
Analysis of RIPEMD-160: New Collision Attacks
and Finding Characteristics with MILP

Fukang Liu1,2, Gaoli Wang3,4, Santanu Sarkar6, Ravi Anand2, Willi Meier7,
Yingxin Li3, Takanori Isobe2,5

1 Tokyo Institute of Technology, Tokyo, Japan,
2 University of Hyogo, Hyogo, Japan

3 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University,
Shanghai, China

4 State Key Laboratory of Cryptology, Beijing, China
5 NICT, Tokyo, Japan

6 Indian Institute of Technology Madras, Chennai, India
7 FHNW, Windisch, Switzerland

liufukangs@gmail.com, glwang@sei.ecnu.edu.cn,
santanu@iitm.ac.in, ravianandsps@gmail.com, liyx1140@163.com,

willi.meier@fhnw.ch, takanori.isobe@ai.u-hyogo.ac.jp

Abstract. The hash function RIPEMD-160 is an ISO/IEC standard and
is being used to generate the bitcoin address together with SHA-256.
Despite the fact that many hash functions in the MD-SHA hash family
have been broken, RIPEMD-160 remains secure and the best collision
attack could only reach up to 34 out of 80 rounds, which was published
at CRYPTO 2019. In this paper, we propose a new collision attack on
RIPEMD-160 that can reach up to 36 rounds with time complexity 264.5.
This new attack is facilitated by a new strategy to choose the message
differences and new techniques to simultaneously handle the differential
conditions on both branches. Moreover, different from all the previous
work on RIPEMD-160, we utilize a MILP-based method to search for
differential characteristics, where we construct a model to accurately
describe the signed difference transitions through its round function. As
far as we know, this is the first model targeting the signed difference
transitions for the MD-SHA hash family. Indeed, we are more motivated
to design this model by the fact that many automatic tools to search
for such differential characteristics are not publicly available and imple-
menting them from scratch is too time-consuming and difficult. Hence,
we expect that this can be an alternative easy tool for future research,
which only requires to write down some simple linear inequalities.

Keywords: RIPEMD-160, collision attack, signed difference, modular
difference, MILP

1 Introduction

Background. The most powerful technique to mount collision attacks on the
MD-SHA hash family is to carefully trace the evolutions of the signed difference

2 Fukang Liu et al.

through the round functions [30,31,32,33]. The feature of the signed difference is
that it can capture how a bit is changed, i.e. from 1 to 0 or from 0 to 1. This
makes it interact well with the modular difference because each specified signed
difference can uniquely determine the corresponding modular difference and XOR
difference. It is thus clear that the signed difference carries the information of
both the XOR difference and modular difference.

Based on the above crucial observations, in Wang et al.’s seminal work [30,
31, 32, 33], they deduced all the collision-generating differential characteristics
by hand for a series of famous hash functions, including MD4, MD5, SHA-0 and
SHA-1. However, such hand-crafted work is too technical and time-consuming.
Therefore, several automatic tools [2, 6, 15, 16, 17, 18, 19, 24, 25, 26] to search
for these differential characteristics have been developed and they have even
been applied to much more complex hash functions like SHA-2 [5, 6, 16,18] and
RIPEMD-160 [15, 19]. However, most of these tools [2, 6, 15, 16,17, 18, 19] are not
made publicly available. As far as we know, only the tools [24,25,26] developed
by Stevens are open-source. A similar tool developed by Leurent for the ARX
cipher Skein is also open-source [10]. However, the tools developed by Stevens are
only for MD5 and SHA-1. Tweaking Stevens’s tools for different hash functions is
not easy because it requires deep understanding of their implementations and
there are a few structured documents for the codes. Especially for RIPEMD-160
and SHA-2, their round functions are more complex than those of MD5 and
SHA-1, which further increases the difficulty.

On RIPEMD-160. The hash function RIPEMD-160 [4] was proposed at FSE
1996, whose overall structure can be viewed as two parallel MD5-like instances.
Such a double-branch structure makes it well resist against Wang et al.’s powerful
techniques for the MD-SHA hash family. The main difficulty is to construct
suitable collision-generating differential characteristics and to perform the message
modification to fulfill the differential conditions on both branches simultaneously.

Due to the increasing difficulty of analyzing the double-branch structure, the
progress in analyzing the security of RIPEMD-160 is slow, as can be seen in
Table 1. For example, the first practical collision attacks on 30 and 31 rounds
of RIPEMD-160 were demonstrated in 2019 and the best collision attack with
the same technique could only reach up to 34 rounds [11]. For the semi-free-start
(SFS) collision attack, the best attack could only reach up to 40 rounds [12],
which was published also in 2019.

As RIPEMD-160 is an ISO/IEC standard and is being used in bitcoin, we
believe further understanding its (second-)preimage and collision resistance is
of practical interest. In this work, we target the collision resistance, which is
generally more meaningful than the SFS collision resistance.

Our contributions. The contributions of this work are fourfold. Specifically,
we propose:

1. A new strategy to choose the message differences which allows to mount a
collision attack on 36-round RIPEMD-160.

Analysis of RIPEMD-160 3

value transitions

difference transitions

connect via nonlinear operations

value transitions

value transitions

connect via the differences

value

difference transitions

monitor

Fig. 1: The comparison between different models (left: [13],middle: [20,25], right:
this paper)

2. A state-of-the-art method to efficiently perform the message modification
on both branches simultaneously by carefully exploiting the feature of the
differential characteristic.

3. A new methodology to search for differential characteristics for RIPEMD-160
that relies on off-the-shelf solvers. This is achieved by constructing a model
to describe the signed difference transitions through the round function of
RIPEMD-160. As far as we know, it is the first time to use the MILP-based
method to search for a pure signed differential characteristic

4. A new method to automatically detect the contradictions in the search for
signed differential characteristics. Specifically, we propose to use monitoring
variables representing the values of the internal states to monitor the incon-
sistency appearing in the signed difference transitions over different rounds.
This should be distinguished from Liu et al.’s technique [13] where both the
value transitions and difference transitions are involved in a model to avoid
the inconsistency, i.e. we do not care about the value transitions because they
are costly. This should also be distinguished from the techniques [20,25] where
only a model to simply describe two parallel value transitions is used, which
is inefficient as no feature of the signed difference propagations is exploited in
such a model. The comparison between different methods is shown in Fig. 1.

The source code to search for signed differential characteristics is available at
https://github.com/LFKOKAMI/Find_RIPEMD_Trail.git.

Outline of the paper. In Section 2, we introduce the notations and some
preliminary works. In Section 3, the MILP model to describe the signed difference
transitions through RIPEMD-160’s round function is detailed. Then, we show
the 36-round collision attack in Section 4. Finally, we end this paper with some
discussions on our techniques in Section 5.

2 Preliminaries

2.1 Notation

The following notations are used throughout this paper. ⊞ and ⊟ represent the
modular addition and substraction modulo 232, respectively. x[i] denotes the i-th
bit of x and x[0] is the least significant bit. ∆x denotes the XOR difference of

https://github.com/LFKOKAMI/Find_RIPEMD_Trail.git

4 Fukang Liu et al.

Table 1: Summary of preimage and (SFS) collision attack on RIPEMD-160
Attack Type Rounds Time Memory Reference Year

Preimage
31a 2155 unknown [22] 2010
34 2158.91 unknown [28] 2014
35a 2159.38 unknown [23] 2018

SFS collision

36a practical [15] 2012
42a 275.5 264 [19] 2013
48a 276.4 264 [29] 2017
36 270.4 264 [19] 2013
36 255.1 232 [14] 2017

36/37 practical [12] 2019
40 274.6 negligible [12] 2019

collision
30/31 practical [11] 2019

34 274.3 232 [11] 2019
36 264.5 224 this work 2022

a An attack starting at an intermediate round.

x′ and x, i.e. ∆x = x′ ⊕ x. δx denotes the modular difference, i.e. δx = x′ ⊟ x.
∇x denotes the signed difference between x′ and x, i.e. ∇x[i] = [=] if x′[i] = x[i],
∇x[i] = [0] if x′[i] = x[i] = 0, ∇x[i] = [1] if x′[i] = x[i] = 1, ∇x[i] = [n]
if (x′[i] = 1, x[i] = 0), ∇x[i] = [u] if (x′[i] = 0, x[i] = 1). [a, b] denotes the
set {i|a ≤ i ≤ b}. x denotes the bitwise NOT operation on x. Moreover, xT

denotes a column vector and we simply use xT [i] to represent the i-th element
of xT . Especially, xT ≥ yT iff xT [i] ≥ yT [i] for all i, e.g. (1, 2, 3)T ≥ (0, 2, 1)T as
(1 ≥ 0, 2 ≥ 2, 3 ≥ 1).
Definition 1. The signed difference ∇x is said to be an expansion of the modular
difference δx only when ∇x corresponds to the modular difference δx.
Definition 2. The hamming weight of the signed difference ∇x is denoted by
H(∇x) and H(∇x) is the number of indices i such that ∇x[i] ∈ {n, u}.

For example, let

∇x0 = [=n== ==== ==== ==== ==== ==== ==== ====],
∇x1 = [nu== ==== ==== ==== ==== ==== ==== ====].

Then, both ∇x0 and ∇x1 are the expansions of δx = 230. Moreover, we have
H(∇x0) = 1 and H(∇x1) = 2.

As each signed difference corresponds to a unique modular difference, for
convenience, when computing δx⊞δy for a given (∇x, ∇y), we also simply denote
δx ⊞ δy by ∇x ⊞ ∇y. For the above example, we have ∇x0 ⊞ ∇x1 = 231.

2.2 Description of RIPEMD-160
RIPEMD-160 [4] was proposed at FSE 1996 by Dobbertin et al. and it is built on
the Merkle-Damgård structure. To compress an arbitrary-length message with

Analysis of RIPEMD-160 5

RIPEMD-160, the message will be first padded and then divided into several
message blocks and each block is of size 512 bits. Supposing there are γ + 1
message blocks and they are denoted by M0, M1, . . . , Mγ , the 80-bit hash value
h = (h0, h1, h2, h3, h4) is computed as follows:

IV j+1 = H(IV j , M j) for j ∈ [0, γ],
h = IV γ+1,

where H(IV j , M j) is the compression function of RIPEMD-160, IV j is a 160-bit
chaining variable and IV 0 is a predetermined constant value.

In our collision attack, we aim to find (M0, M1) and (M0, M1′) such that
H(H(IV0, M0), M1) = H(H(IV0, M0), M1′)

where the number of rounds of H is reduced. In this way, a colliding message
pair for the round-reduced RIPEMD-160 can be easily derived.

Let M = (m0, m1, . . . , m15) be the 16 message words of size 32 bits each
and IV 0 = (IV 0

0 , IV 0
1 , . . . , IV 0

4). The specification of the compression function
H(IV 0, M) is described below:

X−5 = Y−5 = IV 0
0 ≫ 10, X−4 = Y−4 = IV 0

4 ≫ 10, X−3 = Y−3 = IV 0
3 ≫ 10,

X−2 = Y−2 = IV 0
2 , X−1 = Y−1 = IV 0

1 ,

Ql
i = Xi−5 ≪ 10 ⊞ ϕl

j(Xi−1, Xi−2, Xi−3 ≪ 10) ⊞ mπl(i) ⊞ Kl
j ,

Xi = Xi−4 ≪ 10 ⊞ Ql
i ≪ sl

i,

Qr
i = Yi−5 ≪ 10 ⊞ ϕr

j(Yi−1, Yi−2, Yi−3 ≪ 10) ⊞ mπr(i) ⊞ Kr
j ,

Yi = Yi−4 ≪ 10 ⊞ Qr
i ≪ sr

i ,

where i ∈ [0, 79] and j = ⌊ i
16 ⌋. Due to the page limit, the specification of

ϕl
j , ϕr

j , Kl
j , Kr

j can be found in Table 2. πl(i), πr(i), sl
i, sr

i can be referred to [4].

Table 2: Boolean functions and round constants in RIPEMD-160
j ϕl

j ϕr
j Kl

j Kr
j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x, y, z) x ⊕ y ⊕ z
1 IF X IF Z 0x5a827999 0x5c4dd124 IF X(x, y, z) (x ∧ y) ⊕ (x ∧ z)
2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IF Z(x, y, z) (x ∧ z) ⊕ (y ∧ z)
3 IF Z IF X 0x8f1bbcdc 0x7a6d76e9 ONX(x, y, z) x ⊕ (y ∨ z)
4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x, y, z) (x ∨ y) ⊕ z

After 80 rounds of update, the output of H(IV 0, M) denoted by IV 1 =
(IV 1

0 , IV 1
1 , . . . , IV 1

4) ∈ F5
232 is computed as follows:

IV 1
0 = IV 0

1 ⊞ X78 ⊞ Y77 ≪ 10, IV 1
1 = IV 0

2 ⊞ X77 ≪ 10 ⊞ Y76 ≪ 10,

IV 1
2 = IV 0

3 ⊞ X76 ≪ 10 ⊞ Y75 ≪ 10, IV 1
3 = IV 0

4 ⊞ X75 ≪ 10 ⊞ Y79,

IV 1
4 = IV 0

0 ⊞ X79 ⊞ Y78.

6 Fukang Liu et al.

2.3 The Differential Conditions for RIPEMD-160

Given a specified signed differential characteristic of RIPEMD-160, it has been
shown in [14] that there should also be additional conditions on the modular
difference. Specifically, apart from the bit conditions imposed by the differential
characteristic, there will also be implicit conditions on each Ql

i and Qr
k, which

are intermediate values during the round update of RIPEMD-160 as stated above.
These implicit conditions are of the following forms:

(Ql
i ⊞ αl

i) ≪ sl
i = Ql

i ≪ sl
i ⊞ βl

i,

(Qr
k ⊞ αr

k) ≪ sl
k = Ql

k ≪ sl
k ⊞ βr

k,

where (αl
i, αr

k, βl
i, βr

k) are constants and they can be easily derived from the
specified differential characteristic. For convenience, we call these implicit condi-
tions and the bit conditions the differential conditions for a differential
characteristic.

It is possible that the conditions on these (Ql
i, Qr

k) contradict with the bit
conditions, especially for the dense parts where many bits of the internal states
(Xi, Xi−4) or (Yk, Yk−4) are fixed by the differential characteristic due to Ql

i =
(Xi ⊟ Xi−4 ≪ 10) ≫ sl

i and Qr
k = (Yk ⊟ Yk−4 ≪ 10) ≫ sr

k. Therefore, we
should take this into account when searching for a valid differential characteristic.
We note that many valid differential characteristics used for the (SFS) collision
attacks on round-reduced RIPEMD-160 have been found with Mendel et al.’s
tool [11,12,14,15,19]. However, it is unclear how this problem is handled in their
tool as the implementation is not publicly available and only a few details of the
tool are given in the corresponding papers.

2.4 Previous Methods to Search for Differential Characteristics

In the automatic tools [2,6,15,16,17,18,19,24,26] and Wang et al.’s hand-crafted
work, it is common to first linearly propagate the message differences through
the internal states backward and forward for several rounds, which can be easily
finished either by hand or in a simple automatic way. Then, the signed differences
for many internal states are fixed, while there are still some internal states whose
signed differences are unknown.

For example, (∇Xi0 , ∇Xi0+1, . . . , ∇Xi0+i1) and (∇Xk0 , ∇Xk0+1, . . . , ∇Xk0+k1)
are determined at the linear propagation phase where k0 > i0 + i1. Then, the
aim is to find a valid solution of (∇Xi0+i1+1, ∇Xi0+i1+2, . . . , ∇Xk0−1) to connect
(∇Xi0 , ∇Xi0+1, . . . , ∇Xi0+i1) and (∇Xk0 , ∇Xk0+1, . . . , ∇Xk0+k1). Achieving the
connection is the most technical component in these automatic tools. Its effi-
ciency directly affects the overall performance. The main difficulty to achieve the
connection is that many differential conditions are suddenly forced, which makes
invalid solutions easily occur.

