
Robust and Reusable Fuzzy Extractors and their
Application to Authentication from Iris Data

Somnath Panja1, Nikita Tripathi1, Shaoquan Jiang2, and Reihaneh
Safavi-Naini1

1 University of Calgary, Canada,
somn.math2007@gmail.com,{nikita.tripathi,rei}@ucalgary.ca

2 University of Windsor, Canada, shaoquan.jiang@gmail.com

Abstract. Fuzzy extractors (FE) are cryptographic primitives that es-
tablish a shared secret between two parties who have similar samples of
a random source, and can communicate over a public channel. An exam-
ple for this is that Alice has a stored biometric at a server and wants to
have authenticated communication using a new reading of her biometric
on her device. Reusability and robustness of FE, respectively, guarantee
that security holds when FE is used with multiple samples, and the com-
munication channel is tamperable. Fuzzy extractors have been studied
in information theoretic and computational setting.
Contributions of this paper are two-fold. First, we define a strongly ro-
bust and reusable FE that combines the strongest security requirements
of FEs, and give three constructions. Construction 1 has computational
security, and Constructions 2 and 3 provide information theoretic (IT)
security, in our proposed model. Construction 1 provides a solution to the
open question of Canetti et al. (Eurocrypt 2014), by achieving robustness
and reusability (post-quantum) security in standard model for their con-
struction. Constructions 2 and 3 offer a new approach to the construction
of IT-secure FE. Construction 3 is the first robust and reusable FE with
IT-security without assuming random oracle. Our robust FEs use a new
IT-secure MAC with security against key-shift attack which is of inde-
pendent interest. Our constructions are for structured sources which for
Construction 1, matches Canetti et al.’s source.
We then use our Construction 1 for biometric authentication using iris
data. We use a widely used iris data set to find the system parameters
of the construction for the data set, and implement it. We compare our
implementation with an implementation of Canetti et al.’s reusable FE
on the same data set, showing the cost of post-quantum security without
using random oracle, and robustness in standard model.

Keywords: Fuzzy extractors, Reusable and robust fuzzy extractor, Post-quantum
security, Biomertic authentication, Iris authentication

1 Introduction
Establishing a shared random key between two parties is a fundamental prob-
lem in cryptography. Fuzzy extractors [19], establish a shared key in a setting

where Alice and Bob have “close" samples of a random source, where closeness
is with respect to some distance metric, and can communicate over a public
channel. The random source must have some guaranteed entropy (min-entropy),
capturing unpredictability of the samples. Such correlated information source
samples naturally occur in sampling of biometric and behavioral data [14,27,25],
readings of a physical randomness source such as sunspots [11] and physically
unclonable functions (PUFs) [34,29], or through quantum communication and
post-processing in quantum key distribution [4]. FEs are particularly attractive
because they allow a secret shared key to be established non-interactively using
a single message from Alice to Bob over a public channel, where security can be
information theoretic or computational. An FE consists of a pair of algorithms,
(Gen,Rep) and works as follows: Gen takes Alice’s sample w and generates a
pair (R,P) where R is the secret key and P is some data that will be sent to
Bob, who uses the Rep algorithm on their sample w′ that is “close" to w, and
P , and reproduces the secret key R. Reliability and security of fuzzy extractors
require the same key to be derived by the two parties with a probability at least
1 − ϵ, and the key R to be σ indistinguishable from a uniformly random string
of the same length, respectively.
Reusability and Robustness. FE in practice needs two important properties.

Reusability of fuzzy extractors [7] considers security when the same source
is used multiple times. For example biometric scans of an individual is used for
enrolment with multiple organizations. Reusability security is defined using a
game between a challenger and an adversary Eve, where Eve specifies source
samples w1, w2, · · ·wη in relation to w, and will be given the output of the Gen
algorithm on them. Variations of this definition can be grouped with respect to
the allowed type of queried samples by Eve (R1), and the output returned to
Eve (R2), each further refined as follows.
R1.1: Eve chooses a shift that will be applied to w to obtain wi [7]3;
R1.2: multiple readings of the source have arbitrary correlation with w [20]. In
both cases wi must be in “close" distance of w.
R2.1: Eve only sees P i which is the public output of the Gen on wi;
R2.2: Eve will be given the full output of Gen on wi, that is (P i, Ri).

R2.1 (resp. R2.2) is referred to as outsider (resp. insider) security [7].
Robustness requires that any modification of P be detectable with a high

probability. The two flavours of this requirement are the following.
S1: Eve has access to P only [8];
S2: Eve sees (P,R) before generating P ′ (̸= P). This is also referred to as post-
application robustness [17].

In the following we use the above labelling to differentiate FE constructions.
We note that R1.2 ≥ R1.2, R2.2 ≥ R2.1, and S2 ≥ S1, where "≥" refers to
“more demanding security".

Robust and Reusable FE provides robustness when Eve sees the Gen output
on multiple samples. The two types S1 and S2 of Eve’s access can be straight-
forwardly extended to all samples.

3 The definition allows any distortion function while all constructions are for shift function.

2

Fuzzy Extractor Constructions. An established approach to constructing
FE is to use a secure sketch, that is output of the Gen algorithm, to enable
Bob to recover w from w′ without loosing “too much" entropy. The two parties
then extract a common key R from their shared w. This approach is referred to
as sketch-and-extract paradigm. Canetti et al. [20] proposed a new approach,
Sample-then-Lock, and used it to construct computational reusable FE for a class
of structured sources that are called sources with high-entropy samples. This
construction and Alamélou et al.’s construction [2] are the only FE constructions
that satisfy (R1.2, R2.2) type of reusability (strongest). These are however based
on digital lockers, that have instantiations only based on hash functions when
modeled as random oracle, or using non-standard strong vector DDH assumption
[36]. These constructions are reusable only. Canetti et al. [20] note that it is easy
achieve robustness for the construction in random oracle model [Theorem 1, [8]],
but “Achieving reusability and robustness in the standard model is an open
question." There are some constructions of robust and reusable FE such as due
to Wen et al. [36] and Wen et al. [37], and provide (R1.1, R2.2, S2) type security.
Biometric Authentication and FEs. Biometrics have been widely used for
authentication on mobile devices, where the template is in plaintext and stored
and processed on a hardware security module. In remote client and server au-
thentication extreme precaution must be used to ensure security of biometric
data. FEs can be used for non-interactive remote authentication with provable
cryptographic security for biometric data [33]. Provable security is particularly
important because biometric data cannot be updated, and a system comprise
will have life long effect. Also because of the uniqueness of biometrics, one com-
promise would affect all systemsthat use different readings of the same biometric
data. Simhardi et al. [33] used a widely used iris data set to show that iris data
can be modelled as the structured source in [10], and implemented a slightly
modified version of Canetti et al.’s construction for non-interactive authentica-
tion system with provable security for iris data.

1.1 Our work

Out contributions are in two directions.
First, we construct (i) a computationally secure robust and reusable fuzzy

extractor (Construction 1), and (ii) an IT-secure reusable FE (Construction 2),
which is later extended to provide robustness (Construction 3). All construc-
tions satisfy the strongest notions of reusability (R1.2, R2.2), and in the case of
Construction 1 and 3, robustness (S2).

The Construction 1 is (post-quantum) secure and satisfies (R1.2, R2.2, S.2)
in standard model and for the same distributions as in [10], and answers the
open question raised by Canetti et al. [10]. Construction 2 provides a novel
approach to the construction of IT-secure extractors for a new class of structured
sources. Robustness in Constructions 1 and 3 both rely on a new IT-secure MAC
algorithm that is secure against key-shift attack and is of independent interest.

Second, we implement the Construction 1 for an iris based authentication
system that provides provable cryptographic security for iris data. We evaluate

3

performance of the system compared to the construction in [33] which imple-
ments a slightly modified version of Canetti et al.’s reusable FE. Our results
show that our Gen and Rep algorithms are roughly 4 and 10 times slower (see
section 4.2 and Figure 4(b)), respectively, showing the cost of providing security
and robustness in standard model. Interestingly the main cost of Gen is to re-
move the random oracle assumption by replacing the HMAC in that was used
for the realization of digital lockers, with the LPN-based encryption in our con-
struction. MAC computation requires computing a polynomial over a finite field
that can be significantly optimized but since in its current form, it is only a small
fraction of running time of Gen, we leave such optimization for future. To make
our results comparable with Simhardi et al. [33], we closely follow their experi-
mental setting. We use the same widely used iris data set ND-IRIS-0405 [32,6]
which is a superset of the NIST Iris Challenge Evaluation Dataset [31], and is
used in Sinhadri et al. The data set was obtained through our University Li-
cense agreement with the University of Notre Dame, with researchers’ access
permissions granted by the Ethics Board of our University. More details below.

Strongly robust and reusable computational fuzzy extractor Our start-
ing point is the sample-then-lock approach of Canetti et al. for α-entropy m-
sample sources. In these sources, for an n-bit sample w, random subsamples
of size m have min-entropy at least α. This models entropy sources with low
rate entropy samples that have additional structure on subsamples, and model
biometric data such as iris. The construction outline and its intuitive security
argument are given in Section 3.1. The main building blocks of the construction
are (1) a symmetric key encryption algorithm, proposed by Dodis et al. [16],
with security under auxiliary-input, assuming hardness of LPN (or the standard
Learning Subspace with Noise (LSN) assumption), and (2) a new one-time IT-
secure MAC with key-shift security. The encryption system has also an important
property called unique-key-property, that is instrumental in proving security of
our construction, and ensures that with high probability, there is a single key
that can decrypt a correctly generated ciphertext (Claim 4.1. [16]).

Achieving robustness is by using a new key-shift secure MAC that ensures
Eve cannot exploit linearity of the encryption system to tamper with the MAC
key and the tag simultaneously.

Our construction is in Common Reference String (CRS) model. This model
is also used in other known constructions of robust and reusable FE [36].

Theorem 1 proves security properties of the FE. The proof of the MAC
construction and proof of the theorem are in Appendix A and Appendix B
respectively.

Comparison of the construction with existing works is in Table 1.

Information Theoretic FE We use for the first time, sample-then-lock for
IT-secure FE, for a class of structured sources, called α-entropy conditional m-
sample sources. These sources require that the min-entropy of a random sample
of length m, conditioned on the knowledge of a random sample of length ℓ,
is above a threshold α. See Definition 6. Our main observation is that in in-
formation theoretic setting, one can use strong extractors to extract uniform

4

randomness from subsamples of sufficient min-entropy, and perfectly encrypt a
randomly chosen key R using One-Time-Pad (OTP). The security proof of FE
shows security of composition of multiple encryptions of the same message (R),
using the extractor’s output on different (correlated) subsamples (due to the
large enough min-entropy from the source) using different random seeds.

Construction 3 extends Construction 2 to obtain the first strongly robust
and reusable fuzzy extractor, and achieving security without random oracle.
Robustness is achieved by appending a tag that is constructed using the IT-
secure one-time MAC that was used in Construction 3.

Security theorems of two constructions are Theorem 2 and Theorem 3, re-
spectively, and their comparison with existing works is detailed in Table 1.

