
Threshold and Multi-Signature Schemes
from Linear Hash Functions‹

Stefano Tessaro and Chenzhi Zhu

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, US

{tessaro,zhucz20}@cs.washington.edu

Abstract. This paper gives new constructions of two-round multi-signatures and threshold signatures
for which security relies solely on either the hardness of the (plain) discrete logarithm problem or the
hardness of RSA, in addition to assuming random oracles. Their signing protocol is partially non-
interactive, i.e., the first round of the signing protocol is independent of the message being signed.
We obtain our constructions by generalizing the most efficient discrete-logarithm based schemes,MuSig2
(Nick, Ruffing, and Seurin, CRYPTO ’21) and FROST (Komlo and Goldberg, SAC ’20), to work
with suitably defined linear hash functions. While the original schemes rely on the stronger and more
controversial one-more discrete logarithm assumption, we show that suitable instantiations of the hash
functions enable security to be based on either the plain discrete logarithm assumption or on RSA. The
signatures produced by our schemes are equivalent to those obtained from Okamoto’s identification
schemes (CRYPTO ’92).
More abstractly, our results suggest a general framework to transform schemes secure under OMDL
into ones secure under the plain DL assumption and, with some restrictions, under RSA.

1 Introduction

Many novel applications, such as digital wallets [GGN16], are re-energizing a multi-decade agenda
aimed at developing new efficient multi-signatures [Ita83b] and threshold signatures [Des88, DF90]
from a variety of assumptions. Threshold signatures are also at the center of standardization efforts
by NIST [Natnt] and IETF [CKGW22]. Both signature types are relatively straightforward to obtain
from pairings (using, e.g., BLS [BLS01, Bol03]); however, specific implementation constraints make
pairing-free schemes, which are based on either variants of the discrete logarithm or RSA problems,
appealing in several contexts.

This paper aims to build the best possible pairing-free multi-signatures and threshold signatures
under the weakest possible assumptions. As our main contribution, we develop new two-round pro-
tocols that are secure under the (1) discrete logarithm assumption and (2) the RSA assumption.
In both cases, we also assume the random oracle model (ROM) [BR93]. Our RSA multi-signatures
require a trusted setup to produce a public RSA modulus with unknown factorization. The signa-
tures produced by both schemes resemble those proposed by Okamoto [Oka93]. Furthermore, our
signing protocols are partially non-interactive, i.e., the first round messages do not depend on the
message being signed, which is a desirable property in practice.

Significance.Our DL-based schemes are the first partially non-interactive 2-round schemes based
solely on the hardness of the discrete logarithm assumption. For threshold signatures, in particular,
no two-round scheme is known from only the discrete logarithm assumption. For RSA, the landscape
is more complex, and our main contribution is to provide a viable multi-signature scheme, as all
prior solutions impose restrictions.

‹ An extended abstract of this paper appears in the proceedings of EUROCRYPT 2023. This is the full version.

https://orcid.org/0000-0002-3751-8546
https://orcid.org/0000-0002-4276-2797

Our approach.Our schemes are the outcome of the same paradigm applied to the two most ef-
ficient DL-based schemes, FROST [KG20, BCK`22] and MuSig2 [NRS21]. It is not known how to
prove the security of either scheme under the plain discrete logarithm assumption, and they are in-
stead proved secure under the (stronger) one-more discrete logarithm assumption (OMDL) [BNPS03],
an assumption that has been the subject of criticism [KM07, KM08]. As we explain next, our
paradigm can be seen as a general recipe to remove the OMDL assumption from these schemes.

The main ingredient of our approach are linear hash functions, which have also been used in
recent works [BBSS18, HKL19, HKLN20] to abstract identification schemes from which signature
variants are derived. Here, we observe that both FROST ad MuSig2 can naturally be generalized by
replacing the exponentiation map x ÞÑ gx with a linear hash function F : D Ñ R, where D,R are
S-modules for a field S. We generically refer to these instantiations as FROST-H and MuSig2-H.
(In fact, we present two variants for FROST-H but make no distinction in the introduction.) In
particular, we require that:

- F is an epimorphism of S-modules from D to R, i.e., F is a surjection from D to R such that
for any r P S and x, y P D, Fpx ` r ¨ yq “ Fpxq ` r ¨ Fpyq .

- F is not a monomorphism, which is equivalent to postulating that there exists z˚ P D such that
z˚ ‰ 0 and Fpz˚q “ 0.

We then define a natural analogue of the OMDL assumption, which we refer to as the Algebraic
One-More Preimage Resistance (AOMPR). Roughly speaking, the corresponding security game
allows the attacker to obtain multiple challenges Xi “ Fpxiq for a random element xi Ð$ D, and
the attacker also gets access to an inversion oracle which, on input X P R, returns a element in the
preimage set of X under F. The restriction here, and hence the term algebraic, is that X must be an
affine combination of previously obtained Xi’s, and this affine combination is given to the inversion
oracle, along with X. (This makes the assumption falsifiable since the oracle can efficiently answer
such inversion queries.) To win the game, the attacker is then asked to invert q ` 1 challenges after
querying the inversion oracle at most q times.

Our results then follow from the combination of the following two theorems, which we state
here informally:

Theorem (informal). The security of FROST-H and MuSig2-H follows from the AOMPR
assumption on the underlying linear hash function.

Theorem (informal). If F is collision-resistant, then the AOMPR assumption holds with
respect to F.

The proof of the first theorem is, on its own, not particularly surprising and mostly generalizes the
prior proofs in the literature, in particular those of [NRS21] and [BCK`22]. Our main contribution
here is to notice that these proofs, and the resulting schemes, can be abstracted in terms of linear
hash functions. In particular, for threshold signatures, as in [BCK`22], we consider an abstract
setting with an ideal distributed key generation, and we target the security notions of TS-SUF-2
and TS-SUF-3, which were shown to be achieved by two variants of FROST, both of which we
model here abstractly. Since we are targeting feasibility, we are less concerned with the concrete
round complexity of distributed key generation and could use any secure multi-party computation
protocol for this task.

In contrast, the rough intuition behind a proof of the latter theorem is that for any execution
of a (wlog deterministic) adversary A playing the AOMPR game with challenges X “ Fpxq, since

2

F is not a monomorphism, there exists another execution with challenges X “ Fpx1q such that
x ‰ x1, but the views of A are identical in the two executions. Then, if A wins the game given x
by outputting y such that Fpyq “ X, A also wins the game given x1 by outputting y. Therefore,
we have Fpxq “ Fpyq “ Fpx1q ^ px ‰ y _ x1 ‰ yq, which implies that we can find a collision
in at least one of the executions. Indeed, special cases of this technique already underlie several
works, including Okamoto’s [Oka93], but our main challenges are to prove the concrete mapping of
x1 from x and to package this in terms of the AOMPR abstraction.

1.1 DL-based Instantiations

To obtain an instantiation of FROST-H and MuSig2-H based on the hardness of the discrete loga-
rithm (DL) problem, we can use the Pedersen linear hash function [Ped92]

Fpx1, x2q “ gx1Zx2 ,

which is well known to be collision-resistant under the hardness of DL whenever g, Z are generators
of a group with prime size p. While MuSig2 and FROST produce valid Schnorr signatures [Sch90],
the signatures produced by our DL-based instantiations of FROST-H and MuSig2-H are slightly
less efficient, and effectively compatible with Okamoto’s signatures [Oka93]. Here, as in Schnorr
signatures, the secret signing key is x P Zp, and the public verification key pk “ gx, and a signature
for a message m P t0, 1u˚ has format

σ “ pR “ gaZb, a ` Hppk,m,Rq ¨ x, bq ,

where H is a hash function that is modeled as a random oracle in our proofs. To verify a signature
pR, a, bq, we check that gaZb “ R¨pkHppk,M,Rq. The only difference from Okamoto’s scheme [Oka93] is
that the latter uses a secret key px1, x2q P Z2

p, and a signature has form pR “ gaZb, a`c¨x1, b`c¨x2q,
where c “ Hppk,m,Rq, i.e., here, we restrict the scheme to the case where px1, x2q “ px, 0q. This
optimization is generic and could have been applied to Okamoto’s scheme directly; however, it
is particularly advantageous for threshold signatures since it lets us leverage any distributed key
generation protocol for Schnorr signatures. Here, we need a trusted setup to generate Z as a random
group element independent of g, but we note that this is a minimal setup since it can be made
transparent, e.g., g, Z can be generated as outputs of a hash function.

Related work (DL). Our DL-based threshold signatures are the first two-round scheme with
security proved based solely on the discrete logarithm assumption in the ROM. The most efficient
protocol is FROST [KG20, BCK`22], which is slightly more efficient than our scheme since it
generates plain Schnorr signatures; however, FROST relies on the stronger OMDL assumption.
Though schemes based solely on the discrete logarithm assumption exist [SS01, GJKR07, Lin22],
they use more rounds. We stress that not all schemes achieve the same security goals, and here we
target the notions of [BCK`22], whereas Lindell [Lin22] targets UC security.

Our DL-based scheme gives the first partially non-interactive two-round multi-signatures based
on plain DL and the ROM. It is almost as efficient as MuSig2 [NRS21], which is based on OMDL.
Drijvers et al. [DEF`19] proposed a less efficient two-round scheme, called mBCJ, based on DL
and ROM only, and it repairs a prior scheme by Bagherzandi, Cheon, and Jarecki [BCJ08]. mBCJ
signatures, less efficient than ours, consist of two group elements and three scalars, and public keys
also consist of one group element and two scalars. Moreover, mBCJ is not partially non-interactive

3

(i.e., the first round does depend on the message being signed). Another option is the MuSig-DN
scheme [NRSW20], but it relies on heavy machinery from zero-knowledge proofs.

A more efficient DL-based alternative is the HBMS scheme by Bellare and Dai [BD21], but
HBMS is not partially non-interactive. Further, our security reduction is tighter than that of HBMS.
Most relevant to us, Lee and Kim [LK22] gave a multi-signature scheme based on Okamoto signa-
tures that, however, is proved secure only in the AGM [FKL18]; their signing is also not partially
non-interactive.

More recently, Pan and Wagner [PW23] proposed a two-round multi-signature scheme based
only on the Decisional Diffie-Hellman (DDH) assumption with a tight reduction, but their scheme
is also not partially non-interactive.

Finally, the work of Drijvers et al. [DEF`19], as well as recent ROS attacks [BLL`21], also
surfaced several security issues in earlier DL-based proposals that we do not discuss here.

1.2 RSA-based instantiation

The situation with RSA is slightly more complex since the above framework, as is, does not appear
to support an RSA instantiation directly: no natural RSA-based linear hash function realizes an
appropriate S-module where S is a field, which is of critical importance for our constructions and
proofs of theorems. However, we show that the framework can be adapted to support the RSA-based
linear hash function

Fpx1, x2q “ xe1w
x2 ,

based on public parameters par “ pN, e, wq, where N is an RSA modulus, e P Z˚
N is a prime such

that gcdpe, ϕpNqq “ 1 and w P Z˚
N . We refer to this linear hash function as RLHF. Here, it is

important to note that the supported scalar space is set to S :“ Z, which is only a ring. (We refer
to such hash functions as weak linear hash functions.)

RSA-specific challenges.We now describe the problems caused by the lack of inversion in S,
and briefly explain how we fix them for the specific case of RLHF. We stress that these fixes are
very ad-hoc for RSA, and do not work in general for weak linear hash functions.

- FROST-H generates signing keys using Shamir secret sharing [Sha79], which requires the scalar
space to be a field in order to compute the Lagrange coefficients. This is a common problem
for RSA-based threshold schemes [Sho00, DK01], and we address it via the standard trick of
multiplying the Lagrange coefficients with a large number to make them integers.

- One place in the proof of our first informal theorem above (reducing the security of MuSig2-H
and FROST-H to AOMPR) where the scalar space needs to be a field is to invert challenges
X P Rn, given a linear equation AX “ Fpbq, where A in Snˆn, X in Rn, and b in Dn. Since S
is a field in our original proof, we show that A has full rank; thus, one can compute x such that
X “ Fpxq by multiplying the inverse of A on both sides of the equation. Clearly, this fails if S is
not a field. Fortunately, to instantiate RLHF, we find that this equation can be solved efficiently
whenever A has full rank modulo e (which, recall, is a prime), and we show this condition holds
whenever we need to solve the equation in the proof for the special case of RLHF. In addition,
for MuSig2-H, we require one of the prime factors of N to be a safe prime in order to make the
reduction go through. We also show how to remove this safe-prime requirement by minimally
modifying the key aggregation algorithm.

4

- For our second informal theorem (reducing AOMPR to the collision-resistance of the linear hash
function), we need the scalar space to be a field upon showing that, for any matrix B P Sℓˆq

for ℓ ă q, there exists u P Sq such that

1. Bu “ 0;

2. uiz
˚ ‰ 0 for some i P rqs, where z˚ is an a prior fixed non-zero element in D such that

Fpz˚q “ 0.

Again, if S is a ring, such an u might not exist. However, for the RSA-based linear hash
function, since S “ Z, we can always find a non-zero u P Zq such that Bu “ 0. Showing the
second condition involves some technical details of RLHF, but roughly, we need to show that
there exists i P rqs such that ui ı 0 mod e.

Resulting schemes.Our RSA-based instantiations of FROST-H andMuSig2-H produce signatures
that also resemble the RSA-based signatures by Okamoto [Oka93]. Given public parameters par “

pN, e, wq, where e P Z˚
N is a prime such that gcdpe, ϕpNqq “ 1 and w P Z˚

N , the secret signing key
is x P Z˚

N , and the public verification key pk “ xe, and a signature for a message m P t0, 1u˚ has
format

σ “ pR “ aewb, a ¨ xHppk,m,Rq, bq .

To verify a signature pR, s, bq, one checks whether sewb “ R ¨pkHppk,m,Rq. We give a simpler scheme
that assumes that N is the product of safe primes, but we then drop this restriction in a slightly
less efficient scheme.

We note that this scheme’s drawback is that the public parameters par must be generated
honestly. In the multi-signature case, this requires a trusted setup, whereas in the threshold signa-
ture case, par could be generated as part of the distributed key generation process. An important
open question is whether we can remove a trusted setup, but we note that no better construction
without a trusted setup is known, as we discuss next. Another unusual aspect of our use of the
RSA assumption is that we require e to be large and prime, but this does not appear to weaken
the assumption in any way.

Related work (RSA).Threshold signatures based on RSA go back to the work of Shoup [Sho00],
whose scheme is more efficient than ours since it is round optimal. Shoup’s basic scheme guaran-
tees only the inability to come up with a signature for messages for which no party has issued a
signature share. A stronger notion would require that the only way to issue a valid signature is for
sufficiently many honest parties to contribute, i.e., if k signature shares are needed for a valid sig-
nature to be created, and t parties can be corrupted, no valid signature should be generated unless
at least k ´ t parties create shares. (This notion is referred to as TS-UF-1 in [BCK`22, BTZ22].)
To achieve this stronger notion, Shoup [Sho00] modifies the scheme and relies on a variant of
the DDH assumption, which we do not need here. All previous works on RSA-based threshold
signatures [DDFY94, GJKR96, FMY98, Rab98, DK01, FS01, ADN06, GHKR08] do not consider
this stronger security goal, although some of these works consider properties such as proactiv-
ity [Rab98, ADN06], robustness [GJKR96, FMY98, Rab98], removing trusted dealers [DK01, FS01],
and adaptive-security [ADN06], which we do not consider.

Our RSA-based instantiation of MuSig2-H improves upon the state-of-the-art even further.
Indeed, only a few works on RSA multi-signatures, e.g., [DF92, AA05], support fully non-interactive
signing, but they all assume a trusted third party that distributes all signing keys and that the
number of signers is fixed. Others [Ita83a, Oka88, HK89, KH90, Oka93, PPKW97, MO`00, MM00,
PLL02] support only sequential signing, i.e., all signers engage in the signing process one by one.

5

Another relevant line of works addresses identity-based multi-signatures [BN07, BJ10] (IBMS).
IBMS can be viewed as multi-signature schemes where each ID plays the role of the public key for
each signer. However, if used as a multi-signature scheme, these schemes require a trusted dealer
to generate the keys for each signer. Also, they do not support key aggregation, which our scheme
supports.