The most commonly used method for this connection problem is the guess-and-
determine technique combined with some heuristic early-stop strategies [2,6,10,15,
16,17,18,19,24,26]. However, the implementation for RIPEMD-160 is not publicly

Analysis of RIPEMD-160 7

available. There are also some tools [20,25] relying on off-the-shelf solvers for this
problem. However, in these tools, the idea is to construct a model to describe
two parallel instances of the value transitions. Specifically, does there exist a
solution of (Xi0+i1+1, Xi0+i1+2, . . . , Xk0−1) and (X ′

i0+i1+1, X ′
i0+i1+2, . . . , X ′

k0−1)
such that the predetermined signed differences (∇Xi0 , ∇Xi0+1, . . . , ∇Xi0+i1) and
(∇Xk0 , ∇Xk0+1, . . . , ∇Xk0+k1) can be connected? This can be easily converted
into a SAT problem by modelling the value transitions. We tried this method but
we could not find desired differential characteristics in practical time. We believe
this is mainly because the information of the signed difference propagations
cannot be efficiently encoded in such a model.

2.5 On MILP/SAT-based Automatic Methods
It has become popular to utilize some off-the-shelf solvers to reduce the workload
of cryptanalysis in the symmetric-key community. Depending on the used solvers,
different languages are required to describe a target problem. Among these
automatic methods, the SAT-based and MILP-based methods are mostly used [7,
21, 27]. For SAT-based methods, it is required to describe the target problem
in the Conjunctive Normal Form (CNF) such that the solvers can handle them.
For MILP-based methods, it is then required to describe the problem with linear
inequalities.

With the software LogicFriday8, by importing a truth table for some variables,
one can easily obtain the minimized CNF in terms of these variables and then
convert it into linear inequalities [1]. For example, suppose (x0, x1, x2, x3) can
only take 3 values {(0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 1, 1)}. With LogicFriday, we can
obtain the following equivalent minimized CNF to describe this constraint:

x2 ∧ (x0 ∨ x1) ∧ (x1 ∨ x3) ∧ (x0 ∨ x3) ∧ (x0 ∨ x1 ∨ x3),

i.e. only the above 3 possible values of (x0, x1, x2, x3) can make the above boolean
expression output 1 (true), while the remaining 13 values will make it output
0 (false). The above CNF can be converted into the following linear inequality
system:

x2 ≥ 1, x0 + (1 − x1) ≥ 1, (1 − x1) + x3 ≥ 1,

x0 + x3 ≥ 1, (1 − x0) + x1 + (1 − x3) ≥ 1.

For convenience, we also describe this system with the help of a matrix, as
shown below:

H · (x0, x1, x2, x3)T ≥ (1, 0, 0, 1, −1)T ,

where

H =

0 0 1 0
1 −1 0 0
0 −1 0 1
1 0 0 1

−1 1 0 −1

 .

8 You can easily download it from https://download.cnet.com/.

https://download.cnet.com/

8 Fukang Liu et al.

3 Finding Signed Differential Characteristics with MILP

In this work, we consider the MILP-based methods to search for signed differential
characteristics for RIPEMD-160. To achieve this, the first step is to formulate the
problem and the second step is to model the problem with linear inequalities. We
emphasize that we tried several different modelling methods before we eventually
identified the method described in the paper. Due to the page limit, we only
describe the most successful and efficient modelling method.

Formulating the problem is easy. Take the left branch of RIPEMD-160 as an
example and it also can be applied to the right branch due to the similarity.
Specifically, given (∇Xi, ∇Xi+1, . . . , ∇Xi+4, ∇mπl(i)), how to describe the possi-
ble values of ∇Xi+5 with linear inequalities? In other words, how do the signed
differences propagate through the round function and how to describe it with
linear inequalities? Once this problem is solved, searching for collision-generating
differential characteristics with some chosen message differences is easy as the
signed difference transitions through the round function are known and one
only needs to add some extra simple constraints to obtain a desired differential
characteristic.

3.1 Modelling Signed Difference Transitions

The round function of RIPEMD-160 is of the following form:

di+5 = (di+1 ≪ 10) ⊞ (F (di+4, di+3, di+2 ≪ 10) ⊞ (di ≪ 10) ⊞ m ⊞ c) ≪ s.

When considering the signed differences, the operation ≪ 10 only affects the order
of variables. From this perspective, to study the signed difference propagation
(∇di, ∇di+1, ∇di+2, ∇di+3, ∇di+4, ∇m) → ∇di+5, we indeed only need to study
the signed difference propagation (∇a0, ∇a1, ∇a2, ∇a3, ∇a4, ∇m) → ∇a5, where

a5 = a1 ⊞ (F (a4, a3, a2) ⊞ a0 ⊞ m ⊞ c) ≪ s. (1)

With some intermediate variables (b0, b1, b2, b3, b4, b5), Equation 1 can be decom-
posed as

b0 = m ⊞ c, b1 = F (a4, a3, a2), b2 = b0 ⊞ b1,

b3 = b2 ⊞ a0, b4 = b3 ≪ s, b5 = a1 ⊞ b4, a5 = b5.

As (b0, b1, b2, b3) are all intermediate state values and m is a free variable
that can be controlled by attackers, we only care about their modular differences.
In other words, we can arbitrarily choose only one expansion of δbi (0 ≤ i ≤ 3)
when constructing the model because one expansion is sufficient to describe the
corresponding modular difference. For example, to describe δbi = 0x1, we can
constrain that ∇bi only takes [==== ==== ==== ==== ==== ==== ==== ===n]
even though ∇bi indeed can take many possible values. This is because one
possible ∇bi is sufficient to describe the modular difference 0x1. This is critical
to improve the whole efficiency as invalid modular differences can be filtered in a
much faster way. Our basic idea to construct the model is as follows:

Analysis of RIPEMD-160 9

1. Deterministically compute the signed difference transitions for b0 = m ⊞ c,
b2 = b0 ⊞ b1 and b3 = b2 ⊞ a0. Specifically, for each given (∇x, ∇y), uniquely
compute one ∇z such that δz = δx ⊞ δy, even though there are many such
possible ∇z.

2. Compute the signed difference transitions for b1 = F (a4, a3, a2), where F is
a boolean function.

3. Handle the signed difference transitions for b4 = b3 ≪ s, b5 = a1 ⊞ b4 and
a5 = b5 according to different situations.

3.2 Describing Signed Differences

To construct the model, we first need to properly describe the signed difference.
Different from the XOR difference which can be trivially described with a binary
variable, there are 3 important statuses for the signed difference, namely {=, n, u}
and we cannot simply describe them with a binary variable. One may think that
it can be described with a variable taking the value from {−1, 0, 1}, which is also
supported by Gurobi. However, such a method is unfriendly to model the signed
difference transitions through the boolean functions and the whole performance
is bad even if we try some other strategies to make it work.

Finally, we choose to use two binary variables (v, d) to describe a 1-bit signed
difference. Moreover, we restrict that (v, d) can only take 3 possible values9,
i.e. (v, d) ∈ {(0, 1), (1, 1), (0, 0)}. Specifically, (v, d) = (0, 1) corresponds to n,
(v, d) = (1, 1) corresponds to u, and (v, d) = (0, 0) corresponds to =. Note that we
do not allow (v, d) = (1, 0) because this is redundant and will affect the overall
performance. This trick is important to improve the performance.

For convenience, when describing the signed difference of a binary variable κ,
we simply use (κv, κd) ∈ {(0, 1), (1, 1), (0, 0)} to represent the signed difference
∇κ. In many of the following algorithms, we also say such a variable ∇κ is a
signed difference variable and it should be viewed as a structure ∇κ = (κv, κd).

3.3 Modelling the Modular Addition

We consider the signed difference transition through z = x⊞y bit by bit. Moreover,
as stated above, we are interested in only one ∇z for a given (∇x, ∇y). To achieve
this purpose, we introduce an additional variable ∇c of size 33 to represent the
signed differences of the carry bits when computing ∇x ⊞ ∇y. Then, we use
deterministic propagation rules for (∇x[i], ∇y[i], ∇c[i]) → (∇z[i], ∇c[i + 1]), i.e.
each (∇x[i], ∇y[i], ∇c[i]) corresponds to a unique (∇z[i], ∇c[i + 1]), as shown in
Table 3. In this way, ∇z is uniquely determined for each given (∇x, ∇y) and it
corresponds to the modular difference δz = δx⊞ δy, which can be easily observed
from the propagation rules.
9 Here, it can be found that d = 1 means there is a difference and v is the initial value

to be changed. Hence, (v, d) = (0, 1) means 0 is changed to 1 and (v, d) = (1, 1)
means 1 is changed to 0. We exclude (v, d) = (1, 0) because (v, d) = (0, 0) can carry
the same information as (v, d) = (1, 0), i.e. both mean there is no difference.

10 Fukang Liu et al.

Let us take [nnu → n=] and [u=u → =u] as examples. For [nnu → n=], it means
2i ⊞ 2i ⊟ 2i = 2i. For [u=u → =u], it means ⊟2i ⊟ 2i = ⊟2i+1. It is then clear
that the modular difference δx ⊞ δy is correctly recorded by the computed ∇z.
We strongly recommend to refer to a concrete example given in Appendix A.

Table 3: The propagation rules for (∇x[i], ∇y[i], ∇c[i]) → (∇z[i], ∇c[i + 1])
[=== → ==], [==n → n=], [==u → u=], [=n= → n=],
[=u= → u=], [=nn → =n], [=un → ==], [=nu → ==],
[=uu → =u], [n== → n=], [u== → u=], [n=n → =n],
[u=n → ==], [n=u → ==], [u=u → =u], [nn= → =n],
[nu= → ==], [un= → ==], [uu= → =u], [nnn → nn],
[nun → n=], [unn → n=], [nnu → n=], [uun → u=],
[unu → u=], [nuu → u=], [uuu → uu]

According to our way to describe {n, u, =}, we can convert the above 27
propagation rules in Table 3 into 27 possible values of

VADD = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1]).

For example, [n=u → ==] corresponds to the possible value (0, 1, 0, 0, 1, 1, 0, 0, 0, 0).
With LogicFriday, we can obtain the corresponding linear inequality system:

HADD · V T
ADD ≥ CADD.

Algorithm 1 describes how to model the deterministic modular addition. Note
that we do not make ∇c[0] = [=] in Algorithm 1 to increase its flexibility and
hence before calling it, the value of ∇c[0] should be clearly specified.

Algorithm 1 Model δz = δx ⊞ δy

1: procedure MODADD_MODEL(∇x, ∇y, ∇c, ∇z)
2: for i = 0 to 32 do
3: VADD = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1])
4: add constraints HADD · V T

ADD ≥ CADD.

3.4 Modelling the Expansions of the Modular Difference

Given an arbitrary δz, there are many expansions of δz. For example, there are
3 possible expansions of δz = 230 as shown below:

=n== ==== ==== ==== ==== ==== ==== ====,

nu== ==== ==== ==== ==== ==== ==== ====,

Analysis of RIPEMD-160 11

uu== ==== ==== ==== ==== ==== ==== ====.

Due to our deterministic way to compute the signed difference transitions
through the modular addition z = x ⊞ y, we lose many possible ∇z. When it is
necessary to compute all possible forms of ∇z, we need to tackle the problem of
how to model all the possible ∇ξ from a given ∇z such that δξ = δz.

To achieve this, we again introduce an additional variable ∇c with ∇c[0] = [=].
Based on the basic fact that 2i = 2i+1 ⊟ 2i, ⊟2i = ⊟2i+1 + 2i, 0 = 0, 2i+1 = 2i+1

and ⊟2i+1 = ⊟2i+1, we can use the following propagation rules in Table 4 to
compute all possible ∇ξ from ∇z.

Table 4: The propagation rules for (∇z[i], ∇c[i]) → (∇ξ[i], ∇c[i + 1])
[nn → =n], [uu → =u], [nu → ==], [un → ==],
[n= → (n=, un)], [u= → (u=, nu)],
[=n → (n=, un)], [=u → (u=, nu)],
[== → ==]

Similarly, the propagation rules in Table 4 can be converted into 13 possible
values of

VEXP = (zv[i], zd[i], cv[i], cd[i], ξv[i], ξd[i], cv[i + 1], cd[i + 1]),

Note that [n= → (n=, un)] corresponds to two possible transitions [n= → n=] and
[n= → un]. Similar representations will be used throughout this paper. Then, we
can obtain the linear inequality system HEXP · V T

EXP ≥ CEXP to describe Table 4
with LogicFriday. Note that the propagation rules in Table 4 is equivalently to
traversing a tree structure when computing all possible ∇ξ from a given ∇z. An
example is given in Appendix A.

A slightly different problem. In the procedure to search for signed differential
characteristics for the MD-SHA family, it is common to first fix the signed
differences of some internal states in advance. In other words, we now consider
how to efficiently determine whether a computed ∇z satisfies δξ ⊟ δz = 0 when
∇ξ is known and fixed. This is indeed the same with the problem to model the
expansions of the modular difference, but we prefer a different method because it
does not rely only on a tree structure, i.e. there is no branch.

The following propagation rules for (∇ξ[i], ∇z[i], ∇c[i]) → (∇c[i + 1]) are
sufficient to constrain δξ ⊟ δz = 0, where ∇c is the signed difference of the carry
bits when computing ∇ξ ⊟ ∇z and ∇c[0] = [=].

[=== → =],
[=un → n], [=nn → =], [=uu → =], [=nu → u],
[u=n → =], [n=n → n], [u=u → u], [n=u → =],
[nu= → n], [nn= → =], [uu= → =], [un= → u].

12 Fukang Liu et al.

These 13 propagations rules can be converted into 13 possible values of

VZERO = (ξv[i], ξd[i], zv[i], zd[i], cv[i], cd[i], cv[i + 1], cd[i + 1]).

With LogicFriday, we can obtain the corresponding HZERO · V T
ZERO ≥ CZERO.

Algorithm 2 describes how to model the expansion of the modular difference.
The input isK is a binary variable and is used to provide an option to choose
different models.

Algorithm 2 Expansion: derive ∇ξ from ∇z

1: procedure EXPAND_MODEL(∇z, ∇ξ, isK)
2: Claim a signed difference vector ∇c of size 33
3: ∇c[0] = [=]
4: for i = 0 to 32 do
5: if isK = 1 then
6: VZERO = (ξv[i], ξd[i], zv[i], zd[i], cv[i], cd[i], cv[i + 1], cd[i + 1])
7: HZERO · V T

ZERO ≥ CZERO

8: else
9: VEXP = (zv[i], zd[i], cv[i], cd[i], ξv[i], ξd[i], cv[i + 1], cd[i + 1])

10: add constraints HEXP · V T
EXP ≥ CEXP

3.5 Modelling Boolean Functions

Using some simple boolean functions in the round function is a basic operation
in the MD-SHA hash family. For RIPEMD-160, the used boolean functions are
shown in Table 2: XOR, ONX, IFZ, IFX and ONZ. Especially, we have

w = IFX(x, y, z) = IFZ(y, z, x), w = ONZ(x, y, z) = ONX(z, x, y).

The strategies to handle these boolean functions are the same. Due to the space
limit, we only explain the difference transitions through w = ONX(x, y, z).