(α,m, ℓ)-conditional sources have a more entropy requirement and it is un-
clear if they would be appropriate model for biometric data. One example of
such sources can be constructed by sending a random string that is encoded as
polarized photons in two orthogonal basis over a quantum channel, similar to
the first step of BB84 protocol. The established correlated samples of Alice and
Bob after reconciliation can be modelled as a (α,m, ℓ)-conditional source. Using
our information theoretic sample-then-lock FE will give a new approach to key
establishment in this setting.
Comparison. Comparison of FE is multifaceted. We introduced the main vari-
ations of reusability and robustness, and lablled each. FEs in this paper as well
as well as Canetti et al. are for structured sources. Other FEs are have strict
requirement on min-entropy of samples. Table 1 compares our fuzzy extractor
constructions with other existing fuzzy extractors, showing (i) Construction 2 is
the first arbitrary correlation reusable IT-secure FE, (ii) Construction 3 is the
first strongly robust and reusable IT-secure FE without using random oracle,
and (iii) Construction 1 is the first computationally secure strongly robust and
reusable fuzzy extractor for arbitrary correlation samples in standard model.
Implementation. We implement Construction 1 in Python using iris data.
Our implementation is open-source, and the url of the source code is given in
section 5. This is the first iris based key derivation system that provides security
against active adversaries in the standard model. Similar to Sinhadri et al. [33],
our implementation provides security level of 32 bits that is available in iris
data samples. Although this security level is not sufficient for a stand-alone
system, this work can be incorporated into multi-factor authentication system
to strengthen security of the system. In our system, error correction and key
derivation are performed simultaneously, and so another noiseless factor such as
password can be prepended to each subsample (of the sample w) to combine
security of the systems, and achieve stronger security.

1.2 Related work

Fuzzy extractors has been widely studied in information theoretic [17,7,9,23]
and computational settings [20,38,3,36]. Table 1 summarizes properties of all
references that are directly related to our work. We include a more extensive
review of more distant work in the full version of the paper.

5

FE Scheme Security Reusability Correlation Robuustness Model
DRS04[19] IT. Sec. − − − Std.
Boyen04[7] IT. Sec. R2.1 Shift (R1.1) − Std.
Boyen04[7] IT. Sec. R2.2 Shift (R1.1) − RO

BDKOS05[8] IT. Sec. − − S1 RO
DKK12[17],CDF08[13] IT. Sec. − − S2 Std.

FMR13[22] Comp. Sec. − − − Std
CFP16[10],ABC18 [2] Comp. Sec. R2.2 Arbitrary (R1.2) − Dig. Loc.

ACEK17[3] Comp. Sec. R2.2 Shift (R1.1) − Std.
WLH18[38] Comp. Sec. R2.2 Shift* (R1.1) − Std.
WL18[35] Comp. Sec. R2.2 Shift (R1.1) − Std.

WL[36],WLG[37] Comp. Sec. R2.2 Shift (R1.1) S2 Std.
Construction 2 IT. Sec. R2.2 Arbitrary (R1.2) − Std.
Construction 3 IT. Sec. R2.2 Arbitrary (R1.2) S2 Std.
Construction 1 Comp. Sec. R2.2 Arbitrary (R1.2) S2 Std.

Table 1. IT. Sec. and Comp. Sec. denote information-theoretic and computational security,
respectively. Columns are as follows: Security: whether the scheme achieves IT.Sec. or Comp.
Sec.; Reusability : the scheme is reusable and the type of reusability; Correlation : type of
correlation in reusability definition; Robustness :the scheme is robust and its type; Model -
security proof model. Std.: standard model, RO: Random Oracle; Dig. Loc.: requires Digital
Locker. Shift* is a stronger definition than an adversary just specify a shift δj . It also requires
that each marginal distributions W i has high entropy conditioned on the shift between each
pair of distributions [10].

We note that a second implementation of iris-based authentication that has
appeared concurrently with Sinhadri et al. is due to Cheon et al. [12]. In Section
4, we discuss their construction and our reasoning for choosing Sinhadri el al.
for direct comparison.

2 Background and Definitions
Notations. We denote random variables (RVs) with upper-case letters (e.g., X),
and their realizations with lower-case letters (e.g., x). The probability distri-
bution of an RV X is denoted by PX . The min-entropy H∞(X) of RV X ∈ X
with distribution PX is H∞(X) = − log(maxx(PX(x))). The average conditional
min-entropy [19] is defined as, H̃∞(X|Y) = − logEy←Y maxx∈X PX|Y (x|y). The
statistical distance between two random variables X and Y with the same do-
main T is given by ∆(X,Y) = 1

2

∑
v∈T |Pr[X = v] − Pr[Y = v]|. For a (class

of) distinguisher D, we write the computational distance between two random
variables X and Y with respect to D as δD(X,Y) = |E[D(X)]−E[D(Y)]|, where
E(·) is the expectation. Ds denotes the class of randomised circuits which output
a single bit and have size at most s. We write a ≈ b to represent that a and b
are computationally indistinguishable. (x)i···j denotes the block from ith bit to
jth bit in x. For a sequence W = W1, · · · ,Wn and an index set A = {i1, · · · , it},
W [A] denotes the subsequence Wi1 , · · · ,Wit . For vector m = (m0, · · · ,mn−1),
m(x) is the polynomial

∑n−1
i=0 mix

i.
We use two classes of functions, SMALL and NEGL, to define closeness of

families of distributions that are indexed by λ, for statistical and computational
indistinguishability, respectively [30].

6

Extractors and hash functions. Extractor are used to obtain high quality
randomness from distributions (also called sources) with sufficient entropy.
Definition 1 (Strong (average case) randomness extractor). E : {0, 1}n×
{0, 1}r → {0, 1}λ is an average (n, α, λ, ϵ)-extractor if for any pair of random
variables X,A with X a n-bit string and H̃∞(X|A) ≥ α, it holds that

∆(E(X,R), A,R;U,A,R) ≤ ϵ, (1)

where R is a purely random r-bit string and U is uniformly random over {0, 1}λ.
An extractor E is linear if E(X1 + X2, R) = E(X1, R) + E(X2, R), for any
X1, X2 ∈ {0, 1}n and R ∈ {0, 1}r.

A in the definition is the side information. If this variable is removed, we
have the definition of (n, α, λ, ϵ)-extractor. By replacing statistical distance with
computational distance, we obtain a (n, α, λ, ϵ)-computational extractor.

Universal hash function families have been wide used as randomness extrac-
tor. The extracted randomness is given by Leftover Hash Lemma [24].

A family of functions h : X × S → Y is called a universal hash family if
∀x, y ∈ X , x ̸= y : Pr[h(x, s) = h(y, s)] ≤ 1

|Y| , where the probability is over the
uniform choices of s from S.

A family of hash functions h : X × S → Y is called a strong universal hash
family if for all x, y ∈ X , x ̸= y, and any a, b ∈ Y, Pr[h(x, s) = a∧h(y, s) = b] =
1
|Y|2 , where the probability is over the uniform choices of s from S.

Lemma 1 (Generalized Leftover Hash Lemma [18]). Let h : X × S →
{0, 1}ℓ be a universal hash family. Then for any two variables A ∈ X and B ∈ Y,
applying h on A can extract a uniform random variable whose length ℓ satisfies
the following ∆(h(A,S), S,B;Uℓ, S,B) ≤ 1

2

√
2−H̃∞(A|B) · 2ℓ, where S is chosen

uniformly from S. In particular, if h is a universal hash family and ℓ ≤ α+ 2−
2 log 1

ϵ , then h is an (n, α, l, ϵ)-extractor, where A is an n-bit string.

Computational assumption. Our computational fuzzy extractor construction
in Section 3.1 uses the hardness of Learning Parity with Noise (LPN) that is
equivalent to the problem of decoding random linear codes, and for which no
efficient quantum algorithm is known. The assumption is stated as follows.
LPN Assumption. For any polynomial t = poly(n) and for any constant γ > 0, we
have {A,Ax + e}n∈N ≈ {A,Ut}n∈N, where A ∈R {0, 1}t×n, x ∈R {0, 1}n, Ut ∈R
{0, 1}t are all uniformly distributed, and e = (e1, · · · , et) ∈ {0, 1}t is distributed
as: ei = 0 with probability γ and ei ∈R {0, 1} with probability (1− γ).

The LPN assumption has the following very appealing properties: (i) Ef-
ficiency. The computation of LPN function Ax + e is extremely efficient. (ii)
Closure under composition. The LPN function is closed under composition i.e.
for any polynomial ℓ we have {(A(i), A(i)x+e(i))ℓi=1}n∈N ≈ {(A(i), U (i))ℓi=1}n∈N.
(iii) Robustness against bit-leakage. LPN assumption still holds even if some k
bits of x are leaked; however the security parameter decreases from n to n− k.
In addition, it is also robust against any linear leakage function, but the security
parameter decreases from n to n− k if some k bits are leaked.

7

2.1 Fuzzy extractors
The definition of information theoretic fuzzy extractors is from Dodis et al. [18].
Definition 2 (Fuzzy extractor). Let W be a family of probability distribu-
tions over M. An (M,W, ξ, t′, ϵ′, σ)-fuzzy extractor FE is a pair of randomized
procedures “generate” (Gen) and “reproduce” (Rep) that satisfy the followings:

i. The generate procedure Gen :M→ {0, 1}ξ ×P, that takes a source sample
w ∈M, and outputs a key r ∈ {0, 1}ξ and a public helper string p ∈ P.

ii. The reproduction procedure Rep : M×P → {0, 1}ξ that takes an element
w′ ∈M and the helper string p ∈ P as input and outputs a key r.

iii. The ϵ′-correctness of a fuzzy extractor states that if dist(w,w′) ≤ t′ and
(r, p) ← Gen(w), then Pr[Rep(w′, p) = r] ≥ 1 − ϵ′, where the probability
is over the randomness of (Gen,Rep), and the closeness dist(w,w′) is with
respect to some distance measure such as Hamming distance.

iv. The σ-security property guarantees that for any distribution W ∈ W, the
key R is close to uniform conditioned on R. i.e., if (R,P)← Gen(W), then
∆((R,P); (Uξ, P)) ≤ σ.
We use the above definition for computational FE also, but replace the sta-

tistical distance with computational distance. The resulting definition matches
Canetti et al. definition of FE [Definition 1,[10]].

Let ssec be a polynomial in security parameter. An (M,W, ξ, t′, ϵ′, σsec)-
computational FE that is ssec-hard , follows Definition 2 and uses the following
in lieu of item (iv):

iv. The σsec-security property guarantees that for any distribution W ∈ W, if
(R,P) ← Gen(W), then for all adversary D of size at most ssec, we have
δD((R,P); (Uξ, P)) ≤ σsec.

Reusability We use the following definition of reusability, that corresponds
to reusability in the sense of (R1.2, R2.2), introduced in the introduction.
Definition 3 (Reusable fuzzy extractors [20]). Let W be a family of prob-
ability distributions over M. Let (Gen,Rep) be an (M,W, ξ, t′, ϵ′, σ)-fuzzy ex-
tractor. Let (W 1, ...,W η) be η correlated RV, where W j ∈ W,∀j ∈ {1, ..., η}. For
any (unbounded) adversary D, consider the following for j = 1, ..., η:

– Sampling: Challenger samples wj ←W j and u← {0, 1}ξ
– Generation: Challenger computes (rj , pj)← Gen(wj).
– Distinguishing Advantage of D is

AdvD = Pr[D(rj , {ri}i=1,...,η,i̸=j , {pi}ηi=1) = 1]−Pr[D(u, {ri}i=1,...,η,i̸=j , {pi}ηi=1) = 1]

An (M,W, ξ, t′, ϵ′, σ)-fuzzy extractor is (η, σr)-reusable if for all D and for all
j = 1, ..., η, the advantage is at most σr(λ).

Boyen et al. [8] first defined robustness for fuzzy extractors in the sense of
S1. The definition was strengthened by strength Dodis et al. [17] to S2. We use
the following definition that combines the strongest notions of reusability and
robustness (R1.2, R2.2, S2).

8

Definition 4 (Strongly robust of reusable fuzzy extractor). Let W be a
family of probability distribution over M. Let (W 1, ...,W η) and W ′ be (η + 1)
correlated random variables, where W j ∈ W,∀j ∈ {1, ..., η} and W ′ ∈ W. Let
FEsrr = (Gen,Rep) be an (η, σr)-reusable (M,W, ξ, t′, ϵ′, σ)-fuzzy extractor.
We say FEsrr is (qd, δr(λ))-strongly robust if, for any adversary D, it holds that

AdvrobFEsrr,D
:= Pr|ExprobFEsrr,D

(1λ) = 1| ≤ δr(λ)

where ExprobFEsrr,D
is a game played by the adversary D and the challenger C.