2 Preliminaries

2.1 Notations

For any positive integers k ă n, rns denotes t1, . . . , nu, and rk..ns denotes tk, . . . , nu. We use κ to
denote the security parameter. For a finite set S, |S| denotes the size of S, and x Ð$ S denotes
sampling an element uniformly from S and assigning it to x.

2.2 Basic Algebra

Modules. For any ring R with multiplicative identity 1 and any abelian group pM,`q, we say M
is an R-module if there exists an operation ¨ : R ˆ M Ñ M such that for any a, b P R and any
x, y P M , (i) a ¨ px ` yq “ a ¨ x ` a ¨ y , (ii) pa ` bq ¨ x “ a ¨ x ` b ¨ x, (iii) pabq ¨ x “ a ¨ pb ¨ xq, (iv)
1 ¨ x “ x. Also, we use 0 to denote the identity of M .

Module Homomorphisms.For any R-modules M and N , a map f : M Ñ N is a homomorphism
of R-modules if for any r P R and x, y P M , fpx` r ¨ yq “ fpxq ` r ¨ fpyq . We say a homomorphism
f is an epimorphism if f is a surjection. We say a homomorphism f is a monomorphism if f is an
injection.

Characteristic of a Field. For any field F, the characteristic of F, denoted by charpFq, is the
smallest positive number k such that k ¨1 “

řk
i“1 1 “ 0, where 1 denotes the multiplicative identity

of F and 0 denotes the additive identity of F. If k does not exist, we say the characteristic of F is
0.

3 Algebraic One-more Preimage Resistance

In this section, we first give the definition of linear hash functions, then define collision resistance
and algebraic one-more preimage resistance (AOMPR) of a linear hash function family, and finally
show AOMPR is implied by collision resistance.

3.1 Linear Hash Functions

The notion of linear hash functions is introduced in [HKL19, HKLN20], which is in turn adapted
from [BBSS18]. We adapt the definition from [HKL19] by additionally requiring the scalar set S
to be a field and D and R to be S-modules, which is necessary for the reduction from collision
resistance to AOMPR and for our constructions in Section 4 to work.

Definition 1. A linear hash function family LHF is a pair of algorithms pPGen,Fq such that

a) PGen is a randomized algorithm that takes as input the security parameter 1κ and returns the
system parameter par that defines three sets S “ Spparq,D “ Dpparq and R “ Rpparq, where S
is a field, and D and R are S-modules. Moreover, we require |S| ě 2κ, |D| ě 2κ, and |R| ě 2κ.

6

Game CRA
LHFpκq :

par Ð PGenp1κq

px1, x2q Ð$ Apparq

If x1 ‰ x2 and Fpx1q “ Fpx2q then
Return 1

Return 0

Fig. 1. The CR security game for a linear hash family LHF “ pPGen,Fq.

Game AOMPRA
LHFpκq :

par Ð$ PGenp1κq

cid Ð 0 ; ℓ Ð 0
tyiuiPrcids Ð AChal,PI

pparq

If ℓ ě cid then return 0
If @ i P rcids Fpyiq “ Xi then

Return 1
Return 0

Oracle Chalpq :

cid Ð cid ` 1
xcid Ð$ D ; Xcid Ð Fpxcidq

Return Xcid

Oracle PIpY, α, tβiuiPrcidsq :

Require: Y “ Fpαq `
ř

iPrcids
βiXi

ℓ Ð ℓ ` 1
Return α `

ř

iPrcids
βixi

Fig. 2. The AOMPR game for a linear hash function family LHF “ pPGen,Fq. For the inputs of PI, X is in R, α is
in D, and each βi is in S.

b) F is a deterministic function that takes as input the system parameter par and an element
x P D and returns an element in R such that Fppar , ¨q : D Ñ R is a epimorphism of S-modules.
Moreover, F is not a monomorphism, which is equivalent to there exists z˚ P D such that z˚ ‰ 0
and Fppar , z˚q “ 0. For simplicity, we omit par from the input of F from now on.

Collision Resistance.Collision resistance of linear hash functions is analogous to collision resis-
tance of cryptographic hash functions, which ensures that it is hard to find two distinct inputs that
map to the same output. The CRA

LHF game is defined in Figure 1. The corresponding advantage of
A is defined as AdvcrLHFpA, κq :“ Pr

“

CRA
LHF “ 1

‰

.

3.2 Algebraic One-more Preimage Resistance

We introduce the notion of algebraic one-more preimage resistance (AOMPR) for linear hash func-
tions, which is formally defined via the game AOMPRA

LHF, as described in Figure 2. It guarantees
that any adversary given a description of a linear hash function pS,D,R,Fq cannot invert q ` 1
challenges X1, . . . , Xq`1, where Xi “ Fpxiq for xi Ð$ D, by making at most q queries to the PI
oracle that, on any input Y P R that is an affine combination of the challenges, outputs an element
in the preimage of Y . It is syntactically analogous to the algebraic one-more discrete logarithm
(AOMDL) problem [NRS21], where the adversary wants to compute the discrete logarithms of
q ` 1 random challenges in G by making at most q queries to the DLog oracle, which outputs the
discrete logarithm of the input Y only when Y is an affine combination of the challenges and the
combination is known to the adversary.

The following theorem, our main result on AOMPR, shows that AOMPR of a linear hash
function family is implied by its collision resistance.

7

Theorem 1. For any linear hash function family LHF and any AOMPR adversary A making at
most q queries to Chal, there exists an adversary B for the CRLHF game running in a similar
running time as A such that Advaompr

LHF pA, κq ď 2AdvcrLHFpB, κq .

Proof (of Theorem 1). Given an adversary A for the AOMPRLHF game, without loss of generality,
we assume that A is deterministic, queries Chal exactly q times, and queries PI exactly q ´ 1
times. The construction of B is straightforward. After receiving par from the CRLHF game, B runs
A on input par by simulating the oracles Chal and PI exactly the same as in the AOMPRLHF

game. After A outputs tyiuiPrqs, if

D i P rqs such that Fpyiq “ Xi and yi ‰ xi, (1)

where xi and Xi are generated in the oracle Chal, then B outputs pxi, yiq. Otherwise, B aborts.

Analysis of B.Denote the event WINB as after A returns, the condition (1) holds. If WINB occurs,
B wins the CRLHF game since Fpxiq “ Xi “ Fpyiq, which implies AdvcrLHFpB, κq “ Pr rWINBs.

It is left to show that Pr rWINBs ě 1
2Adv

aompr
LHF pA, κq. Since A is deterministic, the execution of

A is fixed given the pair ppar ,xq, where x P Dq denotes the randomness generated in the oracle
Chal. Denote the event WINA as A wins the AOMPRLHF game simulated by B. Since B simulate
the game perfectly, we know PrrWINAs “ Advaompr

LHF pA, κq. For each par , denote

WA :“ tx | WINA occurs given ppar ,xqu ,

WB :“ tx | WINB occurs given ppar ,xqu .

Claim 1 For each par, there exists a bijection Φ : WA Ñ WA such that for any x P WA, we have
x P WB _ Φpxq P WB.

From the above claim, we can conclude the proof since

Pr rWINBs “ Prrx P WBs “
1

2
pPrrx P WBs ` PrrΦpxq P WBsq

ě
1

2
Prrx P WB _ Φpxq P WBs ě

1

2
Prrx P WAs

“
1

2
PrrWINAs “

1

2
Advaompr

LHF pA, κq .

[\

Proof (of Claim 1). We construct Φ as follows. For each x P WA, consider the execution of A given
ppar ,xq. Denote B P Spq´1qˆq as the query matrix of the execution, which is defined as follows.

Definition 2. Given an execution of an adversary A for the AOMPR game, where A makes q
queries to Chal and ℓ queries to PI, define the query matrix of the execution as B P Sℓˆq such
that

Bi,j “

#

β
pjq

i , i P rcidpjqs

0 , o.w .
,

where β
pjq

i and cidpjq are the values of βi and cid when A makes the j-th query to PI.

8

We now define
Φpxq :“ x ` upBqz˚ ,

where z˚ P D and upBq P Sq are defined in the following claim.

Claim 2 There exists z˚ P D such that Fpz˚q “ 0 and for any matrix A P Sℓˆq where 0 ă ℓ ă q,
there exists a vector upAq P Sq and i P rqs such that

AupAq “ 0 ^ D i P rqs : u
pAq

i z˚ ‰ 0 . (2)

Proof (of Claim 2). Since F is not a monomorphism from D to R, there exists a non-zero element
z˚ P D such that Fpz˚q “ 0. Since S is a field and A has rank at most ℓ ă q, there exists a non-zero
vector upAq P Sq such that AupAq “ 0. Also, since upAq is non-zero, there exists i P rqs such that

u
pAq

i ‰ 0, and since S is a field and z˚ ‰ 0, we have u
pAq

i z˚ ‰ 0.

Analysis of Φ. For simplicity, we use u to denote upBq in the following analysis. We first show
that the executions of A given ppar ,xq and given ppar , Φpxqq are identical. Since FpΦpxqq “ Fpxq `

u ¨Fpz˚q “ Fpxq `u ¨ 0 “ Fpxq, the challenges output by Chal are the same in the two executions.
For the j-th query to PI, suppose the prior views of A are identical. Then, A must make the same

query
´

Xpjq, αpjq, tβ
pjq

i uiPrcidpjqs

¯

in both executions. Since Bu “ 0, we have αpjq`
ř

iPrcidpjqs
β

pjq

i xi “

αpjq `
`

βpjq
˘T

x “ αpjq `
`

βpjq
˘T

px ` uz˚q “ αpjq `
ř

iPrcidpjqs
β

pjq

i pΦpxqqi, where βpjq denotes the
j-th row of B. Therefore, A receives the same value from PI in both executions. By induction, the
views of A are identical in both executions and thus A outputs the same values in both executions,
which implies Φpxq P WA and thus Φ is a map from WA to WA.

Then, it is not hard to see that x P WB _ Φpxq P WB. Since the executions of A given x and
Φpxq are identical, the outputs y1, . . . , yq of A are also identical in the two executions. Since there
exists i P rqs such that uiz

˚ ‰ 0, we have either yi ‰ xi or yi ‰ xi ` ui ¨ z˚, which means WINB
occurs either in the execution given x or Φpxq.

It is left to show that Φ is a bijection. Since both the domain and range of Φ are WA, which is a
finite set, it is enough to show that Φ is an injection. For any x1,x2 P WA such that Φpx1q “ Φpx2q,
since the execution of A given x1 is identical to that given Φpx1q and the execution of A given x2

is identical to that given Φpx2q, we know the executions of A given x1 and x2 are identical, which
implies the query matrix B in the two executions are identical. Therefore, we have Φpx1q “ x1`uz˚

and Φpx2q “ x2`uz˚ for the same u P Sq, which implies x1 “ x2. This shows that Φ is an injection.
[\

4 Schemes Based on Linear Hash Functions

For a cyclic group G with prime size p and generator g, we can view the description of a linear
hash function with description pS,D,R,Fq as an analogue to pG, p, gq, where R corresponds to
the group G, the preimage under the function F corresponds to the discrete logarithm to base g,
and S corresponds to the field of scalar Zp. Also, the AOMPR game is analogous to the AOMDL
game. This suggests a general way of transforming any scheme that is secure under the AOMDL
assumption into a scheme that is constructed from linear hash functions and is secure under the
AOMPR assumption. In this section, we discuss how this idea is applied to two specific examples:
MuSig2 [NRS21], a multi-signature scheme, and FROST [KG20], a threshold signature scheme.

9

4.1 Multi-Signatures

MuSig2 [NRS21] is a two-round multi-signature scheme with key aggregation. Moreover, the first
signing round is message-independent. We first give the syntax and security definition of two-round
multi-signatures following [NRS21], then present a new scheme MuSig2-H based on LHF that is
transformed from MuSig2, and finally show the security of the new scheme under the AOMPR
assumption.

Syntax.A two-round multi-signature scheme with key aggregation is a tuple of efficient (random-
ized) algorithms MS “ pSetup,KeyGen,KeyAgg, PreSign, PreAgg,Sign,SignAgg,Verq that behave
as follows. The setup algorithm Setupp1κq returns a system parameter par , and we assume par
is given to all other algorithms implicitly. The key generation algorithm KeyGenpq returns a pair
of secret and public keys psk, pkq. The (deterministic) key aggregation algorithm KeyAgg takes as
input a multiset of public keys L with size at most 2κ and returns an aggregate public key apk. For
n signers, where the i-th signer has key-pair pski, pkiq, the signing protocol between them and an
aggregator node to sign a message m P t0, 1u˚ is defined by the following experiment:

pppi, stiq Ð PreSignpq , for each i P SS ,

app Ð PreAggptpp1, . . . , ppnuq ,

pout i, stiq Ð Signpsti, app, ski, pki,m, tpkjujPrnsztiuq , for each i P SS ,

σ Ð SignAggptout1, . . . , outnuq ,

(3)

where each signer runs the algorithms PreSign and Sign; the aggregator node runs the algorithms
PreAgg and SignAgg and outputs the signature σ. The aggregator node can be one of the signers
and is untrusted in our security model. The (deterministic) verification algorithm Verpapk,m, σq

outputs a bit that indicates whether or not σ is valid for apk and m or not. We say that MS is
(perfectly) correct if, for any m P t0, 1u˚, PrrVerpKeyAggptpk1, . . . , pknuq,m, σqs “ 1, where σ is
generated in the experiment in (3) and the probability is taken over the sampling of the system
parameter par , all key-pairs tpski, pkiquiPrns.

Security.The security notion of multi-signatures considered in the prior work [NRS21] is referred
to as MS-UF-CMA, which guarantees that it is not possible to forge a valid multi-signature that in-
volves at least one honest party. The MS-UF-CMA game for a multi-signature scheme MS is defined
in Figure 3, whereMS.HF denotes the space of the hash functions used inMS from which the random
oracle is drawn. In the game, we assume the adversary corrupts the aggregator node and all signers
except one and can engage in any number of (concurrent) signing sessions with the honest party.
The corresponding advantage of A is defined as Advms-uf-cma

MS pA, κq :“ Pr
“

MS-UF-CMAA
MSpκq “ 1

‰

.

Our Scheme. Figure 4 shows the scheme MuSig2-H, which is transformed from MuSig2 [NRS21]
with the parameter ν “ 4, where ν denotes the number of nonces generated in the first round of the
signing protocol. In addition to the general transformation, we do two optimizations to MuSig2-H.
First, in KeyGenpq, the secret key sk is not sampled from D but from a subset Dkey Ď D such that
F is a bijection from Dkey to R. It can reduce the size of the secret key to the size of the public key.
Also, the range of each hash function is set to Shash instead of S, where Shash is an arbitrary subset
of S with size at least 2κ. Further, we require the characteristic of the field S to be at least 2κ.

The original paper shows the unforgeability of MuSig2 under the AOMDL assumption. Analo-
gous to that, the following theorem shows that the security ofMuSig2-HrLHFs is implied by AOMPR
of the underlying linear hash function family LHF in the random oracle model.

10

Game MS-UF-CMAA
MSpκq :

par Ð Setupp1κq

H Ð$ MS.HF
psk, pkq Ð$ KeyGenpq

sid Ð 0
S Ð H ; S1

Ð H ; Q Ð H

pL,m, σq Ð ASign,Sign1,RO
ppar , pkq

If pk R L ^ pL,mq R Q
^ VerpKeyAggpLq,m, σq “ 1 then
Return 1

Return 0

Oracle PreSignpq :

sid Ð sid ` 1 ; S Ð S Y tsidu

ppp, stpsidq
q Ð PreSignpq

Return pp

Oracle Signpk, app,m, Lq :

If k R S then return K

out Ð Signpstpkq, app, sk,m, Lq

L Ð L Y tpku

Q Ð Q Y tpL,mqu

S Ð Sztku ; S1
Ð S1

Y tku

Return out

Oracle ROpxq :

Return Hpxq

Fig. 3. The MS-UF-CMA game for a mutil signature scheme MS.