Table 5: The valid values of (∇x[i], ∇y[i], ∇z[i], ∇w[i])
[====],
[==u=], [==uu], [==un], [==n=], [==nn], [==nu],
[=n==], [=n=n], [=n=u], [=u==], [=u=u], [=u=n],
[n==u], [n==n], [u==n], [u==u],
[=nn=], [=uu=], [=nun], [=nuu], [=unn], [=unu],
[nn=u], [nn==], [nu=u], [nu==], [uu=n], [uu==], [un=n], [un==],
[n=nu], [n=n=], [n=uu], [n=u=], [u=nn], [u=n=], [u=un], [u=u=],
[nnnu], [nnu=], [nun=], [unnn], [uun=], [unu=], [nuuu], [uuun].

Analysis of RIPEMD-160 13

The fast filtering model. First, we list all possible (∇x[i], ∇y[i], ∇z[i], ∇w[i]),
as shown in Table 5. Similarly, we can obtain the corresponding inequality system

HONX · V T
DF ≥ CONX, (2)

VDF = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i]).

The full model. In the fast filtering model, we only consider signed difference
transitions and ignore the implicit conditions. For example, for w = ONX(x, y, z),
when (∇x[i], ∇y[i], ∇z[i], ∇w[i]) = [=n==], there is an implicit condition z[i] = 1.
Ignoring such implicit conditions will cause invalid differential characteristics
because each internal state is used three times in such boolean functions to update
different internal states at 3 consecutive rounds. To capture such implicit condi-
tions, a full list of possible (∇x[i], ∇y[i], ∇z[i], ∇w[i], x[i], y[i], z[i]) is provided in
Table 6. For convenience, we call (x[i], y[i], z[i]) monitoring variables as they
are used to store the implicit conditions and hence to monitor the contradictions.

Table 6: The valid values of (∇x[i], ∇y[i], ∇z[i], ∇w[i], x[i], y[i], z[i]), where *
represents that the bit value can take either 0 or 1.
[====,*,*,*],
[==u=,*,1,*], [==uu,1,0,*], [==un,0,0,*], [==n=,*,1,*], [==nn,1,0,*], [==nu,0,0,*],
[=n==,*,*,0], [=n=n,0,*,1], [=n=u,1,*,1], [=u==,*,*,0], [=u=u,0,*,1], [=u=n,1,*,1],
[n==u,*,1,*], [n==u,*,0,0], [n==n,*,0,1], [u==n,*,1,*], [u==n,*,0,0], [u==u,*,0,1],
[=nn=,*,*,*], [=uu=,*,*,*], [=nun,0,*,*], [=nuu,1,*,*], [=unn,1,*,*], [=unu,0,*,*],
[nn=u,*,*,0], [nn==,*,*,1], [nu=u,*,*,0], [nu==,*,*,1], [uu=n,*,*,0], [uu==,*,*,1],
[un=n,*,*,0], [un==,*,*,1],
[n=nu,*,1,*], [n=n=,*,0,*], [n=uu,*,1,*], [n=u=,*,0,*], [u=nn,*,1,*], [u=n=,*,0,*],
[u=un,*,1,*], [u=u=,*,0,*],
[nnnu,*,*,*], [nnu=,*,*,*], [nun=,*,*,*], [unnn,*,*,*], [uun=,*,*,*], [unu=,*,*,*],
[nuuu,*,*,*], [uuun,*,*,*].

Similarly, based on Table 6, we can obtain the corresponding

HONXFull · V T
DFC ≥ CONXFull, (3)

VDFC = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i], x[i], y[i], z[i]).

Note that in Table 6, * means it can take either 0 or 1, e.g. [==u=,*,1,*] corre-
sponds to 4 possible values: (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1),
(0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0) and (0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1).

It is found that some inequalities appear in both Equation 2 and Equation 3.
This is indeed as expected since the information of Table 5 is fully encoded in
Table 6. Therefore, to filter invalid signed difference transitions in a faster way,
we will actually use the following linear inequality system{

HONX · V T
DF ≥ CONX

HONXCut · V T
DFC ≥ CONXCut

(4)

14 Fukang Liu et al.

to describe Table 6. Specifically, (HONXCut, CONXCut) is obtained by removing the
inequalities appearing in Equation 2 from Equation 3. Specifically, we check the
inequalities specified by (HONXFull, CONXFull) one by one. If it does not appear in
(HONX, CONX), add it to (HONXCut, CONXCut).

In this way, we can equivalently say that (HONXCut, CONXCut) is purely utilized
to describe the implicit conditions as (HONX, CONX) can fully describe valid signed
difference transitions. This is very important to increase the flexibility of the
model as we can add HONXCut · V T

DFC ≥ CONXCut to the model depending on different
situations while HONX ·V T

DF ≥ CONX is always added. Moreover, the lazy constraint10

can be applied to HONXCut · V T
ONXCut ≥ CONXCut to improve the performance for some

problems. For simplicity, Equation 2 is called the fast filtering model, while
Equation 4 is called the full model.

Modelling other boolean functions. The above procedure is rather general
and we can apply it to other boolean functions.

For w = XOR(x, y, z), the full model can be described with HXOR · V T
DF ≥ CXOR

and HXORCut · V T
DFC ≥ CXORCut, where the fast filtering model is HXOR · V T

DF ≥ CXOR.
For w = IFZ(x, y, z), the full model can be described with: HIFZ · V T

DF ≥ CIFZ
and HIFZCut · V T

DFC ≥ CIFZCut, where the fast filtering model is HIFZ · V T
DF ≥ CIFZ.

Algorithm 3 describes how to model the signed difference signed difference
transitions through Boolean functions.

Algorithm 3 Model the signed difference transitions through Boolean functions
1: procedure BOOLFAST_MODEL(fNa,∇x, ∇y, ∇z, ∇w)
2: for i = 0 to 32 do
3: VDF = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i])
4: if fNa = “ONX” then
5: add constraints HONX · V T

DF ≥ CONX

6: else if fNa = “XOR” then
7: add constraints HXOR · V T

DF ≥ CXOR

8: else if fNa = “IF Z” then
9: add constraints HIFZ · V T

DF ≥ CIFZ

10: procedure BOOLFULL_MODEL(funName,∇x, ∇y, ∇z, ∇w, x, y, z)
11: for i = 0 to 32 do
12: VDFC = (xv[i], xd[i], yv[i], yd[i], zv[i], zd[i], wv[i], wd[i], x[i], y[i], z[i])
13: if funName=“ONX” then
14: add constraints HONXCut · V T

DFC ≥ CONXCut

15: else if funName=“XOR” then
16: add constraints HXORCut · V T

DFC ≥ CXORCut

17: else if funName=“IF Z” then
18: add constraints HIFZCut · V T

DFC ≥ CIFZCut

10 In Gurobi, the lazy constraint means the constraints that are checked only after a
solution is found.

Analysis of RIPEMD-160 15

3.6 Modelling a5 = a1 ⊞ b3 ≪ s

This is the special operation in RIPEMD-160 and is another place where contra-
dictions easily occur especially when there are many bit conditions on (a1, a5).
We also note that we will sometimes decompose this computation as

b4 = b3 ≪ s, b5 = a1 ⊞ b4, a5 = b5.

Due to our deterministic way to compute ∇b3, many possible ∇b3 are lost.
One idea is to first compute all possible expansions of δb3 from ∇b3. Then, the
bitwise rotation only affects the order of variables and we immediately obtain all
possible ∇b4. However, what we need is all possible ∇a5 where a5 = a1 ⊞ b4. If
we compute ∇b5 = ∇a1 ⊞ ∇b4 for each ∇b4 with the deterministic model for the
modular addition and then compute all possible ∇a5 from ∇b5 with the model
for the expansion, the expansion is used twice and it is too costly because there
are too many combinations. However, in some extreme cases, we will use this
idea to avoid the contradictions, i.e. the second strategy stated below.

Indeed, it has been studied in [3, 14] that δb4 = ((b3 ⊞ δb3) ≪ s) ⊟ (b3 ≪ s)
has at most four possible values for a given δb3. Therefore, ∇b4 can be divided
into four classes and each class corresponds to different δb4.

The first strategy. We always choose some δb4 that hold with a high probability.
Then, for each of them, randomly pick one of its expansions ∇b4. Next, according
to (∇a1, ∇b4), uniquely determine ∇b5 with the model for the modular addition.
Finally, compute all possible ∇a5 from ∇b5 with the model for the expansion.
Describing the strategy in words is easy, but how to encode it with linear
inequalities?

The most important step is to use linear inequalities to describe how to
pick some ∇b4 holding with a high probability. According to [14], the branch
is mainly caused by the carries from the 31st bit and the (31 − s)-th bit when
computing b3 ⊞ δb3. Therefore, we introduce two variables (∇ch, ∇cm) to denote
the signed difference of these two carry bits, respectively. Although the two carry
bits depend on many bits, we restrict ourselves to only (∇b3[31], ∇b3[30]) and
(∇b3[31 − s], ∇b3[30 − s]). Then, we fix the propagation rules for

(∇b3[31], ∇b3[30]) → (∇b4[31 + s], ∇b4[30 + s], ∇ch),
(∇b3[31 − s], ∇b3[30 − s]) → (∇b4[31], ∇b4[30], ∇cm),

where the indices are within modulo 32. As the propagation rules are the same for
both cases and they are of the same form (∇u, ∇t) → (∇µ, ∇τ, ∇ι), for simplicity,
these rules are specified in Table 7. With LogicFriday, Table 7 can be equivalently
described with:

HROT · V T
ROT ≥ CROT,

VROT = (uv, ud, tv, td, µv, µd, τv, τd, ιv, ιd).

For the remaining ∇b4[i], they are uniquely determined with

∇b4[i] = ∇b3[i − s] for i /∈ {31, 30, 31 + s, 30 + s}.

16 Fukang Liu et al.

Table 7: The propagation rules for (∇u, ∇t) → (∇µ, ∇τ, ∇ι)
[== → ===],
[n= → (n==, u=n)], [u= → (u==, n=u)],
[un → =u=], [nu → =n=],[=u → =u=], [=n → =n=],
[nn → =un], [uu → =nu].

An algorithmic description of the first strategy can be referred to Algorithm
4. Later, we need to use ∇q[0 : s] where δq = δa5 ⊟ δa1 = δb4 to help detect
contradictions (ref. Section 3.7). Therefore, we also take ∇q as an input to
ROTATE_DIFF_FIRST and whether we compute it depends on the variable isV.

The second strategy. For the second strategy, we will allow some low-probability
propagations δb3 → δb4. This is because when there are many bit conditions
on (a1, a5), it is possible that such a propagation δb3 → δb4 indeed holds with
probability close to 1 under these conditions.

Still we consider ∇z = ∇x⊞∇y and use the variable ∇c to denote the signed
differences of the carry bits where ∇c[0] = [=]. The new propagation rules for
(∇x[i], ∇y[i], ∇c[i]) → (∇z[i], ∇c[i + 1]) are listed in Table 8. In these new rules,
the previous rules for the modular addition and the rules for the expansion are
combined in a way, i.e. we will consider branches for the modular addition this
time because a5 is no more an intermediate variable but the final output of the
round function. As a result, the new model for the modular addition will become
much heavier.

Table 8: The new propagation rules for (∇x[i], ∇y[i], ∇c[i]) → (∇z[i], ∇c[i + 1])
[=== → ==], [(==n, =n=, n==) → (n=, un)], [(==u, =u=, u==) → (u=, nu)],
[(=un, un=, u=n, =nu, nu=, n=u) → ==], [(=uu, uu=, u=u) → =u],
[(=nn, nn=, n=n) → =n], [nnn → nn], [uuu → uu],
[(nnu, unn, nun) → un], [(uun, nuu, unu) → nu].

With LogicFriday, Table 8 can be equivalently described with

HEXPAdd · V T
EXPAdd ≥ CEXPAdd

VEXPAdd = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1]).

The model for the signed difference transitions through a5 = a1 ⊞ (b3 ≪ s) with
the second strategy is also described in Algorithm 4. For better understanding
of the motivation to use the second strategy, we provide a concrete example in
Appendix B.

Analysis of RIPEMD-160 17

Algorithm 4 Model a5 = a1 ⊞ (b3 ≪ s)
1: procedure ROTATE_DIFF_FIRST(s, ∇b3, ∇a1, ∇a5, ∇q, isV, isK)
2: Claim two signed difference vectors ∇b4, ∇b5 of size 32
3: for i = 0 to 30 − s do
4: ∇b4[i + s mod 32] = ∇b3[i]
5: for i = 32 − s to 30 do
6: ∇b4[i + s mod 32] = ∇b3[i]
7: Claim a signed difference vector ∇c0 of size 33
8: Claim a signed difference vector ∇ch

9: ROTATE_MODEL(∇b3[31 − s], ∇b3[30 − s], ∇b4[31], ∇b4[30], ∇c0[0])
10: ROTATE_MODEL(∇b3[31], ∇b3[30], ∇b4[31 + s], ∇b4[30 + s], ∇ch)
11: MODADD_MODEL(∇a1, ∇b4, ∇c0, ∇b5)// ∇c0[0] is no longer always [=]
12: EXPAND_MODEL(∇b5, ∇a5, isK)
13: if isV = 1 then
14: Claim a signed difference vector ∇c1 of size s + 2
15: ∇c1[0] = [=]
16: SIGNED_Q_MODEL(∇b4, ∇c0[0], ∇c1, ∇q, s)//∇q[0 : s] = (∇b4 ⊞ ∇c0[0])[0 : s]
17: procedure ROTATE_MODEL(∇u, ∇t, ∇µ, ∇τ, ∇ι)
18: VROT = (uv, ud, tv, td, µv, µd, τv, τd, ιv, ιd)
19: add constraints HROT · V T

ROT ≥ CROT

20: procedure SIGNED_Q_MODEL(∇x, ∇y, ∇c, ∇z, s)
21: VADD = (xv[0], xd[0], yv, yd, cv[0], cd[0], zv[0], zd[0], cv[1], cd[1])
22: add constraint HADD · V T

ADD ≥ CADD

23: for i = 1 to s + 1 do
24: VADD = (xv[i], xd[i], 0, 0, cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1])
25: add constraint HADD · V T

ADD ≥ CADD

26:
27: procedure ROTATE_DIFF_SECOND(s, ∇b3, ∇a1, ∇a5, ∇q, isV)
28: Claim a signed difference vector ∇b4 of size 32
29: EXPAND_MODEL(∇b4, ∇b3, 0)
30: ADDEXP_MODEL(∇a1, ∇b4 ≪ s, ∇a5) //∇b4 ≪ s only changes the order of ∇b4
31: if isV = 1 then
32: for i = 0 to s + 1 do
33: ∇q[i] = ∇b4[i − s]
34: procedure ADDEXP_MODEL(∇x, ∇y, ∇z)
35: Claim a signed difference vector ∇c of size 33
36: ∇c[0] = [=]
37: for i = 0 to 32 do
38: VEXPAdd = (xv[i], xd[i], yv[i], yd[i], cv[i], cd[i], zv[i], zd[i], cv[i + 1], cd[i + 1])
39: add constraints HEXPAdd · V T

EXPAdd ≥ CEXPAdd.

18 Fukang Liu et al.

3.7 Detecting More Contradictions

It has been stated in Section 2.3 that there are additional implicit conditions.
Specifically, for

b4 = b3 ≪ s, b5 = a1 ⊞ b4, a5 = b5,

due to the probabilistic propagation δb3 → δb4, there will be conditions on
q = a5 ⊟ a1 = b3 ≪ s, i.e. there should exist a solution of q to the following
equations

q = a5 ⊟ a1, δq = δa5 ⊟ δa1, δb3 ⊞ q ≫ s = (δq ⊞ q) ≫ s,

where (δb3, δa5, δa1) are fixed according to their specified signed differences
(∇b3, ∇a5, δa1).