Game ExprobFEsrr,D
(1λ): We define the following game for all j = 1, ..., η:

– Sampling: Challenger samples wj ←W j and w′ ←W ′

– Generation: Challenger computes (rj , pj)← Gen(wj) and returns (rj , pj)nj=1

to the adversary D.
– Reproduction oracle queries: Adversary D may adaptively make at most

qd reproduction oracle queries of the form p̃m, m ∈ {1, · · · , qd}, to C. Chal-
lenger C runs Rep(w′, p̃m) and returns its output to D, ∀m ∈ {1, · · · , qd}.

– Forgery test: D submits its forgery p̃ to C. A wins if p̃ ̸∈ {p1, · · · pη} and
Rep(w′, p̃) ̸=⊥. The experiment outputs 1 if D wins and 0 otherwise.

Computationally secure reusable fuzzy extractor and strongly robust reusable
fuzzy extractors are obtained by replacing computationally unbounded adversary
with probabilistic polynomial time (PPT) adversary in the above definitions.

3 Constructions
We construct three reusable fuzzy extractors satisfying (R1.2, R2.2) notion of
reusability for structured sources, where Constructions 1 and 3 further provide
robustness. Construction 1 is computationally secure, while Constructions 2 and
3 provide information-theoretic security.

3.1 Construction 1: Computational fuzzy extractor
The construction is inspired by the sample-then-lock approach of [10] but avoids
using digital lockers, and is for (α,m)-sources that were introduced in in [10],
and is recalled below.
Definition 5 (α-entropy m-samples [10]). Let W = W1, · · · ,Wn be a source
distributed over Vn. For α > 0, m > 0, we say that W is a (α,m)-source if
H̃∞(W [A] | A) ≥ α, where A is a purely random subset of [n] of cardinality m.

Construction outline. The Gen algorithm uses ℓ random subsamples of W , to
construct ℓ “encryptions” of a single random key R that will be sent to Bob. Each
subsample is used as the secret key of a symmetric key encryption algorithm.
Bob will be able to recover the key R if at least one of the subsamples of W
perfectly matches the corresponding subsample of W ′, in which case Bob is able
to correctly decrypt and recover R. We choose system parameters, including
the subsample length m and the number of subsamples ℓ, to ensure that with
a high probability at least one out of ℓ subsamples of W ′ and W match. We
use LPN as one-time pad for the enryption. The encryption algorithm XORs
an error correcting coded (ECC) version of the message with an LPN sample
(with secret extracted from the subsample of W), and the decryption algorithm

9

removes the fixed part of the LPN sample, allowing the message to be recovered
through decoding ECC.

To achieve robustness, we use an information theoretic one-time secure MAC
algorithm on concatenation of the ℓ encrypted values. The MAC however needs
to provide key-shift security to protect against an attacker that is able to tamper
(shift) with the key and tag simultaneously.

In the following we first give the construction, and then motivate and describe
the MAC algorithm that would be of independent interest.

Algorithm 1: Gen(W): fuzzy extractor generation function. Ext is an average (m,α, ν̂, ϵ)-
computational linear extractor for W using randomness Z. The random matrices Z(i) and
subsets Ai (for i ∈ {1, · · · , ℓ}) as well as Z are common reference string (sampled using
common random source r). H is a collision resistant cryptographc hash function. |H| denotes
output bit length of hash function H.

Input : W = W1,W2, · · · ,Wn with Wi ∈ {0, 1}
Output: An extracted key R and a ciphertext (p1, · · · , pℓ, T)

1. R $←− {0, 1}ξ, R1
$←− {0, 1}2λ

2. for i← 1 to ℓ do
(i) Sample Ai = {i1, · · · , im} from [n] (using r)

(ii) Sample Z(i) $←− {0, 1}ν×ν̂ (using r), where ν is the length of ECC.
(iii) Sample a random error vector e(i) = (e

(i)
1 , · · · , e(i)ν) ∈ {0, 1}ν , where e

(i)
j is

i.i.d. according to Pr(e
(i)
j = 0) = 1+γ

2
, ∀j ∈ {1, · · · , ν}

(iv) di = Z(i) · Ext(W [Ai], Z)
(v) Set pi = ECC(0t|R|R1) + e(i) + di

end
3. p = H(p1| · · · |pℓ)
4. Let L = ⌈|H|/λ⌉+ 4
5. T = Eval(p,R1)
6. Output key R, ciphertext (p1, · · · , pℓ, T)

Algorithm 2: T ← Eval(p,R1)

1. Encode p to vector m of length L− 4 in GF (2λ)
2. Parse R1 = x|y for x, y ∈ {0, 1}λ
3. Compute T = xL + x2m(x) + xy for m(x) =

∑L−5
i=0 mix

i.
4. Return T

Construction 1 Let W = W1,W2, ...,Wn be a (α,m)-source with Wi ∈ {0, 1}.
Let Ext be an average (m,α, ν̂, ϵ)-computational linear extractor. Algorithm 1
(resp. Algorithm 2) describes the generation (resp. reproduction) procedure of
our extractor, where ECC(0t|R|R1) is the codeword for 0t|R|R1.

CRS Model. In Construction 1, we assume A1, · · · , Aℓ and matrices Z(1), · · · , Z(ℓ)

and Z are sampled uniformly over its respective domain and form the common
random string (CRS). The sampling is done using the publicly known function
with a shared random string r.

In our construction, this CRS assumption is important. Otherwise, given
access to Rep oracle, the adversary might select some index set Ai with low
entropy for w′[Ai] and hence correctly guess w′[Ai] with high probability, and

10

modifying P to be acceptable by Rep algorithm, leading to unequal keys at the
sender and receiver. CRS model prevents attacker from choosing a weak sample.
Bit-string Encoding. We use an algorithm that encodes a bit string to ele-
ments in GF (2λ). Let ω be a fixed primitive element of GF (2λ). Then, we can
encode λ bits a0a1 · · · aλ−1 as

∑λ−1
i=0 aiω

i. In this way, we can encode any binary
string into a vector of field elements in GF (2λ). An incomplete block can be
made into a λ bits by appending sufficiently many zeros. This encoding of bit
strings into vectors of field elements will be used in the rest of this paper.

Algorithm 3: Rep(W ′, (p1, · · · , pℓ, T)): fuzzy extractor reproduction function. The ran-
dom matrices Z(i), random subsets Ai and randomness Z are common reference string
(sampled using common random source r), ∀i ∈ {1, · · · , ℓ}. The system parameters
ℓ, t, λ, ξ, n,m,L, γ are shared with sender.

Input : W ′ and ciphertext (p1, · · · , pℓ, T)
Output: An extracted key R or ⊥
1. p = H(p1| · · · |pℓ)
2. for i← 1 to ℓ do

(i) di = Z(i)Ext(W ′[Ai], Z)
(ii) Decode (di + pi) and let g′i be the output of the decoder
(iii) if Hamming weight of (di + pi) + ECC(g′i) is more than ν(1

2
− γ

3
) then

gi =⊥
else

gi = g′i
end
(iv) if ((gi ̸=⊥) ∧ ((gi)1...t = 0t)) then

(a) Set ρ = (gi)t+1...ν

(b) Set R = (ρ)t+1...t+ξ, R1 = (ρ)ν−2λ+1...ν

(c) Encode p to vector m of length L− 4 in GF (2λ)
(d) T ′ = Eval(p,R1)
(e) If T ′ = T , output key R; otherwise, continue

end
end
3. Output ⊥

One-time Secure MAC with Key-Shift Security: A direct approach to
provide robustness for FE is to use part of the generated key to compute an
authentication tag and append it to P = p ∥ tag. However if Eve modifies p,
the reconstructed MAC key by Bob will be different from the key used for the
generation of tag, and so security of the MAC systems will be unclear. Our main
observation in our construction to avoid this issue is that the key R is encrypted
using “one-time pad” (with an LPN sample as the key) to obtain p. Because of
linearity of OTP, any modification of an observed p to p̂ will result in a known
(to the adversary) shift δ = p+ p̂ to the established key R+ δ. (We note that δ
could depend on p because p̂ is computed by attacker who knows tag p ∥ tag).
This means that it is sufficient for the MAC to provide security against known
shifts of the key. In the following, we propose an information-theoretic key-shift
secure one-time MAC, and Lemma 2 proves its security.

For key (x, y), the MAC tag function is T (x, y,m) = xL+x2m(x)+xy, where
m is a vector over GF (2λ) of length at most L− 5 (so m(t) is a polynomial of
degree at most L− 5; see notations in Section 2).

11

Verification algorithm for a message and tag pair m ∥ tag is by applying the
tag function on m, and comparing the result with the received tag, tag.
The following lemma shows that the tag function has one-time authentication
property; see Appendix A for a proof.
Lemma 2. Let L = 3 mod 4 and m be an arbitrary but given vector of length
at most L − 5 over GF (2λ). Let x, y be uniformly random over GF (2λ). Then,
given T = xL + x2m(x) + xy, it holds

(x+ δ1)
L + (x+ δ1)

2m′(x+ δ1) + (x+ δ1)(y + δ2) = T ′ (2)

with probability at most L2−λ, where T ′, δ1, δ2 ∈ GF (2λ) and m′ a vector over
GF (2λ) of length at most L− 5 with m′ ̸= m, are arbitrary but all deterministic
in T and the probability is over the choices of (x, y).

Security of the Strongly Robustly Reusable Fuzzy Extractor. Theorem
1 proves security of Construction 1 using properties of the LPN-based encryp-
tion system, and security of the above MAC, in CRS model. The proof uses a
generalized version of LPN assumption stated below.
Generalized LPN Assumption. For any ζ, t polynomial in µ, assume A(i) ∈R
{0, 1}t×µ, U (i)

t ∈R {0, 1}t are all uniformly distributed and e(i) = (e
(i)
1 , · · · , e(i)t) ∈

{0, 1}t with e
(i)
j i.i.d. according to Pr(e

(i)
j = 0) = 1+γ

2 , where γ = 1
poly(λ) for poly-

nomial poly(λ)). The joint distribution of (x(1), · · · , x(ζ)) is arbitrary but with
the restriction that each x(i) is negligibly close to uniform over {0, 1}µ. Then, the
generalized LPN assumption states that (A(i), A(i)x(i)+e(i))ζi=1 ≈ (A(i), U

(i)
t)ζi=1.

We note that LPN assumption can be seen as an extreme case of the gener-
alized LPN where x(1) = x(2) = · · · = x(ζ), and does not require x(1), · · · , x(ζ)

to have such high dependency, suggesting plausibility of the assumption.
Our construction requires error-correcting code ECC can correct the error

with probability 1
2 −

γ(λ)
2 . Such codes exist; see [21] for example. Now we give

the security result for Construction 1.
Theorem 1 (Strongly robust and reusable Computational FE). Let W
be a family of (α,m)-sources over {0, 1}n for α = ω(log(λ)) and Ext is an average
(m,α, ν̂, ϵ)-computational linear extractor for W using randomness Z, where λ is
the security parameter. If adversary makes at most qe fuzzy generation queries
and qd reproduction queries, then under the generalized LPN assumption, for
any ssec = poly(λ), there exists some δr = NEGL(λ) and σsec = NEGL(λ)
such that (Gen,Rep) described in Construction 1 is a (qd, δr)-strongly robust,
(qe, σsec)-reusable ({0, 1}n,W, ξ, t′, ϵ′, σsec)-computational fuzzy extractor that is
ssec-hard satisfying
(1− (1− t′

n−m)m)ℓ + ℓ · 2
α

eα · 2
−t · L · 2−λ ≤ ϵ′(λ) and

δr = ϵlpn + qd2
−λℓ(L + 1) + ϵH , where L = ⌈|H|/λ⌉ + 4 and |H| is the output

bit length of the hash unction H and ϵH is the probability to break the collision-
resistancy of H and ϵlpn is the probability to break generalized LPN assumption
(so that the secret in the assumption is ϵ-close to uniform).

