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Abstract. Properties of quantum mechanics have enabled the emergence of quantum cryptographic
protocols achieving important goals which are proven to be impossible classically. Unfortunately, this
usually comes at the cost of needing quantum power from every party in the protocol, while arguably a
more realistic scenario would be a network of classical clients, classically interacting with a quantum
server.
In this paper, we focus on copy-protection, which is a quantum primitive that allows a program to
be evaluated, but not copied, and has shown interest especially due to its links to other unclonable
cryptographic primitives. Our main contribution is to show how to dequantize quantum copy-protection
schemes constructed from hidden coset states, by giving a construction for classically-instructed remote
state preparation for coset states, which preserves hardness properties of hidden coset states. We then
apply this dequantizer to obtain semi-quantum cryptographic protocols for copy-protection and tokenized
signatures with strong unforgeability. In the process, we present the first secure copy-protection scheme
for point functions in the plain model and a new direct product hardness property of coset states which
immediately implies a strongly unforgeable tokenized signature scheme.

1 Introduction

Quantum mechanical effects have enabled the construction of cryptographic primitives that are
impossible classically. In particular, the no-cloning principle of quantum mechanics, which means
that an unknown quantum state cannot be copied in general, has given rise to many wonderful
primitives such as quantum money [Wie83, AC12], quantum lightning [Zha19], quantum copy-
protection [Aar09], one-shot signatures [BS17, AGKZ20], secure software leasing [AL21], unclonable
encryption [BL20] and many more. By standard definition, these quantum primitives can be seen
as cryptographic protocols requiring quantum communication to transfer the quantumly encoded
program between parties, and of course, local quantum computation from the parties. These notions
thus have been mostly considered in the context of users having quantum machines with quantum
communication.

Semi-quantum cryptography.1 Besides the fact that there is a fundamental difference between
classical and quantum communication, a more realistic and practical scenario would be a classical
communication network with classical clients interacting with a single powerful quantum server.
Therefore, ideally, for both theoretical and practical reasons, we might want to minimize the required
model and use local quantum computation and only classical communication. In this research
direction, an emerging field of “dequantizing” quantum cryptographic protocols has shown that it is
possible to use local quantum computation and classical communication to obtain cryptographic
constructions which are otherwise classically impossible [Mah18b, BCM+18, RS20, AGKZ20, KNY21,

⋆ Work done while at CRED and DIENS.
1 This is called hybrid quantum cryptography in [AGKZ20].
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HMNY21, Shm22a, Shm22b, GMP22]. In the following, we call these dequantized protocols semi-
quantum protocols, i.e., cryptographic protocols between classical clients interacting with a quantum
server via classical communication.

Perhaps the most striking example of quantum cryptography is the notion of quantum copy-
protection, introduced by Aaronson [Aar09]. Informally, quantum copy-protection allows a program
to be encoded in a quantum state in such a way that the program can be evaluated, but not
copied. It is also interesting to highlight the relation between copy-protection and other unclonable
cryptography functionalities. Indeed, Ananth and Kaleoglu [AK21] show that the existence of an
unclonable encryption scheme with a strong security property implies the existence of copy-protection
of point-functions. Sattath and Wyborski [SW22] show that copy-protection of a certain family of
functions allows for the construction of unclonable decryptors. We thus explore the possibility of
constructing semi-quantum copy-protection in this work.

Semi-quantum copy-protection. Until now, semi-quantum copy-protection has essentially been
wide open. The first and the only known semi-quantum copy-protection scheme is given in the
recent work of [GMP22]. Building on techniques introduced in [Mah18b, BCM+18, GV19], the
authors of [GMP22] show how to construct a classically-instructed parallel remote state preparation
of BB84 states, which are the four following states: {|0⟩ , |1⟩ , |+⟩ , |−⟩} where |±⟩ := 1√

2(|0⟩ ± |1⟩),
and whose unclonability property is based on the idea of conjugate coding. By applying this remote
state preparation protocol to the construction of copy-protection of point functions in [CMP20],
they also give a construction for semi-quantum copy-protection (of point functions). However, while
[GMP22]’s framework is generic and applicable to many other quantum cryptography constructions,
[GMP22] remote state preparation protocol for BB84 states and its applicability (including their
semi-quantum copy-protection of point functions) suffer from several limitations. Firstly, [GMP22]
remote state preparation protocol for BB84 states only achieve inverse polynomial security, and
inherently, their dequantized protocols also only have inverse polynomial security. Secondly, we do
not know how to construct copy-protection with standard malicious security from BB84 states in
the plain model. We therefore ask the following question:

Can we construct semi-quantum copy-protection with standard security?

Semi-quantum unclonable cryptography from coset states. Given a subspace A ⊆ Fn2 , the
corresponding subspace state is defined as a uniform superposition over all vectors in the subspace
A, i.e., |A⟩ := 1√

|A|

∑
v∈A |v⟩. The idea of using hidden subspace state to construct quantum

cryptographic primitives was first proposed by Aaronson and Christiano in [AC12] in the oracle
model where the parties have access to some membership checking oracles. This idea was realized
subsequently in the plain model using indistinguishability obfuscation by Zhandry [Zha19]. The
subspace state idea was later generalized to coset states in [CLLZ21, VZ21], which can be seen
as quantum one-time pad encrypted subspace states. Formally, for a subspace A ⊆ Fn2 and two
vectors s, s′ ∈ Fn2 , the corresponding coset state is defined as |As,s′⟩ := 1√

|A|

∑
x∈A(−1)⟨x,s′⟩ |x+ s⟩.

Coset states possess strong unclonability properties, the so-called direct product hardness and
monogamy-of-entanglement [CLLZ21]. The former states that any query-bounded adversary with
quantum access to oracles of membership in A+s and A⊥+s′ cannot produce, except with negligible
probability, a pair (v, w) ∈ (A+ s)× (A⊥ + s′). On the other hand, the latter can be described as a
cooperative game between three adversaries Alice, Bob and Charlie with a challenger, in which the
adversaries have negligible winning probability. The game is as follows: Alice is given a random
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coset state |As,s′⟩, outputs two (possibly entangled) quantum states and sends them to Bob and
Charlie respectively. Finally, Bob and Charlie both get the description of the subspace A, and we
say that the game is won if Bob outputs a vector in A+ s and Charlie outputs a vector in A⊥ + s′.
Due to these unclonability properties, the coset state idea has shown a broad range of applications
to signature tokens, unclonable decryptors, copy-protection [CLLZ21], classical proof of quantum
knowledge [VZ21], and unclonable encryption [AKL+22].

The main distinction between random BB84 states and hidden coset states is the (un)learnability
with verification oracles. Given access to membership oracles that check whether an input vector is in
the primal coset or in the dual coset, a hidden coset state still maintains its unclonability properties.
On the other hand, giving access to similar oracles to an adversary in the context of BB84 states
would allow this adversary to break the unclonability property of BB84 states, thus making the
resulting protocols insecure. This explains why coset states have more applications, mostly in the
public-key setting. Indeed, to the best of our knowledge, all known provably secure copy-protection
schemes with standard malicious security are based on hidden coset states [CLLZ21, AKL+22].2

Using application-specific approaches, Shmueli further gives several semi-quantum protocols
from coset states for public-key quantum money in [Shm22a] and tokenized signatures in [Shm22b].
Even though both are based on hidden coset states, his constructions are tailor-made for these
applications. For example, in the case of semi-quantum tokenized signature, the signature generation
process in Shmueli’s protocol ([Shm22b]) is defined specifically for the application, and it is quite
different from the quantum construction given in [CLLZ21]. On the other hand, modularity and
generic approaches are highly desirable in cryptography, and thus our second question in this work
is:

Can we construct classically-instructed remote state preparation for coset states which preserves
hidden coset states unclonable properties, which can be used to generically dequantize quantum

protocols based on coset states?

1.1 Our Results

We answer these two open questions affirmatively. We first give an answer to the second question, by
constructing a classically-instructed remote state preparation for coset states, based on the existence
of indistinguishability obfuscation for classical circuits, and on that the Learning With Errors [Reg05]
problem. The main feature of our protocol is that it preserves unclonability properties of ideal
random coset states, including the direct product hardness and monogamy-of-entanglement property,
which are the core ingredients of unclonable cryptography.

Theorem 1 (Informal). Assume that LWE is sub-exponentially hard for quantum computers
and that indistinguishability obfuscation for classical circuits exists with sub-exponential security
against quantum polynomial-time adversaries. Then, there is a classically-instructed remote state
preparation protocol for coset states with negligible soundness (as defined in Section 4.1).

Our protocol is a multi-round protocol between classical Alice and quantum polynomial-time
Bob that allows Alice to delegate the construction of hidden coset states to Bob. Furthermore,
Alice knows the description of the constructed coset states (which reside on Bob’s device), while

2 The only known exception is the construction of copy-protection of single-bit point functions in the quantum
random oracle model based on BB84 states [AKL23]. In this work, we focus only on constructions in the plain
model.
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Bob himself does not, and no-cloning also applies to these states.3 Hence, the situation at the end
of this protocol is equivalent to one where Alice sent hidden coset states to Bob, allowing us to
dequantize existing unclonable cryptography protocols from coset states in a generic and modular
way, without requiring new security properties or changing the constructions (apart from making
them semi-quantum).

In particular, to demonstrate the modularity of our dequantizer protocol, we construct a quantum
copy-protection of point functions in the plain model whose security is also based on the idea of
hidden coset states to which we can apply our dequantizer. We note that before our work, no
copy-protection scheme for point functions in the plain model with negligible security was known.
In fact, our copy-protection scheme is almost identical to that for pseudorandom functions given
in [CLLZ21]. We observe that by making few modifications to their proof, we obtain a copy-
protection of point functions with a non-trivial challenge distribution (first defined in [CMP20]) in
the security definition.4

Theorem 2 (Informal). Assume the existence of post-quantum indistinguishability obfuscation,
one-way functions, and compute-and-compare obfuscation for the class of unpredictable distributions.
Then, there is a secure copy-protection scheme for point-functions in the plain model.

By applying our dequantizer protocol to this construction, we also obtain a semi-quantum copy-
protection of point functions in the plain model, with standard security. Indeed, our dequantizer is
readily applicable to existing constructions of single decryptor, copy-protection of pseudorandom
functions [CLLZ21], and copy-protection of digital signatures [LLQZ22], allowing us to obtain
semi-quantum counterpart of these protocols, thus answering our first question.

Corollary 1 (Informal). Assume that LWE is sub-exponentially hard for quantum computers
and that indistinguishability obfuscation for classical circuits exists with sub-exponential security
against quantum polynomial-time adversaries. Then, there is a semi-quantum copy-protection from
coset states for certain class of functions, including: (decrypting) public-key encryption, (signing)
signatures, (evaluating) pseudorandom functions, and (evaluating) point functions.

To broaden the applicability of our semi-quantum protocol, we also present in this work a
semi-quantum tokenized signature scheme with strong unforgeability (i.e., no efficient adversary can
output two different signatures even for the same message). Previous constructions of [CLLZ21]
and [Shm22b] do not consider strong unforgeability and are only proven to be weakly unforgeable.
Our quantum protocol of strongly unforgeable tokenized signature scheme is indeed the same as
the one for weak unforgeability given in [CLLZ21]. Applying our remote coset state preparation
protocol immediately yields a semi-quantum tokenized signatures. Our technical contribution is a
new direct product hardness of hidden coset states, which is a generalization of the direct product
hardness given in [CLLZ21]. Informally, we show that any query-bounded adversary given a random
coset state |As,s′⟩ cannot produce a pair of different vectors (v, w) in either (A+ s)× (A+ s) or
(A⊥ + s′)× (A⊥ + s′). This allows us to achieve strong unforgeability.
Theorem 3 (Informal). Assume that LWE is sub-exponentially hard for quantum computers and
that indistinguishability obfuscation for classical circuits exists with sub-exponential security against
quantum polynomial-time adversaries. Then, there is a semi-quantum tokenized signature scheme
with strong unforgeability.

3 These coset states actually satisfy a strong monogamy-of-entanglement property, which we elaborate later in Section 2.
4 We emphasize that we use the same challenge distribution as in [CMP20]. While being non-trivial, this is not the

natural challenge distribution for point functions.
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1.2 Organization

The remaining of the paper is organized as follows. In Section 2 we explain the main ideas in our
construction and the overview of the proof of soundness of our protocol. The preliminaries are
given in Section 3. In Section 4, we present our construction of classically-instructed remote state
preparation for coset states with correctness proof. The formal proof of soundness of our protocol is
given in Section 5. These parts contain the main technical contribution of our paper. In Section 6,
we present our construction for quantum copy-protection of point functions, and show how to apply
our remote state preparation protocol to obtain a semi-quantum copy-protection construction. The
constructions of quantum and semi-quantum strongly unforgeable tokenized signature are given
in Section 7.

1.3 Related Work

One can see our remote coset preparation protocol as an interactive protocol between a classical
verifier and an (untrusted) prover, in which the verifier classically instructs the prover to prepare
some hidden quantum states, which satisfy certain properties. This is highly relevant to a series
of works starting with [BCM+18, Mah18b, Mah18b] that have developed techniques to allow the
verifier to force the prover to behave in a certain way. We note that the former kind of protocols
is implied by the latter, while the other direction is not true. For example, in our protocol, it is
still possible that the prover does not behave in an expected way, but its output at the end of the
protocol still satisfies the defined property.

The first semi-quantum protocol that provably forces a quantum prover to prepare a certain
quantum state is the single-qubit remote state preparation protocol of [GV19] (see also [CCKW19]
for a related result). [MV21] gives a protocol that allows a classical verifier to certify that a quantum
prover must have prepared and measured a Bell state, i.e., an entangled 2-qubit quantum state.
Finally, [GMP22], by developing new techniques to show a n-fold parallel rigidity proof, gives the first
parallel remote BB84 state preparation protocol. At the heart of the security proof of these protocols
lies a rigidity argument. The idea of rigidity, first formally introduced by Mayers and Yao [MY04],
is that certain games can be used to “self-test” quantum states: if such a game is won with high
enough probability, then the self-test property tells us that the players must hold some quantum
state, up to local isometry. Their proof technique is also the backbone of our soundness proof
presented later in Section 5. The most interesting point of the [GMP22] protocol is that it allows to
dequantize a number of BB84 states-based quantum cryptographic primitives, yielding a generic
and modular way of translating these protocols to a setting where only classical communication is
used. The downside of the [GMP22] protocol is that it only achieves inverse polynomial soundness,
which means that their dequantized protocols can only achieve inverse polynomial security at most,
even if the original quantum protocols have negligible security. We note that all known self-testing
protocols are developed for BB84 states and its variants, and before our work, there is no self-testing
protocol for coset states (even with inverse polynomial security).

In addition to this line of work focused on rigidity statements, application-specific semi-quantum
protocols were considered for quantum money [RS20, Shm22a], certified deletion [HMNY21], secure
software leasing [KNY21], and tokenized signature [Shm22b]. The common points of these protocols
are that: (i) their approaches are less generic and modular than the [GMP22] protocol and the
protocol we present in this work; (ii) new analysis are required for each application. However, we
note that all these application-specific semi-quantum protocols achieve negligible security, as they
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do not prove that the prover in their protocol behave in a certain way, but only that the output of
the prover at the end satisfies certain properties. This is also the approach that we take in this
work, which we describe in more details in Section 2.

Readers who are familiar with the context might think that our dequantization of coset state
generation protocol with monogamy-of-entanglement property can be achieved readily from previous
works by Shmueli ([Shm22a, Shm22b]). However, this is not quite true, due to the fact that Shmueli’s
works only show coset state delegation protocols with direct product hardness properties, and not
monogamy-of-entanglement properties. These two kinds of unclonability properties are very different
in their nature: while direct product hardness can be used in the constructions of quantum money
and tokenized signatures (where there is only a single adversary playing the unclonability game), we
do not know how to use it in the context of quantum copy-protection (where there are two or more
adversaries simultaneously playing the unclonability game). In fact, direct product hardness does
not imply monogamy-of-entanglement, and the former will be trivially broken if one casts it under
the monogamy-of-entanglement game. We refer the readers to [CLLZ21] for detailed definitions
and applications of these two unclonability properties. For the application of tokenized signatures,
our dequantizer protocol preserves the same direct product hardness property of ideal hidden coset
states, which allows us to dequantize quantum protocols in a generic way. [Shm22b]’s protocol for
semi-quantum tokenized signatures requires a new direct product hardness and a different signing
procedure (compared to the quantum version of [CLLZ21]), but it is unlikely that the same protocol
can be shown to achieve strong unforgeability.

Copy-Protection of Point Functions. The first construction for copy-protection of point functions
was presented in [CMP20], is based on BB84 states and its security is proven in the quantum random
oracle model. However, [CMP20]’s construction only achieves constant security. If we consider
a weaker security notion, so-called secure software leasing [AL21], [BJL+21] shows that we can
even construct secure software leasing of point functions unconditionally in the plain model with
negligible security.

On the other hand, copy-protection with negligible security against malicious adversaries
are only known for pseudorandom functions, single-decryptor, point functions and digital signa-
tures [CLLZ21, AKL+22, LLQZ22]. While the copy-protection schemes for pseudorandom functions,
digital signatures and single-decryptor are secure in the plain model [CLLZ21, LLQZ22], the security
of the construction for point functions is proven in the quantum random oracle model [AKL+22].
These latter constructions are all based on the idea of hidden coset states. In a recent work, [AKL23]
gives another construction for copy-protection of single-bit point functions in the quantum random
oracle model based on BB84 states. In this work, we build upon the copy-protection construction
of pseudorandom functions [CLLZ21] to construct copy-protection of point functions in the plain
model with negligible security.

Tokenized Signatures. The notion of tokenized signatures was introduced in the work of Ben-
David and Sattath [BS17], and the first instantiation was given in [CLLZ21] based on quantum-secure
indistinguishability obfuscation and injective one-way functions. A dequantized construction of
tokenized signatures was given in [Shm22b], assuming subexponentially quantum-secure indistin-
guishability obfuscation and quantum hardness of the LWE problem. However, the constructions
given in [CLLZ21, Shm22b] have only been proven weakly unforgeable.
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2 Technical Overview

2.1 Our Remote Coset State Preparation Protocol and Its Application to
Copy-Protection

In this section, we give an overview of our remote coset state preparation protocol and its proof of
soundness. To give the reader a glimpse of the functionality of our protocol and how it can be used
as a generic compiler to obtain semi-quantum copy-protection, we first start by analysing security
requirements for several existing quantum copy-protection schemes based on coset states.

Security Requirements. For our discussion, we focus on the copy-protection of pseudorandom
functions scheme in the plain model and the single-decryptor scheme in the plain model presented
in [CLLZ21]. The common point is that security of these constructions all reduce to a monogamy-of-
entanglement property of coset states [CLLZ21, CV22]. Informally, this property states that a triple
of quantum algorithms Alice, Bob and Charlie cannot cooperatively win the following monogamy
game with a challenger, except with negligible probability. The challenger first prepares a uniformly
random coset state |As,s′⟩ and gives the state to Alice. Alice outputs two (possibly entangled)
quantum states and sends them to Bob and Charlie respectively. No communication is allowed
between Bob and Charlie. Finally, Bob and Charlie both get the description of the subspace A. The
game is won if Bob outputs a vector in A+ s and Charlie outputs a vector in A⊥ + s′, where A⊥
denote the dual subspace of A.

If our goal is to design a semi-quantum protocol for preparing coset states such that it can be
used in a plug-and-play manner for the aforementioned protocols, our protocol needs to have the
following properties:

• Correctness. If the prover is honest, at the end of the protocol execution, the prover must have
a hidden coset state |As,s′⟩ in its registers.

• Soundness. No (computationally bounded) prover after interacting with the classical verifier
in the protocol, can win the monogamy-of-entanglement game described above (with a single
modification in the first step of the game: instead of sending the coset state to the prover, we
run the protocol). For a formal definition of the soundness, see Definition 3. We note that the
soundness property also implies the blindness property: an untrusted prover cannot know the
description of A and s, s′ through the interaction.
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The first attempt. Having described all requirements needed, we now turn into our protocol
construction. Our starting point is the recent coset state delegation protocol introduced by Shmueli
in [Shm22a], which uses hybrid quantum homomorphic encryption (QFHE)5 and indistinguishability
obfuscation (iO) as the building blocks. The idea is indeed very simple: the verifier can simply
send an (encrypted) classical description of a random subspace to the prover, and ask the prover to
homomorphically generate the subspace state using the quantum homomorphic encryption. By the
property of the hybrid QFHE, the subspace state is one-time pad encrypted with random Pauli
keys, which is exactly equivalent to a random coset state. More formally, the scheme is as follows.

1. The classical verifier V samples a random λ
2 -dimensional subspace A ⊆ Fλ2 (represented by a

matrix MA ∈ {0, 1}
λ
2×λ), and sends (Mpx

A , ctpx) to the prover P, an encryption of the matrix
MA under QFHE.

2. P homomorphically evaluates the circuit C, which is a quantum circuit that gets as input the
classical description of a subspace A ⊆ Fλ2 and generates a uniform superposition over A. P
obtains a homomorphically evaluated ciphertext

(|Ax,z⟩ , ctx,z)← QFHE.Eval
(
pk, (Mpx

A , ctpx), C
)
,

and sends the classical part ctx,z to V.
3. V decrypts (x, z)← QFHE.Decrypt(sk, ctx,z) and sends obfuscated membership check programs
iO(A+ x), iO(A⊥ + z) to P.

Unfortunately, there is an efficient “splitting” attack that breaks the monogamy game described
above (even if the adversary does not receive the description of A in the question phase): a malicious
prover can adversarially homomorphically compute two vectors, one in A+ x, the other in A⊥ + z,
thus trivially breaking the monogamy of entanglement. Intuitively, the attack is possible due to the
fact that there is no mechanism to verify the quantum homomorphic evaluation. (Here, we need
to have a classical verification procedure for a quantum statement, which is not an NP or QMA
statement.) However, as we will see later in the proof of soundness, we do not need a notion of
quantum homomorphic evaluation verification for our protocol. Instead, we will show that a weak
notion of verification, in which the malicious prover is forced to homomorphically compute a state
that is close to ideal coset states (and it can freely evaluate to obtain other things), is enough to
obtain the monogamy-of-entanglement property. The weak notion of verification we are seeking is
stated in the form of a self-testing argument, which leads us to the second attempt.

