
Towards A Correct-by-Construction FHE Model
Zhenkun Yang, Wen Wang, Jeremy Casas, Pasquale Cocchini, Jin Yang

Intel Labs, Intel Corporation

Abstract—This paper presents a correct-by-construction
method of designing an FHE model based on the automated pro-
gram verifier Dafny. We model FHE operations from the ground
up, including fundamentals like GCD, coprimality, Montgomery
multiplications, and polynomial operations, etc., and higher-
level optimizations such as Residue Number System (RNS) and
Number Theoretic Transform (NTT). The fully formally verified
FHE model serves as a reference design for both software stack
development and hardware design, and verification efforts. Open-
sourcing our FHE Dafny model with modular arithmetic libraries
to GitHub is in progress.

I. INTRODUCTION

Fully Homomorphic Encryption, in short FHE, comprises
cryptosystems that supports arbitrary computation on an en-
crypted data set. Efficient implementations of FHE programs
involve transformations between various data representations
and complex arithmetic defined on large data fields. To-
gether with the complexity brought by algorithm-level and
architectural-level optimizations, the difficulty of mapping
FHE programs to hardware or software systems while main-
taining functional correctness constitutes a rather challenging
task.

Formal verification is a powerful technique often used for
mathematically proving the correctness of intended function-
ality in hardware or software systems with respect to their
formal specification. In comparison to validation, which is a
stimulus-oriented approach to ensure that the system under
test works on a set of pre-defined inputs, formal verification
systematically proves that the implementation conforms to the
specification.

A. FHE

z=x*y

FHE Program FHE Operations

HE_ADD((c1,c2), (d1, d2), q)

RNS Polynomial Arithmetic

poly_add(c11, d11, q_1)

poly_add(c12, d12, q_2)

poly_add(c1k, d1k, q_k)

…

(c1+d1) mod q

Modular Arithmetic

𝑅𝑞 = ℤ𝑞 𝑥 /(𝑥𝑛 + 1) {𝑅𝑞1 , 𝑅𝑞2 , … , 𝑅𝑞𝑘} ℤ𝑞𝑖 , 𝑖 [1, 2, … , 𝑘]

HE_Mult
HE_Rotate
HE_ModSwitch
HE_Relinearization

…

poly_mult
poly_mac
poly_ntt/intt

…

mod_add(c111, d111, q_1)

mod_add(c112, d112, q_1)

mod_add(c11n, d11n, q_1)

poly_add(c11, d11, q_1)

…

… …

mod_mult
mod_mac

…

…

Fig. 1. FHE decomposition

In our work, we focus on the modelling and verification of
an FHE program which performs homomorphic computation
for a given function. Figure 1 shows an example of the
decomposition flow for an FHE program. An FHE program

is composed of a sequence of homomorphic operations,
e.g., homomorphic multiplication, homomorphic rotation, etc.
The inputs for the homomorphic computation are ciphertexts
composed of arrays of polynomials in a polynomial ring
Rq = Zq[x]/(x

n + 1). The coefficient modulus q can be
chosen to be composed of several distinct prime values, i.e.,
q = q1 × q2 · · · × qk. In this case, the polynomials in
the ciphertext can take advantage of the Residue Number
System (RNS) representation which splits a polynomial in
Rq into k polynomials defined in {Rq1 , Rq2 , · · · , Rqk}, where
Rqi = Zqi [x]/(x

n+1) for i = 1, · · · , k. Here, RNS enables an
efficient decomposition of FHE operations to polynomial oper-
ations that are defined with smaller moduli (or RNS residues),
i.e., q1, q2, · · · , qk. These RNS polynomial operations, e.g.,
polynomial addition and polynomial multiplication, can further
be realized through the underlying modular arithmetic defined
on the field Zqi , for i = 1, · · · , k.

For performance reasons, real-world implementations of
FHE often involve complicated optimizations, e.g. RNS and
Number Theoretic Transform (NTT) as employed in modu-
lar polynomials multiplications. Optimization tricks such as
picking NTT-friendly primes [1] can reduce the computation
requirement by a huge factor. As a consequence, however,
designers often make specific assumptions about the optimiza-
tion process (often not formally documented) from the original
design. This makes the verification harder by introducing gaps
between the algorithmic specification and the real implemen-
tations. This paper proposes an approach to formally capture
and verify each of the optimization steps in a formal language.

This paper aims at presenting a correct-by-construction FHE
model with formal verification techniques. More specifically,
we use the Dafny [2] program verifier to formally model
and verify all the operations of an FHE system. We write
both specification and implementation in Dafny, a high-level
language designed with verification support. Dafny uses the
Z3 [3] SMT solver for proof automation.

B. Dafny

1 function modinv(a: int, n: int): int
2 requires n > 0 ▷precondition
3 ensures a * modinv(a, n) % n == 1 % n ▷postcondition
4 {
5 // implementation of modular inverse omitted
6 }

The above code shows an example of the modular multi-
plicative inverse function modinv in Dafny. It takes an integer
a and modulus n, and returns an integer, say v, such that
a × v ≡ 1(mod n). Line 2 and line 3 are the pre- and



post-condition of the function, which serves as the specifi-
cation of the function. Dafny will statically verify that the
implementation (function body) indeed correctly implements
the specification for all possible inputs. Similarly, the post-
condition for modular polynomial multiplication can be easily
modeled regardless of complicated optimizations.