Setupp1κq :

par Ð PGenp1κq

Return par

KeyGenpq :

sk Ð$ Dkey ; pk Ð Fpskq

Return psk, pkq

KeyAggpLq :

tpk1, . . . , pknu Ð L
For i P rns do

ai Ð HaggpL, pkiq
Return apk Ð

ř

iPrns
aipki

Verpapk,m, σq :

c Ð Hsigpapk, R,mq ; pR, sq Ð σ
If Fpsq “ R ` capk then return 1
Return 0

PreSignpq :

For j P r4s do
rj Ð$ D ; Rj Ð Fprjq

pp Ð pR1, . . . , R4q

st Ð pr1, . . . , r4q

Return ppp, stq

PreAggptpp1, . . . , ppnuq :

For i P rns do
pRi,1, . . . , Ri,4q Ð ppi

For j P r4s do
Rj Ð

ř

iPrns
Ri,j

Return app Ð pR1, . . . , R4q

Signpst, app, sk, pk,m, Lq :

pr1, . . . , r4q Ð st
L Ð L Y tpku

apk Ð KeyAggpLq

a Ð HaggpL, pkq

pR1, . . . , R4q Ð app
b Ð Hnonpapk, pR1, . . . , R4q,mq

R Ð
ř

jPr4s
bj´1Rj

c Ð Hsigpapk, R,mq

s Ð
ř

jPr4s
bj´1rj ` ca ¨ sk

Return out Ð pR, sq

SignAggptout1, . . . , outnuq :

pR, sq Ð out1
For i P r2..ns do

pRi, siq Ð out i
If Ri ‰ R then return K

s Ð s ` si
Return σ Ð pR, sq

Fig. 4. The multi-signature scheme MuSig2-HrLHFs, where LHF “ pPGen,Fq is a linear hash function family. We
assume n ď 2κ and |L| ď 2κ. Dkey is a subset of D such that F is a bijection from Dkey to R. Further, Haggp¨q :“ Hp1, ¨q,
Hnonp¨q :“ Hp2, ¨q, Hsigp¨q :“ Hp3, ¨q, where H : t0, 1u

˚
Ñ Shash, Shash Ď S, and |Shash| ě 2κ. Moreover, we require

charpSq ě 2κ.

Theorem 2. For any MS-UF-CMA adversary A making at most qs queries to PreSign and qh
queries to RO, there exists an AOMPR adversary B making at most 4qs ` 1 queries to Chal

11

ForkApx, v1, v
1
1, . . . , vq1 , v1

q1 q :

Pick the random coin ρ of A at random
h1, h

1
1, . . . , hq, h

1
q Ð H

pI, J,Outq Ð Apx, h1, . . . , hq, v1, . . . , vq1 ; ρq

If I “ K or J “ K then return K

pI 1, J 1,Out1
q Ð Apx, h1, . . . , hI´1, h

1
I , . . . , h

1
q, v1 . . . , vJ´1, v

1
J , . . . , v

1
q1 ; ρq

If I ‰ I 1 or hI “ h1
I then return K

Return pI,Out,Out1
q

Fig. 5. The forking algorithm built from A for Lemma 1.

running in time roughly four times that of A such that

Advms-uf-cma
MuSig2-HrLHFspA, κq ď 4

b

q3 ¨ Advaompr
LHF pB, κq ` p16q2 ` 15q{2κ ,

where q “ qh ` qs ` 1.

We prove the above theorem using the same techniques as used in the proof of MuSig2 [NRS21]
to construct B given an adversary A. Here, we briefly highlight the differences:

- We need to show that B simulates the MS-UF-CMAMuSig2-HrLHFs game perfectly when no bad
event occurs and that the bad events occur with a negligible probability (Claim 3 and Lemma 2)
when the secret key is sampled from Dkey instead of Zp, and the randomness rj is sampled from
D instead of Zp.

- We need to show that B can compute a preimage for each challenge (Claim 4 and Claim 5)
instead of the discrete logarithm to the base element. More precisely, the problem can be
described as follows. Denote the challenges by U1, . . . , Uℓ P R. After the interaction with A, B
computes a matrix A P Sℓˆℓ and a vector b P Dℓ such that A ¨ U “ Fpbq, we need to show that
A has full rank and thus B can compute a vector u “ A´1b such that Fpuq “ U .

Before turning to the proof, we first recall the following variant of the forking lemma from [NRS21]
that will be used in the proof.

Lemma 1. Let q, q1 ě 1 be integers and H,V be two sets. Let A be a randomized algorithm that, on
input x, h1, . . . , hq, v1, . . . , vq1, outputs a tuple pI, J,Outq, where I P tKuYrqs, J P tKuYrq1 `1s and
Out is a side output. Let IG be a randomized algorithm that generates x. The accepting probability
of A is defined as accpAq “ PrrpI, J,Outq Ð$ Apx, h1, . . . , hq, v1, . . . , vq1q : I ‰ K ^ J ‰ Ks ,
where the probability is over x Ð$ IG, h1, . . . , hq Ð$ H, v1, . . . , vq1 Ð$ V and the random coins of A.
Consider algorithm ForkA described in Figure 5. The accepting probability of ForkA is defined as

accpForkAq “ Prrα Ð$ ForkApx, v1, v
1
1, . . . , vq1 , v1

q1q : α ‰ Ks ,

where the probability is over x Ð$ IG, v1, v
1
1, . . . , vq1 , v1

q1 Ð$ V . Then,

accpForkAq ě accpAq

ˆ

accpAq

q
´

1

H

˙

.

12

Proof (of Theorem 2). Let A be an adversary as described in the theorem. Denote the output
message-signature pair of A as pL˚,m˚, σ˚ “ pR˚, z˚qq. Without loss of generality, we assume A
always queries RO on Hsigpapk˚,m˚, R˚q before A returns, where apk˚ “ KeyAggpL˚q, and always
queries RO on Hnonpapk, pR1, . . . , R4q,mq prior to each Signpk, pR1, . . . , R4q,m,Lq query, where
apk “ KeyAggpLq. (This adds up to qs ` 1 additional RO queries, and we let q “ qh ` qs ` 1.)

We first construct an algorithm C compatible with the syntax in Lemma 1, then construct an
algorithm C1 from ForkC , and finally construct B from ForkC

1

.

The adversary C.The input of C consists of par , which defines a linear hash function pS,D,R,Fq,

and uniformly random elements h
paggq

1 , . . . , h
paggq
q , h

psigq

1 , . . . , h
psigq
q , h

pnonq

1 , . . . , h
pnonq
q P Shash. Also,

C can access oracles Chal and PI, defined the same way as those in the AOMPRLHF game. (We
can think of this oracle as part of C in the context of the Forking Lemma.) For simplicity, when C
makes a query pX,α, tβiuq to PI, we omit the coefficients α, tβiu whenever they are clear from the
context.

To start with, C makes 4qs`1 queries toChal and denotes the challenges asX, U1, . . . , U4qs P D.
Then, C initializes H to an empty table. In addition, it initializes counters ctrs,ctragg, ctrsig, ctrnon
to 0 and a function dt to an empty table, which are used to record the PI query related to each Uj .

We also use a flag BadKey, initially set to false, to denote whether a bad event occurs. Then,
C sets pk Ð X and runs Appar , pkq with access to the oracles ČPreSign, ĆSign, ĄRO, which are
simulated as follows.

ĄRO query Haggpxq: If Haggpxq ‰ K, C returns Haggpxq. Otherwise, parse x as pL,Ăpkq. If the parsing
fails, or X R L, C sets Haggpxq Ð$ Shash and returns Haggpxq. Otherwise, C increases ctragg by

1, sets HaggpL,Xq Ð h
paggq

ctragg and HaggpL, pk1q Ð$ Shash for each pk1 P L and pk1 ‰ X. Let
apk Ð KeyAggpLq. If apk P K, B sets BadKey Ð true. Otherwise, C sets K Ð K Y tapku and
returns Haggpxq.

ĄRO query Hnonpxq: If Hnonpxq ‰ K, C returns Hnonpxq. Otherwise, parse x as pĄapk, pR1, . . . , R4q,mq.
If the parsing fails, C sets Hnonpxq Ð$ Shash and returns Hnonpxq. Otherwise, C increases ctrnon by

1 and sets Hnonpxq Ð h
pnonq

ctrnon . Also, C computes R Ð
ř

iPr4sph
pnonq

ctrnonqj´1Rj . If HsigpĄapk, R,mq “ K,

C increases ctrsig by 1 and sets HsigpĄapk, R,mq “ h
psigq

ctrsig
. Finally, C returns Hnonpxq.

ĄRO query Hsigpxq: If Hsigpxq ‰ K, C returns Hsigpxq. Otherwise, parse x as pĄapk, m, Rq. If the
parsing fails, C sets Hsigpxq Ð$ Shash and returns Hsigpxq. Otherwise, C increases ctrsig by 1 and

sets Hsigpxq Ð h
psigq

ctrsig
. Finally, C sets K Ð K Y tĄapku and returns Hsigpxq.

ČPreSignpiq query: Same as in the game MS-UF-CMAMuSig2-H, except in the simulation of algo-
rithm Sign, C first increases ctrs by 1 and sets R1,i Ð Ui`4pctrs´1q for i P r4s.

ĆSignpk, app,m,Lq query: Same as in the game MS-UF-CMAMuSig2-H, except in the simulation of
algorithm Sign1, C sets s Ð PIp

ř

jPr4s b
j´1Ui`4pk´1q ` ca ¨ pkq, and sets dtpkq Ð pb, c, a, sq.

After receiving the output pL˚,m˚, σ˚ “ pR˚, s˚qq from A, C returns K if BadKey “ true or A
does not win the game. Otherwise, C computes apk˚ Ð KeyAggpL˚q and:
- Isig as the index such that Hsigpapk˚,m˚, R˚q is set to h

psigq

Isig
;

- Jsig as the value of ctrnon when Hsigpapk˚,m˚, R˚q is assigned;

- Iagg as the index such that HaggpL˚, Xq is set to h
paggq

Iagg
;

- Jagg as the value of ctrnon when Haggpapk˚,m˚, R˚q is assigned.

Since A wins the game by our simulation, we know such Iagg and Isig must exist. Then, C returns
pIsig, Jsig,Outq, where Out consists of all variables received or generated by C.

13

Analysis of C.To use Lemma 1, we define IG as the algorithm that sets par Ð$ PGenp1κq, uni-

formly samples h
paggq

1 , . . . , h
paggq
q P Shash, and returns ppar , h

paggq

1 , . . . , h
paggq
q q. Also, ph

psigq

1 , . . . , h
psigq
q q

plays the role of ph1, . . . , hqq, and ph
pnonq

1 , . . . , h
pnonq
q q plays the role of pv1, . . . , vq1q.

We now show that C simulates the game MS-UF-CMA perfectly. In the real game, sk is uniformly
sampled from Dkey, and, since F is a bijection from Dkey to S, pk is uniformly distributed over S,
which is identical to the simulation. Also, it is clear that the output distributions of each ĄRO
query and each ČPreSign query are identical to those of the real game. For the simulation of ĆSign,
from the MS-UF-CMA game, we know that C makes at most one query to PI for each session
k. Therefore, from the AOMPR game, we know s1 is uniformly distributed over the preimage of
ř

jPr4s b
j´1Ui`4pk´1q ` ca1 ¨ pk given the view of the adversary, which is identical to the real game.

Therefore, since C simulates the game MS-UF-CMA perfectly, accpCq ě Advms-uf-cma
MuSig2-HrLHFspAq ´

PrrBadKeys, where Pr rBadKeys is the probability that BadKey “ true at the end of C’s execution.
By the following claim and Lemma 1,

accpForkCq ě pAdvms-uf-cma
MuSig2-HrLHFspAq ´ p2q2 ` 1q{2κq2{q ´

1

|Shash|

ě
pAdvms-uf-cma

MuSig2-HrLHFspAqq2

q
´

4q ` 3

2κ
.

(4)

Claim 3 PrrBadKeys ď
2q2`1
2κ .

Proof (of Claim 3). Consider a ĄRO query HaggpL,Ăpkq fromA such thatX P L and HaggpL,Xq is not

assigned prior to the query. The aggregated key from L can be represented as apk “ pXq
t¨h

paggq
ctraggZ,

where t is the number of times X appears in L and Z :“
ř

pkPL,pk‰X pkHaggpL,pkq, which is indepen-

dent of h
paggq

ctragg . BadKey is set to true if and only if apk P K. We use the following lemma, which we
show later, to bound the probability that apk P K.

Lemma 2. For any X P R and any integer t, denote Cpt,Xq :“ tptsq ¨X | s P Shashu. We say X is
Good if and only if |Cpt,Xq| “ |Shash| for any 1 ď t ď 2κ. Then, we have PrX Ð$ RrX is not Goods ď

1{2κ.

Suppose X is Good. Given Z, since t ď 2κ, we have that apk is uniformly distributed over the set
tY Z | Y P Cpt,Xqu, which has size |Shash|. Also, from the execution, we have that |K| ď q`qs ď 2q,
and thus the probability that BadKey is set to true after the query is at most |K| { |Shash| ď

2q{2κ. Since there are at most q RO queries, the probability that BadKey is set to true during
the simulation is at most 2q2{2κ. Therefore, we have that PrrBadKeys ď PrrX is not Goods `

PrrBadKey ^ X is Goods ď
2q2`1
2κ . [\

Proof (of Lemma 2). For any 1 ď t ď 2κ, s1, s2 P S, and X P R such that s1 ‰ s2 and X ‰ 0,
since charpSq ě 2κ, we know that t ¨ ps1 ´ s2q ‰ 0 and thus t ¨ ps1 ´ s2q ¨ X ‰ 0, which implies
ts1 ¨ X ‰ ts2 ¨ X. Therefore, |Cpt,Xq| “ |Shash|, which means that X is Good. Thus, we have that
PrXÐRrX is not Goods ď PrXÐRrX “ 0s “ 1

|R|
ď 1{2κ. [\

Construct C1 from ForkC. The input of C1 consists of par , which defines a linear hash function

pS,D,R,Fq and uniformly random elements h
paggq

1 , . . . , h
paggq
q h

pnonq

1 , h
pnonq

1

1

, . . . , h
pnonq
q , h

pnonq
q

1

P

14

Shash. Also, C1 can access oracles Chal and PI defined the same way as those in the AOMPR game.

To begin, C1 runs ForkCppar , h
paggq

1 , . . . , h
paggq
q , h

pnonq

1 , h
pnonq

1

1

, . . . , h
pnonq
q , h

pnonq
q

1

q. All queries to oracle
Chal from the first execution of C1 are relayed by B to its own Chal oracle, and for all Chal
queries from the second execution of C1, B answers them with the same challenges as in the first
execution. All PI queries from ForkC

1

are relayed by B to its own PI oracle.
After ForkC returns pIsig, Jsig,Out,Out1q, by the following claim, C1 computes rx such that Fprxq “

apk˚ and returns pIagg, Jagg, prx,Out,Out1qq, where Iagg, Jagg, and apk˚ are from Out.

Claim 4 If ForkC returns pIsig, Jsig,Out,Out1q, C1 can compute rx such that Fprxq “ apk˚, where
apk˚ is from Out.

Proof (of Claim 4). We directly use the notations in the description of C to denote the vari-
ables in Out and use p¨q1 to denote the variables in Out1. Since ForkC does not return K, we have
Hsigpapk˚,m˚, R˚q “ hI ‰ h1

I “ H1
sigpapk˚,m˚, R˚q. Since the two executions of C are identical

before Hsigpapk˚,m˚, R˚q is assigned hI , we know papk˚,m˚, R˚q “ papk˚1,m˚1, R˚1
q. Therefore, we

have Fps˚q “ R˚ ` hIapk
˚ and Fps˚1

q “ R˚ ` h1
Iapk

˚, and C1 computes rx Ð s˚´s˚1

hI´h1
I
. [\

Analysis of C1.To use Lemma 1, we define IG as the algorithm that sets par Ð$ PGenp1κq and

returns par . Also, ph
paggq

1 , . . . , h
paggq
q q plays the role of ph1, . . . , hqq, and pph

pnonq

1 , h
pnonq

1

1

q, . . . , ph
pnonq
q ,

h
pnonq
q

1

qq plays the role of pv1, . . . , vq1q. It is clear that accpC1q “ accpForkCq. Therefore, by Lemma 1

and (4), accpForkC
1

q ě paccpForkCqq2{q ´ 1
|Shash|

ě pAdvms-uf-cma
MuSig2-HrLHFspAqq4{q3 ´ 15

2κ .