The second attempt: running self-testing protocol under QFHE. Our second attempt is
be based on the recent [GV19, GMP22] self-testing protocols for BB84 states. At first sight, it is
not clear how one can directly obtain a self-testing protocol for coset states from these protocols.
One of our technical contributions is the following observation: in the self-testing protocol for BB84
states of [GMP22], instead of asking the prover P to prepare its own states (which are polynomially
many |+⟩ states if P is honest), the verifier V can send the input to P using QFHE. In particular,
V sends encryption of M0, which is the all-zero matrix. P homomorphic evaluates a quantum circuit
C on the received ciphertext such that if the input matrix is all-zero, C evaluates to a uniform
superposition over Fλ2 , which is product of |+⟩ states. Under QFHE encryption, the quantum part

5 A hybrid QFHE scheme is one where every encryption of a quantum state |ψ⟩ consists of a quantum one-time pad
encryption of |ψ⟩ with Pauli keys (x, z) ∈ {0, 1}∗, and ctx,z which is a classical FHE encryption of the Pauli keys.
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of the evaluated ciphertext is product of random |±⟩ states. P then uses this in the [GMP22]
self-testing protocol. We will show that an honest prover P using product of |+⟩ states as in the
[GMP22] protocol or P using product of |±⟩ states does not change the correctness of the protocol,
while its soundness is maintained (since the soundness does not depend on which input the prover
has used in the protocol execution).

We now briefly give a description of the [GMP22] self-testing protocol, which is an n-fold parallel
of the single-qubit self-testing protocol from [GV19], and explain later how to go from self-testing
for BB84 states to self-testing for coset states using QFHE. The main cryptographic primitive
underlying the [GMP22] protocol (as well as other self-testing protocols [GV19, MV21]) is the
so-called extended noisy trapdoor claw-free function (ENTCF) family6, which can be constructed
assuming the quantum hardness of LWE [Mah18b]. An ENTCF family is a family of functions
indexed by a set of keys K0 ∪ K1. K0 and K1 are disjoint sets of keys with the property that the
two sets are computationally indistinguishable.

1. For a given basis choice θ ∈ {0, 1} (where “0” corresponds to the computational and “1” to the
Hadamard basis), the verifier V samples a key k ∈ Kθ, alongside some trapdoor information t.
V sends k to the prover P and keeps t private.

2. The verifier and prover then interact classically.
3. For us, the most relevant part is the last round of the protocol, i.e., the last message from the

verifier to the prover and back. Before the last round, the remaining quantum state of an honest
prover is the single-qubit state |v⟩θ for v ∈ {0, 1}, where |v⟩θ is a conjugate encoding of v in
the basis θ: if θ = 0, |v⟩θ = |v⟩, otherwise |v⟩θ = 1√

2(|0⟩+ (−1)v |1⟩). From the transcript and
the trapdoor information, the verifier can compute v; in contrast, the prover, which does not
know the trapdoor, cannot efficiently compute θ or v. In the last round, the verifier sends θ to
the prover, who returns v′ ∈ {0, 1}; the verifier then checks whether v′ = v. The honest prover
would generate v′ by measuring its remaining qubit |v⟩θ in the basis θ and therefore always pass
the verifier’s check.

In the [GMP22] test protocol, V runs n independent copies of [GV19] in parallel, except that the
basis choice θi is the same for each copy. Next, from the [GMP22] protocol, we describe a self-testing
protocol for coset states.

Assume that now the verifier has private input which is a description of a coset state (A, x, z).
We modify the verification procedure of the [GMP22] test protocol in the last round as follows. Let
v⃗ be the last message sent by P to V in the protocol above. If θ = 0 (note that the basis choice is
the same for n copies), V checks if v⃗ ∈ A+ x, otherwise, it decodes7 v⃗ to get a vector w⃗ and checks
if w⃗ ∈ A⊥ + z. An honest prover would use the coset state |Ax,z⟩, which it obtains after running
the [Shm22a] protocol described above, as the input to this self-testing protocol. The honest prover
would have measured its state in the computational basis when θ = 0, and in the Hadamard basis
when θ = 1. Thus, any honest prover would pass this self-testing protocol for coset states with
probability 1.

The crucial point is that, since the prover’s input in both the [GMP22] self-testing protocol and
the self-testing protocol for coset states described above is encrypted under QFHE, and the fact that
the two protocols are identical from the prover point’s of view (except the last verification procedure,

6 We refer the reader to [Mah18b, Section 4] for further details on ENTCF families.
7 We omit the details of this decoding procedure, and refer the reader to Section 4.2. We note that with the trapdoor
t, this procedure can be implemented efficiently by the verifier.
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which is hidden from the prover), the two protocols are computationally indistinguishable. In other
words, any computationally bounded prover cannot distinguish if it is playing in the [GMP22]
self-testing protocol or the coset-state self-testing protocol. This allows us to “embed” a self-testing
for coset states into self-testing for BB84 states and to carry the rigidity argument of the [GMP22]
protocol to our setting. Note that in our protocol, we need to run both kind of tests, as self-testing
for coset states alone is not enough to establish a rigidity argument. We elaborate more on this later
in Section 2.2. For time being, let’s say we have showed that if the prover P passes the verification,
it must have “used” a coset state in the self-testing protocol (with inverse polynomial soundness).

Our final protocol. However, our ultimate goal is to perform a remote state preparation protocol
(and not just self-testing, as the states used for the self-testing protocol will be destroyed due to
the measurements). Our final step would be to run this coset-state self-testing protocol in the
n-over-2n cut-and-choose fashion: the verifier first sends 2n encrypted coset states and |+⟩ to the
prover, and it picks n instances uniformly at random for the self-testing protocol. The remaining
n instances are used as the output of the final protocol. Building on the simple but powerful
“quantum cut-and-choose” formalism of Bouman and Fehr [BF10], we can show that if the prover
passes all the test instances, it must have at least 1 coset state in its registers at the end of the
protocol (with inverse polynomial soundness). Notably, we will show that even if we only obtain
inverse polynomial soundness at this step, our final protocol still achieves negligible security for a
monogamy-of-entanglement game, which is the main property used in many copy-protection schemes.
(An overview of the soundness proof is given below in Section 2.2.)

Our final protocol (Protocol 5) works as follows:

(1) The verifier first sends homomorphic encryption that allows the prover to either construct coset
states or BB84 states.
(2) The prover is asked to homomorphically evaluate the instructed circuits and return classical
encryption of the one-time pads of the homomorphic encryption, and keep the quantum parts.
(3) Next, the prover and the verifier run a number of self-testing rounds (Protocol 3), in which each
test round consists of testing either BB84 states (Protocol 1) or coset states (Protocol 2), forming
several test blocks. (In particular, a test block consists of a number of BB84 states testing rounds,
and one coset states testing round.) All the BB84 states are consumed after this step, while only
half of the coset states are consumed.
(4) Once the verifier is convinced, the verifier runs the coset states generation round on the
remaining half of the coset states, in which the verifier sends back to the prover obfuscation of the
membership checking programs. The final state of the prover can then be used in coset states based
constructions. To be more precise, the output state of a single run of our protocol would satisfy
the monogamy-of-entanglement property that we described above. If a quantum copy-protection
scheme requires n random coset states, we can simply run our protocol n times (with independent
randomness for each instance).

2.2 Soundness Proof

In this overview, we only give a brief intuition for the monogamy-of-entanglement soundness of our
protocol. However, we note that the same proof technique can be used to show a direct product
soundness.
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Rigidity argument for the [GMP22] self-testing protocol. Since the soundness proof uses
the rigidity argument of the [GMP22] protocol as the backbone, we briefly recall it here. Consider
the last round of the [GMP22] self-testing protocol: at the start, the prover has a state σ(θ,v⃗), which
it produced as a result of the previous rounds of the protocol. Upon receiving θ ∈ {0, 1} the prover
measures a binary observable Zi (if θ = 0) or Xi (if θ = 1) and returns the outcome v′i, one for
each copy. Let Z (⃗a) := Za1

1 · · ·Zan
n , similarly for X (⃗b). The main goal of the [GMP22] soundness

proof is to show that when acting on the prover’s (unknown) state σ(θ) (where σ(θ) is like σ(θ,v⃗), but
averaged over all v⃗), the operators {Z (⃗a)X (⃗b)} behave essentially like Pauli operators. Formally,
this means showing that on average over a⃗, b⃗ ∈ {0, 1}n,

Tr
[
Z (⃗a)X (⃗b)Z (⃗a)X (⃗b)σ(θ)

]
≈ (−1)a⃗·⃗b . (1)

Rigidity argument for our coset-state self-testing protocol. Using the [GMP22] rigidity
argument, we now turn into our coset-state self-testing protocol. Crucially, since the two pro-
tocols are identical from the prover’s point of view, and the fact that the input of the prover is
encrypted, Equation (1) also carries to the coset-state self-testing. Specifically, it means that under
the isometry V , the prover’s observables in the coset-state self-testing protocol also behave like
Pauli observables (Lemma 14). Roughly speaking, the isometry “teleport” the prover’s state into a
“concrete” state by means of EPR pairs. In our case, the concrete state would be (close to) a mixed
state of vectors v ∈ A+ x if θ = 0, or v′ ∈ A⊥ + z if θ = 1 (up to some classical post-processing),
for a coset state instance (A, x, z) (Lemma 16).

This means that we can fix a prover P and consider a “hypothetical” quantum verifier, which
runs the purified version of the protocol with P, that is, we do not measure to get the prover’s
classical message as in the original protocol, but only do a projective measurement at the end for the
verification. Then under the isometry V , if θ = 0, we should obtain a state that is close to |A+ x⟩,
and if θ = 1, a state that is close to |A⊥ + z⟩. In other words, consider that we run P with θ = 0 in
superposition, check the obtained state is |A+ x⟩, then undo the prover computation (described by
a unitary), then run P with θ = 1 in superposition, check the obtained state is |A⊥ + z⟩. If both
checks pass, it is easy to see that the prover must have a coset state |Ax,z⟩ in its registers.

Note that this does not constitute a classical verification of QFHE. What it says is that after
the evaluation and if P passes verification with overwhelming probability it is necessary that it must
have a coset state in its register up to an isometry.

We stress that the above rigidity statement has 1/poly(n) closeness, due to the 1/poly(n) closeness
in the rigidity argument of the [GMP22] protocol.

Going from self-testing to remote state preparation. We then simply run the self-testing
protocol sequentially in the cut-and-choose style. Say we have 2N coset state instances, and we run
the self-testing protocol over N instances, chosen uniformly at random. The remaining N instances
are the output of the protocol. By a particular “quantum sample-and-estimate” strategy defined
in [BF10], it means that after running the self-testing rounds, the prover has at least one coset state
|Ax,z⟩ among N remaining coset state instances in its registers, with inverse polynomial closeness.
We can write the prover’s state at this step as (inverse polynomially δ-close to) |Ax,z⟩ ⊗ ρ, where ρ
can depend on the protocol’s transcript and the encryption of (A, x, z) (Proposition 2).

Establishing a monogamy-of-entanglement property. In this final step, we want to show that
now if the prover involves in a monogamy-of-entanglement game, it would have negligible probability
of winning. The security game is defined as follows (Definition 3).
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1. The prover and the verifier jointly execute our semi-quantum protocol to obtain (supposedly) N
coset states, which are hidden but kept by the prover.

2. The prover and the verifier play the monogamy game using the output of the semi-quantum
protocol:
(a) The prover splits its state into a bipartite state and sends each part to Bob and Charlie,

respectively. No communication is allowed between Bob and Charlie.

(b) The verifier sends the description of the subspace to both Bob and Charlie.

(c) Bob and Charlie are asked to output N vectors belonging to N cosets (for Bob), and N dual
cosets (for Charlie).

However, our current situation is different from the standard monogamy game setting in which
the prover only has the coset state, while here the prover also has an auxiliary state that depends
on the coset state description. (Even worse, it might be possible that the prover can have two copies
of the coset state after the interactive protocol.) The proof of the standard monogamy game does
not carry over directly. Hence, for our monogamy-of-entanglement proof, new ideas are needed.

Injecting quantumness into the reduction. Our idea is to consider an intermediate game as
follows.

1. The prover and the verifier jointly execute our semi-quantum protocol.

2. After finishing the protocol execution, the verifier asks the prover to send it a coset state among
the remaining coset state instances uniformly at random.

3. Upon receiving a quantum state from the prover, the verifier verifies whether the received state
is indeed the expected coset state, then it sends it back unmodified to the prover.

4. The prover and the verifier play the monogamy game.

Here we make few notes. First, with probability 1
N the coset state instance that the verifier asked

is (A, x, z). It is easy to see that with probability (1−δ)
N , which is non-negligible, any adversary for

the original security experiment can be turned into an adversary for this experiment with identical
winning probability. Secondly, defining this intermediate game is possible because of our rigidity
argument above. Indeed, only in this step we inject quantumness into the reduction and make it a
quantum verifier.

The proof continues with the following steps (which are formally described as a series of hybrids
in the proof of Theorem 4).

• We make another important observation that when considering only the coset instance (A, x, z), it
is exactly the same as the public-key semi-quantum protocol introduced by Shmueli in [Shm22a].
We then follow proof strategies in previous works and carefully modify the experiment to remove
the QFHE secret key (corresponding to this coset instance (A, x, z)) from the reduction. This
is essentially done by changing the obfuscated membership checking programs sent to the
prover in the last step of the protocol, using the following two techniques: subspace-hiding
obfuscation [Zha19], and complexity leveraging to blindly sample the obfuscations [Shm22a].
To use Shmueli’s complexity leveraging technique, we will need sub-exponential security of the
building blocks (which include the QFHE and the indistinguishability obfuscation).
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• Then we make a final change in the reduction: upon receiving the coset state from the prover
and if the check passes, the verifier keeps the received coset state in its internal memory, and
send back to the prover another random coset state |A′x′,z′⟩. In the monogamy game, instead
of sending a description of A (as a basis matrix), the verifier sends a description of A′. Note
that now the winning condition is also changed subject to this change in the challenge coset.
We can think of |A′x′,z′⟩ as the challenge of the original monogamy-of-entanglement game (with
quantum communication).
• In this final experiment, if the prover managed to win the monogamy game, it means that

Bob has successfully output a vector v ∈ A′ + x′, and Charlie has successfully output a vector
w ∈ A′⊥ + z′. The verifier then outputs v, w and wins the monogamy game with quantum
communication. We conclude that no efficient prover can win this experiment except with
negligible probability.
• The last part of the proof is to show that this final experiment is computationally indistinguishable

from the previous experiment (in which the QFHE secret key was removed). We do this by
invoking the security of the QFHE. However, there is a subtlety that needs to be taken care of.
That is, even if we do not use the QFHE secret key in the reduction at this step, the adversary
still receives predicate programs on the ciphertext, which are the obfuscated membership checking
programs. Thus, we cannot simply send a uniformly random coset state |A′x′,z′⟩ to the prover.
In the protocol, we change the obfuscation programs so that both |Ax,z⟩ and |A′x′,z′⟩ make the
programs accept. We refer to the formal construction and proof for the description of how these
obfuscation programs are generated. Once this is shown, we can complete the proof.

2.3 Copy-Protection of Point Functions

Next, we give some intuition and obstacles behind our construction of copy-protection of point
functions in this section. Informally, a copy-protection scheme of point functions is composed of
a protection algorithm that takes as input a point function and returns a quantum encoding of
this function; and an evaluation algorithm that takes as input the encoding and an input point
and evaluates the function on this point. The (anti-piracy) security of such a scheme is defined
through a game played by three adversaries Alice, non-communicating Bob and Charlie, where
Alice is asked to “split” the quantum encoding into a two-register quantum state and to send one
register to Bob and the other one to Charlie. In order to win the game, Bob and Charlie then must
correctly evaluate the point function on two challenge inputs sampled from a certain distribution.
The most natural distribution to take is the one that yields two inputs (xB, xC) such that (xB, xC)
equals to either (y, y), (x1, y), (y, x2), or (x1, x2), each with probability 1

4 , where y is the protected
point and x1, x2 are uniformly sampled.

A natural idea to construct copy-protection of point functions would be as follows. In order
to protect a point y, sample a pseudorandom function (PRF) secret key k, protect it using the
PRF copy-protection scheme to get ρk, and let the copy-protection of y be (ρk,PRF(k, y)). The
evaluation of an input x then consists, given a copy-protection of a point (ρ, z), on using the PRF
copy-protection’s evaluation procedure to compute PRF(k, x) and returning whether the outcome is
z or not. At first glance, it may look like this idea has good chances to result in a secure scheme,
since copy-protection of PRFs with a strong security property was shown in [CLLZ21]. This so-called
indistinguishable anti-piracy security of copy-protection of PRFs is defined as a game between a
challenger and three adversaries Alice, Bob and Charlie. Bob and Charlie are not given a challenge
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only, but a pair (x, z) such that z is either PRF(k, x), or a uniformly random string, depending on
the challenger’s random coins. Then they are asked to return the value of the coins.

Unfortunately, we do not know how to reduce the security of our protocol directly to the
indistinguishable anti-piracy security of copy-protection of PRFs, and thus we need to make few
modifications to the indistinguishable anti-piracy game described above in order to carry out the
reduction: (i) first, we change the definition by allowing Alice to have access to the z part of each
challenge pair before she sends the bipartite state to Bob and Charlie; (ii) secondly, it is no longer
the z part of the challenge that is either real or random, but the x part. More precisely, the challenge
pairs (x, z) become such that z is an image of the PRF and x is either its pre-image or a uniformly
random string. Furthermore, the image value z is sent to Alice and thus it is the same for both Bob
and Charlie, only the x values are sampled independently based on the challenger’s random coins.
Even though we conjecture that our construction is secure if the underlying copy-protection of PRF
scheme has security with respect to these modifications, it turns out that we have incompatible
distributions when we do the reduction. The reason is essentially that, in order to prove the security,
we do a reduction to the monogamy-of-entanglement of coset states (Definition 24). In this game,
Bob and Charlie must each return a vector from different spaces, which - in the reduction - they
extract from the challenge they are given. Because of our last change, they receive the same challenge
with probability 1/4, and then they return the same vector with probability 1/4. Unfortunately, this
does not lead to any contradiction. Indeed, the same problem occurs as long as Bob and Charlie are
given the same challenge with non-negligible probability.

Instead, in this work, we use another challenge distribution first defined in [CMP20] - namely the
distribution that yields either (y, x2), (x1, y), or (x1, x2), each with probability 1

3 . In this challenge
distribution, Bob and Charlie never receive the same challenge, and thus it allows us to apply the
extracting technique described above to finish the security proof. We refer the reader to Section 6
for a formal description of the construction, and we note that even though the challenge distribution
that we use is less ideal, it is still a non-trivial challenge distribution in the context of copy-protection
of point functions.

3 Preliminaries

Notation. Throughout this paper, λ denotes the security parameter. The notation negl(λ) denotes
any function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such that f(λ) = O(λc)
for some c > 0. For a, b ∈ R, [a, b] := {x ∈ R | a ≤ x ≤ b } and Ja, bK := {x ∈ Z | a ≤ x ≤ b } will
denote the closed real and integer interval with endpoints a and b. With an abuse of notation,
we will write JnK as shorthand for J0, n − 1K. For a set I = {i1, . . . , iℓ} ⊆ JnK and a n-bit string
x ∈ {0, 1}n, we write x|I := xi1 · · ·xiℓ . When sampling uniformly at random a value a from a set U ,
we employ the notation a

$← U . When sampling a value a from a probabilistic algorithm A, we
employ the notation a← A. Let |·| denote either the length of a string, or the cardinal of a finite
set, or the absolute value. By PPT we mean a polynomial-time non-uniform family of probabilistic
circuits, and by QPT we mean a polynomial-time family of quantum circuits. For a probabilistic
algorithm f , we write f(x; r) to denote the computation of f on input x with randomness r drawn
uniformly at random. We sometimes omit the randomness and just write f(x).
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3.1 Quantum Computation

We assume familiarity with quantum information and computation, and refer to [NC11] and Ap-
pendix A.1 for the definition of basic concepts.

We use H to denote an arbitrary finite-dimensional Hilbert space, and use indices to differentiate
between distinct spaces. The map Tr : L(H)→ C denotes the trace, and TrB : L(HA⊗HB)→ L(HA)
is the partial trace over subsystem B. Pos(H) denotes the set of positive semidefinite operators on
H, and D(H) = {A ∈ Pos(H) | Tr[A] = 1} is the set of density matrices on H.

The single qubit Pauli operators are σX = ( 0 1
1 0 ) and σZ =

( 1 0
0 −1

)
. The Hadamard basis states

are written as |(−)b⟩ = 1√
2(|0⟩+ (−1)b |1⟩).

An observable on H is a Hermitian linear operator on H. A binary observable is an observable
that only has eigenvalues ∈ {−1, 1}. For a binary observable O and b ∈ {0, 1}, we denote by O(b)

the projector onto the (−1)b-eigenspace of O. For any procedure which takes a quantum state as
input and produces a bit (or more generally an integer) as output, e.g., by measuring the input
state, we denote the probability distribution over outputs b on input state ψ by Pr [ b |ψ ].

We will borrow the notation of [GMP22, MV21], and also include some technical lemmas from
the preliminaries of those papers, which are used later in our proof for semi-quantum copy-protection
construction in Section 4.

3.1.1 Sampling in a Quantum Population

In this paper, we also use a generic framework presented in [BF10] for analyzing cut-and-choose
strategies applied to quantum states. We briefly recall the framework in Appendix A.3.

3.2 Cryptographic Primitives

We will use several cryptographic primitives in this paper: (i) indistinguishability obfuscation
iO, (ii) pseudorandom functions PRF, (iii) leveled hybrid quantum fully homomorphic encryption
QFHE := ⟨KeyGen,Encrypt,QOTP,Eval,Decrypt⟩. We refer to Appendix A for formal definitions of
these primitives.

