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Abstract. Differential-linear (DL) cryptanalysis has undergone remarkable advance-
ments since it was first proposed by Langford and Hellman [LH94] in 1994. At
CRYPTO 2022, Niu et al. studied the (rotational) DL cryptanalysis of n-bit modulo
additions with 2 inputs, i.e., �2, and presented a technique for evaluating the (rota-
tional) DL correlation of ARX ciphers. However, the problem of how to automatically
search for good DL trails on ARX with solvers was left open, which is the focus of
this work.
In this paper, we solve this open problem through some techniques to reduce complex-
ity and a transformation technique from matrix multiplication chain to Mixed Integer
Quadratically-Constrained Programs (MIQCP). First, the computational complexity
of the DL correlation of �2 is reduced to approximately one-eighth of the state of art,
which can be computed by a 2 × 2 matrix multiplication chain of the same length as
before. Some methods to further reduce complexity in special cases have been studied.
Additionally, we present how to compute the extended (rotational) DL correlations
of �k for k ≥ 2, where two output linear masks of the cipher pairs can be different.
Second, to ensure that the existing solver Gurobi1 can compute DL correlations
of �2, we propose a method to transform an arbitrary matrix multiplication chain
into a MIQCP, which forms the foundation of our automatic search of DL trails in
ARX ciphers. Third, in ARX ciphers, we use a single DL trail under some explicit
conditions to give a good estimate of the correlation, which avoids the exhaustion
of intermediate differences. We then derive an automatic method for evaluating the
DL correlations of ARX, which we apply to Alzette and some versions of SPECK.
Experimentally verified results confirm the validity of our method, with the predicted
correlations being close to the experimental ones. To the best of our knowledge,
this method finds the best DL distinguishers for these ARX primitives currently.
Furthermore, we presented the lowest time-complexity attacks against 12-14 rounds
of SPECK32 to date.
Keywords: Automatic cryptanalysis · Differential-linear cryptanalysis · ARX ·
SPECK · Alzette

1 Introduction
The two main classes of cryptanalysis are the linear and differential attacks. Differential-
linear (DL) cryptanalysis is to employ two most important cryptanalysis (differential and
linear attacks) to enhance the effectiveness of the individual attacks. Let the cipher be
presented as a composition E = E1 ◦ E0 of two parts. The idea of DL cryptanalysis is
to apply a (truncated) differential attack and a linear attack on the first part E0 and
the second part E1, respectively, and then combine them to a single distinguisher over

1The solver used in this paper is Gurobi, and some ready-made functions in Gurobi are also used, such
as LOG_2 and ABS. The source code is available at https://.
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the cipher. DL cryptanalysis was first proposed by Langford and Hellman [LH94] in
1994 to analyse DES. In recent years, we have witnessed remarkable advancements in the
development of DL cryptanalysis.

Differential-linear Cryptanalysis. The correlation of an ordinary differential-linear
approximation (∆in,Γ) of the vectorial Boolean function E : Fn2 → Fm2 is defined as
Cor(∆in,Γ) = 1

2n
∑
x∈Fn2

(−1)Γ·(E(x)⊕E(x⊕∆in)), where ∆in ∈ Fn2 and Γ ∈ Fm2 . A classic
and trivial analysis method is depicted in Figure 1(a). Let (∆in,∆m) be a differential trail
with probability p, and (γ,Γ) be a linear trial for E1 with correlation q. Then, the overall
correlation of DL distinguisher can be estimated with the piling-up lemma [Mat93] as

Cor = 2× Pr[Γ · (E(x0)⊕ E(y0))]− 1 = pq2, (1)

since Γ · (E(x0)⊕E(y0) can be decomposed into the XOR sum of three terms γ · (E0(x0)⊕
E0(y0)), γ · E0(x0)⊕ Γ · E(x0) and γ · E0(y0)⊕ Γ · E(y0). The above equation relies on
the following two assumptions[LLL21, LSL21].

Assumption 1. E0 and E1 are independent.

Assumption 2. Pr[γ · (E0(x0)⊕ E0(y0)) = 0|E0(x0)⊕ E0(y0) 6= ∆m] = 1
2

However, it has been observed that Assumption 2 may fail in many cases. In [BLN17],
Blondeau et al. presented an exact expression of the correlation in a closed form under
Assumption 1 and found that it is possible to state some explicit assumptions under which
a single DL trail gives a good estimate of the correlation. However, the exact expression is
computationally infeasible due to the need of exhausting all intermediate masks.

(a) The classical analysis of an ordinary
differential-linear distinguisher.

(b) A differential-linear distinguisher
with Differential-linear Connectivity
Table (DLCT). Generally, the correla-
tion of DL trial (∆m, γ), denoted as r,
is determined by experiments.

Figure 1: Differential-linear cryptanalysis
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Table 1: A summary of the results. R-DL = rotational differential-linear, DL = differential-
linear, LC = linear characteristic, DC = differential characteristic, DL(NB) = a distin-
guisher combining DL trail with neutral bit technique of differential propagation. We show
differentials with probabilities and LC/DL/R-DL/DL(NB) with correlations.

Permutation Type Round Probability/Correlation Ref.Theory Exp.

Alzette

R-DL 4 2−11.37 2−7.35 [LSL21]
DL 4 2−0.27 2−0.1 [LSL21]
DC 8 ≤ 2−32 - [BBCdS+20]
LC 8 2−15.79 - [BBCdS+20]
DL 8 −2−8.24 −2−5.50 [NSLL22]
DC 9 ≤ 2−36 - [BBCdS+20]
DC 10 ≤ 2−42 - [BBCdS+20]
DL 8 2−4.14 2−4.06

OurDL 9 −2−10.08 −2−7.60

DL 10 2−11.00 2−10.48

SPECK32

DC 10† 2−34 - [SWW21]
LC 10† 2−17 - [SWW21]
DL 10 2−15.23 2−13.90 [NSLL22]

DL(NB)3 10 −2−11 - [BGG+23]
DC 11† 2−38 - [SWW21]
LC 11† 2−19 - [SWW21]

DL(NB) 11 −2−14 - [BGG+23]
DL 10 −2−13.37 −2−11.58

Our
DL(NB) 10 −2−8.58 -

DL1 11 −2−19.37 −2−17.09

DL1 11 −2−18.37 −2−16.68

DL(NB) 11 −2−12.09 -

SPECK48
DC 11† 2−45 - [SWW21]
LC 11† 2−25 - [SWW21]
DL 11 −2−20.46 −2−17.55 Our

SPECK64

DC 11† 2−42 - [SWW21]
LC 11† 2−24 - [SWW21]
DC 12 † 2−46 - [SWW21]
LC 12 † 2−27 - [SWW21]
DL 11 2−22.13 2−19.44

OurDL 12 2−26.93 -
1 We random chose 28 master keys and compute the average DL correlation by going though the full
plaintext space. For random permutation, the experimental correlation should be about ±2−20.
This information leakage can be used to distinguish 11-round SPECK32 from random functions,
if given the encrypted ciphertext under multiple random keys. Moreover, given sufficient neutral
bits of top short-round differential, it can be converted into a new valid distinguisher for key
recovery, denoted by DL(NB). See Section 2.2 and 5.2 for more details.

2 Entries marked with † is the optimal single differential/linear trail.
3 To compare with the DL trails without using NBs, we regard the correlations of DL(NB) as
p

1
2 rq2, since the data complexity required is O(pr−2q−4).

Aiming at Assumption 1, Bar-On et al. [BODKW19] found that the dependency be-
tween the two subciphers significantly affects the complexity of the DL attack and proposed
Differential-Linear Connectivity Table (DLCT) to take into account the dependency. They
divided the cipher E into three subciphers E0, Em, and E1 such that E = E1◦Em◦E0, and
the middle part Em is experimentally evaluated, as depicted in Figure 1(b). The correlation
of DL trail (∆m, γ) for Em is denoted by r. They assumed that the empirical correlations
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Table 2: The key recovery attacks of reduced-round SPECK32/64. Diff. = differential, ND
= neural distinguisher, GoogLeNet = a distinguisher using GoogLeNet neural network,
DL(NB) = a distinguisher combining DL trails with the neutral bit technique of differential
propagation.

R KeySpace Type Data Time Ref .

12/22 264

Diff.† 230.42 233.84 [BdST+22]
ND† 218.5 243.3 [BGL+23]

GoogLeNet† 225 242.3 [ZWW22]
DL(NB) 219 234 Our

13/22

264
DL(NB) 224 252 [BGG+23]
Diff. 231.13 250.16 [BdST+22]

DL(NB) 219 250 Our

263
ND† 229 251.5 [BGL+23]

GoogLeNet† 231 249.8 [ZWW22]
DL(NB) 225 241 Our

14/22 264 Diff. 260.99 231.75 [BdST+22]
DL(NB) 231 258 [BGG+23]

263 DL(NB) 225 257 Our
1 Entries marked with † (resp. without †) are practical (resp. theoretical)
attacks.

obtained by sampling for a sufficiently large number of messages closely match the actual
correlations. For the DL cryptanalysis of ARX ciphers, Beierle et al. [BLT20] combined
the DL attack with the neutral bit technique for differential part and the partitioning
technique for linear part to further reduce the attack complexity.

Though DLCT can be constructed efficiently using the Fast Fourier Transform, a good
DL trail (∆m, γ) for Em is usually found experimentally at present, which is due to the
huge computation complexity of DLCT. Liu et al. [LLL21] introduced a technique called
Differential Algebraic Transitional Form (DATF) for DL cryptanalysis, where DLCT is no
longer used. The DATF technique is applicable to ciphers with low algebraic degree of
round function, but not to ARX ciphers. The algebraic degree of ARX ciphers is usually
high after only a very few rounds as the carry bit within one modular addition already
reaches almost maximal degree.

For the theoretical estimation of DL correlation in ARX ciphers, Liu et al. [LSL21]
introduced Morawiecki et al.’s technique [MPS13], which is called correlation propagation
of difference bits in this paper, to compute the DL correlations in ARX ciphers. They
presented the so-called rotational DL cryptanalysis and proposed the open problem that
how to compute DL correlation of ARX cihpers with arbitrary output linear masks. To
solve this problem, Niu et al. [NSLL22] introduced a chain of 4× 4 matrix multiplications
to compute the DL correlation of modulo additions with arbitrary output linear masks
and combined this technique with the correlation propagation technique of difference bits
to compute the DL correlation for ARX ciphers. [NSLL22] pointed that the major pain
spot of the current development is that

"there is no effective tool that can automatically search for good DL approximations, and
thus in practice the search space is severely limited to low Hamming weight output masks."

In this paper, we partially solve this open problem through some techniques to reduce
complexity and a transformation technique from matrix multiplication chain to MIQCP.

ARX ciphers and differential/linear cryptanalysis. ARX is an abbreviation for addition
(modulo a power of two), word-wise rotation and XOR, and ARX ciphers are generally
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efficient in software since the above three operations have underlying hardware support in
almost all general-purpose processors. For differential and linear attack, the algorithms to
efficiently compute differential probability and linear correlation of modulo additions were
presented in [LM01] and [Wal03], respectively. Now, there are quite powerful tools (e.g.,
MILP, SAT, or SMT) to analyze ARX primitives[FWG+16, SWW21].

Our Contributions. This paper achieves the automatic search of DL trails in ARX
ciphers step by step, and has three main contributions.

(1) Extended (rotational) differential-linear cryptanalysis of �k for k ≥ 2 and the
round function in ARX ciphers. The computational complexity of the DL correlation
of �2 is reduced to approximately one-eighth of [NSLL22], which can be computed by a
simple chain of 2× 2 matrix multiplications. Furthermore, we reduced the computational
complexity in special cases, such as when the DL correlation is equal to 0 or ±1. What’s
more, we presented how to compute the extended (rotational) differential-linear correlation
of �k for k ≥ 2, where the two output linear masks of the left and right branches are
different. To verify our results, we have conducted experiments under all extended DL
approximations on the 4-bit additions �4

2 and �4
3. The results confirm the effectiveness of

our approach.

(2) Transformation from Arbitrary Matrix Multiplication Chain to MIQCP. To ensure
that the existing solver can compute DL correlation of �2, we proposed a method to
transform an arbitrary matrix multiplication chain into the Mixed Integer Quadratically-
Constrained Programs (MIQCP), which serves as the foundation of our automatic search
of DL trails in ARX ciphers. This technique has significant potential. For instance,
when used in automatic searching for linear approximations of �3, the above method can
accurately compute the correlation of linear approximations, whereas the widely used
method currently splits �3 into two �2 operations, which yields a less precise value.

(3) An automatic search algorithm for DL trails in ARX ciphers and its application.
In ARX ciphers, we use a single DL trail under some explicit conditions to give a good
estimate of the correlation. We then developed an automatic method for evaluating the
DL correlation of ARX ciphers, which we applied to Alzette and some versions of SPECK.
The improved results were experimentally verified to confirm the validity of our method,
with the predicted correlations being close to the experimental ones. To the best of our
knowledge, this method finds the best differential-linear distinguishers for these ARX
primitives. Additionally, we presented the lowest time-complexity attacks against 12-14
rounds of SPECK32 to date.

Outline. In Section 2, we introduce notations and preliminaries for DL cryptanalysis.
In Section 3, we presented the extended (rotational) DL cryptanalysis of �k for all k ≥ 2
and the round function in ARX ciphers. In Section 4, we proposed a method to transform an
arbitrary matrix multiplication chain into MIQCP and an automated method of searching
for DL trials in ARX ciphers. In Section 5, the above method is applied to Alzette and
some versions of SPECK, and all improved results are experimentally verified. Section 6
concludes the paper with some open problems.