Construct B from ForkC
1

. We now give a construct of the AOMPR adversary B using ForkC
1

and the available Chal and PI oracles. To start with, B receives par from the AOMPRLHF game

and uniformly samples h
pnonq

1 , h
pnonq

1

1

, h
pnonq

1

2

, h
pnonq

1

3

, . . . , h
pnonq
q , h

pnonq
q

1

, h
pnonq
q

2

, h
pnonq
q

3

P Shash.

Then, B runs ForkC
1

on input par , ph
pnonq

1 , h
pnonq

1

1

q, ph
pnonq

1

2

, h
pnonq

1

3

q, . . . , ph
pnonq
q , h

pnonq
q

1

q, ph
pnonq
q

2

,

h
pnonq
q

3

q, where ph
pnonq

i , h
pnonq

i

1

q plays the role of vi and ph
pnonq

i

2

, h
pnonq

i

3

q plays the role of v1
i. All

Chal queries from the first execution of C1 are relayed by B to its own Chal oracle, and, for
all Chal queries from the second execution of C1, B answers them with the same challenges as
the first execution. All PI queries from ForkC

1

are relayed by B to its own PI oracle. Without
loss of generality, we can assume all challenges are different since otherwise B can solve them

trivially. Denote the event BadHash as any two of the scalars h
pnonq

1 , h
pnonq

1

1

, h
pnonq

1

2

, h
pnonq

1

3

, . . . ,

h
pnonq
q , h

pnonq
q

1

, h
pnonq
q

2

, h
pnonq
q

3

are same. Since they are sampled uniformly from Shash, we know

PrrBadHashs ď p4qq2{ |Shash| ď
16q2

2κ . Then, we can conclude the proof with the following claim,

which implies Advaompr
LHF pBq ě accpForkCq ´ PrrBadHashs ě pAdvms-uf-cma

MuSig2-HrLHFspAqq4{q3 ´
16q2`15

2κ .

Claim 5 If ForkC
1

returns pIagg, Jagg,Out,Out1q and BadHash does not occur, B can win the game
AOMPRLHF.

[\

Proof (proof of Claim 5). Denote prx,Outp1q,Outp2qq Ð Out and prx1, Outp3q, Outp4qq Ð Out1, and
we use p¨qpiq to denote the variables in Outpiq. The total number of Chal queries is 4qs ` 1, and
the corresponding challenges are X,U1, . . . , U4qs .

We first show how to compute x˚ such that Fpx˚q “ X. Since ForkC
1

returns Iagg, we have

H
p1q
aggpL˚p1q, Xq “ h

paggq

Iagg
‰ h

paggq

Iagg

1

“ H
p3q
aggpL˚p3q, Xq. Since the two executions of C are identical

15

before Hsig is assigned h
paggq

Iagg
, we have L˚p1q

“ L˚p3q (we denote L˚p1q as L˚ from here forward) and

H
p1q
aggpL˚, pk1q “ H

p3q
aggpL˚, pk1q for any pk1 P L˚ and pk1 ‰ X. Therefore, the aggregated keys from L˚

in the two execution can be represented as apk˚p1q
“ t ¨ h

paggq

Iagg
¨ X ` Z , apk˚p3q

“ t ¨ h
paggq

Iagg

1

¨ X ` Z,

where t is the number of times X appears in L˚ and Z :“
ř

pk1PL˚,pk1‰X H
p1q
aggpL˚, pkq ¨ pk1 . By

Claim 4, Fprxq “ apk˚p1q and Fprx1q “ apk˚p3q. Therefore, B computes x˚ “ rx´rx1

tph
paggq

Iagg
´h

paggq

Iagg

1
q
.

We now show how to compute u1, . . . , u4qs such that Fpuiq “ Ui. For k P rqss, dtpiqpkq “

pb, c, a, sq ‰ K if and only if C queries PI on
ř

jPr4s b
j´1Ui`4pk´1q ` ca ¨ X. Define a set T :“

tpb, c ¨ a, sq : i P r4s, dtpiqpkq “ pb, c, a, squ. The total number of PI queries for simulating those
PI queries from C is equal to |T |. From the execution of B, we know for any i1, i2 P r4s and
i1 ‰ i2, where pb, c, a, sq “ dtpi1qpkq and pb1, c1, a1, s1q “ dtpi2qpkq, if b “ b1, then we have pb, c, a, sq “

pb1, c1, a1, s1q. Therefore, we know for any distinct pb, v, sq, pb1, v1, s1q P T , it holds that b ‰ b1. Also,
we have |T | ď 4. If |T | ă 4, B picks an arbitrary b1 P Shashztb : pb, v, sq P T u and sets s1 Ð

PI
´

ř

jPr4s b
1j´1Ui`p4´1qk

¯

. Then, B adds pb1, 0, s1q to T and repeats this until T has size 4. Denote

the elements in T as pb1, v1, s1q, . . . , pb4, v4, s4q, and we have AU “ Fpsq, where

A “

¨

˚

˝

1 b1 b
2
1 b

3
1

...
...

...
...

1 b4 b
2
4 b

3
4

˛

‹

‚

, U “

¨

˚

˝

U1`4pk´1q

...
U4k

˛

‹

‚

, s “

¨

˚

˝

s1 ´ v1x
˚

...
s4 ´ v4x

˚

˛

‹

‚

.

Since A is a Vandermonde matrix over the field S, A has full rank. Therefore, B can compute
pu1`pk´1q4, . . . , uk4qT “ A´1s. Also, the number of PI queries for simulating the PI queries from C
and computing T is equal to 4. Therefore, the total number of PI queries made by B is 4qs, which
implies B wins the game AOMPRLHF. [\

4.2 Threshold Signatures

FROST1 [KG20] and a more efficient version FROST2 [BCK`22] of FROST1 are (partially) non-
interactive threshold signature schemes as formalized in [BCK`22]. We first give the syntax and
security definitions of non-interactive threshold signature schemes following [BCK`22], then present
new schemes based on LHF that are transformed from FROST1/2, and finally show the security of
the new schemes under the AOMPR assumption.

Syntax. A (partially) non-interactive threshold signature schemes for n signers and threshold t
is a tuple of efficient (randomized) algorithms TS “ pSetup, KeyGen, SPP, LPP, LR,PS,Agg,Vfq
that behave as follows. Parties involved are a leader and n signers. The setup algorithm Setupp1κq

initializes the state sti for each signer i P rns and st0 for the leader and returns a system parameter
par . We assume par is given to all other algorithms implicitly. The key generation algorithm
KeyGenpq returns a public verification key pk, public auxiliary information aux, and a secret key
ski for each signer i.

The signing protocol consists of two rounds: a message-independent pre-processing round and
a signing round. In the pre-processing round, any signer i can run SPPpstiq to generate a pre-
processing token pp, which is sent to the leader, and the leader runs LPPpi, pp, st0q to update
its state st0 to incorporate token pp. In a signing round, for any signer set SS Ď rns with size
t and message m P t0, 1u˚, the leader runs LRpm,SS , st0q to generate a leader request lr with

16

lr .msg “ m and lr .SS “ SS and sends lr to each signer i P SS . Then, each signer i runs PSplr , i, stiq
to generate its partial signature psig i. Finally, the leader computes a signature σ for m by running
Aggptpsig iuiPSS q. In summary, the signing protocol between signers in SS and the leader to sign a
message m P t0, 1u˚ is represented by the following experiment:

pppi, stiq Ð SPPpq , st0 Ð LPPpi, ppi, st0q , for each i P SS ,

plr , st0q Ð LRpm,SS , st0q ,

ppsig i, stiq Ð PSplr , i, stiq , for each i P SS ,

σ Ð Aggptpsig iuiPSS q .

(5)

The (deterministic) verification algorithm Vfppk,m, σq outputs a bit that indicates whether or not
σ is valid for pk and m or not. We say that TS is (perfectly) correct if for any SS Ď rns and any
m P t0, 1u˚, PrrVfppk,m, σqs “ 1, where σ is output from the experiment in (5) and the probability
is taken over the sampling of the system parameter par and the randomness of KeyGen.

Security.A hierarchy for security notions of threshold signatures is proposed in [BCK`22]. Here,
we focus on two of them, TS-SUF-2 and TS-SUF-3, which are achieved by FROST2 and FROST1,
respectively. TS-SUF-2 and TS-SUF-3 require that there exists an efficient strong verification algo-
rithm SVf that takes as input a public key pk, a leader request lr , and a signature σ and outputs
a bit that indicates whether σ is obtained legitimately for lr . SVf satisfies that for each ppk, lrq,
there exists at most one signature σ such that SVfppk, lr , σq “ 1 and for any SS Ď rns and any
m P t0, 1u˚, PrrSVfppk, lr , σqs “ 1, where lr and σ are generated in the experiment in (5) and the
probability is taken over the sampling of the system parameter par and the randomness of KeyGen.
TS-SUF-2 guarantees that an adversary can generate a valid signature σ for m only if it receives
partial signatures from at least t ´ |CS | honest parties for the same leader request lr such that
lr .msg “ m and SVfppk, lr , σq “ 1, where CS denotes the set of corrupted signers.

TS-SUF-3 is defined only for schemes where lr additionally specifies a function lr .PP that maps
each i P lr .SS to a pre-processing token generated by signer i. TS-SUF-3 guarantees that an adver-
sary can generate a valid signature σ for m only if, in addition to the condition of TS-SUF-2, it re-
ceives partial signatures from each honest signer i such that lr .PPpiq is honestly generated by signer
i for lr . Formally, the TS-SUF-2 game and the TS-SUF-3 game are defined in Figure 6, where TS.HF
denotes the space of the hash functions used in TS from which the random oracle is drawn. The
advantage of A for the TS-SUF-X game is defined as Advts-suf-XTS pA, κq :“ Pr

“

TS-SUF-XA
TSpκq “ 1

‰

for X P t2, 3u.

Our Schemes.Figure 7 shows the protocols FROST1-H and FROST2-H that are transformed from
FROST1 and FROST2, respectively. In addition to the general transformation, we need to pick
an injection xp¨q : rns Ñ S. The choice of xp¨q can be arbitrary, and the corresponding Lagrange

coefficient for a set of index S Ď rns and i P S is defined as λS
i :“

ś

jPSztiu
xj

xi´xj
. We analyse the

correctness of the scheme in Appendix A. Also, similar to the multi-signature case, we optimize the
schemes by sampling key shares from Dkey Ď D and setting the hash range to be Shash Ď S.

The following theorems show that, under the AOMPR assumption, FROST2-H is TS-SUF-2-
secure and FROST1-H is TS-SUF-3-secure in the random oracle model. We prove the theorems
using the same techniques from [BCK`22]. The differences from the previous proofs are the same
as those highlighted in the case of multi-signatures in Section 4.1.

Theorem 3. For any TS-SUF-2 adversary A game making at most qs queries to PPO and qh
queries to RO, there exists an AOMPR adversary B making at most 2qs ` t queries to Chal

17

Game TS-SUF-2ATSpκq , TS-SUF-3ATSpκq :

par Ð Setupp1κq ; H Ð$ TS.HF
L Ð H ; S Ð pq ; S1

Ð pq

pm,σq Ð AInit,PPO,PSignO,RO
pparq

If pVfppk,m, σq ‰ 1q then return 0

Return pnot Dlr : lr .msg “ m ^ SVfppk, lr , σq

^ |Splrq| ě t ´ |CS |q

For lr P L do
S1

plrq Ð ti P HS X lr .SS : lr .PPpiq P PPiu

Return pnot Dlr : lr .msg “ m ^ SVfppk, lr , σq

^ |Splrq| ě maxtS1
plrq, t ´ |CS |uq

Oracle InitpCSq :

HS Ð rnszCS
ppk, aux, sk1, . . . , sknq Ð KeyGenpq

For i P HS do
sti.sk Ð ski ; sti.pk Ð pk ; sti.aux “ aux

Return pk, aux, tskiuiPCS

Oracle PPOpiq :

Require: i P HS
ppp, stiq Ð$ SPPpstiq
PPi Ð PPi Y tppu

Return pp

Oracle PSignOpi, lrq :

m Ð lr .msg
Require: lr .SS Ď rns and i P HS
L Ð L Y tlru

ppsig , st1
iq Ð$ PSplr , i, stiq

If ppsig ‰ Kq then
Splrq Ð Splrq Y tiu

Return psig

Oracle ROpxq :

Return Hpxq

Fig. 6. The TS-SUF-2 game and the TS-SUF-3 game for a threshold signature scheme TS. The TS-SUF-2 game
contains all but the dashed box, and the TS-SUF-3 game contains all but the solid box.

running in time roughly equal two times that of A such that

Advts-suf-2FROST2-HrLHFspA, κq ď

b

q ¨
`

Advaompr
LHF pB, κq ` p5q2q{2κ

˘

,

where q “ qh ` qs ` 1.

Theorem 4. For any TS-SUF-3 adversary A making at most qs queries to PPO and qh queries
to RO, there exists an AOMPR adversary B making at most 2qs ` t queries to Chal running in
time roughly equal two times that of A such that

Advts-suf-3FROST1-HrLHFspA, κq ď 4n ¨ q ¨

b

`

Advaompr
LHF pB, κq ` 6q{2κ

˘

,

where q “ qh ` qs ` 1.

4.3 Proof of Theorem 3

LetA be an adversary as described in the theorem. Denote the output message-signature pair ofA as
pm˚, σ˚ “ pR˚, z˚qq. Without loss of generality, we assume A always queries RO on H2ppk,m˚, R˚q

before A returns and always queries RO on H1ppk, lrq prior to the query PSignOpi, lrq for some
i and lr . (This adds up to qs additional RO queries, and we let q “ qh ` qs ` 1.) Denote lr˚ as
the leader query such that H1ppk, lr˚q is the first query prior to the query H2ppk,m˚, R˚q satisfying
SVfppk, lr˚, σ˚q “ true. If such lr˚ does not exists, lr˚ is set to K. Denote the event E1 as

Vfppk,m˚, σ˚q ^ plr˚ “ K _ S2plr˚q ă t ´ |CS|q .