3.3 Extended Trapdoor Claw-free Functions

Our remote state preparation protocol is based on a cryptographic primitive called extended noisy
trapdoor claw free function families (ENTCF families), which are defined in [Mah18b, Section 4]
and can be constructed from the Learning with Errors assumption [Reg05, BCM+18]. We use the
same notation as in [Mah18b, Section 4], with the exception that we write K0 instead of KG and K1
instead of KF . In addition, we also define the following functions for convenience:

Definition 1 (Decoding maps, [MV21, Definition 2.1]).

1. For a key k ∈ K0 ∪ K1, an image y ∈ Y, a bit b ∈ {0, 1}, and a pre-image x ∈ X , we define
Chk(k, y, b, x) to return 1 if y ∈ Supp(fk,b(x)), and 0 otherwise. (This definition is as in [Mah18b,
Definition 4.1 and 4.2].)

2. For a key k ∈ K0 and a y ∈ Y, we define b̂(k, y) by the condition y ∈ ∪x Supp
(
fk,b̂(k,y)(x)

)
.

(This is well-defined because fk,0 and fk,1 form an injective pair.)
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3. For a key k ∈ K0 ∪K1 and a y ∈ Y, we define x̂b(k, y) by the condition y ∈ Supp(fk,b(x̂b(k, y))),
and x̂b(k, y) = ⊥ if y /∈ ∪x Supp(fk,b(x)). For k ∈ K0, we also use the shorthand x̂(k, y) :=
x̂b̂(k,y)(k, y).

4. For a key k ∈ K1, a y ∈ Y, and a d ∈ {0, 1}w, we define û(k, y, d) by the condition d ·
(x̂0(k, y)⊕ x̂1(k, y)) = û(k, y, d).

The above decoding maps applied to vector inputs are understood to act in an element-wise fashion.
For example, for k⃗ ∈ K×n1 , y⃗ ∈ Y×n, and d⃗ ∈ {0, 1}w×n, we denote by û(k⃗, y⃗, d⃗) ∈ {0, 1}n the string
defined by

(
û(k⃗, y⃗, d⃗)

)
i

:= û(ki, yi, di).

4 Remote Coset State Preparation Protocol

In this section, we introduce our protocol for remote hidden coset state preparation. We first give a
definition of completeness and soundness in Section 4.1. Our construction is given in Section 4.2,
followed by proof of correctness in Section 4.3 and proof of soundness in Section 5.

4.1 Definitions

Definition 2 (Remote Coset State Preparation Protocol). A remote coset state preparation
protocol is an interactive classical communication protocol between a PPT verifier (or sender, denoted
as V) and a QPT prover (or receiver, denoted as P) such that at the end of the protocol, the verifier
obtains a list T ⊂ N of classical description of cosets {Si, αi, βi}i∈T and the prover outputs a quantum
state ψ. The two parties also obtain a common output which is obfuscated membership checking
programs of Si + αi and S⊥i + βi for all i ∈ T .

We denote an execution of the protocol as ({Si, αi, βi}i∈T , ψ, {P0,i, P1,i}i∈T )← ⟨P(1λ),V(1λ)⟩,
where P0,i is an obfuscated membership checking program of Si + αi and P1,i is an obfuscated
membership checking program of S⊥i + βi. Note that {P0,i, P1,i}i∈T is the common output of
both parties. When it is clear from the context, we omit the common output and just write
({Si, αi, βi}i∈T , ψ)← ⟨P(1λ),V(1λ)⟩.

The protocol is correct if the protocol does not abort and at the end of the execution, there exists
a negligible function ε(λ) such that

Pr
[
ψ ≈ε

⊗
i∈T
|Si,αi,βi

⟩
]
≥ 1− negl(λ),

where the probability is taken over randomness of the verifier V.

We now formally define the notions of soundness of remote coset state preparation protocol. We
will give two different definitions: one for the monogamy-of-entanglement property (Definition 3),
and another for the direct product hardness property (Definition 4).

Definition 3 (Monogamy-of-Entanglement Soundness). Let ({Si, αi, βi}i∈T , ψ)← ⟨Pλ(ρλ),V(1λ)⟩
be an execution of a remote coset state preparation protocol between a QPT prover P = {Pλ, ρλ}λ∈N
and a PPT verifier V, after which V outputs {Si, αi, βi}i∈T and P outputs a state ψ. The prover (now
modeled as a triple algorithm (P,B, C)) then interacts with the verifier in the following monogamy
game.
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1. The prover applies a CPTP map to split ψ into a bipartite state ψBC ; it sends the register B to
B and the register C to C. No communication is allowed between B and C after this phase.

2. Question. The verifier sends the description of {Si}i∈T , to both B and C.

3. Answer. B returns s(i)
1 ∈ Fn2 and C returns s(i)

2 ∈ Fn2 for all i ∈ T .

The prover (P,B, C) wins if and only if s(i)
1 ∈ Si + αi and s

(i)
2 ∈ S⊥i + βi for all i ∈ T . Let

SMCosetMonogamy(P, λ) be a random variable which takes the value 1 if the game above is won by
the prover (P,B, C), and takes the value 0 otherwise.

The protocol is secure if the winning probability of any QPT adversary is negligible. Formally,
for any QPT malicious prover, the protocol is computationally sound with the monogamy-of-
entanglement property if

Pr[SMCosetMonogamy(P, λ) = 1] ≤ negl(λ).

Definition 4 (Direct Product Soundness). Let ({Si, αi, βi}i∈T , ψ) ← ⟨Pλ(ρλ),V(1λ)⟩ be an
execution of a remote coset state preparation protocol between a QPT prover P = {Pλ, ρλ}λ∈N and
a PPT verifier V, after which V outputs {Si, αi, βi}i∈T and P outputs a state ψ. The prover then
outputs {(vi, wi)i∈T }. The prover wins if and only if for all i ∈ T , either:

(i) (vi, wi) ∈ (Ai + si)× (Ai + si) and vi ̸= wi;

(ii) or (vi, wi) ∈ (A⊥i + s′i)× (A⊥i + s′i) and vi ̸= wi;

(iii) or (vi, wi) ∈ (Ai + si)× (A⊥i + s′i).

Let SMDirectProduct(P, λ) be a random variable which takes the value 1 if the game above is won
by the prover P, and takes the value 0 otherwise.

The protocol is secure if the winning probability of any QPT adversary is negligible. Formally, for
any QPT malicious prover, the protocol is computationally sound with the direct product hardness
property if

Pr[SMDirectProduct(P, λ) = 1] ≤ negl(λ).

4.2 Construction

Notation. Our Protocol 1 and Protocol 2 will be (almost) a parallel repetition of a sub-protocol.
We make use of vector notation to denote tuples of items corresponding to the different copies of
the sub-protocol. For example, if each of the n parallel sub-protocols requires a key ki, we denote
k⃗ = (k1, . . . , kn). A function that takes as input a single value can be extended to input vectors in
the obvious way: for example, if f takes as input a single key k, then we write f(k⃗) for the vector
(f(k1), . . . , f(kn)). We will also use 0⃗ and 1⃗ for the bit strings consisting only of 0 and 1, respectively
(and whose length will be clear from the context), and 1⃗i ∈ {0, 1}n for the bit string whose i-th bit
is 1 and whose remaining bits are 0. Let n the length of a vector in a coset state (i.e., if v ∈ A then
|v| = n). In our constructions below, we set n := 2λ.

Ingredients. Our constructions use the following building blocks:

• A quantum hybrid fully homomorphic encryption scheme QFHE := ⟨KeyGen,QOTP,Encrypt,Eval,Decrypt⟩,
with sub-exponential advantage security.
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• A post-quantum secure indistinguishability obfuscation scheme iO.
• A post-quantum secure extended noisy trapdoor claw-free function (ENTCF) family (F ,G).

Our main protocol’s construction is given in Protocol 5. The protocol involves two parties: a
QPT prover (or receiver, denoted as P), and a PPT verifier (or sender, denoted as V).

Protocol 1: Semi-Quantum Protocol: BB84 Test Round

Input. The verifier initially receives Pauli keys (α, β) with α, β ∈ {0, 1}n as private inputs.

1. The verifier selects a uniformly random basis θ $← {0, 1}, where 0 corresponds to the compu-
tational and 1 to the Hadamard basis.

2. The verifier samples keys and trapdoors {(ki, ti)}ni=1 by computing (ki, ti)← GenKθ
(1λ). The

verifier then sends {ki}ni=1 to the prover (but keeps the trapdoors {ti}ni=1 private).
3. The verifier receives {yi}ni=1 where yi ∈ Y from the prover.
4. The verifier selects a round type ∈ {pre-image round,Hadamard round} uniformly at random

and sends the round type to the prover.
(a) For a pre-image round: the verifier receives {(bi, xi)}ni=1 from the prover, with bi ∈ {0, 1},

and xi ∈ X . The verifier sets flagbb84 ← flagPre and aborts if Chk(ki, ti, bi, xi) = 0 for
any i ∈ J1, nK.

(b) For a Hadamard round: the verifier receives {di}ni=1 from the prover with di ∈ {0, 1}w (for
some w depends on the security parameter λ). The verifier sends q = θ to the prover, and
receives answers {vi}ni=1 with vi ∈ {0, 1}. The verifier performs the following:
• If q = θ = 0, set flagbb84 ← flagHad and abort if b̂(ki, yi) ̸= vi for some i ∈ J1, nK.
• If q = θ = 1, set flagbb84 ← flagHad and abort if û(ki, yi, di) ̸= vi ⊕ βi for some
i ∈ J1, nK.

Protocol 2: Semi-Quantum Protocol: Coset-state Test Round

Input. The verifier initially receives a subspace A ⊆ Fn2 and Pauli keys (α, β) with α, β ∈ {0, 1}n
as private inputs.

1. The verifier selects a uniformly random basis θ $← {0, 1}, where 0 corresponds to the compu-
tational and 1 to the Hadamard basis.

2. The verifier samples keys and trapdoors {(ki, ti)}ni=1 by computing (ki, ti)← GenKθ
(1λ). The

verifier then sends {ki}ni=1 to the prover (but keeps the trapdoors {ti}ni=1 private).
3. The verifier receives {yi}ni=1 where yi ∈ Y from the prover.
4. The verifier sends “Hadamard round” as the round type to the prover.
5. The verifier receives {di}ni=1 from the prover with di ∈ {0, 1}w (for some w depends on the

security parameter λ). The verifier sends q = θ to the prover, and receives answers {vi}ni=1
with vi ∈ {0, 1}.
The verifier performs the following:
• If q = θ = 0, let v⃗ := v1 . . . vn. Set flagcoset ← flagHad and abort if v⃗ /∈ A+ α.
• If q = θ = 1, let si ← vi ⊕ û(ki, yi, di) and let s := s1 . . . sn. Set flagcoset ← flagHad and

abort if s⃗ /∈ A⊥ + β.
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Protocol 3: Semi-Quantum Protocol: Self-Testing

Let M2 the maximum number of test rounds (for M ∈ N).
Input. The verifier initially receives a subspace A ⊆ Fn2 and Pauli keys (α′, β′) and {(αi, βi)}M

2
i=1

with α′, β′, αi, βi ∈ {0, 1}n as private inputs. Note that (A,α′, β′) corresponds to one coset-state
instance, and {(αi, βi)}M

2
i=1 corresponds to M2 BB84 instances.

1. The verifier privately samples B $← J1,M − 1K (this determines the number of BB84 test
rounds that will be performed).

2. The verifier performs BM executions of Protocol 1 (with corresponding private inputs
{(αi, βi)}) with the prover. The verifier aborts if Protocol 1 aborts for some execution.

3. The verifier privately samples R $← J1,MK and executes Protocol 1 with the prover R − 1
times (with corresponding private inputs {(αi, βi)}). Then the verifier executes Protocol 2
with the prover (with private inputs (A,α′, β′)) and aborts if Protocol 2 aborts.

Protocol 4: Semi-Quantum Protocol: Self-Testing (with Soundness Amplification)

Let N := λ the number of iterations.
Input. The verifier initially receives {(Ai, α′i, β′i)}Ni=1 and {(αi, βi)}NM

2
i=1 as private inputs. Each

tuple in the first set corresponds to a coset-state instance, and each tuple in the second set
corresponds to a BB84 instance.
The verifier and the prover sequentially run Protocol 3 N times as follows.

1. For each run, the verifier and the prover interactively run Protocol 3 with one coset state
instance (Ai, α′i, β′i) and M2 BB84 instances {(αi, βi)}M

2
i=1, each is picked uniformly at random

from the input sets. (If some instance has been picked before, it will be excluded).
2. The verifier aborts unless Protocol 3 does not abort in all N iterations.

Protocol 5: Semi-Quantum Protocol: Main Protocol
Verifier’s preparation.

1. Coset-state instances. For each i ∈ J1, 2NK, the verifier samples a random n
2 -dimensional

subspace Si ⊆ Fn2 , described by a matrix MSi ∈ {0, 1}
n
2×n. Samples Pauli keys pαi

$← {0, 1}n2
2

to encrypt Mpαi
Si
← QFHE.QOTP(pαi ,MSi), and then (pki, ski)← QFHE.KeyGen(1λ, 1ℓ(λ)) for

some polynomial ℓ(·), cti ← QFHE.Encrypt(pki, pαi).

2. n-qubit BB84 instances. For each i ∈ J1, NM2K, the verifier samples Pauli keys pαi

$←
{0, 1}n2

2 to encrypt Mpαi
0 ← QFHE.QOTP(pαi ,M0) (here, M0 is the all-zero vector of length

n2

2 ), and then (pki, ski)← QFHE.KeyGen(1λ, 1ℓ(λ)), cti ← QFHE.Encrypt(pki, pαi).
3. For each index i ∈ J1, 2N +NM2K, the verifier picks uniformly at random one instance from

either the set of (encrypted) coset states or the set of (encrypted) n-qubit BB84 states prepared
above. For each index i, denote the i-th instance as (pki,Mpαi , cti) with secrets (ski, Si). (If
this instance is from the set of n-qubit BB84 states, we understand that Si = M0.)

4. The verifier sends {pki,Mpαi , cti}2N+NM2

i=1 to the prover.

Prover’s homomorphic evaluation
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5. Let C the quantum circuit that for an input matrix M ∈ {0, 1}n
2×n, outputs a uniform

superposition of its row span, except that if M = M0, it outputs a uniform superposition of all
vectors in the space Fn2 . The prover homomorphically evaluates C for each i ∈ J1, 2N +NM2K:
(|Si,αi,βi

⟩ , cti,αi,βi
) ← QFHE.Eval

(
pki, (Mpαi , cti), C

)
, saves the quantum part |Si,αi,βi

⟩ and
sends the classical part cti,αi,βi

to the verifier.

Self-testing for the prover.

6. For each i ∈ J1, 2N +NM2K, the verifier decrypts (αi, βi)← QFHE.Decrypt(ski, cti,αi,βi
). For

all coset-state instances, if αi ∈ Si, the protocol is terminated.
7. The verifier then runs Protocol 4 with these NM2 prepared BB84 instances and N coset-state

instances, where each coset-state instance is picked uniformly at random among 2N prepared
instances. (If some instance has been picked before, it will be excluded). It aborts if Protocol 4
aborts.

Coset-state generation.

8. The verifier samples a random n
2 -dimensional coset (Ŝ, α̂, β̂) ⊆ Fn2 independently.a Let

MŜ ,MŜ⊥ ∈ {0, 1}
n
2×n bases for Ŝ and Ŝ⊥, respectively.

9. Let T the set of indexes of the remaining N instances of the coset-states which have not been
used in the self-testing protocol above. For each i ∈ T , the verifier does the following:
(a) Let MS⊥

i
∈ {0, 1}n

2×n a basis for S⊥i (as a matrix). Compute indistin-
guishability obfuscations P0,i ← iO

(
iO(MSi + αi) ∨ iO(MŜ + α̂)

)
and P1,i ←

iO
(
iO(MS⊥

i
+ βi) ∨ iO(MŜ⊥ + β̂)

)
, all with appropriate padding.b

(b) Record {(αi, βi, Si)}i∈T .
(c) Send T and {P0,i, P1,i}i∈T to the prover.

The output of the prover is {P0,i, P1,i, |Si,αi,βi
⟩}i∈T where |T | = N .

a This step is merely an artifact that we will need later for the security proof.
b Here, we understand that for any two programs C,C′ with binary output, iO(C ∨ C′)(x) outputs C(x) ∨ C′(x).

Notation. For each execution of Protocol 5, we abuse the notation and denote (|As,s′⟩ ,R0,R1) the
state obtained by the receiver, where Rb the obfuscated membership checking programs, computed
by concatenating all the obfuscated programs Pb,i in Protocol 5, and (A, s, s′) the “coset” (which in
fact consists of polynomial many different real cosets) obtained by the sender. That is, we consider
the whole output state of the protocol as a single unclonable state (which we also call “coset state”).
This notation will only be used later when we describe the applications of our protocol in the context
of semi-quantum copy-protection (Section 6) and semi-quantum tokenized signatures (Section 7).

4.3 Proof of Correctness
Proposition 1. There exists a QPT prover that is accepted in Protocol 5 with probability negligibly
close to 1 in the security parameter λ. Furthermore, the final quantum state of such a prover at the
end of Protocol 5 is (negligibly close to) a product of N hidden coset states:⊗

i∈T
|Si,αi,βi

⟩ , (2)
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where {(Si, αi, βi)}i∈T are recorded by the verifier at the end of Protocol 5.

Proof. The proof of correctness includes three steps: (1) If the prover ran honestly then its output
after the homomorphic evaluation step has negligible trace distance to (QOTP encrypted of) BB84
states and coset states; (2) The self-test protocol passes (that is, the protocol does not terminate at
this step) with probability negligibly close to 1; (3) In the last step of coset-state generation, after
discarding all BB84 states, the output of the prover at the end of Protocol 5 has negligible trace
distance to the state described in Equation (2). We give a full proof in Appendix B.1.

5 Proof of Soundness

In this section, we prove soundness of Protocol 5, following the steps outlined in Section 2.2:

1. First, we show a ridigity argument (with inverse polynomial soundness) for our self-testing
protocol (Protocol 3).

2. We show that any malicious prover in our remote state preparation protocol must have also
constructed a hidden random coset state up to some inverse polynomial error. The formal
statement is given in Proposition 2 in Section 5.1. This final step reduces to a particular “quantum
sample-and-estimate strategy”, which is a quantum counterpart of the classical “cut-and-choose”
as defined by Bouman and Fehr [BF10].

3. We then show the soundness of our final protocol (Protocol 5), which is stated as a monogamy-of-
entanglement game, in Section 5.2. Notably, even if our rigidity statement achieves only inverse
polynomial soundness, we show that our protocol achieves negligible security in this monogamy
game.

Informally, a prover that succeeds in Protocol 5 has negligible probability of winning a monogamy-
of-entanglement game for coset states, which is formally stated as Theorem 4. This means that if
we consider the output of our final protocol as a single unclonable state, the situation at the end of
Protocol 5 is essentially identical to one in which the verifier has sent a hidden coset state to the
prover via a quantum channel, whose security is based on the monogamy-of-entanglement of coset
states defined in Definition 24.

Finally, to extend the applicability of our protocol to other constructions whose security proofs
are based on the direct product hardness of random coset states, we show that the same proof
strategy of Theorem 4 can be used to show a direct product soundness of our protocol, which is
formally stated as Theorem 5 in Section 5.3.

5.1 Self-Testing Protocol Soundness

In order to prove Proposition 2, we first show a rigidity argument for our self-testing protocol
(Protocol 3). We state in this section the following proposition.

Proposition 2. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such that
if the verifier executes Protocol 5 with an efficient quantum prover whose success probability is
lower-bounded by an inverse polynomial, the following holds. We denote by ϕTSV P the verifier and
prover’s joint final state at the end of Protocol 5, where T is the set of coset states obtained by
the verifier, S is set to |⊥⟩⟨⊥| by the verifier if the protocol aborts and |⊤⟩⟨⊤| otherwise, V is the

21



register in which the verifier records the set T , and P is the prover’s registers. Then, denoting the
probability of success as Pr[⊤], and writing

ϕTSV P = Pr[⊤]|⊤⟩⟨⊤|S ⊗ ϕ
T
V P |⊤ + (1− Pr[⊤])|⊥⟩⟨⊥| ⊗ ϕTV P |⊥.

Then there exists a coset instance (A,α, β) in T such that the state ϕTV P |⊤ conditioned on acceptance
satisfies:

ϕTV P |⊤
c≈1/poly(λ) |T ⟩⟨T |V ⊗ |Aα,β⟩⟨Aα,β| ⊗ ρ, (3)

for some auxiliary state ρ.
Due to the space limitations, we defer the proof of this proposition to Appendix B.2.

5.2 Monogamy-of-Entanglement Soundness of Protocol 5

We now formally define the notion of soundness for our protocol, which is described as a coset
monogamy game similar to Definition 24.
Theorem 4. Protocol 5 is computationally sound, according to Definition 3.

Proof. Let P = {Pλ, ρλ}λ∈N a quantum polynomial time adversary that succeeds in the game
SMCosetMonogamy with some non-negligible probability ε = {ελ}λ∈N. Let ({Si, αi, βi}i∈T , ψ) ←
⟨Pλ(ρλ),V(1λ)⟩. This means that P = (P,B, C) is able to output a pair (s(i)

1 , s
(i)
2 ) ∈ (Si + αi) ×

(S⊥i + βi) for all i ∈ T in the monogamy game defined in Definition 3.
Let δ′ ∈ (0, 1] the sub-exponential security level of the QFHE (that is, any QPT adversary cannot

break the semantic security of the QFHE with advantage bigger than 2λδ′
), and denote δ := δ′

2 .
We next describe a sequence of hybrid experiments.8

Game G0: This is the original experiment.
We define G0 as the original attack, where P interacts with the verifier in Protocol 5 and wins

the monogamy game SMCosetMonogamy. We say G0 is successful if SMCosetMonogamy(P, λ) = 1.
The experiment G0 is thus successful with probability ε.
Game G1: Changing the success definition of the experiment.

