ̸= H, there will always be a maximal subgroup M of H that contains h1 . . . , hm
but does not contain τ , so eventually this procedure will indeed provide a decrpytion function.

3.4 Comparison with the quantum attack

Throughout this section, assume that (A3) holds for the abelian group G. Even though we only
did cryptanalysis for finite groups until now, we show in the following two subsections how one
can perform quantum attacks when G is either torsion-free or finite. The mixed case can be
considered as a combination of the two cases: first dealing with the free part of the group and
then recovering β as explained in the finite case.

3.4.1 The torsion-free case Assume as in [15, Sec. 8.2], that G = ⟨g1⟩ ⊕ . . . ⊕ ⟨gm⟩ is
isomorphic to Zm, i.e. the orders |gi| are all infinite. We briefly recall the discussion from [15,
Sec. 8.2]. To this end, let f : Zm+1 → G be defined by

(a1, . . . , am+1) 7−→ gam+1ga1
1 · · · gam

m .

Then the kernel of f is equal to ⟨(r1, . . . , rm, 1)⟩ and it can be determined, using Shor’s algo-
rithm [20], in quantum polynomial time in m; cf. [10, 24]. Once (r1, . . . , rm, 1) is known, it is
easy to recover β from the encrypted message (g, h) and the public information.

3.4.2 The torsion case Assume in this section that G is finite and that (A4) holds. Let,
moreover, f : Zm+1 → G be defined by

(a1, . . . , am+1) 7−→ gam+1ga1
1 · · · gam

m .

Then a set of generators of ker(f) can be determined in time polynomial in log |G| on a quantum
computer [12, 20, 21]; see also [8]. Note that ker(f) contains |g1|Z× . . .× |gm|Z× |g|Z.

Let now (s1, . . . , sm+1) be one of the generators found. Then g = g
−s1sm+1

1 · · · g−smsm+1
m and

so it follows that
g
r1+s1sm+1

1 · · · grm+smsm+1
m = 1.
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This is the same as saying that, for each 1 ≤ i ≤ m, one has

ri ≡ −sism+1 mod |gi|.

Modding out H by the subgroup generated by all h|gi|i one can recover β and thus solve the
LHN-PKE problem; cf. Proposition 5.

4 An attack that reduces to the abelian case

A general strategy for an attacker to solve the LHN-PKE problem could be to convert the H-part
of the ciphertext as follows. Assume that Eve has access to the ciphertext

(g, h) = (gw1
· · · gwℓ

, φ(gw1
)hw1

· · ·φ(gwℓ
)hwℓ

τβ) ∈ G×H

encrypted by Bob using Alice’s public key

{(g1, φ(g1)h1), . . . , (gm, φ(gm)hm), τ}.

Eve can then choose a homomorphism ϑ : H → H for some group H such that ϑ(τ) ̸= 1 and
compute ϑ(h). Her new pair (g, h) = (g, ϑ(h)) is then of the form

(gw1 · . . . · gwℓ
, φ(gw1)hw1 · . . . · φ(gwℓ

)hwℓ
τβ)

where, for all i, we set hi = ϑ(hi) and write φ = ϑ ◦ φ and τ = ϑ(τ). Since τ ̸= 1, this pair still
contains the information on β and if ϑ is chosen cleverly, it might be much simpler to deduce
β from (g, h′). Note that in general, we cannot define a suitable counterpart ψ of ψ here, so
the information that τ is not contained in the kernel of ψ cannot be directly converted into a
statement on τ and has to be considered individually (if necessary).

A special case of this strategy is to reduce, if possible, to an abelian group H, i.e., the goal is
to eventually apply the attack that we describe in Section 3 even when G and H are nonabelian.

