
A Detailed Analysis of Fiat-Shamir with Aborts

Julien Devevey1, Pouria Fallahpour1, Alain Passelègue1,2, and Damien Stehlé1,3

1 ENS de Lyon, Lyon, France
2 Inria, Lyon, France

3 Institut Universitaire de France, Paris, France

Abstract. Lyubashevky’s signatures are based on the Fiat-Shamir with
Aborts paradigm. It transforms an interactive identification protocol that
has a non-negligible probability of aborting into a signature by repeating
executions until a loop iteration does not trigger an abort. Interaction is
removed by replacing the challenge of the verifier by the evaluation of a
hash function, modeled as a random oracle in the analysis. The access
to the random oracle is classical (ROM), resp. quantum (QROM), if
one is interested in security against classical, resp. quantum, adversaries.
Most analyses in the literature consider a setting with a bounded number
of aborts (i.e., signing fails if no signature is output within a prescribed
number of loop iterations), while practical instantiations (e.g., Dilithium)
run until a signature is output (i.e., loop iterations are unbounded).
In this work, we emphasize that combining random oracles with loop it-
erations induces numerous technicalities for analyzing correctness, run-
time, and security of the resulting schemes, both in the bounded and
unbounded case. As a first contribution, we put light on errors in all
existing analyses. We then provide two detailed analyses in the QROM
for the bounded case, adapted from Kiltz et al. [EUROCRYPT’18] and
Grilo et al. [ASIACRYPT’21]. In the process, we prove the underlying
Σ-protocol to achieve a stronger zero-knowledge property than usually
considered for Σ-protocols with aborts, which enables a corrected analy-
sis. A further contribution is a detailed analysis in the case of unbounded
aborts, the latter inducing several additional subtleties.

Keywords: Fiat-Shamir with aborts, Lyubashevsky’s signature, QROM

1 Introduction

The Fiat-Shamir heuristic [FS86] transforms a public-coin interactive proof sys-
tem into a digital signature, by replacing the public coins of the verifier with
hash function evaluations. In the random oracle model (ROM), the publicly
available hash function is modeled as a uniform function, which the adversary is
given (classical) access to. One of the most famous instances of the Fiat-Shamir
heuristic is Schnorr’s signature [Sch89], whose security relies on the discrete log-
arithm problem (heuristically, in the ROM). If considering quantum adversaries,
two adaptations are required: first, the discrete logarithm hardness assumption
must be replaced by another one that is conjectured to be quantum-resistant;

second, the adversary should be granted quantum access to the random oracle
(QROM) as it can query the hash function in quantum superposition.

In [Lyu09, Lyu12], Lyubashevsky proposed a lattice-based signature scheme
that is reminiscent of Schnorr’s. A key difference is that the underlying interac-
tive proof system has a non-negligible probability of aborting. Aborting allows
to make the signature distribution independent of the signing key and is neces-
sary to avoid attacks against the signature schemes (see [ASY22, Section 4.1]).
To handle the aborts, the protocol execution is repeated within a loop, until no
abort occurs in the current loop iteration. Similarly to the Fiat-Shamir heuris-
tic, one may replace the non-final verifier steps by hash function evaluations
and model the hash function as a random oracle: this technique is referred to as
Fiat-Shamir with aborts.

The combination of the Fiat-Shamir heuristic and rejection sampling leads to
several difficulties when analyzing the resulting signature scheme. Most analyses
of Lyubashevsky’s signatures consider a variant that we refer to as Fiat-Shamir
with Bounded Aborts (FSwBA). In this variant, the number of loop iterations is
a priori bounded by a parameter B of the scheme. If no non-aborting iteration is
encountered within this bounded number B of loop iterations, the signing algo-
rithm fails (the failure symbol ⊥ is output). With FSwBA, the runtime analysis
is trivial. In the security proof, the upper bound on the number of iterations
is technically convenient as it provides a bound on how many random oracle
values are being programmed by the challenger, which eases the analysis of the
random oracle programming impact on the adversary’s view. The most detailed
security analyses are provided in [AFLT16] for the ROM, and in [KLS18] for the
QROM. An alternative proof strategy in the QROM is suggested in [GHHM21],
but not detailed. In concrete instantiations of Fiat-Shamir with aborts, such as
the Dilithium signature scheme [DKL+18], the signing algorithm typically does
not enforce any upper bound on the number of loop iterations. We call this
variant Fiat-Shamir with Unbounded Aborts (FSwUA). It is more difficult to
analyze, as arbitrarily many hash values may be programmed by the challenger
in the security proof.

Contributions. Our first set of contributions relates to FSwBA. First, we ex-
plain below that all existing security analyses of FSwBA contain a subtle com-
mon flaw, with additional errors in the QROM analysis of [KLS18]. We then
provide two security analyses of FSwBA in the QROM, the first one by correct-
ing the one from [KLS18], and the second by adapting the approach suggested
in [GHHM21]. As detailed below, it turns out that these QROM analyses are
incomparable. In the process, we prove that the underlying Σ-protocol achieves
a stronger notion of zero-knowledgeness than usually considered for Σ-protocols
with aborts, which enables the proofs. Still for FSwBA, as far as we are aware
of, there is no detailed correctness analysis in the literature: this is actually not
trivial, and we provide a detailed correctness analysis.

Our second set of results concerns FSwUA. On the negative side, we exhibit
an interactive proof system such that applying FSwUA to it leads to a signature
scheme such that:

2

• for all signing keys, with non-zero probability over the random oracle ran-
domness, signing loops forever for all messages; in particular, the expected
signing runtime is infinite;

• with overwhelming probability over the random oracle randomness, for all
messages and all signing keys, the expected runtime of signing over its own
randomness is below a fixed polynomial.

This suggests a modification of the signing efficiency requirement, in which the
runtime expectation is not taken over the randomness of the random oracle,
but should be bounded by a polynomial with overwhelming probability over
the randomness of the random oracle. On the positive side, we give analyses
of correctness, signing efficiency (with respect to the modified definition) and
security for FSwUA in the QROM (with a tighter reduction in the ROM).

Finally, as a side contribution, we generalize our analysis to rely on a Σ-
protocol whose simulator’s quality is measured in terms of the Rényi divergence
(rather than the statistical distance) for non-aborting transcripts. As pointed out
in [DFPS22], in the case of Lyubashevsky’s signature with Gaussians [Lyu12],
when the signature is replaced with the non-aborting simulator in the security
proof, the analysis based on the divergence provides security for a larger range
of parameters. This notably allows to decrease the standard deviation of the
distribution of the signature and hence the signature size.

2 Technical Overview

We focus on analyzing the Fiat-Shamir with aborts transform in the context
of digital signatures. Our techniques also allow to transform a constant-round
public-coin interactive proof system into a non-interactive one, and most of our
results carry over to this setup (a notable exception being the results exploit-
ing the Rényi divergence simulation mentioned above). We specifically consider
how this technique allows the challenger to simulate replies to sign queries with-
out knowing the signing key (which is made possible by allowing the challenger
to program the random oracle). More formally, we are interested in reducing
the signature unforgeability under chosen message attacks (CMA) to its un-
forgeability under no-message attacks (NMA). How to obtain NMA security
is beyond the scope of this work, and can be handled in different ways (see,
e.g., [Lyu09,Lyu12,AFLT16,DFMS19]).

In order to fix notation, we refer to the prover’s first message in the underlying
Σ-protocol as the commitment w, and a transcript is a triple (w, c, z) where c
is a uniformly random challenge. After applying the Fiat-Shamir transform, the
challenge c is then replaced by a hash value H(w‖µ), with µ being the signed
message. An adversary against the CMA security of a digital signature in the
random oracle model is allowed to make two types of queries: sign queries and
hash queries (the latter queries being classical in the ROM and in quantum
superposition in the QROM). In the security analysis, we eventually want the
challenger to be able to reply to the queries without relying on the signing
key. For this purpose, we can let the challenger modify the way it replies to

3

the queries, as long as the modifications are not visible to the adversary. The
fact that the signing algorithm uses the hash function, which is controlled by
the challenger, is handful for simulating signatures without knowing the signing
key, but induces a difficulty: the challenger must reply to hash queries and sign
queries consistently. In the case of Schnorr’s signature, a sign query uses the
hash function exactly once. However, in the Fiat-Shamir with Aborts variant, a
sign query uses the hash function several times: the hash function is evaluated
once in every loop iteration.

In what follows, we first describe flaws from existing analyses in the bounded
abort setting, and then how we fix them. In the process, we introduce a stronger
zero-knowledge definition for Σ-protocols with aborts, which allows to fix the
analysis, and prove that existing protocols achieve this definition. We finally
explain how our analysis extends to the case of unbounded aborts.

2.1 Flaws in Existing Analyses of FSwBA

An unsubstantiated intuition. We start by describing a first flaw appearing in all
existing analyses. These analyses start as follows: in the genuine security exper-
iment (denoted Game 0), all (successful or not) transcripts generated during a
sign query use a challenge that is computed with the hash function. Then, a first
hybrid (Game 1) changes the sign algorithm by sampling a uniformly random
challenge and programming the hash function consistently with the successful
proof transcript only. All proofs immediately conclude these two games are iden-
tical: the (unsubstantiated) intuition is that the adversary does not have access
to the aborted transcripts, and hence programming these transcripts does not
impact the adversary’s view.

F1. Assume the challenger in the genuine CMA (or even CMA1) security game
answers a sign query µ using a sequence of commitments w1, w2, As-
sume that rejecting is a deterministic function of w and c (this is for ex-
ample the case for Lyubashevsky’s signatures with the parameters considers
in [AFLT16]). Then, as soon as w1 fails to produce a valid transcript, the
hash value H(w1‖µ) is fixed and the sign oracle can no longer return a valid
signature which uses commitment w1. This is not the case in Game 1, since
the hash value H(w1‖µ) is not programmed by the failed attempt, and the
sign query could return a signature (w1, c

′, z′) for c′ 6= c.

FSwBA has been analyzed and used numerous times (we focus here on the
most detailed analyses), yet the above flaw F1 appears in [Lyu12, Lemma 5.3],
[Lyu16, Lemma 4.1], [KLS18, Theorem 3.2], and [Kat21, Lemma 4.6]. It also ap-
pears in [AFLT16] though not in Game 1 but in Game 0: in the proof of [AFLT16,
Theorem 1], the authors directly start with the above Game 1 rather than with
the correct Game 0. Finally, the difficulty with the hash function inconsistencies
seems identified in [ABB+17, Appendix B.4], but the authors do not handle the
case of inconsistencies between different sign queries for the same message.

4

The fact that the adversary can make hash queries on superpositions of all
inputs in the QROM makes it even more difficult to argue that the adversary
cannot detect random oracle programmings, which induces additional errors.

Correlated challenges and implicit quantum sign queries in the QROM. To avoid
the latter difficulty in the QROM, the reduction from [KLS18] is made history-
free, i.e., the random oracle is never reprogrammed during the execution of the
security game (see [BDF+11] for a general treatment of history-free reductions in
the QROM). For this purpose, the authors let the hash function call the signing
algorithm, to guarantee that the hash and sign queries are handled consistently.
On the downside, any subsequent signing algorithm modification in the security
proof is of a quantum nature, as the adversary can make quantum queries to the
hash function. This leads the analysis to two additional errors.

Consider the CMA1 security analysis [KLS18, Theorem 3.2]: as above, the
reduction starts with Game 0, which is the genuine security experiment. In
Game 1, on a hash query (w‖µ), the oracle calls a GetTrans function which
runs the signing algorithm on input µ and checks if the commitment w of the
non-aborting transcript matches the hash query. If the random oracle is called
on that input (possibly as part of a quantum superposition), it is programmed to
reply with the challenge programmed by the signing algorithm. This guarantees
consistencies of hash values defined by hash queries and by sign queries. In
addition, Game 1 replaces the Σ-protocol execution in the GetTrans function
(called in both sign and hash queries) by the simulator. The authors bound the
advantage loss of that game hop by BQSεzk, with B being the maximum number
of loop iterations, QS the number of sign queries, and εzk the zero-knowledge
error of the underlying interactive protocol.

As pinpointed above, a first flaw F1 comes from the fact only the non-aborting
challenge is programmed by GetTrans, but two additional flaws are induced by
relying on the simulator in GetTrans.

F2. Recall that the zero-knowledge property of the underlying Σ-protocol is for a
single execution of the protocol (as opposed to correlated executions). Hence,
replacing executions which rely on challenges computed as hash values by
simulated transcripts requires challenges to be statistically independent. This
is only possible if the hash function is evaluated on distinct inputs (w‖µ),
which is not guaranteed: there might be collisions on commitments w’s used
within a sign query for a message µ.

F3. Since the adversary can only make classical sign queries, it could seem that
transitioning from real to simulated transcripts is required only for those
that are generated by the sign queries (there are at most BQS of them,
leading to the BQSεzk term). However, the adversary can make quantum
hash queries, and for consistency of hash evaluation, these queries make calls
to the GetTrans function. Hence this transition has to be done for all possible
sign queries (not only those that are actually made). In particular, even in
the ROM, the reduction loss should already be B(QS +QH)εzk as each sign
query and hash query induces up to B simulated transcripts. In the QROM,
the loss is even larger as the adversary can make QH quantum hash queries.

5

Flaws F2 and F3 appear in the QROM analyses of [KLS18, Theorems 3.2 and 3.3]
and [Kat21, Lemma 4.6].

2.2 Corrected Analyses of FSwBA

The security analysis in the ROM, which only suffers from F1, can be readily
modified to handle this difficulty by bounding the probability the random oracle
gets evaluated twice on a previously defined input. If the commitment has high
min-entropy, this event happens with negligible probability. F1 vanishes as the
hash function is never evaluated twice on the same input. It would seem that the
rest of the analysis goes through (e.g., following [AFLT16]), but this fix induces
an additional problem described below.

We provide two different analyses in the QROM. The first one follows and
fixes the [KLS18] analysis. The second one extends the adaptive reprogramming
technique of [GHHM21] to Fiat-Shamir with aborts and achieves strong CMA
security. When instantiated to the ROM, the latter analysis is arguably simpler
than the one from [AFLT16], for which reason we only describe this one.

Fixing the [KLS18] analysis (up to the additional problem). We deviate from
the original analysis immediately after Game 0. We let the GetTrans function
program the hash values not only for the non-aborting transcript, but also for
all the intermediate aborting transcript. We further make the GetTrans function
deterministic by deriving randomness from a random function. When a hash
query is made on input (w‖µ), the GetTrans function is then called to check if
signing µ defines a hash value for (w‖µ). All this avoids falling into F1.

Then, one would like to rely on simulated transcripts so that we can simu-
late the game without knowing the signing key. To avoid falling into F2, one
then needs to prove that all challenges are independent. We define a hybrid
game in which GetTrans outputs a special symbol if it calls conflicting hash in-
puts (i.e., uses twice the same commitment w inside the loop). Applying the
One-Sided O2H Lemma [AHU19] combined with the high min-entropy of com-
mitments then allows us to bound the distinguishing advantage of a (quantum)
adversary between these two games by (QS +QH)B/

√
2α, with α denoting the

min-entropy of commitments, QS , QH the number of sign and hash queries, and
B the parameter bounding the number of loop iterations. Note that GetTrans is
invoked by both hash and sign queries (hence the QS+QH term). This solves F2:
one can now replace real transcripts by simulated ones in GetTrans as all chal-
lenges are uniformly random and independent. Yet again, both hash and sign
queries rely on GetTrans, which itself uses either actual or simulated transcripts.
A similar argument as before, relying on Oracle-Indistinguishability [Zha12, The-
orem 1.1] allows to bound the distinguishing advantage of a (quantum) adversary
by (QS +QH)3/2/

√
B · εzk, handling the last error F3.