Algorithm 5 Detect more contradictions in a5 = a1 ⊞ (b3 ≪ s)
1: procedure ROTATE_DIFF_FILTER(s, ∇a5, ∇a1, ∇b3, ∇q, a5, a1)
2: Claim a binary vector q of size 32
3: COMPUTE_Q(∇a5, ∇a1, a5, a1, q) //compute q
4: Claim a binary vector v0 of size s + 1
5: VAL_DIFF_ADD_MODEL(∇q, q, v0, s + 1)//compute v0 = (δq ⊞ q)[0 : s]
6: Claim a binary vector v1 of size 33 − s
7: VAL_DIFF_ADD_MODEL(∇b3, q ≫ s, v1, 33 − s)//compute v1
8: add constraint v0[0] = v1[32 − s]
9: add constraint v0[s] = v1[0]

10: procedure COMPUTE_Q(∇z, ∇x, z, x, q)
11: for i = 0 to 32 do
12: DERIVE_COND(x[i], ∇x[i])//derive conditions on x from ∇x
13: DERIVE_COND(z[i], ∇z[i])//derive conditions on z from ∇z

14: VAL_ADD_MODEL(x, q, z, 32)//x ⊞ q = z

15: procedure DERIVE_COND(x, ∇x)
16: //x = 0 if (∇x = n); x = 1 if (∇x = u); x is free if (∇x = =)
17: add constraint −xv + x ≥ 0
18: add constraint xv − xd − x ≥ −1
19: procedure VAL_DIFF_ADD_MODEL(∇a, b, v, l)//compute v = (δa ⊞ b)[0 : l − 1]
20: Claim a signed difference vector ∇c of size l
21: ∇c[0] = [=]
22: for i = 0 to l do
23: add constraint 2(cd[i+1]−2cv[i+1])+v[i] = (ad[i]−2av[i])+b[i]+(cd[i]−2cv[i])
24: add constraint cd[i + 1] ≥ cv[i + 1]
25: procedure VAL_ADD_MODEL(a, b, v, l)//compute v = (a ⊞ b)[0 : l − 1]
26: Claim a binary vector c of size l
27: c[0] = 0
28: for i = 0 to l do
29: add constraint 2c[i + 1] + v[i] = a[i] + b[i] + c[i]

Analysis of RIPEMD-160 19

In our model, the constraints have ensured that δb4 is one of the 4 possible
values computed from δb3. Since δb4 = δa5 ⊟ δa1, there are always solutions to

δb3 ⊞ q ≫ s = (δq ⊞ q) ≫ s. (5)

The problem exists in the additional constraint q = a5 ⊟ a1. When there are
many bit conditions on (a5, a1), the number of possible values of q is significantly
reduced and it is possible that none of them can make Equation 5 hold.

As δb3 → δb4 is a possible propagation, taking the careful analysis in [14]
into account, we only need to add the following constraints to make the model
automatically detect such contradictions:

q = a5 ⊟ a1,

(δq ⊞ q)[0] = (δb3 ⊞ q ≫ s)[32 − s],
(δq ⊞ q)[s] = (δb3 ⊞ q ≫ s)[0].

In ROTATE_DIFF_FIRST and ROTATE_DIFF_SECOND, we have provided an op-
tion to compute ∇q[0 : s] according to the binary variable isV and therefore
it can be viewed as known. Modelling δq ⊞ q and q = a5 ⊟ a1 is trivial, the
details of which can be found from the algorithmic description to detect more
contradictions, as shown in Algorithm 5.

Algorithm 6 Model the signed difference transitions for a5 = a1⊞(F (a4, a3, a2)⊞
a0 ⊞ m ⊞ c) ≪ s.
1: procedure R(fNa,isC,isF,isV,isK, s, ∇m, ∇a0, ∇a1, ∇a2, ∇a3, ∇a4, ∇a5, a4, a3, a2, a5, a1)
2: Claim signed difference vectors ∇b0, ∇b1, ∇b2, ∇b3 of size 32
3: Claim signed difference vectors ∇c2, ∇c3 of size 33.
4: Claim a signed difference vector ∇q of size s + 1.
5: ∇b0 = ∇m
6: BOOLFAST_MODEL(fNa,∇a4, ∇a3, ∇a2, ∇b1)
7: if isC = 1 then //involve conditions into the model
8: BOOLCOND_MODEL(fNa,∇a4, ∇a3, ∇a2, ∇b1, a4, a3, a2)
9: ∇c2[0] = [=], ∇c3[0] = [=]//no carry for the least significant bit

10: MODADD_MODEL(∇b0, ∇b1, ∇c2, ∇b2)//δb2 = δb0 ⊞ δb1
11: MODADD_MODEL(∇b2, ∇a0, ∇c3, ∇b3)//δb3 = δa0 ⊞ δb2
12: if isF = 1 then//use the first strategy
13: ROTATE_DIFF_FIRST(s, ∇b3, ∇a1, ∇a5, ∇q, isV,isK)
14: else//the second strategy
15: ROTATE_DIFF_SECOND(s, ∇b3, ∇a1, ∇a5, ∇q, isV)
16: if isV = 1 then//further detect contradictions
17: ROTATE_DIFF_FILTER(s, ∇a5, ∇a1, ∇b3, ∇q, a5, a1)

20 Fukang Liu et al.

3.8 The Full Model for RIPEMD-160

With the model for all operations known, it is straightforward to combine them
to describe the propagation

(∇a0, ∇a1, ∇a2, ∇a3, ∇a4, ∇m) → ∇a5,

as shown in Algorithm 6. In the input parameters, fNa is the name of the boolean
function, isC is the option to involve the implicit conditions for the boolean
functions, isF is the option to use the first or the second strategy to compute
∇b4, isV is the option to perform the further detection of contradictions, and isK
is the option to use different models for the expansions of the modular difference.
In other words, depending on the target parts of the differential characteristics,
one can flexibly choose different values for these options.

4 Collision Attacks on 36-Round RIPEMD-160

In our new collision attacks on round-reduced RIPEMD-160, we choose to inject
differences in (m0, m6, m9) because this choice can allow a 36-round collision
attack. The pattern of the differential characteristic under such message differences
is shown in Fig. 2.

δX0 δX4 δX22 δX35

δY0 δY3 δY24 δY35

unknown difference

zero difference

Fig. 2: The pattern of the 36-round differential characteristic

Although we found (m0, m6, m9) according to our experience to analyze the
MD-SHA hash family and it is not related to our MILP model, this model is
particularly useful when determining their actual modular differences. Specifically,
we first considered the message differences of the following form:

δm0 = 2i, δm6 = 0 ⊟ 2i+25, δm9 = 2i+12,

where the addition in the exponents is modulo 32. However, the obtained differ-
ential characteristics are quite unfriendly to the message modification and the
probability of the uncontrolled parts is too low. In many cases, the model even
outputs that there is no solution for the left branch.

Then, we choose to inject differences in 2 bits of m0, m6 and m9, respectively.
For each possible choice, we use the model to minimize

∑24
i=16 H(∇Yi). It is found

that among all possible choices, the minimal value of
∑24

i=16 H(∇Yi) is 12 and
we eventually identified the following message differences

δm0 = 23 ⊞ 222, δm6 = 0 ⊟ 215 ⊟ 228, δm9 = 22 ⊞ 215.

Analysis of RIPEMD-160 21

In addition, with the above message differences, we can also find a suitable
solution for the left branch.

In general, with the above message differences, we search for the corresponding
collision-generating differential characteristic as follows:

Step 1: Find a valid solution of ∇Xi (0 ≤ i ≤ 4) and check the differential
conditions. If the number of conditions is not that large, just use this
solution of ∇Xi (0 ≤ i ≤ 4) for left branch.

Step 2: Find a valid solution of ∇Yi (16 ≤ i ≤ 24) with the MILP model such
that ∆Yi = 0 for 25 ≤ i ≤ 35 and we minimize

∑24
i=16 H(∇Yi).

Step 3: Find a valid solution of ∇Yi (11 ≤ i ≤ 15) with the MILP model such that
it can propagate to ∇Yi (16 ≤ i ≤ 24) and we minimize

∑15
i=11 H(∇Yi).

Step 4: Choose a sparse differential characteristic manually for ∇Yi (3 ≤ i ≤ 5)
and fix it.

Step 5: Find a solution of ∇Yi (6 ≤ i ≤ 10) with the MILP model such
that (∇Y1, ∇Y2, ∇Y3, ∇Y4, ∇Y5) and (∇Y11, ∇Y12, ∇Y13, Y14, ∇Y15) can
be connected, i.e. the differential characteristic for the right branch is
valid.

The found 36-round differential characteristic is displayed in Table 9.

4.1 Fulfilling Differential Conditions

Fulfilling the differential conditions for the 36-round differential characteristic
in Table 9 requires nontrivial efforts. Different from the collision attacks on
round-reduced RIPEMD-160 [11,12] where the attackers only need to perform the
message modification for one branch, we now need to handle the conditions in
both branches simultaneously [8] and the differential characteristic is very dense
at the first few rounds for both branches.

The general procedure to fulfill the differential conditions is summarized as
follows. We recommend to refer to Fig. 3 when reading this part. As in most
collision attacks on MD-SHA hash functions, some minor details for the message
modification are omitted here because they are trivial.

Step 1: Exhaust all possible solutions of (Y4, Y5, Y6, Y7, Y8, Y9) and compute the
corresponding m6. Store these m6s in a table denoted by TAB_M6 and
store the tuples (Y4, Y5, Y6, Y7, Y8, Y9, m6) in a sorted table denoted by
TAB_Y_M6, which is sorted according to m6.

Step 2: Exhaust all possible solutions of (X1, X2, X3, X4, X5, X6) and compute
the corresponding m6. If the obtained m6 is in TAB_M6_F, store X1 in a
table denote by TAB_X1.

Step 3: Exhaust all possible solutions of (ONX(Y11, Y10, Y9 ≪ 10), Y7, Y8, Y12)
and compute the corresponding m1. Store these m1s in a table denoted
by TAB_M1.

Step 4: Find a valid M0 such that the conditions on the newly-obtained chaining
variable (X−5, X−4, X−3, X−2, X−1) = H(CV0, M0) can hold.

22 Fukang Liu et al.

Table 9: The 36-round differential characteristic, where δm0 = 23 ⊞ 222, δm6 =
0 ⊟ 215 ⊟ 228 and δm9 = 22 ⊞ 215.

i ∇Xi πl(i) i ∇Yi πr(i)
-5 ================================ -5 ================================
-4 ================================ -4 ================================
-3 ================================ -3 ================================
-2 ================================ -2 ================================
-1 ================================ -1 ================================
0 nuuuuuuuuuuuuuuuuu=nuuuuuuuuuuu= 0 0 ================================ 5
1 n===u=u==n=un====uuu=u=nn===u=uu 1 1 ================================ 14
2 =nun=u=n==n==nn==u==uun==nnu=un= 2 2 ========0=====1============1==== 7
3 ====nu===========nu============= 3 3 ====0=========1==n=========0==n1 0
4 nnnnnnnn===unnnnnnnnnnnnnnnunnnn 4 4 =10=n==0=======1=n1=101===1=0010 9
5 ================================ 5 5 =10=10=0010001=101000n0001110010 2
6 ================================ 6 6 10001nuunnnnnnnnnnnnnn=un1101110 11
7 ================================ 7 7 0u0n1uun00n10nu01nnun=nuuuuuuuuu 4
8 ================================ 8 8 n1un0nuuuu1=0u0un0unnnn1nn0nunuu 13
9 ================================ 9 9 =1=010u1000n00u01uu010n101=n100n 6
10 ================================ 10 10 u1=0u0110uu=u011=0=1=0=u1=1=0111 15
11 ================================ 11 11 111n==0=1=1=0n===11==10100n00==0 8
12 ================================ 12 12 ==00==0=0===10==1=01=n0=1100===1 1
13 ================================ 13 13 ==00=0==u==11===0n=1===1u===u01= 10
14 ================================ 14 14 ==u==0===n===n==1========n===01= 3
15 ================================ 15 15 ======u========1=0=uu====1=n==10 12
16 ================================ 7 16 ===============n=1=============1 6
17 ================================ 4 17 ==0====u=========1==1=========== 11
18 ================================ 13 18 ==1==========00=====1=========== 3
19 ================================ 1 19 ==========n==11=========n======= 7
20 ================================ 10 20 ===nu=========================0= 0
21 =======u==================u===== 6 21 ==========0===========01=0====1= 13
22 =======0==================0===== 15 22 ====1=====1======0==u=11=1====== 5
23 ================1============1== 3 23 n===1=======nu===1============== 10
24 ================================ 12 24 =======u==============0===u===== 14
25 ================================ 0 25 ======================1======0== 15
26 ================================ 9 26 =============================1== 8
27 ================================ 5 27 ================================ 12
28 ================================ 2 28 ================================ 4
29 ================================ 14 29 ================================ 9
30 ================================ 11 30 ================================ 1
31 ================================ 8 31 ================================ 2
32 ================================ 3 32 ================================ 15
33 ================================ 10 33 ================================ 5
34 ================================ 14 34 ================================ 1
35 ================================ 4 35 ================================ 3

Analysis of RIPEMD-160 23

Table 10: A partial solution for the 36-round differential characteristic
i ∇Xi πl(i) i ∇Yi πr(i)
-5 10100101010010101101011111001000 -5 10100101010010101101011111001000
-4 11101110001000000011110110000011 -4 11101110001000000011110110000011
-3 11111010101100010100111101100010 -3 11111010101100010100111101100010
-2 00011100010010000100111100010010 -2 00011100010010000100111100010010
-1 00111011110101101010010000011111 -1 00111011110101101010010000011111
0 nuuuuuuuuuuuuuuuuu1nuuuuuuuuuuu1 0 0 10111000110000010010000010111011 5
1 n010u0u11n1un0100uuu1u1nn000u1uu 1 1 11111101010011101100101101100001 14
2 1nun1u0n10n00nn10u10uun01nnu1un1 2 2 01101001000000101010110011010110 7
3 1011nu11111110010nu1110011100011 3 3 00100111110111101n001101000010n1 0
4 nnnnnnnn000unnnnnnnnnnnnnnnunnnn 4 4 0101n000010010011n10101010110010 9
5 11111110100000100000101011100010 5 5 010010100100011101000n0001110010 2
6 00110001111011101111011010111010 6 6 10001nuunnnnnnnnnnnnnn0un1101110 11
7 01101000000111101011001111000001 7 7 0u0n1uun00n10nu01nnun0nuuuuuuuuu 4
8 10011000010111000010010111111011 8 8 n1un0nuuuu110u0un0unnnn1nn0nunuu 13
9 01111100011111000110101010010100 9 9 110010u1000n00u01uu010n1010n100n 6
10 10000100100000000111100110011011 10 10 u100u0110uu0u0111001101u10100111 15
11 00000110100010001011100111011111 11 11 111n110011110n000110110100n00010 8
12 10100111100100110101011100111110 12 12 000001010010101110010n0111001111 1
13 10011000000000010001000010001011 13 13 10001011u11111010n010001u011u010 10
14 00011010101011010110100101110110 14 14 01u000011n010n01111001101n010010 3
15 00100001000111110011110010111100 15 15 101110u110100001101uu110010n0010 12
16 ================================ 7 16 110100101100111n0101101000001011 6
17 ================================ 4 17 0001101u110111011110111101011110 11
18 ================================ 13 18 10100001110000011100110111111110 3
19 ================================ 1 19 0111011100n1111001010011n0111111 7
20 ================================ 10 20 010nu010011000010100110010100101 0
21 =======u==================u===== 6 21 00001110010001011100110110011010 13
22 =======0==================0===== 15 22 00011011111010011010u11101001000 5
23 ================1============1== 3 23 n===1=======nu===1============== 10
24 ================================ 12 24 =======u==============0===u===== 14
25 ================================ 0 25 ======================1======0== 15
26 ================================ 9 26 =============================1== 8
27 ================================ 5 27 ================================ 12
28 ================================ 2 28 ================================ 4
29 ================================ 14 29 ================================ 9
30 ================================ 11 30 ================================ 1
31 ================================ 8 31 ================================ 2
32 ================================ 3 32 ================================ 15
33 ================================ 10 33 ================================ 5
34 ================================ 14 34 ================================ 1
35 ================================ 4 35 ================================ 3
m0 1111101nuu111101010111011100n000 m8 10001000100110111010111000011100
m1 11100010100010101000011010001010 m9 011010010011101nu110001110001n01
m2 01110100001111011001110110000001 m10 10011100001110000100101111001101
m3 01100101011111001001111010101101 m11 00100100001110000011000100111110
m4 01011010111100011001011001010001 m12 10000110011010100101011001001110
m5 10000010000110010100000110001110 m13 00100011101101110011111000101001
m6 00un101111111110u011100000100101 m14 10100010111011001101010111011101
m7 11011100001000100110001010001000 m15 11010001001001110100011001001011