2 Notations and Preliminaries

The notations we use in this paper are summarised in Table 3.



6
A MIQCP-Based Automatic Search Algorithm for Differential-Linear Trails of ARX

Ciphers

Table 3: Notations.
Symbol Description
Floor(x) The maximum integer not larger than x.

�nk (x0, . . . , xk−1)
The addition function �nk (x0, . . . , xk−1) = (x0 + · · ·+ xk−1) mod 2n.
When n is clear from the context, it is written as �k for simplicity.
�nk (x0, . . . , xk−1) is also called n-bit modulo addition or addition modulo 2n.

�nk,dJc(x0, . . . , xk−1)

The addition function �nk,dJc(x0, . . . , xk−1) = (x0 + · · ·+ xk−1 + c) mod 2n.
c and d are called as the initial carry and the most significant carry, respectively.
Here x0 + · · ·+ xk−1 + c = d2n +�nk,dJc(x0, . . . , xk−1) and c, d ∈ {0, 1, . . . , k − 1}.
Similarly, �nk,∗Jc(x0, . . . , xk−1) = (x0 + · · ·+ xk−1 + c) mod 2n
and there is no requirement for the most significant carry.

ĉa(x0, x1, ..., xk−1) The most significant carry of addition,
i.e., ĉa(x0, x1, ..., xk−1) = Floor((x0 + · · ·+ xk−1 + a)/2n).

x[i] The i-th bit of x, written as xi for simplicity.
xn−1 (resp. x0) is the most (resp. least) significant bit of x.

HIndex(x) The integer such that x[j] = 0 for HIndex(x) < j < n and x[HIndex(x)] = 1.
bxc(t) The least significant t bits of x, i.e., (xt−1, ..., x0)
dxe(t) The most significant t bits of x, i.e., (xn−1, ..., xn−t)
x≪ t Rotation of x by t-bit to the left, written as ←−x for simplicity.
x≫ t Rotation of x by t-bit to the right, written as −→x for simplicity.
· The inner product of two vectors.

#X The size of a set X .
HW (x) The Hamming weight of x.
BW (x) The bit width of x.

Pr[x = 0] Probability that x equals 0.
x‖y Concatenation operation. xn−1 is the most significant bit of the new binary string.

0t/1t/∗t A vector with t zeros (resp. ones/∗).
Here ∗ indicates that there is no limit, i.e., the bit can be either 1 or 0.

A[x, y] The entry of matrix A in row x and column y, written as Ax,y for simplicity.
|x| The absolute value of x.

In this paper, the input differences and output masks are represented in hexadecimal.

2.1 Preliminaries
Lemma 1 (Piling-up Lemma [Mat93]). Let X0, X2, · · · , Xn−1 be n independent binary
random variables with Pr[Xi = 0] = pi. Then, it holds that

2Pr[X0 ⊕ · · · ⊕Xn−1 = 0]− 1 =
n−1∏
i=0

(2pi − 1).

Definition 1 (Correlation [BLN17, Mat93]). Let (λ0, λ1) be a linear approximation of
Boolean function f : Fn2 → F2. The correlation of the linear approximation (λ0, λ1) is
defined as

Corf (λ0, λ1) = 2−n
∑
x∈Fn2

(−1)λ
0·x⊕λ1·f(x)

.

When f is clear from the context, we may denote Cor(λ0, λ1) as the correlation of
linear approximation (λ0, λ1).

Definition 2 (Extended Rotational Differential-Linear (ERDL) Correlation). Let S :
Fn2 → Fm2 be a vectorial Boolean function. Denote an extended rotational differential-linear
approximation of S by (t, α, λ0, λ1). Then the correlation is defined as

Cor(t, α, λ0, λ1) = 1
2n
∑
x∈Fn2

(−1)λ
0·(S(x)≪t)⊕λ1·S((x≪t)⊕α), (2)
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where t, α ∈ Fn2 and λ0, λ1 ∈ Fn2 are the rotational offset, rotational difference and output
linear masks of the extended rotational differential-linear approximation, respectively.

Equation (2) is a generalization of the (rotational) differential-linear cryptanalysis
[LSL21] and the extended differential-linear cryptanalysis [CY21]. When λ0 = λ1, Equation
(2) computes the ordinary rotational differential-linear correlation [LSL21, NSLL22] of S,
denoted by Cor(t, α, λ0). When t = 0, Equation (2) computes the extended differential-
linear correlation [CY21] of S, denoted by Cor(α, λ0, λ1). When λ0 = λ1 and t = 0,
Equation (2) computes the ordinary differential-linear correlation [LH94, BODKW19] of
S, denoted by Cor(α, λ0).

In addition, Equation (2) is the definition of the correlation of a DL approximation,
which specifies only the input differences and output masks. In this paper, the correlation
of a DL approximation is estimated by one DL trail with the same input differences and
output masks, where the DL trail additionally specifies the intermediate differences or
linear masks relative to the DL approximation.

Though this paper focuses on the automated search of differential-linear trails of ARX,
we present a complete extended (rotational) differential-linear cryptanalysis of the primitive
�k for k ≥ 2 in Section 3.

2.2 Improvement upon the DL Distinguisher—Neutral Bit
Let us be given a cipher E : Fn2 → Fn2 . This section explains how to use a DL approximation
with advantage slightly less than 2−n2 to construct an effective distinguisher, as long as
sufficient neutral bits are given. This shows that DL trails with advantage less than 2−n2
may be of great significance for recovering keys.

This section reviews neutral bit technique of differential propagation [BLT20, BGL+23]1,
which can reduce the required data complexity O(p−2r−2q−4) to O(p−1r−2q−4). In a
usual DL attack on a permutation E : Fn2 → Fn2 as explained in Figure 1(b), we divide
the cipher E into three subciphers E0, Em, and E1 such that E = E1 ◦ Em ◦ E0. Let
(∆in,∆m) be a differential trail of E0 with probability p, and (∆m,Γ) be a DL trial for
E1 ◦ Em with correlation rq2, i.e., (∆in,Γ) is one DL trail of E with correlation prq2.
Generally, the attacker can distinguish the cipher E from a random permutation by
preparing O(p−2r−2q−4) chosen plaintexts.

The following is the definition of neutral bits of a differential. It indicates that we can
use one neutral bit generate another one confirming pair from one known confirming pair
at no cost.

Definition 3 (Neutral bits of a differential (NB) [BC04]). Let ei = 0x1 ≪ i ∈ Fn2 .
A differential of E is denoted by (∆in,∆out), and the input plaintext pair and output
ciphertext pair of E are denoted by (p, p′) and (c, c′), respectively. If p ⊕ p′ = ∆in and
c⊕ c′ = ∆out, (p, p′) is said to confirm the differential (∆in,∆out). The i-th bit is called a
NB for the differential ∆in

E−→ ∆out if (p ⊕ ei, p′ ⊕ ei) is also a confirming pair for any
confirming pair (p, p′).

Definition 4 (Probabilistic NB (PNB) [AFK+08]). Let ei = 0x1≪ i ∈ Fn2 . The i-th bit
is a p-PNB of the differential (∆in,∆out) if (P ⊕ ei, P ′ ⊕ ei) conforms to the differential
with probability p for any confirming pair (P, P ′).

We call the probability p the neutral probability of PNBs. In sequel attacks, the higher
the probability p is, the higher the neutrality quality, and the more useful the neutral bit
becomes.

1 In [BLT20] and [BGL+23], neutral bit technique has different names. For clarity, we call it neutral
bit technique of differential propagation in this paper. Note that there is also a technology called the
neutral bit technique of linear part in [BLT20]. Only the neutral bit technique of differential propagation
is used in this paper.
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Definition 5 (Conditional (simultaneous-) NB(-set)s (CSNBS) [BGL+23]). Let Is =
i1, i2, · · · , is be a set of indices. Denote fIs = ⊕i∈Isei. Let C be a set of constraints on
the value of an input p, and let PC be the set of inputs that fulfill the constraints C. The
bit-set Is is called a CSNBS for the differential ∆in → ∆out, if for any conforming pair
(p, p′|p ∈ PC), (p⊕ fIs , p′ ⊕ fIs) is also a conforming pair.

To amplify the correlation of DL trail (∆in,Γ), let us be given m neutral bits of the
differential (∆in,∆m). If 2m > r−1q−2, the DL distinguisher (∆in,Γ) would work as
follows:

1. Randomly generate a pair of plaintext (x0, x
′
0), where x′0 = x0⊕∆in. Then we use m

neutral bits to generate 2m pairs of plaintext X = {(x0, x
′
0), (x1, x

′
1) . . . (x2m−1, x

′
2m−1)}.

2. Use the cipher E encrypt X and compute

Cor = 1
2m

∑
0≤i<2m

(−1)Γ·(E(xi)⊕E(x′i)).

3. If we observe a correlation of rq2 using 2m pairs, the distinguisher succeeded.
Otherwise, start over with Step 1.

Note that 2m > r−1q−2. With probability p, all plaintext pairs of X make the output
difference of E0 be ∆m. In that case, the distinguisher succeeds in step 3. Thus, the data
complexity of (∆in,Γ) required is O(p−1r−2q−4) instead of O(p−2r−2q−4).

In this paper, the differential-linear trails that can use neutral bit technique to reduce
data complicity are called DL(NB) for short. The core idea of DL(NB) is to perform
statistical analysis on all ciphertexts that ensure the establishment of the top short-round
differential trail. To compare with the DL trails without using NBs, we regard the
correlations of DL(NB) as p 1

2 rq2, since the data complexity required is O(pr−2q−4). The
availability of a DL(NB) is simultaneously determined by the probability of a prepended
short-round differential, the correlation of the bottom DL trail and the number of neural
bit(-set)s. However, for a sole differential-linear distinguisher, the availability is only
determined by the whole correlation. Thus, the differential-linear (DL) distinguisher
utilizing neutral bits, also known as DL(NB), can be viewed as a novel type of distinguisher.
All DL(NB)s used in this paper are listed in Table 6.

3 Differential-Linear Cryptanalysis of �k and the Round
Function of ARX ciphers

First of all, we study the extended differential-linear cryptanalysis of additions with k
inputs for k ≥ 2, i.e., �k. Specially, we reduce the computational complexity of ordinary
differential-linear correlation of �2 to one-eighth of [NSLL22]. Some methods to further
reduce complexity in special cases, e.g., the DL correlation is equal to 0 or ±1, have been
studied. We also present the extended rotational differential-linear cryptanalysis of �k for
k ≥ 2. See Appendix B for more details.

The above focus on the analysis of modulo additions. Second, we further studied how to
compute the extended differential-linear correlation of round function S(x0, x1, ..., xk−1) =
(�k(x0, x1, ..., xk−1), x1, x2, ..., xk−1), which is widely used in ARX.

3.1 Extended Differential-linear Correlation of �k
In the following, we study how to compute the correlation of extended differential-linear
approximation of n-bit modulo addition with k inputs, i.e., �k. This paper reduces the
computational complexity of ordinary differential-linear correlation of �2 to one-eighth of
[NSLL22]. Note that Definition 6 used two additions. Moreover, we investigate the case
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where the initial carries of two additions analyzed are a, b ∈ {0, 1, ..., k − 1}, respectively.
We replace the two functions S used in formula 2 by �k,∗Ja and �k,∗Jb. For clarity, we
present the definition of EDL correlation for modulo additions.

Definition 6. Let k > 1 be an integer and (α0, ..., αk−1, λ0, λ1) be an extended DL
approximation of �nk with initial carries a, b ∈ {0, . . . , k − 1}. Here α0, ..., αk−1 ∈ Fn2 and
λ0, λ1 ∈ Fn2 are the input differences and output masks, respectively. Then the extended
differential-linear correlation is defined as

Cor ∗Ja
∗Jb

(α0, ..., αk−1, λ0, λ1) = 1
2kn

∑
xi∈Fn2 ,0≤i<k

(−1)
λ0·�k,∗Ja(x0,x1,...,xk−1)⊕

λ1·�k,∗Jb(x0⊕α0,x1⊕α1,...,xk−1⊕αk−1) .

Theorem 1. Let k > 1 be a fixed integer and (α0, ..., αk−1, λ0, λ1) be an extended DL
approximation of �nk with initial carries a, b ∈ {0, . . . , k−1}. Denote the carry and residue
functions by

F : Fk2 × {0, ..., k − 1} → {0, ..., k − 1}, F (x, y) = Floor((HW (x) + y)/2),
R : Fk2 × {0, ..., k − 1} → {0, 1}, R(x, y) = (HW (x) + y) mod 2,

respectively. Let l = k2, L be the row vector of dimension l with all entries equal to 1, and
C be the column vector of dimension l with a single 1 at the (a× k + b)-th row and zero
otherwise. Let A0, ..., A2k+2−1 be the l × l matrices and are defined as

(Ar)c×k+d,e×k+f = 1
2k [#{x ∈ Fk2 : Λ0 ·R(x, e)⊕ Λ1 ·R(x⊕ δ, f) = 0, F (x, e) = c}

−#{x ∈ Fk2 : Λ0 ·R(x, e)⊕ Λ1 ·R(x⊕ δ, f) = 1, F (x⊕ δ, f) = d}]

for Λ0,Λ1, δ0, . . . , δk−1 ∈ F2 and each c, d, e, f ∈ {0, 1, ..., k − 1}, where r = Λ02k+1 +

Λ12k +
k−1∑
j=0

δj2j and δ = δ0‖δ1 . . . ‖δk−1. Let z = zn−1‖...‖z1‖z0 be defined as zi =

λ0
i 2k+1 + λ1

i 2k +
k−1∑
j=0

αji2j. Then the correlation can be computed as

Cor ∗Ja
∗Jb

(α0, ..., αk−1, λ0, λ1) = LAzn−1 . . . Az1Az0C.

