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Abstract In recent years, the automatic search has been widely used to search differential char-
acteristics and linear approximations with high probability/correlation. Among these methods, the
automatic search with the Boolean Satisfiability Problem (SAT, in short) gradually becomes a pow-
erful cryptanalysis tool in symmetric ciphers. A key problem in the automatic search method is how
to fully characterize a set S ⊆ {0, 1}n with as few Conjunctive Normal Form (CNF, in short) clauses
as possible, which is called a full CNF characterization (FCC, in short) problem. In this work, we
establish a complete theory to solve a best solution of a FCC problem. Specifically, we start from
plain sets, which can be characterized by exactly one clause. By exploring mergeable sets, we find a
sufficient and necessary condition for characterizing a plain set. Based on the properties of plain sets,
we further provide an algorithm for solving a FCC problem with S, which can generate all the minimal
plain closures of S and produce a best FCC theoretically. We also apply our algorithm to S-boxes used
in block ciphers to characterize their differential distribution tables and linear approximation tables.
All of our FCCs are the best-known results at present.

Keywords Automatic cryptanalysis, Boolean Satisfiability Problem, Full CNF characterization

1 Introduction
Differential analysis [1] and linear analysis [2] are two of the most powerful techniques in

cryptanalysis and play essential roles in the security evaluation of symmetric ciphers. The main
idea of them is to construct a difference/linear trail with high probability/correlation. In recent
years, it has become a new trend to search for differential and linear trails using automatic
methods. In Eurocrypt 1994, Matsui [3] proposed an automatic search algorithm based on the
branch and bound method. Since then, more and more automatic tools are introduced into
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cryptanalysis, among which the methods based on Mixed Integer Linear Programming (MILP,
in short) and Boolean Satisfiability Problem (SAT, in short) are the most widely used.

MILP is an optimization problem to find the maximum/minimum value of the objective
function under linear constraints. There are many mature solvers available to solve this problem,
such as Gurobi [4], CPLEX [5], and SCIP [6]. The MILP problem was first introduced into
cryptanalysis in 2011 [7, 8] to search for the minimal number of active S-boxes at the word
level for differential and linear trails. Later, Sun et al. [9] proposed a bit-level algorithm
which enabled to search for differential and linear trails. In [10], Fu et al. searched differential
and linear characteristics for ARX ciphers. By modelling the propagation of division property
into an MILP problem, Xiang et al. [11] constructed integral distinguishers. In [12], Zero-
correlation distinguishers were searched by MILP techniques. Sasaki et al. [13] found new
impossible differential distinguishers with the help of MILP. Besides, the MILP method is also
widely used in other cryptanalysis algorithms, such as boomerang attacks [14] and cube attacks
[15].

SAT investigates whether there is a set of variable assignments for the given equations that
makes the problem satisfiable. It is a deterministic problem and has been proven to be Non-
deterministic Polynomial Complete (NPC, in short). There are also many mature and efficient
solvers for SAT, such as Minisat [16], Cryptominisat [17], and CaDiCal [18]. The SAT-based
method was applied to cryptanalysis in 2013 [19] for the first time. Later, it was used to
search the optimal differential and linear trails of SIMON [20]. In ACNS 2016, Liu et al. [21]
proposed an automatic analysis algorithm for ARX structured cryptography based on SAT. By
establishing SAT models, more accurate differential probabilities of LED64 and Midori64 were
obtained in FSE 2018 [22]. In addition to differential analysis and linear analysis, the SAT
method can also be applied to other cryptanalysis algorithms, such as searching impossible
differential trails [23] and integral distinguishers [24]. SAT method has demonstrated higher
efficiency compared to MILP method in certain problems, and has achieved remarkable results
in recent years in the field of cryptanalysis.

In comparison to Matsui’s algorithm, automatic search algorithms based on MILP and SAT
offer a higher level of automation, enhanced readability, and easier solvability. Therefore, the
core problem of this kind of automatic search algorithm is how to build efficient models. For
NPC problems, the dominant view is that the smaller the scale of the problem, the easier it is
to solve. From a practical point of view, numerous experimental results show that runtimes of
simpler models are generally shorter. Consequently, attackers usually tend to construct smaller
scale models in practical. The scale of the model mainly depends on the number of variables and
constraints (i.e., inequalities and clauses). The former parameter is fixed for the same cipher
when no dummy variables are introduced. Based on this perspective, we thoroughly study the
Conjunctive Normal Form (CNF, in short) characterization of cryptographic components in
automatic cryptanalyses in this paper and aim to reduce the number of clauses in models and
improve the efficiency of automatic cryptanalysis algorithms.



1.1 Related Work
The early characterization works based on MILP mostly constructed candidate inequalities

by calling SAGEMath [25] to obtain convex hulls of sets and then using the greedy algorithm
to select as few inequalities as possible [9]. In general, it is difficult to obtain enough high-
quality inequalities by such a method, leading to a large number of inequalities to characterize
the target set. Moreover, this method can not deal with the higher dimensional cases. In
FSE 2020, Boura et al. [26] studied the algebraic structure of sets and presented properties
of inequalities that can cut a special class of sets which is called the “ball”. This kind of
inequalities can be regarded as high-quality inequalities. By adding them to the candidate
set and combining with solving the Set Covering Problem (SCP, in short), they got the full
characterization with fewer inequalities. Subsequently, more and more works have focused on
constructing high-quality inequalities by investigating the algebraic structure of sets [27, 28]. In
[29], by studying the relationship between plain sets that can be characterized by an inequality
and their characterization inequality, a sufficient and necessary condition for the plain set was
proposed. Based on the properties of plain sets, an efficient algorithm was designed to construct
a best full characterization with the minimal number of inequalities theoretically.