It is clear that if A wins the game TS-SUF-2FROST2-HrLHFs, then E1 must occur, which implies
PrrE1s ě Advts-suf-2FROST2-HrLHFspAq. Therefore, the theorem will follow from the following lemma. (We

18

Setupp1κq :

par Ð$ PGenp1κq

For i P rns do
st0.curPPi Ð H

sti.mapPP Ð pq

Return par

KeyGenpq :

For i P r0..t ´ 1s do
ai Ð$ Dkey

For i P rns do
ski Ð$

řt´1
j“0 aj ¨ xji ; pki Ð Fpskiq

pk Ð Fpa0q

aux Ð ppk1, . . . , pknq

Return pk, aux, tskiuiPr1..ns

SPPpstiq :

r Ð$ D ; s Ð$ D
pp Ð pFprq,Fpsqq

sti.mapPPpppq Ð pr, sq

Return ppp, stiq

LPPpi, pp, st0q :

st0.curPPi Ð st0.curPPi Y tppu

Return st0

LRpM,SS , st0q :

If D i P SS : st0.curPPi “ H then
Return K

lr .msg Ð M ; lr .SS Ð SS
For i P SS do

Pick ppi from st0.curPPi

lr .PPpiq Ð ppi

st0.curPPi Ð st0.curPPiztppiu

Return plr , st0q

Vfppk,m, σq :

pR, sq Ð σ
c Ð H2ppk,m,Rq

Return pFpsq “ R ` c ¨ pkq

CompParppk, lrq :

m Ð lr .msg ; pR˚, s˚
q Ð σ

For i P lr .SS do
di Ð H1ppk, lr , iq

di Ð H1ppk, lrq

pRi, Siq Ð lr .PPpiq
R Ð

ř

iPlr.SSpRi ` diSiq

c Ð H2ppk,M,Rq

Return pR, c, tdiuiPlr.SSq

PSplr , i, stiq :

ppi Ð lr .PPpiq
If sti.mapPPpppiq “ K then

Return pK, stiq
pri, siq Ð sti.mapPPpppiq

sti.mapPPpppiq Ð K

pR, c, tdjujPlr.SSq

Ð CompParpsti.pk, lrq

zi Ð ri ` di ¨ si ` c ¨ λlr.SS
i ¨ sti.sk

Return ppR, ziq, stiq

AggpPS, st0q :

R Ð K ; z Ð 0
For pR1, z1

q P PS do
If R “ K then R Ð R1

If R ‰ R1 then return pK, st0q

z Ð z ` z1

Return ppR, zq, st0q

SVfppk, lr , σq :

pR˚, z˚
q Ð σ

pR, c, tdjujPlr.SSq

Ð CompParpsti.pk, lrq

Return pR “ R˚
q ^

pFpz˚
q “ R ` c ¨ pk

Fig. 7. The protocol FROST1-HrLHFs and FROST1-HrLHFs, where LHF “ pPGen,Fq is a linear hash function family.
The protocol FROST1-H contains all but the dashed box, and the protocol FROST2-H contains all but the solid box.
Further, n is the number of parties, and t is the threshold of the schemes. xp¨q is an injection from rns to S and λlr.SS

i

denotes the Lagrange coefficient which is computed as λlr.SS
i :“

ś

jPSztiu

xj
xj´xi

. Dkey is a subset of D such that F is a

bijection between Dkey and S. The function Hip¨q is computed as Hpi, ¨q for i “ 1, 2, where H : t0, 1u
˚

Ñ S.

isolate this statement as its own lemma also because it will be helpful in the proof of Theorem 4
below.)

Lemma 3. There exists an adversary B for the AOMPRLHF game making at most 2qs ` t queries
to Chal such that

PrrE1s ď

b

q ¨ pAdvaompr
LHF pBq ` 5q2{2κq .

Moreover, B runs in time roughly twice that of A.

19

ForkApxq :

Pick the random coin ρ of A at random
h1, h

1
1, . . . , hq, h

1
q Ð H

pI,Outq Ð Apx, h1, . . . , hq; ρq

If I “ K then return K

pI 1,Out1
q Ð Apx, h1, . . . , hI´1, h

1
I , . . . , h

1
q; ρq

If I ‰ I 1 then return K

Return pI,Out,Out1
q

Fig. 8. The forking algorithm build from A.

To prove Lemma 3, we use the following variant of the forking lemma from [BTZ22].

Lemma 4. Let q ě 1 be an integer, S Ď r1..qs be a set, and H be a set. Let A be a randomized
algorithm that on input x, h1, . . . , hq outputs a pair pI,Outq, where I P tKu Y S and Out is a side
output. Let IG be a randomized algorithm that generates x. The accepting probability of A is defined
as

accpAq “ Prx Ð$ IG,h1,...,hq Ð$ HrpI,Outq Ð$ Apx, h1, . . . , hqq : I ‰ Ks .

Consider algorithm ForkA described in Figure 8. The accepting probability of ForkA is defined as

accpForkAq “ Prx Ð$ IGrα Ð$ ForkApxq : α ‰ Ks .

Then, accpForkAq ě accpAq2{|S|.

Proof (of Lemma 3). We first construct an algorithm C compatible with the syntax in Lemma 4
and then construct B from ForkC . The input of C consists of par that defines a linear hash function
pS,D,R,Fq and uniformly random elements h1, . . . , h2q P Shash. Also, C can access oracles Chal
and PI defined the same as those in the AOMPRLHF game. (We can think of the oracles as part
of the input of C in the context of the Forking Lemma.) For simplicity, when C makes a query
pX,α, tβiuq to PI, we omit the coefficients α, tβiu which are clear from the context. To start with,
C makes 2qs ` t queries to Chal and denotes the challenges as A0,. . . ,At´1, U1, V1, . . . , Uqs ,
Vqs P D. Then, C initializes all the states st0, . . . , stn. In addition, it initializes counters ctrs,ctrh
to 0 and a function dt to an empty table, which are used to record the PI query related to each
pUj , Vjq. C also initializes curLR Ð H to record all leader requests that appears during the game
and initializes ctrPP to an empty table, which are used to record the counter corresponding to each
token generated by honest parties. We also use a flag BadPPO to denote whether a bad event occurs,
which are initially set to false. Then, C runs A with access to the oracles ĆInit, ĆPPO, ČPSignO, ĄRO,
which are simulated as follows.

ĄInitpCS q: C initializes H to an empty table and sets pk Ð A0, pki “
śt´1

j“0Aj ¨ xji for i P rns, and

ski Ð PIppkiq for i P CS . C samples ãi Ð$ Dkey for i P r0..pt ´ 1qs and sets ski Ð
řt´1

j“0 ãjx
j
i for

i P CS . Then, C computes a polynomial fpxq “
řt´1

i“0 µix
i such that µi P D for i P r0..pt ´ 1qs,

fpxiq “ ski ´ ski for i P CS , and fpxiq “ 0 for i P S1, where S1 Ď rns denotes the set of the
first pt ´ |CS |q honest parties. 1 C sets pki Ð pki ` Fpfpxiqq for i P rns. Finally, C returns
(pk,aux “ ppk1, . . . , pknq, tskiuiPCS).

1 Since the degree of f is t and we fix t points of f , f is fixed and we can compute the coefficients of f by solving a
linear equation.

20

ĄRO query H1pxq: If H1pxq ‰ K, C returns H1pxq. Otherwise, parse x as pĂpk, lrq. If the parsing

fails or Ăpk ‰ pk, C sets H1pxq Ð$ Shash and returns H1pxq. Otherwise, C increases ctrh by 1, sets
H1pxq Ð h2ctrh´1, and adds lr to curLR. Also, C computes R Ð

ř

iPlr .SSpRi`h2ctrh´1 ¨Siq, where
pRi, Siq Ð lr .PPpiq. If H2ppk, lr .msg, Rq “ K, C sets H2ppk, lr .msg, Rq “ h2ctrh . In addition,
define mapLRpctrhq :“ lr and set curLR Ð curLR Y tlru. Finally, C returns H1pxq.

ĄRO query H2pxq: If H2pxq ‰ K, C returns H2pxq. Otherwise, parse x as pĂpk, m, Rq. If the parsing

fails or Ăpk ‰ pk, C sets H2pxq Ð$ Shash and returns H2pxq. Otherwise, C increases ctrh by 1 and
sets H2pxq Ð h2ctrh . Finally, C returns H2pxq.

ČPPOpiq query: Same as in the game TS-SUF-2FROST2-H, except in the simulation of algorithm
SPP, C first increases ctrs by 1 and sets pp Ð pUctrs , Vctrsq, sti.mapPPpppq Ð p0, 0q, and
ctrPPpi, ppq Ð ctrs. In addition, BadPPO is set to true if there exists lr P curLR such that
lr .PPpiq “ pUctrs , Vctrsq.

ČPSignOpi, lrq query: Same as in the game TS-SUF-2FROST2-H, except in the simulation of algo-
rithm PS, if sti.mapPPpppq ‰ K, C sets

zi Ð PI
´

Uj ` diVj ` c ¨ λlr .SS
i ¨ pki

¯

,

where j Ð ctrPPpi, lr .PPpiqq. In addition, C sets dtpjq Ð pi, k, di, cλ
lr .SS
i , ziq, where k denotes

the index such that H1ppk, lrq is set to h2k´1 during the simulation.

After receiving the output pm˚, σ˚ “ pR˚, z˚qq from A, C returns K if BadPPO “ true or E1

does not occur. Otherwise, C finds the index I such that H2ppk,m˚, R˚q is set to hI during the
simulation. By our assumption of A, we know such I must exist. Then, C returns pI,Outq, where
Out consists of all variables received or generated by C.
Analysis of C. To use Lemma 4, we define S :“ t2kukPr1..qs and IG as the algorithm that runs
PGenp1κq and outputs par . From the simulation, we know the output index I of C is always in S.

It is not hard to see C simulates the game TS-SUF-2FROST2-H perfectly, which implies accpCq ě

PrrE1s´PrrBadPPOs, where Pr rE1s refers to the probability in the original TS-SUF-2FROST2-HrLHFs

game with A (as in the lemma statement), whereas Pr rBadPPOs is the probability that BadPPO “

true at the end of C’s execution. Since pUj , Vjq is sampled uniformly from R. Therefore, for each
PPOpiq query, the probability BadPPO is set to true is less than |curLR|{|R| ď qh{2κ. Therefore,
we have PrrBadPPOs ď qsqh{2κ. By Lemma 4,

accpForkCq ě pPrrE1s ´ qsqh{2κq2{q ě PrrE1s2{q ´ 2PrrE1sqsqh{p2κ ¨ qq

ě PrrE1s2{q ´ q{2κ .

Construct B from ForkC.We now give a construct of the AOMPR adversary B using ForkC , and
the available Chal and PI oracles. To start with, B receives par from the AOMPRLHF game and
runs ForkCpparq. All the Chal queries from the first execution of C are relayed by B to its own
Chal oracle, and for all the Chal queries from the second execution of C, B answers them with the
same challenges as the first execution. All the PI queries from ForkC are relayed by B to its own PI
oracle. Without loss of generality, we can assume all the challenges are different, since otherwise,
B can solve them trivially. Denote the event BadHash as th1, . . . , h2qu X th1

1, . . . , h
1
2qu ‰ H, where

h1, h
1
1, . . . , h2q, h

1
2q generated in the execution of ForkC are same. Since the hash values are sampled

uniformly from Shash, we know PrrBadHashs ď 4q2{ |Shash| ď 4q2{2κ. Then, we can conclude the
proof with the following claim, which implies

21

Advaompr
LHF pBq ě accpForkCq ´ PrrBadHashs ě PrrE1s2{q ´ 5q2{2κ .

Claim 6 B can win the game AOMPRLHF, if Fork
C returns pI,Out,Out1q and BadHash does not

occur.

[\

Proof (of Claim 6). We directly use the notations in the description of C to denote the variables
in Out and use p¨q1 to denote the variables in Out1. The total number of the Chal queries is t`2qs
and the corresponding challenges are A0, . . . , At´1, U1, V1, . . . , Uqs , Vqs .

We first show how to compute a0, . . . , at´1 such that Fpaiq “ Ai. By the execution of ForkC , we
know ppk,m˚, R˚q “ ppk1,m˚1, R˚1

q and pk “ A0. Since I P S, let k˚ “ I{2. It is not hard to see
that mapLRpk˚q “ lr˚. (If mapLRpk˚q “ K, lr˚ is also K.) Since BadHash does not occur, we have
H2ppk,m˚, R˚q “ hI ‰ h1

I “ H1
2ppk,m˚, R˚q. Since Fpz˚q “ R˚ ` hIA0, Fpz˚1

q “ R˚ ` h1
IA0, we

have Fpz˚ ´ z˚1
q “ phI ´ h1

IqA0 and therefore B computes a0 Ð z˚´z˚1

hI´h1
I
.

Define Tdt :“ tj : pi, k, d, c, zq Ð dtpjq, k “ k˚u. For each j P Tdt XTdt1 , let pi, k, d, c, zq Ð dtpjq

and pi1, k1, d1, c1, z1q Ð dt1pjq, and we have Fpzq “ Uj ` dVj ` c ¨ pki, Fpz1q “ Uj ` d1V d1

j ` c1 ¨ pki1 ,

c “ hIλ
lr˚.SS
i , and c1 “ h1

Iλ
lr˚.SS
i1 . Since BadPPO “ false during both execution of C, we know

pUj , Vjq is returned by a query PPOpiq prior to the query H2ppk,M˚, R˚q during the first execution
of C. Since the two executions of C are exactly the same prior to the query H2ppk,m˚, R˚q, we
know i1 “ i. Also, we know d “ h2k´1 “ h2k˚´1 “ h2k1´1 “ d1, which implies Fpz ´ z1q “

λlr˚.SS
i1 phI ´ h1

Iq ¨ pki. Since hI ‰ h1
I , B computes yi Ð z´z1

λlr˚.SS
i phI´h1

Iq
, which satisfies Fpyiq “ pki.

Denote D :“ tiujPTdtXTdt1 ,pi,k,d,c,zqÐdtpjq. Since E1 occurs in the first execution of C, we know |Tdt| “

|S2plr˚q| ă t ´ |CS|. Therefore, we know |D| “ |Tdt X Tdt1 | ă t ´ |CS|. Therefore, B can pick an
arbitrary set D1 P HSzD with size pt´|CS|´|TdtXTdt1 |´1q and for each i P D1, B sets yi Ð PIppkiq.
Denote Dtot “ CS YDYD1, and we have |Dtot | “ t´ 1 and for each i P Dtot , B knows yi such that
Fpyiq “ pki. Since pki “ Fpfpxiqq ` A0 `

ř

jPrt´1s Aj ¨ xji , denote Dtot “ ti1, . . . , it´1u and we have

M ¨

¨

˝

A1

¨ ¨ ¨

At´1

˛

‚“

¨

˝

Fpyi1 ´ fpxi1q ´ a0q

¨ ¨ ¨

Fpyit´1 ´ fpxit´1q ´ a0q

˛

‚ , where M “

¨

˚

˝

xi1 ¨ ¨ ¨ xt´1
i1

...
. . .

...

xit´1 ¨ ¨ ¨ xt´1
it´1

˛

‹

‚

. (6)

Since M is a Vandermonde matrix, we know M has full rank and thus B can compute a1, . . . , at´1

from (6) such that Fpaiq “ Ai for i P rt ´ 1s. Further, for i P rnszDtot , B computes yi Ð fpxiq `
ř

jPr0..pt´1qs aj ¨ xji , which satisfies Fpyiq “ pki.

We now show how to compute u1, v1, . . . , uqs , vqs such that Fpuiq “ Ui and Fpviq “ Vi. From the
execution of C, we know dtpjq “ pi, k, d, c, zq ‰ K if and only if C queries PI on Uj ` dVj ` c ¨ pki.
Therefore, denote Uj ` dVj ` c ¨ pki as the PI query associated with dtpjq. For each j P qs, there
are the following cases.

Case 0: Both dtpjq and dt1pjq are K. In this case, B computes uj and vj by directly querying oracle
PI on Uj and Vj .

Case 1: Exactly one of dtpjq and dt1pjq is not K. Without loss of generality, assume dtpjq “

pi, k, d, c, zq, which implies Fpzq “ Uj ` dVj ` c ¨ pki. B computes vj by directly querying oracle
PI and computes uj Ð z ´ d ¨ vj ´ c ¨ yi.

22

For all the following cases, both dtpjq and dt1pjq are not K and we denote pi, k, d, c, zq Ð dtpjq and
pi1, k1, d1, c1, z1q Ð dt1pjq.

Case 2: k ‰ k1 or k “ k1 ą k˚. In this case, we know d “ h2k´1 ‰ h1
2k1´1 “ d1 and Fpzq “

Uj ` dVj ` c ¨ pki, Fpz1q “ Uj ` d1Vj ` c1 ¨ pki1 . Therefore, B computes vj Ð
z´c¨yi´z1`c1¨yi1

d´d1 , and
uj Ð z ´ d ¨ vj ´ c ¨ yi.

Case 3: k “ k1 “ k˚. In this case, B computes vj , uj the same as Case 1.

Case 4: k “ k1 ă k˚. B computes vj , uj the same as Case 1. Also, in this case, we have d “ d1 and
c “ c1. Therefore, B queries PI oracle only once in order to simulate the PI queries associated
with dtpjq and dt1pjq.

We now count the number of PI queries made by B.

- B queries PI oracle |CS | times queries for simulating query PIppkiq made by C for each i P |CS |.

- B queries PI oracle |D1| times queries for computing a0, . . . , at´1.