Proof. Let the inputs of two n-bit modulo additions be (x0, . . . , xk−1) and (y0, . . . , yk−1),
respectively. For 0 ≤ i < n, there hold that xi, yi ∈ Fn2 and yi = xi ⊕ αi. We set the least
significant carry (initial carry) c00 = a and c10 = b. Then the carries c0i , c1i and the sums
s0
i , s

1
i with i = 0, ..., n− 1 are defined as follows

s0
i = R(x0

i ‖x1
i ...x

k−1
i , c0i ), c0i+1 = F (x0

i ‖x1
i ...x

k−1
i , c0i ),

s1
i = R(y0

i ‖y1
i ...y

k−1
i , c1i ), c1i+1 = F (y0

i ‖y1
i ...y

k−1
i , c1i ).

For j = 1, ..., n, let
bj =

j−1
⊕
i=0

(λ0
i · s0

i ⊕ λ1
i · s1

i ).

Let P (z, j) be the column vector

P (z, j)c×k+d = Pr[bj = 0, c0j = c, c1j = d]− Pr[bj = 1, c0j = c, c1j = d]

for j = 1, ..., n and 0 ≤ c, d < k. For P (z, 1), by the definition of Ar, we have

P (z, 1) = Az0C.
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Let M(z, j) be the l × l matrix defined as

M(z, j)c×k+d,e×k+f = Pr[λ0
j · s0

j ⊕ λ1
j · s1

j = 0, c0j+1 = c, c1j+1 = d|c0j = e, c1j = f ]
− Pr[λ0

j · s0
j ⊕ λ1

j · s1
j = 1, c0j+1 = c, c1j+1 = d|c0j = e, c1j = f ],

for j ∈ {0, ..., n− 1}.
We denote (c0j , c1j) and (c0j−1, c

1
j−1) by G and H, respectively. Then P (z, j)c×k+d for

j > 1 can be computed as
p(z, j)c×k+d = Pr[bj = 0, G = (c, d)]− Pr[bj = 1, G = (c, d)]

=
1∑
h=0

(−1)h Pr[bj = h,G = (c, d)]

=
1∑
h=0

(−1)h
∑

06e,f<k

1∑
v=0

Pr[bj = h,G = (c, d)|bj−1 = v,H = (e, f)] Pr[bj−1 = v,H = (e, f)]

=
1∑
h=0

(−1)h
∑

06e,f<k

1∑
v=0

Pr[λ0
j−1s

0
j−1 ⊕ λ

1
j−1s

1
j−1 = h⊕ v,G = (c, d)|bj−1 = v,H = (e, f)] Pr[bj−1 = v,H = (e, f)]

=
1∑
h=0

(−1)h
∑

06e,f<k

1∑
v=0

Pr[λ0
j−1s

0
j−1 ⊕ λ

1
j−1s

1
j−1 = h⊕ v,G = (c, d)|H = (e, f)] Pr[bj−1 = v,H = (e, f)]

=
∑

06e,f<k

1∑
v=0

Pr[bj−1 = v,H = (e, f)]
1∑
h=0

(−1)h Pr[λ0
j−1s

0
j−1 ⊕ λ

1
j−1s

1
j−1 = h⊕ v,G = (c, d)|H = (e, f)]

t=h⊕v=
∑

06e,f<k

[
1∑
t=0

(−1)t Pr[λ0
j−1s

0
j−1 ⊕ λ

1
j−1s

1
j−1 = t, G = (c, d)|H = (e, f)]

]
×

[
1∑
v=0

(−1)v Pr[bj−1 = v,H = (e, f)]

]
=
∑

06e,f<k

M(z, j − 1)c×k+d,e×k+f × P (z, j − 1)e×k+f

Then we have
P (z, j) = M(z, j − 1)P (z, j − 1).

On the other hand, we have

LP (z, n) =
∑

0≤c,d<k
(Pr[bn = 0, c0n = c, c1n = d]− Pr[bn = 1, c0n = c, c1n = d])

= Pr[bn = 0]− Pr[bn = 1] = Cor ∗Ja
∗Jb

(α0, ..., αk−1, λ0, λ1).

Since Azi = M(z, i), it follows that

Cor ∗Ja
∗Jb

(α0, ..., αk−1, λ0, λ1) = LAzn−1 . . . Az1Az0C.

Note that the functions F and R are the carry and residue functions for the basic
school-book method for additions with k binary inputs and one input carry. And e, f and
c, d are the input carries and the output carries of �1

k,cJe and �1
k,dJf . Under fixed input

differences and output masks, the (Ar)c×k+d,e×k+f is the differential-linear correlation of
�1
k,cJe and �1

k,dJf .
This correlation of an extended differential-linear trail of addition modulo 2n with k

inputs can thus be computed by doing matrix multiplication n times and a sum operation.
For a fixed k, this is a linear-time algorithm to compute the correlation of extended DL
trails for �nk .

Next, we investigate the case where k = 2 and λ0 = λ1 to further reduce the computa-
tional complexity.
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Lemma 2. Let the input differences and output mask of two 1-bit modulo additions, �2,∗Je
and �2,∗Jf , be α0, α1 ∈ F2 and λ ∈ F2, respectively. Here e, f ∈ F2. Let the inputs of two
modulo additions are (x0, x1) and (y0, y1), respectively. Denote the sums, input carries and
output carries of two �1

2 by s0, s1, c00, c10 and c01, c11, respectively. We set c, d, e, f, u, w ∈ F2.
Let M(α0, α1, λ) be the 4× 4 matrix defined as

M(α0, α1, λ)c×2+d,e×2+f =
1∑
v=0

(−1)v Pr[λ · (s0 ⊕ s1) = v, c01 = c, c11 = d|c00 = e, c10 = f ],

and N(α0, α1, λ) be the 2× 2 matrix defined as

N(α0
j , α

1
j , λj)u,w =

1∑
v=0

(−1)v Pr[λ · (s0 ⊕ s1) = v, c01 ⊕ c11 = u|c00 ⊕ c10 = w].

When w = e⊕ f , for fixed e, f, u and w, there holds∑
c,d∈F2
c⊕d=u

M(α0, α1, λ)c×2+d,e×2+f = N(α0, α1, λ)u,w.

Proof. Computing all matrices M and N under all (α0, α1, λ) ∈ F3
2 gives the proof.

Theorem 2. Let (α0, α1, λ) be an ordinary DL approximation of �n2 with initial carries
a, b ∈ F2. Denote the carry and residue functions by

F : F2
2 × {0, 1} → {0, 1}, F (x, y) = Floor((HW (x) + y)/2),

R : F2
2 × {0, 1} → {0, 1}, R(x, y) = (HW (x) + y) mod 2,

respectively. Let L be [1, 1], and C be the column vector of dimension 2 with a single 1 at
the (a⊕ b)-th row and zero otherwise. Let B0, ..., B7 be the 2× 2 matrices and are defined
as

(Br)u,w =
1
23 [#{(x, e) ∈ F2

2 × F2 : Λ · (R(x, e)⊕R(x⊕ δ, e⊕ w)) = 0, F (x, e)⊕ F (x⊕ δ, e⊕ w) = u}

−#{(x, e) ∈ F2
2 × F2 : Λ · (R(x, e)⊕R(x⊕ δ, e⊕ w)) = 1, F (x, e)⊕ F (x⊕ δ, e⊕ w) = u}]

for Λ, δ0, δ1, u, w ∈ F2, where r = Λ×4+
1∑
j=0

δj×2j and δ = δ0‖δ1. Let z = zn−1‖...‖z1‖z0

be defined as zi = λi× 4 +
1∑
j=0

αji × 2j for 0 ≤ i < n. Then the correlation can be computed
as

Cor(α0, α1, λ, a, b) = LBzn−1 . . . Bz1Bz0C.

Proof. For simplicity, the notations bj , M(z, j) and P (z, j) in the proof of Theorem 1 are
used here.

Let N(z, j) be the 2× 2 matrix defined by

N(z, j)u,w = Pr[λj · (s0
j ⊕ s1

j ) = 0, c0j+1 ⊕ c1j+1 = u|c0j ⊕ c1j = w]
− Pr[λj · (s0

j ⊕ s1
j ) = 1, c0j+1 ⊕ c1j+1 = u|c0j ⊕ c1j = w],

for j ∈ {0, ..., n− 1}, and Q(z, j) be the column vector

Q(z, j)u = Pr[bj = 0, c0j ⊕ c1j = u]− Pr[bj = 1, c0j ⊕ c1j = u]
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for j = 1, ..., n and u ∈ F2. For Q(z, 1), according to the definition of Br and Lemma 2,
we have

Q(z, 1) =

 ∑
c,d∈F2
c⊕d=0

M(α0, α1, λ)c×2+d,e×2+f ,
∑
c,d∈F2
c⊕d=1

M(α0, α1, λ)c×2+d,e×2+f


T

= [N(α0
0, α

1
0, λ0)0,e⊕f , N(α0

0, α
1
0, λ0)1,e⊕f ]T

= N(z, 0)C = Bz0C.

Then Q(z, j)u for j > 1 and u ∈ F2 can be computed as

Q(z, j)u =
∑
c,d∈F2
c⊕d=u

P (z, j)c×2+d

Thm. 1=
∑

c,d,e,f∈F2
c⊕d=u

M(z, j − 1)c×2+d,e×2+f × P (z, j − 1)e×2+f

=
∑
w∈F2

∑
c,d∈F2
c⊕d=u

∑
e,f∈F2
e⊕f=w

M(z, j − 1)c×2+d,e×2+f × P (z, j − 1)e×2+f

=
∑
w∈F2

∑
e,f∈F2
e⊕f=w

 ∑
c,d∈F2
c⊕d=u

M(z, j − 1)c×2+d,e×2+f

× P (z, j − 1)e×2+f

Lemma 2=
∑
w∈F2

(N(z, j − 1)u,w)×

 ∑
e,f∈F2
e⊕f=w

P (z, j − 1)e×2+f


=
∑
w∈F2

N(z, j − 1)u,w ×Q(z, j − 1)w.

Then we have
Q(z, j) = N(z, j − 1)Q(z, j − 1).

On the other hand, we have

LQ(z, n) =
∑
u∈F2

(Pr[bn = 0, c0n ⊕ c1n = u]− Pr[bn = 1, c0n ⊕ c1n = u])

= Pr[bn = 0]− Pr[bn = 1] = Cor ∗Ja
∗Jb

(α0, α1, λ).

According the definition of Bzi and N(z, i), we have Bzi = N(z, i) and

Cor ∗Ja
∗Jb

(α0, α1, λ) = LBzn−1 . . . Bz1Bz0C.

Compared with [NSLL22] that gives the method to compute ordinary DL correlation
for �n2 , Theorem 1 is a generalization of the method of [NSLL22], which presents the
method to compute extended DL correlation for �nk with k ≥ 2. Theorem 2 show that
the correlation computation of ordinary DL trails of n-bit modulo additions with 2 inputs
can be completed by a chain of 2 × 2 matrix multiplications instead of 4 × 4 matrix
multiplications proposed by [NSLL22], which reduces the computational complexity of
ordinary DL correlation of �2 to approximately 1

8 . Using Theorem 2 we get the following
matrices for �2.
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B0 = 1
2

[
2 1
0 1

]
B1 = B2 = 1

2

[
1 1
1 1

]
B3 = 1

2

[
1 0
1 2

]
B4 = 1

2

[
2 −1
0 −1

]
B5 = B6 = 1

2

[
−1 1
−1 1

]
B7 = 1

2

[
1 0
1 −2

]
Theorem 1 was verified by computing the correlations of all extended DL approximations

for 4-bit modulo additions with 2 and 3 inputs, i.e., �4
2 and �4

3. An analogous method
was used to verify Theorem 2. See the source code provided by this paper for more details.
Following corollaries about extended DL correlation of �k will reduce the computational
complexity in some cases.

Corollary 1. Let n ≥ 1 be an integer and (α0, ..., αk−1, λ0, λ1) be an extended differential-
linear approximation of n-bit modulo additions with initial carries a, b ∈ {0, 1, ..., k − 1}.
For a fixed integer t with (n − t) ≥ 1, let (bα0cn−t, ..., bαk−1cn−t, bλ0cn−t, bλ1cn−t) be
a extended differential-linear approximation of (n − t)-bit modulo additions with initial
carries a, b. If dλ0et = dλ1et = 0t, it holds

Cor�n
k
,∗Ja
∗Jb

(α0, ..., αk−1, λ0, λ1) = Cor
�

(n−t)
k

,∗Ja
∗Jb

(bα0cn−t, ..., bαk−1cn−t, bλ0cn−t, bλ1cn−t).

Proof.