While full characterizations of MILP models has been thoroughly studied, such methods
cannot be directly applied to characterizations of SAT models due to differences in the ranges
of the coefficients. Although less theoretical research has been conducted on the CNF charac-
terization method, the same framework can be applied, and there are some intrinsic connections
still worth investigating. More specifically, Abdelkhalek et al. [30] proposed the characteriza-
tion algorithm for large S-boxes based on the logical condition. Although their work focused
on MILP models, its core was constructing a CNF characterization and transforming it into
inequalities, making it essentially a characterization of SAT. First, the target of the character-
ization can be a differential distribution table, truncated differential distribution table, linear
approximation table, and truncated linear approximation table, which are abbreviated as DDT,
*-DDT, LAT, *-LAT respectively. For a given S-box, one of the above four objects is trans-
formed into a truth table of a Boolean function, where the value of the possible pattern is 1,
and the value of the impossible pattern is 0. After inputting this truth table into the software
Logic Friday [31], a CNF characterization can be output by calling the Quine-McCluskey algo-
rithm [32] and the Espresso algorithm [33] to simplify the Product-of-Sum representation. The
Quine-McCluskey algorithm and the Espresso algorithm are two powerful used algorithms to
find a simplified representation of a Boolean function in terms of a minimal number of literals
or logic gates. They are also commonly used in the automated cryptanalysis for generating and
reducing FCC. Although QM algorithm aims to generate all prime implicants, its efficiency is
limited by the selection algorithm. Espresso algorithm, on the other hand, cannot guarantee
optimality due to the use of heuristic strategies. Moreover, Boura et al. [26] also proposed a
MILP characterization algorithm which is essentially CNF characterization. They searched all
sets of the form a⊕ prec(u) and selected a subset of them by solving the SCP. Indeed, Boura’s
algorithm was strongly related with the QM algorithm.



By applying the characterization theory described above, searches for optimal differential
probabilities for LED64 and Midori64 were completed in [22]. Liu et al. [21] realized the opti-
mal differential search for ARX cipher by modelling basic operations such as modular addition
and Xor. Additionally, they used the sequence coding method to characterize the constraint∑n−1

i=0 xi ≤ k. By introducing Matsui’s conditions into previous search models and character-
izing them with the sequence coding method, [34] found full rounds optimal differential/linear
trails for many block ciphers. Later, Wang et al. [35] further improved the sequence encoding
method to characterize Matsui’s conditions and reduced the scale of the model by decreasing
the number of variables and clauses. As a result, they found the best differential/linear trails
for full round GIFT-128.

We notice that the traditional characterization method relies on the external software and
can not guarantee a minimal number of clauses. Furthermore, the solving time is longer when
the dimension of sets is relatively large, which results in the limitation of application scenarios.
In order to address these challenges, our motivation is to propose a new algorithm to complete
the full CNF characterization of a given set and achieve the provable optimality theoretically.

1.2 Our Contributions
For a given subset S of {0, 1}n, C is a set of CNF clauses such that the solution space of C

on {0, 1}n is S exactly. We call C a full CNF characterization (FCC, in short) of S. Our main
contribution is to establish a complete theory to get a C with the minimal number of clauses.

Firstly, we focus on the plain set, which can be characterized by a clause. We present
their essential properties in terms of clauses and sets respectively, and provide a sufficient and
necessary condition for a plain set. Furthermore, we also explore the connections between linear
integer inequalities and CNF clauses.

Secondly, based on the properties of plain sets, we propose an algorithm to construct a FCC
for a given set. The new algorithm can obtain best FCCs for sets whose dimensions are up to
12. It is also efficient for sets with larger dimensions and can provide better results.

Finally, we apply our algorithm to various S-boxes used in block ciphers and get best FCCs
for their DDTs and LATs as well as accelerate existing models, the results are listed in Table
2, Table 3 and Table 4. All of our results are the best-known at present.

1.3 Organization
This paper is organized as follows: Firstly necessary notations and some preliminaries are

introduced in Section 2. In Section 3, the properties of the plain set which can be characterized
by a CNF clause are studied and a necessary and sufficient condition for plain sets is proposed.
In Section 4, an efficient algorithm to find a full CNF characterization with the minimal number
of CNF clauses for a given set is introduced. In Section 5, we apply the new algorithm to
characterize different S-boxes and get the best results so far.



2 Notations and Preliminaries
In this section we give a brief overview of some notations and definitions. Table 1 lists parts

of notations.

2.1 Notations

Table 1: The notations used throughout the paper
Notation Description

n A positive integer

Z2 The set {0, 1}

Zn
2 The set of all n-tuples over Z2, i.e., {0, 1}n

Zn
∗ The set {0, 1, ∗}n

Zn The integer set {0, 1, · · · , n− 1}

Πn The set of all subsets of Zn
2

Pn The set of all plain sets in Πn

xi The i-th bit of x

wt(x) Hamming weight of x

ei An n-bit unit whose i-th element is 1 and others are 0

x⊕ y Bitwise Xor between x and y

S A subset of Zn
2

S The complementary set of S in Zn
2

C(S) The set of all the plain closures of S

∧, ∨ Logical operation And, Or

x Logical operation Not: 1⊕ x

c :
∨n−1

i=0 ai ∨ (xi ⊕ ci) = 1 A CNF clause

2.2 Boolean Formula and CNF
Boolean formulas are formulas that consist of only boolean variables and the operators And

(∧), Or (∨), Not ( ). SAT studies whether there is a set of boolean variables whose assignment
satisfies the given boolean formulas. If so, the problem is said to be satisfiable; otherwise, it
is said to be unsatisfiable. Since SAT is proven to be NPC, how to solve it efficiently is a hot
research direction in recent years.