Pick a random index i ∈ T , for shorthand, denote this coset instance as (S, α, β), and the
adversary’s corresponding output in the monogamy game is (s1, s2). In the current hybrid, the
experiment is defined to be successful if s1 ∈ S + α and s2 ∈ S⊥ + β. In particular, in the current
hybrid, we only consider the monogamy game for a random instance among |T | coset instances.
(The other instances are not considered). Apparently, G1 is successful with probability at least ε.
From now on, we only consider this coset instance in later hybrids, and all the changes are only
applied to this instance.
Game G2: Injecting quantum communication into the interaction between the prover and the
verifier.

This hybrid is identical to G1 except that now we consider the verifier as a QPT algorithm instead
of a PPT algorithm, and we make an additional round of interaction using quantum communication
in the protocol. (Think about the verifier now as a QPT challenger of the experiment.) In particular,
right after the last step of Protocol 5 (step 9c), we ask the prover to send the coset state |Sα,β⟩ to
the verifier. Denote this state as |$⟩. The verifier then does the following:

8 Some hybrids follow from the proof strategy given in [Shm22a].
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• Verify the received coset state:
(a) Checks that the output qubit of the computation iO(S + α)(|$⟩)9 is 1.
(b) Execute Hadamard transform H⊗λ on |$⟩ to obtain |$′⟩ and then check the output qubit of

the computation iO(S⊥ + β)(|$′⟩) is 1.

• If any of these checks returns 0, abort and declare the game as a failure.

• Execute H⊗λ again on |$′⟩ to obtain |$′′⟩ and send |$′′⟩ back to the prover.
From Proposition 2, it follows that with probability at least 1/ |T |, the adversary’s output state

ϕ is inverse polynomially ϵ-close to |Sα,β⟩ ⊗ ρ for some auxiliary state ρ. It means that when it is
asked, the adversary can always send a state |$⟩ that is inverse polynomially ϵ-close to |Sα,β⟩ to the
challenger.

Note that the quantum verification described above executes only on the register containing |$⟩
and thus commutes with any other quantum operation on a register entangled with it at the point
where P finishes executing the real protocol Protocol 5. Thus after finishing the above additional
interaction, the adversary’s state is unchanged, if the verification passed.

The probability that the adversary does not fail in the experiment is 1 − ϵ. It is then clear
that, for any adversary that wins the G1 with probability ε, it wins G2 with probability at least
ε′ := ε(1− ϵ)/ |T |. Thus, the success probability of G2 is ε′ for some non-negligible ε′.

Game G3: Removing subspace information from obfuscated circuits.
This hybrid is identical to G2, with the only difference is that when the verifier returns the

obfuscations P0, P1 in the last step of Protocol 5 (Step 9c), the obfuscations are changed: We sample
two random (λ − λδ)-dimensional subspaces T0, T1 ⊆ Fλ2 subjected to T⊥1 ⊆ S ⊆ T0. The verifier
uses iO(T0 + α) instead of iO(S + α), and iO(T1 + β) instead of iO(S⊥ + β).

It is easy to see that any QPT distinguisher between G2 and G3 can be transformed into a
QPT distinguisher between obfuscations of the original functions S + α, S⊥ + β and obfuscations of
T0 + α, T1 + β. By the subspace hiding property of indistinguishability obfuscators (Lemma 6), the
success probabilities of G2 and G3 are thus negligibly close. Thus the successful probability of G3 is
at least ε′ − negl(λ).

Game G4: Computing the obfuscations with less information on α, β.
This hybrid is identical to G3, with a modification in the way we check membership in each

of the cosets: Let B0 a basis for T0, and B1 a basis for T⊥1 , and let yα, yβ ∈ {0, 1}λ−λ
δ defined as

yα := B0 · α and yβ := B1 · β. iO(T0 + α) is changed to be an obfuscation of a circuit that for an
input u ∈ {0, 1}λ checks whether B0 ·u = yα. iO(T1 +β) is changed to be an obfuscation of a circuit
that for an input u ∈ {0, 1}λ checks whether B1 · u = yβ.

One can verify that the functionality of the obfuscated circuits iO(T0 + α), iO(T1 + β) did not
change, and thus by the security of the indistinguishability obfuscation schemes, the distributions
are indistinguishable and the success probability of G4 is ε′ − negl(λ).

Game G5: Reordering the sampling process of the subspaces S, T0, T1.
This hybrid is identical to G4, except that we change the order of the subspaces sampling process.

In the previous hybrid, we sample a random λ
2 -dimensional subspace S ⊆ Fλ2 then two random

(λ − λδ)-dimensional subspaces T0, T1 subjected to T⊥1 ⊆ S ⊆ T0. In the current hybrid, we first
9 We are running a classical function on a quantum input, which can be interpreted as running a classical function in

superposition.
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sample two random (λ− λδ)-dimensional subspaces T0, T1 ⊆ Fn2 subjected to T⊥1 ⊆ T0, then sample
a random λ

2 -dimensional subspace S ⊆ Fn2 subjected to T⊥1 ⊆ S ⊆ T0.
Since the distribution of (S, T0, T1) in both hybrids are identical, the success probability of G5 is

ε′ − negl(λ).

Game G6: Fixing the subspace T0, T1.
In the subspace sampling process described in the previous hybrid, T0 and T1 are sampled before

everything else. Thus we can perform an averaging argument on the sampling of T0, T1 to take
the samples that maximize the success probability of the previous hybrid. Fix these samples of
T0, T1 and define G6 with respect to these samples. It is clear that the success probability of G6 is
ε′ − negl(λ).

Game G7: Removing the QFHE secret key from the reduction.
This hybrid is identical to G6 with one change: In step 6, when the verifier decrypts the QFHE

classical part to get the Pauli keys α, β, the current hybrid does not decrypt to get α, β and instead
it samples uniformly random α′, β′ ∈ {0, 1}λ and computes y′α := B0 · α′, y′β := B1 · β′. The verifier
then use these strings as yα, yβ in the construction of the obfuscations iO(T0 + α), iO(T1 + β),
respectively.

We note that this change is only done for the specific coset instance under the consideration, for
the other instances, the verifier still decrypts normally using the corresponding QFHE secret key.

Since α′, β′ are chosen uniformly at random, for fixed bases B0, B1, y′α, y′β are also uniformly
random. Observe that conditioned on the probabilistic event y′α = yα and y′β = yβ (for which to
happen, the probability is exactly 2−2λδ ), the current and previous hybrids distribute identically. It
follows that the success probability in G7 is at least 2−2λδ · (ε′ − negl(λ)) > 2−3λδ .

Game G8: Clearing all given knowledge on S and reducing to the original monogamy-of-entanglement
game defined in Definition 24.

This hybrid is identical to G7, except that we make two additional changes as follows.
− In the additional quantum communication round that we added after the end of Protocol 5 (see

hybrid G2), instead of sending back the original state |$⟩, the verifier send |Ŝα̂,β̂⟩. Recall that
the coset (Ŝ, α̂, β̂) is the one the verifier sampled independently in step 8.

− In the step 2 in the monogamy game (Definition 3), when the challenger (i.e., the verifier) sends
the description of the subspace S to both adversaries B, C, it sends Ŝ instead.

− Consequently, the winning condition is changed to be that B outputs a vector in Ŝ + α̂ and C
outputs a vector in Ŝ⊥ + β̂.
We make few observations on the distribution in the current hybrid. First, in order to execute G8,

there is no need to know the secret key (corresponding to the coset instance under the consideration)
of the QFHE scheme. However, one needs to care when invoking the semantic security of the QFHE,
because even there is no need for the secret key, the adversary is still given a “predicate” check on
the ciphertext, that is the obfuscation. Thus, to use the security of the QFHE, it is necessary to use
two plaintexts such that the obfuscation evaluation on the ciphertext of these two plaintexts are
identical. Our obfuscations (P0,i, P1,i) were generated so that this condition is satisfied.

Secondly, the obfuscation distribution does not change from the description above, and we can
see that in the previous hybrid, the adversary obtains a quantum one-time pad encryption of |S⟩,
while in the current hybrid, the adversary obtains a quantum one-time pad of |Ŝ⟩. More precisely,
the adversary in the current hybrid receives an encryption of |Ŝ⟩ that is |Ŝα̂,β̂⟩ and an encryption of
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some Pauli keys (α, β) that are different from (α̂, β̂) with overwhelming probability. But because
of the semantic security of QFHE.Encrypt (see Definition 21), this is indistinguishable from having
|Ŝα̂,β̂⟩ and an actual encryption of (α̂, β̂).

From these observations, it follows that we can invoke the security of the QFHE to argue the
indistinguishability of the current and previous hybrids, and in particular the indistinguishability
between their success probabilities. Using the sub-exponential-advantage security of the QFHE, we
have the success probability of G8 is > 2−3λδ − 2−2λδ′

> 2−3λδ−1.
At this point of the proof, we can reduce the success probability of an adversary in G8 to

the monogamy-of-entanglement game defined in Definition 24. We note that the coset game
in Definition 24 can achieve sub-exponentially negligible security, say 2−4λδ , if we assume sub-
exponential security of the building blocks (i.e., the indistinguishability obfuscation scheme). Now,
any QPT adversary of G8 can be used to construct a QPT adversary for the coset game defined
in Definition 24 as follows. Specifically, the reduction receives a challenge coset state |Ŝα̂,β̂⟩ and
the obfuscated membership checking programs iO(Ŝ + α̂), iO(Ŝ⊥ + β̂) from its challenger in the
coset game in Definition 24. The reduction runs Protocol 5 with the adversary. Note that the
reduction (playing the role of the verifier in Protocol 5) only needs iO(Ŝ + α̂) and iO(Ŝ⊥ + β̂) to
perfectly simulate the protocol with the adversary. Furthermore, it uses |Ŝα̂,β̂⟩ in the experiment
described above instead of generating the state on its own, when it needs to send a coset state
back to the adversary. When the reduction receives Ŝ from its challenger, it sends Ŝ to B, C, and
finally the reduction outputs whatever B and C output. (Formally, the reduction now consists of
two non-communicating reductions, each interacts with B and C respectively.) This is exactly in
contradiction to strong monogamy-of-entanglement security as we presented above.

5.3 Direct Product Soundness of Protocol 5

In this section, we argue that our Protocol 5 also satisfies a direct product soundness as ideal random
coset states. This allows us to dequantize quantum protocols whose security proofs are based on
the direct product hardness of coset states.

Theorem 5. Protocol 5 is computationally sound, according to Definition 4.

Proof (sketch). The proof of Theorem 5 follows identically to that of Theorem 4, except that in the
last hybrid (Game G8), we reduce to the direct product hardness of random coset states as stated
in Theorem 13.

6 (Semi-Quantum) Copy-Protection of Point Functions

In this section, we give a construction of quantum copy-protection of point functions and we also show
how to instantiate a semi-quantum copy-protection scheme by applying our remote state preparation
protocol Protocol 5 to this quantum copy-protection scheme. We note that our semi-quantum
copy-protection scheme is interactive, while its quantum version is non-interactive.

We first recall security definition of (semi-)quantum copy-protection of point functions in Sec-
tion 6.1, and present our constructions in Section 6.2, followed by a sketch of security proofs. (The
formal proofs are given in Appendix D.)
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6.1 Definition

Recall that a point functions family {PFy}y∈X is indexed by points y ∈ X and a point function PFy
returns 1 on input y and 0 on any other input.

We give a security definition for copy-protection of point functions by instantiating the general
definition of copy-protection (see Appendix A.9) with the following family: F := {PFy}y∈{0,1}n ,
where each function f = PFy in the family is described by df := y. For the anti-piracy security, we
will consider the function distribution Df := U({0, 1}n): the uniform distribution over {0, 1}n; and
the family of distributions X := {Xy}y∈{0,1}n such that for any y ∈ {0, 1}n, Xy:

• samples x $← {0, 1}n and yields (y, x) with probability 1/3;

• samples x $← {0, 1}n and yields (x, y) with probability 1/3;

• samples x, x′ $← {0, 1}n and yields (x, x′) with probability 1/3.

6.2 Constructions

Let {PFy}y∈{0,1}n be the family to be copy-protected, where n := n(λ) is a polynomial in λ. We
define ℓ0, ℓ1, ℓ2 such that n = ℓ0 + ℓ1 + ℓ2 and ℓ2− ℓ0 is large enough. For this construction, we need
three pseudorandom functions (PRFs):
• A puncturable extracting PRF PRF1 : K1 × {0, 1}n → {0, 1}m with error 2−λ−1, where m is a

polynomial in λ and n ≥ m+ 2λ+ 4.
• A puncturable injective PRF PRF2 : K2 × {0, 1}ℓ2 → {0, 1}ℓ1 with failure probability 2−λ, with
ℓ1 ≥ 2ℓ2 + λ.
• A puncturable PRF PRF3 : K3 × {0, 1}ℓ1 → {0, 1}ℓ2 .

Construction 1: Quantum Copy-Protection of Point Functions

PF.Protect(y):
− Sample ℓ0 random coset states {|Ai,si,s′

i
⟩}i∈J1,ℓ0K, where each subspace Ai ⊆ Fn2 if of

dimension n
2 .

− For each coset state |Ai,si,s′
i
⟩, prepare the obfuscated membership programs R0

i =
iO(Ai + si) and R1

i = iO(A⊥i + s′i).
− Sample ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
− Prepare the program P̂← iO(P), where P is described in Figure 1.
− Compute z := PRF1(k1, y).

− Return ρy :=
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
.

PF.Eval(ρy, x):
− Parse ρy =

(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
.

− Parse x as x := x0∥x1∥x2.
− For each i ∈ J1, ℓ0K, if x0,i = 1, apply H⊗n to |Ai,si,s′

i
⟩; if x0,i = 0, leave the state

unchanged.
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− Let σ be the resulting state (which can be interpreted as a superposition over tuples of
ℓ0 vectors). Run P̂ coherently on input x and σ, and measure the final output register
to obtain z′.

− Return 1 if z′ = z, otherwise return 0.

Hardcoded: Keys (k1, k2, k3) ∈ K1 ×K2 ×K3, programs R0
i ,R1

i for all i ∈ J1, ℓ0K.
On input x = x0∥x1∥x2 and vectors v0, v1, · · · , vℓ0 where each vi ∈ Fn

2 , do the following:

1. (Hidden Trigger Mode) If PRF3(k3, x1)⊕ x2 = x0∥Q′ and x1 = PRF2(k2, x0∥Q′): treat
Q′ as a classical circuit and output Q′(v1, · · · , vℓ0 ).

2. (Normal Mode) If for all i ∈ J1, ℓ0K, Rxi
i (vi) = 1, then output PRF1(k1, x). Otherwise,

output ⊥.

Fig. 1. Program P.

The semi-quantum copy-protection scheme for point functions is presented in Construction 2,
which is essentially obtained by applying our compiler in Section 4 to Construction 1.

Construction 2: Semi-Quantum Copy-Protection of Point Functions

PF.Protect(y): This is now an interactive protocol between a sender and a receiver. The
sender does the following:
− Run Protocol 5 independently ℓ0 times with the receiver to obtain(

{Ai, si, s′i}i∈J1,ℓ0K, {(R0
i ,R1

i )}i∈J1,ℓ0K

)
.

The receiver obtains the corresponding {|Ai,si,s′
i
⟩}i∈J1,ℓ0K.

− Sample PRF keys ki for PRFi with i ∈ {1, 2, 3}.
− Prepare the program P̂← iO(P), where P is described in Figure 1.
− Compute z := PRF1(k1, y).

− Send
(
P̂, z

)
to the receiver.

PF.Eval(ρy, x):
− Parse ρy =

(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
.

− Parse x as x := x0∥x1∥x2.
− For each i ∈ J1, ℓ0K, if x0,i = 1, apply H⊗n to |Ai,si,s′

i
⟩; if x0,i = 0, leave the state

unchanged.
− Let σ be the resulting state (which can be interpreted as a superposition over tuples of
ℓ0 vectors). Run P̂ coherently on input x and σ, and measure the final output register
to obtain z′.

− Return 1 if z′ = z, otherwise return 0.
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Theorem 6. Assuming the existence of post-quantum indistinguishability obfuscation, one-way
functions, and compute-and-compare obfuscation for the class of unpredictable distributions, Con-
struction 1 and Construction 2 have correctness and anti-piracy security.

The correctness of our protocols follows directly from the correctness of the copy-protection of
PRFs construction of [CLLZ21, Lemma 7.13].

The security of our protocols relies on a new security notion for (semi-quantum) single-decryptors.
We recall its definitions and introduce this new security notion – which we call anti-piracy security
(real-or-random style) – in Appendix C. We show that the [CLLZ21]’s single-decryptor scheme also
achieves this new security definition. The security proof of our constructions then follows the same
strategy as that of copy-protection of PRFs given in [CLLZ21], except that we reduce security to
our new single-decryptors definitions. We refer the reader to Appendix D for a detailed proof.

7 (Semi-quantum) Strongly Unforgeable Tokenized Digital Signatures

In this section, we present a quantum construction of tokenized digital signatures with strong
unforgeability security and its semi-quantum counterpart, using our compiler presented in Section 4.
The outline of this section is as follows. We first recall definitions of tokenized signatures in Section 7.1.
Constructions of (semi-quantum) strongly unforgeable tokenized digital signatures and its proof of
security are given in Section 7.2 and Section 7.3.

7.1 Definitions

A formal definition of tokenized digital signature is given below.
Definition 5 (Tokenized Digital Signature [BS17]). A quantum tokenized digital signature
scheme consists of four QPT algorithms qTDS = ⟨KeyGen,TokenGen,Sign,TokenVerif,Verif⟩ with
the following properties:

• (vk, sk)← KeyGen(1λ). On input the security parameter λ, the key generation algorithm KeyGen
outputs a classical verification key vk and a secret key sk.
• sig← TokenGen(sk). On input the secret key sk, the token generation algorithm TokenGen outputs

a signing token sig. We emphasize that if TokenGen is called ℓ times, it outputs different states
sig1, . . . , sigℓ.
• σ ← Sign(m, sig). On input a message m ∈ {0, 1}∗ and a signing token sig, the signing algorithm

Sign outputs a classical signature σ ∈ {0, 1}p(λ).
• (b, sig′)← TokenVerif(vk, sig). On input the verification key vk, and a signing token sig, the token

verification TokenVerif outputs a single bit b ∈ {0, 1}, and a post-verified token sig′.
• b← Verif(vk,m, σ). On input the verification key vk, a message m and a classical signature σ,

the verification algorithm outputs a bit b ∈ {0, 1}.

A tokenized digital signature scheme qTDS must satisfy the following requirements for all λ ∈ N.

• Correctness. For every message m ∈ {0, 1}∗, we have that

Pr
[
Verif(vk,Sign(m, sig)) = 1 | (vk, sk)← KeyGen(1λ); sig← TokenGen(sk)

]
= 1,

where the probability is taken over randomness of KeyGen and TokenGen.
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• (Strong) Unforgeability. We introduce the algorithm Verifk which takes as input the verifica-
tion key vk and k pairs (m1, σ1), . . . , (mk, σk) and returns 1 if and only if: (1) all the messages
are distinct, that is, mi ≠ mj for all 1 ≤ i ̸= j ≤ k; and (2) all the pairs pass the verification,
that is, Verif(vk,mi, σi) = 1 for all i ∈ J1, kK. For every ℓ ∈ N, no QPT adversary A can sign
ℓ+ 1 different messages by using the verification key and ℓ signing tokens, except with negligible
probability:

AdvqTDS(λ,A) := Pr
[
Verifℓ+1(vk,A(vk, sig1 ⊗ · · · ⊗ sigℓ))

]
≤ negl(λ).

We also say that qTDS is strongly unforgeable if we only require that k pairs of message/signature
are distinct, that is (mi, σi) ̸= (mj , σj) for all 1 ≤ i ̸= j ≤ k.

• Testability. The token testing algorithm TokenVerif, unlike the signing algorithm, does not
consume the signing token. If a signing token passes this test, the post-verified token also passes
the test, and it can be used to sign a document. That is,

Pr
[
TokenVerif(sig) = (1, sig) | (vk, sk) $← KeyGen(1λ); sig $← TokenGen(sk)

]
= 1.

Furthermore, for any QPT adversary A with access to a verification key vk and polynomially
many signing tokens, which generates a message m and a state s̃ig, we have that:

Pr
[
Verif(vk,m,Sign(m, s̃ig

′)) = 1 | (1, s̃ig
′)← TokenVerif(s̃ig)

]
≥ 1− negl(λ),

Pr
[
TokenVerif(vk, s̃ig

′) = 1 | (1, s̃ig
′)← TokenVerif(s̃ig)

]
≥ 1− negl(λ).

A definition for a strongly unforgeable semi-quantum tokenized signature is given below. We
note that our definition is similar to the one for weak unforgeability given in [Shm22b].

Definition 6 (Semi-Quantum Tokenized Digital Signature). A semi-quantum tokenized
signature scheme consists of five QPT algorithms sqTDS = ⟨Send,Rec,Sign,TokenVerif,Verif⟩ with
the following properties:

• (vk, sig) ← ⟨Send,Rec⟩(1λ). On input the security parameter λ, a classical-communication
protocol between Send and Rec outputs a classical verification key pk and a signing token sig. We
emphasize that Send is a PPT algorithm.

• σ ← Sign(m, sig). On input a message m ∈ {0, 1} and a signing token sig, the signing algorithm
Sign outputs a classical signature σ ∈ {0, 1}p(λ).

• (b, sig′)← TokenVerif(vk, sig). On input the verification key vk, and a signing token sig, the token
verification TokenVerif outputs a single bit b ∈ {0, 1}, and a post-verified token sig′.

• b← Verif(vk,m, σ). On input the verification key vk, a message m and a classical signature σ,
the verification algorithm outputs a bit b ∈ {0, 1}.

A semi-quantum tokenized digital signature scheme sqTDS must satisfy the following requirements
for all λ ∈ N.

• Correctness. For every message m ∈ {0, 1}, we have that

Pr
(vk,sig)←⟨Send,Rec⟩(1λ)

[
Verif(vk, Sign(m, sig)) = 1

]
≥ 1− negl(λ).
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• (Strong) Unforgeability. sqTDS is strongly unforgeable if for every QPT adversary A =
{Aλ, ρλ}λ∈N,

AdvsqTDS(λ,A) := Pr
[
∀b ∈ {0, 1} : Verif(pk,mb, σb) = 1 ∧

(m0, σ0) ̸= (m1, σ1)

∣∣∣∣∣ (vk, sig)← ⟨Send,A⟩(1λ)
{(mb, σb)}b∈{0,1} ← A(ρλ)

]
≤ negl(λ).