Cor�n
k
,∗Ja
∗Jb

(α0, ..., αk−1, λ0, λ1) =
1

2kn
∑

xi∈Fn2 ,0≤i<k

(−1)
λ0·�n

k
(x0,x1,...,xk−1)⊕

λ1·�n
k

(x0⊕α0,x1⊕α1,...,xk−1⊕αk−1)

dλ0et=dλ1et=0t
= 1

2k(n−t)

∑
xi∈Fn−t2 ,0≤i<k

(−1)

bλ0cn−t·b�
n−t
k

(x0,x1,...,xk−1)cn−t⊕

bλ1cn−t·b�
n−t
k

(x0⊕α0,x1⊕α1,...,xk−1⊕αk−1)cn−t

= Cor
�

(n−t)
k

,∗Ja
∗Jb

(bα0cn−t, ..., bαk−1cn−t, bλ0cn−t, bλ1cn−t)

Corollary 1 indicates that dαiet for 0 ≤ i < k will not affect the extended DL correlation
if dλ0∨λ1et = 0t. The following corollary can further simplify the computation of ordinary
DL correlation of �k for k ≥ 2. Corollary 2 shows that if the input differences and output
mask satisfy a particular form, it is free to know that the ordinary DL correlation of �nk is
±1.

Corollary 2. Let (α0, . . . , αk−1, λ) be an ordinary differential-linear approximation of
�nk . For a fixed integer t ∈ {0, 1, ..., n − 1}, if dλet = 0t and bαicn−t−1 = 0n−t−1 for
0 ≤ i < k − 1, it holds that the ordinary DL correlation Cor(α0, . . . , αk−1, λ) = ±1.

Proof. Denote the two additions by s0 and s1, respectively. If bαicn−t−1 = 0n−t−1 for
0 ≤ i < k − 1, there hold that

bs0cn−t−1 = bs1cn−t−1,

s0
n−t−1 ⊕ s1

n−t−1 =
k−1∑
i=0

αin−t−1.

Due to Corollary 1, we have
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Cor(α0, . . . , αk−1, λ) = Cor(bα0cn−t, . . . , bαk−1cn−t, bλcn−t)

= 1
2k(n−t)

∑
xi∈F(n−t)

2 ,0≤i<k

(−1)bλcn−t·(bs
0cn−t⊕bs1cn−t)

= 1
2k(n−t)

∑
xi∈F(n−t)

2 ,0≤i<k

(−1)
λn−t−1·(

k−1∑
i=0

αin−t−1)

= ±1

3.2 Computing the Differential-linear Correlation of the Round Func-
tion of ARX ciphers

In this section, we use the results in previous sections and Morawiecki’s technique [MPS13]
to compute the DL correlations of round functions of ARX ciphers. For simplicity, we call
Morawiecki’s technique as the correlation propagation technique of difference bits.

To apply Morawiecki’s technique for evaluating the DL correlations, we studied how
to compute the extended DL correlation of the building block S(x0, x1, ..., xk−1) =
(�k(x0, x1, ..., xk−1), x1, x2, ..., xk−1) for k ≥ 2 with the knowledge of Pr[xji ⊕ yji = 1]
for all 0 ≤ i < n and 0 ≤ j < k. We remark that a similar method can be used to
compute the extended rotational DL correlation of the building block S(x0, x1, ..., xk−1).
Let (α0, ..., αk−1) be the input differences of an DL approximation of S(x0, x1, ..., xk−1). In
Morawiecki’s technique, the prerequisite is that the events αij = 1 are mutually independent
for all 0 ≤ j < n and 0 ≤ i < k [LSL21, NSLL22].

Theorem 3. Let k > 1 be a fixed integer and (α0, ..., αk−1, λ0, λ1) be an extended DL
approximation of �nk . Let Pr[αij = 1] = pij for all i ∈ {0, ..., k − 1} and j ∈ {0, ..., n− 1}.
The events αij = 1 are mutually independent for all 0 ≤ j < n and 0 ≤ i < k. Let l = k2,
L be the row vector of dimension l with all entries equal to 1, and C be the column vector
of dimension l with a single 1 at the 0-th row and zero otherwise. Then the correlation,
denoted by Cor(α0, ..., αk−1, λ0, λ1), can be computed as

Cor(α0, ..., αk−1, λ0, λ1) = LHn−1 . . . H1H0C,

where Hi is a l × l matrix and is defined as

Hi =
∑

β∈{0,1,...,2k−1}
β=βk−1‖...β1‖β0

∏
j∈{0,1,..,k−1}

[
(1− βj)− (−1)βjpji

]
Aλ0

i
2k+1+λ1

i
2k+β

Proof. Note that z = zn−1‖...‖z1‖z0 be the word associated with one trail, where zi =

λ0
i 2k+1 + λ1

i 2k +
k−1∑
j=0

αji2j . Due to that the events αij = 1 are mutually independent for all
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0 ≤ j < n and 0 ≤ i < k, we have

Cor(α0, ..., αk−1, λ0, λ1)

=
∑

(α0,...,αk−1)∈Fkn2

Pr[InputDiff. = (α0, ..., αk−1)]Cor(α0, ..., αk−1, λ0, λ1)

=
∑

(α0,...,αk−1)∈Fkn2

∏
i∈{0,...,n−1}

∏
j∈{0,1,..,k−1}

[
(1 − αji ) − (−1)α

j
i pji

]
× Cor(α0, ..., αk−1, λ0, λ1)

=
∑

(α0,...,αk−1)∈Fkn2

L
∏

i∈{0,...,n−1}

∏
j∈{0,1,..,k−1}

[
(1 − αji ) − (−1)α

j
i pji

]
AziC

= L
∏

i=∈{0,...,n−1}

 ∑
β∈{0,1,...,2k−1}

∏
j∈{0,1,..,k−1}

[
(1 − βji ) − (−1)β

j
i pji

]
Aλ0

i
2k+1+λ1

i
2k+β

C.

Corollary 3. Let (α0, α1, λ0, λ1) be an extended differential-linear approximation of �n2
with initial carries a, b ∈ F2. Let Pr[αij = 1] = pij for all i ∈ {0, 1} and j ∈ {0, ..., n− 1}.
The events αij = 1 are mutually independent for all 0 ≤ j < n and 0 ≤ i < 2. Let
h = HIndex(λ0 ∨ λ1). Then the correlation, denoted by Cor(α0, α1, λ0, λ1), will be 0 if
p0
h = 0.5 or p1

h = 0.5.

Proof. According to Corollary 1, the most significant (n− h− 1) bits of α0, α1, λ0 and λ1

do not affect the Cor(α0, α1, λ0, λ1).
For p0

h = 0.5, according to Theorem 3, it holds that

Hh =
∑

β∈{0,1,2,3}

∏
j∈{0,1}

[
(1− βj)− (−1)βjpjh

]
Aλ0

h
23+λ1

h
22+β

= 0.5× p1
h × (Aλ0

h
23+λ1

h
22+0 +Aλ0

h
23+λ1

h
22+1)+

0.5× (1− p1
h)× (Aλ0

h
23+λ1

h
22+2 +Aλ0

h
23+λ1

h
22+3).

Let L (resp. L̄) be the row vector of dimension 4 with all entries equal to 1 (resp. 0).
When (λ0 ∨ λ1)h = 1, according to the matrices Azi with zi ≥ 4 in Appendix A, it holds
that

LHh = 0.5× p1
h × L(Aλ0

h
23+λ1

h
22+0 +Aλ0

h
23+λ1

h
22+1)+

0.5× (1− p1
h)× L(Aλ0

h
23+λ1

h
22+2 +Aλ0

h
23+λ1

h
22+3)

= 0.5× p1
h × L̄+ 0.5× (1− p1

h)× L̄
= L̄

.

Thus, it holds that

Cor(α0, α1, λ0, λ1) = LHn−1 . . . H1H0C = LHh . . . H1H0C = L̄Hh−1 . . . H1H0C = 0.

Similarly, one can derive the conclusion for p1
h = 0.5, and we omit the details.

Theorem 3 only considers the DL cryptanalysis of modulo additions. Next, we will study
the computation of extended DL correlation of a general function S(x0, x1, ..., xk−1) =
(�k(x0, x1, ..., xk−1), x1, x2, ..., xk−1), which is a basic building block of ARX ciphers.

Lemma 3. Let (α0, α1, ..., αk−1, λ0, λ1) be one extended differential-linear approxima-
tion of S(x0, x1, ..., xk−1) = (�k(x0, x1, ..., xk−1), x1, x2, ..., xk−1) with xi, αj ∈ Fn2 for
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0 ≤ i, j < k and λ0, λ1 ∈ Fkn2 . Here bλ0ckn−n = bλ1ckn−n. Then the correlation
CorS(α0, α1, ..., αk−1, λ0, λ1) can be computed as

CorS(α0, α1, ..., αk−1, λ0, λ1) = L

[
n−1∏
i=0

(−1)(λ1
i+(k−2)n,λ

1
i+(k−3)n,...,λ

1
i )·(α

1
i ,...,α

k−1
i

)Azi

]
C,

where

zi = λ0
i+(k−1)n2k+1 + λ1

i+(k−1)n2k +
k−1∑
j=0

αji2
j .

Proof. Let the inputs of those two S be (x0, . . . , xk−1) and (y0, . . . , yk−1), respectively.
Let yi = xi ⊕ αi for 0 ≤ i < k. Denote �k(x0, ..., xk−1) and �k(y0, ..., yk−1) by s0 and s1,
respectively. Then we have

CorS(α0, α1, ..., αk−1, λ0, λ1)

= 1
2kn

∑
xi∈Fn2 ,06i<k

(−1)λ
0·S(x0,...,xk−1)⊕λ1·S(y0,...,yk−1)

= 1
2kn

∑
xi∈Fn2 ,0≤i<k

(−1)dλ
0en·s0⊕dλ1en·s1⊕bλ1ckn−n·(α1,...,αk−1)

= (−1)bλ
1ckn−n·(α1,...,αk−1) × Cor�n

k
(α0, α1, ..., αk−1, dλ0en, dλ1en).

Here Cor�n
k
(α0, α1, ..., αk−1, dλ0en, dλ1en) is the correlation of DL approximation

(α0, α1, ..., αk−1, dλ0en, dλ1en) of�nk . Applying Theorem 1 to Cor�n
k
(α0, α1, ..., αk−1, dλ0en, dλ1en)

gives the proof.

Lemma 3 studied the extended differential-linear cryptanalysis of S under fixed input
differences (α0, ..., αk−1). Next, Lemma 3 and Corollary 1 lead to the following generaliza-
tion of Theorem 3, where the events αij = 1 are mutually independent for all 0 ≤ j < n
and 0 ≤ i < k.

Corollary 4. Let (α0, ..., αk−1, λ0, λ1) be one extended differential-linear approximation of
S(x0, ..., xk−1) = (�k(x0, ..., xk−1), x1, x2, ..., xk−1) with xi, αj ∈ Fn2 for 0 ≤ i, j < k and
λ0, λ1 ∈ Fkn2 . Here bλ0ckn−n = bλ1ckn−n. Let Pr[αij = 1] = pij for all i ∈ {0, ..., k − 1}
and j ∈ {0, ..., n − 1}. The events αij = 1 are mutually independent for all 0 ≤ j < n

and 0 ≤ i < k. For a fixed integer t with (n − t) ≥ 1, let dλ0et = dλ1et = 0t. Then the
correlation CorS(α0, ..., αk−1, λ0, λ1) can be computed as

CorS(α0, ..., αk−1, λ0, λ1) = LHn−t−1 . . . H1H0C × (−1)
k−1
⊕
j=1

(λ1
n×(k−j)−1,...,λ

1
n×(k−j)−t)·dα

jet

,

where Hi is a k2 × k2 matrix for 0 ≤ i < n− t and is defined as

Hi =
∑

β∈{0,1,...,2k−1}

[
(−1)(λ1

i+(k−2)n,λ
1
i+(k−3)n,...,λ

1
i )·bβck−1 ×

∏
j∈{0,1,..,k−1}

[
(1− βj)− (−1)βj pji

]
×Aλ0

i+(k−1)n2k+1+λ1
i+(k−1)n2k+β

]
Proof. Applying Theorem 3, Lemma 3 and Corollary 1 give the proof.

4 Automatic Search for Differential-linear Trails of ARX
Ciphers

This section intends to search ordinary DL trails of ARX ciphers with existing solvers.
The solver used in this paper is Gurobi. First, we study how to compute the correlation
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of DL trails of �k with current existing solver, which is the foundation of our automatic
search of DL trails in ARX ciphers. Second, in ARX ciphers, we use a single DL trail
under some explicit conditions to give a good estimate of the correlation. Then, we further
simplify the correlation calculation of DL trails in ARX ciphers to ensure that the search
of differential-linear trails can be solved by the solver.

4.1 The Transformation from Matrix Multiplication Chain to MIQCP
This section study that how to compute an arbitrary matrix multiplication chain with
current existing solver. Taking differential cryptanalysis and linear cryptanalysis as
examples, the differential probability and the linear approximation correlation of �k for
k ≥ 2 can be computed by using a chain of matrix multiplications[LM01, Wal03, NW06].
However, at FSE 2016, Fu et al. [FWG+16] used a Boolean function and a compact finite
automaton to compute the differential probability and the linear approximation correlation
of �2, respectively. To our knowledge, there is no good method to solve the problem that
using existing solvers to compute an arbitrary matrix multiplication chain, and it is still
an open problem to directly model differential propagation and linear approximation of
�k for k > 2 with current existing solvers. For example, in the automatic search of linear
approximations of �3, the usual method is to split �3 into two �2, and these two �2 are
modeled separately with existing solvers. Thus, the final estimation is approximate but
not accurate. In this section, we focus on transforming an arbitrary matrix multiplication
chain into a Mixed Integer Quadratically-Constrained Programs (MIQCP), which can be
handled by current existing solvers.

Next, we take the correlation computation of an ordinary DL approximation of �2
(Theorem 2) as an example to introduce our method. The notations of the proof of Theorem
2 is used here. There are three steps to transform an arbitrary matrix multiplication chain
into a MIQCP.