Usually, for a given boolean formula, researchers first represent it as the standard input
format of SAT solver: the form of CNF, namely:

∧m−1
i=0

(∨ni−1
j=0 xi,j

)
= 1, where xi,j are

boolean variables, constants or the negation of boolean variables. Each
∨ni−1

j=0 xi,j = 1 in a
CNF is called a clause. The variables in a clause are joined by Or, that is, the single clause is
true as long as one of its variables is true. Since different clauses are joined by And, the whole
problem is satisfied if and only if each clause holds. To describe the form in which a boolean
variable appears in a clause, we have the following definition:



Definition 2.1 Suppose c :
∨n−1

i=0 (ai ∨ (xi ⊕ ci)) = 1, the coefficient of xi in c is denoted
as c(xi), where

c(xi) :=


1, if ai = 0 and ci = 0,

−1, if ai = 0 and ci = 1,

0, otherwise.

When c(xi) = 1, the variable xi appears in a clause and we say its coefficient in this clause is
1; when c(xi) = −1, the negation of the variable xi appears and we say its coefficient is -1;
otherwise, the coefficient is said to be 0, i.e., c(xi) = 0.

Next we will explain how to characterize a cryptanalysis algorithm. Take the *-DDT of
the S-box as a example, denote f(x, y) as a Boolean function whose input is 2n-bit, where
x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) are input difference and output difference
respectively. Set f(x, y) = 1 if and only if (x, y) is a possible pattern of the DDT, then the
constraint condition f(x, y) = 1 is the full characterization of the *-DDT. The Product-of-Sum
representation of f can be expressed as follows:

f(x, y) =
∧

c∈{0,1}2n

(
αc ∨

n−1∨
i=0

(xi ⊕ ci) ∨
n−1∨
i=0

(yi ⊕ cn+i)

)
,

where αc = f(c) ∈ {0, 1}, c = (c0, c1, · · · , c2n−1). Then f(x, y) = 1 if and only if

n−1∨
i=0

(xi ⊕ ci)

n−1∨
i=0

(yi ⊕ cn+i) = 1

holds for all c such that αc = 0. When at least one of the (xi ⊕ ci) and (yi ⊕ cn+i) is 1, the
result of the Or is 1, thus the solution space of f(x, y) = 1 is exactly {c ∈ Zn

2 | αc = 1}, and
the solution space of the above CNF is exactly all the possible patterns of the *-DDT when set
αc = 0 for all impossible patterns. By using this method to characterize each component of the
target cipher, the solution space of the whole model can be restricted to the solution space of
the actual cryptanalysis problem. Thus the feasible solution obtained by the solver can be the
differential/linear trails or distinguishers that attackers need.

In this paper, such characterization is known as the full CNF characterization which will be
defined in the next section.

2.3 Full CNF Characterization of Sets over Zn
2

In automatic cryptanalysis, the core of all the modelling problems is characterizing a subset
of Zn

2 , that is, to build the corresponding CNF clause system whose solution set is exactly the
target set. This problem is called the full CNF characterization problem of a finite set, and is
defined as follows:

Definition 2.2 (Full CNF Characterization) If the solution set of a CNF system C :∧m−1
i=0

(∨ni−1
j=0 ci,j

)
= 1 is S ∈ Πn, then C is called the full CNF characterization of S. Elements

in S are called feasible points of C; elements in S are called infeasible points of C.



We can always construct a FCC for a given set S ∈ Πn, that is to say, FCC always exists.
Before presenting the formal proof, we make conventions on the meaning of the symbols c and
C for convenience. Without confusion, we still use the notation c to denote the solution space of
the CNF clause c, thus c ∈ Πn and c means the complementary set of c in Zn

2 when considered
as a set. Similarly, we have C =

∩m−1
i=0 c when C is viewed as a set. Next, we prove the existence

of the FCC of S.
Theorem 2.1 (Existence of the FCC) For an arbitrary given set S ∈ Πn, there must

exist a FCC C of S.

Proof Denote S = {si|i = 0, · · · , n − 1}, we konw that Zn
2 \ {si} is the solution space of

the clause ci :
∨n−1

i=0 (xi ⊕ sii) = 1, where si = (si0, s
i
1, · · · , sin−1) ∈ S. Then C = ∩n−1

i=0 ci =

∩n−1
i=0 (Z

n
2 \ {si}) = Zn

2 \ (∪n−1
i=0 {si}) = Zn

2 \ S = S, hence C is a FCC of S.
A FCC is composed of multiple clauses and a set may have more than one FCC. To build

more efficient models, researchers always concentrate on characterizations with fewer clauses.
For a given set S, define the FCC of S with the minimal number of clauses as a best FCC of S.

First we mainly focus on the properties of a single clause which corresponding to a special
class of subsets in Zn

2 .
Definition 2.3 (Plain Set) For S ∈ Πn, we say S is plain if S can be characterized by a

single clause. Denote the set of all the plain sets in Πn as Pn.
Obviously, ∅,Zn

2 ∈ Pn. We say ∅ and Zn
2 are trivial and S ∈ Pn\{∅,Zn

2} is non-trivial.
Plain sets are a class of sets with many special properties which are important in constructions
of FCCs. In more detail, each plain set corresponds to a CNF clause with respect to char-
acterization. Conversely, the solution set of a CNF system is the intersection of some plain
sets. Therefore, to design a general scheme for FCC construction, it is a key step to study the
properties of plain sets.