• Testability. The token testing algorithm TokenVerif, unlike the signing algorithm, does not
consume the signing token. If a signing token passes this test, the post-verified token also passes
the test, and it can be used to sign a document. That is, for any QPT adversary A,

Pr
[

TokenVerif(sig′) = (1, sig′)
∣∣∣∣∣ (vk, sig)← ⟨Send,A⟩(1λ)
(1, sig′)← TokenVerif(vk, sig)

]
≥ 1− negl(λ).

Furthermore, for every m ∈ {0, 1}, we have that:

Pr
[

Verif(vk,m,Sign(m, sig′)) = 1
∣∣∣∣∣ (vk, sig)← ⟨Send,A⟩(1λ)
(1, sig′)← TokenVerif(vk, sig)

]
≥ 1− negl(λ).

7.2 Strongly Unforgeable Tokenized Digital Signatures

Following [BS17], we first define a notion of one-bit one-time strongly unforgeable tokenized digital
signatures. Then, using the construction given in [BS17], one can obtain a full-fledged strongly
unforgeable scheme by combining a one-bit one-time strongly unforgeable scheme with any classical
strongly unforgeable digital signature scheme against quantum attacks.

Definition 7. A tokenized digital signature scheme qTDS is one-bit one-time strongly unforgeable
if for every λ, for every QPT adversary A, we have that

Pr

 m0,m1 ∈ {0, 1}
∧ Verif2(vk,m0, σ0,m1, σ1) = 1

∧ (m0, σ0) ̸= (m1, σ1)

∣∣∣∣∣∣∣
(vk, sk) $← KeyGen(1λ)

sig $← TokenGen(sk)
(m0, σ0,m1, σ1)← A(vk, sig)

 ≤ negl(λ).

Furthermore, let Adv1−qTDS(λ,A) denote the above probability. We say that qTDS is δ-strongly
unforgeable, for some concrete negligible function δ(λ), if for all QPT adversary A, the advantage
Adv1−qTDS(λ,A) is smaller than δ(λ)Ω(1).

The following theorem, whose proof is given in [BS17], says that one-bit one-time strong
unforgeability is sufficient to achieve a full-fledged strong unforgeability.

Theorem 7 ([BS17, Theorem 13]10 ). A one-bit one-time strongly unforgeable tokenized
digital signature scheme implies a full-fledged strongly unforgeable tokenized digital signature scheme,
assuming the existence of a strongly unforgeable quantum-secure digital signature scheme.

Construction. Next, we give a construction of one-bit one-time strongly unforgeable digital
signatures from hidden coset states in Construction 3. This construction is identical to the one for
weak unforgeability in [CLLZ21].
10 While the statement of [BS17, Theorem 13] only applies to weak unforgeability, the same proof extends to strong

unforgeability.
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Construction 3: A one-bit one-time strongly unforgeable scheme from hidden coset states

KeyGen(1λ) : Set n = poly(λ).
− Sample uniformly A ⊆ Fn2 of dimension n

2 .

− Sample s, s′ $← Fn2 .
− Output sk := (A, s, s′) (where by A we mean a description of the subspace A), and

vk := (iO(PA+s), iO(PA⊥+s′)).

TokenGen(sk) : Take as input sk of the form (A, s, s′).
− Output sig := |As,s′⟩.

Sign(m, sig) : Take as input m ∈ {0, 1}, and a state sig on n qubits.
− Compute H⊗nsig if m = 1, otherwise do nothing to the quantum state.
− Measure the state in the computational basis. Let σ be the outcome.
− Output (m,σ).

Verif(vk, (m,σ)) : Parse vk as (C0, C1) where C0 and C1 are circuits.
− Output Cm(σ).

TokenVerif(vk, sig) : Parse vk as (C0, C1) where C0 and C1 are circuits.
− Let Vi be the unitary implementing the following operation:

Vi |v, z⟩ 7→ |v, z ⊕ Ci(v)⟩ .

Compute sig′ := (H⊗n ⊗ I)V1(H⊗n ⊗ I)V0sig⊗ |0⟩.
− Measure the last register in the computational basis.
− If the outcome is 1, return (0, sig′). Otherwise, return (1, sig′).

Theorem 8. Assuming the existence of quantum-secure indistinguishability obfuscation and quantum-
secure injective one-way functions, the scheme given in Construction 3 is a one-bit one-time strongly
unforgeable tokenized digital signature scheme.

Proof. The proof of this theorem follows immediately from Theorem 13.

7.3 Semi-Quantum Strongly Unforgeable Tokenized Digital Signatures

Our remote coset state preparation protocol (Protocol 5) directly gives a semi-quantum tokenized
signature scheme in the plain model. The formal description of the scheme is given in Construction 4,
whose security proof follows immediately from Theorem 5. We note that our semi-quantum protocol
has the same signing, verification and token verification algorithms as its quantum counterpart
described in Construction 3.
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Construction 4: Our semi-quantum tokenized signature scheme
Token Generation Protocol. The input of the protocol is the security parameter λ ∈ N.
− Run Protocol 5 between a classical sender and a quantum receiver. Send is the sender’s

procedure in the protocol and Rec is the receiver’s procedure in the protocol.
− The output of the protocol is vk := (R0,R1) and sig := |As,s′⟩ using the notation

in Section 4.

Sign(m, sig) : Take as input m ∈ {0, 1}, and a state sig on n qubits.
− Compute H⊗nsig if m = 1, otherwise do nothing to the quantum state.
− Measure the state in the computational basis. Let σ be the outcome.
− Output (m,σ).

Verif(vk, (m,σ)) : Parse vk as (R0,R1) where R0 and R1 are circuits.
− Output Rm(σ).

TokenVerif(vk, sig) : Parse vk as (R0,R1) where R0 and R1 are circuits.
− Let Vi be the unitary implementing the following operation:

Vi |v, z⟩ 7→ |v, z ⊕ Ri(v)⟩ .

Compute sig′ := (H⊗n ⊗ I)V1(H⊗n ⊗ I)V0sig⊗ |0⟩.
− Measure the last register in the computational basis.
− If the outcome is 1, return (0, sig′). Otherwise, return (1, sig′).
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A Preliminaries

A.1 Quantum Computation

Quantum gates. We refer to the following well-known unitary gates:

• Pauli gates: X : |a⟩ 7→ |1− a⟩, Z : |a⟩ 7→ (−1)a |a⟩ and Y := iXZ, for each a ∈ {0, 1}.

• Hadamard gate: H : |a⟩ 7→ 1√
2 |0⟩+ (−1)a

√
2 |1⟩, for each a ∈ {0, 1}.

• Rotation gates: Rϕ : |a⟩ 7→ eiaϕ |a⟩, for each a ∈ {0, 1}. We obtain the T gate where ϕ = π
4 , the

phase gate P where ϕ = π
2 .

• Controlled gates: for any k-qubit unitary quantum gate U, we define the controlled-U as:
Ctrl-U : |a⟩ |x⟩ 7→ |a⟩Ua |x⟩, for each a ∈ {0, 1} and x ∈ {0, 1}k. In particular, we write the
controlled-NOT gate as CNOT : |a⟩ |b⟩ 7→ |a⟩ |b⊕ a⟩.

• Toffoli gates: CCNOT : |a, b, c⟩ 7→ |a, b, c⊕ (a · b)⟩ for each (a, b, c) ∈ {0, 1}3.

A.1.1 Efficiency in the Quantum Setting

Definition 8 (Efficiency).

(i) Efficient unitaries: a family of unitaries {Uλ ∈ U(Hλ)}λ∈N is efficient if there exists a
(classical) polynomial-time Turing machine M that, on input 1λ, outputs a description of a
circuit (with a fixed gate set) that implements the unitary.

(ii) Efficient isometries: a family of isometries {Vλ : HAλ
→ HBλ

}λ∈N is efficient if there exists
an efficient family of unitaries {Uλ ∈ U(HBλ

)}λ∈N such that Vλ = Uλ(IAλ
⊗ |0k(λ)⟩), where

k(λ) = dim(HBλ
)− dim(HAλ

).
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(iii) Efficient observables: a family of binary observables {Zλ : Herm(HAλ
)}λ∈N is efficient if

there exists a family of Hilbert spaces HBλ
with dim(HBλ

) = poly(λ), and a family of efficient
unitaries {Uλ ∈ U(HAλ

⊗HBλ
)}λ∈N such that for any |ψ⟩A ∈ HA:

U †(σZ ⊗ I)Uλ(|ψ⟩A |0⟩B) = (Zλ |ψ⟩A)⊗ |0⟩B . (4)

(iv) Efficient measurements: a family of measurements {Mλ = {M (i)
λ ∈ L(HAλ

)}i∈A}λ∈N is
efficient if the isometry

|ψ⟩ 7→
∑
i∈A
|i⟩ ⊗M (i)

λ |ψ⟩ (5)

is efficient.

A.1.2 Distance Measures

Definition 9 (Norms). Let A ∈ L(H) with singular values λ1, . . . , λn ≥ 0. Then, the trace norm
is defined as

∥A∥1 =
∑
i

λi .

Definition 10 (Trace distance). For two quantum states ρ, σ ∈ Pos(H), the trace distance
between them is

∆ (ρ, σ) := 1
2∥ρ− σ∥1.

Definition 11 (Approximate equality, [MV21, Definition 2.8 and Definition 2.14]). We
overload the symbol “≈” in the following ways (leaving the dependence on the security parameter
implicit in the quantities on the left):

1. Complex numbers: For a, b ∈ C we define:

a ≈ϵ b ⇐⇒ |a− b| = O(ϵ) + negl(λ) .

2. Operators: For A,B ∈ L(H), we define:

A ≈ϵ B ⇐⇒ ∥A−B∥21 = O(ϵ) + negl(λ) .

(We will most frequently use this for (possibly subnormalised) quantum states A,B ∈ Pos(H).)
3. Operators on a state: For A,B ∈ L(H) and ψ ∈ Pos(H), we define:

A ≈ϵ,ψ B ⇐⇒ Tr
[
(A−B)†(A−B)ψ

]
= O(ϵ) + negl(λ) .

4. Computationally indistinguishable states: For two (families of not necessarily normalised)
states ψ,ψ′ ∈ Pos(H) which are computationally indistinguishable up to δ (i.e., no QPT distin-
guisher has advantage exceeding δ in distinguishing ψ from ψ′11), we write:

ψ
c≈δ ψ′ .

11 A distinguisher D is a CPTP map from the input state to a classical single-qubit state (i.e. a distribution over
{0, 1}). The distinguishability is the trace distance between D(ψ) and D(ψ′).
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We can also define computational indistinguishability with respect to non-uniform QPT algorithms
with quantum advice, denoted by A := {Aλ, ϕλ}λ∈N, where each Aλ is the classical description
of a poly(λ)-size quantum circuit, and ϕλ is some (not necessarily efficiently computable) non-
uniform poly(λ)-qubit quantum advice. In this work, we implicitly consider computational
indistinguishability with respect to non-uniform QPT adversaries with quantum advice, unless
stated explicitly otherwise.

If we write ≈0, we mean that the quantities are negligibly close. All asymptotic statements are
understood to be in the limits ϵ→ 0 and λ→∞.

We include a copy of some technical lemmas on state-dependent operator relations using
computational indistinguishability from [MV21] in Appendix A.2 for the reader’s convenience.

A.2 Properties of the State-Dependent Distance
A feature of the state-dependent distance is that if two operators are close in the state-dependent
distance, we can replace one operator by the other acting on either side of the state.
Lemma 1 (Replacement lemma [MV21, Lemma 2.21]). Let ψ ∈ Pos(H), and A,B,C ∈
L(H). If A ≈ϵ,ψ B and ∥C∥∞ = O(1), then

Tr[CAψ] ≈ϵ1/2 Tr[CBψ] , (6)
Tr[ACψ] ≈ϵ1/2 Tr[BCψ] . (7)

Lemma 2 ([MV21, Lemma 2.22]). Let A,B ∈ L(H) be linear operators, C ∈ L(H) a linear
operator with constant operator norm, and ψ ∈ Pos(H) with Tr[ψ] ≤ 1. Then, the following holds:

A ≈ϵ,ψ B =⇒ AψC ≈ϵ B ψC and C ψA† ≈ϵ C ψB† . (8)

The following lemma allows us to replace computationally indistinguishable states with one
another in the state-dependent distance. This means that if two states are computationally
indistinguishable and a state-dependent operator relation holds for one of the states, we can “lift”
this relation to the other state, provided the operators are efficient.
Lemma 3 (Lifting lemma [MV21, Lemma 2.25]). Let ψ,ψ′ ∈ D(H) such that ψ c≈δ ψ′. Let
H′ be another Hilbert space with dim(H′) ≥ dim(H). For this case, let ψ,ψ′ ∈ D(H′) such that
ψ

c≈δ ψ′. Let A be an efficient binary observable on H, B an efficient binary observable on H′, and
V : H → H′ an efficient isometry. Then:

V AV † ≈ϵ, ψ B =⇒ V AV † ≈ϵ1/4+δ,ψ′ B . (9)

Finally, we recall some further miscellaneous properties of the state-dependent distance.
Lemma 4 ([MV21, Lemma 2.18]). Let ψi ∈ Pos(H) for i ∈ {1, . . . , n} with constant n, and
A,B ∈ L(H). Define ψ = ∑

i ψi. Then:

∀i ∈ J1, nK : A ≈ϵ,ψi
B iff A ≈ϵ,ψ B (10)

Lemma 5 ([MV21, Lemma 2.24]). Let H1,H2 be Hilbert spaces with dim(H1) ≤ dim(H2)
and V : H1 → H2 an isometry. Let A and B be binary observables on H1 and H2, respectively,
ψ ∈ Pos(H1), and ϵ ≥ 0. Then for any b ∈ {0, 1}:

V †BV ≈ϵ,ψ A =⇒ V †B(b)V ≈ϵ,ψ A(b) , (11)
B ≈ϵ,V ψV † V AV † =⇒ B(b) ≈ϵ,V ψV † V A(b)V † . (12)
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A.3 Sampling in a Quantum Population

In this section, we describe a generic framework presented in [BF10] for analyzing cut-and-choose
strategies applied to quantum states.

A.3.1 Classical Sampling Stratiegies
Let q := (q1, . . . , qn) ∈ Ωn be a string of length n. We consider the problem of estimating the
relative Hamming weight of a substring ω(q|t) by only looking at the substring q|t of q, for a
subset t ⊂ J1, nK. We consider sampling strategies Ψ := (PT , PS , f), where PT is an (independently
sampled) distribution over subsets t ⊆ J1, nK, PS is a distribution over seeds s ∈ S, and f : {(t, v) :
t ⊂ J1, nK, v ∈ Ωt} × S → R is a function that takes the subset t, the substring v, and a seed s, and
outputs an estimate for the relative Hamming weight of the remaining string. For a fixed subset t,
seed s, and a parameter δ, define Bδ

t,s(Ψ) ⊆ Ωn as

Bδ
t,s := {b ∈ Ωn : |ω(b|t)− f(t, b|t, s)| < δ}.

Then we define the classical error probability of strategy Ψ as follows.

Definition 12 (Classical Error Probability). The classical error probability of a sampling
strategy Ψ := (PT , PS , f) is defined as the following value, parameterized by 0 < δ < 1:

εδclassical(Ψ) := max
q∈Ωn

Pr
t←PT ,s←PS

[
q /∈ Bδ

t,s(Ψ)
]
.

A.3.2 Quantum Sampling Strategies
Now, let A := A1, . . . , An be an n-partite quantum system where the state space of each system
Ai equals HAi = Cd with d = |Ω|, and let {|a⟩}a∈Ω be a fixed orthonormal basis of Cd. A may be
entangled with another system E, and we write the purified state on A and E as |ψ⟩AE . We consider
the problem of testing whether the state on A is close to the all-zero reference state |0⟩A1

. . . |0⟩An
.

There is a natural way to apply any sampling strategy Ψ = (PT , PS , f) to this setting: sample t, s
according to PT , PS , measure subsystems Ai for i ∈ J1, tK in basis {|a⟩}a to observe q|t ∈ Ω|t|, and
compute an estimate f(t, q|t, s).

In order to analyze the effect of this strategy, we first consider the mixed state on registers T
(holding the subset t), S (holding the seed s), and A,E that results from sampling t and s according
to PTS := PTPS

ρTSAE :=
∑
t,s

PTS(t, s) |t, s⟩ ⟨t, s|TS ⊗ |ψ⟩ ⟨ψ|AE .

Next, we compare this state to an ideal state, parameterized by 0 < δ < 1, of the form

ρ̃TSAE :=
∑
t,s

PTS(t, s) |t, s⟩ ⟨t, s|TS ⊗ |ψ̃ts⟩ ⟨ψ̃ts|AE with |ψts⟩AE ∈ span
(
Bδ
t,s

)
⊗HE ,

where
span

(
Bδ
t,s

)
:= span

(
{|b⟩ : b ∈ Bδ

t,s}
)

= span ({|b⟩ : |ω(b|t)− f(t, b|t, s)| < δ}) .

That is, ρ̃TSAE is a state such that it holds with certainty that the state on registers A|tE, after
having measured A|t and observing q|t, is in a superposition of states with relative Hamming weight
δ-close to f(t, q|t, s). This leads us to the definition of the quantum error probability of strategy Ψ.
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Definition 13 (Quantum Error Probability). The quantum error probability of a sampling
strategy Ψ := (PT , PS , f) is defined as the following value, parameterized by 0 < δ < 1:

εδquantum(Ψ) := max
HE

max
|ψ⟩AE

min
ρ̃T SAE

∆ (ρTSAE , ρ̃TSAE) ,

where the first max is over all finite-dimensional registers E, the second max is over all state |ψ⟩AE
and the min is over all ideal state ρ̃TSAE of the form described above.

Finally, we relate the classical and quantum error probabilities.

Theorem 9 ([BF10]). For any sampling strategy Ψ and δ > 0,

εδquantum(Ψ) ≤
√
εδclassical(Ψ).

Remark 1. The results presented here immediately generalize from the all-zero reference state
|0⟩ . . . |0⟩ to an arbitrary reference state |φ⟩A of the form |φ⟩A = U1 |0⟩ . . . Un |0⟩ for unitary operators
Ui acting on Cd. Indeed, the generalization follows simply by a suitable change of basis, defined by
the Ui’s.

In this work, we will only need to analyze one simple sample-and-estimate strategy Ψuniform :=
(PT , PS , f), where PT is the uniform distribution over subsets t ⊆ J1, nK, PS is empty and f(t, q|t) =
ω(q|t). That is, f receives a uniformly random subset q|t of q, and outputs the relative Hamming
weight of q|t as its guess for the relative Hamming weight of q|t. The classical error probability of
this strategy can be bound using Hoeffding inequalities, which is done in [BF10, Appendix B.3],
where it is shown to be bounded by 4 exp(−nδ2

32 ) for parameter δ. Thus, we have the following
corollary of Theorem 9.

Corollary 2. The quantum error probability of Ψuniform with parameter δ is

εδquantum(Ψuniform) ≤ 2 exp(−nδ
2

64 ).

A.4 Indistinguishability Obfuscation

Definition 14 (Indistinguishability Obfuscator [BGI+01]). A uniform PPT machine iO is
called an indistinguishability obfuscator for a classical circuit class {Cλ} if the following conditions
are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all input x, we have that

Pr
[
C ′(x) = C(x) | C ′ ← iO(λ,C)

]
= 1.

• For any (not necessarily uniform) distinguisher D, for all security parameters λ ∈ N, for all
pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then

AdviO(λ,A) := |Pr[D(iO(λ,C0)) = 1]− Pr[D(iO(λ,C1)) = 1]| ≤ negl(λ).

We further say that iO is δ-secure, for some concrete negligible function δ(λ), if for all QPT
adversaries A, the advantage AdviO(λ,A) is smaller than δ(λ)Ω(1).

38



Quantum-secure instantiations. There has been recent progress in constructing quantum-secure
indistinguishability obfuscation schemes [GP20, BDGM20] from cryptographic assumptions that
conjecturally hold against quantum adversaries.

In [Zha19, Shm22a], it is shown that indistinguishability obfuscation schemes have the property
of subspace hiding.

Lemma 6 ([Zha19, Shm22a]). Let iO an indistinguishability obfuscation scheme, and assume
that injective one-way functions exist. Let S = {Sλ}λ∈N a subspace S ⊆ Fλ2 . For a subspace S′,
denote by CS′ a classical circuit that checks membership in S′. Then, for every constant δ ∈ (0, 1]
we have the following indistinguishability:

{iO(CSλ
)}λ∈N

c≈0 {iO(CT ) | T $← SSλ
}λ∈N,

where SSλ
is the set of all subspaces of dimension λ− λδ that contain Sλ.

A.5 Compute-and-Compare Obfuscation

Definition 15 (Compute-and-Compare Programs). Given a function f : {0, 1}ℓin → {0, 1}ℓout

along with a target value y ∈ {0, 1}ℓout and a message m ∈ {0, 1}ℓmsg , we define the compute-and-
compare program:

CC[f, y,m](x) :=
{
m if f(x) = y,

⊥ otherwise .

Definition 16 (Unpredictable Distribution). Let D := {Dλ}λ∈N be a distribution over pairs of
the form (CC[f, y,m], aux) where CC[f, y,m] is a compute-and-compare program and aux is some
(possibly quantum) auxiliary information. We say that D is an unpredictable distribution if for all
QPT algorithm A, we have that

Pr
(CC[f,y,m],aux)←Dλ

[
A(1λ, f, aux) = y

]
≤ negl(λ).