24 Fukang Liu et al.

Y 5 Y 4 Y 3 Y 2 Y 1 Y Y Y Y Y4 Y5 Y6 Y7 Y8 Y9 Y Y Y Y Y Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

Y 5 Y 4 Y 3 Y 2 Y 1 Y Y Y Y Y Y Y Y7 Y8 Y9 Y10 Y11 Y12 Y Y Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

Y
−5 Y

−4 Y
−3 Y

−2 Y
−1 Y0 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

X
−5 X

−4 X
−3 X

−2 X
−1 X X1 X2 X3 X4 X5 X6 X X

m0 m1 m2 m3 m4 m5 m6 m7 m8

X
−5 X

−4 X
−3 X

−2 X
−1 X0 X1 X2 X3 X4 X5 X6 X X

m0 m1 m2 m3 m4 m5 m6 m7 m8

X
−5 X

−4 X
−3 X

−2 X
−1 X0 X1 X X X4 X X6 X X

m0 m1 m2 m3 m4 m5 m6 m7 m8

X
−5 X

−4 X
−3 X

−2 X
−1 X X1 X X X4 X X6 X X

m0 m1 m2 m3 m4 m5 m6 m7 m8

Step 1: precompute m6

Step 2: precompute X1

Step 3: precompute m1

Step 4: find valid (X
−5, . . . , X−1)

Step 5: find valid (X0, X1)

X
−5 X

−4 X
−3 X

−2 X
−1 X0 X1 X2 X3 X4 X5 X6 X7 X8

m0 m1 m2 m3 m4 m5 m6 m7 m8

Step 6: find valid (X2, . . . , X6)

Step 7: compute Y0

Y
−5 Y

−4 Y
−3 Y

−2 Y
−1 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y Y Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

Step 8: retrieve (Y4, . . . , Y9) using m6

Y
−5 Y

−4 Y
−3 Y

−2 Y
−1 Y0 Y Y Y Y4 Y5 Y6 Y7 Y8 Y9 Y Y Y Y Y Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

Step 9: determine (Y1, Y2, Y3) to achieve the connection

Y
−5 Y

−4 Y
−3 Y

−2 Y
−1 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y Y Y Y Y Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

(Y1, . . . , Y5) are consistent in two directions

X
−5 X

−4 X
−3 X

−2 X
−1 X0 X1 X2 X3 X4 X5 X6 X7 X

m0 m1 m2 m3 m4 m5 m6 m7 m8

Step 10: find (Y10, Y11, Y12) by traversing (Y10, Y11)

Y
−5 Y

−4 Y
−3 Y

−2 Y
−1 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

Step 11: find (Y13, Y14) by traversing Y13

Y
−5 Y

−4 Y
−3 Y

−2 Y
−1 Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15

m5 m14 m7 m0 m9 m2 m11 m4 m13 m6 m15 m8 m1 m10 m3 m12

Step 12: Traverse Y15

Red: values have been fixed.

Blue: values are being computed.

Fig. 3: Illustration of the message modification procedure

Analysis of RIPEMD-160 25

Step 5: For the obtained (X−5, X−4, . . . , X−1), exhaust all possible solutions of
(X0, X1) and compute the corresponding (m0, m1). If m1 is in TAB_M1
and X1 is in TAB_X1, move to Step 6. Otherwise, try another (X0, X1).
If all possible values of (X0, X1) are traversed, return to Step 4.

Step 6: Exhaust all possible solutions of (X2, X3, X4, X5, X6) and compute the
corresponding (m2, m3, m4, m5, m6). For each obtained m6, if it is in
TAB_M6, move to Step 7. Otherwise, try another (X2, X3, X4, X5, X6). If
all possible (X2, X3, X4, X5, X6) are traversed, return to Step 5.

Step 7: Compute Y0 using (Y−5, Y−4, Y−3, Y−2, Y−1) = (X−5, X−4, X−3, X−2, X−1)
and m5.

Step 8: Retrieve from TAB_Y_M6 the corresponding (Y4, Y5, Y6, Y7, Y8, Y9) accord-
ing to m6. For each possible value, move to Step 9. If all possible values
are traversed, return to Step 6.

Step 9: Determine (Y1, Y2, Y3) to connect Yi (−5 ≤ i ≤ 0) and Yj (4 ≤ j ≤ 8) by
using the degrees of freedom provided by (m14, m7, m9, m11, m13), the
details of which will be explained later. If there exists no solution of
(Y1, Y2, Y3), return to Step 8.

Step 10: Traverse all possible values of (Y10, Y11) and compute Y12 using

(Y7, Y8, Y9, Y10, Y11, m1).

Check the conditions11 on (Y12, Ql
8) and if they hold, move to Step 11.

Step 11: Traverse all possible values of Y13 and compute Y14 using

(Y9, Y10, Y11, Y12, Y13, m3).

Check the conditions on Y14 and if they hold, move to Step 12.
Step 12: Traverse all possible values of Y15 and compute the corresponding m12.

Then, Yi (−5 ≤ i ≤ 15) are all fixed and therefore all mj (0 ≤ i ≤ 15)
are fixed. Hence, the remaining internal states Xi (i ≥ 7) and Yj (j ≥ 16)
can be computed and we check whether the differential conditions on
them hold. If they hold, a collision for 36-round RIPEMD-160 is found.

More details about the connection (Step 9). Given Yi (−5 ≤ i ≤ 0), Yj

(4 ≤ j ≤ 8) and (m0, m2, m4), we aim to find a solution of (Y1, Y2, Y3) such that
the computed value of (m0, m2, m4) based on Yi (−5 ≤ i ≤ 8) is consistent with
its given value. This is achieved by using the degrees of freedom provided by
(m14, m7, m9, m11, m13). The procedure is described as follows.

Step 9.1. Exhaust all possible valid Y3. For each valid Y3, compute Y2 using
(Y3, Y4, Y5, Y6, Y7, m4). If the conditions on (Qr

7, Y2, Qr
6) hold, move to

Step 9.2. Otherwise, try another Y3 until all possible Y3 are traversed.
Step 9.2. Note that

Qr
3 = ONX(Y2, Y1, Y0 ≪ 10) ⊞ Y−2 ≪ 10 ⊞ Kr

0 ⊞ m0,

11 After computing Y11, m8 can be computed using Yi (6 ≤ i ≤ 11). Then, X8 and Ql
8

can be computed using Xi (3 ≤ i ≤ 7) and m8.

26 Fukang Liu et al.

Y3 = Y−1 ≪ 10 ⊞ Qr
3 ≪ sr

3. (6)

In the above equation, only Y1 is not yet determined. As

ONX(x, y, z) = x ⊕ (y ∧ z),

we can uniquely determine Y1 ∧ Y0 ≪ 10 according to

Qr
3 = (Y3 ⊟ Y−1 ≪ 10) ≫ sr

3,

ONX(Y2, Y1, Y0 ≪ 10) = Qr
3 ⊟ (Y−2 ≪ 10 ⊞ Kr

0 ⊞ m0),
Y1 ∧ Y0 ≪ 10 = ONX(Y2, Y1, Y0 ≪ 10) ⊕ Y2.

However, as Y0 has already been determined, the computed Y1 ∧
Y0 ≪ 10 may contradict with Y0. Specifically, if Y0[i] = 0 and (Y1 ∧
Y0 ≪ 10)[(i + 10) mod 32] = 1, the current Y3 is invalid and we need
to try another Y3. Otherwise, the current Y3 is correct and we can
simply move to Step 9.3 to enumerate valid Y1 to ensure Equation 6
holds. Specifically, if there are n0 different indices {i1, i2, . . . , in0} such
that

Y0[ij] = 0, (Y1 ∧ Y0 ≪ 10)[(ij + 10) mod 32] = 0 for 1 ≤ j ≤ n0,

there will be 2n0 possible Y1 and they can be simply enumerated.
Step 9.3. Enumerate all valid Y1 as explained above. For each Y1, check the

condition on it, i.e. the condition on Qr
5 = (Y5 ⊟ Y1 ≪ 10) ≫ sr

5. If
it holds, compute a new value of m2 using (Y0, Y1, Y2, Y3, Y4, Y5) and
check whether this computed m2 is consistent with the predetermined
m2. If it is, compute(m14, m7, m9, m11, m13) using

(Y−4, Y−3, Y−2, Y−1, Y0, Y1), (Y−3, Y−2, Y−1, Y0, Y1, Y2),
(Y−1, Y0, Y1, Y2, Y3, Y4), (Y1, Y2, Y3, Y4, Y5, Y6), (Y3, Y4, Y5, Y6, Y7, Y8),

respectively. Then, compute X7 and check the conditions on Ql
7. If the

conditions on Ql
7 holds, the connection succeeds and move to Step 10.

Otherwise, try another Y1 until all Y1 are traversed.

4.2 Complexity Evaluations and Simulations

Let us highlight what we can benefit from our message modification technique.
First, we aim to find a valid solution for

(X−5, X−4, . . . , X6), (Y−5, Y−4, . . . , Y9),

which corresponds to Step 1 to Step 9. For convenience, we call its solution a
starting point in our collision attacks. Then, the remaining work is to make
the exhaustive search over (Y10, Y11), Y13 and Y15 in a sequential manner, which
is to utilize the degrees of freedom provided by these internal states to fulfill the
remaining differential conditions.

Analysis of RIPEMD-160 27

On the exhaustive search over (Y10, Y11, Y13, Y15). Based on the number of
bit conditions, there are in total 220, 218 and 220 possible values of (Y10, Y11), Y13
and Y15, respectively. Suppose there are on average 2n1 possible (Y10, Y11) that
can pass Step 10. Moreover, for each valid solution (Y10, Y11, Y12), suppose there
are on average 2n2 possible Y13 that can pass Step 11. Then, the time complexity
to exhaust all possible (Y10, Y11, . . . , Y15) is 220 +218+n1 +220+n1+n2 ≈ 220+n1+n2 .

Experimental results suggest that n1 + n2 ≈ 16.5 where we performed the
exhaustive search over (Y10, Y11, Y13) as stated above for 110 valid starting points.
We should note that for some starting points, there is no valid solution of
(Y10, Y11, Y13) and the probability that there are valid solutions of them is about
0.36.

From the above analysis, we can equivalently say that for each starting point
where (m0, m1, m2, m3, m4, m5, m6, m7, m9, m11, m13, m14) are fixed, there are
about 220+16.5 = 236.5 valid values for (m15, m8, m10, m12). More importantly,
these 236.5 values can be efficiently enumerated by performing the exhaustive
search over (Y10, Y11, Y13, Y15) as stated above with time complexity 236.5, i.e.
our exhaustive search strategy is optimal.

On the required number of starting points. If the differential conditions on
the uncontrolled internal states Yi (i ≥ 16) and Xj (j ≥ 9) hold with probability
2−p, we will need to generate 2p−36.5 starting points to find a collision. According
to the calculation, p = 8 + 55 + 1.5 = 64.5 where there are 8 bit conditions
on (X19, X20, . . . , X23), 55 bit conditions on (Y16, Y17, . . . , Y26) and about 1.5
bit conditions on (Ql

21, Ql
25) and (Qr

16, Ql
17, . . . , Ql

28). Hence, it is required to
generate about 264.5−36.5 = 228 starting points.

On the complexity of the connection. At Step 9, we will need to exhaust
226 possible values of Y3 as there are 6 bit conditions on it. Then, we need to
check the conditions on (Qr

7, Y2, Qr
6, Qr

5) which hold with probability of about
2−4. Finally, we need to check the consistency in m2 which holds with probability
2−32 and check the condition on Ql

7 holding with probability close to 1.
Moreover, even if the conditions on (Qr

7, Y2, Qr
6) hold, Y3 is still likely to be

invalid due to the contradiction between Y0 and Y0 ∧ Y1 ≪ 10. However, this
happens only when there exists i such that Y0[i] = 0 and (Y0 ∧ Y1 ≪ 10)[i] = 1.
On the other hand, if Y0[i] = 0 and (Y0 ∧ Y1 ≪ 10)[i] = 0, we then obtain one
free bit in Y1 and the free bit will be exhausted. Therefore, it is equivalent to
stating that there are on average 226 possible (Y1, Y3) and they can be exhausted
in time 226.

For each trial of (Y3, Y1), the success probability is 2−4−32 = 2−36. Therefore,
to generate 228 starting points, we need to try 228+36 = 264 times. Hence, the
total time complexity of Step 9 is 228+36 = 264 .

On the complexity of Step 8. As there are on average 226 possible valid
values for (Y1, Y3), the time complexity of Step 8 is 264−26 = 238.

28 Fukang Liu et al.

On the complexity to exhaust (X2, X3, . . . , X6). We now evaluate the cost
of Step 6−7 where we need to exhaust all possible values of (X2, X3, . . . , X6)
for a valid (X−5, X−4, . . . , X1) obtained at Step 5. By counting the bit con-
ditions, we find that there are in total 28 free bits in (X2, X3, . . . , X6) for
a fixed (X−5, X−4, . . . , X1). Hence, the time complexity of this phase is 228.
For each possible value of (X2, X3, . . . , X6), m6 will be computed and checked
against TAB_M6. Since the size of TAB_M6 is 0x23a000 ≈ 221.15, without con-
sidering the conditions on Ql

i (2 ≤ i ≤ 6), the matching probability is about
2−32+21.15 ≈ 2−10.9. Therefore, we can expect to obtain 228−10.9 = 217.1 valid
solutions of (X−5, X−4, . . . , X6) after the exhaustive search. Experiments suggest
that there are about 216 such valid solutions. For each such valid value, we need
to move to Step 8.

At Step 8, since each m6 in TAB_M6 corresponds to on average 7 different
values of (Y4, Y5, . . . , Y9) in TAB_Y_M6, Step 8 can also provide about 2.8 free bits.
Hence, the total time complexity of Step 6−7 is 238−2.8−16+28 = 247.2.

On the complexity to find (X−5, X−4, . . . , X1). We now evaluate the cost
of Step 4−5. First, according to the bit conditions on (X−2, X−1, X0, X1), for
each (X−5, X−4, . . . , X−1) computed from M0, all state bits of (X1, X0) will be
directly fixed to fulfill their bit conditions. Hence, we are left to verify whether
the computed (X0, X1) is valid. First, we need to check whether X1 is in TAB_X1
and check whether the corresponding m1 is in TAB_M1. As the size of TAB_X1
is 7800 ≈ 214.9 and the size of TAB_M1 is 0x1676000 ≈ 224.5, the probability it
can pass this test is 2−17+14.9 × 2−32+24.5 = 2−9.6. Second, we need to check the
conditions on (Ql

0, Ql
1) which hold with probability of about 2−1.5. Therefore, for

each computed (X0, X1), it is valid with probability 2−11.1.
Finally, we need to verify the conditions on (X−2, X−1) computed from each

M0 which hold with probability 2−30. Hence, finding a valid (X−5, X−4, . . . , X1)
requires to try about 230+11.1 = 241.1 random M0. As we need 238−2.8−16 =
219.2 such valid solutions, it is required to try 219.2+41.1 = 260.3 different M0.
Consequently, the total time complexity of Step 4−5 is 260.3.