Step 1: Convert all entries of matrices to integers.
First, it is trivial to have

Cor ∗Ja
∗Jb

(α0, α1, λ) = 1
2nLB

′
zn−1

. . . B′z1
B′z0

C,

where B′zi = 2 × Bzi for all 0 ≤ i < n. Let Q′(z, i) = 2j × Q(z, i). Q′(z, i) and B′zi are
used as intermediate dummy variables in the MIQCP model.

Step 2: Model the relationship between all entries of matrices, input dif-
ferences and output masks.

All entries of B′zi are determined by zi, where zi = λi × 4 +
1∑
j=0

αji × 2j . Let B′zi [x, y]

be the entry of matrix B′zi in row x and column y. It is necessary to describe all possible
(B′zi [x, y], λi, α0

i , α
1
i ) patterns for all (x, y) ∈ F2

2 and 0 ≤ zi < 8. A convex hull of a finite
set P [z, i, x, y] = {(B′zi [x, y], λi, α0

i , α
1
i ) : λi, α0

i , α
1
i ∈ F2} is the smallest convex set that

contains P [z, i, x, y], denoted by Conv(P [z, i, x, y]). There are two methods to model the
relationship according to whether Conv(P [z, i, x, y]) = P [z, i, x, y] or not.

Case 1. P [z, i, x, y] = Conv(P [z, i, x, y]) As described in [SHW+14], using the inequal-
ity_generator() function in the sage.geometry polyhedron class of the SAGE Computer Al-
gebra System can generate the linear inequalities to describe all points in Conv(P [z, i, x, y]).
For binary vectors, [SHW+14] presented a method to exclude one arbitrary point without
influence other points. Lemma 4 models an arbitrary subset of Fn2 with finite inequalities.

Lemma 4 ([SHW+14]). For any subset X ⊆ Fn2 , denote one point of X by (x0, . . . , xn−2, xn−1) ∈
X. For a given point δ = (δ0, δ1, ..., δn−1) ∈ Fn2 and δ /∈ X, then all points of X but δ
satisfy

∑n−1
i=0 [δi + (−1)δixi] ≥ 1.
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Theorem 4 ([BJ72, SHW+14]). Assume that x ∈ Fn2 and Conv(X) is the convex hull of
a set X ⊆ Fn2 . Then X = Conv(X).

Theorem 4 showed that for X ⊆ Fn2 , it holds that Conv(X) = X. However, since the
values of B′zi [x, y] are integers, not binaries, convex hull Conv(P [z, i, x, y]) may contain
redundant points apart from P [z, i, x, y].

Case 2. P [z, i, x, y] $ Conv(P [z, i, x, y]) If P [z, i, x, y] $ Conv(P [z, i, x, y]), we will
use the following method to describe all possible (B′zi [x, y], λi, α0

i , α
1
i ) patterns accurately.

Lemma 5. Let P be a subset of integer set Z and be denoted as P = {p0, ..., pt−1 : pi ∈ Z}.
For any subset X ⊆ {P × Fn−1

2 }, denote a point of X by (y, xt, xt+1, . . . , xn+t−2). For a
given point δ = (δ0, δ1, ..., δn−1) /∈ X, where δ0 ∈ P and δi ∈ F2 for 0 < i < n, let ∆ ∈ Ft2
be the one-hot code decoding (t-bit vector) of δ0, i.e., δ0 =

∑t−1
i=0[∆i×pi] and

∑t−1
i=0 ∆i = 1.

Let x0, x1, . . . , xt−1 be the intermediate dummy bit variables. Then all points of X but δ
satisfy { ∑t−1

i=0[∆i + (−1)∆ixi] +
∑n−1
i=1 [δi + (−1)δixi+t−1] ≥ 1∑t−1

i=0 xi = 1,
∑t−1
i=0[xi × pi] = y

.

Proof. Here (x0, x1, ..., xt−1) is the one-hot code format of y, and each y has a unique
bit vector (x0, x1, ..., xt−1). Only excluding the point δ from P × Fn−1

2 is converted to
excluding the point (∆0,∆1, . . . ,∆t−1, δ1, ..., δn−1) from Fn+t−1

2 . Then, using Lemma 4
gives the proof.

Using above method, the relationship between all entries of matrices, input differences
and output masks can be accurately described without any redundant points.

Step 3: Compute Q′(z, i) for 1 ≤ i ≤ n step by step.
Since the highest algebraic degree of the equation supported by Gurobi is 2, we use

the method of introducing intermediate variables Q′(z, i) and B′zi to complete the matrix
multiplication chain step by step. We have Cor ∗Ja

∗Jb
(α0, α1, λ) = 1

2nLQ
′(z, n), and Q′(z, i)

can be computed by adding the following equation to the MIQCP model.

Q′(z, i+ 1)[x] =
∑
y∈F2

B′zi [x, y]Q′(z, i)[y] for all x ∈ F2, 0 ≤ i < n

Ordinary Differential-linear Model of �n2 . For the n-bit modular addition opera-
tion �n2 , we use α and β to stand for the input differences and denote the output mask as λ.
Let B′0, B′1 . . . B′n−1 be 2× 2 integer matrices and Q′0, Q′1 . . . Q′n be 2-dimensional integer
column vectors. We denote the integer of matrix B′i in row x and column y (resp. the
integer of Q′i in row x) by B′i[x, y] (resp. Q′i[x]). Then the correlation of DL approximation,
i.e., Cor(α, β, λ), can be computed as

Cor(α, β, λ) = (Q′n[0] +Q′n[1])/2n

if and only the values of α, β, λ validate all the assertions listed below.
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Q′0[0] = 1, Q′0[1] = 0
−1 ≤ B′i[0, 0] ≤ 2,−1 ≤ B′i[0, 1] ≤ 1
−1 ≤ B′i[1, 0] ≤ 1,−2 ≤ B′i[1, 1] ≤ 2
−2i+1 ≤ Q′i+1[0] ≤ 2i+1,−2i+1 ≤ Q′i+1[1] ≤ 2i+1

−B′i[0, 0] − βi ≥ −2
B′i[0, 0] − 2αi − 2βi ≥ −3
B′i[0, 0] + αi + βi + 2λi ≥ 2
B′i[0, 0] + 3αi + 3βi ≥ 2
−B′i[0, 0] + 2αi − 3βi − 2λi ≥ −4
−B′i[0, 0] − 3αi + 2βi − 2λi ≥ −4

−B′i[0, 1] − αi − βi ≥ −2
B′i[0, 1] − 2αi + βi ≥ −1
B′i[0, 1] + αi − 2βi ≥ −1
B′i[0, 1] + αi + 2λi ≥ 1
−B′i[0, 1] + 2αi + 2βi − 2λi ≥ −1

B′i[1, 0] + αi + βi ≥ 0
2B′i[1, 0] − αi − βi + 3λi ≥ 0
B′i[1, 0] − 2αi − 2βi ≥ −3
−B′i[1, 0] − αi + 2βi − 2λi ≥ −2
−2B′i[1, 0] + αi + βi − λi ≥ −1
−B′i[1, 0] + 2αi − βi − 2λi ≥ −2

−B′i[1, 1] + 2αi + 2βi − 2λi ≥ −1
B′i[1, 1] + 3αi − 2βi ≥ −1
B′i[1, 1] + βi + 2λi ≥ 1
B′i[1, 1] − 2αi + 3βi ≥ −1
−2B′i[1, 1] + αi + βi − λi ≥ −2
−B′i[1, 1] − 3αi − 3βi − 4λi ≥ −8
B′i[1, 1] − αi − βi + 4λi ≥ 0

Q′i+1[0] = B′i[0, 0] ×Q′i[0] +B′i[0, 1] ×Q′i[1]
Q′i+1[1] = B′i[1, 0] ×Q′i[0] +B′i[1, 1] ×Q′i[1]



0 ≤ i < n

To be clear, the above is the implementation of ordinary DL model of additions �n2 in
Gurobi. Moreover, we provide a Gurobi sample at

https://
for computing the correlations of ordinary DL approximations of modulo additions with
arbitrary output linear masks.

In addition, there is a problem in implementing above method with Gurobi. Since
in Gurobi [Gur22] the range of integer variables is from −231 to 231, the DL correlation
of modulo 2n addition for n ≥ 32 is unable to be handled. In this paper, to solve this
problem, we used a fixed coefficient to scale the final DL correlation, which will ensure
that all variables used do not exceed the range specified by Gurobi.

For instance, if x1 = x2 × x3 and variable x1 exceeds the range specified by Gurobi, we
will use

x′1 = x′2 × x′3

in MIQCP model, where x′2 = x2/100 and x′3 = x3/100. Here 100 can be changed to other
fixed numbers, as long as variable x′1 does not exceed the range. In conclusion, this is
caused by the Gurobi itself rather than our method, and we will leave this issue for future
research.

https://
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Discussion. Liu et al. [LSL21] first proposed to use quadratic constraint program-
ming(QCP) to compute the DL correlations of additions with output linear masks of
Hamming weight one. This paper proposes a method based on MIQCP to automatically
compute the DL correlations of additions with arbitrary output masks, which forms the
foundation of our automatic search of DL trails in ARX ciphers.

At this point, the computation of ordinary DL correlation of �2 is transformed to
MIQCP, which can be further handled by the existing solver Gurobi. We remark that a
similar method can be used to transform an arbitrary matrix multiplication chain into
MIQCP. It is noted that this technology has great potential, e.g., if using the above method
in the automatic searching for linear trails of ARX ciphers based on �3, the solver can
accurately give the linear approximation correlation of �3, rather than splitting �3 into
two �2 and obtaining a less accurate value.

4.2 Automatic Searching for DL Trails of DLCT in ARX ciphers
Recall that the cipher E is divided into three subciphers E0, Em, and E1 such that
E = E1 ◦Em ◦E0. Our method of automatically searching for DL trails of Em is shown
in Figure 2. In the following, we provide some methods to further reduce the complexity.
Besides Corollary 1 and 2, we focus on the following ideas:

First, though the method to compute an arbitrary matrix multiplication chain is
presented in Section 4.1, the computational complexity remains high. For computing
DL correlation of ARX ciphers, Liu et al. [LSL21] first proposed to apply Morawiecki
et al.’s method on rotational cryptanalysis [MPS13] to several rounds of round function.
To reduce complexity, we applied Morawiecki et al.’s method to several rounds of round
function as well. The core idea of Morawiecki et al.’s method is that given the independency
assumptions on the neighbouring bits, the probability that each difference bit of each
round is 1 can be determined iteratively. The following conclusions are used in this paper.
We refer to [LSL21] for more details.

Proposition 1 (XOR-rule [LSL21]). For a fixed integer t ≥ 0, let a, b, a′ and b′ be
n–bit vectors with Pr[ai−t 6= a′i] = pi and Pr[bi−t 6= b′i] = qi. Given the independency
assumptions on the neighbouring bits, we have

Pr[(a⊕ b)i−t 6= (a′ ⊕ b′)i] = pi + qi − 2piqi.

Theorem 5 (�-rule for DL [LSL21]). Let x, y, x′ and y′ be n-bit string, such that
Pr[xi 6= x′i] = pi and Pr[yi 6= y′i] = qi. Given the independency assumptions on the
neighbouring bits, the differential-linear probability for modular addition can be computed
as

Pr[(x� y)i 6= (x′ � y′)i] = pi + qi − 2piqi − 2pisi − 2qisi + 4piqisi,
where s0 = 0 and

si+1 = piqisi −
piqi + pisi + qisi

2 + pi + qi + si
2 , i ≤ n− 1.

Compared to Theorem 2, Theorem 5 is more inaccurate but less complex. For serval
rounds of ARX ciphers, [LSL21, NSLL22] pointed out that the theoretical estimations of
this method are close to the experimental results. In fact, the independency assumption
is not strictly valid. Liu et al. [LSL21] pointed out that when using Morawiecki et al.’s
method, "the probabilities will rapidly collapse to 1

2 for all one-bit output masks after a
few iterative evaluations of the round function", which may give inaccurate analysis results
and ignore some valuable DL trails. In order to trade off the complexity against accuracy,
this method is applied to at most three rounds of ARX ciphers in this paper.

Second, due to the need to exhaust the input differences, Theorem 3 and Corollary 4
are difficult to implement directly with the existing solver. In this paper, we use a single
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DL trail under some explicit conditions to estimate the DL correlation of �2 when given
the independency assumptions on the neighbouring bits.

Assumption 3 (The estimation of DL correlation of �2). Let the input differences
and output mask of an ordinary DL approximation of �2 be α0, α1 ∈ Fn2 and λ ∈ Fn2 ,
respectively. Let Pr[αij = 1] = pij for all i ∈ {0, 1} and j ∈ {0, ..., n−1}. The events αij = 1
are mutually independent for all 0 ≤ j < n and 0 ≤ i < 2. Denote the DL correlation
of �2 for fixed input differences α0, α1 and output mask λ by Cor(α0, α1, λ). Denote
the probability of the input differences being α0 and α1 by pα0,α1 . Then the overall DL
correlation, denoted by Cor, can be estimated by

Cor =
∑

α0,α1∈Fn2

pα0,α1 × Cor(α0, α1, λ)

≈ max
α0,α1∈Fn2

(pbα0ch+1,bα1ch+1
× Cor(

⌊
α0⌋

h+1,
⌊
α1⌋

h+1, bλch+1)),

where
h = HIndex(λ),
|pjh − 0.5| 6= 0 for j ∈ {0, 1},

pbα0ch+1,bα1ch+1
=

h∏
i=0

p0
i ×

h∏
i=0

p1
i .