II. CORRECT-BY-CONSTRUCTION APPROACH

Original FHE 
Algorithms

Optimized FHE 
Algorithms

…

…

Dafny Model

Dafny Model

optimization
steps

…

…
equivalence
proofs

HW/SW 
Implementation

manual
process

Executable
Model 

(C++/Go/Python)

Dafny 
compiler

Fig. 2. Design and verification flows of an FHE model

Figure 2 shows the overall design and verification work
flows. The left-hand side details a conventional design flow
where designers perform a number of algorithm optimization
steps starting from a set of original FHE algorithms. Most
often this is done in an informal way, with limited simulation
based testing that is focused only to specific scenarios. Indeed,
simulation based validation approaches are predominantly
used to test that the end design works on a limited set of pre-
selected inputs. However, simulation based testing can only
show the presence of bugs, not their absence. Since these
optimization steps are not formally verified, bugs or incorrect
assumptions may be unwillingly introduced. Additionally, dur-
ing subsequent verification stages, such a workflow creates a
potentially big gap between the original algorithms and their
actual implementations, therefore making any later formal
correctness reasoning of the implementations more difficult.

On the right-hand side, we propose a new end-to-end
correct-by-construction design and verification flow. We start
modeling the algorithms from the very beginning. Each and
every optimization step is modeled to ensure correctness along
the way. This not only makes the verification task easier
by taking advantage of smaller optimization steps, but also
enables the identification of issues as early as possible with
more accurate root causing.

At the end of the flow, executable models written in dif-
ferent target languages (C++, Go, etc.) are generated with the
Dafny compiler. This provides an executable FHE model to
higher-level software stack components, such as FHE compiler
and FHE workload. It also serves as a reference model for
downstream hardware designs. It is worth noting that the proof
strategies and pre- and post-conditions specified in the FHE

Dafny models have the added value of providing guidance
for the formal verification effort in the hardware design and
validation phases. Beyond these benefits, the generated models
can be further synthesized into RTL designs with C/C++
based High-Level synthesis tools or emerging domain-specific
languages such as HeteroCL [4] and PyLog [5].

A. FHE model construction strategy

The construction of an FHE model starts from the lowest
level of the arithmetic, i.e., the modular arithmetic. Apart
from standard modular addition and modular multiplication
arithmetic, we also model arithmetic that are specifically
utilized in a given FHE program, such as the modular multiply-
and-accumulate arithmetic. In the Appendix IV, we show
an example of the modeling and verification of modular
multiplication arithmetic, where the Montgomery reduction
algorithm [6] is applied with an optimization utilizing NTT-
friendly primes [1]. After formally verifying and modeling
the modular arithmetic, these low-level models can be treated
as a black-box and be used further as underlying arithmetic
for higher-level arithmetic. For example, the RNS polynomial
arithmetic can be constructed based on the modular arithmetic;
similarly, we can construct FHE operations by use of the RNS
polynomial arithmetic. With all the FHE operations modeled
and formally verified, we can construct a complete FHE model
which is formally verified once the model is constructed.

III. CONCLUSION

This paper presents a correct-by-construction approach for
the modeling and formal verification of FHE models. We
leverage the SMT-based automated theorem prover Dafny to
formally verify high-level algorithms and optimizations steps.
We generate fully verified models in selected target languages,
e.g. C++, Go, for integration with the rest of the software
system, i.e. compiler and workloads. This also provides a
reference model and formal verification guidance for hardware
designs. We do plan to open-source our effort in the near
future.

IV. APPENDIX: MONTGOMERY REDUCTION IN DAFNY

This section shows an example of the Montgomery Reduc-
tion [6] algorithm modeled and verified in Dafny. The proof is
lengthy, this is due to the fact that non-linear integer arithmetic
is in general undecidable, thus unstable in Z3, so we turned off
non-linear arithmetic heuristics in Danfy, and call non-linear
arithmetic lemmas from a library 1 explicitly.

1 // R: auxiliary modulus, R' is modular inverse
2 // N: the modulus, NN' = -1 (mod R)
3 // T: Input to be reduced
4 method REDC(R: nat, R': nat, N: nat, N': nat, T: nat)
5 returns (S: nat) // Output after the reduction
6 requires 0 < R && 0 < R' && 0 < N && 0 < N'
7 requires IsCoPrime(R, N)
8 requires R * R' % N == 1 % N
9 requires N * N' % R == -1 % R