Proof. The proof of this theorem is in Appendix B.

12

3.2 Construction 2 & 3: IT-secure fuzzy extractors

The constructions in this section are for (α,m,N)-sources defined below.

Definition 6 ((α,m,N)-source). Consider source W = W1, · · · ,Wn over al-
phabet Z. We say W is a (α,m,N)-source if H̃∞(W [A] | W [B], A,B) ≥ α,
where A (resp. B) is a purely random subset of [n] of cardinality m (resp. N),
where the probability is over randomness of W and index sets A,B.

Intuitively the requirement is that entropy of a random sample remains high,
given a random sample of cardinality up to N . In our construction, Z = {0, 1}.

Algo Gen(W) Algo Rep(W ′, (p1|A1, · · · , pℓ|Aℓ))

1. R $←− {0, 1}ξ 1. for i← 1 to ℓ do
2. for i← 1 to ℓ do (i) di = E(W ′[Ai], Z)

(i) Sample Ai = {i1, · · · , im} from [n]
purely randomly (ii) if ((di ⊕ pi)1...t = 0t) then

(ii) di = E(W [Ai], Z) output R = (di ⊕ pi)t+1...ν

(iii) Set pi = ((0t|R)⊕ di) for t = ν − ξ
end end
3. Output key R and (p1|A1, · · · , pℓ|Aℓ) end

2. Output ⊥
Figure. 1. Construction 2. Extractor randomness Z and parameters ℓ, t, λ, ξ, n,m,L are
shared between sender and receiver; (ρ)i···j denotes the block from the ith bit to jth bit
in ρ.

Construction 2 Let E be an average (m,α, ν, ϵ)-extractor. Suppose that W =
W1,W2, ...,Wn be an (α,m,N)-source with Wi over alphabet {0, 1}. The Gen()
and Rep() algorithms in figure 1 in describe the fuzzy extractor generation Gen()
and reproduction procedure Rep() respectively.

Security analysis of fuzzy extractor Construction 2 This construction
is reusable in the sense of (R1.2, R2.2). Let us start the security analysis with
some preparation results. Claim 1 and Lemmas 3-4 are based on quite stan-
dard techniques of probabilistic distances. We give proofs in Appendix G for
completeness.

The following claim is a well-known fact.
Claim 1. Let X and Y be random variables over Z. Assume that F : Z → V
is a deterministic function. Then ∆(F (X);F (Y)) ≤ ∆(X;Y).

This claim is correct if F is randomized as it holds for each fixed randomness.
The following lemma can be proven by triangle inequality and induction on µ.

Lemma 3. Let W be a (α,m,N)-source of length n over {0, 1}. Let E : {0, 1}m×
{0, 1}r → {0, 1}ν be an average (m,α, ν, ϵ)-randomness extractor. Let Z be a
uniform r-bit string and Ai be uniformly random subset of [n] of size m for i =
1, · · · , µ. Let di = E(W [Ai], Z) for i = 1, · · · , µ. Assume E(Ũ , Z) = U , where
Ũ is uniformly random over {0, 1}m and U is the uniformly distributed over
{0, 1}ν . If µm < N, then, ∆(d, Z,A;Uµ, Z,A) ≤ µϵ, where A = (A1, · · · , Aµ)
and d = (d1, · · · , dµ).

13

Lemma 4. Let W = W1, · · · ,Wn be an (α,m,N)-source of length n over al-
phabet {0, 1}. Let E : {0, 1}m × {0, 1}r → {0, 1}ν be an average (m,α, ν, ϵ)-
randomness extractor. Let Ai be uniformly random subset of [n] of size m for
i = 1, · · · , ℓ and Z is a uniform r-bit string. Let pi = E(W [Ai], Z) ⊕ 0t|S
for S ← {0, 1}ν−t, i = 1, · · · , ℓ. Then, ∆(S,p, Z,A;U,p, Z,A) ≤ 2ℓϵ, where
p = (p1, p2, · · · , pℓ),A = (A1, · · · , Aℓ), ℓm < N and U ← {0, 1}ν−t.

Theorem 2 (Reusable fuzzy extractor). Let E be implemented by H, a
strong universal hash family. Fix ℓ and let ξ be the length of the extracted key.
Then for any ϵ′(λ), σ(λ) satisfying ξ ≤ α + 2 − 2 · log(2ℓσ) − t, (Gen,Rep)
described in Construction 2 (i.e. figure 1) is a (η, σ)-reusable (Vn,W, ξ, t′, ϵ′, σ)-
fuzzy extractor, where (1− (1− t′

n−m)m)l + l · 2−t ≤ ϵ′(λ) and ℓηm < N .

Proof. The proof of the following theorem is in Appendix D.

Adding robustness to Construction 2 We construct the first strongly ro-
bust, reusable, IT-secure FE, and does not use random oracle. The only other
reusable FE with IT-security is due to Boyen [7] but does not provide robust-
ness and relies on random oracle. The construction essentially uses the MAC in
Section 3.1 to construct and append a tag to the ciphertext of Construction 2,
and is in CRS model.
Algo Gen(W) Algo Rep(W ′, (p1, · · · , pℓ, T))

1. R $←− {0, 1}ξ, R1
$←− {0, 1}2λ 1. for i← 1 to ℓ do

2. for i← 1 to ℓ do (i) di = E(W ′[Ai], Z)
(i) Sample a purely random subset (ii) if ((di ⊕ pi)1...t = 0t) then

Ai = {i1, · · · , im} from [n] (using r) (a) Set ρ = (di ⊕ pi)t+1...ν

(ii) di = E(W [Ai], Z) (b) Set R = (ρ)t+1...t+ξ,
(iii) Set pi = ((0t|R|R1)⊕di) for t = ν−ξ−2λ R1 = (ρ)ν−2λ+1...ν , and

end (c) T ′ = Eval((p1, · · · , pℓ), R1)
4. Let L = ⌈ℓν/λ⌉+ 4, p = (p1, · · · , pℓ) (d) If T ′ = T , output key R;

otherwise, continue
5. T = Eval(p,R1) end
3. Output key R and ciphertext (p1, · · · , pℓ, T) end

2. Output ⊥
Figure. 2. fuzzy extractor generation (Gen) and reproduction (Rep) function. E is average
(m,α, ν, ϵ)−extractor. The random subsets Ai as well as Z are common reference string (sam-
pled using common random source r), ∀i ∈ {1, · · · , ℓ}. The parameters ℓ, t, λ, ξ, n,m,L shared
with sender. The procedure Eval(·) has been defined section 3.1.

Construction 3 Let E be an average (m,α, ν, ϵ)-extractor. Let W = W1, ...,Wn

be an (α,m,N)-source, where Wi ∈ {0, 1}. Figure 2 describes the generation Gen
procedure and reproduction Rep procedure of strongly robust and reusable fuzzy
extractor. Figure 3(a) and 3(b)(resp. Figure 3(c) and 3(d)) depict a pictorial
representation of our fuzzy extractor generation (resp. reproduction) algorithm,
where the encoding algorithm for p1| · · · |pℓ is described in Section 3.1.

CRS Model. We assume that sender and receiver have access to a common
random string (common random string model). This random string is used to
sample A1, · · · , Aℓ and Z.

The receiver processes public string (p1, · · · , pℓ, T) in Rep(). As mentioned
before, we use (ρ)i···j to denote the block from the ith bit to jth bit in ρ.

14

(a) (b)

(c) (d)

Figure. 3. High level diagram of fuzzy extractor construction 3. Both Gen(W) and Rep(W ′)
procedure are split into two parts. 3(a): The first part of Gen(W). This part iterates ℓ times.
3(b): The second part of Gen(W). This step is executed after completion of ℓ iterations of
3(a). 3(c): The First part of Rep(W ′). This step is executed at most ℓ times until one match
(T ′

i == 0t) is found. 3(d): The second part of Rep(W ′). This part is executed after one match
in 3(c). If verification of (T ′ == T) fails, the algorithm continues from the part 3(c) again. The
upper line of each extractor represents higher order ξ + 2λ bits of its output i.e. (E(.))t+1...ν .
The lower line of each extractor represents lower order t bits of its output i.e. (E(.))1...t.
Extracted key is R. Randomness Z is public

Security analysis of fuzzy extractor Construction 3 In this section, we
provide security properties of Construction 3.

Lemma 5 is based on quite standard techniques of probabilistic distances.
We give its proof in Appendix G for completeness.

Lemma 5. ∆(R,p, Z,A, T ;U,p, Z,A, T) ≤ 4ℓϵ.

The construction’s security property is stated as follows.
Theorem 3 (Robust and reusable FE). Let W be a family of (α,m,N)-
sources and E be an average (m,α, ν, ϵ)-randomness linear extractor for source
W using randomness Z. Let E be implemented by H, a strong universal hash
family. Fix ℓ and let ξ be the length of the extracted key. If adversary makes
at most qe generation queries and qd reproduction queries, then for any δ(λ),
ϵ′(λ), σ(λ) satisfying ξ ≤ α + 2 − 2 · log(4ℓσ) − t − 2λ, (Gen,Rep) described
in Construction 3 is a (qd, δ)-strongly robust, (qe, σ)-reusable (Vn,W, ξ, t′, ϵ′, σ)-
fuzzy extractor, where (1 − (1 − t′

n−m)m)l + l · 2−t · L · 2−λ ≤ ϵ′(λ), and δ =

(qd + qe)ℓϵ+ qd2
−λℓ(L+ 1), where (qe + qd)ℓm < N and L = ⌈ℓν/λ⌉+ 4.

Proof. The proof of this theorem is in Appendix E.

4 Implementation of Construction 1 using iris
There are two concurrent work that implemented a modified version of Canetti et
al.’s construction. Sinhadri et al. ’s modification is to improve storage efficiency,

15

while Cheon et al. also aims to add robustness to the scheme. However the
latter construction is shown [33] to be flawed, and no corrected version has been
published. We thus follow the experimental framework of [33] with the goal of
evaluating the cost of security in standard model, and providing robustness.

Our implementation is for Construction 1. It is implemented in Python 3 and
open sourced, and the open-source code url is given in section 5. The construction
requires an error-correcting code. We use Low-Density Parity-Check (LDPC)
Code as the underlying error-correcting code. The main modules/libraries that
are used in our implementation are as follows: numpy and galois - used for
fast matrix and Galois field operations, respectively; secrets - used to generate
random bitstrings (using OS randomness); LDPC, – C library for LPDC error-
correcting code [1]; OSIRIS – Open Source IRIS software package [28].

Both Gen (i.e. Algorithm 1) and Rep (i.e. Algorithm 3) algorithms are multi-
threaded. In Gen algorithm, we need several matrix multiplications. We split
those tasks given in lines (iii) − (v) of Algorithm 1 among several cores evenly
and run them in parallel. Rep, also requires several matrix multiplications and
error corrections. We split the workload among several cores evenly, and run the
program until either a match is found, or all operations are completed.

4.1 Iris data processing, parameter setting and error correction

The construction parameters can be grouped three groups: 1) iris data processing
parameters includes n, the size of the iris data w, and m, the subsample size etc.;
2) system parameters that includes the number of subsamples ℓ, the reliability
parameter (1−ϵ) and MAC-related parameters etc.; and 3) error-correcting code-
related parameters that includes the length of message, length of codeword and
the dimensions of the generator matrix etc.

We use ND-IRIS-0405 iris dataset that contains iris images of 365 persons,
each with multiple images, in total 64964 iris images.