- For each j P qs, B queries PI twice for simulating query associated with dtpjq and dt1pjq and
computing uj and vj in case 0, 1, 2, 4 and queries 3 times in case 3.

Since the condition of case 3 is equivalent to j P TdtXTdt1 , the total number of PI queries made by B
is equal to 2qs`|Tdt X Tdt1 |`|CS |`|D1| “ 2qs`t´1. Therefore, B wins the game AOMPRLHF. [\

4.4 Proof of Theorem 4

Let A be the adversary described in the theorem. Denote the output message-signature pair of A as
pm˚, σ˚ “ pR˚, z˚qq. Without loss of generality, we assume A always queries RO on H2ppk,m˚, R˚q

before A returns and always queries RO on H1ppk, lr , iq prior to the query PSignOpi, lrq for some
i and lr . (This adds up to qs additional RO queries, and we let q “ qh ` qs ` 1.) Denote lr˚ as
the leader query such that H1ppk, lr˚, iq is the first RO query prior to the H2ppk,m˚, R˚q query for
some i satisfying SVfrHsppk, lr˚, σ˚q “ true. If such lr˚ does not exist, lr˚ is set to K. Denote the
event E1 as

VfrHsppk,m˚, σ˚q ^ plr˚ “ K _ S2plr˚q ă t ´ |CS|q .

Denote the event E2 as

VfrHsppk,m˚, σ˚q ^ lr˚ ‰ K ^ S2plr˚q ‰ S3plr˚q .

If A wins the game TS-SUF-3FROST1-H and lr˚ ‰ K, we know either S2plr˚q ă t´ |CS| or S2plr˚q ‰

S3plr˚q. Therefore, if A wins the game TS-SUF-3FROST1-H, then either E1 or E2 occurs, which
implies

Advts-suf-3FROST1-HrLHFspAq ď PrrE1s ` PrrE2s ď 2maxtPrrE1s,PrrE2su .

Thus, we conclude the theorem with the following two lemmas.

Lemma 5. There exists an adversary B for the AOMPRLHF game making at most 2qs ` t queries
to Chal such that

PrrE1s ď

b

q ¨ pAdvaompr
LHF pBq ` 3q2pn ` 1q2{2κq ,

Moreover, B runs in time roughly equal two times that of A.

23

ForkA2 pxq :

Pick the random coin ρ of A at random
h1, . . . , hq Ð H
pI, J,Outq Ð Apx, h1, . . . , hq; ρq

If I “ K then return K

h1
I Ð H

pI 1, J 1,Out1
q Ð

Apx, h1, . . . , hI´1, h
1
I , hI`1, . . . , hq; ρq

If I ‰ I 1 or J ‰ J 1 then return K

Return pI, J,Out,Out1
q

Fig. 9. The forking algorithm build from A.

Lemma 6. There exists an adversary B for the AOMPRLHF making at most 2qs queries to Chal
such that

PrrE2s ď n ¨ q
b

2pAdvaompr
LHF pBq ` 1{2κq .

Moreover, B runs in time roughly equal two times that of A.

This completes the proof of the theorem, subject to proofs of the lemmas that we discuss next.
The proof of Lemma 5 is almost the same as Lemma 3, so we omit the full proof. The only

difference is that C takes as input h1, . . . , hpn`1qq in order to simulate all RO queries. For a RO
query H1ppk, lr , iq, C first enumerates all i1 P rns and assigns hpctrh´1qpn`1q`i1 to H1ppk, lr , i1q. Then,
C computes the nonce R for lr and assigns hctrhpn`1q to H2ppk, lr .msg, Rq if it is not assigned any
value yet. Similarly, for a new RO query H1ppk,M,Rq, its value is set to hctrhpn`1q. The rest follows
by a similar analysis.

To prove Lemma 6, we need the following variant of the forking lemma.

Lemma 7. Let q ě 1 be an integer and H and Q be two sets. Let A be a randomized algorithm
that on input x, h1, . . . , hq outputs a tuple pI, J,Outq, where I P tKu Y r1..qs, J P Q, and Out is a
side output. Let IG be a randomized algorithm that generates x. The accepting probability of A is
defined as

accpAq :“ Prx Ð$ IG,h1,...,hq Ð$ HrpI, J,Outq Ð$ Apx, h1, . . . , hqq : I ‰ Ks .

Consider algorithm ForkA2 described in Figure 9. The accepting probability of ForkA2 is defined as

accpForkA2 q :“ Prx Ð$ IGrα Ð$ ForkApxq : α ‰ Ks .

Then, accpForkA2 q ě accpAq2{pq ¨ |Q|q.

Proof (of Lemma 6). We first construct an algorithm C following the syntax of the algorithm
described in Lemma 7 and then construct B from ForkC . The input of C consists of par that defines
a linear hash function pS,D,R,Fq and uniform random elements h1, . . . , hn¨q P Shash. Similarly to
the proof of Lemma 3, C can oracles Chal and PI oracle and at the beginning, start with, C makes
2qs queries to Chal and denotes the challenges as U1, V1, . . . , Uqs , Vqs P D. Then, C initializes all
the states st0, . . . , stn as in the game TS-SUF-3FROST1-H, and initializes the counters ctrs,ctrh to 0
and the function dt to an empty table. C also initializes ctrPP to an empty table, which are used

24

to record the counter corresponding to each token generated by honest parties. Then, C runs A
with access to the oracles ĆInit, ĆPPO, ČPSignO, ĄRO, which are simulated as follows. In the following
description, we use i to denote the index of parties, j to denote the index of U1, V1, . . . , Uqs , Vqs ,
and k to denote the index of h1, . . . , hn¨q.

ĄInitpCS q: C initializes H to an empty table and samples a0, . . . , at´1 uniformly from Dkey. Define
fpxq :“

řt´1
i“0 aix

i. Then, C sets pk Ð Fpa0q, pki Ð Fpfpxiqq for i P rns, and ski Ð fpiq for
i P CS . Finally, C returns pk,aux “ ppk1, . . . , pknq, tskiuiPCS .

ĄRO query H1pxq: If H1pxq ‰ K, C returns H1pxq. Otherwise, C parses x as pĂpk, lr , ĩq for some

ĩ P r1..ns. If the parsing fails or Ăpk ‰ pk, C sets H1pxq Ð$ Shash and returns H1pxq. Otherwise,
C increases ctrh by 1 and sets H1ppk, lr , iq Ð hnpctrh´1q`i for each i P rns. In addition, let

mapLRpctrhq :“ lr . Then, C computes R Ð
ř

iPlr .SSpRi ` Sdi
i q, where pRi, Siq Ð lr .PPpiq and

di “ H1ppk, lr , iq. If H2ppk, lr .msg, Rq “ K, C sets H2ppk, lr .msg, Rq Ð$ Zp. Finally, C returns
H1pxq.

ĄRO query H2pxq: If H2pxq “ K, C sets H2pxq Ð$ Shash. Then, C returns H2pxq.
ČPPOpiq query: Same as in the game TS-SUF-3FROST1-H, except in the simulation of algorithm

SPP, C first increases ctrs by 1 and sets pp Ð pUctrs , Vctrsq, sti.mapPPpppq Ð p0, 0q, and
ctrPPpi, ppq Ð ctrs.

ČPSignOpi, lrq query: Same as in the game TS-SUF-3FROST1-H, except in the simulation of algo-
rithm PS, if sti.mapPPpppq ‰ K, C computes

zi Ð PI pUj ` diVjq ` c ¨ λlr .SS
i ¨ fpiq ,

where j Ð ctrPPpi, ppq. In addition, C sets dtpjq Ð pk, di, zi ´ cλlr .SS
i ¨ fpiqq, where k denotes

the index such that H1ppk, lr , iq is set to hk during the simulation.

After receiving the output pm˚, σ˚ “ pR˚, z˚qq from A, C returns pK,K,Kq if E2 does not
occur. Otherwise, we know S2plr˚q ą 0 and S2plr˚q ‰ S3plr˚q. Therefore, there exists k˚ and i˚

such that i˚ P S3plr˚qzS2plr˚q and mapLRpk˚q “ lr˚. (Since S2plr˚q Ď S3plr˚q, we must have
S3plr˚qzS2plr˚q ‰ H.) Since i˚ P S3plr˚q, there exists j˚ P r1..qss such that lr˚.PPpi˚q “ pUj˚ , Vj˚q.
If dtpj˚q “ K, C sets J Ð K. Otherwise, let pk, d, zq Ð dtpj˚q and C sets J “ k. Then, C returns
pnpk˚ ´ 1q ` i˚, J,Outq, where Out consists of all variables received or generated by C, including
i˚, j˚, k˚, lr˚.

Analysis of C. To use Lemma 7, we define IG as the algorithm that runs PGenp1κq and outputs
par . The output J is either K or in r1..pn ¨ qqs. It is not hard to see that C simulates the game
TS-SUF-3FROST1-H perfectly, which implies accpCq ě PrrE2s, where Pr rE2s refers to the probability
in the original TS-SUF-3FROST1-H game with A (as in the lemma statement). By Lemma 7,

accpForkC2q ě
PrrE2s2

n ¨ qpn ¨ q ` 1q
ď

PrrE2s2

2n2q2
.

Construct B from ForkC.We now give a construct of the AOMPR adversary B using ForkC , and
the available Chal and PI oracles. To start with, B receives par from the AOMPRLHF game and
runs ForkCpparq. All the Chal queries from the first execution of C are relayed by B to its own
Chal oracle, and for all the Chal queries from the second execution of C, B answers them with the
same challenges as the first execution. All the PI queries from ForkC are relayed by B to its own PI
oracle. Without loss of generality, we can assume all the challenges are different, since otherwise, B

25

can solve them trivially. Denote the event BadHash as hI ‰ h1
I , where I are outputted by the first

execution of C. Since hI , I are independent of h1
I , we know PrrBadHashs ď 1{|Shash| ď 1{2κ. Then,

we can conclude the proof with the following claim, which implies

Advaompr
LHF pBq ě accpForkC2q ´ PrrBadHashs ě

PrrE2s2

2n2q2
´ 1{2κ .

Claim 7 B can win the game AOMPRLHF, if Fork
C returns pI,Out,Out1q and BadHash does not

occur.
[\

Proof (of Claim 7). We directly use the notations in the description of C to denote the variables
in Out and use p¨q1 to denote the variables in Out1. The total number of the Chal queries is 2qs
and the corresponding challenges are U1, V1, . . . , Uqs , Vqs .

We now show how to compute uj , vj for each j P rqss such that Fpuiq “ Ui and Fpviq “ Vi.
There are the following cases.

Case 0: Both dtpjq and dt1pjq are K. In this case, B computes uj , vj by directly querying oracle
PIpUjq and PIpVjq.

Case 1: Exactly one of dtpjq and dt1pjq is not K. Without loss of generality, assume dtpjq “ pk, d, zq,
which implies Fpzq “ Uj `dVj . B computes vj by directly querying oracle PIpVjq and computes
uj Ð z ´ d ¨ vj .

For all the following cases, both dtpjq and dt1pjq are not K and we denote pk, d, zq Ð dtpjq and
pk1, d1, z1q Ð dt1pjq.

Case 2: d ‰ d1. In this case, B computes vj “ z´z1

d´d1 , uj “ z ´ d ¨ vj .
Case 3: d “ d1. In this case, B computes vj , uj the same as Case 1. Also, since d “ d1, B queries

PI oracle only once in order to answer queries PIpUj ` dVjq and PIpUj ` d1Vjq from ForkC .

From the execution of C, we know dtpjq “ pk, d, zq ‰ K if and only if C queries PI on pUj ` dVjq.
Therefore, denote pUj ` dVjq as the PI query associated with dtpjq. For all the above cases, B
queries PI oracle twice for simulating PI queries associated with dtpjq and dt1pjq and computing
uj , vj .

We now show how to compute uj˚ and vj˚ . From the execution of ForkC2 , we know pk “ pk1 and
mapLRpkq “ mapLR1pkq for all k ď I, which implies lr˚ “ mapLRpIq “ mapLR1pIq “ lr˚1. Since
E2 occurs in both executions of C, we know SVfppk, lr˚, pR˚, z˚qq “ true and SVfppk, lr˚, pR˚1, z˚1

qq “

true are valid. Therefore, Fpz˚q “ R˚ ` Fpa0cq, R
˚ “

ř

iPlr˚.SSpRi ` diSiq, g
z˚1

“ R˚1
` Fpa0c

1q,
R˚1

“
ř

iPlr˚.SSpRi ` d1
iSiq, where pRi, Siq “ lr .PPpiq, c “ H2ppk,M˚, R˚q, c1 “ H1

2ppk,M˚, R˚1
q,

and di “ H1ppk, lr˚, iq, d1
i “ H1

1ppk, lr˚, iq. Since for each i ‰ i˚ we have di “ hnpk˚´1q`i “ d1
i, we

have

Fpz˚ ´ z˚1
q “ R˚ ´ R˚1

` Fpa0pc ´ c1qq “ pdi˚ ´ d1
i˚qSi˚ ` Fpa0pc ´ c1qq .

Therefore, C can compute vj˚ “
z˚´z˚1

´a0pc´c1q

di˚ ´d1
i˚

. If J “ K, B computes uj˚ by querying PIpUj˚q

directly. In this case, B queries PI only once to compute uj˚ and vj˚ . If J ‰ K, let pk, d, zq Ð

dtpj˚q “ and pk1, d1, z1q Ð dtpj˚q. Then, B computes uj˚ “ z ´ d ¨ vj˚ . Since i˚ R S2plr˚q, we know
k ‰ I.(Otherwise, suppose k “ I. Since I “ npk˚ ´ 1q ` i˚ and mapLRpk˚q “ lr˚, we know a
PSignOpi˚, lr˚q is made and does not return K during the simulation, which implies i˚ P S2plr˚q.)

26

Game DLogAGGenpκq :

pG, p, gq Ð$ GGenp1κq

Z Ð$ G
z Ð$ ApG, p, g, Zq

If gz “ Z then
Return 1

Return 0

Game RSAA
RGenpκq :

pN, eq Ð$ RGenp1κq

w Ð$ Z˚
N

u Ð$ ApN, e, wq

If ue
“ w then

Return 1
Return 0

Fig. 10. The DLog game and the RSA game.

Thus, we have k1 “ J “ k ‰ I and d “ hJ “ d1, which means B only needs to query PI once
to simulate the PI queries associated with dtpj˚q and dt1pj˚q. Therefore, the total number of PI
queries made by B is equal to 2qs ´ 1, which implies B wins the game AOMDLLHF. [\

5 Instantiations

5.1 Instantiations From the Discrete Logarithm Problem

Discrete Logarithm ProblemThe discrete logarithm problem is formalized by the DLog game
defined in the left side of Figure 10. The group generation algorithm GGenp1κq outputs pG, p, gq,
where G is a cyclic group with prime size p ě 2κ and generator g. The corresponding advantage of
A is defined as AdvdlogGGenpA, κq :“ Pr

“

DLogAGGen “ 1
‰

.

Instantiation Following the instantiation from [HKL19], a linear hash function family GLHF is
instantiated from a group generation algorithm GGen as follows.

- On input 1κ, PGen runs GGenp1κq and receives a group description pG, p, gq. Then, PGen uni-
formly samples Z P G and returns κ Ð pG, p, g, Zq.

- Given κ “ pG, p, g, Zq, define S :“ Zp , D :“ Z2
p , R :“ G . Also, for any px1, x2q P Z2

p, define
Fpx1, x2q :“ gx1Zx2 .

- The operation over D is defined as follows. For any px1, y1q, px2, y2q P D and s P S, px1, y1q `

px2, y2q “ px1 ` x2, y1 ` y2q and s ¨ px1, y1q “ psx1, sy1q.
- The operation overR is defined as follows. For any x1, x2 P R and s P S, x1`x2 “ x1x2 , s¨x1 “

xs1, where x1x2 and xs1 are the group operations of G.

The following theorem shows that GLHF is a linear hash function family and collision resistance
of GLHF is implied by the discrete logarithm assumption. [HKL19] shows similar statements, and
we defer the full proof to Appendix B.1.