A security analysis in the QROM based on adaptive reprogramming. Indepen-
dently, we provide a different security analysis based on the technique developed
in [GHHM21]. In the latter, the authors study adaptive reprogramming in the

6

QROM and exploit it to analyze the (no-abort) Fiat-Shamir heuristic. They
suggest that the latter analysis can be extended to the Fiat-Shamir with aborts
setting, and we provide such an analysis (see Theorem 4).

Adaptive reprogramming considers a setting in which a quantum adversary
has access to a random oracle, and in addition can query a reprogramming
oracle O with inputs µ. The oracle answers to such a query by sampling w from
a target distribution (the commitment space in our case) and returning it to the
adversary. In addition, the oracle either leaves the random oracle unchanged,
or reprograms it on input (w‖µ). In the classical setting, it is clear that an
adversary cannot tell whether O affects the random oracle unless it has already
made the hash query (w‖µ). In [GHHM21], the authors provide a bound for the
distinguishing advantage of a quantum adversary.

Adaptive reprogramming allows to immediately move from Game 0 to a
Game 1 in which the GetTrans function, on input µ, samples fresh uniformly ran-
dom and independent challenges c and reprograms the random oracle according
to c on input w‖µ. This immediately solves F1 as it programs all intermediate
values (even though some values can get programmed multiple times), as well
as F2 since challenges are now set to uniformly random and independent values
thanks to reprogramming. Note that hash queries do not need to run GetTrans
as adaptive reprogramming guarantees the adversary cannot find inconsisten-
cies (which would allow to distinguish Games 0 and 1). It remains to replace
real transcripts by simulated ones, which is easily argued with a security loss
of BQSεzk, since only the (classical) sign queries rely on running the simulator.
Doing so, we circumvent F3. One then needs to keep consistency in the hash
values, which is done by keeping track of the last values reprogrammed by the
(polynomial number of classical) sign queries.

Insufficiency of the usual simulators for Σ-protocols with aborts. While the above
approaches seem sound, they induce an additional subtle problem: we now run all
aborting and non-aborting executions of the underlying Σ-protocol at every step
of the reduction, and in particular in the game hop replacing real transcripts by
simulated ones. The no-abort Honest-Verifier Zero-Knowledge (naHVZK) prop-
erty usually considered for Σ-protocols with aborts is insufficient to analyze this
game hop. Rather than trying to rely on the prior naHVZK notion, we choose an
alternative route and exploit a stronger Honest-Verifier Zero-Knowledge (HVZK)
for Σ-protocols with aborts, which requires the simulator to be able to simulate
both aborting and non-aborting transcripts. Equipped with this definition, the
above proofs go through immediately.

There is still one major issue to solve: this definition of strong simulation is
not known to be achieved by Σ-protocols involved in Lyubashevsky’s signatures
(which might be the reason for the existence of the naHVZK notion). We con-
struct a simulator for this setting, which works as follows: With probability p, it
generates a non-aborting transcript (using the well-known naHVZK simulator),
with p being the known probability that a protocol iteration does not trigger an
abort. Else, with probability 1− p, it returns a uniform commitment w (and ⊥
for the z-part of the transcript). The main technicality is to show that uniform

7

commitments are indeed indistinguishable from aborting transcript. Recall that
the commitment w is of the form Ay for a public matrix A and a vector y
sampled from a source distribution Q. If Q has high min-entropy, we use the
fact that aborting does not decrease much the min-entropy of Q and use the
leftover hash lemma to conclude that the protocol is statistical zero-knowledge.
While this already handles many settings of Lyubashevsky’s signature, we want
the source distribution to have lower entropy in some cases. We prove that if
the distribution Q is such that LWE is hard for noise distribution set to Q,
the protocol is computational zero-knowledge, for a variant of computational
zero-knowledgedness that is compatible with the Fiat-Shamir transform.

Correctness analysis of FSwBA signatures. In addition to these technical issues
regarding the security analysis, it turns out that bounding the number of loop
iterations and returning ⊥ when the bound is reached makes the correctness
analysis somewhat non-trivial. This is often brushed away in existing works, and
we are not aware of a correct analysis. The goal is to provide a small upper bound
on the probability that the signing algorithm outputs ⊥. For this purpose, it is
tempting to argue that at each loop iteration, the abort probability is the failure
probability β ∈ (0, 1) of the underlying proof system, and hence that the signing
abort probability is βB where B is the bound on the number of iterations. This
is incorrect, as the executions of the underlying proof system are not statistically
independent: all challenges are derived from the hash function. It hence seems
unavoidable to assume the ROM not only for security but also for correctness,
but this is not sufficient, as statistical dependencies between the loop iterations
can stem from collisions between inputs of the hash function: if the hash inputs
are the same in two iterations, the returned challenges are the same.

We provide a detailed proof of correctness. For this, we observe that the secu-
rity analyses involves a game in which the signing loop iterations are statistically
independent: the βB bound above holds in these experiments. We then argue
that the failure probability in the genuine execution is close to βB , as otherwise
we would be able to distinguish the genuine security experiment from the one in
which the signing loop iterations are statistically independent. Our correctness
analysis for FSwBA is actually a corollary of our (runtime) analysis of FSwUA,
and is described in the corresponding section.

Wrapping up on FSwBA. We obtain several complete analyses with distinct se-
curity claims for signatures based on FSwBA, both in the ROM and the QROM.
We provide an overview of our results in Table 1, using the same notation as
above. The “reduction loss” is a bound on the difference of success probabilities
of the adversary in the CMA and NMA security experiments. We assume the
circuit model for quantum computations, except when mentioned otherwise. The
table assumes that QH ≥ B · QS (this assumption is justified by the fact that
hash evaluations can be made without restriction whereas sign queries require
interaction with the signer). Similarly, the zero-knowledge simulation time is ne-
glected (unless it is very large, its contributions are typically dominated by the
terms in the table). We also omit constant factors. Note that the reduction in the

8

ROM simulates the random oracle using the lazy sampling method. However,
the QROM reductions are relative to another random oracle that is accessible
to the challenger (this assumption may be removed by relying on a quantum
pseudorandom function [Zha12]). More detailed statements can be found in the
referenced theorems.

Analysis
Hash

function
Reduction loss

Reduction runtime
overhead

Adaptive reprogramming
(Th. 4)

ROM
2−αBQSQH
+ εzkBQS

QH log(QH)

Adaptive reprogramming
(Th. 4)

QROM
2−α/2BQSQ

1/2
H

+ εzkBQS

QH log(BQS) with QRACM
BQSQH without

History-free
for CMA1 security (Th. 3)

QROM
2−α/2BQH

+ ε
1/2
zk B

1/2
Q

3/2
H

BQH

History-free
for CMA security (Th. 10)

QROM
2−α/2BQSQH

+ ε
1/2
zk B

1/2
Q

3/2
H

BQSQH

Table 1: Comparison of the security analyses of FSwBA.

We observe that the QROM analyses are incomparable. In particular, the
adaptive reprogramming technique from [GHHM21] is tight only when assum-
ing quantum random access classical memory (QRACM), which is a stronger
assumption than the quantum circuit model of computation. The history-free
technique from [KLS18] is tight only when considering adversaries that may
make at most one sign query for any message (CMA1 security). This covers the
deterministic version of the resulting signature, obtained by deriving the ran-
domness from the message via a pseudo-random function evaluation. For CMA
security, the reduction is not tight (even assuming QRACM) and the reduction
loss is higher than the one obtained with the adaptive reprogramming technique.

2.3 Concrete Analysis of FSwUA

On the termination of FSwUA signatures. For FSwUA, we start by exhibiting
an underlying identification scheme with the following peculiar property: for any
execution of the key generation algorithm of the resulting signature, there exists
a hash function such that the resulting signing algorithm loops forever on every
input message. Yet, with overwhelming probability over the random choice of
the hash function, the expected runtime is polynomially bounded. The scheme
is a variant of Lyubashevsky’s [Lyu09,Lyu12], with carefully crafted source and
target distributions (we refer to [DFPS22] for a description of Lyubashevsky’s
signature with arbitrary source and target distributions). To make sure that
every loop iteration always fails, we use a source and a target distribution that
are uniform over some sets XS and XT , respectively, with XT ⊆ XS . The choice
of uniform distributions leads to a deterministic rejection test: an iteration takes
a uniform y ∈ XS and maps it to a vector z, and an abort occurs if z /∈ XT .

9

Going a little further into the details, the vector z is of the form z = y + sk · c,
where the integer matrix sk is the signing key and c is the output of the hash
function H on a function of y and the message. We want to design XS and XT

such that: (1) for all sk, the probability over y← U(XS) and H that z = y+sk·c
belongs to XT is at least a positive constant, and (2) for all sk, there exists an H
such that for all y and message, the vector z = y + sk ·c does not belong to XT .

The first condition forces us to set XS not much larger than XT . For the
second condition, we design H so that any y is sent outside of XT . As H depends
on a function of y, we first make sure that this function is injective, so that H is
a function of y itself (else we would have to consider the set of predecessors and
design H to jointly send them all outside of XT). This injectivity is obtained by
relying on the lossy version of Lyubashevsky’s signature scheme [AFLT16]. Then
for a vector y, we design c so that y + sk ·c is not in XT and set c as the output
of H on y and the message. For this purpose, we set XS as a hyperball and Xt

as an inner crust (a corona that almost aligns with the hyperball boundary). As
hyperballs are concentrated on their surface, the volume ratio can be bounded
by a positive constant even with a thin crust. Now, if y ∈ XS \XT , we set c = 0
(for every message). If y belongs to XT , we choose y′ ∈ XS \ XT near y and
define c such that y + sk · c is very close to y′: for this purpose, it suffices to
round y′ to the lattice spanned by sk; by taking sk that is well-conditioned, we
can guarantee that the rounded vector is close to y′ and remains outside of XT .
As a result, all loop iterations of the resulting FSwUA signing algorithm fail.

The above counter-example is admittedly contrived, but illustrates the fact
that specific difficulties arise when analyzing the unbounded version of Fiat-
Shamir with aborts. In particular, this suggests to modify the requirement of
signing runtime, so that it is authorized to take longer than desired, but only with
small probability over the randomness of the random oracle (see Definition 9 for
the formal requirement). We show that the signature obtained with the FSwUA
transform indeed fulfills this requirement (in the random oracle model).

Security and correctness analyses of FSwUA signatures. We reduce the NMA
security of FSwUA signatures to their CMA security, both in the ROM and the
QROM. For this purpose, it is tempting to add a bound on the number of loop
iterations, argue that the adversary cannot notice the difference, and then use
the NMA security to CMA security reduction of FSwBA signatures. To prove
that the adversary cannot notice the difference between the unbounded and
bounded versions of the signing algorithm, one would argue that the probability
of reaching that bound in at least one sign query is negligible, as the number of
loop iterations follows a geometric law. But as discussed earlier, this is not true
since there is a statistical dependency between different iterations of the rejection
sampling. However, we show that the probability of the number of iterations
until a success outcome be larger than B is small, over the randomness of the
random oracle. This allows us to show the expected equivalence between FSwBA
and FSwUA when the bound B is large, as an adversary likely never sees ⊥
with the FSwBA variant. Using the same notations as before, the reduction
loss of this step is bounded by QS · βB + 2−α/2 · BQS ·

√
QH in the QROM

10

and by QS · βB + 2−α ·BQSQH in the ROM. (As above, these bounds assume
that QH ≥ BQS and omit constant terms; we additionally assume that β ∈ (0, 1)
is a constant.)

We provide a correctness analysis of FSwUA signatures (in the ROM), which
proceeds in a similar way. Assuming that the signature outputs a transcript,
this transcript follows the same distribution as a transcript from the underlying
identification protocol, i.e. the challenge is uniform over the challenge space. It
may not be independent from previous signatures and failed iterations, but all
that matters here is its marginal distribution. This lets us bound the correctness
error of the signature as a function of the correctness error of the underlying
identification protocol.

2.4 Related Works

The Fiat-Shamir with aborts paradigm [Lyu09, Lyu12] has been used too ex-
tensively to attempt a complete list of works whose provable security claims are
impacted by the flaws we pointed at. The list notably includes the NIST-selected
Dilithium signature scheme [DKL+18], whose provable security claim [DKL+18,
Section 4.2] derives from [KLS18]. Our work provides fixes to the claims.

The difficulties encountered when analyzing Fiat-Shamir with aborts can
be circumvented by modifying the scheme. For example, some works replace
the rejection sampling used in Lyubashevsky’s signatures by statistical flood-
ing (see, e.g., [DPSZ12, Appendix A.1] in the context of zero-knowledge proofs,
or [ASY22, Section 4] in the context of signatures). In [CLMQ21], the authors
instantiate the hash function so that a proof can be obtained without the ran-
dom oracle model. Another approach consists in committing to w rather than
sending it. This idea is discussed in [BBE+18] and attributed therein to Vadim
Lyubashevsky. All these proposals incur significant losses on signature sizes.

Our strong simulation has implications to masked instantiations of Lyuba-
shevsky’s signatures. For efficiency reasons, one does not want to mask the hash
function evaluation. For this purpose, a heuristic assumption has been intro-
duced in [BBE+18, BBE+19, MGTF19]: informally, it states that revealing the
commitments of the aborted transcript does not hurt the security of the scheme.
This assumption removes the need for masking the hash function since commit-
ments are the only non-public information about the hash function evaluations
(the message and the hash function are public). Our simulator shows that this
heuristic assumption holds unconditionally for some parameter ranges.

A concurrent and independent work [BBD+] also identifies flaw F1 in prior
works on Fiat-Shamir with aborts. It fixes it while still relying on a zero-
knowledge notion that considers only non-aborting transcripts. Like in our ap-
proach based on adaptive reprogramming [GHHM21], the analysis from [BBD+]
uses reprogramming for both aborting and non-aborting transcripts. It differs
in that it then undoes the reprogrammings for rejecting transcripts. This is not
required in our case as our zero-knowledge notion captures aborting transcripts.
We then show that this strengthened zero-knowledge requirement is achieved
for the main application of Fiat-Shamir with aborts. We further identify and

11

fix other difficulties with the Fiat-Shamir with aborts paradigm, notably with
the history-free approach from [KLS18] and termination and correctness in the
unbounded case. On the other hand, the concurrent work [BBD+] additionally
offers a fully mechanized security proof for Dilithium (in the ROM) using the
EasyCrypt formal-verification platform.

3 Preliminaries

We use code-based games to write the proofs. We use capital letters with fraktur
font (e.g., L) to denote the list of objects. We let Coll : L 7→ {0, 1} be the
function that takes as input a list and outputs 1 if and only if at least two of the
elements of the list are equal. We sometimes abuse the notation and let Coll(L)
denote the event that it returns 1. We implicitly assume that all variables are
parameterized by the security parameter λ. To denote that a function f (or a
database) is reprogrammed at input x to the value y we use the notation fx 7→y.
All our logarithms are in base 2.

We provide reminders about probabilities, Rényi divergence, digital signa-
tures, quantum computing in Appendix A.

3.1 Σ-Protocols

We start by recalling various definitions pertaining to Σ-protocols.

Definition 1 (Σ-Protocol with Aborts). Let X and Y be two finite sets.
A Σ-protocol for a relation R ⊆ X ×Y with commitment set W, challenge set C
and response set Z is a 3-round interactive proof system between a prover written
as P = (P1,P2) and a verifier V = (V1,V2) with the following specifications:

• P1 : (x, y)→ (w, st) is a PPT algorithm that takes as input a pair of strings
in X × Y and outputs a commitment w ∈ W and a state st ∈ {0, 1}∗;
• V1 : (x,w)→ c is a PPT algorithm that takes as inputs a string x ∈ X and

a commitment w ∈ W and outputs a challenge c ∈ C;
• P2 : (x, y, w, c, st) → z is a PPT algorithm that takes as inputs a pair of

strings in X × Y, a commitment w ∈ W, a challenge c ∈ C, and a state st
and outputs a response z ∈ Z ∪ {⊥} (we say that P2 aborts if it outputs ⊥);
• V2 : (x,w, c, z) → b ∈ {0, 1} is a deterministic polynomial-time algorithm

that takes as inputs a string x ∈ X , a commitment w ∈ W, a challenge c ∈ C,
and a response z ∈ Z and outputs a bit b which represents acceptance or
rejection; in the case that z = ⊥, it returns 0.