Definition 17 (Compute-and-Compare Obfuscator). A PPT algorithm CC.Obf is said to be
a compute-and-compare obfuscator for a family of unpredictable distributions D := {Dλ} if for all
λ ∈ N:

• CC.Obf is functionality preserving: for all x

Pr
[
CC.Obf(1λ,CC[f, y,m])(x) = CC[f, y,m](x)

]
≥ 1− negl(λ)

• CC.Obf has distributional indistinguishability: there exists a QPT simulator S such that{
CC.Obf(1λ, C), aux

}
≈c

{
S(1λ, C.param), aux

}
,

where (C, aux)← Dλ.
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A.6 Puncturable Pseudorandom Function

A pseudorandom function (PRF) system [GGM84] consists of a keyed function F and a set of
keys K such that for a randomly chosen key k ∈ K, the output of the function F (k, x) for any
input x in the input space X “looks” random to a QPT adversary, even when given a polynomially
many evaluations of F (k, ·). Puncturable PRFs have an additional property that some keys can
be generated punctured at some point, so that they allow to evaluate the PRF at all points except
for the punctured points. Furthermore, even with the punctured key, the PRF evaluation at a
punctured point still looks random.

Punctured PRFs are originally introduced in [BW13, BGI14, KPTZ13], who observed that it
is possible to construct such puncturable PRFs for the construction from [GGM84], which can be
based on any one-way function [HILL99].

Definition 18 (Puncturable Pseudorandom Function). A pseudorandom function PRF :
K ×X → Y is a puncturable pseudorandom function if there is an addition key space Kp and three
PPT algorithms pPRF = ⟨KeyGen,Puncture,Eval⟩ such that:

• k← KeyGen(1λ). The key generation algorithm KeyGen takes the security parameter 1λ as input
and outputs a random key k ∈ K.

• k{x} ← Puncture(k, x). The puncturing algorithm Puncture takes as input a PRF key k ∈ K
and x ∈ X , and outputs a key k{x} ∈ Kp.
• y ← Eval(k{x}, x′). The evaluation algorithm takes as input a punctured key k{x} ∈ Kp and
x′ ∈ X , and outputs a classical string y ∈ Y.

We require the following properties of pPRF.

• Functionality preserved under puncturing. For all λ ∈ N, for all x ∈ X ,

Pr
[
∀x′ ∈ X \ {x} : Eval(k{x}, x′) = Eval(k, x′)

∣∣∣∣∣ k $← KeyGen(1λ)
k{x} $← Puncture(k, x)

]
= 1.

• Pseudorandom at punctured points. For every QPT adversary A := (A1,A2), and every
λ ∈ N, the following holds:∣∣∣∣∣∣∣∣∣Pr

1← A2(k{x∗}, y, τ)

∣∣∣∣∣∣∣∣∣
(x∗, τ)← A1(1λ, τ)

k $← KeyGen(1λ)
k{x∗} $← Puncture(k, x∗)

y ← Eval(k, x∗)



−Pr

1← A2(k{x∗}, y, τ)

∣∣∣∣∣∣∣∣∣∣
(x∗, τ)← A1(1λ, τ)

k $← KeyGen(1λ)
k{x∗} $← Puncture(k, x∗)

y
$← Y


∣∣∣∣∣∣∣∣∣∣
≤ negl(λ),

where the probability is taken over the randomness of KeyGen, Puncture, and A1.

Denote the above probability as AdvpPRF(λ,A). We further say that pPRF is δ-secure, for some
concrete negligible function δ(λ), if for all QPT adversaries A, the advantage AdvpPRF(λ,A) is
smaller than δ(λ)Ω(1).
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The following definitions are taken from [CLLZ21].

Definition 19 (Statistically injective PRF). A family of statistically injective (puncturable)
pseudorandom functions with (negligible) failure probability ε(·) is a (puncturable) pseudorandom
functions family PRF such that with probability 1−ε(λ) over the random choice of key k← KeyGen(1λ),
we have that PRF(k, ·) is injective.

Definition 20 (Extracting PRF). A family of extracting (puncturable) pseudorandom functions
with error ε(·) for min-entropy k(·) is a (puncturable) pseudorandom functions family PRF mapping
n(λ) bits to m(λ) bits such that for all λ ∈ N, if X is any distribution over n(λ) bits with min-entropy
greater than k(λ), then the statistical distance between (k,PRF(k, X)) and (k, r ← {0, 1}m(λ)) is at
most ε(·), where k← KeyGen(1λ).

A.7 Leveled Hybrid Quantum Fully Homomorphic Encryption

We rely on quantum fully homomorphic encryption of a specific structure, which was defined
in [Shm22a].

Definition 21 (Leveled Hybrid Quantum Fully Homomorphic Encryption). A hybrid lev-
eled quantum fully homomorphic encryption scheme is given by QFHE := ⟨KeyGen,Encrypt,QOTP,Eval,Decrypt⟩
with the following syntax:

• (pk, sk)← KeyGen(1λ, 1ℓ). A PPT algorithm that given a security parameter λ ∈ N and target
circuit bound ℓ ∈ N, outputs a classical key pair (pk, sk).

• |ψ⟩(x,z) ← QOTP((x, z), |ψ⟩). A QPT algorithm that takes as input an n-qubit quantum state
|ψ⟩ and classical strings as quantum OTPs x, z ∈ {0, 1}n and outputs its QOTP transformation
|ψ⟩(x,z) := (⊗i∈JnKZzi) · (⊗i∈JnKXxi) |ψ⟩. We often call these one-time pads (x, z) the Pauli keys.
Furthermore, if |ψ⟩ is a classical string m, we ignore the Pauli key z and write QOTP(x,m)
whose output is x⊕m.

• ct← Encrypt(pk, x). A PPT algorithm that takes as input a classical string x ∈ {0, 1}∗ and the
public key pk and outputs a classical ciphertext ct.

• x← Decrypt(sk, ct). A PPT algorithm that takes as input a classical ciphertext ct and the secret
key sk and outputs a classical string x.

• (|ϕ⟩(x
′,z′) , ctx′,z′)← Eval(pk, (|ψ⟩(x,z) , ctx,z), C). A QPT algorithm that takes as input a general

quantum circuit C, a quantum one-time pad encrypted state |ψ⟩(x,z) and a classical ciphertext ctx,z
of the pads. The evaluation outputs a QOTP encryption of some quantum state |ϕ⟩ encrypted
under new keys (x′, z′) and a classical ciphertext ctx′,z′.

The scheme satisfies the following.
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• Semantic Security. For every polynomials m(·), ℓ(·), and QPT algorithm A := {Aλ, ρλ}λ∈N
there exists a negligible function negl(·) such that∣∣∣∣∣∣∣∣∣Pr

1← A2(m0 ⊕ x, ctx)

∣∣∣∣∣∣∣∣∣
(m0,m1)← A1(1λ)

(pk, sk) $← KeyGen(1λ, 1ℓ(λ))
x

$← {0, 1}m(λ)

ctx ← Encrypt(pk, x)



−Pr

1← A2(m1 ⊕ x, ctx)

∣∣∣∣∣∣∣∣∣
(m0,m1)← A1(1λ)

(pk, sk) $← KeyGen(1λ, 1ℓ(λ))
x

$← {0, 1}m(λ)

ctx ← Encrypt(pk, x)


∣∣∣∣∣∣∣∣∣ ≤

1
2 + negl(λ),

where λ ∈ N and m0,m1 ∈ {0, 1}m(λ).
− Denote the above probability as AdvQFHE(λ,A). We further say that QFHE is δ-secure,

for some concrete negligible function δ(λ), if for all QPT adversaries A, the advantage
AdvQFHE(λ,A) is smaller than δ(λ)Ω(1).

• Homomorphism. For every polynomial ℓ := ℓ(λ) there is a negligible function negl(·) such
that the following holds. Let (pk, sk)← KeyGen(1λ, 1ℓ), let x, z equal-length strings, let ctx,z ←
Encrypt(pk, (x, z)), let C a quantum circuit of size ≤ ℓ, let |ψ⟩ a |x|-qubit state input for C.
Then, ∆ (D0, D1) ≤ negl(λ), where D0, D1 are defined as follows.
− D0: The output state is |ψ′⟩ ← C(|ψ⟩).

− D1: The output state generated by first evaluating (|ϕ⟩(x
′,z′) , ctx′,z′)← Eval

(
pk, (|ψ⟩(x,z) , ctx,z), C

)
,

and then decrypting (x′, z′)← Decrypt(sk, ctx′,z′), |ϕ⟩ ← QOTP
(
(x′, z′), |ϕ⟩(x

′,z′)
)
.

Quantum-secure instantiations. Quantum Leveled Fully-Homomorphic encryption with the
hybrid structure follows from the work of Mahadev [Mah18a] and Brakerski [Bra18], and can be
based on the quantum hardness of Learning with Errors [Reg05]. Consequently, constructing QFHE
that has hybrid structure, leveled, and has sub-exponential advantage security can be based on
assuming LWE with sub-exponential indistinguishability.

A.8 Coset States

This section is taken verbatim from [CLLZ21].
For any subspace A ⊆ Fn2 , its complement is A⊥ := {b ∈ Fn2 | ⟨a, b⟩ = 0,∀a ∈ A}. We have that

dim(A) + dim(A⊥) = n. We also let |A| := 2dim(A) denote the size of the subspace A.

Definition 22 (Subspace States). For any subspace A ⊆ Fn2 , the subspace state |A⟩ is defined as

|A⟩ := 1√
|A|

∑
a∈A
|a⟩ .

Note that given A, the subspace state |A⟩ can be constructed efficiently.

Definition 23 (Coset States). For any subspace A ⊆ Fn2 , vectors s, s′ ∈ Fn2 , the coset state |As,s′⟩
is defined as

|As,s′⟩ := 1√
|A|

∑
a∈A

(−1)⟨a,s′⟩ |a+ s⟩ .
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Note that given |A⟩ and s, s′, the coset state |As,s′⟩ can be constructed efficiently.
Furthermore, for a subspace A and vectors s, s′, we define A + s := {v + s | v ∈ A}, and

A⊥ + s′ := {w + s′ | w ∈ A⊥}.
When it is clear from the context, for ease of notation, we will write A + s to mean the

program that checks membership in A+ s. For example, we will often write iO(A+ s) to mean an
indistinguishability obfuscation of the program that checks membership in A+ s.

A.8.1 Strong Monogamy-of-Entanglement Property

Coset states satisfy the following strong monogamy-of-entanglement property, which will be used as
the main tool in our construction for copy-protection.

Definition 24 (Coset-Monogamy Game [CLLZ21, CV22]). The coset mongamy game
between a challenger and a QPT adversary (A0,A1,A2) is defined as follows.

1. Preparation. The challenger picks a uniformly random subspace A ⊆ Fλ2 of dimension λ
2 , and two

uniformly random vectors s, s′ ∈ Fn2 . It sends |A, s, s′⟩ , iO(A+ s), iO(A⊥ + s′) to the adversary
A0.

2. The adversary applies a quantum channel: Φ : HA → HB⊗HC where HA = (C2)⊗λ and HB,HC
are arbitrary. It then computes ρBC := Φ(|As,s′⟩⟨As,s′ |⊗|iO(A+ s), iO(A⊥ + s′)⟩⟨iO(A+ s), iO(A⊥ + s′)|).
It sends registers B to A1 and C to A2, respectively.

3. Question. The challenger sends the description of A, in the form of a basis for it, to both A1
and A2.

4. Answer. A1 returns s1 ∈ Fn2 and A2 returns s2 ∈ Fn2 .

The adversary (A0,A1,A2) wins if and only if s1 ∈ A+s and s2 ∈ A⊥+s′. Let CosetMonogamy((A0,A1,A2), λ)
be a random variable which takes the value 1 if the game above is won by adversary (A0,A1,A2),
and takes the value 0 otherwise.

Theorem 10 ([CLLZ21, Theorem 4.18]). Assuming the existence of post-quantum indistin-
guishability obfuscation and one-way functions, then there exists a negligible function negl(·), for
any QPT adversary (A0,A1,A2),

Pr [ CosetMonogamy((A0,A1,A2), λ) ] ≤ negl(λ).

A.9 Copy-Protection

In the following, we assume that F is such that each function f in the family has the same domain
X and the same codomain Y and has a classical description df (polynomial in λ) that allows for an
efficient computation of f . We define below copy-protection schemes similarly as in [AKL+22].

Definition 25 (Copy-Protection Scheme of a Family F). A copy-protection scheme is a
tuple of algorithms ⟨Protect,Eval⟩ with the following properties:

• ρf ← Protect(1λ, df ). On input the description df of a function f ∈ F , the quantum protection
algorithm outputs a quantum state ρf .
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• y ← Eval(1λ, ρ, x). On input a quantum state ρ and an input x ∈ X , the quantum evaluation
algorithm outputs an image y ∈ Y.

We ask a copy-protection scheme to have correctness and anti-piracy security. We define these
two notions below.

Definition 26 (Correctness of a Copy-Protection Scheme). A copy-protection scheme has
correctness if the quantum protection of a function f computes f on every x with overwhelming
probability.

∀f ∈ F , ∀x ∈ X , Pr
[
Eval(1λ, ρf , x) = f(x) : ρf ← Protect(1λ, df )

]
Definition 27 (Piracy Game for Copy-Protection). We define below a piracy game for copy-
protection, parameterized by a copy-protection scheme CP = ⟨Protect,Eval⟩, a security parameter
λ, a function distribution Df and a family of distribution X = {Xf}f∈F . This game is between a
challenger and an adversary represented by three algorithms (A0,A1,A2).

• Setup phase: The challenger samples f ← F , then sends ρf ← Protect(1λ, df ) to A0.

• Splitting phase: A0 prepares a bipartite quantum state σ12, then sends σ1 to A1 and σ2 to A2.

• Challenge phase: The challenger samples (x1, x2)← Xf , then sends x1 to A1 and x2 to A2.

• Answer phase: A1 returns y1 and A2 returns y2.

For i ∈ {1, 2}, we say that Ai answers correctly if yi = f(xi). A0,A1,A2 win the game if both A1
and A2 answer correctly.

We denote the random variable that indicates whether an adversary (A0,A1,A2) wins the game
or not as CP-AP⟨Protect,Eval⟩

Df ,X (1λ, (A0,A1,A2)).

Trivial Adversary. As noted in [CMP20] and [AKL+22], an adversary can always win the game
with a trivial probability (that we define formally in the next paragraph) by applying the following
strategy: A0 just forwards the quantum protection state to A1 or A2 and nothing to the other one.
The one who receives the state can answer the challenge with probability close to 1 using the Eval
algorithm, and the other one returns the optimal answer given their challenge.

Thus, given a family F , a function distribution Df and a family of challenge distribution
X = {Xf}f∈F , we define the trivial probability of winning the piracy game as

ptrivialDf ,{Xf}f∈F
:= max

i∈{1,2}

[
E

df∈Df

(
max
y∈Y

Pr[y | xi]
)]

Definition 28 (δ-Anti-Piracy Security). A copy-protection scheme ⟨Protect,Eval⟩ has δ-anti-
piracy security with respect to the function distribution Df and the family of challenge distribution
X = {Xf}f∈F if no QPT adversary A0,A1,A2 can win the anti-piracy game parametrized by the
function distribution Df and the family of challenge distribution X with probability significantly
greater than δ.

More precisely, for any QPT adversary (A0,A1,A2)

Pr
[
CP-AP⟨Protect,Eval⟩

Df ,X (1λ, (A0,A1,A2)) = 1
]
≤ δ + negl(λ).
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Definition 29 (Anti-Piracy Security). Whenever a single-decryptor has δ-anti-piracy security
with respect to a function distribution Df and a family of challenge distribution X = {Xf}f∈F with
δ = ptrivialDf ,X , we simply write that it has anti-piracy security.

Remark 2. We can define the notions of semi-quantum copy-protection schemes, correctness and
anti-piracy security in a similar way by just replacing the Protect algorithm by an interactive Protect
protocol in Definition 25, Definition 26 and Definition 27.

Remark 3. For ease of notations, we will use f and df indifferently, and we will not write the
dependance on λ when clear from the context.

B Proof of Correctness and Soundness of our Semi-Quantum Copy-Protection
Scheme

B.1 Proof of Correctness

Proof of Proposition 1. The proof of correctness includes three steps: (1) If the prover ran honestly
then its output after the homomorphic evaluation step has negligible trace distance to (QOTP
encrypted of) BB84 states and coset states; (2) The self-test protocol passes (that is, the protocol does
not terminate at this step) with probability negligibly close to 1; (3) In the last step of coset-state
generation, after discarding all BB84 states, the output of the prover at the end of Protocol 5 has
negligible trace distance to the state described in Equation (2).

We describe the honest strategy. By the statistical correctness of the homomorphic encryption,
at the end of step 5 of Protocol 5, the i-th quantum state that an honest prover holds in its quantum-
evaluated registers has negligible trace distance to either ⊗n

j=1 |(−1)βi,j ⟩ (if the corresponding
instance is a n-qubit BB84 state) or |Si,αi,βi

⟩ (if the corresponding instance is a coset state). That
is, this negligible distance holds with probability 1 over the previous messages of the protocol.

For each coset-state instance i, we claim that the probability for such honest prover to have
αi ∈ Si is negligible. It follows from the fact that if αi ∈ Si, we have that |Si,αi,βi

⟩ = |Si,0,βi
⟩. By just

measuring this state in the computational basis, we get a non-zero vector s ∈ Si with overwhelming
probability, even without knowing Si or the QFHE secret key. This violates the semantic security of
the QFHE, because Si is a subspace of dimension n

2 chosen uniformly at random, for any vector
s ∈ Fn2 , the probability that s ∈ Si is negligible. It means that Protocol 5 terminates at step 6 with
negligible probability.

Next, we show that an honest prover succeeds in the self-test rounds of Protocol 5 with probability
negligibly close to 1. An honest prover behaves the same way in each execution of Protocol 1
and Protocol 2. Hence, to show that an honest prover succeeds in Protocol 3 with probability
negligibly close to 1, it suffices to describe honest strategies for Protocol 1 and Protocol 2 that
succeed with probability negligibly close to 1. We note that Protocol 4 is N sequential repetition
of Protocol 3, and thus the completeness of Protocol 4 is also negligibly close to 1.

Claim 1. There exists a QPT prover that is accepted in Protocol 1 with probability negligibly close
to 1.

Proof. In Protocol 1, the prover receives n keys k1, . . . , kn and returns answers for each key kj
individually. Since the verifier’s checks are independent for each j, we only need to describe an honest
procedure for one key kj that succeeds in the verifier’s checks for that j with probability negligibly
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close to 1. The honest strategy for a single key kj is adapted from the one in [GV19, MV21, GMP22].
We spell out the details below.

From now on, for simplicity, we drop the subscript i and understand that we are considering the
i-th instance. First, note that at the beginning of Protocol 1, for a given key kj ∈ Kθ, the prover is
having the state |(−)βj ⟩ = Zβj |(−)0⟩ in his quantum registers. The prover then adjoins a uniform
superposition over all x ∈ X , evaluate fkj

in superposition to obtain the following state:

1√
2 |X |

∑
b∈{0,1}

∑
x∈X ,y∈Y

√
fkj ,b(x)(y)Zβj |b⟩ |x⟩ |y⟩

Preparing this state can be efficiently done (up to negligible error) using the Samp procedure from
the definition of ENTCF families ([BCM+18, Definition 3.1] and [Mah18b, Definition 4.2]). The
prover then measures the “image register” (i.e., the register that stores y) to obtain an image yj ∈ Y
and sends this back to the verifier. The post-measurement state for each j is|b̂(kj , yj)⟩ |x̂(kj , yj)⟩ if kj ∈ K0,

1√
2

(
|0⟩ |x̂0(kj , yj)⟩+ (−1)βj |1⟩ |x̂1(kj , yj)⟩

)
if kj ∈ K1.

(13)

If the verifier selects a “pre-image round”, the prover measures both registers in the computational
basis and returns the result. From the states in Equation (13) it is clear that the prover succeeds
with probability negligibly close to 1 in the pre-image round.

If the verifier selects a “Hadamard round”, the prover measures the “x-register” in the Hadamard
basis to obtain dj and returns this to the verifier. We introduce the shorthand bj := b̂(kj , yj) and
uj := û(kj , yj , dj). At this point, the prover’s state for each j is (up to a global phase):{

|bj⟩ if kj ∈ K0,

|(−)uj⊕βj ⟩ if kj ∈ K1.
(14)

The prover now receives a question q = θ and measures the remaining qubit in the computational
basis if q = 0 and in the Hadamard basis if q = 1. Then it is clear from the expression for the
prover’s remaining qubit in Equation (14) that the prover will pass the verifier’s check.

Claim 2. There exists a QPT prover that is accepted in Protocol 2 with probability negligibly close
to 1.

Proof. At the beginning of each instance of Protocol 2, the prover is having the state |Aα,β⟩ with
α, β ∈ {0, 1}n. The honest strategy for the prover in Protocol 2 is similar to the honest strategy
for Protocol 1 described in Claim 1: the prover uses the ENTCF family to commits to each qubit
of the state |Aα,β⟩ using the corresponding function key. A formal description of the commitment
process is given in [Mah18b, Section 5.1]. In the last round, if q = θ = 0, the prover measures each
qubit in the computational basis and in the Hadamard basis if q = θ = 1. It equivalents to either
measure the state |Aα,β⟩ in the computational basis if q = 0 and in the Hadamard basis if q = 1.

Since the prover applies the same strategy for each qubit in the state, here we describe the state
commitment process for the j-th qubit of the state |Aα,β⟩. For a given key kj ∈ Kθ, we can write
the prover’s coset state as ∑

bj∈{0,1}
γbj
|bj⟩ |ψbj

⟩

46



The prover then adjoins a uniform superposition over all x ∈ X , evaluate fkj
in superposition to

obtain
1√
|X |

∑
bj∈{0,1}

∑
x∈X ,y∈Y

γbj

√
fkj ,bj

(x)(y) |bj⟩ |ψbj
⟩ |x⟩ |y⟩ (15)

The prover then measures the “y-register” to obtain an image yj ∈ Y and sends this back to the
verifier. The post-measurement state for each j is{

|b̂(kj , yj)⟩ |ψbj
⟩ |x̂(kj , yj)⟩ if kj ∈ K0,∑

bj∈{0,1} γbj
|bj⟩ |ψbj

⟩ |x̂bj
(kj , yj)⟩ if kj ∈ K1.