On the complexity of Step 1−3. We only need to perform Step 1−3 once
and we have finished Step 1-3 in practical time. Hence, the total cost of Step
1−3 is negligible.

The total complexity. According to the above analysis, the time complexity
and memory complexity of about collision attacks on 36 rounds of RIPEMD-160
are 264.5 and 221.15+2.8 ≈ 224, respectively.

Simulations. To verify our theoretical analysis and the correctness of our
message modification technique, we perform the experiments in the following
way. First, we randomly generate (X−5, X−4, . . . , X−1) by always making the
conditions on (X−2, X−1) hold because finding their valid values from random
M0 is costly. Then, we compute (X0, X1) and check the conditions until we
obtain a valid (X0, X1). Experimental results match our theoretical analysis

Analysis of RIPEMD-160 29

for Step 4−5. Next, for each valid (X−5, X−4, . . . , X1), we move to Step 6 and
try to find valid solutions for (X2, X3, . . . , X6) and experiments also confirmed
our analysis of the time complexity. Then, we move to Step 7−9 to achieve the
connection. We find that the success probability of connection is about 2−36

and it matches well with our analysis. In this way, we succeed in generating
many valid starting points. At last, for each of the obtained starting points, we
perform the exhaustive search over (Y10, Y11, Y13, Y15) in our way and aim to find
a solution for (Y10, Y11, . . . , Y22). The expected time complexity to find a valid
(Y10, Y11, . . . , Y22) is about 240 as the conditions on (Y16, Y17, . . . , Y22) hold with
probability of about 2−40. Experiments have confirmed this value and we provide
a solution of (m0, m1, . . . , m15) and (X−5, X−4, . . . , X−1) = (Y−5, Y−4, . . . , Y−1)
which can make the conditions on Xi (0 ≤ i ≤ 8) and Yj (0 ≤ j ≤ 22) hold, as
shown in Table 10.

5 Further Works and Discussions

As the round functions of the MD-SHA hash family are very similar, we expect
that some of our techniques to model the signed difference transitions can be
applied to other hash functions that have not yet been broken. The most important
target should be SHA-2. However, there are several obstacles to directly apply
our techniques to SHA-2. Specifically, in our model, we implicitly rely on the
fact that each 32-bit message word is used to update one 32-bit internal state.
When it comes to SHA-2, each message word of 32 (resp. 64) bits will be used
to update two different internal states of 32 (resp. 64) bits at the same round.
In this case, contradictions will much more easily occur and our techniques to
detect the inconsistency are insufficient. How to adapt our techniques to SHA-2
is an interesting and meaningful work.

We also notice that in the paper [6] to improve the automatic tool for SHA-2,
it is mentioned that relying on off-the-shelf solvers to search for such differential
characteristics is inefficient because the information of the signed difference
propagations cannot be well exploited. We believe they referred to the models
where two parallel instances of value transitions are considered. Obviously, in
our model, we have efficiently encoded the information of the signed difference
propagations and we believe this is the first important step towards this problem,
i.e. how to efficiently rely on off-the-shelf solvers to find such signed differential
characteristics.

For RIPEMD-160, we further made some progress by improving the best
collision attack by 2 rounds and we believe this work advances the understanding
of RIPEMD-160 further.

Acknowledgement. We thank the reviewers of EUROCRYPT 2023 for im-
proving the quality of this paper. Gaoli Wang is supported by the National Key
Research and Development Program of China (No. 2022YFB2701900), National
Natural Science Foundation of China (No. 62072181), NSFC-ISF Joint Scientific

30 Fukang Liu et al.

Research Program (No. 61961146004), Shanghai Trusted Industry Internet Soft-
ware Collaborative Innovation Center. Fukang Liu is supported by Grant-in-Aid
for Research Activity Start-up (Grant No. 22K21282). Takanori Isobe is sup-
ported by JST, PRESTO Grant Number JPMJPR2031. This research was in part
conducted under a contract of "Research and development on new generation
cryptography for secure wireless communication services" among "Research and
Development for Expansion of Radio Wave Resources (JPJ000254)", which was
supported by the Ministry of Internal Affairs and Communications, Japan.

A Examples to Understand some Propagation Rules

Due to the page limit, we provide some concrete examples here to help understand
our propagation rules, i.e. the rules for the modular addition and expansion.

The example for the modular addition. Consider z = x ⊞ y where

∇x = [=nu= nnnn =uu= nuu= =nnn =uuu uuuu nn==],
∇y = [=un= =uun ==n= u=u= nn=n =un= uuuu un==].

Then, based on the propagation rules specified in Table 3, we can uniquely
compute one ∇z such that δz = δx ⊞ δy. To achieve this, we need another
variable ∇c to denote the signed difference of the carry bits. Then, ∇z and ∇c
are computed as follows and one should compute them from the right to the left
in a sequential manner as we do for the common addition operation.

∇x = [=nu= nnnn =uu= nuu= =nnn =uuu uuuu nn==],
∇y = [=nn= =uun ==n= u=u= nn=n =un= uuuu un==],

∇c = [= n=== ==n= ==== uu=n nnn= u=uu uuu= n===],
∇z = [n=== n=n= =u== u==n =n== u=u= uuu= n===].

Specifically, one should keep in mind that we compute (∇z[i], ∇c[i+1]) according
to (∇x[i], ∇y[i], ∇c[i]) with ∇c[0] = [=]. We emphasize here that the computed
∇z is just an expansion of δx⊞ δy and we only care about one such ∇z to record
the information of δx ⊞ δy. One should not care about the conditions on (x, y, z)
imposed by their signed differences at this phase because they are irrelevant to
the calculation δx ⊞ δy.

The example for the expansion. Consider one ∇z as shown below:

∇z = [nu== uu== ==== ==== ==== ==== ==== ====].

The model for the expansion aims to use constraints to describe all ∇ξ such that
δξ = δz.

We now show that the propagation rules specified in Table 4 can allow to
compute all such ∇ξ. Indeed, computing such ∇ξ with our rules is equivalent to

Analysis of RIPEMD-160 31

traversing a tree. Specifically, we use an additional variable ∇c with ∇c[0] = [=]
to help achieve this purpose and (∇z[0], ∇c[0]) is the root of the tree. This tree
is concretely described in Fig. 4, which are constructed based on the propaga-
tion rules in Table 4, i.e. according to the relations between (∇z[i], ∇c[i]) and
(∇ξ[i], ∇c[i + 1]) specified in this table. By traversing the tree, we can obtain all
possible ∇ξ as shown below, whose correctness can be checked by hand.

[nu== uu== ==== ==== ==== ==== ==== ====],
[=n== uu== ==== ==== ==== ==== ==== ====],
[uu== uu== ==== ==== ==== ==== ==== ====],

[nu=u =n== ==== ==== ==== ==== ==== ====],
[=n=u =n== ==== ==== ==== ==== ==== ====],
[uu=u =n== ==== ==== ==== ==== ==== ====],

[nuun =n== ==== ==== ==== ==== ==== ====],
[=nun =n== ==== ==== ==== ==== ==== ====],
[uuun =n== ==== ==== ==== ==== ==== ====],

[==nn =n== ==== ==== ==== ==== ==== ====],

[nu=u nu== ==== ==== ==== ==== ==== ====],
[=n=u nu== ==== ==== ==== ==== ==== ====],
[uu=u nu== ==== ==== ==== ==== ==== ====],

[nuun nu== ==== ==== ==== ==== ==== ====],
[=nun nu== ==== ==== ==== ==== ==== ====],
[uuun nu== ==== ==== ==== ==== ==== ====],

[==nn nu== ==== ==== ==== ==== ==== ====].

32 Fukang Liu et al.

(=,=) (z[0],∇c[0])root:

(=,=,=) (∇ξ[0],∇c[1],∇z[1])

· · ·

(=,=,=) (∇ξ[24],∇c[25],∇z[25])

(=,=,u) (∇ξ[25],∇c[26],∇z[26])

(u,=,u)(n,u,u)

(=,u,=)

(u,=,=)(n,u,=)

(u,=,=)(n,u,=)

(u,=,u)(n,u,u)

(n,u,n)(u,=,n)

(=,=)(n,=)(u,n)

(=,u,n)

(=,=,u)

(=,=,=)

(∇ξ[26],∇c[27],∇z[27])

(∇ξ[27],∇c[28],∇z[28])

(∇ξ[28],∇c[29],∇z[29])

(∇ξ[29],∇c[30],∇z[30])

(∇ξ[30],∇c[31],∇z[31])

(∇ξ[31],∇c[32])

Fig. 4: An example to explain the propagation rules for the expansion

Analysis of RIPEMD-160 33

B Motivation to Use ROTATE_DIFF_SECOND

We now give an example to explain why we need ROTATE_DIFF_SECOND. When ∇x
and ∇z are chosen, we demonstrate that some ∇y are invalid even if δz = δx⊞δy
holds. This has also been observed by Leurent [9]. For example, the following
(∇x, ∇y, ∇z) is a valid tuple from the perspective of modular difference,

∇x = [==== nnnn ==== ==== ==== ==== ==== ====],
∇y = [==== =uun ==== ==== ==== ==== ==== ====],
∇z = [==== nnu= ==== ==== ==== ==== ==== ====],

i.e.

(227 ⊞ 226 ⊞ 225 ⊞ 224) ⊞ (⊟226 ⊟ 225 ⊞ 224) = 227 ⊞ 226 ⊟ 225

However, the signed difference directly specifies some conditions on the bit
values. In the above example, we have

x[27 : 24] = 0000

y[27 : 24] = ?110

z[27 : 24] = 001?,

which obviously cannot hold. With our propagation rules in Table 8, we can
simply detect that the above (∇x, ∇y, ∇z) is an invalid tuple. We emphasize
that some invalid tuples may still satisfy the rules in Table 8. Capturing all
the contradictions from the signed difference level is a little complicated and
the model may become very heavy. With some trade-offs, we finally choose the
propagation rules specified in Table 8, which as far as we can understand, can
filter many invalid transitions from the signed difference level. To fully detect
such contradictions, ROTATE_DIFF_FILTER can be involved.

34 Fukang Liu et al.

C Configurations to Search for Differential Characteristics

In this section, we provide more details of how to use our MILP model to
search for the 36-round differential characteristic. The general procedure has
been described in the main context.

The left branch. First, our target is to search for a solution of (∇X0, ∇X1, . . . , ∇X4)
such that

δXi = 0 for i ∈ [−5, −1] ∪ [5, 9],
δm0 = 23 ⊞ 222, δm6 = 0 ⊟ 215 ⊟ 228, δm9 = 22 ⊞ 215.

As a result, we set

∇Xi = [==== ==== ==== ==== ==== ==== ==== ====] for i ∈ [−5, −1] ∪ [5, 9],
∇m0 = [==== ==== =n== ==== ==== ==== ==== n===],
∇m6 = [===u ==== ==== ==== u=== ==== ==== ====],
∇m9 = [==== ==== ==== ==== n=== ==== ==== =n==],
∇mj = [==== ==== ==== ==== ==== ==== ==== ====] for j /∈ {0, 6, 9}.

Then, we adjust the values for parameters (isC, isF, isV, isK) to properly
choose different searching strategies. Specifically, as the boolean function is
XOR(x, y, z) = x ⊕ y ⊕ z, contradictions in the conditions to ensure the signed
difference transitions through it will occur with a relatively low probability. This
is because each bit condition only specifies the xor sum of two bits rather than
the concrete value of a certain bit. However, it is still possible that contradictions
occur. In this case, we recommend to apply the lazy constraint to the linear
equalities H5 · V T

2 ≥ CT
5 and set isC = 1. According to our experiments, we can

find desirable solutions in a few hours with 100 threads. However, we emphasized
that the 36-round differential characteristic for the left branch is obtained by
always setting isC = 0 and the obtained solution is a valid solution. Moreover, this
solution is found in about 1 hour with 100 threads. The algorithmic description
to find our solution of (∇X0, ∇X1, . . . , ∇X4) in Table 9 is shown in Algorithm
7. Note that these are just algorithmic descriptions and we may remove some
variables in the actual code because their differences are zero.

The right branch. Finding (∇Y16, ∇Y17, . . . , ∇Y24) and (∇Y11, ∇Y12, . . . , ∇Y15)
is simple with our models because we simply propagate the message differences
backwards through the internal states such that δYi = 0 for i ∈ [25, 29]. Moreover,
in these models we always choose isC = 0, isF = 1 and isV = 0 for the
signed difference transitions through each round. This is because the differential
characteristic in this part is sparse and contradictions rarely occur.

Finding (∇Y6, ∇Y7, . . . , ∇Y10) can be divided into two steps. First, we aim to
find a solution such that H(∇Y9) + H(∇Y10) is as small as possible. This can be
easily achieved by setting an objective function to minimize H(∇Y9) + H(∇Y10).

Analysis of RIPEMD-160 35

Algorithm 7 Search for (∇X0, ∇X1, . . . , ∇X4)
1: isC[10] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2: isF[10] = [1, 1, 1, 1, 0, 1, 1, 1, 1, 1]
3: isV[10] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
4: isK[10] = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
5: for for i = 0 to 10 do
6: R(“XOR”,isC[i], isF[i], isV[i], isK[i], sl

i, ∇mπl(i),
7: ∇Xi−5 ≪ 10, ∇Xi−4 ≪ 10, ∇Xi−3 ≪ 10, ∇Xi−2, ∇Xi−1, ∇Xi,
8: Xi−1, Xi−2, Xi−3 ≪ 10, Xi, Xi−4 ≪ 10)
9: solve the model

Intuitively, this phase will be much more costly than simply finding a solution
of (∇Y6, ∇Y7, . . . , ∇Y10). As a result, to improve the efficiency, we paid little
attention to the contradictions at this phase, i.e. isV is set as 0. Hence, the
solution may finally turn out to be invalid. After about 4 days with 100 threads,
we found a solution for the desired (∇Y9, ∇Y10). However, as already said, the
full solution (∇Y6, ∇Y7, . . . , Y10) may be invalid and it is indeed invalid. The
algorithmic description for the first step can be referred to Algorithm 8.

With the desired (∇Y9, ∇Y10) at hand, the second step is to find a valid
(∇Y6, ∇Y7, ∇Y8) such that a valid differential characteristic can be found. Our
configuration for this step can be referred to Algorithm 9 and we found a valid
(∇Y6, ∇Y7, ∇Y8) in about 30 minutes with 100 threads.