Lemma 8. For any group generation algorithm GGen, GLHFrGGens is a linear hash function family
(Definition 1). Moreover, for any adversary A for the CRGLHFrGGens game, there exists an adversary

B for the DLogGGen game such that AdvcrGLHFrGGenspA, κq ď AdvdlogGGenpB, κq.

To instantiate MuSig2-H, FROST1-H, and FROST2-H, we set Dkey :“ tpx, 0q : x P Zu and
Shash :“ S. It is clear that charpSq “ p ě 2κ, F is a bijection from Dkey to R, and |Shash| “ |S| ě 2κ.
Also, for instantiating FROST1-H and FROST2-H, we set xi :“ i.

By combining Theorem 1 and Lemma 8 with the theorems in Section 4, we show the security
of MuSig2-H, FROST1-H, and FROST2-H instantiated from GLHF under the discrete logarithm
assumption in the random oracle model.

27

5.2 Instantiations from the RSA Problem

RSA Problem. The RSA problem we use here is formalized by the RSA game defined on the
right side of Figure 10. The RSA parameter generation algorithm RGenp1κq outputs pN, eq, where
N “ P ¨ Q for two primes P and Q and e is a prime such that gcdpN, eq “ gcdpϕpNq, eq “ 1 such
that ϕpNq ě 2κ and e ě 2κ.2 The corresponding advantage of A is defined as AdvrsaRGenpA, κq :“
Pr

“

RSAA
RGen “ 1

‰

.

Instantiation. To instantiate linear hash function families from the RSA problem, we have to
use a weaker notion, referred to as weak linear hash functions, which are the same as linear hash
functions except that S is only required to be a ring instead of a field. Formally, we construct a
weak linear hash function family, RLHF, from an RSA parameter generation algorithm RGen as
follows.

- On input 1κ, PGen runs RGenp1κq and receives pN, eq. Then, PGen uniformly samples w P Z˚
N

and returns par Ð pN, e, wq.

- Given par “ pN, e, wq, define S :“ Z , D :“ Ze ˆZ˚
N , R :“ Z˚

N . Also, for any pa, xq P Ze ˆZ˚
N ,

define Fpa, xq :“ waxe P Z˚
N .

- The operations of D are defined as follows. For any pa1, x1q, pa2, x2q P D and s P S, pa1, x1q `

pa2, x2q “ pa1 ` a2, x1x2w
tpa1`a2q{euq and s ¨ pa1, x1q “ psa1, x

s
1w

tsa1{euq, where a1 ` a2 and sa1
are computed over Ze.

- The operations ofR are defined as follows. For any x1, x2 P R and s P S, x1`x2 “ x1x2 , s¨x1 “

xs1, where x1x2 is the multiplicative operation over Z˚
N and xs1 is the exponential operation over

Z˚
N . Note here and also in the following discussion, we use “`” to denote the group operation of

R instead of the additive operation over Z and “¨” to denote the scalar multiplicative operation
of R instead of the multiplicative operation over Z.

The preceding instantiation is similar to the one from [HKL19]. The only difference is that we
set S to Z in order to make both D and R to be S-modules. The following theorem shows that
RLHF is a weak linear hash function family and collision resistance of RLHF is implied by the RSA
assumption. We defer the proof to Appendix B.2.

Lemma 9. For any RSA parameter generation algorithm RGen, RLHFrRGens is a weak linear
hash function family. Moreover, for any adversary A for the CRRLHFrRGens game, there exists an
adversary B for the RSARGen game such that AdvcrRLHFrRGenspA, κq ď AdvrsaRGenpB, κq.

Reduction from CR to AOMPR Unfortunately, Theorem 1 does not hold for weak linear hash
functions: in the proof of Claim 1, if S is not a field, it is possible that there does not exist u
satisfying the condition in (2). Nonetheless, we can show for RLHF that the reduction still works.
Formally, we have the following theorem.

Theorem 5. For any adversary A for the AOMPRRLHF game, there exists an adversary B for the
CRRLHF game running in a similar running time as A such that Advaompr

RLHF pA, κq ď 2AdvcrRLHFpB, κq.

Proof (of Theorem 5). We prove the above theorem following the proof of Theorem 1, where the
only difference is that in the proof of Claim 1, we need to show the following fact:

2 Comparing this to the plain RSA problem, here we additionally require that e is prime such that gcdpN, eq “ 1
and e ě 2κ.

28

There exists z˚ P D such that Fpz˚q “ 0, and, for any matrix B P Sℓˆq with ℓ ă q, there
exists a vector u P Sq and i P rqs such that Bu “ 0 and uiz

˚ ‰ 0, where 0 denotes the
identity of D and R and the additive identity of S.

We prove the above fact for RLHF as follows. Given the parameter pN, e, wq that defines pS,D,R,Fq,
the identity of D is p0, 1q, and the identity of R is 1. We first set z˚ “ pe ´ 1, w1´1{eq, where 1{e
denotes the multiplicative inverse of e over ZϕpNq. 1{e exists since gcdpϕpNq, eq “ 1. We can verify

that Fpz˚q “ we´1`ep1´1{eq “ 1. Since ℓ ă q, we can always find a non-zero vector v P Z such
that Bv “ 0 using Gaussian eliminations. Denote k :“ gcdptviuiPrqsq. Let u “ v{k, and we have
gcdptuiuiPrqsq “ 1. Therefore, there exists i P rqs such that ui ı 0 mod e and thus uiz

˚ ‰ p0, 1q.
Since Bu ¨ k “ Bv “ 0 and k ‰ 0, we know Bu “ 0. [\

Solving Linear Equations.Another issue with weak linear hash functions is that it is unclear
how to invert challenges X P R given AX “ Fpbq, where A P Snˆn and b P Dn, which is a common
problem we encounter in the security proofs in Section 4. In these proofs, to solve this problem,
we show A has full rank and then, since S is a field, we can compute x P Dn such that Fpxq “ X
by multiplying the inverse of A on both sides of the equation. However, in the case of weak linear
hash functions, A might not have an inverse.

Fortunately, for RLHF, we show that such linear equations can be solved efficiently if A has full
rank modulo e, which is formally stated in the following lemma.

Lemma 10. For any integer n ě 1 and any parameter par “ pN, e, wq for RLHF, which defines
pS,D,R,Fq, given A P Snˆn, X P Rn, and b P Dn such that A has full rank modulo e and
AX “ Fpbq, there exists an efficient algorithm with input pA,X, bq that outputs x P Dn such that
Fpxiq “ Xi.

Proof. We compute x as follows.

1. Since A has full rank modulo e and e is a prime, we can efficiently compute the inverse of A
modulo e as A1.

2. Set C Ð A1A. Since A1 is the inverse of A modulo e, we know for any i, j P rns, Ci,j ”
#

1 mod e, for i “ j

0 mod e, o.w .
.

3. Set b1 Ð A1b and xi Ð b1
i ´

ř

jPrns tCi,j{eu ¨ p0, Xjq for each i P rns.

Since AX “ Fpbq, we have CX “ A1AX “ A1Fpbq “ FpA1bq “ Fpb1q, which implies Fpb1
iq “

ř

jPrns Ci,jXj “
ś

jPrns X
Ci,j

j . Therefore, due to the above property of C, for i P rns, Fpxiq “

Fpb1
iq ´

ř

jPrns X
etCi,j{eu

j “
ś

jPrns X
Ci,j´etCi,j{eu

j “ Xi. [\

Dkey and Shash.For instantiatingMuSig2-H, FROST1-H, and FROST2-H from RLHF, we set Dkey :“

tp0, xq | x P Z˚
Nu and Shash :“ Z2κ . It is clear that F is bijection from Dkey to R and |Shash| ě 2κ.

5.3 Multi-signatures from RSA

To instantiate MuSig2-H from RLHF, we additionally require that for N “ P ¨ Q, P is a safe prime
and P ą 2κ`1 for the security proof to go through. We discuss how to remove this requirement
later in this section. To show the security, we prove Theorem 2 holds if LHF is replaced by RLHF.

29

Combining it with Theorem 5 and Lemma 9 shows the security of RLHF-based MuSig2-H under the
RSA assumption in the random oracle model.

We now show the proof of Theorem 2 for the case LHF “ RLHF by discussing only those places
that differ from the original proof of Theorem 2.

Proof (of Theorem 2 for RLHF). We follow the original proof of Theorem 2 to construct the
adversary B. Then, we just need to show that Claim 3, Claim 4, and Claim 5 hold.

Proof (of Claim 3 for RLHF). We only need to show that Lemma 2 holds for RLHF, and the rest
is the same as the original proof of Claim 3. Denote r P Z˚

P as the primitive root of Z˚
P . For any

X P Z˚
N “ R, there exists k P Z˚

P´1 such that X ” rk mod P . Suppose k ‰ P 1. For any 1 ď t, s ď

2κ ă P 1 and any 1 ď s ă P 1, we have pXqts ” rkts ı r0 mod P , which implies pX˚qt¨s1 ‰ pX˚qt¨s2

for any distinct s1, s2 P Z2κ “ Shash. Therefore, we have |Cpt,Xq| “ |Shash|. Therefore, X is Good
if X ı rP

1

mod P . Therefore, we have PrX Ð$ RrX is not Goods ď PrX Ð$ Z˚
N

rX ” rP
1

mod P s ď

1{pP ´ 1q ď 1{2κ. [\

Proof (of Claim 4 for RLHF). Following the original proof of Claim 4, we have Fps˚q “ R˚`hI ¨apk˚

and Fps˚1
q “ R˚ ` h1

Iapk
˚, which implies phI ´ h1

Iq ¨ apk˚ “ Fps˚ ´ s˚1
q. Assume h1

I ă hI without
loss of generality. Since hI , h

1
I P Shash “ Z2κ Ď Ze, we have 1 ď hI ´h1

I ă e. Therefore, C1 computes
rx using Lemma 10 for the case n “ 1. [\

Proof (of Claim 5 for RLHF). The total number of Chal queries made by B is 4qs ` 1 and the
corresponding challenges are X,U1, . . . , U4qs . We follow the original proof to show how B computes
x˚, u1, . . . , u4qs such that Fpx˚q “ X and Fpuiq “ Ui for i P r4qss.

To compute x˚, following the original proof, we have Fprxq “ t ¨ h
paggq

Iagg
¨ X ` Z , Fprx1q “

t ¨ h
paggq

Iagg

1

¨ X ` Z, where h
paggq

Iagg
‰ h

paggq

Iagg

1

P Shash “ Z2κ , 1 ď t ď 2κ, and Z P R. Therefore, we

have tph
paggq

Iagg
´ h

paggq

Iagg

1

q ¨ X “ Fprx ´ rx1q. Assume h
paggq

Iagg

1

ă h
paggq

Iagg
without loss of generality. We have

1 ď t ď 2κ ă e and 1 ď ph
paggq

Iagg
´ h

paggq

Iagg

1

q ď 2κ ă e, which implies tph
paggq

Iagg
´ h

paggq

Iagg

1

q ı 0 mod e.
Therefore, B computes x˚ using Lemma 10 for the case n “ 1.

For each k P rqss, to compute u1`4pk´1q, . . . , u4k, following the original proof, we have AU “

Fpsq, where

A “

¨

˚

˝

1 b1 b
2
1 b

3
1

...
...

...
...

1 b4 b
2
4 b

3
4

˛

‹

‚

, U “

¨

˚

˝

U1`4pk´1q

...
U4k

˛

‹

‚

, s “

¨

˚

˝

s1
...
s4

˛

‹

‚

. (7)

Also, bi P Shash “ Z2κ Ď Ze for i P r4s, and b1, . . . , b4 differ from each other. Therefore, A is a
Vandermonde matrix modulo e, which implies A has full rank modulo e. Therefore, B can compute
u1`4pk´1q, . . . , u4k using Lemma 10 for the case n “ 4. Then, the rest follows from the original
proof. [\

Removing the safe-prime requirement.We briefly mention how to remove the safe-prime re-
quirement by slightly modifying MuSig2-H as follows. Denote the modified schemes as MuSig2-HR.
MuSig2-HR is identical to MuSig2-H except:

- In algorithm KeyAggpLq, it additionally computes a0 Ð H1pLq, where H1pLq : t0, 1u˚ Ñ Dkey,
and sets apk Ð Fpa0q `

ř

iPrns aipki.

30

- In algorithm Sign, after s is assigned, it additionally computes a0 Ð c ¨ H1pLq and returns
pR, a0, sq.

- In algorithm SignAggptpRp1q, a
p1q

0 , sp1qq, . . . , pRpnq, a
pnq

0 , spnqquq, it checks if pRp1q, a
p1q

0 q, . . . , pRpnq,

a
pnq

0 q are all the same. If not, it aborts. Otherwise, it returns σ Ð pRp1q, a
p1q

0 `
ř

iPrns s
piqq.

We can show the security of MuSig2-HR following the proof of Theorem 2 for RLHF. The only
difference is the proof of Claim 3, which is also the only place where we need the safe-prime
condition. Claim 3 essentially shows that for any new RO query HaggpL,Ăpkq, the probability that
apk Ð KeyAggpLq collides with the set K of existing aggregated keys is small. We can easily show
it for MuSig2-HR since, for any new L in the random oracle model, H1pLq is uniformly random
over Dkey; thus, apk Ð KeyAggpLq is uniformly random over R even given previous queries, which
implies the collision probability is small.

5.4 Threshold Signatures from RSA

To instantiate FROST1-H and FROST2-H from RLHF, the only difficulty is that the Lagrange
coefficient λS

i might not be defined in S “ Z for S Ď rns. To fix this, we set xi “ i for i P rns and
modify the schemes as follows.

Denote the modified schemes as FROST1-HR and FROST2-HR. Define rλS
i :“ r∆ ¨ λlr .SS

i , where
∆ “ n! and r P Z˚

e is the multiplicative inverse of ∆ modulo e. FROST1-HR/FROST2-HR is identical
to FROST1-H/ FROST2-H except:

- In algorithm PS, the Lagrange coefficient λS
i is replaced by rλS

i , and pR, c, ziq is returned as a
partial signature.

- In algorithm Agg, we additionally set rz Ð z ´ pckq ¨ p0, pkq, where k “ tr∆{eu, and return pR, rzq

as the signature.

It is not hard to show the correctness of the schemes. Since the denominator of λS
i , which is

equal to
ś

jPSpi ´ jq, divides i!pn ´ iq! and thus divides ∆, we know rλS
i P Z. Also, for a leader

request lr , if each signer i in lr .SS follows the protocol to compute the partial signature pR, c, ziq,
we have Fpzq “ R ` pcr∆q ¨ pk, where z “

ř

iPlr .SS zi. Since r is the multiplicative inverse of ∆
modulo e, we have r∆ “ ke ` 1. Since Fp0, pkq “ pke, we have Fprzq “ R ` c ¨ pk, which implies
pR, rzq is a valid signature.

We show the security of FROST2-HR and FROST1-HR under the RSA assumption in the random
oracle model by showing Theorem 3 and Theorem 4 hold for RLHF and combining them with
Theorem 5 and Lemma 9. We now show the proof of Theorem 3 and Theorem 4 for the case
LHF “ RLHF by discussing only those places that differ from the original proofs.

Proof (of Theorem 3 for RLHF). We construct B following the proof of Theorem 4, except the
Lagrange coefficient λlr .SS

i is replaced by rλlr .SS
i . We only need to show Claim 6 holds. The rest

follows from the original proof of Theorem 3.

Proof (of Claim 6 for RLHF). The total number of the Chal queries made by B is t ` 2qs and
the corresponding challenges are A0, . . . , At´1, U1, V1, . . . , Uqs , Vqs . We follow the original proof to
show how B computes a0, . . . , at´1, u1, . . . , uνqs such that Fpaiq “ Ai for i P rts and Fpx˚q “ X and
Fpuiq “ Ui for i P rνqss and only mention the parts that are different.

31

To compute a0, following the original proof, we have Fpz˚ ´ z˚1
q “ phI ´ h1

IqA0. Since hI ‰ h1
I

and hI , h
1
I P Shash “ Z2κ Ď Ze, we have hI ´ h1

I ı 0 mod e. Therefore, B computes a0 using
Lemma 10 for the case n “ 1.