Suppose that, given τ and H, Eve is able to find an abelian group H and an efficiently
computable homomorphism ϑ : H → H such that ϑ(τ) ̸= 1 and such that ϑ(τ) is not contained
in the subgroup generated by certain powers of ϑ(φ(gi)hi). This condition can be checked using
the public key and we will specify below which powers are sufficient. Let G = G/[G,G] be the
abelianization of G and φ̄ : G → H be the homomorphism obtained from ϑ ◦ φ : G → H by
reducing modulo [G,G]. For all i, define h̄i = ϑ(hi), set τ̄ = ϑ(τ) and, for all g in G, let ḡ ∈ G
be the image of g in G.

Eve first replaces the encrypted message by

(ḡ, ϑ(h)) = (ḡw1
· · · ḡwℓ

, φ̄(ḡw1
)h̄w1

· · · φ̄(ḡwℓ
)h̄wℓ

τ̄β) ∈ G×H

in order to work inside abelian groups G and H. Now she proceeds in a similar way as in the
proof of Theorem 6: First, she computes the group orders of G and H and finds the least common
multiple q of their odd parts. Then she converts the tuple (ḡ, ϑ(h)) above into a tuple with entries
inside the 2-Sylow subgroups G2, H2 of G and H by taking both entries to their q-th powers:

(ḡq, ϑ(h)q) = (ḡqw1
· · · ḡqwℓ

, φ̄(ḡqw1
)h̄qw1

· · · φ̄(ḡqwℓ
)h̄qwℓ

τ̄β) ∈ G2 ×H2.

Finally, Eve can proceed in a similar way as in the proof of Proposition 5: For all i define
l̄i = (φ̄(ḡi)h̄i)

q = ϑ(φ(gi)hi)
q and let βi be the order of φ(ḡi). Eve can compute the elements l̄i

and the numbers βi using the public key. Then (l̄i)
βi = (h̄qi )

βi can also be computed from the
public key. If τ̄ is not contained in the subgroup M generated by (l̄1)

β1 , . . . , (l̄m)βm , then working
inside H/M can reveal the value of β as in the proof of Proposition 5 under similar assumptions
as stated there.
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Remark 7 Observe that the above attack applies to any finite group H if τ ̸∈ [H,H] and the
image of τ in H/[H,H] is not contained in the subgroup generated by the images of certain powers
of φ(gi)hi. In particular, it is advisable (but likely not sufficient) to sample τ from [H,H].

5 Normal forms and the solvable case

In this section we consider the case where the platform groups are finite and solvable and give
evidence of why, given the efficiency constraints attached to the system, the groups should not
be expected to provide secure postquantum cryptosystems (in analogy to Section 3.4).

For the background on finite solvable groups we refer to the very friendly [11, Ch. 3].

Definition 8. For a finite group Γ , the derived series of Γ is the series (Γ (i))i≥1 defined in-
ductively by

Γ (1) = Γ and Γ (i+1) = [Γ (i), Γ (i)].

If for some index m the group Γ (m) is trivial, then Γ is said to be solvable.

In a finite solvable group Γ each quotient Γ (i)/Γ (i+1) is abelian. Moreover, only finitely many
such quotients are nontrivial and, if one is trivial, all subsequent ones are, too.

Until the end of this section, assume that H is solvable. Then, for cryptanalysis purposes and
in analogy with Lemma 3, we assume without loss of generality that G is also solvable. We let
s be the derived length of H, i.e. s is such that H(s+1) = 1 but H(s) ̸= 1. Then, without loss of
generality, we assume that G(s+1) = 1. We remark that, if s = 1, then G and H are abelian.

Remark 9 (Efficient communication and computation) Alice and Bob, as part of their
message exchange, need to be able to communicate elements and perform operations in the groups
efficiently. An often favourable approach (also proposed in [1, § 4.2]) is that of using normal forms
of elements with respect to a polycyclic presentation, cf. [7, Ch. 2]. For instance, when working
with G and H abelian, (A3) and (A4) holding for G is almost the same as saying that G is
given by a polycyclic presentation and the expression g = gr11 · · · grmm is the normal form of g with
respect to this presentation. The word “almost” in the previous sentence is there to stress that
the ri’s are not uniquely identified by their class modulo |gi|, which in turn is what happens for
normal forms (see below).