(16)

We note that the verifier always sends “Hadamard round” as the round type in Protocol 2. The
prover measures the “x-register” in the Hadamard basis to obtain dj and returns this to the verifier.
The prover now receives a question q = θ and measures the j-th qubit in the computational basis if
q = 0 and in the Hadamard basis if q = 1. Recall that we denote uj := û(kj , yj , dj). At this point,
the prover’s state (before the measurement) is (up to a global phase):{

|bj⟩ |ψbj
⟩ if kj ∈ K0,

(Xuj H⊗ I) |bj⟩ |ψbj
⟩ if kj ∈ K1.

(17)

The prover measures the j-th qubit and returns a bit vj to the verifier. It is clear from Equation (17)
that: (1) if the coset state is measured in the computational basis (corresponding to the case q = 0),
the verifier obtains a vector v ∈ A+ α; or (2) the coset state is measured in the Hadamard basis
(corresponding to the case q = 1), the verifier obtains a vector s ∈ A⊥ + β. This concludes the proof
of the claim.

Having described the honest behavior for the self-test step, we finish the proof of correctness.

B.2 Proof of Soundness: Proof of Proposition 2

The rigidity argument we establish in this section for Protocol 3 will be based on the n-fold parallel
rigidity proof from [GMP22]. We will make frequent use of some technical lemmas from the proof of
that paper. We note that in our actual proof, we also need to slightly modify the proof outlined
above to address for the fact that our self-testing protocol is composed with a state preparation
round done by homomorphic encryption.

B.2.1 Devices

We model the actions of a general prover by a “device”. This formalizes all possible actions that
can be taken by the prover to compute his answers to the verifier in Protocol 1 and Protocol 2. By
Naimark’s theorem, up to adding dimensions to the prover’s Hilbert space, we can assume without
loss of generality that the prover only performs projective measurements (instead of more general
POVMs).

Definition 30 (Devices [GMP22]). A device D := (S,Π,M, P ) is specified by the following:
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1. A set S = {ψ(θ⃗)}
θ⃗∈{0,1}n of states ψ(θ⃗) ∈ D(HD ⊗HY ), where dim(HY ) = |Y|n and the states

are classical on HY :
ψ(θ⃗) =

∑
y⃗∈Yn

ψ
(θ⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y . (18)

In the context of Protocol 1 and Protocol 2, ψ(θ⃗) is the prover’s state after returning y⃗ for the case
where the verifier makes basis choices θ⃗.12 Each ψ(θ⃗) also implicitly depends on the specific keys
chosen by the verifier (not just the basis choice θ⃗); all the statements we make hold on average
over key choices (for a fixed basis choice θ⃗). Furthermore, since Protocol 1 and Protocol 2 are
actually used as sub-protocols in a bigger protocol (Protocol 5), ψ(θ⃗) also depends on all messages
exchanged (before the executions of these sub-protocols) in Protocol 5; for clarity we suppress this
dependence from the notation, as we will see later these dependencies do not affect the rigidity
proofs of these sub-protocols.

2. In the case of Protocol 1, a projective measurement Π on HD ⊗HY :

Π =

Π(⃗b,x⃗) =
∑
y⃗

Π(⃗b,x⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y


b⃗∈{0,1}n; x⃗∈Xn

. (19)

This is the measurement used by the prover to compute his answer (⃗b, x⃗) in the pre-image
challenge.

3. In the case of Protocol 2, Π is the identity operator I on HD⊗HY . This is because in Protocol 2,
there is no pre-image challenge.

4. A projective measurement M on HD ⊗HY :

M =

M (d⃗) =
∑
y⃗

M
(d⃗)
y⃗ ⊗ |y⃗⟩⟨y⃗|Y


d⃗∈{0,1}w×n

. (20)

This is the measurement used by the prover to compute his answer d⃗ in the Hadamard challenge.
We use an additional Hilbert spaces HR to record the outcomes of measuring M and write the
post-measurement state after applying M to ψ(θ⃗) as

σ(θ⃗) :=
∑
y⃗,d⃗

M
(d⃗)
y⃗ ψ

(θ⃗)
y⃗ M

(d⃗)
y⃗ ⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R . (21)

5. A set P = {Pq}, where for each q ∈ {0, 1}, Pq is a projective measurement on HD ⊗HY ⊗HR:

Pq =

P (v⃗)
q =

∑
y⃗,d⃗

P
(v⃗)
q,y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R


v⃗∈{0,1}n

. (22)

12 In Protocol 1, the only two basis choices are θ⃗ = 0⃗ and θ⃗ = 1⃗. However, ψ(θ⃗) is still well-defined as the state that
the prover (who is defined in terms of the quantum circuits he runs on a given input) would prepare if given keys
of basis choice θ⃗, even though this never occurs in Protocol 1. This is different from Protocol 2, as it is crucial
for the verifier’s procedure in Protocol 2 to use only 0⃗ or 1⃗ as the basis choice. Otherwise the protocol would be
“undefined”.
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In the context of Protocol 1 and Protocol 2, given question q, the prover will measure {P (v⃗)
q }

and return the outcome v⃗ as his answer.

Definition 31 (Efficient devices). A device is called efficient if the states ψ(θ⃗) can be pre-
pared efficiently and the measurements Π, M , and Pq can be performed efficiently (in the sense
of Definition 8).

B.2.2 Success Probabilities of a Device
During the self-testing protocol (Protocol 3), the verifier applies certain checks to the answers
given by the prover. If the prover fails these checks, the verifier sets a flag to flagPre or flagHad
then aborts. Here, we define the probabilities that the prover passes these checks and relate these
probabilities in both protocols Protocol 1 and Protocol 2.

Definition 32 (Success probabilities). For any device D := (S,Π,M, P ) we define γP (Dbb84)
as the device’s failure probability in a pre-image round, γH(Dbb84) as the failure probability in a
Hadamard round in Protocol 1 and γH(Dcoset) as the failure probability in a Hadamard round
in Protocol 2:

γP (Dbb84) := Pr [ flagbb84 = flagPre | round type = pre-image round ] , (23)

γH(Dbb84) := Pr [ flagbb84 = flagHad | round type = Hadamard round ] , (24)

γH(Dcoset) := Pr [ flagcoset = flagHad ] . (25)

Next, we give the definition of a perfect prover in Protocol 1. Informally, a perfect prover is
accepted by the verifier in a pre-image round with probability negligibly close to 1.

Definition 33 (Perfect device in Protocol 1). We call a device D perfect if γP (Dbb84) = negl(λ).

The following lemma says that for any device in Protocol 1 that has a non-negligible failure
probability in the pre-image test, there is another perfect device that is “close” to the original one
in the sense that its measurements are the same as for the original device and its states only differ
by O(γP (D)). By using this lemma, for the rest of the rigidity proof, it suffices to only consider
perfect devices: for any arbitrary device, we can first make a reduction to the corresponding perfect
device at the cost of incurring an approximation error of O(γP (D)), and then apply our soundness
proof to the perfect device.
Lemma 7 ([GMP22, Lemma 4.9]). Let D = (S,Π,M, P ) be an efficient device in Protocol 1 with
γP (Dbb84) < 1, where S =

{
ψ(θ⃗)

}
. Then there exists an efficient perfect device D′ = (S′,Π,M, P ),

which uses the same measurements Π,M, P and whose states S′ =
{
ψ′(θ⃗)

}
satisfy for any θ⃗ ∈ {0, 1}n:

ψ′(θ⃗) ≈γP (Dbb84) ψ
(θ⃗) . (26)

Proof. The proof of this lemma uses essentially the same technique to that of [MV21, Lemma 4.13],
which in turn based on [Mah18b, Claim 7.2]. We give a sketch of the proof for correctness. A
construction of D′ is as follows. D′ first prepares the states ψ(θ⃗) as D does, then applies the efficient
unitary UΠ associated with the measurement Π:

|0⟩⟨0|R ⊗ ψ(θ⃗) UΠ7−−→ |⃗b, x⃗⟩⟨⃗b, x⃗|R ⊗Π(⃗b,x⃗)ψ(θ⃗)Π(⃗b,x⃗). (27)
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Now D′ coherently evaluates the (efficient) Chk-function on the Y -register of Π(⃗b,x⃗)ψ(θ⃗)Π(⃗b,x⃗) and
the new register containing (bi, xi) for all i ∈ J1, nK. If Chk succeeds, D′ applies U †Π to the state,
traces out the ancillary register R, and uses this as ψ′(θ⃗). Otherwise, D′ repeats the process up
to polynomially (in the security parameter) many times, and aborts if the Chk procedure never
succeeds. Since γP (Dbb84) is defined as the maximum failure probability of the pre-image test,
and the Chk procedure fails if the pre-image check fails on any qubit, the probability of the Chk
procedure failing is at most n · γP (Dbb84) = O(γP (Dbb84)) by a union bound.

If 1−γP (Dbb84) is negligible, the trace distance bound between ψ(θ⃗) and ψ′(θ⃗) is trivially satisfied.
If 1−γP (Dbb84) is non-negligible, the probability that Chk fails polynomially many times is negligible.
Furthermore, by definition of the ENTCF family, the Chk procedure requires only the function key
and not the trapdoor, which implies that it can be computed efficiently by the prover D′. It means
that D′ is efficient and perfect.

Fix θ⃗. By Definition 11, we need to show
∥∥∥ψ′(θ⃗) − ψ(θ⃗)

∥∥∥
1
≈γP (Dbb84)1/2 0. Since the probability

of the Chk to succeed is at least 1 − O(γP (Dbb84)), by the gentle measurement lemma ([Wil11]),
the post-measurement state after Chk has succeeded is O(γP (Dbb84)1/2)-close in trace distance to
UΠ(|0⟩⟨0|R ⊗ ψ(θ⃗))U †Π. Because the trace distance is unitarily invariant, this implies that the state
ψ′(θ⃗) is also O(γP (Dbb84)1/2)-close in trace distance to ψ(θ⃗).

B.2.3 Rigidity Proof of Protocol 1
The rigidity proof of Protocol 1 follows identically from that of [GMP22]. In this section, we recall
definitions and related technical lemmas from [GMP22] that are needed for our proof later. The main
difference lies in the last verification procedure, in which our verification procedure also involves the
Pauli keys from the QFHE. However, one can easily inspect their proof and see that this difference
does not change most part of the proof. This essentially follows from the fact that the one-time
pads (and generally, the homomorphic enryption) are independent of all the messages and verifier’s
secrets in the execution of Protocol 1, it only is used in the verification of the verifier as its secret
input. When the difference appears, we will re-prove the lemma with respect to our protocol.
Definition 34 (Observables). For a device D := (S,Π,M, P ) with projective measurements as
in Definition 30 and β⃗ ∈ {0, 1}n, we define the following binary observables:

Zi =
∑
v⃗

(−1)viP
(v⃗)
0 , (28)

Xi =
∑
v⃗

(−1)viP
(v⃗)
1 , (29)

X̃i =
∑
v⃗,y⃗,d⃗

(−1)βi⊕vi⊕û(ki,yi,di)P
(v⃗)
1,y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗|Y R . (30)

We further use the following notation for products of observables: for a⃗ ∈ {0, 1}n, we define

Z (⃗a) := Za1
1 . . . Zan

n =
∑
v⃗

(−1)a⃗·v⃗P (v⃗)
0 , (31)

and likewise for X (⃗a) and X̃ (⃗a). It is easy to see that

X̃ (⃗a)
y⃗,d⃗

= (−1)a⃗·(β⃗⊕û(k⃗,y⃗,d⃗))X (⃗a)
y⃗,d⃗
. (32)
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Remark 4. X̃i is not an observable that an efficient prover can implement because it depends on
û(k, y, d), which requires the trapdoor information to be computed efficiently, and the Pauli key β,
which the prover only has an encryption of it. Intuitively, while Xi describes the prover’s answer,
X̃i describes whether that answer is accepted by the verifier.

Definition 35 (Partial post-measurement states). For k ∈ K0∪K1, v ∈ {0, 1} and β ∈ {0, 1}
define the set Vβ,k,v ⊆ Y × {0, 1}w by the following condition:

(y, d) ∈ Vβ,k,v iff
{
b̂(k, y) = v if k ∈ K0 ,

û(k, y, d) = v ⊕ β if k ∈ K1 .
(33)

Then for β⃗, k⃗, θ⃗, v⃗ we define

σ(β⃗,θ⃗,v⃗) =
∑

y1,d1∈Vβ1,k1,v1

· · ·
∑

yn,dn∈Vβn,kn,vn

σ
(θ⃗)
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (34)

Further for a⃗ ∈ {0, 1}n we define

σ(β⃗,θ⃗,v,⃗a) :=
∑

v⃗: v⃗·⃗a=v
σ(β⃗,θ⃗,v⃗) . (35)

Remark 5. In the following, once β⃗ is fixed, we can drop β⃗ from these notations and simply write
σ(θ⃗,v⃗) and σ(θ⃗,v,⃗a). The reason is that as we explained above, the involvement of β⃗ is primarily a
technicality needed because of our protocol construction, but does not affect the modular proofs we
present here. Another way to see it is to consider β⃗ as a part of the trapdoor information t⃗. Then
we can write û′(k, y, d) := û(k, y, d)⊕ β and define (y, d) ∈ Vk,v if û′(k, y, d) = v when k ∈ K1. For
any statement involving these states, we understand that there is some β⃗ known by the verifier and
these states are defined with respect to this β⃗.

Intuitively, when θ⃗ = 0⃗, then for any a⃗ ∈ {0, 1}n, σ(⃗0,v,⃗a) is that part of the state σ(⃗0) for which
the honest device would receive outcome v when measuring the observable Z (⃗a). The following
lemma shows what outcomes a successful device must produce when measuring the observables
from Definition 34 on the partial post-measurement states from Definition 35.

Lemma 8 ([GMP22, Corollary 4.18]). Consider an efficient device D = (S,Π,M, P ) and a
bit v ∈ {0, 1}.

1. For any θ⃗, a⃗ ∈ {0, 1}n such that θi = 0 if ai = 1, then:

Z (⃗a) ≈
γH(Dbb84),σ(θ⃗,v,⃗a) (−1)vI . (36)

2. For any θ⃗, a⃗ ∈ {0, 1}n such that θi = 1 if ai = 1, then:

X (⃗a) ≈
γH(Dbb84),σ(θ⃗,v,⃗a) (−1)vI . (37)

Next, we define isometries Ṽ , V which can be shown to map the prover’s observables to the
corresponding Pauli observables.
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Definition 36 (Rounding isometries [GMP22]). For a device D with associated Hilbert space
HD and y⃗ ∈ Y×n, d ∈ {0, 1}w×n, we define the isometry Ṽy,d : HD → HD ⊗ HA ⊗ HQ by the
following action on an arbitrary state |φ⟩D:

Ṽ
y⃗,d⃗
|φ⟩D := E

a⃗,⃗b∈{0,1}n

((
X̃ (⃗a)

y⃗,d⃗
Z (⃗b)

y⃗,d⃗

)
D
⊗

(
σX (⃗a)σZ (⃗b)

)
A

)
|φ⟩D ⊗

(
|Φ+⟩⊗n

)
AQ

, (38)

where |Φ+⟩ = |00⟩+|11⟩√
2 denotes an EPR pair, and

(
|Φ+⟩⊗n

)
AQ

is distributed between A and Q such
that every EPR pair has one qubit in either system. We can combine the different Vy,d into one
isometry

Ṽ :=
∑
y⃗,d⃗

Ṽ
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| : HD ⊗HY ⊗HR → HD ⊗HY ⊗HR ⊗HA ⊗HQ . (39)

We similarly define

V
y⃗,d⃗
|φ⟩D := E

a⃗,⃗b∈{0,1}n

((
X (⃗a)

y⃗,d⃗
Z (⃗b)

y⃗,d⃗

)
D
⊗

(
σX (⃗a)σZ (⃗b)

)
A

)
|φ⟩D ⊗

(
|Φ+⟩⊗n

)
AQ

(40)

and

V :=
∑
y⃗,d⃗

V
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (41)

The following lemma relates Ṽ and V .

Lemma 9. For any keys k⃗ ∈ Kn1 and β⃗ ∈ {0, 1}n:

V
y⃗,d⃗

= σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q
Ṽ
y⃗,d⃗
. (42)

Proof. For any state |φ⟩D, we have:

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q
Ṽ
y⃗,d⃗
|φ⟩D

= E
a,b∈{0,1}n

(
X̃ (⃗a)

y⃗,d⃗
Z (⃗b)

y⃗,d⃗

)
D
|φ⟩D ⊗[(

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)

)
A
⊗ σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
Q

(
|Φ+⟩⊗n

)
AQ

]
Repeatedly using that (σZ)A |Φ+⟩AQ = (σZ)Q |Φ+⟩AQ:

= E
a,b∈{0,1}n

(
X̃ (⃗a)

y⃗,d⃗
Z (⃗b)

y⃗,d⃗

)
D
|φ⟩D ⊗[(

σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

))
A

(
|Φ+⟩⊗n

)
AQ

]

Since σZ
(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
σX (⃗a)σZ (⃗b)σZ

(
û(k⃗, y⃗, d⃗)⊕ β⃗

)
= (−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)σX (⃗a)σZ (⃗b):

= E
a,b∈{0,1}n

(
(−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)X̃ (⃗a)

y⃗,d⃗
Z (⃗b)

y⃗,d⃗

)
D
|φ⟩D ⊗

[(
σX (⃗a)σZ (⃗b)

)
A

(
|Φ+⟩⊗n

)
AQ

]
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Recalling from Definition 34 that (−1)a⃗·(û(k⃗,y⃗,d⃗)⊕β⃗)X̃ (⃗a)
y⃗,d⃗

= X (⃗a)
y⃗,d⃗

:

= E
a,b∈{0,1}n

(
X (⃗a)

y⃗,d⃗
Z (⃗b)

y⃗,d⃗

)
D
|φ⟩D ⊗

[(
σX (⃗a)σZ (⃗b)

)
A

(
|Φ+⟩⊗n

)
AQ

]
= V |φ⟩D .

We then show that the isometry Ṽ maps the observables X̃ (⃗a)Z (⃗b) to the corresponding Pauli
observables.

Lemma 10 ([GMP22, Lemma 4.28]). For an efficient perfect device D = (S,Π,M, P ) and any
a⃗, b⃗ ∈ {0, 1}n we have

Tr
[
Ṽ †

(
σX (⃗a)σZ (⃗b)

)†
Q
Ṽ X̃ (⃗a)DY RZ (⃗b)DY Rσ(⃗1)

DY R

]
≈n1/2γH(Dbb84)1/8 1 . (43)

By combining Lemma 9 and Lemma 10 we can show that the isometry V maps the observables
X (⃗a)Z (⃗b) to the corresponding Pauli observables.

Lemma 11 ([GMP22, Proposition 4.29]). For an efficient perfect device D = (S,Π,M, P )
and any a⃗, b⃗ ∈ {0, 1}n we have

V X (⃗a)Z (⃗b)V † ≈
n1/2γH(Dbb84)1/8,V σ(⃗1)V †

(
σX (⃗a)σZ (⃗b)

)
Q
⊗ IY RDA . (44)

B.2.4 Rigidity Proof of Protocol 2

Having established a characterization of the prover’s observables X (⃗a)Z (⃗b) in Protocol 1, we now
use this to characterize the prover’s behavior in Protocol 2.

Step 1: Modeling. First, we introduce the corresponding notion of post-measurement states for
an efficient device of Protocol 2. Note that the two protocols are identical from the prover’s point of
view when the round type is the Hadamard round, and the marginal observables from Definition 34
are defined for Hadamard round. Thus we can use the same notation of marginal observables
from Definition 34 (in particular, we only need the efficient observables X (⃗a) and Z (⃗b)) for an
efficient device in Protocol 2.

Definition 37. For k⃗ ∈ (K0 ∪ K1)n, v⃗ ∈ {0, 1}n and A ⊆ Fn2 , α⃗, β⃗ ∈ {0, 1}n define the set
V
A,α⃗,β⃗,⃗k,v⃗

⊆ Yn × {0, 1}w×n by the following condition:

(y⃗, d⃗) ∈ V
A,α⃗,β⃗,⃗k,v⃗

iff
{
b̂(k⃗, y⃗) = v⃗ ∈ A+ α⃗ if k⃗ ∈ Kn0 ,
û(k⃗, y⃗, d⃗)⊕ v⃗ ∈ A⊥ + β⃗ if k⃗ ∈ Kn1 .

(45)

Then for α⃗, β⃗, k⃗, θ⃗ ∈ {⃗0, 1⃗}, v⃗ we define

σ(A,α⃗,β⃗,θ⃗,v⃗) =
∑

y⃗,d⃗∈V
A,α⃗,β⃗,k⃗,v⃗

σ
(θ⃗)
y⃗,d⃗
⊗ |y⃗, d⃗⟩⟨y⃗, d⃗| . (46)

By the same argument as in Remark 5, we can write σ(θ⃗,v⃗) for simplicity.
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We note that different from Definition 35, we only consider two basis choices θ⃗ = 0⃗ or θ⃗ = 1⃗,
whereas the post-measurement states in Definition 35 can be defined with respect to any basis
choice. Similar to Lemma 8, we analyze what outcomes a successful device must produce when
measuring the observables from Definition 34 on the post-measurement states from Definition 37.

Lemma 12. For any efficient device D = (S,Π,M, P ), a coset state description (A,α, β):∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≈γH(Dcoset) 1 , (47)

∑
v⃗∈S1

Tr
[
X

(vi)
i σ(⃗1,v⃗)

]
≈γH(Dcoset) 1 , (48)

where S0 := A+ α and S1 := A⊥ + β − û(k⃗, y⃗, d⃗).

Proof. We first prove Equation (47). Since the case q = θ = 0 occurs with probability 1/2
in Protocol 2, the device’s failure probability in this case can be at most 2γH(Dcoset). Furthermore,
since the device only succeeds if vi = b̂(ki, yi) and v⃗ ∈ A + α for all i ∈ J1, nK in the protocol, it
means that the device succeeds with probability at least 1− 2γH(D). Now comparing the definition
of σ(⃗0,v⃗) with the verifier’s checks in the protocol, this means that for all i ∈ J1, nK:∑

v∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≥ 1− 2γH(D) .