2.4 Set Covering Problem
Suppose U is a given set, denote S as a subset of the power set of U which contains n

elements whose union is U. Set Covering Problem is aimed to find a minimal subset of S such
that their union is equal to U. The specific description is as follows:
Decision variables:

ys =

1, if s ∈ S is selected;
0, otherwise.

Objective function:
Minimize

∑
s∈S

yi.

Constraint conditions: ∑
s:e∈s

ys ≥ 1,∀e ∈ U;

ys ∈ {0, 1},∀s ∈ S.



The objective function is set as the minimum value of the number of selected subsets and the
constraint conditions ensure that all elements in U are covered.

SCP is a well-known NPC problem [36] which plays a crucial role in reducing the scale of
models for better characterization in automatic cryptanalysis. Traditional MILP and SAT char-
acterization can be divided into two steps: the first step is to generate sufficient characterization
inequalities (clauses) for the given set and establish a full characterization as a candidate set;
the second step is to remove redundant inequalities (clauses) from this candidate set, i.e., select
the minimal number of inequalities (clauses) as the final full characterization. The second step
can be completely converted into an SCP, where the set composed of all infeasible points is the
target set U, the set of points cut off by each candidate inequality (clause) is regarded as an
element of S, and all the candidate inequalities (clauses) can be regarded as S. By selecting the
minimal subset of S to cover U, the minimal number of inequality (clause) characterization can
be constructed. According to the definition, SCP is equivalent to a MILP which can be solved
directly by MILP solvers and get the optimal value. For low dimensional sets, this method is
efficient and can provide a theoretical guarantee of optimality.

However, for higher dimensional sets, the MILP model corresponding to the SCP can be
complex due to a large number of candidate constraints and infeasible points, making it chal-
lenging to obtain the optimal solution directly. In such cases, alternative methods such as
the greedy algorithm and heuristic algorithms are often adopted to get better solutions. For
instance, many solvers that are more efficient than Gurobi have been proposed in the GECCO
Competition, which can deal with higher dimensional cases. Among them, an effective frame-
work [37, 38] can be described as follows: 1) The problem is simplifying by adopting reduction
rules; 2) An initial feasible solution is generating by applying a PageRank-like constructive
heuristic; 3) The SCP is transformed into a series of k-set covering decision subproblems; 4)
Each subproblem is tackled with a fast local search procedure.

Despite the theoretical difficulty in proving optimality, a good solution for FCCs can still
be obtained by solving the SCP for high dimensional sets. In this paper, we will utilize one of
the aforementioned methods in a flexible manner to obtain a better solution.

3 Essential Properties of Plain Sets
In this section we will explore some essential properties of plain sets. Based on these

properties, we further propose a sufficient and necessary condition for the plain set.

3.1 Plain Set and Degeneration
A FCC is composed of multiple CNF clauses combined by the ∧ operations, that is, the

boolean formula is satisfied if and only if every clause is true simultaneously. We first study the
properties of a single CNF clause and its corresponding plain set. For a given CNF clause, the
whole space Zn

2 can be divided into two categories according to whether this clause is satisfied:
feasible points and infeasible points. Since boolean variables in the clause are concatenated by
∨, feasible points have the following property:



Property 3.1 Denote c :
∨

i∈I xi ∨
∨

j∈J xj = 1, x ∈ Zn
2 is a feasible point of c if and

only if there exists i ∈ I, s.t. xi = 1 or j ∈ J , s.t. xj = 0.
According to Property 3.1, the requirement for a point to be feasible of a clause is easy to

satisfy: one of the components satisfying the specific value. Therefore, more information can be
obtained by studying the properties of unfeasible point sets. Hence, conditions that need to be
met for infeasible points of the same clause are considered. To start with, the characterization
clause and its infeasible points have the following property:

Property 3.2 Suppose S ∈ Pn and c is a FCC of S, define three subsets as below:

I0 := {i|si = 0,∀s ∈ S},

I1 := {i|si = 1,∀s ∈ S},

I2 := {i|∃s0 ∈ S, s.t. s0i = 1 and ∃s1 ∈ S, s.t. s1i = 0}.

When i ∈ I0, it can be concluded that c(xi) ̸= −1, i.e., xi will not appear in c; when i ∈ I1,
then c(xi) ̸= 1, i.e., xi will not appear in c; when i ∈ I2, then c(xi) = 0, i.e., both xi and xi

will not appear in c.

Proof The first two statements obviously hold according to Property 3.1, then we will
prove the third statement by contradiction. Since c is a FCC of the plain set S, when c(xi) = 1,
all s that satisfy si = 1 are preserved by c; when c(xi) = −1, then s that satisfy si = 0 are
preserved by c. Since I2 ̸= ∅, then c ∩ S ̸= ∅, which is contradicted with the definition of
FCC.