10 requires N < R && T < N * R
11 ensures S % N == T * R' % N && S < N
12 {

1https://github.com/dafny-lang/libraries



13 var m: nat := T % R * N' % R;
14
15 LemmaMulNonnegative(m, N); // m * N >= 0
16 LemmaDivPosIsPos(T + m * N, R); // prove t >= 0
17
18 var t: nat := (T + m * N) / R;
19
20 // prove T + m * N is divisible by R
21 assert (T + m * N) % R == 0 by {
22 LemmaREDCDiv(T, R, N, N');
23 }
24
25 // range correction
26 S := if t >= N then t - N else t;
27
28 // prove the range of t
29 assert t < 2 * N by {
30 assert N * m < N * R by {
31 LemmaMulLeftInequalityAuto();
32 }
33 assert T + N * m < (N * R + N * R);
34 assert T + N * m < (N + N) * R by {
35 LemmaMulIsDistributiveAddOtherWayAuto();
36 }
37 assert T + N * m < (2 * N) * R;
38 assert T + N * m < R * (2 * N);
39 assert (T + N * m) / R < 2 * N by {
40 LemmaMultiplyDivideLtAuto();
41 }
42 }
43 // prove the range of return S
44 assert S < N;
45
46 assert T+m*N == R * ((T+m*N) / R) + (T+m*N) % R by {
47 LemmaFundamentalDivModAuto();
48 }
49 assert T + m * N == R * ((T + m * N) / R);
50 assert T + m * N == R * t == t * R;
51
52 // final property
53 assert t % N == T * R' % N by {
54 LinearCongruenceAndMultiplesVanish(t, R, R', T, m, N);
55 }
56
57 // prove S is congruent to t mod N
58 assert (t - N) % N == t % N by {
59 LemmaModSubMultiplesVanishAuto();
60 }
61 assert S % N == t % N;
62 }
63
64 /* let m = T % R * N' % R, and N * N' % R == -1 % R
65 then, T + m * N is divisible by R
66 idea: add multiple (m) of N to T, T divisible by R */
67 lemma LemmaREDCDiv(T: nat, R: nat, N: nat, N': nat)
68 requires 0 < R && 0 < N && 0 < N'
69 requires N * N' % R == -1 % R
70 ensures (T + (T % R * N' % R) * N) % R == 0
71 {
72 var m := T % R * N' % R;
73 var r := T % R;
74 // prove T + m * N is divisible by R
75 assert (T + m * N) % R == 0 by {
76 calc == {
77 (T + m * N) % R;
78 { LemmaAddModNoopAuto(); }
79 (T % R + m * N % R) % R;
80 (T % R + (T % R * N' % R) * N % R) % R;
81 (T % R + (r * N' % R) * N % R) % R;
82 { LemmaMulModNoopGeneralAuto(); }
83 (T % R + (r * N' * N % R)) % R;
84 { LemmaMulIsAssociativeAuto();
85 LemmaMulIsCommutativeAuto(); }
86 (T % R + (N * N' * r % R)) % R;
87 { LemmaMulModNoopGeneralAuto(); }
88 (T % R + (N * N' % R * r % R)) % R;
89 (T % R + (-1 % R * r % R)) % R;
90 { LemmaMulModNoopGeneralAuto(); }
91 (r + -1 * r % R) % R;
92 (r + -r % R) % R;
93 { LemmaAddModNoopAuto();
94 LemmaModBasicsAuto(); }
95 (r % R + -r % R) % R;

96 { LemmaAddModNoopAuto(); }
97 (r + -r) % R;
98 0 % R;
99 { LemmaModEquivalenceAuto(); }

100 0;
101 }
102 }
103 }
104
105 /* let xR = b + kN, where R and N are coprime
106 then x = R'b (mod N), R' is the modular inverse of R */
107 lemma LinearCongruenceAndMultiplesVanish(
108 x: int, R: int, R': int, b: int, k: int, N: int)
109 requires R > 0 && N > 0
110 requires R * R' % N == 1 % N
111 requires IsCoPrime(R, N)
112 requires x * R == b + k * N
113 ensures x % N == R' * b % N
114 {
115 calc == {
116 (b + k * N) % N;
117 { LemmaMulIsCommutativeAuto(); }
118 (N * k + b) % N;
119 { LemmaModMultiplesVanishAuto(); }
120 b % N;
121 }
122 calc == {
123 x % N;
124 { LinearCongruence(R, R', x, N, b); }
125 b * R' % N;
126 }
127 }

REFERENCES

[1] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of a
fast and scalable ntt-based polynomial multiplier architecture,” in 2019
22nd Euromicro Conference on Digital System Design (DSD), 2019, pp.
253–260.

[2] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and Rea-
soning, E. M. Clarke and A. Voronkov, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 348–370.

[3] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2008, pp. 337–340.

[4] Y.-H. Lai, Y. Chi, Y. Hu, J. Wang, C. H. Yu, Y. Zhou, J. Cong,
and Z. Zhang, “Heterocl: A multi-paradigm programming infrastructure
for software-defined reconfigurable computing,” Int’l Symp. on Field-
Programmable Gate Arrays (FPGA), 2019.

[5] S. Huang, K. Wu, H. Jeong, C. Wang, D. Chen, and W.-m. Hwu, “Pylog:
An algorithm-centric python-based fpga programming and synthesis
flow,” in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 227–228.

[6] P. L. Montgomery, “Modular multiplication without trial division,” Math-
ematics of computation, vol. 44, no. 170, pp. 519–521, 1985.