A Σ-protocol is said to be public-coin if V1 outputs a challenge string c that
is uniformly sampled from the challenge space C, independently from its input.

Note that the above definition (and the following ones) is implicitly parameter-
ized by the security parameter λ, that we omit for the sake of simplicity. Given
a language L = {x ∈ X | ∃y ∈ Y : (x, y) ∈ R} for a relation R ⊆ X × Y, we are
interested in the following properties of a Σ-protocol.

12

Definition 2 (Correctness). Let γ, β > 0. A Σ-protocol ((P1,P2), (V1,V2))
is (γ, β)-correct if for every x ∈ L and valid witness y ∈ Y the following holds.

• If the response of the prover is not ⊥, the verifier accepts with probability at
least γ:

Pr

V2(x,w, c, z) = 1

∣∣∣∣∣ (w, st)← P1(x, y),
c← V1(x,w), z ← P2(x, y, w, c, st),
z 6= ⊥

 ≥ γ.
• The probability that the prover aborts is bounded by β:

Pr

[
z = ⊥

∣∣∣∣∣ (w, st)← P1(x, y),
c← V1(x,w), z ← P2(x, y, w, c, st)

]
≤ β.

We also let β denote the probability of aborting. We are interested in the regime of
parameters in which γ ≥ 1−λ−ω(1) and β ≤ 1−1/poly(λ). Note that by repeating
the protocol poly(λ) times, the parameter β is pushed toward 0, whereas γ stays
close to 1.

We refer to the following definition as the one that is usually used in the liter-
ature of Fiat-Shamir with aborts. Note that we do not use it. Later in Section 4,
we discuss our modifications.

Definition 3 (No-Abort Statistical Honest-Verifier Zero-Knowledge).
Let εzk, T ≥ 0. A Σ-protocol is (εzk, T)-naHVZK if there exists a simulator Sim
with runtime at most T , that given x, outputs a transcript (w, c, z) such that
the distribution of (w, c, z) has statistical distance at most εzk from a honestly
generated transcript (w′, c′, z′) produced by the interaction conditioned on z 6= ⊥.

If Σ is public-coin, then without loss of generality, the challenge c can be
sampled uniformly from the challenge space C and passed over as input to the
simulator Sim. In the rest of the paper, we limit ourselves to public-coin Σ-
protocols.

For cryptographic purposes, one instantiates the Σ-protocol with hard sam-
ples. This notion is captured in the following definition.

Definition 4 (Identification Protocol). An identification protocol is a Σ-
protocol for an NP relation R, where the prover and verifier are dealt their
statement and witness by a PPT instance generator Gen.

A useful statistical property of a Σ-protocol is the min-entropy of the commit-
ments. We borrow the following definition from [KLS18].

Definition 5 (Commitment Min-Entropy). For α ≥ 0, we say that an iden-
tification scheme ((P1,P2), (V1,V2)) with instance generator Gen has commit-
ment min-entropy α if H∞[w|(w, st)← P1(x, y)] ≥ α, for all (x, y)← Gen(1λ).

Note that we could accommodate our results to schemes for which the above
holds only with overwhelming probability over the randomness of Gen.

13

3.2 Fiat-Shamir Transform

Let Σ = ((P1,P2), (V1,V2)) be an identification protocol with an ε-hard in-
stance generator Gen for a binary relation R. Further, let H : {0, 1}∗ → C be
a hash function where C is the challenge space of Σ. Then, for every positive
integer B, one can construct a signature scheme SIGB = FSB [Σ,H] by applying
the Fiat-Shamir transform with bounded aborts (FSwBA) as in Figure 1. We are
particularly interested in applying the Fiat-Shamir transform without imposing
a bound on the number of iterations in the rejection sampling as it is the case
for Dilithium [DKL+18], among other schemes. One can define the unbounded
version SIG∞ = FS∞[Σ,H] of the Fiat-Shamir transform for a Σ-protocol Σ
as in Figure 1. Note that the signing algorithm of SIG∞ may not be PPT as
required in Definition 10. Ideally, it would still be expected polynomial-time.

KeyGen(1λ):

1: (x, y)← Gen(1λ)
2: (vk, sk) = (x, (x, y))
3: return (vk, sk)

Sign(sk, µ):

1: κ := 1
2: While z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c = H(w‖µ)
5: z ← P2(sk, w, c, st)
6: κ := κ+ 1
7: if z = ⊥ return ⊥
8: return σ = (w, z)

Ver(vk, µ, σ):

1: Parse σ = (w, z)
2: c = H(w‖µ)
3: return V2(vk, w, c, z)

Fig. 1: Signatures SIGB = FSB [Σ,H] and SIG∞ = FS∞[Σ,H]. The signa-
ture SIGB uses blocks highlighted with the blue color, whereas SIG∞ does not.

In this work we show that sUF-CMA security (and sometimes sUF-CMA1) of
such signatures can be reduced to their UF-NMA security. Here, we briefly recall
two possible ways to reduce UF-NMA security to the security of the underlyingΣ-
protocol. For more details, we refer the reader to prior works (e.g., [Lyu09,Lyu12,
AFLT16,DFMS19]).

• In [AFLT16, KLS18], the authors consider lossy identification schemes in
which there exists another instance generator function Genls for the protocol
that only outputs an instance xls without any witness. Moreover, its out-
put distribution is computationally indistinguishable from the one of the
real instance generator Gen. Further, it is said to be εls-sound if no cheat-
ing prover (even unbounded) can impersonate the real prover given xls as
input and make the verifier to accept with probability more than εls. They
reduce UF-NMA security of a signature based on the Fiat-Shamir transform
to the εls-soundness of the underlying identification scheme and the indis-
tinguishability of the outputs of Gen and Genls.
• In [DFMS19] and implicitly in [Lyu09,Lyu12], the authors reduce UF-NMA

security of a signature based on the Fiat-Shamir transform to the proof of

14

knowledge property of the underlying Σ-protocol. Their reduction is less
tight than the one of [KLS18].

3.3 Adaptive Reprogramming in the QROM

We rely on the following lemma for one of our analyses in the QROM. Con-
sider the following decision game: Assume the hash function takes inputs of the
form (x1, x2), and an adversary (with quantum access to the hash function) has
access to a reprogramming oracle which can be queried with any value x2. On
a query x2, the oracle samples a value x1 and either leaves the hash function
unchanged or reprograms it on input (x1, x2) to a uniformly random value y
from its range. It may also maintain a state x′. Given (x1, x

′), the adversary’s
goal is to decide whether the oracle reprograms the hash function or not. The
following lemma proves this game to be hard even for quantum adversaries. We
also remind the classical variant of this lemma (Lemma 12) in Appendix A.5.

Lemma 1 (Adaptive Reprogramming [GHHM21, Proposition 2]). Let
X1, X2, X

′ and Y be finite sets, and let D be a distribution on X1 ×X ′. Let A
be a distinguisher playing in the reprogramming game in Figure 2 and making q
quantum queries to the random oracle and r classical queries to the Reprogram
function. Then∣∣Pr[1⇐ ReprogramA0]− Pr[1⇐ ReprogramA1]

∣∣ ≤ 3r

2

√
q · 2−α,

where α is the min-entropy of the first component of D.

Game Reprogramb :

1: H0 ← U(Y X1×X2)
2: H1 := H0

3: b′ ← A|Hb〉, Reprogram(·)

4: return b′

Reprogram(x2) :

1: (x1, x
′)← D

2: y ← U(Y)

3: H1 := H
(x1,x2) 7→y
1

4: return (x1, x
′)

Fig. 2: The reprogramming game.

4 A Simulator for Lyubashevsky’s Σ-Protocol

As we discussed in the introduction, Definition 3 is not sufficient for our purposes.
In this section, we strengthen it in both statistical and computational settings.

We consider the following statistical HVZK definition, which benefits from
a simulator even for aborting transcripts of the Σ-protocol. One can see this
modification as a return to the classic definition in the literature of the zero-
knowledge interactive proof systems.

15

Definition 6 (Statistical Honest-Verifier Zero-Knowledge). Let εzk, T ≥
0. A Σ-protocol is (εzk, T)-HVZK if there exists a simulator Sim with runtime
at most T , that given x, outputs a transcript (w, c, z) such that the distribution
of (w, c, z) has statistical distance at most εzk from a honestly generated tran-
script (w′, c′, z′) produced by the interaction. This includes aborting transcripts,
i.e., those for which z = ⊥.

If Σ is public-coin, then without loss of generality, the challenge c can be
sampled uniformly from the challenge space C and passed over as input to the
simulator Sim.

A central application of the Fiat-Shamir with aborts paradigm is Lyuba-
shevsky’s signature scheme [Lyu09, Lyu12]. We show here that the underlying
Σ-protocol satisfies the zero-knowledge property of Definition 6, i.e., admits an
efficient simulator for all transcripts including the aborting ones.

Let us first recall the Σ-protocol, using the formalism from [DFPS22]. Let P
and Q be two distributions over Zm: we refer to Q as the source distribution, and
to P as the target distribution. The relation R is parametrized by a matrix A ∈
Zn×mq which we assume to be in Hermite Normal Form, i.e., A = (In|B) for

some B ∈ Zn×(m−n)q . It is also parameterized by some dimension k and norm
bound βSIS > 0. The relation R is of the form:

Rm,n,k,q,βSIS
(A) =

{
(S,T) ∈ Zm×k×Zn×kq : AS = T mod q ∧ max

i∈[k]
‖si‖ ≤ βSIS

}
.

The Σ-protocol, with repetition parameter M ≥ 1 and norm bound βSIS is given
in Figure 3. We note that V2 is not needed to discuss the zero-knowledge property
of the protocol.

P1(S) :

1: y← Q
2: st := y
3: w = Ay mod q
4: return w

V1(T,w) :

1: c← U(C)
2: return c

P2(S, c, st) :

1: z := y + Sc
2: with probability min(P (z)/(M ·Q(y)), 1)
3: return z
4: else return ⊥

V2(T, (w, c, z)) :

1: if ‖z‖ ≤ βSIS and Az = w + Tc mod q
2: return Accept
3: return Reject

Fig. 3: Lyubashevsky’s identification protocol.

We consider the simulator Sim described in Figure 4.
The proof that the simulation is correct in the non-aborting case is quite

standard and derives from the rejection sampling. For the aborting case, our
proof relies on the leftover hash lemma and requires the source distribution Q

16

Sim(T, c) :

1: with probability 1/M
2: z← P
3: w := Az−Tc
4: else
5: w← U(Znq)
6: z := ⊥
7: return (w, z)

Fig. 4: Simulator Sim of Lyubashevsky’s Σ-protocol.

to have high min-entropy. The case of low min-entropy source distributions Q is
handled later on.

4.1 High Min-Entropy Source Distributions

We first consider the case where Q has high min-entropy. In that case, we obtain
statistical zero-knowledgedness as per Definition 6.

Theorem 1. Let m ≥ n and k be positive integers, q prime, ε, βSIS > 0 and η ∈
[0, 1/2]. Assume that

H∞(Q) ≥ n log q + log
(

1− 1− η
M

)
+ 2 log

1

ε
.

Let (S,T) ∈ Rm,n,k,q,βSIS
(A) for some A← U(Zn×mq). Assume that

∀c ∈ C : Pr
z←P

[
P (z) ≤M ·Q(z− Sc)

]
≥ 1− η.

Then the distribution of the transcript (w, c, z) generated by 〈P(S),V(T)〉
is within statistical distance ε + η(1 + 1/M) from the distribution of the triple
(w, c, z) obtained by sampling c uniformly in C and sampling (w, z)← Sim(T, c).

Observe that c is distributed uniformly in C in both genuine and simulated
transcripts. It hence suffices to study the distribution of the rest of the transcript
conditioned on the value of c.

The first part of the following result derives from [DFPS22, Lemma 2.2], and
the second part derives from the description of Sim. The claim ensures that the
probabilities of the event z = ⊥ in the genuine and simulated transcripts are
close-by.

Lemma 2. For all c output by V1, the probability (over the random coins of P1

and P2) that P2 outputs ⊥ belongs to [1 − 1/M, 1 − (1 − η)/M]. For all c, the
probability (over its random coins) that the output component z of Sim is equal
to ⊥ is 1− 1/M .

We now consider the transcript distribution conditioned on the event z 6= ⊥.

17

Lemma 3. Conditioned on z 6= ⊥, the distribution of the transcript (w, c, z)
generated by (P, V) is within statistical distance η from the simulated distribu-
tion.

Proof. For all c and conditioned on z 6= ⊥, the distribution of z output by P2

is within statistical distance η from P (see [DFPS22, Lemma 2.2]). The latter is
exactly the distribution of z conditioned on z 6= ⊥.

To complete the proof of Lemma 3, we argue that when z 6= ⊥, the first
coefficient of the triple is fully determined by the two others, and equal to Az−Tc
in both transcript and simulation. ut

Finally, we consider the statistical distance of the distributions conditioned
on z = ⊥. The following claim considers the distribution of the transcript con-
ditioned on not outputting ⊥.

Lemma 4. Conditioned on z = ⊥, the distribution of the transcript (w, c, z)
generated by (P, V) is within statistical distance ε from the simulated distribu-
tion.

Proof. It suffices to prove that for all c and conditioned on z = ⊥, the distribu-
tion of w in the transcript generated by (P, V) is statistically close to uniform
over Znq . Thanks to the first claim above, we have:

H∞[y|c ∧ z = ⊥] ≥ H∞[y]− log Pr[z = ⊥|c]

≥ H∞[y]− log
(

1− 1− η
M

)
.

We conclude by using the leftover hash lemma (Lemma 9). ut

Theorem 1 follows from the above lemmas by term collection. ut

4.2 Low Min-Entropy Source Distributions

The above handles many settings of Lyubashevsky’s signature, as the source
distribution Q is often chosen to have high min-entropy so that the map y 7→
Ay mod q is (very) surjective. In some cases, however, it is chosen of lower
entropy and the map y 7→ Ay mod q is very far from surjective. For example,
this allows to avoid the forking lemma in the security proof [AFLT16], which
both leads to a tight security proof and facilitates unforgeability proofs in the
QROM. Our pathological construction from Section 6.1 also relies on this regime.

We explain how this can be handled, for some distributions. First, we consider
computational zero-knowledgedness rather than statistical zero-knowledgedness.
As one needs to be able to replace real transcripts of (many) sign queries by sim-
ulated ones in the security proof, we consider a strong notion of computational
zero-knowledgeness: computational indistinguishability is required to hold even
when the distinguisher is given the witness (of course, the simulator does not
use the witness). This definition is compatible with our Fiat-Shamir with aborts

18

analyses. For example, in the analysis based on adaptive reprogramming (Sec-
tion 5.2), transcripts can be replaced one at a time by simulated ones using a
hybrid argument, since the witness allows to generate real signatures. In par-
ticular, our definition implies the notion of computational HVZK for multiple
transcripts used in [GHHM21, Definition 2], which they use to argue that all
transcripts can be replaced by simulated ones in a single step. Note that in all
the analyses we consider in this work, when we use the zero-knowledge property,
the witness x is available to the challenger.

Definition 7 (Strong Computational HVZK). Let εzk, T ≥ 0 with εzk a
negligible function of the security parameter. A Σ-protocol ((P1,P2), (V1,V2))
for a relation R is (εzk, T)-sc-HVZK if there exists a simulator Sim with runtime
at most T such that for all polynomial-time algorithm A and all (x, y) ∈ R, the
following advantage is ≤ εzk:

Adv(A) =

∣∣∣∣∣Pr

A((w, c, z), y) = 1

∣∣∣∣∣∣
(w, st)← P1(x, y),
c← V1(x,w),

z ← P2(x, y, c, w, st)

−Pr

[
A((w, c, z), y) = 1

∣∣∣(w, c, z)← Sim(x)
] ∣∣∣∣∣.