The above property reflects the relation between coefficients of clauses and their infeasible
sets. From the point of view of the clause, when c(xi) = 0, we say the clause degenerates at the
i-th dimension. In this case, xi does not influence the characterization, and the space of the set
can be reduced from Zn

2 to Zn−1
2 . According to Property 3.2, when I2 ̸= ∅, the characterization

clause of S must correspond to degenerations of i-th dimension for all i ∈ I2. Thus, infeasible
points are very closely related to the degeneration. In non-degenerate cases, every xi appears,
that is, c(xi) ̸= 0, i = 0, · · · , n−1, by using x

′

i := xi to instead xi, all such clauses are eventually
transformed into the same form, which is called the trivial clause:

Definition 3.1 (Trivial Clause) Denote ct :
∨n−1

i=0 xi = 1, then ct is called as a trivial
clause over Zn

2 and the solution space of ct is {(0, · · · , 0)}.
From the perspective of the set, the degeneration case corresponds to the third case in

Property 3.2. If a set can be characterized by a non-trivial clause, then there must exist
xi that does not appear in the clause, which is corresponded to the degenerated case. It
means that the value of xi does not influence whether the clause holds or not, hence when
s = (s0, · · · , si, · · · , sn−1) ∈ S, we will always have s′ = (s0, · · · , si, · · · , sn−1) ∈ S. In this
case, s and s′ can be abstracted as a same point: s∗ := (s0, · · · , si−1, ∗, si+1, · · · , sn−1) ∈ S,
which will be called mergeable later.

Based on the discussion above, it is clear that every clause corresponds to a trivial clause in
a lower dimensional space. At the same time, only one point is cut by the trivial clause in the



lower dimensional space, and the corresponding points in the higher dimensional space must be
a degenerated set that can be merged. Hence a sufficient and necessary condition of the plain
set can be obtained by exploring the internal relationship between the set of mergeable points
and the coefficients of variables in clauses.

3.2 A Sufficient and Necessary Condition of the Plain Set
From the previous discussions, we have established the connection between plain sets and

degenerated sets. It can be concluded that S is plain only if S can degenerate to a lower
dimensional set. Conversely, each plain set corresponds to either a single point or a degenerated
set. To further elaborate on this relationship, let’s start with the definition of mergeable.

Definition 3.2 (Mergeable) Suppose S ∈ Πn and i ∈ Zn, if s ∈ S and s⊕ ei ∈ S, we say
s and s⊕ ei are i-th position mergeable under S. Denote s′ = (s′0, s

′
1, · · · , s′n−1), where

s′j =

sj , if j ̸= i;

∗, if j = i.

In this case, s′ can represent the set {s, s⊕ ei}.
After points merging, S can be regarded as a subset of Zn

∗ := {0, 1, ∗}n, each ∗ represents two
elements in Zn

2 whose specific components take over {0, 1} and the rest have the same values.
Further, other components can be merged simultaneously based on Definition 3.2. Suppose
x ∈ Zn

∗ and denote the number of ∗ in x as wt∗(x). More generally, higher-order mergeable can
be defined as below:

Definition 3.3 (k-order mergeable) Suppose s0, s1, · · · , s2k−1 ∈ S, if there exists I ⊆ Zn

such that these 2k points in S can be represented as s′ = (s′0, s
′
1, · · · , s′n−1), where

s′i =

= s0i = s1i = · · · = s2
k−1

i , ∀i /∈ I;

∗, ∀i ∈ I,

and wt∗(s
′) = k, then {s0, s1, · · · , s2k−1} is called to be I-th position k-order mergeable under

S, or for short, (I, k)-mergeable and I is called the mergeable position. At the same time, we
still use s′ to denote the set {s0, s1, · · · , s2k−1}, then S can be regarded as a subset of Zn

∗ .
According to the above definition, a complementary set of a mergeable set can be easily

characterized by a clause as below:
Property 3.3 Suppose s is a (I, k)-mergeable subset under S, then

c :
∨

i∈Zn\I

(xi ⊕ si) = 1 (1)

is a FCC of s.

Proof Substitute the value of si into Equation (1), then every expression in this clause
is 0 and the clause is unsatisfiable; in reverse, if x ∈ Zn

2 makes c unsatisfiable, it must be the



case that every expression in the clause is 0, hence we have xi = si, ∀i ∈ Zn
2 \ I, i.e., x ∈ s. In

conclusion, we know that c = s, hence c is a FCC of s.
Recall the discussion of degeneration in the previous section, a sufficient and necessary

condition of the plain set can be obtained based on the properties of mergable sets.
Theorem 3.1 (A Sufficient and Necessary Condition of the Plain Set) S ∈ Πn is plain

if and only if

S = {s = (s0, · · · , sn−1), where si ∈ {∗, ci} and c = (c0, · · · , cn−1) is a constant depended on S},

i.e., S is a merageable set.
The proof can be completed directly according to Property 3.3 and Definition 3.3. Theorem

3.1 provides a sufficient and necessary condition of the plain set and establishes the one-to-one
correspondence between plain sets and mergeable sets. Moreover, a plain set can be constructed
according to Property 3.3.

3.3 Plain Closure of Sets
For a non-plain set S, there will be more than one clause in its FCC, and S is the intersection

of solution spaces of these clauses. In this case, each solution space of these clauses is a plain
set containing S, which is called the plain closure of S.

Definition 3.4 (Plain Closure) Let S ∈ Πn and S′ ∈ Pn, S′ is called a plain closure of
S if S ⊆ S′.

It is observed that Zn
2 is always a plain closure of all S’s, thus the plain closure always

exists, and we call Zn
2 to be trivial. If S is not plain, it can be expanded into plain sets by

adding elements in S. By constructing different closures of S and making their intersection S,
a FCC of S can be obtained. Denote the set of all the plain closures of S as C(S). Furthermore,
according to Theorem 3.1, all plain closures of a given set S can be obtained by exhausting
all possible mergeable sets contained in S and collecting their complements. Each clause in a
best FCC of S must correspond to a plain closure of S, so a best FCC of S is always a subset
of C(S). Since our goal is to find the best FCC, we are particularly interested in the minimal
plain closures of S, which are defined below.