Algorithm 8 The first step to search for (∇Y6, ∇Y7, ∇Y8, ∇Y9, ∇Y10)
1: Assign values to ∇Yj for j ∈ [0, 5] ∪ [11, 16]
2: isC[12] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
3: isF[12] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
4: isV[12] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
5: isK[12] = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
6: for for i = 5 to 16 do
7: R(“ONX”,isC[i-5], isF[i-5], isV[i-5], isK[i-5], sl

i, ∇mπr(i),
8: ∇Yi−5 ≪ 10, ∇Yi−4 ≪ 10, ∇Yi−3 ≪ 10, ∇Yi−2, ∇Yi−1, ∇Yi,
9: Yi−1, Yi−2, Yi−3 ≪ 10, Yi, Yi−4 ≪ 10)

10: i = 16
11: R(“IF Z”,isC[i-5], isF[i-5], isV[i-5], isK[i-5], sl

i, ∇mπr(i),
12: ∇Yi−5 ≪ 10, ∇Yi−4 ≪ 10, ∇Yi−3 ≪ 10, ∇Yi−2, ∇Yi−1, ∇Yi,
13: Yi−1, Yi−2, Yi−3 ≪ 10, Yi, Yi−4 ≪ 10)
14: minimize H(∇Y9) + H(∇Y10)
15: solve the model

36 Fukang Liu et al.

Algorithm 9 The second step to search for (∇Y6, ∇Y7, ∇Y8, ∇Y9, ∇Y10)
1: Assign values to ∇Yj for j ∈ [0, 5] ∪ [9, 16]//(∇Y9, ∇Y10) are known
2: isC[12] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
3: isF[12] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
4: isV[12] = [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0]
5: isK[12] = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
6: for for i = 5 to 16 do
7: R(“ONX”,isC[i-5], isF[i-5], isV[i-5], isK[i-5], sl

i, ∇mπr(i),
8: ∇Yi−5 ≪ 10, ∇Yi−4 ≪ 10, ∇Yi−3 ≪ 10, ∇Yi−2, ∇Yi−1, ∇Yi,
9: Yi−1, Yi−2, Yi−3 ≪ 10, Yi, Yi−4 ≪ 10)

10: i = 16
11: R(“IF Z”,isC[i-5], isF[i-5], isV[i-5], isK[i-5], sl

i, ∇mπr(i),
12: ∇Yi−5 ≪ 10, ∇Yi−4 ≪ 10, ∇Yi−3 ≪ 10, ∇Yi−2, ∇Yi−1, ∇Yi,
13: Yi−1, Yi−2, Yi−3 ≪ 10, Yi, Yi−4 ≪ 10)
14: solve the model

D Algorithms and Tables

A high-level algorithmic description of the procedure to fulfill the differential
conditions can be referred to Algorithm 10. Some additional conditions for the
36-round differential characteristic can be found in Table 11.

Analysis of RIPEMD-160 37

Algorithm 10 The high-level algorithmic description of the procedure to fulfill
the differential conditions
1: precompute m6 ◀ Step 1
2: precompute X1 ◀ Step 2
3: precompute m1 ◀ Step 3
4: for randomly picked M0 do ◀ Step 4
5: compute new (X−5, X−4, . . . , X−1)
6: if (X−5, X−4, . . . , X−1) are valid then
7: compute (X0, X1) ◀ Step 5
8: if (X0, X1) are valid then
9: for all possible (X2, X3, . . . , X6) do ◀ Step 6

10: if (X2, X3, . . . , X6) are valid then
11: compute Y0 ◀ Step 7
12: for all possible (Y4, Y5, . . . , X9) retrieved by m6 do ◀ Step 8
13: find (Y1, Y2, Y3) ◀ Step 9
14: for all solutions of (Y1, Y2, Y3) do
15: for all possible (Y10, Y11) do ◀ Step 10
16: compute Y12
17: if (Y10, Y11, Y12) are valid then
18: for all possible Y13 do ◀ Step 11
19: compute Y14
20: if (Y13, Y14) are valid then
21: for all possible Y15 do ◀ Step 12
22: compute the remaining states
23: if all conditions hold then
24: a collision is found and exit

38 Fukang Liu et al.

Table 11: Some extra conditions for the 36-round differential characteristic
Conditions on Ql

i and Qr
i :

(Ql
i ⊞ αl

i) ≪ sl
i = Ql

i ≪ sl
i ⊞ βl

i,
Qr

i ⊞ αr
i) ≪ sr

i = Qr
i ≪ sr

i ⊞ βr
i .

i αl
i βl

i sl
i i αr

i βr
i sr

i

0 0x400008 0x4002 11 0 0x0 0x0 8
1 0x35d5d8de 0x76378d75 14 1 0x0 0x0 9
2 0x6c9c5a4b 0x2d25b64e 15 2 0x0 0x0 9
3 0x4002 0x4002000 12 3 0x400008 0x4002 11
4 0xf7efffbf 0xfdfff7de 5 4 0x4002 0x8004000 13
5 0x2721ca2a 0x21ca2a27 8 5 0x8000000 0x400 15
6 0x98d24d8e 0x6926c74c 7 6 0xf7000400 0x1fffb80 15
7 0xf7ffc000 0xff7ffff0 9 7 0x6511280 0xca225001 5
8 0x800010 0x8004 11 8 0x52de76fd 0x6f3b7ea9 7
9 0x0 0x0 13 9 0x21fbfb44 0xfdfda211 7
10 0x0 0x0 14 10 0xf877a9ff 0x77a9fef9 8
11 0x0 0x0 15 11 0x9e70d480 0x86a3fcf4 11
12 0x0 0x0 6 12 0x78fc4814 0x1204de3f 14
13 0x0 0x0 7 13 0xedff23e0 0xc8f7fb80 14
14 0x0 0x0 9 14 0x26080480 0x80480261 12
15 0x0 0x0 8 15 0x3fb7fd9f 0xedff67d0 6
16 0x0 0x0 7 16 0xfffff880 0xfff10000 9
17 0x0 0x0 6 17 0xff011 0xfe022002 13
18 0x0 0x0 8 18 0xfddffe 0xefff007f 15
19 0x0 0x0 13 19 0x1000ff81 0x7fc088 7
20 0x0 0x0 11 20 0x4000 0x4000000 12
21 0xefff8000 0xfeffffe0 9 21 0x4000000 0x4 8
22 0x0 0x0 7 22 0xfffffffc 0xfffff800 9
23 0x0 0x0 15 23 0x40 0x20000 11
24 0x0 0x0 7 24 0x7ffe0000 0xfeffffc0 7
25 0x400008 0x8004 12 25 0x0 0x0 7
26 0x0 0x0 15 26 0x200 0x200000 12
27 0x0 0x0 9 27 0xffdffffc 0xeffffe00 7
28 0x0 0x0 11 28 0x10000200 0x8004 6
two-bit conditions on Yj (j ≥ 15) and (X19, X20)
Y15[i] = Y14[i] for i ∈ {13, 17, 24}, Y16[i] = Y15[i] for i ∈ {7, 28},
Y17[i] = Y16[i] for i ∈ {3, 21, 22}, Y18[26] = Y17[26], Y19[2] = Y18[2]
Y21[i] = Y20[i] for i ∈ {17, 31}, Y22[5] = Y21[5], Y24[21] = Y23[21]
Y25[i] = Y24[i] for i ∈ {28, 29}, Y26[15] = Y25[15]
X20[5] = X19[27], X20[24] = X19[14]

Analysis of RIPEMD-160 39

E The Linear Inequalities

HADD|CADD =

0 1 0 1 0 1 0 −1 0 0 0
0 −1 0 −1 0 −1 0 1 0 0 −2
0 0 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0

−1 1 0 0 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 1 −1 −1
1 0 −1 0 1 0 0 0 0 −1 −1
0 0 1 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 −1 1 0 0 0
1 0 0 0 1 −1 −1 0 0 0 −1
0 0 1 −1 1 0 −1 0 0 0 −1
1 0 1 0 −1 0 0 0 0 −1 −1
0 −1 0 1 0 −1 0 −1 0 0 −2
0 −1 −1 0 0 1 0 −1 0 0 −2
0 1 0 −1 0 −1 0 −1 0 0 −2
0 −1 0 1 0 1 0 1 0 0 0
1 −1 1 0 0 0 −1 0 0 0 −1
0 0 −1 0 −1 0 1 0 1 0 −1
0 1 0 1 0 0 0 0 0 −1 0
1 0 0 0 0 0 −1 0 0 −1 −1
1 −1 1 −1 1 0 0 0 0 1 −1
0 0 0 0 0 0 1 −1 −1 0 −1
1 0 1 0 1 −1 0 1 0 1 0
0 0 0 0 0 1 0 −1 0 −1 −1

−1 0 0 0 −1 0 1 0 0 1 −1
−1 0 −1 0 0 0 1 0 0 1 −1
0 1 −1 0 0 1 1 0 0 0 0
0 0 1 0 0 0 −1 0 0 −1 −1
0 0 0 0 1 0 −1 0 0 −1 −1

−1 0 0 0 0 1 1 −1 0 0 −1
0 1 0 −1 0 1 0 1 0 0 0
0 1 0 1 −1 0 1 0 0 0 0

−1 0 −1 0 −1 0 0 0 0 1 −2

,

40 Fukang Liu et al.

HEXP|CEXP =

0 1 0 1 0 −1 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 −1 0 −1 0 −1 0 0 −2
0 1 0 −1 0 1 0 0 0
0 0 −1 0 0 0 1 −1 −1

−1 0 1 0 0 1 0 −1 −1
−1 0 0 0 −1 0 0 −1 −2
1 −1 0 0 0 0 −1 0 −1

−1 0 0 −1 0 −1 0 0 −2
0 1 1 0 1 0 0 −1 0
0 0 0 0 −1 0 −1 0 −1
0 0 0 1 1 0 1 −1 0

−1 0 0 1 1 0 0 1 0
1 0 1 0 −1 0 0 1 0
1 −1 1 0 0 1 0 1 0

−1 0 −1 0 0 0 0 1 −1
0 0 −1 0 1 −1 0 1 −1

,

HZERO|CZERO =

0 1 0 −1 0 1 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 −1 0 0 0 −1 0 −1
0 0 −1 1 0 0 0 0 0
0 −1 0 −1 0 −1 0 0 −2
0 0 0 0 0 0 −1 1 0
0 1 0 1 0 −1 0 0 0
1 0 0 1 0 0 −1 0 0
0 0 0 0 −1 0 1 −1 −1

−1 1 0 0 0 0 0 0 0
1 0 1 −1 1 0 0 −1 −1

−1 0 0 1 1 0 0 −1 −1
0 0 1 0 0 1 1 −1 0

−1 0 1 0 0 1 0 1 0
1 0 −1 0 1 0 0 1 0
1 −1 0 1 1 0 0 1 0

−1 0 0 0 −1 0 0 1 −1
0 0 1 −1 −1 0 0 1 −1

−1 0 0 0 0 0 1 −1 −1

,

Analysis of RIPEMD-160 41

HONX|CONX =

−1 0 0 0 0 −1 −1 0 −2
−1 0 0 −1 0 0 −1 0 −2
0 0 0 0 0 0 −1 1 0
0 1 1 −1 −1 0 0 1 −1
0 1 −1 0 1 −1 0 1 −1

−1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 1 0 1 0 1 0 −1 0
0 −1 0 1 0 1 0 1 0
1 −1 0 0 0 −1 1 −1 −2
1 −1 0 −1 0 0 1 −1 −2
0 −1 1 −1 −1 0 0 −1 −3
0 −1 −1 0 1 −1 0 −1 −3
0 1 −1 0 −1 0 0 −1 −2
0 1 1 −1 1 −1 0 −1 −2
0 −1 −1 0 −1 0 0 1 −2
0 −1 1 −1 1 −1 0 1 −2

,

HONXCut|CONXCut =

−1 0 0 0 0 0 −1 0 0 0 1 −1
−1 0 0 0 0 0 −1 0 0 −1 0 −2
0 1 0 −1 0 1 0 1 0 0 −1 −1
0 1 0 1 0 −1 0 1 0 1 0 0
0 1 0 1 0 0 0 −1 0 −1 0 −1
0 −1 0 1 0 −1 0 −1 0 1 0 −2
0 −1 0 −1 0 1 0 −1 0 0 −1 −3
1 0 0 0 0 1 1 −1 0 0 1 0
1 −1 0 1 0 0 1 0 0 −1 0 −1
0 1 0 0 −1 0 1 −1 −1 0 0 −2
0 1 −1 0 0 0 1 −1 1 0 0 −1
0 1 0 0 0 1 0 −1 0 0 1 0
0 1 −1 0 0 0 −1 0 −1 0 0 −2
0 1 0 0 −1 0 −1 0 1 0 0 −1
0 −1 0 0 0 1 0 1 0 0 1 0
0 1 0 1 1 0 1 −1 1 0 0 0
0 1 1 0 0 1 1 −1 −1 0 0 −1
1 0 0 1 0 1 −1 0 0 1 −1 −1
0 −1 0 1 0 0 0 1 0 −1 0 −1
0 1 0 0 1 −1 −1 0 −1 0 0 −2
0 1 1 0 0 1 −1 0 1 0 0 0

−1 0 0 1 0 0 1 −1 0 1 −1 −2

,

42 Fukang Liu et al.

HXOR|CXOR =

1 0 −1 0 −1 0 −1 0 −2
−1 0 1 0 −1 0 −1 0 −2
−1 0 −1 0 1 0 −1 0 −2
−1 0 −1 0 −1 0 1 0 −2
0 1 0 1 0 1 0 −1 0
0 1 0 1 0 −1 0 1 0
0 1 0 −1 0 1 0 1 0
0 −1 0 1 0 1 0 1 0
0 1 0 −1 0 −1 0 −1 −2
0 −1 0 1 0 −1 0 −1 −2
0 −1 0 −1 0 1 0 −1 −2
0 −1 0 −1 0 −1 0 1 −2

−1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 0 0 0 0 0 −1 1 0
1 0 1 −1 1 −1 −1 0 −2
1 0 1 −1 −1 0 1 −1 −2
1 0 −1 0 1 −1 1 −1 −2

−1 0 1 0 1 −1 1 −1 −2

,

HXORCut|CXORCut =

0 1 0 1 1 0 1 −1 1 −1 0 −1
0 1 0 1 1 0 1 −1 −1 1 0 −1
0 1 1 0 0 1 1 −1 1 0 −1 −1
1 −1 0 1 0 0 1 −1 0 1 −1 −2
0 1 1 0 0 1 1 −1 −1 0 1 −1
1 −1 0 1 0 0 1 −1 0 −1 1 −2
0 1 0 0 1 −1 −1 0 −1 −1 0 −3
0 1 0 0 1 −1 −1 0 1 1 0 −1
0 1 1 0 0 1 −1 0 −1 0 −1 −2
1 0 0 1 0 1 −1 0 0 −1 −1 −2
0 1 1 0 0 1 −1 0 1 0 1 0
1 0 0 1 0 1 −1 0 0 1 1 0
0 1 0 0 −1 0 1 −1 −1 −1 0 −3
0 1 0 0 −1 0 1 −1 1 1 0 −1
0 1 −1 0 0 0 1 −1 −1 0 −1 −3

−1 0 0 1 0 0 1 −1 0 −1 −1 −3
0 1 −1 0 0 0 1 −1 1 0 1 −1

−1 0 0 1 0 0 1 −1 0 1 1 −1
0 0 0 1 −1 0 −1 0 1 −1 0 −2
0 0 0 1 −1 0 −1 0 −1 1 0 −2
0 0 −1 0 0 1 −1 0 1 0 −1 −2

−1 0 0 0 0 1 −1 0 0 1 −1 −2
0 0 −1 0 0 1 −1 0 −1 0 1 −2

−1 0 0 0 0 1 −1 0 0 −1 1 −2

,

Analysis of RIPEMD-160 43

HIFZ|CIFZ =

−1 0 −1 0 0 0 1 0 −1
0 1 −1 0 0 0 1 −1 −1

−1 0 0 1 0 0 1 −1 −1
0 0 0 0 0 0 −1 1 0

−1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 0 0 −1 1 0 0 0
0 1 0 1 0 1 0 −1 0
1 −1 1 −1 0 0 0 1 −1
1 −1 0 0 0 −1 −1 0 −2
0 0 1 −1 0 −1 −1 0 −2
1 0 1 0 0 1 −1 0 0
0 0 −1 0 0 −1 1 −1 −2