One may consider classical or quantum adversaries A.

As in the statistical case, if the Σ-protocol is public-coin, then without loss of
generality, the challenge c can be sampled uniformly from the challenge space C
and passed over as input to the simulator Sim. In the following, we use this
formalism.

The computational assumption that we rely on is the Learning With Errors
problem [Reg09]. We use its knapsack form, introduced in [MM11].

Definition 8 (k-LWE). Let m ≥ n ≥ 1, q ≥ 2 and D a distribution over Zmq .
The search knapsack-LWE problem sk-LWEm,n,q,D with parameters m,n, q,D
consists in recovering e from (A,Ae), where A ← U(Zm×nq) and e ← D. The
decision knapsack-LWE problem dk-LWEm,n,q,D with parameters m,n, q,D con-
sists in distinguishing between the distributions (A,Ae) and (A,u), where A←
U(Zm×nq), e← D and u← U(Znq).

We now argue that for some distributions Q, it is possible to prove compu-
tational zero-knowledgedness in the sense of Definition 7, with exactly the same
simulator as above (Figure 4).

Theorem 2. Let m ≥ n and k be positive integers, q ≤ poly(m,n) prime
and βSIS > 0. Assume that the distribution Q is such that the dk-LWEm,n,q,Q
problem is hard. Let (S,T) ∈ Rm,n,k,q,βSIS

(A) for some A← U(Zn×mq). Assume
that

∀c ∈ C : Pr
z←P

[
P (z) ≤M ·Q(z− Sc)

]
≥ 1− η,

19

where 1 + 1/poly(m,n) ≤M ≤ poly(m,n) and η ≥ 0 is negligible.
Then the distribution of the transcript (w, c, z) generated by 〈P(S),V(T)〉

is computationally indistinguishable from the distribution of the triple (w, c, z)
obtained by sampling c uniformly in C and sampling (w, z)← Sim(T, c), even if
the distinguisher is given S.

The first two claims (Lemmas 2 and 3) of the proof of Theorem 1 still hold.
It hence suffices to prove the statistical indistinguishability of the genuine and
simulated transcripts (w, c, z) conditioned on z = ⊥.

We first show that the genuine distribution of y conditioned on z being
rejected resembles the distribution Q of y.

Lemma 5. Assume that M > 1. Consider the execution 〈P(S),V(T)〉. Let Q⊥

denote the distribution of y conditioned on z = ⊥. Then we have:

R∞(Q⊥‖Q) ≤ M

M − 1
.

Proof. For all y, we have

Q⊥(y) =
Pr[y ∧ z = ⊥]

Pr[z = ⊥]
≤ Q(y)

Pr[z = ⊥]
.

Lemma 2 ensures that the denominator is at least 1− 1/M . ut

The following result states that if (A,Ay) is pseudo-random for y ← D, then
so is it for y← D′ for any distribution D′ such that R∞(Q′‖Q) is polynomially
bounded.

Lemma 6. Let m ≥ n ≥ 1. Let q ≤ poly(m,n) prime. Let D and D′ be two
distributions over Zm such that R∞(D′‖D) ≤ poly(m,n). Then dk-LWEm,n,q,D
reduces to dk-LWEm,n,q,D′ .

Proof. Note first that dk-LWEm,n,q,D reduces to sk-LWEm,n,q,D. Also, as we
have R∞(D′‖D) ≤ poly(m,n), by the probability preservation property (see
Lemma 10), sk-LWEm,n,q,D reduces to sk-LWEm,n,q,D′ . Finally, by [MM11, The-
orem 3.1], sk-LWEm,n,q,D′ reduces to dk-LWEm,n,q,D′ . The composition of these
reductions leads to the above claim. ut

Theorem 2 now follows from combining Lemmas 5, 6 2 and 3. ut

5 ROM and QROM Analyses of FSwBA

In this section we discuss the security of the Fiat-Shamir transform with bounded
aborts. We first prove the UF-CMA security of the signature in the QROM based
on the flawed proof in [KLS18], and then in the sequel of the section we discuss
the adaptive reprogramming techniques to prove the UF-CMA security in the
QROM (and with tighter reductions in the ROM).

We further provide an analysis relying on the Rényi divergence instead of the
statistical distance in Appendix B.2.

20

5.1 The History-Free Approach

Below, we reduce the (s)UF-CMA1 security to its UF-NMA security using the
statistical zero-knowledge property of the Σ-protocol. One can see this proof
as a correction of [KLS18]. Due to space limitation, we detail the proof in Ap-
pendix B.1. Moreover, we also claim that the same approach applies to UF-CMA
security in Appendix B.1 (see Theorem 10).

Theorem 3. Let εzk, α, TSim ≥ 0, B ≥ 0 and H and G hash functions mod-
eled as random oracles. Assume that Σ = ((P1,P2), (V1,V2)) is an (εzk, TSim)-
HVZK public-coin identification protocol, and that the commitment message of
the prover has min-entropy α. For any quantum adversary A against UF-CMA1

(or sUF-CMA1) security of SIGB = FSB [Σ,H] that issues at most QH quan-
tum queries to the random oracle H and QS classical queries to the signing
oracle, there exists a quantum adversary B against UF-NMA security of SIGB
with Time(B) ≈ Time(A) + TSim ·B · (QS +QH) such that

Adv
(s)UF-CMA1

SIGB
(A) ≤ AdvUF-NMA

SIGB (B) + 2
−α+3

2 ·B · (QS +QH)

+ 30
√
εzk ·B · (QS +QH)

3
2 .

Our reduction relies on B having access to a private random oracle H ′ with the
same domain and range as H that is not accessible by A.

The results also hold if we replace HVZK by sc-HVZK and assume εzk to be
negligible in the security parameter.

Note that one could adjust the proof of the above statement (as well as those
of the next statements) to replace access to the private random oracle by relying
on a quantum pseudorandom function in the reduction [Zha12].

5.2 The Adaptive Reprogramming Approach

We show how to reduce UF-CMA security and sUF-CMA security of the signature
to UF-NMA security, separately in the ROM and QROM. Our separate handling
of the random oracle models enables us to obtain a tighter proof in the ROM
compared to the lower bound that the QROM proof imposes on any ROM proof.
We use the similar frameworks for adaptive reprogramming (Lemma 12 and
Lemma 1) in the ROM and the QROM. Also, we note that our proof is crucially
based on our new zero-knowledge simulator.

Theorem 4. Let εzk, α, TSim ≥ 0, B ≥ 0 and H a hash function modeled as
a random oracle. Assume that Σ = ((P1,P2), (V1,V2)) is a (εzk, TSim)-HVZK
public-coin identification protocol and that the commitment message of the prover
has min-entropy α. Let A be any arbitrary adversary against UF-CMA security
of SIGB = FSB [Σ,H] that issues at most QH queries to the random oracle H
and QS classical queries to the signing oracle. Let X ∈ {UF, sUF}; we define ∆X

as follows: ∆UF = 0 and ∆sUF = BQS · 2−α.

21

• In the ROM, there exists an adversary B against UF-NMA security of SIGB
with runtime Time(A) +O((TSim ·B ·QS +QH) log(B ·QS +QH)) such that

AdvX-CMA
SIGB (A) ≤ AdvUF-NMA

SIGB (B) + 2−α ·B ·QS · (B ·QS +QH + 1)

+ εzk ·B ·QS +∆X .

• In the QROM, there exists an adversary B against UF-NMA security of SIGB
such that

AdvX-CMA
SIGB (A) ≤ AdvUF-NMA

SIGB (B) + 2−
α
2 · 3B ·QS

2
·
√

(B ·QS +QH + 1)

+ εzk ·B ·QS +∆X .

Our reduction relies on B having access to a private random oracle H ′ with
the same domain and range as H that is not accessible by A. Furthermore,
the runtime of B is Time(A) + O((TSim · B · QS + QH) log(B · QS)) with
QRACM, and Time(A)+O((TSim ·B ·QS +QH) · (B ·QS)) without QRACM.

The results also hold if we replace HVZK by sc-HVZK and assume εzk to be
negligible in the security parameter.

Proof. The proof is based on a sequence of hybrid games.

Game G0. The first game is the UF-CMA security game (Figure 5).

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AH, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗‖µ∗)
6: return [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: (w, c, z)← GetTrans(µ)
3: if z = ⊥ return ⊥
4: return σ = (w, z)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c := H(w‖µ)
5: z ← P2(sk, w, c, st)
6: κ := κ+ 1
7: return (w, c, z)

Fig. 5: Game G0

Game G1. In this game, the challenges of the transcripts are not computed by the
random oracle anymore, but sampled independently and uniformly each time.
Then, the random oracle is reprogrammed according to the new challenges as in
Figure 6.

To bound the distance between Game0 and Game1, we construct a wrapper D
around A that uses A to solve a reprogramming game. It works as in Figure 7.

22

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AH, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗‖µ∗)
6: return [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: (w, c, z)← GetTrans(µ)
3: if z = ⊥ return ⊥
4: return σ = (w, z)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c← U(C)
5: z ← P2(sk, w, c, st)

6: H = Hw‖µ 7→c

7: κ := κ+ 1
8: return (w, c, z)

Fig. 6: Game G1. The difference from G0 is highlighted in blue.

DHb,Reprogram :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AHb, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := Hb(w

∗‖µ∗)
6: return [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗)

Reprogram(µ, sk) :

1: (w, st)← P1(sk)
2: c← U(C)
3: H1 := H

(w‖µ)7→c
1

4: return (w, st)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: κ := 0
3: while z = ⊥ and κ ≤ B
4: (w, st)← Reprogram(µ, sk)
5: c := Hb(w‖µ)
6: z ← P2(sk, w, c, st)
7: κ := κ+ 1
8: if z = ⊥ return ⊥
9: return σ = (w, z)

Fig. 7: The distinguisher D.

Note that if b = 0 in Figure 7, then D perfectly simulates G0, and otherwise
it perfectly simulates G1. Therefore,∣∣Pr[1⇐ GA0]− Pr[1⇐ GA1]

∣∣ ≤ ∣∣Pr[1⇐ ReprogramD0]− Pr[1⇐ ReprogramD1]
∣∣.

During the game, distinguisher D makes B · QS reprogramming queries
and B ·QS +QH + 1 random oracle queries. In the ROM, Lemma 12 bounds the
advantage of D by B ·QS · (B ·QS +QH +1)2−α. In the QROM, using Lemma 1,
it follows that the advantage of D is bounded by

3B ·QS
2

·
√

(B ·QS +QH + 1)2−α.

23

Game G2. Let Sim be the zero-knowledge simulator for Σ. In this game we
modify GetTrans such that the transcripts are now produced by Sim and without
the secret key. See Figure 8.

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← AH, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗‖µ∗)
6: return [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: (w, c, z)← GetTrans(µ)
3: if z = ⊥ return ⊥
4: return σ = (w, z)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: c← U(C)
4: (w, z)← Sim(vk, c)

5: H := Hw‖µ7→c

6: κ := κ+ 1
7: return (w, c, z)

Fig. 8: Game G2. The difference from G1 is highlighted in blue.

We would like to bound the distance between games G1 and G2 using the
zero-knowledge property. First we discuss the QROM case. Suppose that we are
given a random oracle H ′ and B ·QS transcripts that are either sampled honestly
or sampled by the simulator. We use them to simulate G1 or G2, respectively.
Note that in both games, after each transcript, the random oracle is repro-
grammed according to the transcript. In order to simulate the reprogrammed
random oracle perfectly, we keep track of a list D of the classical values in which
the random oracle must be reprogrammed. We describe the details in Figure 9.

Note that C can perfectly simulate G1 or G2 with its respective transcripts.
Furthermore, it is given B ·QS transcripts. By the statistical HVZK property of
the Σ-protocol, it follows that∣∣Pr[1⇐ GA1]− Pr[1⇐ GA2]

∣∣ ≤ B ·QS · εzk.
The ROM case is similar except that instead of using the private random ora-
cle H ′ to simulate H, we use the lazy sampling method. The rest of the reduction
is exactly the same as in Figure 9. We obtain∣∣Pr[1⇐ GA1]− Pr[1⇐ GA2]

∣∣ ≤ B ·QS · εzk.
Game G3. In this game, we add one more statement to the winning conditions.
Let (µ∗, (w∗, z∗)) be the forgery. If the value w∗‖µ∗ has been programmed in the
random oracle H during the game, then we abort. The value w∗‖µ∗ would be
programmed during the game if the adversary has made a sign query with µ∗.
As the winning condition in the UF-CMA game already requires a forgery for a

24

C|H
′〉({wi,κ, ci,κ, zi,κ}i∈[QS],κ∈[B]) :

1: M := ∅
2: i := 0
3: D := ∅
4: (vk, sk)← KeyGen(1λ)
5: (µ∗, σ∗)← A|H〉, Sign(sk,·)(vk)
6: Parse σ∗ = (w∗, z∗)
7: c∗ := Hb(w

∗‖µ∗)
8: return [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗)

H(w‖µ) :

1: if ∃c such that (w, µ, c) ∈ D
2: return c
3: return H ′(w‖µ)

Sign(sk, µ) :

1: M :=M∪ {µ}
2: i := i+ 1
3: κ := 0
4: while z = ⊥ and κ ≤ B
5: (w, c, z) = (wi,κ, ci,κ, zi,κ)
6: if ∃c′ such that (w, µ, c′) ∈ D
7: D := D \ (w, µ, c′)
8: D := D ∪ (w, µ, c)
9: κ := κ+ 1

10: if z = ⊥ return ⊥
11: return σ = (w, z)

Fig. 9: The distinguisher C for real and simulated transcripts of Σ based on A.

message that has not been queried before, the adversary’s view is identical to
that of the previous one.

It remains to reduce G3 to UF-NMA security. The signing algorithm does not
use the signing key anymore and uses the zero-knowldege simulator to answer
the sign queries. The last remaining technicality lies in how to simulate the
random oracle. In the ROM, we use the lazy sampling method. At each query
to the random oracle, we return a match if there exists any in the database,
otherwise we return a fresh sampled element from the range of H and add it in
the database. But in the QROM, we cannot simulate the random oracle with
the lazy sampling method since the access to it is quantum. Recall that the
reduction also has access to another random oracle to which the adversary does
not have access. The reduction then tweaks this private random oracle over the
reprogrammed inputs and uses it to simulate the random oracle queries of the
adversary. Therefore, using UF-NMA game, one can perfectly simulate G3 for the
adversary. If the adversary A finds a forgery (µ∗, σ∗), then the random oracle
has not been reprogrammed at this value during the course of G3 since it has
not been queried before. Hence, it would be a valid signature for UF-NMA game.

Strong Unforgeability. For the sUF-CMA security, we modify the above games.
Now, the challenger maintains the list M of message-signature pairs that were
queried by the adversary via the signature oracle. Each game, at its final step,
also checks whether the forgery (µ∗, (w∗, z∗)) belongs to this list or not, and
if it is it returns 0. With these modifications, everything remains the same up
to Game G2. The last two games G2 and G3 behave differently only if we have
the following conditions: (µ∗, (w∗, z∗)) 6∈ M, the random oracle has been re-
programmed on input w∗‖µ∗, and V2(vk, w∗, c∗, z∗) = 1. The input w∗‖µ∗ has
been reprogrammed only if the adversary has made a sign query on µ∗. The
probability of w∗ appearing in any given loop iteration of the rejection sampling

25

of Sign(sk, µ∗) is bounded by 2−α. In total, there are at most B iterations per
sign query, and the adversary makes at most QS queries. By the union bound,
the probability that w∗‖µ∗ has been reprogrammed is bounded by BQS · 2−α.
The reduction from G3 to the UF-NMA game works as before.

Runtime. We discuss two cases separately.