Definition 3.2 (Minimal Plain Closure) Let S ∈ Πn and S′ be a plain closure of S. S′

is minimal if ∄S′′ ∈ Pn such that S ⊆ S′′ ⊂ S′.
Those non-minimal plain closures are said to be redundant which only increase the scale of

the problem without adding any new information. Hence, it is crucial to eliminate redundancies
to improve the efficiency of the SCP step.

Property 3.4 Suppose c1 :
∨

i∈I1
xi ∨

∨
j∈J1

xj = 1 and c2 :
∨

i∈I2
xi ∨

∨
j∈J2

xj = 1. If
I1 ⊂ I2, J1 ⊂ J2, then c1 ⊂ c2.

Proof Suppose x ∈ c1, then there exists either i ∈ I1 ⊂ I2 such that xi = 1, or j ∈ J1 ⊂ J2

such that xj = 0, hence we have x ∈ c2. Then c1 ⊂ c2, which means that the former clauses
will remove more infeasible points.



Property 3.4 provides a sufficient condition for the minimal plain closures which can help
remove the redundancy. After collecting all the minimal plain closures of S, we convert it into
an SCP and call MILP solvers to get the minimum value, then a FCC can be obtained. In this
process, we exhaust all the minimal plain closures of S without introducing new variables, so
the FCC we constructed is a best FCC in theory. The details of the algorithm will be presented
in the next section. Moreover, according to our comprehensive theoretical framework, it can be
easily observed that the essential goal of both Boura’s algorithm and QM algorithm is also to
construct all the minimal plain closures, but different perspectives lead to different presentations
of the algorithms. And our complete theoretical system can guarantee the optimality of FCCs.

3.4 The Relationship between FCC and FLIIC
In this subsection, we will further explore the relationship between FCCs and FLIICs,

in order to reveal the difference and connection between MILP models and SAT models.
First, a CNF clause can be naturally transformed into a linear integer inequality. Suppose
c :
∨n−1

i=0 (xi ⊕ ci) = 1, then

l :

n−1∑
i=0

(xi + ci − 2xici) ≥ 1

has the same solution space with c.
Due to the wider range of coefficients of linear inequalities, not all inequalities can be

converted into a CNF clause, that is, the plain set in the sense of the CNF clause is a subset
of the plain set in the sense of the inequality. Next, we will further explore the relationship
between them.

Firstly, the non-degenerate case is considered and the coefficients of the inequality are limited
to {1,−1}, then the constant term has the following property:

Property 3.5 If the clause c :
∨

i∈I xi ∨
∨

j∈J xj = 1 has the same solution space with
the inequality l :

∑
i∈I xi −

∑
j∈J xj + b ≥ 0, then b = |J | − 1.

Proof We prove it by contradiction. Suppose s = (s0, s1, · · · , sn−1) ∈ Zn
2 .

• If b < |J | − 1, when all sj = 1 and only one si = 1, we have 1 − |J | + b < 0 and s is
a feasible point of c. In this case, s is cut by l, which leads to a contradiction, hence
b ≥ |J | − 1;

• If b ≥ |J |, when all si = 0 and all sj = 1, we have 0− |J |+ b ≥ 0, hence s is a infeasible
point of c. In this case, s is preserved by l, which leads to a contradiction, hence b < |J |;

In conclusion, we have b = |J | − 1.
The aforementioned property implies that the constant term of the inequality is uniquely de-

termined when the coefficients are the same. However, in practical applications, the coefficients
of linear integer inequality are in a wider range, hence we will further explore the property of
coefficients.

Property 3.6 Denote c :
∨

i∈I xi ∨
∨

j∈J xj = 1 and



l :
∑
i∈I

aixi −
∑
j∈J

ajxj + b ≥ 0

have the same solution space in Zn
2 , where ai, aj ∈ Zn, then

b+ 1 ≤
∑
j∈J

aj ≤ b+ min
i∈I,j∈J

{ai, aj}.

Proof Suppose s = (s0, s1, · · · , sn−1). Next we consider some special cases to provide
necessary conditions for coefficients:

• Let si = 0 for all i ∈ I and sj = 1 for all j ∈ J , then s is a infeasible point of c, hence∑
j∈J aj > b;

• Let sj = 1 for all j ∈ J , for i ∈ I, suppose si = 1 and si′ = 0, ∀i′ ∈ I \ {i}, then s is a
feasible point of c, hence ai −

∑
j∈J aj + b ≥ 0, i.e.,

∑
j∈J aj ≤ b+mini∈I ai;

• Let si = 0 for all i ∈ I, for j ∈ J , suppose sj = 0 and sj′ = 1, ∀j′ ∈ J \ {j}, then s is a
feasible point of c, hence aj′ −

∑
j∈J aj + b ≥ 0, i.e.,

∑
j∈J aj ≤ b+minj∈J aj .

In conclusion, we have:

b+ 1 ≤
∑
j∈J

aj ≤ b+ min
i∈I,j∈J

{ai, aj}. (2)

In addition, the above three conditions are compact boundary conditions, that is, the equal-
ity can be satisfied.

The above discussion is carried out for the non-degenerate cases. When considering the
degenerate cases, the clause and inequality are regarded as the full characterization of a degen-
erate set. Once a new variable xn is introduced, the dimension of the space increases by 1, but
in this case, the value of the newly added component has no affection on the value of the clause
and the inequality. Hence the solution spaces remain unchanged and the conclusion still holds
for degenerate cases.