Iris data processing We use OSIRIS [28], an Open Source IRIS software
package, that takes an iris image and produces a binary vector of length 32768.

The OSIRIS library has six transforms. We used Transform 5 in our exper-
iments, which is consistent with Simhardi et al.’s [33] work. Their experiments
showed that Transform 5 has the lowest error rate for images of the same iris.
Size of barometric sample W . The initial encoding of the iris as a 32768 bit vector
is shortened to 15000 bits, after applying “masks" that capture imperfections of
the image (e.g. due to eyelashes). Thus, we set n = 15000, as the size of the
biometric W .
Subsample size and entropy. Simadri et al. used sample m = 43, with estimated
entropy 32 bits. These values have been obtained through extensive experiments
with the same data set and using OSIRIS software. We thus adopt these values
in our experiments.
Threshold error rate. Iris matching algorithm compares the Hamming distance
between two iris samples with a threshold, to accept or reject a match. This
threshold, TH = t′

n , where t′ is the Hamming distance between two transformed

16

iris codes, is commonly set between 20% and 35% [15]. We use TH = 28% that
is similar to the value used in [33]. We only use TH to compute an approximate
value of ℓ that we discuss now.
System parameters. We set ξ = 128, λ = 128 and t = 12 and ϵ = 0.5. Using
Theorem 1, we have (1 − (1 − t′

n−m)m)ℓ + ℓ · 2
α

eα · 2
−t · (L · 2−λ + ϵH) ≤ ϵ′(λ),

which noting that the second term on LHS is negligible, results in
(1−(1− t′

n−m)m)ℓ = ϵ′(λ). Now substituting parameters, TH , m and n, we obtain
the number of iteration ℓ = 106 (approximately). We set the error rate for LPN
based symmetric key encryption to 11% i.e. (12 −

γ
2) = .11. This matches the

values in [5]. We also experimented with error rate 12%, 12.5% and 13%, but the
message recovery rate for these error rates was unacceptable for our use-case.
Error correcting code-related parameters The size of the message (0t|R|R1)
(Algorithm 1) to be encrypted is 396 bits. We use an LDPC code with length
ν = 1228 bits, and message length of 396 bits. Errors were introduced using the
transmit function provided by the LDPC library [1]. We simulated a binary
symmetric channel using bsc command with error rate 0.11. More details on
LDPC experiments are given in Appendix H.

4.2 Evaluation
We evaluate the computation time and achievable correctness in practice.
Computation time. The implementation was developed using Python 3.8.9+,
and all testing was done on ARC cluster (50 cores, 30GB of RAM) using Python
version 3.10.4. The computation time of Gen and Rep algorithms are given
below. Because our matrices and the full ciphertext (106 matrices and vectors
respectively) could not fit in our available RAM, we had access disk and that
slowed the computation. In our results, we exclude the disk access to show the
computation time. We measured computation times as follows: randomly pick
5 from a particular class (set of all images of one person’s iris) from the ND-
IRIS-0405 dataset (300 images in total); run Gen on a random image in each
class; run Rep on every other image in said class. We do not include timings
from correctness experiments 4.2, since during conducting them, we had access
to less computing power (25 cores per experiment). Our results are as follows.
–Gen takes approximately 550 seconds to generate the ciphertexts. (This ex-
cludes the time to generate sample positions.)
–Rep run time on average is about 111 seconds (excluding disk access). The
worst and best times in our experiments were 213 and 13 seconds, respectively.
–MAC calculation took 1 second on average, excluding concatenation time of
subsample ciphertext.

The execution time distribution for Rep is given in Figure 4(b).
Correctness We tested correctness across the ND-IRIS-0405 dataset. The cor-
rectness experiments were conducted as follows: Gen was run on the first image
from a particular class (set of all images of one person’s iris), followed by Rep
on all other images from that class. Correctness rate is the number of successful
derivations over the total size of the class. The experiment was run once per
class, to keep the computations manageable.

17

(a) (b)

Figure. 4. (a) Correctness of Rep versus the error rate of a person’s iris (i.e., class).;
(b) Execution times of 300 Rep experiments. Times over 300 seconds correspond with
failures to recover the key.

We ran the above experiment on 125 classes out of the 356 available in the
dataset. We weren’t able to complete the remaining 231 experiments due to issues
with the ARC cluster. The full set of results will be included in the full paper.
Our results are given in Figure 4(a). We observed 50% correctness at around 0.23
average error rate. Compare to Simhardi et al.’s [33] (50% correctness at around
0.32 average error rate), we achieve lower correctness, which can be explained
by the additional 0.11 noise introduced by LPN encryption.

5 Concluding remarks
We propose three constructions of FEs, each with important properties in re-
lation to other known constructions, detailed in Table 1, and Construction 1
answering an open question (Canetti et al. 2016). All constructions are secure
against an adversary with access to quantum computer. We also implemented
Construction 1 to show real-life feasibility of the construction. Although the
implementation provides interesting insight into the cost of post-quantum secu-
rity in standard model, and providing robustness, it can be optimized both by
parallelizing computation, and improving memory management. Extending our
FEs to tolerate linear error, and construction of IT-secure FE for more general
sources are interesting open questions.

Open source code
The source code for the proof-of-concept implementation of the proposed iris key
derivation and authentication system based on our Construction 1 can be found
at https://github.com/fuzzy-ext-anon/Comutational-Fuzzy-Extractor.

References

1. Software for low density parity check (ldpc) codes.
https://glizen.com/radford/ldpc.software.html, 2012.

2. Alamélou, Berthier, Cachet, Cauchie, Fuller, Gaborit, and Simhadri. Pseudoentropic
isometries: A new framework for fuzzy extractor reusability. In AsiaCCS 2018, pages
673–684, 2018.

18

https://github.com/fuzzy-ext-anon/Comutational-Fuzzy-Extractor

3. Apon, Cho, Eldefrawy, and Katz. Efficient, reusable fuzzy extractors from LWE. In
CSCML 2017, Proc., volume 10332 of LNCS, pages 1–18. Springer, 2017.

4. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy Amplification by Public Discussion.
SIAM J. Comput., 17(2):210–229, apr 1988.

5. S. Bogos, F. Tramèr, and S. Vaudenay. On solving lpn using bkw and variants. Cryptog-
raphy and Communications, 8:331–369, 2016.

6. Bowyer and Flynn. The ND-IRIS-0405 iris image dataset. CoRR, abs/1606.04853, 2016.

7. Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th ACM Conf.
on Computer and communications security, pages 82–91, 2004.

8. Boyen, Dodis, Katz, Ostrovsky, and Smith. Secure remote authentication using biometric
data. In Proc. EUROCRYPT 2005, pages 147–163. Springer, 2005.

9. Boyen, Mei, and Waters. Direct Chosen Ciphertext Security from Identity-Based Tech-
niques. In Proc. 12th ACM Conf. - CCS ’05, page 320. ACM, ACM Press, 2005.

10. Canetti, Fuller, Paneth, Reyzin, and Smith. Reusable fuzzy extractors for low-entropy
distributions. Cryptol. ePrint Archive, Report 2014/243, 2014. https://ia.cr/2014/243.

11. Canetti, Pass, and Shelat. Cryptography from sunspots: How to use an imperfect reference
string. In FOCS’07, pages 249–259, 2007.

12. Cheon, Jeong, Kim, and Lee. A reusable fuzzy extractor with practical storage size:
Modifying canetti et al.’s construction. In ACISP 23 2018, LNCS, pages 28–44, 2018.

13. Cramer, Dodis, Fehr, Padró, and Wichs. Detection of algebraic manipulation with appli-
cations to robust secret sharing and fuzzy extractors. In Advances in Cryptol. - EURO-
CRYPT 2008.

14. Daugman. How iris recognition works. IEEE Trans. Circuits Syst. Video Technol.,
14(1):21–30, 2004.

15. Daugman. Probing the uniqueness and randomness of iriscodes: Results from 200 billion
iris pair comparisons. Proceedings of the IEEE, 94(11):1927–1935, 2006.

16. Dodis, Kalai, and Lovett. On cryptography with auxiliary input. In STOC 2009, pages
621–630. ACM, 2009.

17. Dodis, Kanukurthi, Katz, Reyzin, and D. Smith. Robust fuzzy extractors and authenti-
cated key agreement from close secrets. IEEE Trans. Inf. Theory, 58(9):6207–6222, 2012.

18. Dodis, Ostrovsky, Reyzin, and Smith. Fuzzy extractors: How to generate strong keys from
biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

19. Dodis, Reyzin, and Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. In Advances in Cryptol. - EUROCRYPT 2004, pages 523–540, 2004.

20. C. et al. Reusable fuzzy extractors for low-entropy distributions. In Annual Int. Conf.
Theory Appl. Cryptographic Techniques, pages 117–146. Springer, 2016.

21. Forney. Concatenated codes. MIT Press, Cambridge, MA, 1966.

22. Fuller, Meng, and Reyzin. Computational fuzzy extractors. In Advances in Cryptol. -
ASIACRYPT 2013, LNCS, pages 174–193, 2013.

23. Fuller, Reyzin, and Smith. When are fuzzy extractors possible? IEEE Trans. Inf. Theory,
2020.

24. Impagliazzo, Levin, and Luby. Pseudo-Random Generation from One-Way Functions. In
STOC ’89, pages 12–24. ACM Press, 1989.

25. Islam, Safavi-Naini, and Kneppers. Scalable behavioral authentication. IEEE Access,
9:43458–43473, 2021.

26. T. A. Jr. Iit madras course on ldpc and polar codes for the 5g standard. https://github.
com/tallamjr/iit-madras-5G-standard/tree/master/matlab/base_matrices, 2020.

19

https://ia.cr/2014/243
https://github.com/tallamjr/iit-madras-5G-standard/tree/master/matlab/base_matrices
https://github.com/tallamjr/iit-madras-5G-standard/tree/master/matlab/base_matrices

27. Karakaya, Alptekin, and İncel. Using behavioral biometric sensors of mobile phones for
user authentication. Procedia Computer Science, 159:475–484, 2019.

28. Krichen, Mellakh, Salicetti, and Dorizzi. Osiris (open source for iris) reference system,
2017.

29. Majzoobi, Koushanfar, and Potkonjak. Lightweight secure pufs. In 2008 IEEE/ACM Int.
Conf. on Computer-Aided Design, pages 670–673. IEEE, 2008.

30. Pfitzmann and Waidner. A model for asynchronous reactive systems and its application
to secure message transmission. In Proc. 2001 IEEE S&P 2001, pages 184–200. IEEE,
2000.

31. Phillips, Bowyer, Flynn, Liu, and Scruggs. The iris challenge evaluation 2005. IEEE BTAS
08, 2008.

32. Phillips, Scruggs, O’Toole, Flynn, Bowyer, Schott, and Sharpe. FRVT 2006 and ICE 2006.
IEEE Trans. Pattern Anal. Mach. Intell., 32:831–846, 2010.

33. Simhadri, Steel, and Fuller. Cryptographic authentication from the iris. In ISC 22, 2019,
volume 11723, pages 465–485, 2019.

34. Suh and Devadas. Physical unclonable functions for device authentication and secret key
generation. In 2007 44th ACM/IEEE Design Automation Conf., pages 9–14, 2007.

35. Wen and Liu. Reusable fuzzy extractor from LWE. In Inf. Secur. and Priv. - 23rd
Australasian Conf., ACISP 2018, volume 10946 of LNCS, pages 13–27. Springer.

36. Wen and Liu. Robustly reusable fuzzy extractor from standard assumptions. In ASI-
ACRYPT 2018, volume 11274 of LNCS, pages 459–489. Springer.

37. Wen, Liu, and Gu. Generic constructions of robustly reusable fuzzy extractor. In PKC
2019, pages 349–378. Springer International Publishing, 2019.