• In the ROM: Each sign query requires to run the zero-knowledge simulator up
to B times. For each hash (resp. sign) query, the reduction performs 1 (resp.
up to B) programming operation. It maintains a sorted data structure D in
order to search and insert in O(log(B ·QS +QH)) steps. The runtime of the
reduction is of order Time(A) +O(TSim · (B ·QS +QH) · log(B ·QS +QH)).

• In the QROM: We split the runtime analysis in two different models depend-
ing on whether we have access to QRACM or not. To answer the hash and
sign queries properly, the reduction maintains a database of reprogrammed
input-outputs, and at each query, it searches over the database to find a
match. Note that it is being carried out in superposition. The size of the
database is at most B · QS , and a naive exhaustive search takes B · QS .
Moreover, for each sign query, the reduction runs the zero-knowledge sim-
ulator at most B times. Thus, the runtime would be Time(A) + O((TSim ·
B · QS + QH)(B · QS)). With QRACM, the reduction has the advantage
to maintain a sorted database and quantumly search over the database. It
reduces the search time to log(B · QS). It yields the runtime Time(A) +
O((TSim ·B ·QS +QH) log(B ·QS)). ut

6 Concrete Analysis of FSwUA: Negative Result

In the rest of the paper, we focus on analyzing formally signatures constructed
from combining an identification protocol with the Fiat-Shamir with unbounded
aborts paradigm. To the best of our knowledge, this is the first complete analysis
of FSwUA.

In this first section, we exhibit a signature constructed using FS∞ for which
the signing runtime is infinite for an instantiation of the hash function H. There-
fore, the expected runtime is also infinite and the standard definition of runtime
must be changed. We propose minor updates to the signature definitions so
that they support such pathological behaviors. Note that FSwUA is the main
paradigm used in practice: there is no reason to add a bound for the number of
loop iterations in the code if the algorithm never reaches it except with negligible
probability, but the latter statement thus needs to be proven.

In Section 7, we prove Fiat-Shamir with unbounded aborts does yield sig-
natures (both in the ROM and QROM with tighter reductions in the ROM)
which satisfy all correctness, runtime, and security requirements. Correctness of
FSwBA is also addressed in Section 7 as a corollary of our analysis.

26

6.1 Infinite Signing Runtime in the Worst Case of FSwUA

In this section, we aim to prove the following theorem.

Theorem 5. There exists a parametrization of dk-LWEm,n,q,Q such that the fol-
lowing holds assuming the hardness of dk-LWEm,n,q,Q. There exists a public-coin
identification protocol Σ with instance generator Gen such that, with overwhelm-
ing probability over the randomness of Gen, there exists a hash function Hbad

such that the signing algorithm of SIG∞ := FS∞[Σ,Hbad] on inputs the signing
key and any message does not halt.

The proof relies on constructing the appropriate identification protocol, and
then identifying a specific bad instantiation for the hash function. The main idea
is to instantiate Lyubashevsky’s signature scheme with source distribution Q
being the uniform distribution over a ball B and target distribution being the
uniform distribution over a corona C, as illustrated in Figure 10. For a keypair
A,S, a loop iteration samples y← U(B), defines a commitment w← Ay mod q,
and returns y + Sc with c← H(Ay mod q‖µ), if and only if y + Sc ∈ C.

The cornerstone of our proof is to show that there exists a hash function Hbad

such that, for every message µ and every y, the challenge c = H(Ay mod q‖µ)
is such that y+Sc /∈ C. This implies that the signing algorithm of FS∞[Σ,Hbad]
never halts on any input message.

Proof (Theorem 5). We instantiate Lyubashevsky’s signature in the low-density
regime. We first construct the identification protocol, and then explain how to
instantiate Hbad to obtain the result.

We use the following parameters:

• dimensions n > 0 and m = 2n ≥ 14;
• a challenge bound τ > 24

√
m;

• a good conditioning parameter d = 300;
• a crust width t = dτ and a corona width t′ = dτ/3− (d+ 1)

√
m;

• a radius r = m(t+ t′);
• a prime modulus q ≤ poly(n) that satisfies q ≥ 16(r +

√
m)4.

We define the following relation R:

R :=
{

((A,AS),S) | A ∈ Zn×mq ,S =
2

3
dIm + E ∈ Zm×m, σ1(E) ≤ d

3

}
,

where σ1(E) denotes the largest singular value of E (when viewed as a real-
valued matrix). Note that d is a multiple of 3 so that S is indeed integral.
Our choice of matrix S makes it so that σ1(S) ≤ d and S is full-rank (note that
this is a real-valued matrix). We have S−1 = (2d/3)−1

∑
k≥0(−(2d/3)−1E)k,

which satisfies σ1(S−1) ≤ 3/d. The matrix S is the relation witness. We now
consider the challenge space C. We set:

C := {c ∈ Zm|‖c‖ ≤ τ}.

27

As t = dτ , we have t ≥ ‖Sc‖ for all c ∈ C and all S ∈ Zm×m with σ1(S) ≤ d.
We further define the ball B and corona C as follows.

B := Bm(r) and C := Bm(r − t) \ Bm(r − t− t′) .

A graphical representation is given in Figure 10.

t′

C
B

t

r

Fig. 10: The sets B and C in dimension 2.

We instantiate Lyubashevsky’s signature scheme as recalled in Section 4, with
the source distribution Q set as the uniform distribution over Zm ∩ B and the
target distributions P set as the uniform distribution over Zm ∩ C. The norm
bound check of the verification algorithm is instantiated to ‖z‖ ≤ r, where z
is the vector output by the prover. Finally, the rejection parameter M is set
to M = 100.

Lemma 7. The identification protocol Σ obtained by instantiating Figure 3 as
described above is (1, 1/M)-correct. Under the dk-LWEm,n,q,Q hardness assump-
tion, it is sc-HVZK.

Proof. We prove each property as follows:
Correctness. The perfect correctness (γ = 1) follows from the fact that if the
prover outputs something, it is by definition a rounding of an element belonging
to C and satisfies the relation that the verifier checks. By design, the probability
that the verifier outputs some z 6= ⊥ is 1/M .

Zero-Knowledgedness. We now aim at using Theorem 2 to argue the zero-
knowledgedness of the protocol. It suffices to show that for all c ∈ C and all z ∈
Zm ∩ C, we have that P (z) ≤M ·Q(z− Sc).

Note first that for the considered S’s and c’s, if z belongs to the support
of P , then z− Sc belongs to the support of Q. For such a z, we have:

Q(z− Sc)

P (z)
=
|Zm ∩ C|
|Zm ∩B|

≥ Vol(B(r − t−
√
m))−Vol(B(r − t− t′ +

√
m))

Vol(B(r +
√
m))

=
(

1− t+ 2
√
m

r +
√
m

)m
−
(

1− t+ t′

r +
√
m

)m
.

28

By expanding the difference of powers, we then obtain:

Q(z− Sc)

P (z)
=
t′ − 2

√
m

r +
√
m
·
m−1∑
k=0

(
1− t+ 2

√
m

r +
√
m

)m−1−k(
1− t+ t′

r +
√
m

)k
≥ t′ − 2

√
m

r +
√
m
·m ·

(
1− t+ t′

r +
√
m

)m−1
≥ t′ − 2

√
m

t+ t′ + 1
·
(

1− 1

2m

)m
.

In the last inequality, we use the fact that r = m(t+t′). Now, using the definitions
of t and t′, we obtain that the latter is ≥ 1/100.

Let us now consider the probability β that some answer is output by P2.
Note that our choice of t is such that for any S and challenge c, it holds that

C ⊆ B + Sc.

Therefore, the probability that a uniform element from B + Sc belongs to C is:

β =
Vol(C)

Vol(B)
=

(
1− t

r

)m
−
(

1− t+ t′

r

)m
=

(
1− t

r
− 1 +

t+ t′

r

)
·
m−1∑
k=0

(
1− t

r

)m−1−k (
1− t+ t′

r

)k
≥ t′

r
·m ·

(
1− t+ t′

r

)m−1
≥ t′

t+ t′
·
(

1− 1

m

)m
.

For the last inequality, we used the fact that r = m(t+ t′) and 1− 1/m < 1. By
using the definitions of t and t′, we obtain:

β ≥ t′

4(t+ t′)
≥ 1

4
· τ − 3(1 + 1/d)

√
m

4τ − 3(1 + 1/d)
√
m

.

We claim that the latter is ≥ 1/20. Indeed, having this inequality is equivalent
to τ ≥ 12(1 + 1/d)

√
m, which is satisfied when τ ≥ 24

√
m. ut

We then show that, for any choice of A,S such that ((A,AS),S) ∈ R,
there exists a hash function H such that, using H to instantiate FWsUA, the
signing algorithm of FS∞[Σ,H] never halts on any input message. That is, for
every message µ and every y, the challenge c = H(Ay mod q‖µ) is such that
y + Sc /∈ C.

Fix the matrices A and S. We now show how to instantiate the hash func-
tion H so that the above holds. A first important observation is that multiplica-
tion by A of a short integer vector is injective. Note that Ay = Ay′ mod q
for some y 6= y′ ∈ B implies that there exists an integer vector x ∈ Zm

29

(namely y − y′) such that Ax = 0 mod q and 0 < ‖x‖ ≤ 2r. Applying the
following lemma with B = 2r, it holds that with probability at least 1− 2−Ω(n)

over the random choice of A, such a vector x does not exist, by our choices of
m and q.

Lemma 8. Let m,n > 0 and q a prime. Let B < q. Then:

Pr
A∈Zn×mq

(
λ1(Λ⊥q (A)) < B

)
≤ Vol(Bm(1))

(B +
√
m/2)m

qn
.

Proof. The following relations follow from a union bound, the statistical inde-
pendence of the rows of A and the fact that every short enough integer vector
is non-zero modulo q.

Pr
A←↩U(Zn×mq)

(λ1(Λ⊥q (A)) < B) ≤
∑

y∈Zm
0<‖y‖≤B

Pr
A←↩U(Zn×mq)

(Ay = 0 mod q)

=
∑

y∈Zm
0<‖y‖≤B

(
Pr

a←↩U(Zmq)
(a>y = 0 mod q)

)n

=
∑

y∈Zm
0<‖y‖≤B

1

qn
.

Finally, we note that the volume of the m-dimensional hyperball of center 0 and
radius B +

√
m/2 is an upper bound on the number of summands. ut

As a consequence, we can define H as a function of y as Ay uniquely de-
termines y. Based on the protocol, it suffices to find a challenge c ∈ C for
each y ∈ Zm ∩B, it holds that y + Sc 6∈ C. We then set H(Ay mod q, µ) to be
this c for all messages µ.

First, note that if y 6∈ C, then setting c := 0 leads to y + Sc being rejected.
Thus, we focus on the other case. Let Λ(S) be the full-rank lattice generated by
the matrix S (recall that S is full-rank). Define the scaling λ = t′/‖y‖ and note
that ‖λy‖ = t′. Let x ∈ Λ(S) be such that λx ∈ y+P(S), where P(S) = S·[0, 1]n

denotes the (closed) fundamental parallelepiped spanned by S. In particular
there exists a lattice point e ∈ x + P(S) such that

〈e− λy, λy〉 ≥ 0 , (1)

since otherwise there would exist an affine hyperplane separating λy ∈ x+P(S)
from λy, which would contradict the definition of x. Note that ‖e−λy‖ ≤ d

√
m:

indeed, when written in the basis S, all of its coordinates belong to [−1, 1], and
we have σ1(S) ≤ d. Since e ∈ Λ(S), there exists k ∈ Zn such that e = Sk. We
set the challenge c as k. To conclude, we prove the following statements.

‖c‖ ≤ τ and y + e 6∈ C .

30

The first one follows from the following (recall that t′ = dτ/3− (d+ 1)
√
m):

‖c‖ = ‖S−1e‖ ≤ σ1(S−1)[‖e− λy‖+ ‖λy‖]

≤ 3

d
(d
√
m+ t′ +

√
m) = τ .

By using Equation (1), we obtain the following.

‖y + e‖2 = ‖λy + y + (e− λy)‖2

= ‖λy‖2 + ‖y‖2 + ‖e− λy‖2

+ 2〈λy,y〉+ 2〈λy, e− λy〉+ 2〈e− λy,y〉
≥ ‖λy‖2 + ‖y‖2 + 2〈λy,y〉
= ((λ+ 1)‖y‖)2 .

Using the definition of λ and the lower bound on ‖y‖, we obtain that

‖y + e‖ ≥ (t′ + r − t− t′) = r − t .

This completes the proof: instantiated with this hash function, the signing algo-
rithm of the Fiat-Shamir transform of the above Σ-protocol never halts. ut

So far, this only exhibits a single bad choice for the hash function, while sig-
natures based on FSwUA support messages of unbounded length. Hence, there
are infinitely many possible hash functions (functions with domain W × {0, 1}∗
and range C, with W being the commitment space). As a consequence, it is not
immediate that a single bad hash function implies an infinite expected runtime
for the signature scheme in the ROM, and one could think that simply con-
sidering the runtime when H is a random oracle could be sufficient to fix it.

Corollary 1. We have PrH [∀w ∈ W, H(w‖µ) = Hbad(w‖µ)] ≥ |C|−|W| for any
message µ. Therefore, the expected runtime of Sign(sk, µ) over the choice of the
random oracle H is infinite.

Our result relies on the hardness of the dk-LWE problem when the weight
vector is sampled from the uniform distribution over a hyperball. This is an
unusual distribution for dk-LWE. However, it can be checked that for appropriate
parameters, the proof of [BLR+18, Section 5] that decision LWE is hard for a
noise distribution that is uniform in a hypercube carries over to the hyperball
setting.

6.2 Updated Signature Definition

As shown in Section 6.1, there are instances of identification protocols that yield
signature schemes with infinite expected runtime of the signing algorithm. This
requires relaxing the runtime requirement in the definition to be expected poly-
nomial time with overwhelming probability over the choice of the hash function.

31

Yet, there is another subtlety doing so: in the security game, an adversary might
make a sign query that never halts. In the case of the above construction, the
challenger, which is unbounded, can still notice it as the commitment space is
bounded and the rejection step is deterministic. Once all the potential com-
mitments have failed to produce a valid signature, the challenger knows that
it cannot answer the query. This is however not the case of every signature
scheme. To take such event into account, we consider that an attacker auto-
matically wins if the challenger takes more than T ′ time to answer a signature
query, for some parameter T ′. An alternative choice could be to consider that an
adversary which makes a non-terminating sign query loses, since the challenger
does not answer anymore. We prefer to add this parameter T ′ as this makes
the definition stronger by further guaranteeing that an adversary cannot find a
query which forces the signer to run for a long time, which could be desirable in
practice as well.

We now state our updated definition for signatures. It is highly similar to
the standard Definition 10 and we only highlight the differences.

Definition 9 (Modified Digital Signature in the ROM). Let H be a ran-
dom oracle to which all algorithms have oracle access. A signature scheme is a
tuple (KeyGen, Sign,Verify) of algorithms with the following specifications. Ev-
erything is as in Definition 10, except for the runtime of Sign, which we define
below, and a minor tweak in the security game.

• SignH : (sk, µ) → σ is a probabilistic algorithm that takes as inputs a sign-
ing key sk and a message µ ∈ M and outputs a signature σ. We denote
with TSignH(sk,µ) the runtime of Sign(sk, µ).

Let γ > 0, T = poly(λ) and ε = negl(λ). We say that the signature scheme
is γ-correct if for any pair (vk, sk) in the range of KeyGen and µ,

Pr[Verify(vk, µ, Sign(sk, µ)) = 1 | Sign(sk, µ) halts] ≥ γ,

and we say that it is (T, ε)-efficient if for any pair (vk, sk) in the range of KeyGen
and µ,

Pr
H

[TSignH(sk,µ) > T] < ε.

where both probabilities are taken over the random coins of the two algorithms
and the random oracle.

In addition, we update the security game as follows. Let T ′ be another func-
tion of λ. We define T ′-UF-CMA security exactly as UF-CMA security in Defi-
nition 11, except that we further make the adversary win as soon as it makes a
sign query for which the signing algorithm takes more than T ′ steps to halt.