We briefly explain here what it means for an element g of the solvable group G to be com-
municated in a normal form with respect to a polycylic presentation respecting the derived
filtration. To do so, for each i ∈ {1, . . . , s}:
(a) let mi denote the minimum number of generators of G(i)/G(i+1),
(b) let gi1, . . . , gimi

be elements of G(i) such that

G(i)/G(i+1) = ⟨gi1G(i+1)⟩ ⊕ · · · ⊕ ⟨gimi
G(i+1)⟩,

(c) for each j ∈ {1, . . . ,mi} let oij denote the order of gij modulo G(i+1).

Then any element g ∈ G can be uniquely represented by a vector

δ = (δ11, . . . , δ1m1 , δ21, . . . , δ2m2 , . . . , δs1, . . . , δsms)

of integers 0 ≤ δij < oij of length n = m1 + . . .+ms such that

g =

s∏
i=1

mi∏
j=1

g
δij
ij ,
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which is precisely the normal form of g with respect to the chosen generators {gij}.
Note that the data (a)-(b)-(c) mentioned above should be public for Alice and Bob to be able

to share the elements with each other. If the chosen generators fit into a polycyclic sequence, then
the group operation is performed through the collection process [7, § 2.2]. It should be mentioned
that, though polycyclic presentations generally yield a good practical performance, it is, to the
best of our knowledge, not clear whether multiplication in these presentations can always be
performed in polynomial time [14]. Note that the expression of h′ also depends on the vector δ:

h′ =

s∏
i=1

mi∏
j=1

(φ(gij)hij)
δij .

Shor’s algorithm, applied on each level G(i)/G(i+1), is polynomial in the log of the size of this
quotient. Moreover, Shor’s algorithm really does determine the vector δ of g because of the
condition 0 ≤ δij < oij . In particular Eve can recover the vector δ of g and use it to compute

τβ =

 s∏
i=1

mi∏
j=1

(φ(gij)hij)
δij

−1

· h.

The complexity of this algorithm on each quotient G(i)/G(i+1) is polynomial in log |G(i)/G(i+1)|,
which makes the overall complexity to be polynomial in log |G|. There is obviously no separation
in complexity between the algorithm being run by the adversary, and the one being run by the
user. This implies that for the system to be secure, we would need to have |G| > 22

λ

, making it
hard to say if it would even be possible to represent elements of G in a computer.

Remark 10 Given that the quotients of consecutive elements of the derived series are abelian, it
is natural to ask whether the classical attack we designed for abelian groups could be generalised
to an attack in the solvable context. It seems, however, that the nonabelian solvable case is
substantially different from the abelian one. Among the limitations are:
– τ could for instance belong to H(s) while g1, . . . , gm will typically live in H(1) \H(2) (in the

general setting we are indeed not necessarily working with normal forms);
– without knowing φ, it is not at all clear at which depths in the derived filtration φ(g1), . . . φ(gm)

are to be found in H (as publicly given only with noise);
– dealing with quotients is more delicate as one always has to consider normal closures of

subgroups.

6 Future work

In future work, we plan to consider several types of finite groups G, H, and K for instantiating
Leonardi–Ruiz-Lopez encryption and explore whether we can either construct attacks for the
corresponding cryptosystems or prove security results.

A first candidate would be the group Cλ
2 for all groups G,H,K. As none of the classical

attacks presented in this paper apply in this case, Leonardi–Ruiz-Lopez encryption might prove
to be classically secure for this choice. Other abelian candidates are the RSA groups and ideal
class groups mentioned in Section 3.3.2.

As a first nonabelian example, we plan to work with certain p-groups and use strategies that
allow us to circumnavigate the attacks presented in Section 5. In particular, it would be beneficial
to work with presentations of groups that are not based on normal forms and yet allow efficient
computation. The advantage of working with nonabelian groups is that it may be possible to
construct a post-quantum additive homomorphic cryptosystem.
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