The core idea of estimating a DL approximation by one DL trail is that the largest
approximately represents the whole. In Morawiecki et al.’s method, pbα0ch+1,bα1ch+1

is
easy to compute when given the independency assumptions on the neighbouring bits. Let
h = HIndex(λ). According to Corollary 1, the highest (n − h − 1) bits of α0, α1 and λ
do not affect the DL correlation. According to Corollary 3, |pjh − 0.5| 6= 0 ensures that
Cor 6= 0. This method can further reduce the computational complexity of DL correlation
when using existing solver.

Assumption 4 (The estimation of DL correlation of round function S(x0, x1) = (�2(x0, x1), x1)).
Let the input differences and output mask of one ordinary DL approximation be α0, α1 ∈ Fn2
and λ ∈ F2n

2 , respectively. Let Pr[αij = 1] = pij for all i ∈ {0, 1} and j ∈ {0, ..., n − 1}.
The events αij = 1 are mutually independent for all 0 ≤ j < n and 0 ≤ i < 2. For fixed
input differences α0, α1 and output mask λ, denote the DL correlation of S and �2 by
CorS(α0, α1, λ) and Cor�2(α0, α1, λ), respectively. Denote the probability of the input
differences being α0 and α1 by pα0,α1 . Then the overall DL correlation, denoted by Cor,
can be estimated by

Cor =
∑

α0,α1∈Fn2

pα0,α1 × CorS(α0, α1, λ)

Lemma1
≈

 ∑
α0,α1∈Fn2

pα0,α1 × Cor�2(α0, α1, λ)

× n−1∏
j=0
λj 6=0

(1− 2p1
j )

≈ max
α0,α1∈Fn2

(pbα0ch+1,bα1ch+1
× Cor�2(

⌊
α0⌋

h+1,
⌊
α1⌋

h+1, bλch+1))×
n−1∏
j=0
λj 6=0

(1− 2p1
j ),

where



22
A MIQCP-Based Automatic Search Algorithm for Differential-Linear Trails of ARX

Ciphers

h = HIndex(λ),
|pjh − 0.5| 6= 0 for j ∈ {0, 1},

pbα0ch+1,bα1ch+1
=

h∏
i=0

p0
i ×

h∏
i=0

p1
i .

An analogous method can be used to estimate the DL correlation of round function
S(x0, x1) = (�2(x0, x1)), x1), as showed in Proposition 4. Here Piling-up Lemma and
Proposition 3 are used to reduce complexity and get rid of the exhaustion of input
differences.

Recall that the cipher E is divided into three subciphers E0, Em, and E1 such that
E = E1 ◦ Em ◦ E0. We have presented a method to automatically search a good DL
trail of Em, as depicted in Figure 2. Combining our method with the automatic search
methods for Differential and linear trails of ARX ciphers [FWG+16], one will naturally
get an automated search method for DL trails of ARX ciphers.

Correlation Propagation 

of Diff. Bits

Computing DL 

Correlation with 

MIQCP
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Rounds

1 Rounds
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Figure 2: Our method for automatically searching a good DL trail of Em. We applied
Morawiecki et al.’s method [MPS13, LSL21] to several rounds of round function and
combined Morawiecki et al.’s method with the method in Section 4.1 to compute the
correlation of an ordinary DL trail of Em.

To search a (b+ 1)-round DL trail of Em, we applied Morawiecki et al.’s technique and
MIQCP to b-round and 1-round ARX ciphers, respectively. By prepending an a-round
differential and concatenating a c-round linear trail, the above (b + 1)-round DL trail
of Em is extended to (a+ b+ 1 + c) rounds. For clarity, the configuration of the above
(a+ b+ 1 + c)-round DL trail is denoted by a+ b+ 1 + c. In this paper, configuration and
the number of rounds are abbreviated as Conf . and R.

One trick for obtaining good DL trails. As the number of rounds increases, it
becomes increasingly difficult to find a good DL trail. The rule of thumb to obtain a good
DL trail is to extend the optimal differential trail for a certain number of rounds by a
short-round DL trail or extend one good DL trial by a short-round differential/linear trail.
For the runtime of the searching algorithm, we spent about several hours on one personal
laptop computer (8-core, AMD CPU Ryzen7 4800H, 2.9 GHz). Note that we aim to only
find better trails than the previous ones, but we cannot guarantee they are the best trails.
We leave it as a future work with acceleration techniques.
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5 Applications to ARX Primitives
In this section, we apply the method of automatically searching for DL trails to the ARX
primitives Alzette and SPECK. All results are verified experimentally (some in segments).

5.1 Cryptanalysis of 64-bit ARX-box Alzette
Alzette [BBCdS+20] is a 64-bit ARX-based S-box designed by Beierle at al., which is
suitable for a larger number of platform architectures. It is the main building block of
Sparkle-suite [BBdS+20], one of NIST lightweight crypto standardization finalists. Alzette
is parameterized by a constant c ∈ F32

2 and is defined as a permutation of F32
2 × F32

2 for
each c. The algorithm evaluated in this paper is depicted in Figure 3.

Figure 3: The Alzette instance

Table 4: The (rotational) differential-linear distinguishers for round-reduced Alzette, where
the constants used are 0xB7E15162 and 0x38B4DA56.

R Conf . Input Diff. Output Mask Correlation Ref.Theory Exp.1
8 - (80020100,00010080) (80000000,00008000) −2−8.24 −2−5.50 [NSLL22]
8 2+3+1+2 (80020100,00010080) (c0010181,01800001) 2−4.14 2−4.06

Our9 4+3+1+1 (80020100,00010080) (80600080,60008000) −2−10.08 −2−7.60

10 4+3+1+2 (80020502,00010280) (03810005,80020180) 2−11.00 2−10.48

1 The number of samples is 230.

For Alzette, the DL trails searched are shown in Table 4. The experimental cor-
relations given in Table 4 are obtained with 230 random input pairs with the prede-
fined input differences. For 8, 9, 10 rounds of our DL trials in Table 4, the prepo-
sitioned differential trails are (80020100, 00010080) 2−round,2−2

−−−−−−−−→ (00000000, 00010000),
(80020100, 00010080) 4−round,2−6

−−−−−−−−→ (01010000, 00030101) and (80020502, 00010280) 4−round,2−8

−−−−−−−−→
(0x00000402, 04020004), respectively. The gap between the theoretical estimation and the
experimental result for 9-round ARX-box Alzette may come from two aspects: (1) It is
due to the accumulated effect of many single DL trails with same input differences and
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output mask. (2) Morawiecki et al.’s method itself has a marginal error in precision, which
is pointed out in [LSL21, NSLL22]. We will leave this issue for future research.

5.2 Cryptanalysis of SPECK
SPECK [BSS+13] is a lightweight iterative cipher designed by the US National Security
Agency. In this work, we focus on the versions with 32/48/64-bit block sizes, whose round
functions are depicted in Figure 4.

Figure 4: The SPECK instance

Table 5: The differential-linear distinguishers for round-reduced SPECK32/48/64.
R Conf . Input Diff. Intermediate

Diff.1
Output
Mask

Correlation Ref.Theory Exp.

SPECK32

10 - (0a20,4205) - (5820,4020) 2−15.23 2−13.90 [NSLL22]
10 5+2+1+2 (0211,0a04) (8000,840a) (5820,4020) −2−13.37 −2−11.58

Our
10 4 - (0211,0a04) (0040,0000) (5820,4020) −2−8.58 -
112 6+2+1+2 (8020,4101) (8000,840a) (7020,6020) −2−19.37 −2−17.09

112 6+2+1+2 (0a20,4205) (8000,840a) (7020,6020) −2−18.37 −2−16.68

114 - (8020,4101) (0040,0000) (7020,6020) −2−12.09 -
SPECK48 11 6+2+1+2 (020082,120200) (80a000,85a420) (08a805,098804) −2−20.46 −2−17.55 Our

SPECK64
11 6+2+1+2 (92400040,

40104200)
(80008004,
84008020)

(4100400c,
4c004000) 2−22.13 2−19.47 Our

12 6+3+1+2 (12029282,
02020282)

(01202000,
08202000)

(61804028,
68004020) 226.93 - Our

1 The output difference of the prepositioned differential trail.
2 We random chose 28 master keys and compute the average DL correlation by going though the full plaintext space. For random permutation,
the experimental correlation should be about ±2−20. This information leakage can be used in the distinction between 11-round SPECK32 and
random functions, if given the encrypted ciphertext under multiple random keys. Moreover, given sufficient neutral bits of top short-round
differential, it can be converted into a new valid distinguisher.

3 The sample sizes for 11-round DL trail on SPECK32 and SPECK48 are 242 and 246, respectively.
4 Distinguishers combining DL trails with the neutral bit technique, denoted by DL(NB). To compare with the DL trails without using NBs, we
regard the correlations of DL(NB) as p

1
2 rq2, since the data complexity required is O(pr−2q−4).

For SPECK, the DL trails searched are shown in Table 5. Unless otherwise noted, the
size of the statistical samples is 230. Here the SPECK32 with a 64-bit key is considered
as a vectorial Boolean function E : F96

2 → F32
2 . Thus, we used 240 samples to count the

11-round DL correlation of SPECK32 when the theoretical correlation is −2−17.37.
DL distinguishers combined with neutral bit technique. All DL(NB)s used

in this paper are listed in Table 6. For SPECK32, we divide the 10-round DL trail
(0x0211_0a04, 0x5820_4020) into a 2-round differential (0x0211_0a04, 0x0040_0000) with
theoretical probability 2−6 and a DL trail (0x0040_0000, 0x5820_4020) with a correlation
of about −2−5.58. Thus, if given sufficient neutral bits (i.e., at least 5.58× 2 ≈ 12 bits),
the DL(NB) will be valid and the data required is O(25.58×2+6). Table 7 presented 14
neutral bits (bit-sets) of the 2-round differential (0x0211_0a04, 0x0040_0000). In this
case, we regard the correlation of this DL(NB) is about −2−8.58.
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Table 6: DL distinguishers combined with sufficient neutral bits for round-reduced
SPECK32. To compare with the DL trails without using NBs, we regard the corre-
lations of DL(NB) as p 1

2 rq2, since the data complexity required is O(pr−2q−4).

R1 Input Diff. Intermediate
Diff.2

Output
Mask Prob. Cor. p 1

2 rq2 Ref.

SPECK32

1+9 (2050,2040) (8000,0100) (3854,3844) 2−2 −2−10 −2−11
[NSLL22]1+10 (2a10,0004) (2050,2040) (3854,3844) 2−4 −2−12 −2−14

2+8 (0211,0a04) (0040,0000) (5820,4020) 2−6 −2−5.58 −2−8.58

Our
3+8 (8020,4101) (0040,0000) (7020,6020) 2−12 −2−5.09 −2−12.09

3+8 (8060,4101) (0040,0000) (7020,6020) 2−12 −2−5.09 −2−12.09

3+8 (8021,4101) (0040,0000) (7020,6020) 2−12 −2−5.09 −2−12.09

3+8 (8061,4101) (0040,0000) (7020,6020) 2−12 −2−5.09 −2−12.09

1 a+ b indicates a DL(NB) combining a a-round differential and a b-round DL trail.
2 The output difference of the prepositioned differential trail.
3 Prob. = Theoretical probability of the prepended short-round differential. Cor. = Theoretical correlation of the bottom DL trail,
which is equal to the experimental correlation of the whole DL trail divided by Prob. Here p

1
2 rq2 =

√
Prob.× Cor.

4 DL(NB) is valid only if sufficient NB is given. See Table 7 and Table 9 for the NBs we used.

For the 11-round DL trail (0x0a20_4205, 0x7020_6020), we divide it into a 3-round
differential (0x0a20_4205, 0x0040_0000) with theoretical probability 2−11 and a 8-round
DL trail (0x0040_0000, 0x7020_6020) with a correlation of about −2−5.682. However,
the NBs/SNBSs of the short-round differential are very scarce. We leave the search of
NBs/SNBSs of 3-round differential (0x0a20_4205, 0x0040_0000) for future research.

Similarly, we divide the 11-round DL trail (0x8020_4101, 0x7020_6020) into a 3-round
differential (0x8020_4101, 0x0040_0000) with theoretical probability 2−12 and a 8-round
DL trail (0x0040_0000, 0x7020_6020) with a correlation of about −2−5.09. When requiring
the output difference is 0x0040_0000, there are four sub-optimal 3-round differentials with
probability 2−12, as shown in Table 8. It means that there are another three DL trails
with correlations of about −2−17.09. Table 9 presented 13 neutral bits (bit-sets) of the
four differentials of Table 8. If given sufficient neutral bits (i.e., at least 5.09 × 2 ≈ 11
bits), the DL(NB) will be valid. In this case, to satisfy the conditions for two CSNBSs, we
need to guess two bits of the first round key, which determine the form of the plaintext
pairs. Thus, the data complexity required is O(25.09×2+12+2). We regard the correlations
of these four DL(NB)s are about −2−(5.09+ 12+2

2 ) = −2−12.09. For the validity verification
of DL(NB), see the source code provided by this paper.

5.3 Improved Differential-linear Theoretical Attack of SPECK32
This section introduces the general framework of DL attack combined with neutral bit
technology. we presented the lowest time-complexity attacks against 12-14 rounds of
SPECK32 to date.

We call a ciphertext structure for many pairs of ciphertext generated by a pair of
plaintext using neutral bits(bit-sets). Note that for every neutral bit (bit-set) used, the
number of ciphertexts in a ciphertext structure doubles.