38. Wen, Liu, and Han. Reusable fuzzy extractor from the decisional diffie-hellman assump-
tion. Des. Codes Cryptogr., 86(11):2495–2512, 2018.

A Proof of Lemma 2

We say (m′, T) valid when Eq. (2) is satisfied. Then, given T , Eq. (2) holds with
probability

ET

(
Pxy[(m

′, T ′) valid | T]
)

≤
∑

a∈GF (2λ)

Pxy[(m
′, T ′) valid, T = a]

≤
∑
a

Pxy[(m
′, T ′) valid, T = a, x = 0]

+
∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0]

≤2−λ +
∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0] (3)

In the following, we bound
∑

a Pxy[(m
′, T ′) valid, T = a, x ̸= 0]. We study this

for case δ1 = 0 and case δ1 ̸= 0. We will frequently use the assumption that
T ′,m′, δ1, δ2 are determined by T . So given T = a, (T ′,m′, δ1, δ2) are all fixed).

Case δ1 = 0. In this case, T ′−T = x2(m′(x)−m(x))+ xδ2. Since m′ ̸= m,
this is a non-zero polynomial of degree at most L− 3 (when fix T = a). Hence,

20

it is satisfied with at most L − 3 possible x. Further, for any non-zero x and
any a ∈ GF (2λ), there exists a unique y s.t (x, y) results in T = a. Thus, given
T = a ∧ x ̸= 0, x is uniformly random over GF (2λ) − {0}. With these facts in
mind, we have

Pxy[(m
′, T ′) valid | x ̸= 0, T = a, δ1 = 0] · Pr(x ̸= 0, T = a, δ1 = 0)

≤Pxy

[
(x2(m′(x)−m(x)) + xδ2 = T ′ − a) | x ̸= 0, T = a, δ1 = 0

]
· Pr(x ̸= 0, T = a, δ1 = 0)

≤Pxy

[
(x2(m′(x)−m(x)) + xδ2 = T ′ − a) | x ̸= 0, T = a

]
· Pr(x ̸= 0, T = a, δ1 = 0)

(4)

≤ L− 3

2λ − 1
Pr(x ̸= 0, T = a, δ1 = 0),

where Eq. (4) follows from the fact that δ1 is determined by T . Hence,

∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0, δ1 = 0] ≤ L− 3

2λ − 1
Pr(x ̸= 0, δ1 = 0). (5)

Case δ1 ̸= 0. In this case, T ′ − T = δ1x
L−1 + δ21x

L−2 +Q(x) + δ1y, where
Q(x) is some polynomial of degree at most L − 3 (when fix T = a). Here we
use the fact: since GF (2λ) has character is 2 and L = 3 mod 4, it follows that
both L and (L − 1)L/2 are 1 in GF (2λ). Representing y in terms of x and
substituting it into T , we have a = T = δ1x

L−1+µ(x) for some polynomial µ(x)
of degree at most L − 3 (when fix T = a). There are at most L − 1 possible
x to satisfy this. Further, when T = a and x are fixed with x ̸= 0, there is a
unique y satisfying T = a. Hence, given T = a and the fact x ̸= 0, we know
that x is uniformly random over GF (2λ) − {0}. Finally, we again remind that
T ′,m′, δ1, δ2 are determined by T (hence, given T = a, (T ′,m′, δ1, δ2) are all
fixed). With these facts in mind, we have (similar to Case δ1 = 0)

Pxy[(m
′, T ′) valid | x ̸= 0, T = a, δ1 ̸= 0] · Pr(x ̸= 0, T = a, δ1 ̸= 0)

≤Pxy

[
δ1x

L−1 + δ21x
L−2 +Q(x) + δ1y = T ′ − a | x ̸= 0, T = a

]
· Pr(x ̸= 0, T = a, δ1 = 0)

(6)

≤ L− 1

2λ − 1
Pr(x ̸= 0, T = a, δ1 ̸= 0),

Hence,

∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0, δ1 = 0] ≤ L− 1

2λ − 1
Pr(x ̸= 0, δ1 ̸= 0). (7)

Combining Eq. (5)(7), we have
∑

a Pxy[(m
′, T ′) valid, T = a, x ̸= 0] ≤ L−1

2λ−1 Pr(x ̸=
0). Notice Pr(x ̸= 0) = 2λ−1

2λ
. We know that

∑
a Pxy[(m

′, T ′) valid, T = a, x ̸=
0] ≤ L−1

2λ
. Plugging in Eq. (3), we obtain our result. □

21

B Proof of Theorem 1

To prove that Construction 1 is a computational fuzzy extractor, we need to
prove the ϵ′-correctness and σsec-security of the computational extractor. We
first prove the correctness of the algorithm and then argue security.

Reliability (Correctness). We first consider correctness error. That is, when
there is no attack, the ciphertext will be accepted with high probability. In our
proposed construction, the parameters m and ℓ represents a trade-off between
correctness and efficiency. We need to choose a value for ℓ and m. Increasing
ℓ improves correctness; however, it decreases efficiency. As mentioned earlier,
we assume that the maximum Hamming distance between W and W ′ is t′ i.e.
d(W,W ′) ≤ t′. For any i,
Pr[(W ′ji,1 ,W

′
ji,2

, · · · ,W ′ji,m) = (Wji,1 ,Wji,2 , · · · ,Wji,m)] ≥ (1 − t′/(n − m))m,
where Ai = {i1, · · · , im} = {ji,1, ji,2, · · · , ji,m} and 1 ≤ ji,1, ji,2, · · · , ji,m ≤ n.
This is because Pr[W ′ji,1 = Wji,1] ≥ (1 − t′/n) as ji,1 is uniform. Conditioned
on that event the probability that W ′ji,2 = Wji,2 is at least 1− t′/(n− 1). Thus,
Pr[(W ′ji,1 ,W

′
ji,2

, · · · ,W ′ji,m) = (Wji,1 ,Wji,2 , · · · ,Wji,m)]

≥ (1− t′/n)(1− t′/(n− 1)) · · · (1− t′/(n−m))
≥ (1−t′/(n−m))m. Therefore, the probability that no vi matches at the receiver
is at most (1 − (1 − t′

n−m)m)ℓ, where vi = (W ′ji,1 ,W
′
ji,2

, · · · ,W ′ji,m), and i ∈
{1, 2, · · · , ℓ}.

In addition, Rep in Algorithm 3 may return an incorrect extracted key due
to an error at step (iv) and verification of T ′ = T at step (e). These errors
might occur due to collision that we now explain in detail. Note that steps
(i)-(iii) of Rep represents the decryption algorithm of the CPA secure sym-
metric encryption scheme (or the reusable fuzzy extractor) due to Dodis et
el. [16] (section 4.1). From the unique-key property of the reusable extractor
(i.e. CPA secure symmetric encryption scheme) due to Dodis et el. (Claim 4.1
of [16]), the probability that (gi ̸=⊥) occurs when the generation (i.e. encryp-
tion) and reproduction (i.e. decryption) keys are different, is at most 2αe−α (as
H̃∞(W [Ai] | Ai) ≥ α,∀i ∈ {1, · · · , ℓ}). Hence, an error at step (iv) may occur
with probability at most 2αe−α ·2−t. Indeed, if Ext(W [Ai], Z) ̸= Ext(W ′[Ai], Z),
then Z(i) · (Ext(W [Ai], Z)−Ext(W ′[Ai], Z)) is uniformly random independent of
ECC(0t|R|R1). Hence, if

Z(i)(Ext(W [Ai], Z)− Ext(W ′[Ai], Z)) + ei + ECC(0t|R|R1)

can be decoded, the message will be uniformly random and thus has a pattern 0t

with probability at most 2−t. Furthermore, similar to lemma 2 (except δ1|δ2 =
(di ⊕ d′i)ν−2λ+1···ν with di from W and d′i from W ′), a collision T ′ = T occurs
with probability (L · 2−λ). Rep may return an incorrect extracted key if there
is at least one collision at step (iv) together with a collision T ′ = T at step (e).
This might happen with any of the ℓ executions of both step (iv) and step (e)
and hence with probability at most ℓ · 2

α

eα · 2
−t · L · 2−λ. Therefore, we need to

22

set ℓ and m so that

(1− (1− t′

n−m
)m)ℓ + ℓ · 2

α

eα
· 2−t · L · 2−λ ≤ ϵ′(λ) (8)

where ϵ′(λ) is the fuzzy extractor’s allowable error parameter.
Security. We now prove its security. We would like to show that

δD((R,P); (Uξ, P)) ≤ σsec, where P is the public string.
At step (i) of Gen in Algorithm 1, we sample a purely random subset Ai =

{i1, · · · , im} from [n] of size m. In line (ii), we sample a purely random matrix
Z(i) ∈ {0, 1}ν×ν̂ . Furthermore, at step (iii), we sample a random error vector
e(i) = (e

(i)
1 , · · · , e(i)ν) ∈ {0, 1}ν , where Pr(e

(i)
j = 0) = 1+γ

2 , ∀j ∈ {1, · · · , ν}. Note
that Z is also a purely random sample.

Since W is an (α,m)-source, we have H̃∞(W [Ai]|Ai) ≥ α, where Ai is a
purely random subset of [n], ∀i ∈ {1, · · · , ℓ}.

In line (v), we have pi = (ECC(0t|R|R1) + e(i) + Z(i)Ext(W [Ai], Z)) (as
di = Z(i) · Ext(W [Ai], Z)). Note that, under the generalized Learning Parity
with Noise (LPN) assumption, (ECC(0t|R|R1) + e(i) + Z(i)Ext(W [Ai], Z))ℓi=1

becomes a (CPA) secure symmetric encryption of the message (0t|R|R1), where
W is the secret key. This is because (1) Ext(W [Ai], Z) is negligibly close to
uniform, and (2) due to generalized LPN assumption, {e(i)+Z(i)Ext(W [Ai], Z)}i
are computationally indistinguishable from jointly uniformly random tuples.

Hence, (Gen,Rep) is a (Vn,W, ξ, t′, ϵ′, σsec)-computational fuzzy extractor,
where (1− (1− t′

n−m)m)ℓ + ℓ · 2
α

eα · 2
−t · L · 2−λ ≤ ϵ′(λ).

Reusability. Following the same argument above except noticing that due
to generalized LPN assumption, {e(i) +Z(i)Ext(W [Ai], Z)}i for all instances are
computationally indistinguishable from jointly uniformly random tuples. Thus,
after leaking all the instances except the test one, {e(i) + Z(i)Ext(W [Ai], Z)}i
in the test instance are still computational uniformly random and R masked by
this tuple is computationally indistinguishable from uniform.

Robustness. The robustness is proven in Appendix C. ⊓⊔

C Robustness Proof for Construction 1

Proof. We need to show that our construction satisfies Definition 4. We show
that through qe generation queries and qd reproduction queries, the robustness
is broken only negligibly. Assume A is the robustness attacker. Define Γ0 to
be the robustness game where challenger acts normally for each generation and
reproduction query. Let d̂i = di + ei. We now revise Γ0 to Γ1 so that d̂i = Z(i) ·
Ext(W [Ai], Z)+ei is replaced by d̂i ← {0, 1}ν in generation query or reproduction
query (for some (Z(i), Ai) that does not appear in a previous query; otherwise,
use the existing d̂i). Let Succ(Γ) be the success event of A in game Γ. Then, we
consider a distinguisher D that distinguishes Γ0 and Γ1. Upon receiving d̂i that is
either di+ei = Z(i)·Ext(W [Ai], Z)+ei or uniformly random, where Z(i), Ai, Z are
sampled using r (where Ai, Z serves as the description of xi = Ext(W [Ai], Z)),
D simulates Γ0 with A against it by providing the latter with public randomness

23

r, except all d̂i’s are from his challenge tuple. For brevity, we implicitly assume
(without a mention) that whenever A makes a (generation or reproduction)
query, both A and D knows the underlying parameters Z(i), Ai, Z. Further, to be
consistent, whenever A makes a reproduction query with parameters Z(i), Ai, Z
from the generation query i, A will simulate the response using the challenge d̂i
corresponding to Z(i), Ai, Z. Finally, if A succeeds, D outputs 0; otherwise, it
outputs 1. Since A1, · · · , Aℓ by challenger or adversary is from public random
string, W [Ai] follows the distribution of (α,m)-source W . Hence, by definition
of Ext and generalized LPN assumption, we immediately have the following.