By exploring the relationship between the coefficients of inequalities and the solution sets
of clauses, we determine which integer linear inequalities can be transformed into clauses and
establish a bidirectional relationship between the characterization of MILP and SAT. Such
discussion will serve as a way to link MILP-based methods and SAT-based methods.

4 Algorithm to Get a FCC for a Given Set
In this section, based on the properties of plain sets discussed in the previous section, a new

algorithm to construct a best FCC is proposed.
Given a set S, if it is plain, then a best FCC can be obtained directly according to Property

3.3. For a non-plain set S, we will construct plain closures by adding elements from S to S.
From the point of view of S, this operation is equivalent to removing infeasible points, i.e.,



taking subsets of S. So the problem is reduced to finding all the maximal subsets of S whose
complementary sets are plain. According to Theorem 3.1, this problem can be solved by finding
all mergeable subsets of S which is the core of the algorithm. According to the definition, each
∗ corresponds to two elements that are only different in a certain component. Moreover, a k-
order mergeable set contains 2k elements, which can be obtained by merging two (k− 1)-order
mergeable sets. Therefore, a recursive method is adopted to construct high-order mergeable
sets.

Denote S
0
:= S, the first step is to collect all the 1-order mergeable sets in S by exhausting

all components. Denote this procedure as ComputeMerge(S0
, i), i = 0, · · · , n − 1 and the

result set as S
1
:= {s|s ∈ S

0
, s ⊕ ei ∈ S

0
, i ∈ Zn}. According to mergeable positions, S1 can

be divided into the union of n sets:

S
1
= S

1

0 ∪ S
1

1 ∪ · · · ∪ S
1

n−1,

where S
1

i = {s|s ∈ S
0
, s ⊕ ei ∈ S

0}. It should note that different S
1

i may have common
elements which correspond to different mergeable positions. On step further, all the 2-order
mergeable sets are the results of merging two elements in S

1

i at components j ̸= i. Then by
applying ComputeMerge(·, j) to each S

1

i , all the 2-order mergeable sets can be obtained.
More generally, the set S

k storing all the mergeable sets of the k-order can be recursively
constructed as follows:

S
k
=

∪
I⊆Zn,|I|=k−1,j∈I

S
k

I∪{j} =
∪

I⊆Zn,|I|=k−1,j∈I

{x|x ∈ S
k−1

I , x⊕ ej ∈ S
k−1

I },

where I represents the mergeable position of the (k − 1)-order mergeable sets and I ∪ {j}
represents the mergeable position of the newly constructed k-order mergeable sets. After con-
structing S0, S1, · · · , Sn−1, all mergeable sets and their corresponding mergeable positions have
been collected, and each corresponds to a plain closure of S. For details of the algorithm, see
Algorithm 1. Then the algorithm to solve the SCP is called. Finally, according to Property
3.3, the FCCs of the selected plain closures can be obtained which form a best FCC for S.



Algorithm 1 Get all the minimal plain closures of S
Input: A set S ∈ Πn

Output: All the minimal plain closures of S
procedure ComputeMerge(A, i) return {x|x ∈ A, x⊕ ei ∈ A};
procedure ComputeAllClosure(S)

R := ∅;
S0 := S;
for d = 1 to n− 1 do

for a ∈ {x|wt(x) = d} do
k

R← supp(a);
Sa = ComputeMerge(Sa⊕ek , k);

for a ∈ {0, · · · , n− 1} do
for x ∈ Sa do

R := ∅;
for k ∈ prec(a) do

R = R ∪ {x⊕ k};
Sa = Sa\{x⊕ k};

R = R ∪ {R};
return Minimize(R);

Remark 4.1 (The Time Complexity Analysis of Algorithm 1) The produce Compute-
Merge() exhausts set A and search whether x⊕ei is in A, hence the time complexity is O(|A|)
which is bounded by O(2n). Besides, while adopting a merge representations, this bound can
be tightened to O(2n−d), where d is the order of the mergeable set. In the produce Com-
puteAllClosure(), there are

(
n
d

)
elements whose weight are d, hence the time complexity of

the first loop is bounded by O(
∑n

d=1

(
n
d

)
× 2n−d)=O(3n). In the second loop, the total number

of iterations for the two outer loops is 2n, corresponding to each inner loop having at most
2n−wt(x) iterations, hence the time complexity is O(

∑n
d=1

(
n
d

)
× 2d) = O(3n). In conclusion,

the total time complexity is bounded by O(3n).

5 Applications
In this section, we apply the new algorithm to characterize S-boxes used in block ciphers.

In practical applications, the target set can be divided into two types, those with probability
and those without probability, corresponding to the DDT (LAT) and the *-DDT (*-LAT)
respectively. To obtain the corresponding set, we introduce a Boolean function whose value is 1
when the transition is feasible and 0 otherwise. Please refer to subsection 2.2 for more details.
In summary, the core of characterizations is constructing a FCC for a given set.

For characterizations of DDTs, extra variables will be appended to represent concrete prob-
abilities. For example, to characterize the DDT of Present’s S-box which has three non-zero
probabilities: P0 = 1, P1 = 1

22 , P2 = 1
23 , three binary variables are introduced, denoted as w0,



w1, w2. Then tuples (0, 0, 0), (1, 1, 0), (1, 1, 1) can represent all cases and the exact probability
Pr can be calculated as logPr = w0 + w1 + w2. In this case, the set of the DDT is a subsect
of Z11

2 .
There are two different modes for characterizations of *-DDTs when searching the minimal

number of active S-boxes. For both of them, an extra binary variable A needs to be introduced
for each S-box to indicate whether it is active. If the S-box is active, then A = 1; otherwise,
A = 0. For a n-bit S-box, suppose x0, · · · , xn−1 and y0, · · · , yn−1 are variables which represent
the input and output differences respectively. Denote the feasible point of the target *-DDT as
S0, then one can use n+ 1 inequalities to characterize the activeness of the S-box:

A ≥ xi, i = 0, · · · , n− 1;

x0 + x1 + · · ·+ xn−1 ≥ A.