Also, for each i P D, we have Fpz ´ z1q “ rλlr˚.SS
i1 phI ´ h1

Iq ¨ pki. Since rλlr˚.SS
i1 ı 0 mod e, B

computes yi such that Fpyiq “ pki using Lemma 10 for the case n “ 1.

Then, following the original proof, we have (6). Since xi “ i ă e, M is Vandermonde matrix
modulo e and thus M has full rank modulo e. Therefore, B can compute a1, . . . , at´1 by Lemma 10
for the case n “ t ´ 1.

For computing u1, v1, . . . , uqs , vqs , the only difference is in case 2. For computing vj , we have
Fpzq “ Uj `dVj `c ¨pki and Fpz1q “ Uj `d1Vj `c1 ¨pki1 . Therefore, Fpz´z1 ´c ¨yi`c1 ¨yiq “ pd´d1qVj .
Since d ‰ d1 and d, d1 P Ze, B computes vj using Lemma 10 for the case n “ 1. The rest follows
from the original proof. [\

Proof (of Theorem 4 for RLHF). We construct B following the original proof of Theorem 4, except
the Lagrange coefficient λlr .SS

i is replaced by rλlr .SS
i . It is not hard to see Claim 7 holds using

Lemma 10 and similarly as the proof of Claim 6 in the case of RLHF. The rest follows from the
original proof of Theorem 4.

[\

Acknowledgments

We thank the EUROCRYPT 2023 reviewers for their useful comments and feedback. This research
was partially supported by NSF grants CNS-2026774, CNS-2154174, a JP Morgan Faculty Award,
a CISCO Faculty Award, and a gift from Microsoft.

References

AA05. Sattar J. Aboud and Mohammad Ahmed Al-Fayoumi. Two efficient RSA digital multisignature and blind
multisignature schemes. In M. H. Hamza, editor, IASTED International Conference on Computational
Intelligence, Calgary, Alberta, Canada, July 4-6, 2005, pages 359–362. IASTED/ACTA Press, 2005.

ADN06. Jesús F. Almansa, Ivan Damg̊ard, and Jesper Buus Nielsen. Simplified threshold RSA with adaptive and
proactive security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 593–611.
Springer, Heidelberg, May / June 2006.

BBSS18. Matilda Backendal, Mihir Bellare, Jessica Sorrell, and Jiahao Sun. The fiat-shamir zoo: relating the
security of different signature variants. In Nordic Conference on Secure IT Systems, pages 154–170.
Springer, 2018.

BCJ08. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F. Syverson, and Somesh
Jha, editors, ACM CCS 2008, pages 449–458. ACM Press, October 2008.

BCK`22. Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu.
Better than advertised security for non-interactive threshold signatures. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 517–550. Springer, Heidelberg,
August 2022.

BD21. Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of LNCS, pages 650–
678. Springer, Heidelberg, December 2021.

BJ10. Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes based on
RSA. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
480–498. Springer, Heidelberg, May 2010.

32

BLL`21. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021.

BLS01. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg, December 2001.

BN07. Mihir Bellare and Gregory Neven. Identity-based multi-signatures from RSA. In Masayuki Abe, editor,
CT-RSA 2007, volume 4377 of LNCS, pages 145–162. Springer, Heidelberg, February 2007.

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–
215, June 2003.

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer, Heidelberg, January 2003.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62–73. ACM Press, November 1993.

BTZ22. Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive threshold signa-
tures: Bls and frost. Cryptology ePrint Archive, 2022.

CKGW22. Deirdre Connolly, Chelsea Komlo, Ian Goldberg, and Christopher A. Wood. Two-Round Threshold
Schnorr Signatures with FROST. Internet-Draft draft-irtf-cfrg-frost-10, Internet Engineering Task Force,
September 2022. Work in Progress.

DDFY94. Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function securely. In 26th
ACM STOC, pages 522–533. ACM Press, May 1994.

DEF`19. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium on Security and
Privacy, pages 1084–1101. IEEE Computer Society Press, May 2019.

Des88. Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance, editor,
CRYPTO’87, volume 293 of LNCS, pages 120–127. Springer, Heidelberg, August 1988.

DF90. Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.

DF92. Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures (extended abstract).
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 457–469. Springer, Heidelberg,
August 1992.

DK01. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without a trusted dealer. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 152–165. Springer, Heidelberg,
May 2001.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018.

FMY98. Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-key generation. In
Brian A. Coan and Yehuda Afek, editors, 17th ACM PODC, page 320. ACM, June / July 1998.

FS01. Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold RSA under standard assumptions.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 310–330. Springer, Heidelberg,
December 2001.

GGN16. Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16, volume 9696 of LNCS, pages 156–174. Springer, Heidelberg, June 2016.

GHKR08. Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold RSA for dynamic and ad-hoc
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 88–107. Springer,
Heidelberg, April 2008.

GJKR96. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and efficient sharing of
RSA functions. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 157–172. Springer,
Heidelberg, August 1996.

GJKR07. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January 2007.

HK89. L Harn and T Kiesler. New scheme for digital multisignatures. Electronics letters, 25(15):1002–1003,
1989.

33

HKL19. Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from identification
schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 345–375. Springer, Heidelberg, May 2019.

HKLN20. Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures, revisited.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 500–529. Springer, Heidelberg, August 2020.

Ita83a. K. Itakura. A public-key cryptosystem suitable for digital multisignatures. 1983.
Ita83b. K Itakura, K; Nakamura. A public-key cryptosystem suitable for digital multisignatures. NEC research

& development, 1983.
KG20. Chelsea Komlo and Ian Goldberg. Frost: flexible round-optimized schnorr threshold signatures. In Inter-

national Conference on Selected Areas in Cryptography, pages 34–65. Springer, 2020.
KH90. T Kiesler and L Harn. Rsa blocking and multisignature schemes with no bit expansion. Electronics letters,

18(26):1490–1491, 1990.
KM07. Neal Koblitz and Alfred J. Menezes. Another look at “provable security”. Journal of Cryptology, 20(1):3–

37, January 2007.
KM08. Neal Koblitz and Alfred Menezes. Another look at non-standard discrete log and diffie-hellman problems.

J. Math. Cryptol., 2(4):311–326, 2008.
Lin22. Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. Cryptology ePrint

Archive, Paper 2022/374, 2022. https://eprint.iacr.org/2022/374.
LK22. Kwangsu Lee and Hyoseung Kim. Two-round multi-signatures from okamoto signatures. Cryptology

ePrint Archive, Report 2022/1117, 2022. https://eprint.iacr.org/2022/1117.
MM00. Shirow Mitomi and Atsuko Miyaji. A multisignature scheme with message flexibility, order flexibility

and order verifiability. In Australasian Conference on Information Security and Privacy, pages 298–312.
Springer, 2000.

MO`00. Masahiro Mambo, Eiji Okamoto, et al. On the security of the rsa-based multisignature scheme for
various group structures. In Australasian Conference on Information Security and Privacy, pages 352–
367. Springer, 2000.

Natnt. National Institute of Standards and Technology. Multi-Party Threshold Cryptography, 2018–Present.
https://csrc.nist.gov/Projects/threshold-cryptography.

NRS21. Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 189–221,
Virtual Event, August 2021. Springer, Heidelberg.

NRSW20. Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-signatures with
verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1717–1731. ACM Press, November 2020.

Oka88. Tatsuaki Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM
Transactions on Computer Systems (TOCS), 6(4):432–441, 1988.

Oka93. Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Heidel-
berg, August 1993.

Ped92. Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer, Heidelberg, August
1992.

PLL02. Shun-Fu Pon, Erl-Huei Lu, and Jau-Yien Lee. Dynamic reblocking rsa-based multisignatures scheme for
computer and communication networks. IEEE Communications Letters, 6(1):43–44, 2002.

PPKW97. Sangjoon Park, Sangwoo Park, Kwangjo Kim, and Dongho Won. Two efficient rsa multisignature schemes.
In International Conference on Information and Communications Security, pages 217–222. Springer, 1997.

PW23. Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-interactive
assumptions. EUROCRYPT 2023, 2023.

Rab98. Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 89–104. Springer, Heidelberg, August 1998.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, August 1990.

Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

Sho00. Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 207–220. Springer, Heidelberg, May 2000.

34

https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/1117
https://csrc.nist.gov/Projects/threshold-cryp tography

SS01. Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a pt, nq threshold
scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors, ACISP 01, volume 2119 of
LNCS, pages 417–434. Springer, Heidelberg, July 2001.

35

Supplementary Materials

A Correctness of FROST1-H and FROST2-H

For the correctness of the schemes, we just need to show Shamir’s secret sharing scheme works over
D. More precisely, we want to show for any S Ď rns with size t, we have

ÿ

iPS

λS
i ski “ a0 , (8)

where

ski “

t´1
ÿ

j“0

ajx
j
i , λ

S
i “

ź

jPSztiu

xj
xj ´ xi

,

for each i P S and some a0, . . . , at´1 P D.

Claim 8 For any S Ď rns with size t and any integer 0 ď k ă t, we have

ÿ

iPS

λS
i x

k
i “

#

1, k “ 0

0, k ě 0
. (9)

With the above claim, we can show (8) since

ÿ

iPS

λS
i ski “

ÿ

iPS

λS
i

t´1
ÿ

j“0

ajx
j
i

“

t´1
ÿ

j“0

aj
ÿ

iPS

λS
i x

j
i

“

t´1
ÿ

j“0

aj ¨ 1tj “ 0u “ a0 .

Proof (of Claim 8). Define fpxq “ xk. By the polynomial interpolation over the field S, we have

ÿ

iPS

λS
i fpxiq “ fp0q ,

which proves claim. [\

B Proofs for the Instantiations of Linear Hash Functions

B.1 Proof of Lemma 8

Given par “ pG, p, g, Zq output from PGenp1κq that defines pS,D,R,Fq, we need to show

1. D and R are S-modules.
2. F is an epimorphism from D to R but not a monomorphism.
3. The collision resistance of RLHF is implied by the RSA assumption.

36

Part 1. It is clear that D “ G ˆ G and R “ G are Zp-modules.

Part 2. It is easy to verify F is a homomorphism of S-modules, since for any b P S and px1, y1q, px2, y2q P

D,

Fppx1, y1q ` b ¨ px2, y2qq “ Fpx1 ` bx1, y1 ` by2q

“ gx1`bx2Zy1`by2

“ gx1Zx1pgx2Zy2qb

“ Fpx1, y1q ` bFpx2, y2q .

F is epimorphism since for any X P R, we have Fpx, 0q “ X, where x denotes the discrete log of
X to the base g. Denote z as the discrete log of Z to base g, and F is not a monomorphism, since
Fpz,´1q “ gzZ´1 “ g0.

Part 3.For any adversary A for the CRGLHF game, we construct B for the DLog game as follows.
After receiving pG, p, g, Zq, B runs A with input pG, p, g, Zq. If A wins the CRGLHF by outputting
px1, y1q, px2, y2q P D, such that px1, y1q ‰ px2, y2q and Fpx1, y1q “ Fpx2, y2q, we have gx1Zy1 “

gx2Zy2 . Therefore, B can compute z “
y2´y1
x1´x2

and we have gz “ Z.

B.2 Proof of Lemma 9

Given par “ pN, e, wq output from PGenp1κq that defines pS,D,R,Fq, we need to show

1. D and R are S-modules.

2. F is an epimorphism from D to R but not a monomorphism.

3. The collision resistance of RLHF is implied by the RSA assumption.

Part 1. It is clear that R “ Z˚
N is a Z-module. For D, it is not hard to see D are abelian groups.

The unit of D is p0, 1q and for any pa, xq P D, its inverse is p´a, x´1q. R is an abelian group since
Z˚
N is an abelian group.

We show D is S-module, since for any b1, b2 P S and pa1, x1q, pa2, x2q P D,

b1 ¨ ppa1, x1q ` pa2,x2qq “ b1 ¨ pa1 ` a2, x1x2w
tpa1`a2q{euq

“ pb1pa1 ` a2q, px1x2qb1w
b1tpa1`a2q{eu`

Z

b1ra1`a2se
e

^

q

“ pb1pa1 ` a2q, px1x2qb1w

Z

b1petpa1`a2q{eu`ra1`a2se
e

^

q

“ pb1pa1 ` a2q, px1x2qb1wtb1pa1`a2q{euq

“ pb1a1 ` b1a2, px1x2qb1w
tb1a1{eu`tb1a2{eu`

Z

rb1a1se`rb1a2se
e

^

q

“ pb1a1, x
b1
1 wtb1a1{euq ` pb1a2, x

b1
2 wtb1a2{euq

“ b1 ¨ pa1, x1q ` b1 ¨ pa2, x2q ,

37

pb1 ` b2q ¨ pa1, x1q “ ppb1 ` b2qa1, x
b1`b2
1 wtpb1`b2qa1{euq

“ pb1a1 ` b2a1, x
b1`b2
1 w

Z

etb1a1{eu`rb1a1se`etb2a1{eu`rb2a1se
e

^

q

“ pb1a1 ` b2a1, x
b1`b2
1 w

tb1a1{eu`tb2a1{eu`

Z

rb1a1se`rb2a1se
e

^

q

“ pb1a1, x
b1
1 wtb1a1{euq ` pb2a1, x

b2
1 wtb2a1{euq

“ b1 ¨ pa1, x1q ` b2 ¨ pa1, x1q ,

pb1b2q ¨ pa1, x1q “ pb1b2a1, x
b1b2
1 wtb1b2a1{euq

“ pb1b2a1, x
b1b2
1 w

Z

b1petb2a1{eu`rb2a1seq

e

^

q

“ pb1b2a1, x
b1b2
1 w

b1tb2a1{eu`

Z

b1rb2a1se
e

^

q

“ b1 ¨ pb2a1, x
b2
1 wtb2a1{euq

“ b1 ¨ pb2 ¨ pa1, x1qq ,

1 ¨ pa1, x1q “ pa1, x1w
ta1{euq “ pa1, x1q .

Part 2. It is easy to verify F is a homomorphism of S-modules, since for any b P S and pa1, x1q, pa2,
x2q P D,

Fppa1, x1q ` b ¨ pa2, x2qq “ Fpa1 ` ba2, x1x
b
2w

tpa1`ba2q{euq

“ xe1x
be
2 wetpa1`ba2q{euwa1`ba2´etpa1`ba2q{eu

“ xe1x
be
2 wa1`ba2

“ pxe1w
a1qpxb2w

a2qe

“ Fpa1, x1q ` b ¨ Fpa2, x2q .

We use 1{e to denotes the inverse of emodulo ϕpNq. The inverse exists since we assume gcdpe, ϕpNqq

“ 0. Moreover, F is epimorphism since for any x P R, we have Fp0, x1{eq “ x. Also, F is not a
monomorphism, since Fpe ´ 1, w1´1{eq “ 1, where 1 is the identity of R.

Part 3. For any adversary A for the CRRLHF game, we construct B for the RSA game as fol-
lows. After receiving pN, e, wq, B runs A with input pN, e, wq. If A wins the CRRLHF by output-
ing pa1, x1q, pa2, x2q P D, such that pa1, x1q ‰ pa2, x2q and Fpa1, x1q “ Fpa2, x2q. B can compute
u P Z˚

N such that ue “ w as follows. Since Fpa1, x1q “ Fpa2, x2q, we have wa1xe1 “ wa2xe2, which
implies wa1´a2 “ px2{x1qe. If a1 “ a2, we have x2 “ x1, which contradicts with the fact that
pa1, x1q ‰ pa2, x2q. Therefore, we have a1 ‰ a2. Since a1, a2 P Ze, pa1 ´ a2q ı 0 mod e and thus
there exists t P Ze which is the inverse of pa1´a2q modulo e. Then, B sets u “ w´ttpa1´a2q{eupx2{x1qt.
Since tpa1 ´ a2q ” 1 mod e, we have 1 ` e ttpa1 ´ a2q{eu “ tpa1 ´ a2q and thus

ue “ w´ettpa1´a2q{eupx2{x1qte “ w´ettpa1´a2q{eupwpa1´a2qqt “ w .

38

	Threshold and Multi-Signature Schemesfrom Linear Hash Functions