Lemma 6. |P (Succ(Γ0)) − P (Succ(Γ1))| ≤ ϵlpn, where ϵlpn is the advantage
of D in breaking generalized LPN assumption.

Now we consider the success event Succ(Γ1). We assume A will not query
(p1, · · · , pℓ, T) from a generation query output (R, p1, · · · , pℓ, T) to the reproduc-
tion oracle as A already knows the answer R. We also assume after outputting
the forgery, attacker will terminate (as his success only depends on the validity
of the forgery).

We modify Γ1 to Γ2 so that A is provided with o = W ′−W , where W ′ is used
for verification of the reproduction query and final forgery. It is immediate that
P (Succ(Γ1)) ≤ P (Succ(Γ2)). Now we focus on Γ2. Consider the ith reproduc-
tion query {Z(i)|Ai|pi}ℓi=1|T . Let bit Ei be the decision bit for the reproduction
query (0 for reject and 1 for success). We modify Γ2 to Γ3 such that if a repro-
duction query is valid, than A succeeds and in addition upon the first Ei = 1,
then D terminates the simulation. Obviously, P (Succ(Γ2)) ≤ P (Succ(Γ3)) (as
Ei = 1 already implies the success of A and hence there is no need to con-
tinue the simulation). Let E∗i be the event Ei = 1 while Ej = 0 for j < i. So
P (Succ(Γ3)) ≤

∑qd
i=1 P (E∗i). We first bound P (E∗1).

Let this first reproduction query be C1 = (A′1, p
′
1, · · · , A′ℓ, p′ℓ, T ′), where

A′1, · · · , A′ℓ are from public randomness r. Hence, d̂1, · · · , d̂ℓ for this query are
uniformly random (as we consider Γ2). For simplicity, some generation query
has generated ciphertext C ′1 using the same sample set A′1, · · · , A′ℓ (otherwise,
the proof will be similar and simpler as it can be regarded as attacker ignores
the output from the previous generation query). Now since C1 is different from
the generation query output, it must have pi ̸= p′i for some i. We can rewrite
p′i = pi+(pi+p′i) = d̂i+ECC(0t|R|R1)+(p′i+pi). At the receiver side, decoding
p′i using W ′ will give (0t|R|R1)+DEC(pi+p′i+Z ′i ·Ext(o[Ai], Z)), as Ext is linear,
where DEC is the decoding algorithm for ECC. If DEC outputs ⊥, then the
reproduction query will be rejected normally. So we consider the case that DEC
output is not ⊥. Let δ1|δ2 be the last 2λ bits of DEC(pi+p′i++Z ′i ·Ext(o[Ai], Z)),
which is known to A. Let R1 = x|y. Then, T = xL+x2m(x)+xy. If C1 is verified
by the verifier using the key (x + δ1)|(y + δ2), decoded from p′i using W ′, then
T ′ = (x+δ1)

L+(x+δ1)
2m′(x+δ1)+(x+δ1)(y+δ2), with L = ⌈νℓ/λ⌉+4, where

m′ is the vector encoded from H(p′1| · · · |p′ℓ) which is different from m encoded
from H(p1| · · · |pℓ) by the collision-resistancy of hash function H. Since now x, y
are uniformly random λ bits (and independent of m as x|y in pi is masked by

24

one-time pad di which is used only in pi), by Lemma 2, conditional on T, the
probability that T ′ is valid (using the key in p′i) is at most 2−λ(L+ 1). Further,
there are at most ℓ possible i. Thus, P (E∗1) ≤ 2−λℓ(L+ 1).

Now we consider P (E∗k). To evaluate this, we consider a variant Γ ′3 of Γ3

where the tth reproduction query for t < k is decided as reject (without verifying
the tag T in its query). Let Σ be the randomness of Γ3. Then, if Σ leads to
reject for all previous k − 1 reproduction query, then adversary views in Γ ′3
and Γ3 are identical; otherwise, some reject of some tth reproduction query is
wrong. But in this case, E∗k will not occur. It follows P (E∗k(Γ3)) = P (E∗k(Γ

′
3)).

On the other hand, since the previous k − 1 reproduction query always results
in reject, it can be simulated by A himself. Hence, P (E∗k(Γ

′
3)) = P (E∗1). It

follows that P (Succ(Γ3)) ≤ qdP (E∗1) ≤ qd2
−λℓ(L + 1). From Lemma 6 and

P (Succ(Γ1)) ≤ P (Succ(Γ2)) ≤ P (Succ(Γ3)), it follows that P (Succ(Γ0)) ≤
ϵlpn + qd2

−λℓ(L+ 1). In this probability bound, we assume that no collision for
H occurs in the attack, which is violated with probability at most ϵH . Hence,
our result follows. □

D Proof of Theorem 2

Following Definition 2, we need to proof the ϵ-correctness and σ-security property
of the fuzzy extractor, when there is no attack.

Reliability (correctness). Following the same argument as the proof of The-
orem 1, we can prove that the probability that no vi matches at the receiver
is at most (1 − (1 − t′

n−m)m)ℓ, where vi = (W ′ji,1 ,W
′
ji,2

, · · · ,W ′ji,m), and i ∈
{1, 2, · · · , ℓ}.

In addition, Rep in figure 1 may return an incorrect extracted key due to an
error in step (ii). This error might occur due to a collision that we now explain
in detail. A collision at step (ii) may occur with probability (1

2t), assuming E is
implemented as a function from a strong universal hash family. Now, Rep may
return an incorrect extracted key if there is at least one collision at step (ii). This
may happen with any of the ℓ executions of step (ii) and hence with probability
at most ℓ · 2−t.

Since the fuzzy extractor’s allowable error parameter is ϵ′(λ), we need to
choose ℓ and m so that

(1− (1− t′

n−m
)m)ℓ + ℓ · 2−t ≤ ϵ′(λ). (9)

Security. We now prove that it is an information-theoretic secure fuzzy ex-
tractor. We need to prove that ∆((R,P), (Uξ;P)) ≤ σ(λ), where P is the public
strings.

In step (i) of Gen() algorithm described in figure 1, we sample a random
subset Ai = {i1, · · · , im} from [n]. In step (ii), E is implemented by H.

Since W is a (α,m,N)-sample source, we have H̃∞(W [A] |W [B], A,B) ≥ α,
where A (resp. B) is a purely random subset of [n] of size m (resp. N).

25

Since H : X × S → {0, 1}ν is a strong universal hash family, from lemma 1,
if ν ≤ α+ 2− 2 log(2ℓσ), H is an (m,α, ν, σ(λ)

2ℓ)-extractor. Now, ν = ξ + t. Thus,
if ξ ≤ α+ 2− 2 log(2ℓ

σ(λ))− t, H is an (m,α, ν, σ(λ)
2ℓ)-extractor.

Since H is an (m,α, ν, σ(λ)
2ℓ)-extractor, from lemma 3, 4, if ξ ≤ α + 2 −

2 log(2ℓ
σ(λ))− t and ℓm < N , considering S = R in lemma 4, we have

∆(R,p, Z,A;U,p, Z,A) ≤ σ(λ). (10)

Therefore, (Gen,Rep) is a (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor, where (1−(1−
t′

n−m)m)ℓ + ℓ · 2−t ≤ ϵ′(λ), ℓm < N and V ∈ {0, 1}. Furthermore, the length of
the extracted key will be
ξ ≤ α+ 2− 2 log(2ℓ

σ(λ))− t.
Reusability. In response to a query to Gen oracle (i.e. generation oracle

query), the oracle returns a pair of key ri and ciphertext ci to the adversary,
where ri = Ri and ci = (p1|A1, · · · , pℓ|Aℓ)

i according to the Gen(W i) proce-
dure described in figure 1. Now since W is a source with (α,m,N)-samples, in
each query to generation oracle, Gen(W i) procedure runs with new samples with
conditional entropy α. Hence, the uncertainty about the new samples remains
the same before and after η queries to the generation oracle from adversary’s
perspective. Therefore, the entropy of the new samples remains same. Now pro-
ceeding in similar manner as the proof of security , we can prove that, if
ξ ≤ α + 2 − 2 · log(2ℓσ) − t, then the (Gen,Rep) described in figure 1 is (η, σ)-
reusable (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor, where
(1− (1− t′

n−m)m)l + l · 2−t ≤ ϵ′(λ) and ℓηm < N . ⊓⊔

E Proof of Theorem 3

Correctness. We first consider correctness error. Then we prove the security.
Proceeding the same way as the proof of Theorem 1, we can prove that the
probability that no vi matches at the receiver is at most (1 − (1 − t′

n−m)m)ℓ,
where vi = (W ′ji,1 ,W

′
ji,2

, · · · ,W ′ji,m), and i ∈ {1, 2, · · · , ℓ}.
In addition, Rep may be incorrect due to an error in step (ii) and verification

of T ′ = T . These errors might occur due to collision. A collision at step (ii)
might occur with probability (1

2t), assuming E is implemented as a function
from a strong universal hash family. In addition, similar to lemma 2 (except
δ1|δ2 = (di ⊕ d′i)ν−2λ+1···ν with di from W and d′i from W ′), a collision T ′ = T
occurs with probability L2−λ. Now, Rep may be incorrect if there is at least one
collision at step (ii) together with a collision T ′ = T . This may happen with any
of the ℓ iterations and hence with probability at most ℓ · 2−t · L · 2−λ.

Since the fuzzy extractor’s allowable error parameter is ϵ′(λ), we need to
choose ℓ and m so that

(1− (1− t′

n−m
)m)ℓ + ℓ · 2−t · L · 2−λ ≤ ϵ′(λ). (11)

26

Security. We now prove the security. We need to show that
∆((R,P), (Uξ;P)) ≤ σ(λ), where P is the public strings. In step (i) of Gen
algorithm of Figure 2 , a random subset Ai = {i1, · · · , im} is sampled from [n],
and in step (ii), E is implemented by H. Note that W is a (α,m,N)-sample
source. Hence, we have H̃∞(W [A] | W [B], A,B) ≥ α, where A (resp. B) is a
purely random subset of [n] of size m (resp. N).

Since H : X × S → {0, 1}ν is a strong universal hash family, from lemma 1,
if ν ≤ α + 2 − 2 log(4ℓσ), H is an (m,α, ν, σ(λ)

4ℓ)-extractor. Now, ν = 2λ + ξ + t.
Thus, if ξ ≤ α+ 2− 2 log(4ℓ

σ(λ))− t− 2λ, H is an (m,α, ν, σ(λ)
2ℓ)-extractor.