Definition 9 does not forbid the situation described in Subsection 6.1 from
occurring but guarantees that it should be hard to find non-halting queries.

32

7 Concrete Analysis of FSwUA: Positive Results

Equipped with this updated definition, we prove that signatures constructed
from applying FSwUA to an identification protocol yields a signature scheme
that satisfies all three correctness, runtime, and security requirements. This re-
sult extends to prove that FSwBA signatures satisfy correctness.

Theorem 6 (Runtime). Let γ > 0, β ∈ (0, 1) and H a hash function modeled
as a random oracle. Let Σ = ((P1,P2), (V1,V2)) be an identification protocol that
is (γ, β)-correct and has commitment min-entropy α. Let SIG∞ = FS∞[Σ,H].
LetM be the message space and ISignH (sk, µ) denote the random variable count-
ing the number of iterations of the signing algorithm on input (sk, µ) using a
random oracle H where µ ∈ M. It holds that for any (vk, sk) ← KeyGen(1λ),
any message µ ∈M, and any integer i:

Pr
H

(ISignH (sk, µ) > i) ≤ βi +
2−α

(1− β)3
.

Proof. Let us start by introducing the random variables (wi, ci, zi, acci)i≥1. It
denotes an infinite sequence of transcripts, where acci is the random variable
denoting whether the transcript is accepted or not. It takes value in {0, 1},
where 0 denotes rejection and 1 acceptance. For the sake of the proof, let the
sequence continue regardless of whether a prior transcript was accepted or not.
Let N = ISignH(sk,µ). It denotes the index of the first accepting transcript,
i.e., N = argmini({acci = 1}). Let us denote by M the index of the first colli-
sion, i.e., M = min{i|∃j < i, wj = wi}. Note that once H is fixed, a transcript
is a deterministic function of wi.

Let i ≥ 1. Let us decompose:

Pr
H

(N > i) = Pr
H

(N < M) · Pr
H

(N > i|N < M)

+ Pr
H

(N ≥M) · Pr
H

(N > i|N ≥M)

≤ 1 · Pr
H

(N > i|N < M) + Pr
H

(N ≥M) · 1.

We now focus on studying each of these probabilities. The second one can be
rewritten as

Pr
H

(N ≥M) =

∞∑
k=2

Pr
H

(M = k) · Pr
H

(N ≥M |M = k).

Let us first focus on PrH(M = k). The random variable M only depends on
the wi’s, which are i.i.d.: we can bound the collision probability using Lemma 11.
Hence PrH(M = k) ≤ k2 · 2−α−1. Next, as long as no collision occurred, all ci’s
can be seen as “fresh” randomness, i.e., all ci’s are uniform over the challenge
space and most importantly, they are independent. Hence conditioned on M = k,

33

we know that the probability of rejecting the first k − 1 samples is βk−1. Then

Pr
H

(N ≥M) ≤
∞∑
k=2

k2 · 2−α−1 · βk−1 = 2−α−1 · β + 1− (1− β)3

(1− β)3

≤ 2−α · 1

(1− β)3
,

where the equality comes from the fact that
∑
k≥1 k

2 · βk−1 = (β + 1)/(1− β)3.
Now, as we previously stated, conditioned on N < M , the distribution of N is
geometric with parameter 1 − β. Hence, we have PrH(N > i|N < M) = βi.
Plugging everything together, we obtain

Pr
H

(N > i) ≤ βi +
2−α

(1− β)3
. ut

Assume that α = ω(log(λ)). Setting i = ω(log(λ)/ log(1/β)) ensures that
with overwhelming probability over the choice of H, signing runs in polynomial
time. We note that this bound does not contradict the previous (negative) result.
Indeed, it does not imply any statement on the finiteness of the expected value
of TSignH , which is infinite in the previous section.

We move on to checking that FSwUA satisfies the new γ-correctness property,
assuming that the underlying identification protocol is (γ, β)-correct.

Theorem 7. Let γ > 0, β ∈ (0, 1) and let H denote a hash function modeled as
a random oracle. Let Σ = ((P1,P2), (V1,V2)) be an identification protocol that
is (γ, β)-correct. Let T denote the runtime of one interaction in the worst-case.
Let α > 0 be its commitment min-entropy. Let SIG∞ = FS∞[Σ,H]. Then for
any i = ω(log(λ)/ log(1/β)), it is γ-correct as well as (iT, βi + 2−α/(1 − β)3)-
efficient.

Proof. Let (sk, vk) ← KeyGen and µ ∈ M. Conditioned on Sign(sk, µ) halting,
the output transcript follows the same distribution as a transcript from the
identification protocol conditioned on not being ⊥. In particular, the challenge
is uniform over C, as it is a hash that comes from the random oracle. Only its
marginal distribution is important here, as well as the fact that it is independent
from the first and last message of the prover. Hence, this transcript is accepted
with probability γ over the random coins of Sign and the random oracle. ut

With FSwBA, the problem is reversed: bounding the runtime becomes easy,
whereas proving the correctness becomes mildly more tedious, as one needs to
check that ⊥ is not output too often.

Theorem 8. Let γ > 0, β ∈ (0, 1) and B > 0. Let H be a hash function modeled
a random oracle. Let Σ = ((P1,P2), (V1,V2)) be an identification protocol that
is (γ, β)-correct and has commitment min-entropy α. Let SIGB = FSB [Σ,H].
Then, for any (vk, sk)← KeyGen(1λ) and any message µ ∈M, we have

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ ·
(

1− βB − 2−α

(1− β)3

)
,

where the randomness is taken over H as well as the coins of Sign.

34

Proof. The result follows from Theorem 6. Indeed, assuming that Sign did not
output ⊥, then the final challenge that it outputs is uniform over the challenge
space C. It may not be independent from previous executions of the identification
protocol, but nonetheless its marginal distribution is uniform over C. Hence,
assuming that Sign did not output ⊥, it outputs a signature that is accepted
by Verify with probability at least γ, by correctness of the identification protocol.
In the case where Sign outputs ⊥, this signature is of course rejected by Verify.
Hence, by the law of total probabilities we have

Pr[Verify(vk, µ, Sign(sk, µ)) = 1] ≥ γ ·
(

1− βB − 2−α

(1− β)3

)
. ut

We finally prove the security of the unbounded version of the Fiat-Shamir
transform in both ROM and QROM. We note that our proof in the ROM is
tighter. We reduce the T ′-UF-CMA security of the unbounded signature scheme
to the UF-CMA security of the bounded one in the QROM.

Theorem 9. Let α ≥ 0, β ∈ (0, 1), and let H be a hash function modeled as
a random oracle. Assume that Σ = ((P1,P2), (V1,V2)) is a (γ, β)-correct iden-
tification protocol, and that the commitment message of P1 has min-entropy α.
Let T denote the runtime of one iteration of the protocol with the hash func-
tion. Let T ′ > BT . For any arbitrary adversary A against T ′-UF-CMA secu-
rity of SIG∞ = FS∞[Σ,H] that issues at most QH queries to the random ora-
cle H and QS classical queries to the signing oracle and for any fixed integer B,
the same adversary A against UF-CMA security of SIGB = FSB [Σ,H] is such

that |AdvT
′-UF-CMA

SIG∞ (A)− AdvUF-CMA
SIGB (A)| is bounded as

QS · βB +
βB · 2−α

(1− β)3
+

{
2−α ·B ·QS · (B ·QS +QH + 1) in the ROM,

2−
α
2 · 3B·QS2 ·

√
(B ·QS +QH + 1) in the QROM.

This also holds replacing UF-CMA with UF-CMA1 or sUF-CMA security.

Proof. We proceed with three hybrid games.

Game G0. We define Game G0 as the UF-CMA security of SIGB .

Game G1. Let Game G1 be game T ′-UF-CMA in which the adversary is promised
to not make any sign query that takes more than T ′ steps to halt. In the ROM,
if the advantage of the adversary A to distinguish these games is non-zero,
then A must have queried a message µ such that Sign(sk, µ) = ⊥ in Game G0.
The similar statement holds in the QROM. Note that we cannot assume A
is a purified quantum circuit since the queries to the signing oracle must be
classical and cannot be purified. Nevertheless, we can purify A between the sign
queries (the random oracle queries are quantum and would cause no problem
for purification). This is equivalent to saying that after the i-th sign query µi,
and receiving σi as the outcome, the adversary applies Ui, where Ui comes from
a distribution derived from {σj}j≤i, and then measures one of its registers to
obtain µi+1. It repeats this processQS times. By doing so, we can prove the above
statement. As long as Sign(sk, µi) 6= ⊥, the distributions of σi and thus Ui are

35

identical. It follows that the mixed state of the adversary remains identical in
both games.

Let RG0,A be an algorithm that runs G0 with A as a subroutine, records the
sign queries of A, and wins if one of them is answered by ⊥. We have∣∣Pr[1⇐ GA1]− Pr[1⇐ GA0]

∣∣ ≤ Pr[win(RG0,A)].

We aim at bounding the winning probability of R. Remember G1 from Figure 6,
which we rename G′0 in this proof. In Theorem 4, we proved that∣∣Pr[1⇐ GA0]− Pr[1⇐ G′A0]

∣∣ ≤ 3B ·QS
2

·
√

(B ·QS +QH + 1)2−α,

in the QROM, and∣∣Pr[1⇐ GA0]− Pr[1⇐ G′A0]
∣∣ ≤ 2−α ·B ·QS · (B ·QS +QH + 1),

in the ROM. It follows that we can replace Game G0 in Pr[win(RG0,A)] with G′0
and only lose the above terms in their corresponding random oracle models.

Finally, using the union bound and the β-correctness of the identification
protocol, the winning probability of the algorithm R relative to G′0 is bounded
by QS · βB .

Game G2. This is the genuine T ′-UF-CMA game. The distinguishing advan-
tage of A is bounded by the probability that A makes a sign query that takes
more than T ′ steps to halt. Theorem 6 implies that this probability is bounded
by βT

′/T + 2−α/(1− β)3 ≥ βB + 2−α/(1− β)3. This completes the proof. ut

Acknowledgments. The authors thank Léo Ducas, Serge Fehr, Andreas Hül-
sing, Christian Majenz and Thomas Prest for helpful discussions. The authors
were supported by the AMIRAL ANR grant (ANR-21-ASTR-0016), the PEPR
quantique France 2030 programme (ANR-22-PETQ-0008) and the PEPR Cyber
France 2030 programme (ANR-22-PECY-0003).

References

ABB+17. E. Alkim, N. Bindel, J. Buchmann, Ö. Dagdelen, E. Eaton, G. Gutoski,
J. Krämer, and F. Pawlega. Revisiting TESLA in the quantum random
oracle model. In PQCrypto, 2017.

AFLT16. M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly
secure signatures from lossy identification schemes. J. Cryptol., 2016.

AHU19. A. Ambainis, M. Hamburg, and D. Unruh. Quantum security proofs using
semi-classical oracles. In CRYPTO, 2019.

ASY22. S. Agrawal, D. Stehlé, and A. Yadav. Round-optimal lattice-based threshold
signatures, revisited. In ICALP, 2022.

BBD+. M. Barbosa, G. Barthe, C. Doczkal, J. Don, S. Fehr, B. Grégoire, Y.-H. Hu-
ang, A. Hülsing, Y. Lee, and X. Wu. Fixing and mechanizing the security
proof of Fiat-Shamir with aborts and Dilithium. Submitted to CRYPTO
2023.

36

BBE+18. G. Barthe, S. Beläıd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi,
and M. Tibouchi. Masking the GLP lattice-based signature scheme at any
order. In EUROCRYPT, 2018.

BBE+19. G. Barthe, S. Beläıd, T. Espitau, P.-A. Fouque, M. Rossi, and M. Tibouchi.
GALACTICS: gaussian sampling for lattice-based constant- time imple-
mentation of cryptographic signatures, revisited. In CCS, 2019.

BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random oracles in a quantum world. In ASIACRYPT, 2011.

BLR+18. S. Bai, T. Lepoint, A. Roux-Langlois, A. Sakzad, D. Stehlé, and R. Ste-
infeld. Improved security proofs in lattice-based cryptography: Using the
Rényi divergence rather than the statistical distance. J. Cryptol., 2018.

CLMQ21. Y. Chen, A. Lombardi, F. Ma, and W. Quach. Does Fiat-Shamir require a
cryptographic hash function? In CRYPTO, 2021.

DFMS19. J. Don, S. Fehr, C. Majenz, and C. Schaffner. Security of the Fiat-Shamir
transformation in the quantum random-oracle model. In CRYPTO, 2019.

DFPS22. J. Devevey, O. Fawzi, A. Passelègue, and D. Stehlé. On rejection sampling
in Lyubashevsky’s signature scheme. In ASIACRYPT, 2022.

DKL+18. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme.
TCHES, 2018.

DPSZ12. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In CRYPTO, 2012.

FS86. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In CRYPTO, 1986.

GHHM21. A. B. Grilo, K. Hövelmanns, A. Hülsing, and C. Majenz. Tight adaptive
reprogramming in the QROM. In ASIACRYPT, 2021.

JS19. S. Jaques and J. M. Schanck. Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE. In CRYPTO, 2019.

Kat21. S. Katsumata. A new simple technique to bootstrap various lattice zero-
knowledge proofs to QROM secure NIZKs. In CRYPTO, 2021.

KLS18. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A concrete treatment of Fiat-
Shamir signatures in the quantum random-oracle model. In EUROCRYPT,
2018.

LSS14. A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multilin-
ear maps from ideal lattices. In EUROCRYPT, 2014.

Lyu09. V. Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In ASIACRYPT, 2009.

Lyu12. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT,
2012.

Lyu16. V. Lyubashevsky. Digital signatures based on the hardness of ideal lattice
problems in all rings. In ASIACRYPT, 2016.

MGTF19. V. Migliore, B. Gérard, M. Tibouchi, and P.-A. Fouque. Masking dilithium
- efficient implementation and side-channel evaluation. In ACNS, 2019.

MM11. D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample com-
plexity of LWE search-to-decision reductions. In CRYPTO, 2011.

NC11. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2011.

Reg09. O. Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM, 2009.

Sch89. C.-P. Schnorr. Efficient identification and signatures for smart cards (ab-
stract). In EUROCRYPT, 1989.

37

vEH14. T. van Erven and P. Harremoës. Rényi divergence and Kullback-Leibler
divergence. IEEE Transactions on Information Theory, 2014.

Zha12. M. Zhandry. How to construct quantum random functions. In FOCS, 2012.

A Additional Preliminaries

A.1 Probabilities

For a finite set C, we let U(C) denote the uniform distribution over C. Let X
and Y be two random variables over some finite space Ω. We denote the statis-
tical distance between them as

∆(X,Y) :=
1

2

∑
ω∈Ω

∣∣Pr
X

[ω]− Pr
Y

[ω]
∣∣.

The min-entropy of X is

H∞(X) := − log max
ω∈Ω

Pr
X

[ω].

Lemma 9 (Leftover Hash Lemma). Let H = {h : X → Y} be a 2-universal
hash function family. Then for any random variable X over X and ε > 0 such
that H∞(X) ≥ log |Y|+2 log(1/ε), the distributions (h, h(X)) and (h, U(Y)) are
within statistical distance ε.

Further, the family {A ∈ Zn×mq : y 7→ Ay} is 2-universal for any prime q.

Assuming now that Supp(X) ⊆ Supp(Y), the Rényi divergence of infinite
order is defined as follows:

R∞(X‖Y) := max
x∈Supp(X)

PrX(x)

PrY (x)
.

We use the same notations if X,Y are probability distributions. In the fol-
lowing, for the sake of simplicity, we restrict ourselves to discrete distributions.
The definition above and our results involving the Rényi divergence carry over
to continuous ones. The same holds for their applicability to Lyubashevsky’s
signature, as argued in [DFPS22]. Some background on the Rényi divergence
are reminded below.