In addition, a FCC of S0 needs to be constructed. On the other hand, one can also construct
a FCC of

S′ = {(x, y,A)|(x, y) ∈ S0\{(0, · · · , 0)}, A = 1} ∪ {(0, · · · , 0)}

directly. The above two cases are denoted as *-DDT and A-DDT, and correspond to charac-
terizations of subsets of Z2n

2 and Z2n+1
2 respectively.

In summary, there are three ways to characterize the differential transitions for an S-box,
which correspond to three different sets. In experiments, we characterize these three sets for
each block cipher and obtain their best FCCs using our new algorithm. Meanwhile, we also
use Logic Friday to characterize the same sets for comparison. The experimental results are
shown in Table 2. Compared with the existing method, our new algorithm can construct FCCs
with fewer clauses, and the theoretical optimality can be proved for small-dimensional cases.
For large S-boxes whose best FCCs can not be obtained, we can also get better solutions and
provide a lower bound simultaneously. In addition, although the corresponding SCP is too
large to get the optimal value for the *-DDTs of large S-boxes, we can still get better results
based on the candidate set constructed by the new algorithm and algorithms to solve SCP.
More specifically, we finally get a FCC with 7393 clauses for the *-DDT of AES S-box, which is
the best result so far, compared to the previous result of 8302. For more results of the *-DDTs
of large S-boxes, please refer to Table 3.

Table 2: Number of clauses to model differential transitions for
various S-boxes

Cipher LF *-DDT Ours *-DDT LF DDT Ours DDT LF A-DDT Ours A-DDT
Rectangle 31 30 41 40 33 33
Present 39 36 55 53 43 40
Pyjamask 28 28 37 36 33 32
Piccolo 31 31 42 39 36 36



Panda 51 49 75 69 54 53
Noekeon 44 44 70 64 48 47
KNOT 32 30 42 40 35 33
Enocoro 44 44 70 64 48 47
Elephant 40 38 52 50 43 41
LblockS0-9 30 30 38/39 37 34 34
Skinny-64 31 31 42 39 36 36
Pride 31 31 41 39 36 36
Twine 47 45 71 65 51 48
Prince 52 51 73 68 55 54
Klein 45 43 65 60 49 47
Prost 31 31 41 39 36 36
Joltik 31 31 42 39 36 36
MIBS 52 47 78 68 53 51

Midori S0 47 47 57 54 48 48
Midori S1 57 56 78 73 58 58
Lillput 47 45 73 65 51 48
FBC 32 32 42 40 36 36

SC2000-4 45 42 70 64 46 45
ASCON-5 60 59 - - 64 64
FIDES-5 125 124 - - 127 126
Keccak 46 46 - - 51 51
SC2000-5 125 123 - - 126 126
Sycon 60 59 - - 64 64

Shamash 125 125 - - 130 127
DryGASCON-128 60 59 - - 66 64

APN-6 297 288 - - 298 291
FIDES-6 487 455 - - 492 460
SC2000-6 615 567 - - 615 572
KASUMI 2228 2000-2026 - - 2233 2006-2030

1 Columns with LF means the number of clauses in FCCs constructed by Logic Friday, columns
with Ours means the number of clauses in FCCs constructed by Algorithm 1;



2 Cells with ‘-’ means that we did not do the corresponding experiments due to the encoding
method of probabilities.

3 For large-dimensional sets, we can not get the result of Logic Friday in a reasonable time in
‘exact’ mode. In this case, we adopt the outputs in ‘fast’ mode.

Table 3: Number of clauses to model *-DDTs for large S-boxes

Cipher #Clause LF #Clause Ours

AES 8302 7393

Camellia 8314 7428

ZUC S0 5307 4773

ZUC S1 8265 7399

Snow3G 7782 6800

MISTY-9 - 25373

Moreover, Sun et al. [34] accelerated the search of differential and linear characteristics
with the SAT method and updated results for many lightweight block ciphers. For comparison,
we choose two ciphers with open source codes ∗as comparisons and replace the FCCs of the S-
boxes in their models with the best FCCs generated by our algorithm. To compare the runtime,
anything else remains unchanged. The experimental results are shown in Table 4. It can be
observed that best FCCs constructed by the new algorithm can accelerate the search process
for some models. Furthermore, since all the minimal plain closures can be obtained, our work
is able to completely control the number of clauses, allowing for the construction of different
models to improve solving efficiency.

Table 4: Runtimes of automated search models

Cipher Type #Clause [34] #Clause Ours Time (s) [34] Time (s) Ours

Present DDT 43 40 30.60 37.57

Present A-DDT 55 53 443.14 498.96

Present LAT 51 47 230.88 222.13

Present A-LAT 39 38 5.35 7.71

Lblock DDT 38/39 37 629.99 577.20

Lblock LAT 32 30 191.81 190.21

∗Available at https://github.com/SunLing134340/Accelerating_Automatic_Search.git

https://github.com/SunLing134340/Accelerating_Automatic_Search.git
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