Since H is an (m,α, ν, σ(λ)
4ℓ -extractor, from lemma 3, 4 and 5, if ξ ≤ α+ 2−

2 log(4ℓ
σ(λ))− t− 2λ and ℓm < N , we have

∆(R,p, Z,A, T ;U,p, Z,A, T) ≤ σ(λ). (12)

Therefore, (Gen,Rep) is a (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor, where
(1−(1− t′

n−m)m)ℓ+ℓ ·2−t ·L ·2−λ ≤ ϵ′(λ), ℓm < N and V ∈ {0, 1}. Furthermore,
the length of the extracted key will be ξ ≤ α+ 2− 2 log(4ℓ

σ(λ))− t− 2λ.
Reusability. The proof follows similar arguments of reusability part of the

proof of Theorem 2 and the security arguments described above. In response to
a query to Gen oracle, the oracle returns a pair of key ri and ciphertext ci to
the adversary, where ri = Ri and c = (p1, · · · , pℓ, T) according to the Gen(W i)
procedure described in Figure 2. As W is a source with (α,m,N)-samples, in each
Gen oracle query, Gen(W i) procedure runs with new samples with conditional
entropy α. Hence, the uncertainty about the new samples remains the same
before and after η Gen oracle (or generation oracle) queries from the adversary’s
perspective. Therefore, the entropy of each new samples remains same. Now
proceeding in similar manner as the proof of Theorem 3, we can prove that, if
ξ ≤ α + 2− 2 · log(4·ℓ

σ(λ))− t− 2λ, then the (Gen,Rep) described in Figure 2 is
(η, σ)-reusable (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor, where
(1− (1− t′

n−m)m)l + l · 2−t · L · 2−λ ≤ ϵ′(λ) and ℓηm < N .
Robustness. Robustness proof is given in Appendix F ⊓⊔

F Robustness Proof for Theorem 3

We need to prove our scheme satisfies Definition 4. We show that through qe
generation queries and qd reproduction queries, the robustness is broken negli-
gibly. Assume A is the robustness attacker. Upon generation and reproduction
queries, challenger acts normally. Denote this game Γ0. We now revise Γ0 to
Γ1 so that di = E(W [Ai], Z) is replaced by di ← {0, 1}ν in generation query
or reproduction query (for some Ai that does not appear in a previous query;
otherwise, use the existing di). Let Succ(Γ) be the success event of A in game
Γ. Let di be taken from di = E(W [Ai], Z) or di ← {0, 1}ν , for all i. Then, we
consider a distinguisher that distinguishes Γ0 and Γ1. Upon receiving di that is
either di = E(W [Ai], Z) or uniformly random, challenger prepares the public

27

sampling randomness r that results in sampling Ai’s for all i’s in the challenge.
Now challenger simulates Γ0 with A against it by providing A with Z and public
randomness r, except all di’s are from his challenge tuple. Finally, if A succeeds,
output 0; otherwise, output 1. The simulated game is a randomized function
with input d1, · · · ,dqd+qe and a binary output 0 or 1, where di is the vector of
(d1, · · · , dℓ) in the generation or a reproduction query (with new Ai’s). Denote
this function by G(d). Since A1, · · · , Aℓ by challenger or adversary is from public
random string, W [Ai] follows the distribution of (α,m,N)-source W . By claim
1 and Lemma 3, we immediately have the following.

Lemma 7. |P (Succ(Γ0))− P (Succ(Γ1))| ≤ (qd + qe)ℓϵ.

Now we consider the success event Succ(Γ1). We assume A will not query
the output of generation query to the reproduction oracle as A already knows
the answer. Consider the ith reproduction query {Ai|pi}ℓi=1|T . Let bit Ei be
the decision bit for the reproduction query (0 for reject and 1 for success). We
modify Γ1 to Γ2 such that if upon the first Ei = 1, then stop the security game.
Obviously, P (Succ(Γ1)) = P (Succ(Γ2)). Let E∗i be the event Ei = 1 while
Ej = 0 for j < i. So P (Succ(Γ2)) ≤

∑qd
i=1 P (E∗i). We first bound P (E∗1).

Let this first reproduction query be C1 = (A′1, p
′
1, · · · , A′ℓ, p′ℓ, T ′), where

A′1, · · · , A′ℓ are from public randomness r (note: they could be previously sam-
pled in the generation query processing). Hence, d1, · · · , dℓ for this query are
uniformly random (as we consider Γ2). For simplicity, some generation query
has generated ciphertext C ′1 using the same sample set A′1, · · · , A′ℓ (otherwise,
the proof will be similar and simpler). Assume d1, · · · , dℓ generated p1, · · · , pℓ, T
for that generation query. We bound the probability that T ′ generated by A is
valid. Notice that each generation query uses independent di’s and hence can
be simulated by A. So we can assume that A only issue one generation query
(which uses A′1, · · · , A′ℓ). Denote this by Γ 1

2 . Let the hash output be T for the
generation query. Since the reproduction query can not use the same ciphertext,
assume p′i ̸= pi. Hence, let x|y = R1 in pi and let δ1|δ2 be the last 2λ bits in
pi⊕p′i⊕Ext(o[Ai], A), where o = W ′−W is assumed to be known to A (this will
only increase the success probability of A). Then, the decrypted tag key from
C1 using W ′ at verifier will be
(x+ δ1)|(y+ δ2). Hence, if T ′ is valid, we know that T = xL + x2m(x) + xy and
T ′ = (x+δ1)

L+(x+δ1)
2m′(x+δ1)+(x+δ1)(y+δ2), with L = ⌈νℓ/λ⌉+4. Since

now x, y are uniformly random λ bits and are independent of (A1|p1| · · · |pℓ|Aℓ)
due to the one-time pads d1, · · · , dℓ) (hence idependent of the encoded vector
m), by Lemma 2, conditional on T, the probability that T ′ is valid is at most
2−λ(L+1). Further, there are at most ℓ possible i. Thus, P (E∗1) ≤ 2−λℓ(L+1).

Now we consider P (E∗k). To evaluate this, we consider a variant Γ 3
2 of Γ2

where the tth reprodution query for t < k is decided as reject (without verifying
the tag T in its query). Let Σ be the randomness of Γ2. Then, if Σ leads to
reject for all previous k − 1 reproduction query, then adversary view in Γ 3

2 and
Γ2 is identical; otherwise, some reject of some tth reproduction query is wrong.
But in this case, E∗k will not occur. It follows P (E∗k(Γ2)) = P (E∗k(Γ

3
2)). On the

28

other hand, since the previous k− 1 reproduction query always results in reject,
it can be simulated by A himself. Hence, P (E∗k(Γ

3
2)) = P (E∗1). It follows that

P (Succ(Γ2)) ≤ qdP (E∗1) ≤ qd2
−λℓ(L+ 1). From Lemma 7 and P (Succ(Γ1)) =

P (Succ(Γ2)), it follows that P (Succ(Γ0)) ≤ (qd + qe)ℓϵ+ qd2
−λℓ(L+ 1). □

G Proofs of Basic Results in Section 3

Proof of Claim 1. By calculation, we have
∆(F (X);F (Y))

= 1
2

∑
v∈V |Pr[F (X) = v]− Pr[F (Y) = v]|

= 1
2

∑
v∈V |

∑
u:F (u)=v(Pr[X = u]− Pr[Y = u])|

≤ 1
2

∑
v∈V

∑
u:F (u)=v |Pr[X = u]− Pr[Y = u]|

= ∆(X;Y). □

Proof of Lemma 3. Use induction. When µ = 1, it holds from assumption
and Claim 1. If it holds for µ = k − 1, consider case µ = k. By assumption,
E(Ũ , Z) = U. Note that di = E(W [Ai], Z). We have

∆(d, Z,A;Uk, Z,A)

≤∆(dk,d
k−1, Z,A;U,dk−1, Z,A) +∆(U,dk−1, Z,A;U,Uk−1, Z,A)

≤∆(dk, {W [Ai]}k−11 , Z,A;U, {W [Ai]}k−11 , Z,A)+

∆(dk−1, Z,A;Uk−1, Z,A)

≤ϵ+ (k − 1)ϵ = kϵ,

where the 2nd inequality follows from Claim 1; the first part of the last inequality
follows from the definition of E and H̃∞(W [Ak] | {W [Ai]}k−11 ,A) ≥ α (from
definition of W); the second part follows from the induction assumption with
the fact that Ak is independent of the remaining random variable. □

Proof of Lemma 4. Let di = E(W [Ai], Z). Denote di = Xi|Yi with Xi the
first t bits and Yi the remaining bits of di. Let U1, U2 be uniformly random
variables in the domain of X1, Y1 respectively. Let U1,U2 be ℓ iid copies of U1, U2

respectively. For vector v and variable α, v⊕α denotes (v1⊕α, · · · , vℓ⊕α). For
simplicity, let C = (Z,A).

∆(S,p, C;U,p, C)

= ∆(S,d, C;U,d′, C), where d′ = d⊕ 0t|S ⊕ 0t|U
= ∆(PSdC ;PUPd′C)

= ∆(PdC ;Pd′C), (as S is ind of (d, C) and distributed as U)

= ∆(PXYC ;PX,Y⊕V,C), (let V
def
= U ⊕ S))

≤ ∆(PXYC ;PU1U2C) +∆(PU1U2C ;PX,Y⊕V,C)

≤ ℓϵ+∆(PU1U2C ;PX,Y⊕V,C), (Lemma 3)
≤ ℓϵ+∆(PU1U2CV ;PX,Y⊕V,C,V)

29

= ℓϵ+∆(PU1,U2−V,C,V ;PX,Y,C,V)

= ℓϵ+∆(PU1U2CV ;PXYCV)

(U2 and U2 − V are identical, ind of the remaining variables)
= ℓϵ+∆(PU1U2C ;PXYC), (V is ind of the remaining variables)
≤ 2ℓϵ, (Lemma 3) □

Proof of Lemma 5. In Lemma 4, S = R|R1 in our scheme. Thus,

∆(R|R1,p, Z,A;U |U1,p, Z,A) ≤ 2ℓϵ,

where U (resp. U1) is uniform ξ-bit (resp. 2λ-bit). Let C = (p, Z,A). By claim
1, let F (R|R1, C) = (R,C, T). Then, ∆(R,C, T ;U,C,U ′) ≤ 2ℓϵ, where U ′ =
tag(U1, C) and tag(·) is the tag algorithm in our scheme used to compute T .
Notice that

∆(R,C, T ;U,C, T)

≤∆(R,C, T ;U,C,U ′) +∆(U,C,U ′;U,C, T)

≤∆(R|R1, C;U |U1, C) +∆(U,C,U ′;U,C, T), (Claim 1)
≤2ℓϵ+∆(C,U ′;C, T), (Lemma 4; U is ind of p and T,U ′)
≤2ℓϵ+∆(U1, C;R1, C), (Claim 1)
≤4ℓϵ, (Claim 1 and Lemma 4)

This completes our proof. □

H LDPC Experiments

In this section we discuss the experimental results for LDPC code.

H.1 Commands and Parameters

We ran these experiments on the 5G standard matrices[26]. The matrices were
converted using a python script convert.py (included with this report).

Errors were introduced using the provided transmit function. We simulated a
binary symmetric channel (with bsc command) with error rates 0.11, 0.12, 0.125,
and 0.13. Each round of testing started with creating a random source - 2000
blocks of messages with block size of either 396, 192, 132, or 110. Afterwards,
we encoded the messages, introduced errors and attempted to decode. Decoding
was done using the probability propagation method with at most 250 iterations.
Table 2 presents our results.

H.2 Experimental results for 5G matrices

We ran the experiment for the matrices NR_1_4_18 NR_1_4_9, and NR_1_1_6
[26]. The parity check matrices are presented in order of success rate.

30

Name Code Noise Success Rate Enc Time Dec Time

NR_1_4_18 (1228, 396)
0.11 2000/2000

0.175 sec
1.5 sec.

0.13 1989/2000 2 sec.
0.15 1598/2000 9.72 sec.

NR_1_4_9 (612, 198)
0.12 1989/2000

0.090 sec
0.729 sec.

0.125 1964/2000 1.019 sec.
0.13 1906/2000 1.443 sec.

NR_1_1_6 (408, 132)
0.12 1943/2000

0.102 sec
0.683 sec.

0.125 1888/2000 0.930 sec.
0.13 1838/2000 1.282 sec.

Table 2. Experimental results for some LDPC code with different noise rate

31

	Robust and Reusable Fuzzy Extractors and their Application to Authentication from Iris Data