A.2 Properties of the Rényi Divergence

The following lemma borrowed from [LSS14] lists a few properties of the Rényi
divergence. Proofs can be found in [vEH14].

Lemma 10. Let P and Q be two discrete probability distributions such that we
have Supp(P) ⊆ Supp(Q). The following properties hold.

• Log. Positivity: R∞(P‖Q) ≥ R∞(P‖P) = 1.

38

• Data Processing Inequality: R∞(P f‖Qf) ≤ R∞(P‖Q) for any proba-
bilistic function f , where Xf denotes the distribution of f(x) where x←↩ X.

• Multiplicativity: Let P and Q be two distributions of a pair of random
variables X1 and X2 and Pi and Qi denote the marginal distribution of Xi

under P and Q, respectively. We have

R∞(P‖Q) ≤ R∞(P1‖Q1) · max
x1∈Supp(P1)

R∞((P2|x1)‖(Q2|x1)).

• Probability Preservation: Let E ⊆ Supp(Q) be an arbitrary event. Then
we have

P (E) ≤ Q(E) ·R∞(P‖Q).

A.3 Signatures

Here we briefly recall the formalism of digital signatures.

Definition 10 (Digital Signature). A signature scheme is a tuple of PPT
algorithms (KeyGen, Sign,Verify) with the following specifications:

• KeyGen : 1λ → (vk, sk) outputs a verification key vk and a signing key sk;
• Sign : (sk, µ) → σ takes as inputs a signing key sk and a message µ and

outputs a signature σ;
• Verify : (vk, µ, σ) → b ∈ {0, 1} is a deterministic algorithm that takes as

inputs a verification key vk, a message µ, and a signature σ and outputs a
bit b ∈ {0, 1}.

Let γ > 0. We say that it is γ-correct if for any pair (vk, sk) in the range
of KeyGen and µ,

Pr[Verify(vk, µ,Sign(sk, µ)) = 1] ≥ γ,

where the probability is taken over the random coins of the signing algorithm.
We say that it is correct in the (Q)ROM if the above holds when the probability is
also taken over the randomness of the random oracle modeling the hash function
used in the scheme.

We also remind the definition of existential unforgeability against chosen message
attacks (UF-CMA).

Definition 11 (Security). Let T, δ ≥ 0. A signature scheme SIG = (KeyGen,
Sign,Verify) is said to be (T, δ)-UF-CMA secure in the ROM if for any quantum
adversary A with runtime ≤ T given (classical) access to the signing oracle and
(quantum) access to a random oracle H, it holds that

Pr
(vk,sk)←KeyGen(1λ)

[Verify(vk, µ∗, σ∗) = 1|(µ∗, σ∗)← AH,Sign(vk)] ≤ δ,

where the randomness is also taken over the random coins of A. The adversary
should also not have issued a sign query for m∗. The above probability of forging

39

a signature is called the advantage of A and denoted by AdvUF-CMA
SIG (A). If A does

not output anything, then it automatically fails.
If we allow the adversary to forge a new signature for a previously queried

message, the security is called strong existential unforgeability against chosen
message attack (sUF-CMA). Existential unforgeability against one-per-message
(resp. no-message) chosen message attack, denoted by UF-CMA1 (resp. UF-NMA)
is defined similarly except that the adversary is allowed to query at most one
(resp. not allowed to query any) signature per message. Further, one can simi-
larly define sUF-CMA1 by taking the conjunction of sUF-CMA and UF-CMA1.

Note that for deterministic signatures, the UF-CMA1 and UF-CMA security no-
tions coincide.

A.4 Quantum Computations

A quantum state |ψ〉 of a system is a unit vector in the Hilbert space Cd. Each
step of a quantum algorithm is either a unitary transformation or a quantum
measurement over the states. A unitary transformation over the space Cd is
a d × d matrix U such that UU∗ = Id where U∗ is the conjugate-transpose
of U. Let {|bi〉}i∈[d] be an orthonormal basis for Cd. Measuring a state |ψ〉 with
this basis returns a value i with probability | 〈bi|ψ〉 |2, and the post-measurement
state is |bi〉.

Let f : {0, 1}n → {0, 1}m be an arbitrary function. Then the quantum
oracle |f(·)〉 is a unitary transformation, acting on the computational basis
{|x〉 |y〉 : x ∈ {0, 1}n, y ∈ {0, 1}m} as |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉, and extended
by linearity. An oracle-aided quantum machine AO is allowed to use an oracle O
as a black box by querying O in some quantum state.

Consider a scenario in which we have an array (a data structure) of N clas-
sical strings x1, . . . , xN . Quantum Random Access Classical Memory (QRACM)
allows us to load this data to a quantum register in superposition. More precisely,
a QRACM operation is defined by

UQRACM : |i〉 |yi〉 7→ |i〉 |yi ⊕ xi〉

for all i and yi, and is extended by linearity. The efficiency of quantum random
access gates has been a point of debate [JS19]. In this work, we single out the
results using QRACM because of its difference from the quantum circuit model.

For more details on quantum computations, we refer the reader to [NC11].

A.5 Useful Lemmas

We recall an upper bound on the collision probability of i.i.d. random variables.

Lemma 11. Let L be a list of i.i.d. random variables {Xi}i over a finite set,
each of which has min-entropy α. We have

Pr[Coll(L)] ≤ |L|2 · 2−α−1.

40

Proof. Let ` denote the size of L. We bound this probability recursively:

Pr[Coll(L) = 1] = Pr[Coll({wi}i∈[`]) = 1]

≤ Pr[Coll({wi}i∈[`−1]) = 1]

+ Pr[Coll({wi}i∈[`−1]) = 0 ∧ Coll({wi}i∈[`]) = 1]

= Pr[Coll({wi}i∈[`−1]) = 1] + (`− 1) · 2−α

...

≤ (`− 1) · 2−α + (`− 2) · 2−α + · · ·+ 2−α

≤ |`|2 · 2−α−1. ut

We finally state the classical variant of Lemma 1.

Lemma 12 (Classical Adaptive Reprogramming). Let X1, X2, X
′ and Y

be finite sets, and let D be a distribution on X1 ×X ′. Let A be a distinguisher
playing in the reprogramming game in Figure 11 and making q classical queries
to the random oracle and r classical queries to the Reprogram function. Then∣∣Pr[1⇐ ReprogramA0]− Pr[1⇐ ReprogramA1]

∣∣ ≤ rq · 2−α,
where α is the min-entropy of the first component of D.

Game Reprogramb :

1: H0 ← U(Y X1×X2)
2: H1 := H0

3: b′ ← AHb, Reprogram(·)

4: return b′

Reprogram(x2) :

1: (x1, x
′)← D

2: y ← U(Y)

3: H1 := H
(x1,x2) 7→y
1

4: return (x1, x
′)

Fig. 11: The reprogramming game.

Proof. Note that the adversary makes q random oracle queries, implying that
at most q input-output pairs of the random oracle are being revealed. If a re-
programming query does not coincide with these values, then the view of the
adversary is identical for b = 0 and b = 1. For each reprogramming query,
the probability of having a collision with the known random oracle values is at
most q · 2−α since the input min-entropy of each reprogramming call is α. One
can complete the proof by using the union bound. ut

B Deferred Material of Section 5

B.1 History-Free Analysis: Proof of Theorem 3

In this section, we provide the corrected security analysis of Theorem 3, that is
based on [KLS18], in the QROM. We need the following lemmas. The first one
is the one-sided O2H lemma.

41

Lemma 13 (One-Sided O2H [AHU19, Theorem 3], adapted).
Let X,Y, S be three finite sets with S ⊆ X. Let H, G : X → Y be two functions
such that H(x) 6= G(x) if and only if x ∈ S. Let A be a quantum algorithm
that distinguishes quantum oracles |G〉 and |H〉 with q queries and success prob-
ability εA. Then, there exists a quantum algorithm B that, given access to the
oracle |H〉 and A, finds an element in S with success probability ≥ ε2A/(4q2).

The next lemma links two notions of indistinguishability.

Lemma 14 (Oracle-Indistinguishability [Zha12, Theorem 1.1]). Let D1

and D2 be efficiently samplable distributions with supports contained in a fi-
nite set Y . Let X be an arbitrary finite set. Let O1 and O2 be two functions
from X to Y such that, on each input x ∈ X, they output an independent sam-
ple in Y from D1 and D2, respectively. Let A be a quantum adversary that
distinguishes two quantum oracles |O1〉 and |O2〉 with advantage ε by making q
quantum queries. Then there exists a quantum algorithm B that distinguishes D1

and D2 with advantage ≥ (6q)−3ε2.

The proof of Theorem 3 is based on a sequence of hybrid games. Recall that
we assumed the reduction has access to another random oracle H ′ to which the
adversary does not have access to, which serves to simulate the random oracle.

Game G0. This is the genuine UF-CMA1 game, as described in Figure 12.

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← A|H〉, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗‖µ∗)
6: return [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗)

Sign(sk, µ) :

1: if µ ∈M return ⊥
2: M :=M∪ {µ}
3: (w, c, z)← GetTrans(µ)
4: if z = ⊥ return ⊥
5: return σ = (w, z)

H(w‖µ) :

1: return H ′(w‖µ)

GetTrans(µ) :

1: κ := 0
2: while z = ⊥ and κ ≤ B
3: (w, st)← P1(sk)
4: c := H ′(w‖µ)
5: z ← P2(sk, w, c, st)
6: κ := κ+ 1
7: return (w, c, z)

Fig. 12: Game G0

Game G1. In this game, described in Figure 13, we record all the transcripts
produced during GetTrans and return them as its output. The function Sign
runs GetTrans on its input µ. Hence, we modify it to single out the last transcript
of the recording and continue with it as before. Nothing else changes in this game.

42

Sign(sk, µ) :

1: if µ ∈M return ⊥
2: M :=M∪ {µ}
3: {(w(i), c(i), z(i))}i∈[κ] ← GetTrans(µ)

4: if z(κ) = ⊥ return ⊥
5: return σ = (w(κ), z(κ))

GetTrans(µ) :

1: κ := 1, z(0) := ⊥
2: while z(κ−1) = ⊥ and κ ≤ B
3: (w(κ), st(κ))← P1(sk)
4: c(κ) := H ′(w(κ)‖µ)
5: z(κ) ← P2(sk, w(κ), c(κ), st(κ))
6: κ := κ+ 1
7: return {(w(i), c(i), z(i))}i∈[κ]

Fig. 13: Game G1

This change is only internal to the oracles and the adversary’s view remains
identical to that of G0.

Game G2. Its only difference with Game G1 is that we replace the randomness
of the prover in GetTrans with a uniform function RF : {0, 1} ×M× [B] → R
which is hidden from adversary’s view, to derandomize GetTrans. Note that it
depends on the message µ and number of the round in the rejection sampling
to ensure uniqueness of the random coin with respect to them. It only changes
the GetTrans subroutine. Further, the function GetTrans becomes a deterministic
function with respect to the message µ. We use subscripts to emphasize on this
fact in Figure 14. Although the signatures become deterministic, since we are
only interested in UF-CMA1 security, the adversary’s view remains unchanged.
The changes are depicted in Figure 14.

GetTrans(µ) :

1: κ := 1, z
(0)
µ := ⊥

2: while z
(κ−1)
µ = ⊥ and κ ≤ B

3: (w
(κ)
µ , st

(κ)
µ) := P1(sk;RF (0‖µ‖κ))

4: c
(κ)
µ := H ′(w

(κ)
µ ‖µ)

5: z
(κ)
µ := P2(sk, w

(κ)
µ , c

(κ)
µ , st

(κ)
µ ;RF (1‖µ‖κ))

6: κ = κ+ 1
7: return {(w(i)

µ , c
(i)
µ , z

(i)
µ)}i∈[κ]

Fig. 14: Game G2

Game G3. In this game, described in Figure 15, we change the way that the
random oracle queries are answered. Upon receiving an input w‖µ, the oracle H
queries the GetTrans function on input µ to receive a sequence of transcripts.
Then if w is equal to one of the commitments in the transcripts, it returns its
corresponding challenge. This is just a syntactic change and the adversary’s view
remains identical. The modifications can be seen in Figure 15.

43

H(w‖µ) :

1: {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ] := GetTrans(µ)

2: if ∃i : w = w
(i)
µ return c

(i)
µ

3: return H ′(w‖µ)

Fig. 15: Game G3

Game G4. Let Lµ be the list of commitments generated for the message µ
in the GetTrans(µ) function. In this game, we modify GetTrans(µ) such that
if Coll(Lµ) occurs, then it returns a special symbol Υ . We also change both Sign
and H to return Υ if their call to GetTrans returns Υ . All these changes are
reflected in Figure 16.

Sign(sk, µ) :

1: if µ ∈M return ⊥
2: M :=M∪ {µ}
3: if GetTrans(µ) = Υ return Υ

4: {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ] := GetTrans(µ)

5: if z
(κ)
µ = ⊥ return ⊥

6: return σµ = (w
(κ)
µ , z

(κ)
µ)

H(w‖µ) :

1: if GetTrans(µ) = Υ return Υ

2: {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ] := GetTrans(µ)

3: if ∃i : w = w
(i)
µ return c

(i)
µ

4: return H ′(w‖µ)

GetTrans(µ) :

1: κ := 1, z
(0)
µ := ⊥

2: while z
(κ−1)
µ = ⊥ and κ ≤ B

3: (w
(κ)
µ , st

(κ)
µ) := P1(sk;RF (0‖µ‖κ))

4: c
(κ)
µ := H ′(w

(κ)
µ ‖µ)

5: z
(κ)
µ :=

P2(sk, w
(κ)
µ , c

(κ)
µ , st

(κ)
µ ;RF (1‖µ‖κ))

6: κ := κ+ 1
7: Lµ := {w(i)

µ }i∈[κ]
8: if Coll(Lµ) return Υ

9: return {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ]

Fig. 16: Game G4. The differences from Game G3 are depicted in blue.

Let C be the concatenation H‖GetTrans that sends w‖µ to the bit-string
H(w‖µ)‖GetTrans(µ). The queries of the adversary (both sign queries and ran-
dom oracle queries) can be answered by using quantum queries to C. Therefore,
without loss of generality, we assume that the adversary makesQS+QH quantum
queries directly to the concatenation function. Let C3 and C4 be the concate-
nation functions in Game G3 and Game G4, respectively. If an adversary distin-
guishes G3 from G4, one can construct a wrapper around A distinguishing C3

from C4 since all the queries in the game can be simulated by the concatenation
function as described above. They behave differently only on the inputs includ-
ing a message that triggers Υ . Building on that, we use Lemma 13 to construct

44

an algorithm B based on A which extracts a message µ triggering Υ as follows∣∣Pr[1← A|C3〉]− Pr[1← A|C4〉]
∣∣

≤ 2(QS +QH)
√

Pr[µ triggers Υ | µ← B|C3〉].

Now, note that C3 never outputs Υ . In fact, for every w‖µ, the value of C3(w‖µ)
is independent from Coll(Lµ). Therefore, algorithm B can do nothing except a
totally random guess. For each message µ, the probability of Coll(Lµ) can be
bounded by Lemma 11. Hence we have∣∣Pr[1⇐ GA4]− Pr[1⇐ GA3]

∣∣ ≤ 2(QS +QH) ·B · 2
−α−1

2 .

Game G5. In this game, we let the challenges c
(i)
µ ’s in the GetTrans function

be produced as in the Σ-protocol without using the random oracle and sampled
from the uniform distribution. To make GetTrans deterministic, we use a uniform
function RF ′ : M× [B] → C as a function to sample the challenges. The do-
mainM× [B] of the function suffices for our purpose since within the UF-CMA1

security the adversary is not allowed to query one message twice. Replacing the
verifier V1 with RF ′ is sufficient, since the identification protocol is public-coin.
Note that both Sign and H change accordingly. Nevertheless, the distribution
of GetTrans, and consequently those of Sign and H, remains identical to that of
the previous game thanks to the handling Coll(Lµ). In this game the rounds of
the rejection sampling are finally independent and each one has the same distri-
bution as the real transcript in the Σ-protocol. All these changes are reflected
in Figure 17.