Bao et al.[BGL+23] presented a re-pairing ciphertext method to reduce the data
complexity. Algorithm 1 is a sample using two differences ∆1 and ∆2. ∆NB = ∆1⊕∆2 is the
difference corresponding to one neutral bit(-set)s. The plaintext is denoted by p. Once two
pairs of input plaintexts (p, p⊕∆1),(p⊕∆NB , p⊕∆1⊕∆NB) are generated for the differential
using ∆1 as input, one can re-pair the inputs as (p, p⊕∆1⊕∆NB),(p⊕∆NB , p⊕∆1) and
obtain a pair of plaintexts for the differential using ∆2 as input, which means that one
pair of ciphertexts account for one query rather than two queries. This is the case where

2In fact, when requiring the output difference is 0x0040_0000, there are two optimal 3-round differentials
with probability 2−11, i.e., (0x0a20_4205, 0x0040_0000), (0x0a60_4205, 0x0040_0000). It means that
the correlation of 11-round DL trail (0x0a60_4205, 0x7020_6020) is about −2−16.68.



26
A MIQCP-Based Automatic Search Algorithm for Differential-Linear Trails of ARX

Ciphers

we used DL(NB) (0x8020_4101, 0x7020_6020) and DL(NB) (0x8060_4101, 0x7020_6020)
to recover key in this paper.

The parameters for DL attack combined with neutral bit technology are denoted as
follows. The set of neutral bit(-set)s is denoted by NBs.

1. nkg is the number of possible values for the guessed bit of k.
2. ncts is the number of ciphertext structures used in one attack, which is usually

several times the reciprocal of top short-round differential probability.
3. nb is the number of ciphertext pairs in each ciphertext structure and nb = 2|NBs|.
The attack procedure is as follows.
1. Use Algorithm 1 to generate ncts ciphertext structures with size of nb.
2. For each of guessed key gk0, gk1 . . . gkngk−1, one need to decrypt these ncts ciphertext

structures. Then use the decrypted data to calculate the correlation of each ciphertext
structure. For each guessed key, the maximum correlation of all ciphertext structures can
be regarded as the score of the current key.

3. Sort all guessed key by the corresponding score, and the right key is expected to be
in the first place.

Algorithm 1: Generate ciphertext structures using the neutral bit(-set)s of differen-
tial propagation [BGL+23]: The following is an example of using two input differences
∆1 and ∆2, which uses the re-pairing ciphertext method to reduce the data complexity
by half. Range(n) represents a set of nonnegative integers less than n. Random(a, b)
returns a random integer between a and b. Here nb = 2|NBs|.
Input: Number of ciphertext structures used in one attack ncts, a set of neutral

bit(-set)s NBs, two input differences ∆1 and ∆2, ∆NB = ∆1 ⊕∆2, ∆NB is
the difference corresponding to NBs[−1].

Output: CTS—a 3-D array of ciphertexts, in which CTS[i][j][0 : 1] and CTS[i][:][:]
represent one pair of ciphertexts and one ciphertext structure respectively.

1 P := a array of size ncts/2× nb × 2;
2 CTS := a array of size ncts × nb × 2;
3 P [i][0][0]← Random(0, 232 − 1), for 0 ≤ i < ncts/2 ;
4 for 0 ≤ i < |NBs| do
5 Diff ← ⊕

j∈NBs[i]
ej . Here ej = 0x1≪ j and NBs[i] is a set of indices.;

6 P [g][k + 2i][0]← P [g][k][0]⊕Diff , for g ∈ Range(ncts/2) and k ∈ Range(2i);
7 P [i][j][1]← P [i][j][0]⊕∆1, for i ∈ Range(ncts/2) and j ∈ Range(nb);
8 CTS[i][j][k]← Encrypt(P [i][j][k]), for all j, k and i ∈ Range(ncts/2);
9 CTS[ncts/2 : ncts − 1][:][:]← CTS[0 : ncts/2− 1][:][:];

10 CTS[i][j][1]↔ CTS[i][nb/2 + j][1], for ncts/2 ≤ i < ncts, j ∈ Range(nb/2);
11 return CTS;

12-round SPECK32 key recovery attack. We use the DL(NB) (0x0211_0a04, 0x5820_4020)
to mount a 12-round SPECK32 key recovery attack. We note that for SPECK, since no
key participates in any operation before the first nonlinear operation, any differential can
be extended by one round at no cost. For 12-round SPECK32, the last round key is denote
by rk11. We target to recover 15 bits of round key rk11 after the distinguisher, since only
brk11c15 can affect the correlation. Concrete parameters and the complexity are as follows.

nkg = 215, ncts = 26, nb = 212

The data complexity is ncts × nb × 2 = 219. Here the data complexity for generating a
pair of ciphertext is 2. The time complexity is nkg × ncts × nb × 2 = 234.
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13-round SPECK32 key recovery attack. By exhausting additional 16 bits of
round key, we can use the above 12-round SPECK32 key recovery attack to attack 13-round
SPECK32. The data complexity and time complexity are 219 and 250, respectively.

Next, we use the DL(NB) (0x8020_4101, 0x7020_6020) and the DL(NB) (0x8060_4101, 0x7020_6020)
to mount a 13-round SPECK32 key recovery attack. For 13-round SPECK32, the last
round key is denote by rk12. Only brk12c15 can affect the correlation. Denote the
random data pairs with difference ∆in and the first round key by (x̃‖ỹ, x̃′‖ỹ′) and
rk0, respectively Note that the input of cipher E are DecryptOneRound(x̃‖ỹ, 0) and
DecryptOneRound(x̃′‖ỹ′, 0), which ensures that the difference after one round is ∆in.
Here we use the first 11 NBs in Table 8. As noted by [BGL+23], to satisfy the conditions

for comforming pairs, i.e.,


x̃[7] = rk0[7]
x̃[15]⊕ ỹ[8] = rk0[15]⊕ rk0[8]
x̃[0]⊕ ỹ[9] = rk0[0]⊕ rk0[9]

, and the conditions for two

CSNBSs, i.e.,
{
x̃[12]⊕ ỹ[5]⊕ 1 = rk0[12]⊕ rk0[5]

ỹ[1] = rk0[1]
, we need to guess five bits of rk0, i.e.,{

rk0[7], rk0[15]⊕ rk0[8], rk0[0]⊕ rk0[9]
rk0[12]⊕ rk0[5], rk0[1]

. Concrete parameters and the complexity are as

follows.

nkg = 215+5 = 220, ncts = 212−3 = 29, nb = 211

[BGL+23] pointed out that for each linear condition in Table 8, once it is fulfilled, the
probability of the differential increases by a factor of 2. We generate the random pairs
satisfying three conditions in Table 8. Thus, ncts is 212−3 = 29 instead of 212.

Since all generated ciphertext structures are determined by the guesses of{
rk0[7], rk0[15]⊕ rk0[8], rk0[0]⊕ rk0[9]

rk0[12]⊕ rk0[5], rk0[1]
,

the data complexity is 25 × ncts × nb = 225. Note that if Algorithm 1 is used, the data
complexity for generating a pair of ciphertext is 1. The time complexity is nkg × ncts ×
nb × 2 = 241.

However, [BGL+23] pointed out that these two prepended classical differentials, i.e.,
(0x8020_4101, 0x0040_0000) and (0x8060_4101, 0x0040_0000), are vaild to keys fulfilling
rk2[12] 6= rk2[11]. Here rk2 is the third round key for SPECK32. Thus, the presented
attack works for 263 keys.

14-round SPECK32 key recovery attack. By exhausting additional 16 bits of
round key, we can use the 13-round SPECK32 key recovery attack to attack 14-round
SPECK32. The data complexity and time complexity are 225 and 257, respectively. All
results are listed in Table 2.

6 Conclusion and Open Problems
We present a method to compute the extended (rotational) DL correlation of �k for k ≥ 2,
where two output linear masks of the cipher pairs can be different. And we present an
automated method for evaluating the DL correlations of ARX ciphers, which partially
solve the open problem proposed by Niu et al. at CRYPTO 2022. The automated method
is applied to some ARX primitives, and improved results are obtained. To the best of
our knowledge, this method finds the best differential-linear distinguishers for these ARX
primitives at present. Finally, we would like to give some open problems deserving further
investigations.
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First, it is possible to use an analogous automated method to evaluate DL correlation
for other non-ARX ciphers, as long as an automated search method for good DL trails
of DLCT is found. The method provided by this paper may be a good template, which
combines the correlation propagation technology of difference bits with some theories of
DL cryptanalysis for specific ciphers. Secondly, some acceleration techniques need to be
studied to find better differential-linear charcateristics on longer rounds. Acceleration
technologies in the search of differential/linear characteristics, such as the idea of less
variables, Matsui’ bounding condition, and divide-and-conquer approach, may be helpful.

References
[AFK+08] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier,

and Christian Rechberger. New features of latin dances: analysis of salsa,
chacha, and rumba. In International Workshop on Fast Software Encryption,
pages 470–488. Springer, 2008.

[BBCdS+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju
Wang. Alzette: A 64-bit arx-box. In Annual International Cryptology
Conference, pages 419–448. Springer, 2020.

[BBdS+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju
Wang. Lightweight aead and hashing using the sparkle permutation family.
IACR Transactions on Symmetric Cryptology, pages 208–261, 2020.

[BC04] Eli Biham and Rafi Chen. Near-collisions of sha-0. In Advances in Cryptology–
CRYPTO 2004: 24th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 15-19, 2004. Proceedings 24, pages 290–
305. Springer, 2004.

[BdST+22] Alex Biryukov, Luan Cardoso dos Santos, Je Sen Teh, Aleksei Udovenko, and
Vesselin Velichkov. Meet-in-the-filter and dynamic counting with applications
to speck. Cryptology ePrint Archive, 2022.

[BGG+23] Emanuele Bellini, David Gerault, Juan Grados, Rusydi Makarim, and
Thomas Peyrin. Fully automated differential-linear attacks against arx
ciphers. Cryptology ePrint Archive, Paper 2023/181, 2023. https:
//eprint.iacr.org/2023/181.

[BGL+23] Zhenzhen Bao, Jian Guo, Meicheng Liu, Li Ma, and Yi Tu. Enhancing
differential-neural cryptanalysis. In Advances in Cryptology–ASIACRYPT
2022: 28th International Conference on the Theory and Application of
Cryptology and Information Security, Taipei, Taiwan, December 5–9, 2022,
Proceedings, Part I, pages 318–347. Springer, 2023.

[BJ72] Egon Balas and Robert Jeroslow. Canonical cuts on the unit hypercube.
SIAM Journal on Applied Mathematics, 23(1):61–69, 1972.

[BLN17] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. Differential-linear
cryptanalysis revisited. Journal of Cryptology, 30(3):859–888, 2017.

[BLT20] Christof Beierle, Gregor Leander, and Yosuke Todo. Improved differential-
linear attacks with applications to arx ciphers. In Annual International
Cryptology Conference, pages 329–358. Springer, 2020.

https://eprint.iacr.org/2023/181
https://eprint.iacr.org/2023/181


Guangqiu Lv , Chenhui Jin and Ting Cui 29

[BODKW19] Achiya Bar-On, Orr Dunkelman, Nathan Keller, and Ariel Weizman. Dlct:
a new tool for differential-linear cryptanalysis. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 313–342. Springer, 2019.

[BSS+13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The simon and speck families of lightweight
block ciphers. cryptology eprint archive, 2013.

[CY21] Yi Chen and Hongbo Yu. Bridging machine learning and cryptanalysis via
edlct. Cryptology ePrint Archive, 2021.

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. Milp-based
automatic search algorithms for differential and linear trails for speck. In In-
ternational Conference on Fast Software Encryption, pages 268–288. Springer,
2016.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[LDWRA17] Yunwen Liu, Glenn De Witte, Adrián Ranea, and Tomer Ashur. Rotational-
xor cryptanalysis of reduced-round speck. IACR Transactions on Symmetric
Cryptology, pages 24–36, 2017.

[LH94] Susan K Langford and Martin E Hellman. Differential-linear cryptanalysis.
In Annual International Cryptology Conference, pages 17–25. Springer, 1994.

[LLL21] Meicheng Liu, Xiaojuan Lu, and Dongdai Lin. Differential-linear crypt-
analysis from an algebraic perspective. In Annual International Cryptology
Conference, pages 247–277. Springer, 2021.

[LM01] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differ-
ential properties of addition. In International Workshop on Fast Software
Encryption, pages 336–350. Springer, 2001.

[LSL21] Yunwen Liu, Siwei Sun, and Chao Li. Rotational cryptanalysis from
a differential-linear perspective. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 741–770.
Springer, 2021.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Workshop on
the Theory and Application of of Cryptographic Techniques, pages 386–397.
Springer, 1993.

[MPS13] Paweł Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanal-
ysis of round-reduced keccak. In International Workshop on Fast Software
Encryption, pages 241–262. Springer, 2013.

[NSLL22] Zhongfeng Niu, Siwei Sun, Yunwen Liu, and Chao Li. Rotational differential-
linear distinguishers of arx ciphers with arbitrary output linear masks.
Cryptology ePrint Archive, 2022.

[NW06] Kaisa Nyberg and Johan Wallén. Improved linear distinguishers for snow
2.0. In International Workshop on Fast Software Encryption, pages 144–162.
Springer, 2006.