−1 0 0 0 0 −1 1 −1 −2
0 −1 0 −1 0 1 0 1 −1

,

HIFZCut|CIFZCut =

0 −1 0 0 0 1 0 1 0 0 −1 −1
0 0 0 −1 0 1 0 1 0 0 1 0
0 1 0 0 0 1 0 −1 0 0 −1 −1
0 0 0 1 0 1 0 −1 0 0 1 0
0 1 0 0 1 −1 −1 0 −1 0 0 −2
0 0 0 1 1 −1 −1 0 0 1 0 −1
0 1 0 0 −1 0 −1 0 1 0 0 −1
0 0 0 1 −1 0 −1 0 0 −1 0 −2
1 0 0 0 0 1 −1 0 0 0 −1 −1
0 0 1 0 0 1 −1 0 0 0 1 0

−1 0 0 0 0 0 1 −1 0 0 −1 −2
0 0 −1 0 0 0 1 −1 0 0 1 −1
0 1 0 0 1 −1 1 −1 1 0 0 −1
0 0 0 1 1 −1 1 −1 0 −1 0 −2
0 1 0 0 −1 0 1 −1 −1 0 0 −2
0 0 0 1 −1 0 1 −1 0 1 0 −1
0 1 0 1 0 −1 0 1 1 −1 0 −1
0 1 0 1 0 −1 0 1 −1 1 0 −1
0 1 −1 0 1 −1 0 1 1 0 0 −1

−1 0 0 1 1 −1 0 1 0 −1 0 −2
0 1 −1 0 −1 0 0 1 −1 0 0 −2

−1 0 0 1 −1 0 0 1 0 1 0 −1
0 1 1 −1 1 −1 0 1 −1 0 0 −2
1 −1 0 1 1 −1 0 1 0 1 0 −1
0 1 1 −1 −1 0 0 1 1 0 0 −1
1 −1 0 1 −1 0 0 1 0 −1 0 −2

,

44 Fukang Liu et al.

HROT|CROT =

1 0 0 0 −1 0 0 0 0 1 0
0 1 −1 0 0 0 1 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 −1 1 0 0 0 0 0

−1 0 0 0 −1 0 0 0 0 −1 −2
1 0 0 0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 −1 0 0 −1
0 0 0 0 1 0 1 0 1 −1 0
0 −1 1 0 0 1 1 0 0 0 0

−1 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 −1 1 0 0 0

−1 0 0 0 0 0 −1 0 0 −1 −2
0 −1 −1 0 0 0 −1 0 0 0 −2

−1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 −1 0 0 1 0

,

Analysis of RIPEMD-160 45

HEXPAdd|CEXPAdd =

−1 0 −1 0 −1 0 1 0 0 0 −2
0 1 0 1 0 1 0 −1 0 0 0
0 −1 0 −1 0 −1 0 1 0 0 −2

−1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 1 0 −1 0 −1 0 −1
0 0 0 0 0 0 −1 1 0 0 0
0 1 0 −1 0 −1 0 −1 0 0 −2
0 −1 0 1 0 −1 0 −1 0 0 −2
0 −1 0 −1 0 1 0 −1 0 0 −2

−1 0 0 0 −1 0 0 0 1 0 −1
0 0 1 0 0 0 −1 0 −1 0 −1
1 −1 0 0 1 0 0 0 −1 0 −1
0 0 1 0 1 −1 0 0 −1 0 −1
0 0 0 −1 0 −1 0 −1 0 1 −2
0 0 −1 0 0 0 1 0 1 −1 −1

−1 0 −1 0 0 0 0 0 1 0 −1
0 1 1 0 0 1 1 0 0 −1 0

−1 0 0 0 0 0 1 0 1 −1 −1
1 −1 1 0 −1 0 1 0 0 −1 −2
1 0 −1 0 −1 0 −1 0 0 0 −2
0 1 0 0 −1 0 0 0 1 −1 −1
1 0 1 0 1 0 −1 0 0 1 0
0 1 0 1 0 0 1 0 1 −1 0
0 0 0 1 0 1 1 0 1 −1 0
0 1 1 −1 1 0 0 1 0 1 0
1 −1 1 0 0 1 0 1 0 1 0
1 0 0 1 1 −1 0 1 0 1 0
0 1 0 1 −1 0 1 0 0 1 0
0 1 −1 0 0 1 1 0 0 1 0

−1 0 0 1 0 1 1 0 0 1 0
0 1 1 0 0 0 0 1 −1 0 0
0 1 0 0 1 0 0 1 −1 0 0
0 0 1 0 0 1 0 1 −1 0 0
1 0 1 −1 1 −1 −1 0 0 0 −2
0 1 −1 0 0 0 0 0 1 −1 −1
0 0 −1 0 −1 0 0 0 0 1 −1

−1 0 0 0 0 1 0 0 1 −1 −1

.

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling
for (large) s-boxes to optimize probability of differential characteristics. IACR

46 Fukang Liu et al.

Trans. Symmetric Cryptol. 2017(4), 99–129 (2017). https://doi.org/10.13154/
tosc.v2017.i4.99-129

2. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: ASIACRYPT. Lecture Notes in Computer Science, vol. 4284,
pp. 1–20. Springer (2006). https://doi.org/10.1007/11935230_1

3. Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. thesis, Ruhr
University Bochum (2005)

4. Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A Strengthened Version
of RIPEMD. In: FSE. Lecture Notes in Computer Science, vol. 1039, pp. 71–82.
Springer (1996). https://doi.org/10.1007/3-540-60865-6_44

5. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In: ASIACRYPT (2). Lecture Notes in Computer Science, vol. 9453, pp.
612–630. Springer (2015). https://doi.org/10.1007/978-3-662-48800-3_25

6. Eichlseder, M., Mendel, F., Schläffer, M.: Branching Heuristics in Differential
Collision Search with Applications to SHA-512. In: FSE. Lecture Notes in Com-
puter Science, vol. 8540, pp. 473–488. Springer (2014). https://doi.org/10.1007/
978-3-662-46706-0_24

7. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON Block Cipher
Family. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 9215, pp. 161–185.
Springer (2015). https://doi.org/10.1007/978-3-662-47989-6_8

8. Landelle, F., Peyrin, T.: Cryptanalysis of Full RIPEMD-128. In: EUROCRYPT.
Lecture Notes in Computer Science, vol. 7881, pp. 228–244. Springer (2013). https:
//doi.org/10.1007/978-3-642-38348-9_14

9. Leurent, G.: Analysis of Differential Attacks in ARX Constructions. In: ASI-
ACRYPT. Lecture Notes in Computer Science, vol. 7658, pp. 226–243. Springer
(2012). https://doi.org/10.1007/978-3-642-34961-4_15

10. Leurent, G.: Construction of Differential Characteristics in ARX Designs Application
to Skein. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 8042, pp. 241–
258. Springer (2013). https://doi.org/10.1007/978-3-642-40041-4_14

11. Liu, F., Dobraunig, C., Mendel, F., Isobe, T., Wang, G., Cao, Z.: Efficient Collision
Attack Frameworks for RIPEMD-160. In: CRYPTO (2). Lecture Notes in Computer
Science, vol. 11693, pp. 117–149. Springer (2019). https://doi.org/10.1007/
978-3-030-26951-7_5

12. Liu, F., Dobraunig, C., Mendel, F., Isobe, T., Wang, G., Cao, Z.: New Semi-
Free-Start Collision Attack Framework for Reduced RIPEMD-160. IACR Trans.
Symmetric Cryptol. 2019(3), 169–192 (2019). https://doi.org/10.13154/tosc.
v2019.i3.169-192

13. Liu, F., Isobe, T., Meier, W.: Automatic Verification of Differential Characteristics:
Application to Reduced Gimli. In: CRYPTO (3). Lecture Notes in Computer
Science, vol. 12172, pp. 219–248. Springer (2020). https://doi.org/10.1007/
978-3-030-56877-1_8

14. Liu, F., Mendel, F., Wang, G.: Collisions and Semi-Free-Start Collisions for
Round-Reduced RIPEMD-160. In: ASIACRYPT (1). Lecture Notes in Computer
Science, vol. 10624, pp. 158–186. Springer (2017). https://doi.org/10.1007/
978-3-319-70694-8_6

15. Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential Attacks on Reduced
RIPEMD-160. In: ISC. Lecture Notes in Computer Science, vol. 7483, pp. 23–38.
Springer (2012). https://doi.org/10.1007/978-3-642-33383-5_2

16. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching
through a Minefield of Contradictions. In: ASIACRYPT. Lecture Notes in Com-

https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.13154/tosc.v2017.i4.99-129
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/11935230_1
https://doi.org/10.1007/3-540-60865-6_44
https://doi.org/10.1007/3-540-60865-6_44
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-46706-0_24
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-662-47989-6_8
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1007/978-3-642-38348-9_14
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/978-3-642-34961-4_15
https://doi.org/10.1007/978-3-642-40041-4_14
https://doi.org/10.1007/978-3-642-40041-4_14
https://doi.org/10.1007/978-3-030-26951-7_5
https://doi.org/10.1007/978-3-030-26951-7_5
https://doi.org/10.1007/978-3-030-26951-7_5
https://doi.org/10.1007/978-3-030-26951-7_5
https://doi.org/10.13154/tosc.v2019.i3.169-192
https://doi.org/10.13154/tosc.v2019.i3.169-192
https://doi.org/10.13154/tosc.v2019.i3.169-192
https://doi.org/10.13154/tosc.v2019.i3.169-192
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-030-56877-1_8
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-319-70694-8_6
https://doi.org/10.1007/978-3-642-33383-5_2
https://doi.org/10.1007/978-3-642-33383-5_2

Analysis of RIPEMD-160 47

puter Science, vol. 7073, pp. 288–307. Springer (2011). https://doi.org/10.1007/
978-3-642-25385-0_16

17. Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream
Hash Function RIPEMD-128. In: FSE. Lecture Notes in Computer Science, vol. 7549,
pp. 226–243. Springer (2012). https://doi.org/10.1007/978-3-642-34047-5_14

18. Mendel, F., Nad, T., Schläffer, M.: Improving Local Collisions: New Attacks on
Reduced SHA-256. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7881,
pp. 262–278. Springer (2013). https://doi.org/10.1007/978-3-642-38348-9_16

19. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved Cryptanal-
ysis of Reduced RIPEMD-160. In: ASIACRYPT (2). Lecture Notes in Com-
puter Science, vol. 8270, pp. 484–503. Springer (2013). https://doi.org/10.1007/
978-3-642-42045-0_25

20. Mironov, I., Zhang, L.: Applications of SAT Solvers to Cryptanalysis of Hash
Functions. In: SAT. Lecture Notes in Computer Science, vol. 4121, pp. 102–115.
Springer (2006). https://doi.org/10.1007/11814948_13

21. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and Linear Cryptanalysis
Using Mixed-Integer Linear Programming. In: Inscrypt. Lecture Notes in Com-
puter Science, vol. 7537, pp. 57–76. Springer (2011), https://doi.org/10.1007/
978-3-642-34704-7_5

22. Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage Attacks on Step-Reduced
RIPEMD-128 and RIPEMD-160. In: Inscrypt. Lecture Notes in Computer
Science, vol. 6584, pp. 169–186. Springer (2010). https://doi.org/10.1007/
978-3-642-21518-6_13

23. Shen, Y., Wang, G.: Improved preimage attacks on RIPEMD-160 and HAS-160.
KSII Trans. Internet Inf. Syst. 12(2), 727–746 (2018). https://doi.org/10.3837/
tiis.2018.02.011

24. Stevens, M.: New Collision Attacks on SHA-1 Based on Optimal Joint Local-
Collision Analysis. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 7881,
pp. 245–261. Springer (2013). https://doi.org/10.1007/978-3-642-38348-9_15

25. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The First Colli-
sion for Full SHA-1. In: CRYPTO (1). Lecture Notes in Computer Science, vol. 10401,
pp. 570–596. Springer (2017). https://doi.org/10.1007/978-3-319-63688-7_19

26. Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In: EUROCRYPT. Lecture
Notes in Computer Science, vol. 4515, pp. 1–22. Springer (2007). https://doi.
org/10.1007/978-3-642-03356-8_4

27. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic Security Evalua-
tion and (Related-key) Differential Characteristic Search: Application to SIMON,
PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In: ASI-
ACRYPT (1). Lecture Notes in Computer Science, vol. 8873, pp. 158–178. Springer
(2014). https://doi.org/10.1007/978-3-662-45611-8_9

28. Wang, G., Shen, Y.: (Pseudo-) Preimage Attacks on Step-Reduced HAS-160 and
RIPEMD-160. In: ISC. Lecture Notes in Computer Science, vol. 8783, pp. 90–103.
Springer (2014). https://doi.org/10.1007/978-3-319-13257-0_6

29. Wang, G., Shen, Y., Liu, F.: Cryptanalysis of 48-step RIPEMD-160. IACR Trans.
Symmetric Cryptol. 2017(2), 177–202 (2017). https://doi.org/10.13154/tosc.
v2017.i2.177-202

30. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Func-
tions MD4 and RIPEMD. In: EUROCRYPT. Lecture Notes in Computer Science,
vol. 3494, pp. 1–18. Springer (2005). https://doi.org/10.1007/11426639_1

https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-25385-0_16
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-34047-5_14
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/978-3-642-42045-0_25
https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/11814948_13
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.1007/978-3-642-21518-6_13
https://doi.org/10.3837/tiis.2018.02.011
https://doi.org/10.3837/tiis.2018.02.011
https://doi.org/10.3837/tiis.2018.02.011
https://doi.org/10.3837/tiis.2018.02.011
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-642-38348-9_15
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-319-63688-7_19
https://doi.org/10.1007/978-3-642-03356-8_4
https://doi.org/10.1007/978-3-642-03356-8_4
https://doi.org/10.1007/978-3-642-03356-8_4
https://doi.org/10.1007/978-3-642-03356-8_4
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-662-45611-8_9
https://doi.org/10.1007/978-3-319-13257-0_6
https://doi.org/10.1007/978-3-319-13257-0_6
https://doi.org/10.13154/tosc.v2017.i2.177-202
https://doi.org/10.13154/tosc.v2017.i2.177-202
https://doi.org/10.13154/tosc.v2017.i2.177-202
https://doi.org/10.13154/tosc.v2017.i2.177-202
https://doi.org/10.1007/11426639_1
https://doi.org/10.1007/11426639_1

48 Fukang Liu et al.

31. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: CRYPTO.
Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer (2005). https:
//doi.org/10.1007/11535218_2

32. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: EUROCRYPT.
Lecture Notes in Computer Science, vol. 3494, pp. 19–35. Springer (2005). https:
//doi.org/10.1007/11426639_2

33. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
CRYPTO. Lecture Notes in Computer Science, vol. 3621, pp. 1–16. Springer (2005).
https://doi.org/10.1007/11535218_1

https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11535218_1
https://doi.org/10.1007/11535218_1

	Analysis of RIPEMD-160: New Collision Attacks and Finding Characteristics with MILP
	Introduction
	Preliminaries
	Notation
	Description of RIPEMD-160
	The Differential Conditions for RIPEMD-160
	Previous Methods to Search for Differential Characteristics
	On MILP/SAT-based Automatic Methods

	Finding Signed Differential Characteristics with MILP
	Modelling Signed Difference Transitions
	Describing Signed Differences
	Modelling the Modular Addition
	Modelling the Expansions of the Modular Difference
	Modelling Boolean Functions
	Modelling a5 = a1 b3s
	Detecting More Contradictions
	The Full Model for RIPEMD-160

	Collision Attacks on 36-Round RIPEMD-160
	Fulfilling Differential Conditions
	Complexity Evaluations and Simulations

	Further Works and Discussions
	Acknowledgement.

	Examples to Understand some Propagation Rules
	Motivation to Use ROTATE_DIFF_SECOND
	Configurations to Search for Differential Characteristics
	Algorithms and Tables
	The Linear Inequalities