GetTrans(µ) :

1: κ := 1, z
(0)
µ := ⊥

2: while z
(κ−1)
µ = ⊥ and κ ≤ B

3: (w
(κ)
µ , st

(κ)
µ) := P1(sk;RF (0‖µ‖κ))

4: c(κ)µ := RF ′(µ‖κ)

5: z
(κ)
µ := P2(sk, w

(κ)
µ , c

(κ)
µ , st

(κ)
µ ;RF (1‖µ‖κ))

6: κ := κ+ 1
7: Lµ := {w(i)

µ }i∈[κ]
8: if Coll(Lµ) return Υ

9: return {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ]

Fig. 17: Game G5. The difference from Game G4 is depicted in blue.

Game G6. In this game, we replace the transcripts with the simulated ones in
each round of GetTrans. Let Sim be the zero-knowledge simulator of Σ. We use a
new uniform function RF ′′ :M× [B]→ R as the randomness generator of Sim.

45

GetTrans(µ) :

1: κ := 1, z
(0)
µ := ⊥

2: while z
(κ−1)
µ = ⊥ and κ ≤ B

3: c(κ)µ ← U(C)
4: (w(κ)

µ , z(κ)µ) := Sim(vk, c(κ)µ ;RF ′′(µ‖κ))
5: κ := κ+ 1
6: Lµ := {w(i)

µ }i∈[κ]
7: if Coll(Lµ) return Υ

8: return {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ]

Fig. 18: Game G6. The difference from Game G5 is depicted in blue.

Note that RF ′′ is not accessible by the adversary. Figure 18 updates GetTrans
accordingly.

Let C5 and C6 be concatenation functions of H‖GetTrans in games G5 and G6.
Without loss of generality, we allow the adversary to make QS + QH direct
quantum queries to them and is tasked to distinguish C5 and C6. The distribution
of the outcomes of C5 and C6 are statistically (or computationally in the case
of sc-HVZK) B · εzk-far from each other. Plugging C5 and C6 into Lemma 14
implies ∣∣Pr[1⇐ GA6]− Pr[1⇐ GA5]

∣∣ ≤ (6QS + 6QH)
3
2

√
B · εzk.

In the case of sc-HVZK, note that the distributions with which Lemma 14 is
instantiated are indeed efficiently samplable, as the sc-HVZK definition lets the
witness be known to the distinguisher.

Game G7. In this game, we add one more condition for a valid signature in
Line 6 of the game as shown in Figure 19. This step simplifies the reduction
from the UF-NMA game.

An adversary A distinguishes G7 from G6 only if it can find (m∗, (w∗, z∗))
such that

H(w∗‖µ∗) 6= H ′(w∗‖µ∗) ∧ [[µ∗ 6∈ M]] ∧ V2(vk, w∗, c∗, z∗).

In the sUF-CMA1 game, it changes to

H(w∗‖µ∗) 6= H ′(w∗‖µ∗) ∧ [[(µ∗, (w∗, z∗)) 6∈ MS]] ∧ V2(vk, w∗, c∗, z∗),

whereMS denotes the message-signature pairs revealed to the adversary during
the game. Let R be an algorithm that runs G6 together with the adversary,
observes its output (µ∗, (w∗, z∗)), and returns (µ∗, w∗). We say that R wins if
the above conditions hold. Note that the distinguishing advantage between G6

and G7 of the adversary is ≤ Pr[win(RG6,A)]. We observe that∣∣Pr[win(RG6,A)]− Pr[win(RG2,A)]
∣∣ ≤ ∣∣Pr[1⇐ GA6]− Pr[1⇐ GA2]

∣∣ ,
from which it follows that

Pr[win(RG6,A)] ≤
∣∣Pr[1⇐ GA6]− Pr[1⇐ GA2]

∣∣+ Pr[win(RG2,A)] .

46

Game :

1: M := ∅
2: (vk, sk)← KeyGen(1λ)
3: (µ∗, σ∗)← A|H〉, Sign(sk,·)(vk)
4: Parse σ∗ = (w∗, z∗)
5: c∗ := H(w∗‖µ∗)
6: if c∗ 6= H ′(w∗‖µ∗) return 0
7: return [[µ∗ 6∈ M]]∧V2(vk, w∗, c∗, z∗)

Sign(sk, µ) :

1: if µ ∈M return ⊥
2: M :=M∪ {µ}
3: if GetTrans(µ) = Υ return Υ

4: {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ] := GetTrans(µ)

5: if z
(κ)
µ = ⊥ return ⊥

6: return σµ = (w
(κ)
µ , z

(κ)
µ)

H(w‖µ) :

1: if GetTrans(µ) = Υ return Υ

2: {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ] := GetTrans(µ)

3: if ∃i(w = w
(i)
µ) return c

(i)
µ

4: return H ′(w‖µ)

GetTrans(µ) :

1: κ := 1, z
(0)
µ := ⊥

2: while z
(κ−1)
µ = ⊥ and κ ≤ B

3: c(κ)µ ← U(C)
4: (w

(κ)
µ , z

(κ)
µ) :=

Sim(vk, c
(κ)
µ ;RF ′′(µ‖κ))

5: κ := κ+ 1
6: Lµ := {w(i)

µ }i∈[κ]
7: if Coll(Lµ) return Υ

8: return {(w(i)
µ , c

(i)
µ , z

(i)
µ)}i∈[κ]

Fig. 19: Game G7. The difference from Game G6 is depicted in blue.

In Game G2 we always have H(w∗‖µ∗) = H ′(w∗‖µ∗). So, whatever the other
conditions are, we have Pr[win(RG2,A)] = 0. In total,∣∣Pr[1⇐ GA7]− Pr[1⇐ GA6]

∣∣ ≤ ∣∣Pr[1⇐ GA6]− Pr[1⇐ GA2]
∣∣.

It remains to reduce Game G7 to the UF-NMA security of SIGB . The adver-

sary B|H
′〉 can perfectly simulate the signing oracle and H for A, and the random

function RF ′ using another hash function G that is modeled as a random oracle.
Whenever A outputs a forgery (µ∗, σ∗), it would also be a valid forgery for B
and pass the verification thanks to Line 6 in Game G7.

Runtime. For each of the signing or random oracle query, the reduction runs
the HVZK simulator B times. To simulate the random function RF ′, one can
use the private random oracle H ′ that is accessible to the reduction (It is also
possible to replace H ′ with a quantum pseudorandom function). Therefore, the
runtime of the reduction is essentially Time(A) + TSim ·B · (QS +QH). ut

To conclude this section, we claim that the above approach also extends
to (s)UF-CMA security, as detailed in the following statement.

Theorem 10. Let εzk, α ≥ 0, B ≥ 0 and H and G hash functions mod-
eled as random oracles. Assume that Σ = ((P1,P2), (V1,V2)) is an (εzk, TSim)-
HVZK public-coin identification protocol, and that the commitment message of
the prover has min-entropy α. For any quantum adversary A against UF-CMA
security of SIGB = FSB [Σ,H] that issues at most QH quantum queries to the
random oracle H and QS classical queries to the signing oracle, there exists an-
other quantum adversary B against UF-NMA security of SIGB with Time(B) ≈

47

Time(A) + TSim ·B ·QS ·QH such that

Adv
(s)UF-CMA
SIGB

(A) ≤ AdvUF-NMA
SIGB (B) + 2

−α+3
2 ·B ·QS · (QS +QH)

+ 30
√
εzk ·B · (QS +QH)

3
2 .

Our reduction relies on B having access to a private random oracle H ′ with the
same domain and range as H that is not accessible by A.

Sketch of the proof. Since most of the proof is similar to that of Theorem 3, we
just give a sketch. Consider an imaginary two-dimensional data structure (for
example a table) that has |M| columns each one indexed by one message µ,
that contains all the transcripts generated during the rejection sampling process
in Sign(sk, µ). Part of this table contains the view of the adversary. In the proof
of Theorem 3, in the first two hybrid games we derandomized each cell of the data
structure using a random function which takes as input the coordinate of the cell;
its message and the row number (the iteration number). In the UF-CMA1 game,
the adversary is supposed to choose QS columns (messages) and receive some
information of each column (the signatures) and output a forgery. As long as the
adversary is not allowed to query a message twice, this derandomization does
not change the view of the adversary. This is not the case in the UF-CMA game.
Moreover, we do not know the messages on which the adversary will query the
signing oracle, and so we cannot assign appropriate randomness to the queries
a priori. Instead, we consider a three-dimensional data structure such that each
cell is uniquely determined by a message, an iteration number in [B], and a query
number in [QS]. One can see this three-dimensional table as the previous table
that each column has expanded to QS columns. This new table contains the view
of the adversary in the UF-CMA game and if we derandomize it with a random
function that takes as input the coordinate of the cell, it does not change the view
of the adversary. Now, the whole proof of Theorem 3 can be similarly repeated
here with a small modification that each time we look into the two-dimensional
table in the UF-CMA1 proof, we replace it with the three-dimensional one. We
mention further details for the sake of completeness.

In the UF-CMA1 game, to consistently answer the random oracle query
on input w‖µ, we output some uniform element from the range of the func-
tion, unless the column indexed by µ contains a transcript with the commit-
ment w in which case we output its corresponding challenge in the transcript.
In the UF-CMA game, we search over the whole section of the message µ which
contains roughly B · QS cells. This lookup in the table costs roughly B · QS
operations.

In order to replace the real transcripts with the simulated ones, we take
care of the collisions in the outputs of the random oracle (the challenges of the
transcripts) in the table. This issue stems from the fact that in the simulated
transcripts, all the challenges are replaced by fresh random elements. If there is
any collision, they have to be updated accordingly. Recall that each challenge is
evaluated as H(w‖µ). In the UF-CMA1 game, since there is no repeating message,
the possible collisions only appear in the same column which has size at most B.

48

This probability of collision was captured in the fourth hybrid game in the proof
of Theorem 3. In the UF-CMA game, the possible collisions are spread over
the whole section of the message µ. One can update the fourth hybrid game
accordingly and compute the probability of success similarly.

After handling the collisions, we change the real transcripts with simulated
ones. The only issue that requires to be taken care of is that the forged signa-
ture (µ∗, (w∗, z∗)) by the adversary must not intersect with the reprogrammed
ones. The proof is similar to that of Theorem 3 in the last hybrid up to replacing
the list Lµ∗ which is the column indexed by µ∗ with the whole section of the
message µ∗ in the three-dimensional table. ut

B.2 FSwBA Security Analysis with the Rényi Divergence

As [DFPS22] mentions, defining a version of HVZK that relies on the Rényi di-
vergence instead of the statistical distance allows to prove the security of a larger
class of Fiat-Shamir signatures. In some cases, this allows to achieve smaller sig-
nature sizes. For the sake of simplicity, we restrict ourselves to the case of Rényi
divergence of infinite order. We need the following definition.

Definition 12 (Decomposable Simulator). Let p ∈ [0, 1]. Let Sim be a zero-
knowledge simulator for a Σ-protocol. We say that Sim admits a p-decomposition
if there exist two algorithms Sim⊥ and Sim6⊥ such that the former only outputs
transcripts with z = ⊥, the latter only outputs transcripts with z 6= ⊥, and Sim
can be defined as in Figure 20

Sim(x) :

1: with probability p
2: (w, c, z)← Sim⊥(x)
3: with probability 1− p
4: (w, c, z)← Sim 6⊥(x)
5: return (w, c, z)

Fig. 20: Simulator decomposition.

One can verify that our simulator in Secion 4 for Lyubashevsky’s Σ-protocol
satisfies the above definition. With this formalism, we are able to extend the
HVZK definition to the Rényi divergence.

Definition 13 (Decomposable Divergence HVZK). Let Rzk ≥ 1, εzk >
0, p ∈ [0, 1] and T⊥, T6⊥ ≥ 0. A Σ-protocol is said to be (εzk, T⊥, Rzk, T6⊥)-
DDHVZK if there exists a p-decomposable simulator Sim = (Sim⊥,Sim6⊥) such
that

• algorithm Sim⊥ is (εzk, T⊥)-HVZK (or sc-HVZK) simulator for the Σ-protocol
transcript (w′, c′, z′) conditioned on z′ = ⊥,

49

• algorithm Sim 6⊥ has runtime T6⊥, and given x outputs a transcript (w, c, z)
such that its distribution and the one of a transcript (w′, c′, z′) of the Σ-
protocol conditioned on z′ 6= ⊥ are such that

R∞

(
(w, c, z)‖(w′, c′, z′)

)
≤ Rzk .

Note that p can possibly differ from β, but we are interested in the case where
their difference is negligible (as in the following theorem). We adapt Theorem 4
and its proof to this new setting.

Theorem 11. Let Rzk ≥ 1, εzk, T⊥, T6⊥ ≥ 0, p ∈ [0, 1] and H a hash func-
tion modeled as a random oracle. Assume that Σ = ((P1,P2), (V1,V2)) is an
(εzk, T⊥, Rzk, T6⊥)-DDHVZK public-coin identification protocol with a p-decompo-
sable simulator and probability of aborting β, then we have the following updates
on Theorem 4.

• In the ROM, there exists an adversary B against UF-NMA security of SIGB
with runtime Time(A) +O((T⊥(B − 1)QS + T6⊥QS) log(B ·QS +QH)) such
that

AdvX-CMA
SIGB (A) ≤ RQSzk · (Adv

UF-NMA
SIGB (B) + (εzk + |p− β|) ·B ·QS +∆X)

+ 2−α ·B ·QS · (B ·QS +QH + 1) .

• In the QROM, there exists an adversary B against UF-NMA security of SIGB
such that

AdvX-CMA
SIGB (A) ≤ RQSzk · (Adv

UF-NMA
SIGB (B) + (εzk + |p− β|) ·B ·QS +∆X)

+ 2−
α
2 · 3B ·QS

2
·
√

(B ·QS +QH + 1) .

Our reduction relies on B having access to a private random oracle H ′ with
the same domain and range as H that is not accessible by A. Furthermore,
the runtime of B is Time(A) + O((T⊥(B − 1)QS + T6⊥QS) log(B · QS))
with QRACM, and Time(A) +O((T⊥(B− 1)QS +T6⊥QS) · (B ·QS)) without
QRACM.

Proof. The proof is almost identical to the one of Theorem 4, where we re-
place Game G2 with three different games G2.1, G2.2 and G2.3. The other changes
between games remain similar. Let Sim = (Sim⊥,Sim 6⊥) be the decomposition of
the zero-knowledge simulator. We proceed as follows.

Game G1. It is the same as in the proof of Theorem 4.

Game G2.1 In this game, we change the signing algorithm. As soon as a tran-
script (w, c, z) with z 6= ⊥ is being sampled during the rejection sampling loop,
we discard it and replace it with a transcript generated by Sim 6⊥. The multi-
plicativity of the Rényi divergence implies that

Pr[1⇐ GA1] ≤ (1 + εzk)QS · Pr[1⇐ GA2.1].

50

Game G2.2. We modify the signing algorithm one step further. Let Bernoulli(β)
denote the Bernoulli distribution with parameter β (i.e., the probability of sam-
pling 1 is β). We replace the honestly generated transcripts with the following
distribution. Sample b ← Bernouli(β) and c ← U(C). If b = 1 run (w, z) ←
Sim⊥(pk, c), and if b = 0 run (w, z) ← Sim 6⊥(pk, c). Since the transcripts are
being sampled independently from each other in both games G2.1 and G2.2, one
can bound the advantage of the distinguisher by εzk · (B − 1) ·QS .

Game G2.3. We replace Bernouli(β) with Bernouli(p). The distinguishing advan-
tage of the adversary between G2.2 and G2.3 would be less than |p−β|·(B−1)·QS .

The rest of the proof is similar to that of Theorem 4. ut

51

	A Detailed Analysis of Fiat-Shamir with Aborts