30
A MIQCP-Based Automatic Search Algorithm for Differential-Linear Trails of ARX

Ciphers

[SHW+14] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
Danping Shi, Ling Song, and Kai Fu. Towards finding the best characteristics
of some bit-oriented block ciphers and automatic enumeration of (related-key)
differential and linear characteristics with predefined properties. Cryptology
ePrint Archive, 2014.

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of differential
and linear characteristics with the sat method. IACR Transactions on
Symmetric Cryptology, pages 269–315, 2021.

[Wal03] Johan Wallén. On the differential and linear properties of addition. 2003.

[ZWW22] Liu Zhang, Zilong Wang, and Boyang Wang. Improving differential-neural
cryptanalysis with inception blocks. Cryptology ePrint Archive, 2022.



Guangqiu Lv , Chenhui Jin and Ting Cui 31

Supplementary Materials

A The MatricesA8λ0+4λ1+2α1+α0 of �2 for All (λ0, λ1, α1, α0) ∈
F4

2

A0 = 1
4


3 1 1 1
0 2 0 0
0 0 2 0
1 1 1 3

 A1 = A2 = 1
4


2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 A3 = 1
4


2 0 0 0
1 3 1 1
1 1 3 1
0 0 0 2



A4 = 1
4


−1 −1 1 −1
0 2 0 0
0 0 −2 0
1 −1 1 1

 A5 = A6 = 1
4


0 −1 −1 0
1 0 0 1
−1 0 0 −1
0 1 1 0

 A7 = 1
4


−2 0 0 0
1 1 1 −1
1 −1 −1 −1
0 0 0 2



A8 = 1
4


−1 1 −1 −1
0 −2 0 0
0 0 2 0
1 1 −1 1

A9 = A10 = 1
4


0 −1 −1 0
−1 0 0 −1
1 0 0 1
0 1 1 0

A11 = 1
4


−2 0 0 0
1 −1 −1 −1
1 1 1 −1
0 0 0 2



A12 = 1
4


3 −1 −1 1
0 −2 0 0
0 0 −2 0
1 −1 −1 3

 A13 = A14 = 1
4


−2 1 1 0
−1 2 0 −1
−1 0 2 −1
0 1 1 −2

 A15 = 1
4


2 0 0 0
1 −3 −1 1
1 −1 −3 1
0 0 0 2



B Extended Rotational Differential-Linear Correlation of
�k

Definition 7. Let k > 1 be a fixed integer. Let the input differences and output masks
of two n-bit modulo additions, �k,∗Ja and �k,∗Jb, be α0, ..., αk−1 ∈ Fn2 and λ0, λ1 ∈ Fn2 ,
respectively. Then the extended rotational differential-linear correlation can be computed as

Cor ∗Ja
∗Jb

(t, α0, ..., αk−1, λ0, λ1) = 1
2kn

∑
(xi≪t)⊕αi=yi

xi∈Fn2 ,0≤i<k

(−1)
λ0·(�k,∗Ja(x0,x1,...,xk−1)≪t)

⊕λ1·�k,∗Jb(y0,y1,...,yk−1) . (3)

Lemma 6. The extended rotational differential-linear correlation of �k with rotational
offset t, rotational difference α0, ..., αk−1, linear masks (λ0, λ1), and fixed least significant
carries a, b ∈ {0, ..., k − 1} can be computed as

Cor ∗Ja
∗Jb

(t, α0, ..., αk−1, λ0, λ1) =
∑

u,v∈{0,...,k−1}

(
CoruJa

∗Jv
(dα0en−t, ..., dαk−1en−t, bλ0cn−t, bλ1cn−t)

)
×
(
Cor ∗Ju

vJb
(bα0ct, ..., bαk−1ct, dλ0et, dλ1et)

)
where u, v, a, b ∈ {0, ..., k − 1}.
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Proof.

Cor ∗Ja
∗Jb

(t, α0, ..., αk−1, λ0, λ1)

= 1
2kn

∑
xi∈Fn2 ,0≤i<k

(−1)λ
0·s0⊕λ1·s1

= 1
2kn

∑
xi∈Fn2 ,0≤i<k

(−1)dλ
0en−t·ds0en−t⊕dλ1en−t·ds1en−t(−1)bλ

0ct·bs0ct⊕bλ1ct·bs1ct ,

= 1
2kn

∑
xi∈Fn2 ,0≤i<k

(−1)dλ
0en−t·s2⊕dλ1en−t·s3

(−1)bλ
0ct·s4⊕bλ1ct·s5

= 1
2kn

∑
xi∈Fn2 ,0≤i<k

(−1)dλ
0en−t·s2⊕dλ1en−t·s6

(−1)bλ
0ct·s4⊕bλ1ct·s7

= 1
2kn

∑
u,v∈{0,...,k−1}
xi∈Fn2 ,0≤i<k

(−1)dλ
0en−t·s2⊕dλ1en−t·s6

(−1)bλ
0ct·s4⊕bλ1ct·s7

=
∑

u,v∈{0,...,k−1}

 1
2k(n−t)

∑
c,d∈{0,...,k−1}
xi∈Fn2 ,0≤i<k

(−1)dλ
0en−t·s2⊕dλ1en−t·s8

×
 1

2kt
∑

c,d∈{0,...,k−1}
xi∈Fn2 ,0≤i<k

(−1)bλ
0ct·s9⊕bλ1ct·s7


=

∑
u,v∈{0,...,k−1}

(
CoruJa

∗Jv
(dα0en−t, ..., dαk−1en−t, dλ0en−t, dλ1en−t)

)
×
(
Cor ∗Ju

vJb
(bα0ct, ..., bαk−1ct, bλ0ct, bλ1ct)

)
where

s0 = �k,∗Ja(x0, ..., xk−1)≪ t,

s1 = �k,∗Jb(x0 ≪ t⊕ α0, ..., xk−1 ≪ t⊕ αk−1),
s2 = �k,uJa(bx0cn−t, ..., bxk−1cn−t),
s3 = �k,∗Jv(dx0 ≪ t⊕ α0en−t, ..., dxk−1 ≪ t⊕ αk−1en−t),
s4 = �k,∗Ju(dx0et, ..., dxk−1et),
s5 = �k,vJb(bx0 ≪ t⊕ α0ct, ..., bxk−1 ≪ t⊕ αk−1ct),
s6 = �k,∗Jv(bx0 ⊕ (α0 ≫ t)cn−t, ..., bxk−1 ⊕ (αk−1 ≫ t)cn−t),
s7 = �k,vJb(dx0 ⊕ (α0 ≫ t)et, ..., dxk−1 ⊕ (αk−1 ≫ t)et),
s8 = �k,cJv(bx0 ⊕ (α0 ≫ t)cn−t, ..., bxk−1 ⊕ (αk−1 ≫ t)cn−t),
s9 = �k,dJu(dx0et, ..., dxk−1et),
u, v, a, b, c, d ∈ {0, ..., k − 1},
u = ĉ(s2), v = ĉ(s5) = ĉ(s7),
c = ĉ(s8), d = ĉ(s9).

Next, we use a matrix multiplication chain to compute the extended DL correlation of
�k for k ≥ 2.

Theorem 6. Let k > 1 be a fixed integer and l = k × k. Let (t, α0, ..., αk−1, λ0, λ1) be an
extended rotational differential-linear trail of �nk,∗Ja and �nk,∗Jb for a, b ∈ {0, 1, ..., k − 1}.
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Let z = zn−1, ..., z1, z0 be the word associated with the trail, where zi = λ0
i 2k+1 + λ1

i 2k +
k−1∑
j=0

αji2j. Then the correlation can be computed as

Cor ∗Ja
∗Jb

(t, α0, ..., αk−1, λ0, λ1) =
∑

0≤v,j<k

([ ∏
0≤i<t

Azi

]
H(b)

[ ∏
t≤i<n

Azi

])
jk+v,ak+v

.

where H(b) is a l × l matrix with H(b)u×k+b,u×k+i = 1 for all 0 ≤ u, i < k and zero
otherwise.

Proof. Let C(x, y) is a column vector of dimension l with a single 1 in (x× k + y)-th row
and zero otherwise. Let L(∗, v) is a row vector of dimension l with a 1 in (i× k + v)-th
column for all 0 ≤ i < k and zero otherwise. Let L(u, ∗) is a row vector of dimension l
with a 1 in (u× k + i)-th column for all 0 ≤ i < k and zero otherwise.

According to Lemma 6, we have

Cor ∗Ja
∗Jb

(t, α0, ..., αk−1, λ0, λ1) =
∑

0≤u,v<k

(
CoruJa

∗Jv
(dα0en−t, ..., dαk−1en−t, dλ0en−t, dλ1en−t)

)
×
(
Cor ∗Ju

vJb
(bα0ct, ..., bαk−1ct, bλ0ct, bλ1ct)

)
=
∑

0≤v<k

∑
0≤u<k

(
L(∗, v)

[ ∏
0≤i<t

Azi

]
C(u, b)

)
×

(
L(u, ∗)

[ ∏
t≤i<n

Azi

]
C(a, v)

)

=
∑

0≤v<k

(
L(∗, v)

[ ∏
0≤i<t

Azi

]
H(b)

[ ∏
t≤i<n

Azi

]
C(a, v)

)

=
∑

0≤v,j<k

([ ∏
0≤i<t

Azi

]
H(b)

[ ∏
t≤i<n

Azi

])
jk+v,ak+v

.

C Neutral Bit-sets Used in Key Recovery Attacks
Based on one pair of plaintext with one differential established, neutral bit-sets (NB) are
mainly used to generate more plaintext pairs with the differential trail established. In this
study, 2-round differential (0x0211_0a04, 0x0040_0000) is used in the 10-round DL trail
we presented. Reference [BGL+23] presents the probabilistic Simultaneous-neutral bit-sets
(SNBS) for 2-round differential trail (0x0211_0a04,0x0040_0000) of SPECK32, as shown
in Table 7.

Table 7: (Probabilistic) SNBS’s for 2-round differential trail (0x0211_0a04,0x0040_0000)
of SPECK32/64.

NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr. NB Pr.
[20] 1 [21] 1 [22] 1 [9,16] 1 [2,11,25] 1 [14] 0.965 [15] 0.938
[6,29] 0.91 [23] 0.812 [30] 0.809 [7] 0.806 [0] 0.754 [11,27] 0.736 [8] 0.664

When requiring the output difference is 0x0040_0000, there are two optimal 3-round dif-
ferentials with probability 2−11, i.e., (0x0a20_4205, 0x0040_0000), (0x0a60_4205, 0x0040_0000).

However, the NBs/SNBSs of these two differentials are very scarce. There are four sub-
optimal 3-round differentials with probability 2−12. Table 8 presents these four differential
and three sufficient conditions to conform the differentials.
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Table 8: Three sufficient conditions conform the 3-round sub-optimal differentials with
output difference 0x0040_0000 [BGL+23]. Let the result after 1-round encryption of
SPECK32 be (x, y). Here c = ((x≫ 7)� y)⊕ ((x≫ 7)⊕ y). [BGL+23] pointed that for
each linear condition, once it is fulfilled, the probability of the differential increases by a
factor of 2.

InputDiff . 0x8020_4101 0x8060_4101 0x8021_4101 0x8061_4101
Round 1 0x0201_0604
Round 2 0x1800_0010
Round 3 0x0040_0000

x[7] 0 0 0 0
x[5]⊕ y[14] 1 0 1 0
x[15]⊕ y[8] 0 0 1 1

x[0]⊕ y[9] = 0 x[0]⊕ y[9] = 0 c[9]⊕ y[9] = 0 c[9]⊕ y[9] = 0

Table 9: Neutral bit/bit-sets for 3-round differentials (0x8020_4101, 0x0040_0000),
(0x8060_4101, 0x0040_0000), (0x8021_4101, 0x0040_0000), (0x8061_4101,
0x0040_0000) of SPECK32 [BGL+23].

NB 0x8020_4101 0x8060_4101 0x8021_4101 0x8061_4101
Pre.2 Post.3 Pre. Post. Pre. Post. Pre. Post. Condition1

[22] 0.995 1.000 0.995 1.000 0.996 1.000 0.997 1.000 -
[20] 0.986 1.000 0.997 1.000 0.996 1.000 0.995 1.000 -
[13] 0.986 1.000 0.989 1.000 0.988 1.000 0.992 1.000 -

[12,19] 0.986 1.000 0.995 1.000 0.993 1.000 0.986 1.000 -
[14,21] 0.855 0.860 0.874 0.871 0.881 0.873 0.881 0.876 -
[6,29] 0.901 0.902 0.898 0.893 0.721 0.706 0.721 0.723 -
[30] 0.803 0.818 0.818 0.860 0.442 0.442 0.412 0.407 -

[0,8,31] 0.855 0.859 0.858 0.881 0.000 0.000 0.000 0.000 -
[5,28] 0.495 1.000 0.495 1.000 0.481 1.000 0.469 1.000 x[12]⊕ y[5] = 1
[15,24] 0.482 1.000 0.542 1.000 0.498 1.000 0.496 1.000 y[1] = 0
[4,27,29] 0.672 0.916 0.648 0.905 0.535 0.736 0.536 0.718 x[11]⊕ y[4] = 1

[6,11,12,18] 0.445 0.903 0.456 0.906 0.333 0.701 0.382 0.726 x[2]⊕ y[11] = 0
1 A condition at the end of a row is specific to the bit-set at the same row. ’-’ means that there is no condition for the
corresponding bit-set.

2 Pre.: probability obtained using 1000 correct pairs without imposing the conditions.
3 Post.: probability obtained using 1000 correct pairs and imposing all conditions in the last column.
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