For the inequality in the other direction, we note that since Z(vi)
i is a projector, we immediately

have ∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
≤

∑
v⃗∈S0

Tr
[
σ(⃗0,v⃗)

]
= Tr

[
σ(⃗0)

]
= 1,

finishing the proof of Equation (47).
The proof of Equation (48) is completely analogous, combining with the fact that if v⃗+û(k⃗, y⃗, d⃗) ∈

A⊥ + β iff v⃗ ∈ A⊥ + β − û(k⃗, y⃗, d⃗).

Step 2: Relating Protocol 1 and Protocol 2. We relate the prover’s operators and states
in Protocol 1 and Protocol 2 by the following lemmas.

Lemma 13. For any efficient devices D,D′ with the notation given in Definition 30. Assume that
D is a device of Protocol 1 with corresponding states (ψ(θ⃗), σ(θ⃗)) and D′ is a device of Protocol 2
with corresponding states (ψ′(θ⃗′), σ′(θ⃗

′)). Then

ψ(θ⃗) c≈0 ψ
′(θ⃗′) , (49)

and
σ(θ⃗) c≈0 σ

(θ⃗′) . (50)

Proof. At the beginning of each protocol’s execution: in Protocol 1, the device’s state is (encrypted)
BB84 states, while in Protocol 2, the device’s state is (encrypted) coset states. Furthermore, note
that executing Protocol 1 or Protocol 2 does not require the secret key of the QFHE encryption
scheme. Equation (49) then follows directly from semantic security of the QFHE encryption scheme.
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In Protocol 2, the verifier never sends a “pre-image round” challenge. In Protocol 1, the round
type is chosen uniformly at random, so with probability 1

2 , the round type is “Hadamard round”. In
this case, the execution of two protocols are identical from the prover’s point of view. Since the
prover is efficient, Equation (50) also follows.

We then obtain the following relation between the success probabilities of devices in Protocol 1
and Protocol 2.

Corollary 3. For any efficient device D := (S,Π,M, P ):

γH(Dbb84) c≈0 2γH(Dcoset). (51)

Remark 6. Due to the relation in Equation (51) and the definition of the “≈”-notation (Definition 11),
from now on, we drop the subscript and simply write γH(D) when it is clear from the context.

Combining Corollary 3 and Lemma 13, using the same isometry V defined in Definition 36,
we can “lift” the approximate-equality relations described in Lemma 11 for an efficient device
in Protocol 1 to an efficient device in Protocol 2.

Lemma 14. For an efficient perfect device D = (S,Π,M, P ) in Protocol 2 and any a⃗, b⃗ ∈ {0, 1}n
we have

V X (⃗a)Z (⃗b)V † ≈
n1/8γH(D)1/32,V σ(⃗1)V †

(
σX (⃗a)σZ (⃗b)

)
Q
⊗ IY RDA . (52)

Proof. The lemma follows directly from the lifting lemma (Item 6 of Lemma 3) and the fact that
the isometry V and the operators X,Z are efficient. Using the notation from Lemma 3, we have
δ = 0, ε = n1/2γH(D)1/8, the isometry is V , the observable A is X (⃗a)Z (⃗b), the observable B is
σX (⃗a)σz (⃗b) ⊗ I. The two states are V σ′(⃗1)V † of a device in Protocol 1 and V σ(⃗1)V † of a device
in Protocol 2.

Step 3: Rigidity. We first prove the following technical lemma.

Lemma 15. For an efficient device D = (S,Π,M, P ), a coset state description (A,α, β):

∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗ (σ(vi)
Z,i )Q ≈ε,∑

v⃗′∈S0
|v⃗′⟩⟨v⃗′|⊗V σ0⃗,v⃗′V † I , (53)

∑
v⃗∈S1

|v⃗⟩⟨v⃗| ⊗ (σ(vi)
X,i )Q ≈ε,∑

v⃗′∈S1
|v⃗′⟩⟨v⃗′|⊗V σ1⃗,v⃗′V † I , (54)

where S0 = A+ α, S1 = A⊥ + β − û(k⃗, y⃗, d⃗) and the approximation factor ε will be clarified later in
the proof.
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Proof. We first prove the first statement. It is easy to check that ∑
v⃗∈V |v⃗⟩⟨v⃗|⊗

(
σ

(vi)
Z,i

)
Q

is a projector,
so we can expand the definition of the state-dependent distance and compute:

Tr


 ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q
− I

† ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q
− I

 ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= Tr

I − ∑
v⃗∈S0

|v⃗⟩⟨v⃗| ⊗
(
σ

(vi)
Z,i

)
Q

 ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= 1−

∑
v⃗∈S0

Tr

(
|v⃗⟩⟨v⃗| ⊗

(
σ

(vi)
Z,i

)
Q

) ∑
v⃗′∈S0

|v⃗′⟩⟨v⃗′| ⊗ V σ(⃗0,v⃗′)V †


= 1−

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,v⃗)V †

]
,

To show the first part of the lemma, we need to show that

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,v⃗)V †

]
≈ε 1 . (55)

For this, recall from Lemma 14 that we have

V ZiV
† ≈

n1/8γH(D)1/32,V σ(⃗1)V † (σZ,i)Q ⊗ IY RDA . (56)

For shorthand, write γ := n1/8γH(D)1/32. Since V and Zi are efficient, by the lifting lemma
(Lemma 3) and the fact that σ(⃗0) c≈0 σ

(⃗1), this implies that:

V ZiV
† ≈

γ1/4,V σ(⃗0)V † (σZ,i)Q ⊗ IY RDA . (57)

Using Lemma 4 and Lemma 5, we get:∑
v⃗∈S0

V Z
(vi)
i V † ≈

γ1/4,
∑

v⃗∈S0
V σ(⃗0,v⃗)V †

∑
v⃗∈S0

(
σ

(vi)
Z,i

)
Q
⊗ IY RDA . (58)

Using the replacement lemma (Lemma 1), we obtain

∑
v⃗∈S0

Tr
[(
σ

(vi)
Z,i

)
Q
V σ(⃗0,vi ,⃗1i)V †

]
≈γ1/8

∑
v⃗∈S0

Tr
[
V Z

(vi)
i V †V σ(⃗0,v⃗)V †

]
(59)

=
∑
v⃗∈S0

Tr
[
Z

(vi)
i σ(⃗0,v⃗)

]
(60)

≈γH(D) 1 , (61)

where the last line follows from Equation (47). Set ε := γ1/8, this finishes the proof of the first
statement.

For the second statement, we can perform the same calculation, but use Equation (48).
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Lemma 16. For an efficient perfect device D = (S,Π,M, P ), a coset state description (A,α, β)
and θ⃗ ∈ {⃗0, 1⃗}, there exists a set of subnormalized states {ρ(θ⃗,v⃗)

i }v⃗∈Si
where Si for i ∈ {0, 1} are

defined as in Lemma 15 such that

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V † ≈2nε
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗ ρ(θ⃗,v⃗)

i , (62)

where i = 0 if θ⃗ = 0⃗ and i = 1 if θ⃗ = 1⃗.

Proof. We define the shorthand

M(θ) =
{
Z if θ = 0 ,
X if θ = 1 .

Applying Lemma 15 and Lemma 2 to get∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

≈ε

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q


We repeat this for the remaining indices j = 2, . . . , n. Since there are in total n steps, the total
approximation error will be nε. We then have∑

v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

≈nε

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 . . .

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(vn)
M(θn),n

)
Q

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗ V σ(θ⃗,v⃗)V †

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(v1)
M(θ1),1

)
Q

 . . .

 ∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
σ

(vn)
M(θn),n

)
Q


=

∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗

∏
j

σ
(vj)
M(θj),j


Q

V σ(θ⃗,v⃗)V †

∏
j

σ
(vj)
M(θj),j


Q

.

Now noting that ∏
j σ

(vj)
M(θj),j = (H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i, we obtain

=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗

(
⟨v| (H⊗n)i

)
Q
V σ(θ⃗,v⃗)V †

(
(H⊗n)i |v⟩

)
Q

=
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q

⊗ TrQ
[(

(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i
)
Q
V σ(θ⃗,v⃗)V †

(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q

]
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Analogously to how we added the factors ∏
j σ

(vj)
M(θj),j in a previous step, we can now replace the

factors
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q inside the partial trace by identity, resulting in

≈2nε
∑
v⃗∈Si

|v⃗⟩⟨v⃗| ⊗
(
(H⊗n)i|v⃗⟩⟨v⃗|(H⊗n)i

)
Q
⊗ TrQ

[
V σ(θ⃗,v⃗)V †

]
.

We then obtain the desired statement by defining

ρ
(θ⃗,v⃗)
i := TrQ

[
V σ(θ⃗,v⃗)V †

]
, (63)

with i = 0 if θ⃗ = 0⃗ and i = 1 if θ⃗ = 1⃗.

What Lemma 16 says is that up to an isometry, with inverse polynomial error, the device’s
state must be (information-theoretically) close to a mixed state of vectors in Si, tensored with an
auxiliary state ρ(θ⃗,v⃗)

i . We note that it is not hard to show that ρ(⃗0,v⃗)
0

c≈0 ρ
(⃗1,v⃗)
1 . (Though it is not

necessary for our soundness proof.)
Furthermore, from the statement of Lemma 16, for a fixed efficient device D, if we run Protocol 2

“coherently” in superposition, then

(i) when θ⃗ = 0⃗, the device’s state must be in superposition of all vectors in S0, that is |A+ α⟩,

(ii) when θ⃗ = 0⃗, the device’s state must be in superposition of all vectors in S1. By applying a
correction (XOR-ing the register Q with û(k⃗, y⃗, d⃗)), the state would be |A⊥ + β⟩.

Thus, with the verifier in Protocol 2, we obtain efficient projective measurements to characterize
the prover’s initial state. Formally, let O0 be the following process: run Protocol 2 in superposition
(without measuring any intermediate messages such as y, d, v) with the basis choice θ⃗ = 1⃗ and check
if the register Q at the end of the protocol is |A+ α⟩. O1 is defined analogously for θ⃗ = 1⃗, and it
applies a correction by XORing the register Q with û(k⃗, y⃗, d⃗) and check if the register Q at the end
is |A⊥ + β⟩. We obtain the main technical lemma.

Lemma 17. For any efficient device D, the initial state of the device ψ must be close to (up to
some inverse polynomial error) |Aα,β⟩ ⊗ ρ:

ψ ≈4nε |Aα,β⟩ ⊗ ρ. (64)

Proof. Let U0 and U1 be the efficient unitaries corresponding to operators O0 and O1 defined above.
Fix a device D. We first apply U0ψ and record the output to an ancilla register. If the output is 1,
apply the inverse U †0 to obtain ψ′. Finally apply U1ψ

′. If the output is 1, by the definition of Ui
(and Oi), the lemma follows. Note that for each application of Ui, the approximation error is 2nε
which comes from Lemma 16.

B.2.5 Rigidity Proof of Protocol 3

We are now ready to prove the rigidity of Protocol 3, namely that any efficient quantum prover that
does not cause the protocol to abort must have the initial state close to a hidden coset state.
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Lemma 18. For any λ ∈ N, there exist choices M = poly(λ) and δ = 1/poly(λ) such that if the
verifier executes Protocol 3 with an efficient quantum prover whose success probability is lower-
bounded by an inverse polynomial, the following holds. Let (A,α, β) the private input of the verifier
for the coset instance. Denoting the probability that the protocol does not abort as Pr [⊤ ], and let ψ
the initial state of the prover. Then, with probability Pr [⊤ ], we have

ψ
c≈ε |Aα,β⟩ ⊗ ρ, (65)

for some auxiliary state ρ, and the approximation error ε is inverse polynomial on the security
parameter λ.

Proof. Essentially, we can see Protocol 3 as a cut-and-choose protocol in which the number of
evaluation instances is 1 and the number of check instances is M2−1. We then can reduce this lemma
to Lemma 17 using the same argument as in [GMP22, Theorem 4.33]. We omit the details.

Remark 7. We make few comments on the inverse polynomial soundness.13 First of all, what the
soundness lemma (Lemma 18) says is effectively the same as a typical self-testing statement, which
is that: if the prover succeeds with probability 1− ε in the protocol, the state it used in the protocol
must be, up to an isometry, poly(ε)-close to ideal (in our setting, the closeness is measured by
computational distinguishability rather than trace distance, as in typical self-testing settings). Now,
in practice, we would have to estimate ε by doing many runs of the protocol. In particular, we
would need about 1/ε2 repetitions to have high (that is, 1− negl(λ)) confidence that the prover’s
success probability is 1− ε. This implies that if we want ε to be negligible, we would have to do
superpolynomial-many repetitions of the protocol and since this is not efficient, we are limited
to ε = 1/poly(λ). It is from doing this 1/ε2 repetitions that we go from the original self-testing
statement (Lemma 17) to the statement that characterizes the prover’s state in the actual protocol.

We now finish this section with the proof of Proposition 2.

Proof of Proposition 2. Since in the final protocol (Protocol 5), we run N instances over 2N possible
instances of the self-testing protocol (Protocol 3) (in the cut-and-choose fashion), we can invoke
techniques developed in [BF10] to relate quantum sampling to classical sampling and conclude Propo-
sition 2.

In particular, consider the following interaction between a quantum prover P and a challenger V .

1. P and V jointly execute Protocol 5. Let T be the set of N indices chosen uniformly at random
by V in N runs of the self-testing protocol.

2. Let Xi be the outcome of each of N runs of the self-testing protocol. V verifies that Xi = accept
for all i ∈ T , and aborts otherwise.

This is a natural quantum analogue of the following classical sampling experiment ([BF10,
Example 1]) on a length-2N bitstring X to test if X is close to the all-zero string:

1. randomly select a size-N subset T ⊂ J1, 2NK,
2. compute ω(X|T ), and accept if the estimate vanishes and else reject.

13 We thank Alexandru Gheorghiu for providing us this insightful comments.
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Noting that this sample-and-estimate strategy is exactly the Ψuniform strategy described at the end
of Appendix A.3, we have by Corollary 2 that the quantum error probability of this strategy is
bounded by 2 exp(−nδ2

64 ), for δ = 1/2. By the definition of quantum error probability (Definition 13),
this means that, with overwhelming probability over T , the state of the prover P in the remaining
set T also satisfies Equation (64). Indeed, by changing of basis, this reduces to the question of
testing if the state of the prover before running the self-testing protocol is close to the all-zero state.
Then the quantum sample-and-estimate technique tells us that the state of the prover must be
supported on vectors with relative Hamming distance < 1/2, and it means there must be at least 1
bit in string which is 0. If this is the case, it corresponds (up to some inverse polynomial error) to
the coset state |Aα,β⟩ in Equation (64). This completes the proof of the proposition.

C Single-Decryptor

In this section, we present the definition of single-decryptors, as defined in [CLLZ21]. We also
introduce a new security property for single-decryptors, namely anti-piracy security of single-
decryptors in the real-or-random style. A variant of semi-quantum single-decryptors will be also
introduced.

C.1 Definition

Definition 38 (Single-Decryptor Encryption Scheme [CLLZ21]). A single-decryptor en-
cryption scheme is a tuple of algorithms E = ⟨Setup,QKeyGen,Encrypt,Decrypt⟩ with the following
properties:

• (sk, pk) ← Setup(1λ). On input a security parameter λ, the classical setup algorithm Setup
outputs a classical secret key sk and a public key pk.

• (ρsk)← QKeyGen(sk). On input a classical secret key sk, the quantum key generation algorithm
QKeyGen outputs a quantum secret key ρsk.

• y ← Encrypt(pk, x). On input a public key pk, a message x in the message spaceM, the classical
encryption algorithm Encrypt outputs a classical ciphertext y.

• x/⊥ ← Decrypt(ρsk, y). On input a quantum secret key ρsk, a classical ciphertext y, the quantum
decryption algorithm Decrypt outputs a classical message x or a decryption failure symbol ⊥.

Correctness. There exists a negligible function negl(·), such that for all λ ∈ N, for all x ∈M, the
following holds:

Pr

Decrypt(ρsk, y) = x

∣∣∣∣∣∣∣
(sk, pk)← Setup(1λ)
ρsk ← QKeyGen(sk)
y ← Encrypt(pk, x)

 ≥ 1− negl(λ).

Note that correctness implies that a honestly generated quantum decryption key can be used to
decrypt correctly polynomially many times, from the gentle measurement lemma [Wil11].
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C.2 Anti-Piracy Game of Single-Decryptor (Real-or-Random Style)

We present below an anti-piracy game of single-decryptors in the real-or-random CPA style, param-
eterized by a single-decryptor scheme E = ⟨Setup,QKeyGen,Encrypt,Decrypt⟩, a security parameter
λ. This game is between a challenger and an adversary represented by three QPT algorithms
(A0,A1,A2).

• Setup phase:
− The challenger samples (sk, pk)← Setup(1λ).

− The challenger samples ρsk ← QKeyGen(sk).

− The challenger sends (pk, ρsk) to A0.

• Splitting phase:
− A0 prepares a bipartite quantum state σ12.

− A0 sends σ1 to A1 and σ2 to A2.

− A0 sends a challenge message m0 to the challenger.

• Challenge phase:
− A1 sends a message m1 to the challenger, and A2 sends a message m2 to the challenger.

− The challenger then generates ciphertexts c1, c2 as follows.
∗ c1 = Encrypt(pk,m0) and c2 = Encrypt(pk,m2) with probability 1/3. Set b1 = 0 and
b2 = 1.

∗ c1 = Encrypt(pk,m1) and c2 = Encrypt(pk,m0) with probability 1/3. Set b1 = 1 and
b2 = 0.

∗ c1 = Encrypt(pk,m1) and c2 = Encrypt(pk,m2) with probability 1/3. Set b1 = 1 and
b2 = 1.

− The challenger sends c1 to A1 and c2 to A2.

• Answer phase:
− For i ∈ {1, 2}: Ai outputs a bit b′i.

The adversary wins the game if A1 and A2 both make a correct guess, that is b′i = bi for i ∈ {1, 2}.
We denote the random variable that indicates whether an adversary (A0,A1,A2) wins the game

or not as SD-AP-RoRED(1λ, (A0,A1,A2)).

Definition 39 (Anti-Piracy Security, Real-or-Random style). A single-decryptor scheme has
anti-piracy security (real-or-random style) if no QPT adversary (A0,A1,A2) can win the anti-piracy
game (real-or-random style) with a probability significantly greater than 2/3. More precisely, for any
QPT adversary (A0,A1,A2)

Pr
[
SD-AP-RoRED(1λ, (A0,A1,A2)) = 1

]
≤ 2/3 + negl(λ).

We observe that the construction of single-decryptor given in [CLLZ21] also satisfies our definition
of anti-piracy in the real-or-random style. For completeness, we recall their construction below.
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Construction 5: [CLLZ21] Single-Decryptor Scheme

Given a security parameter λ, let n = λ and κ be polynomial in λ.

• (sk, pk)← Setup(1λ):
− Sample coset spaces {Ai, si, s′i}i∈J1,κK where each Ai is of dimension n/2;
− Construct the membership programs for each coset {R0

i ,R1
i }i∈J1,κK;

− Return
(
sk := {Ai, si, s′i}i∈J1,κK, pk := {R0

i ,R1
i }i∈J1,κK

)
.

• ρsk ← QKeyGen(sk):
− Parse sk← {Ai, si, s′i}i∈J1,κK;
− Return {|Ai,si,s′

i
⟩}i∈J1,κK.

• c← Encrypt(pk,m):
− Parse pk← {R0

i ,R1
i }i∈J1,κK;

− Sample r $← {0, 1}κ;
− Generate an obfuscated program iO(Qm,r) of program Qm,r described in Appendix C.2.
− Return c := (r, iO(Qm,r)).

• m/⊥ ← Decrypt(ρsk, c):
− Parse ρsk ← {|Ai,si,s′

i
⟩}i∈J1,κK and c← (r, iO(Qm,r));

− For all i ∈ J1, κK, if ri = 1, apply H⊗n to |Ai,si,s′
i
⟩;

− Let ρ′sk be the resulting state, run iO(Qm,r) coherently on ρ′k and measure the final register
to get m;

− Return m.

Hardcoded: Keys k1, k2, k3, programs R0
i ,R1

i for all i ∈ J1, κK.
On input vectors u1, u2, . . . , uκ, do the following:

1. If for all i ∈ J1, κK, Rri
i (ui) = 1, then output m.

2. Otherwise, output ⊥.

Fig. 2. Program Qm,r.

C.3 Semi-Quantum Single-Decryptor

Alternatively, in the definition of single-decryptors above, we can combine the Setup and QKeyGen
algorithms to be a single interactive protocol with classical communication. The security definition is
defined analogously, in which the setup phase is now an interactive setup phase where the challenger
obtains the the secret key and the adversary obtains the quantum unclonable secret key. This
defines a notion of semi-quantum single-decryptors.
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Remark 8. Of course, now if the sender wants to generate a new quantum secret key, it needs to
run the interactive protocol again, which effectively also generates a new classical secret key sk and
a new classical public key pk. To recover the original setting where there are only one classical
secret/public key pair and possibly many quantum secret keys, the sender can use any post-quantum
semantic-secure public-key encryption scheme to encrypt the new classical secret key sk generated
by the semi-quantum protocol, and send this encryption of sk to the receiver. This encryption of sk
will also be included in the ciphertext, which the sender can decrypt using its “master” secret key
and perform the original decryption algorithm. We note that for our construction of semi-quantum
copy-protection, this is not necessary though.

A construction of semi-quantum single-decryptors is identical to Construction 5, except now we
replace the Setup and QKeyGen algorithms by polynomially many runs of Protocol 5. Security proof
of Construction 5 also carries over this semi-quantum setting directly, with only a small change
as follows. In the reduction showing that an adversary A that breaks the anti-piracy game of
single-decryptors can be used to construct an adversary A′ breaking the monogamy-of-entanglement
game (defined in Definition 3), A′ simulates the security game for A (in which A′ runs polynomially
many executions of Protocol 5 with A), A′ then picks one execution uniformly at random and lets
A runs the protocol with A′’s challenger. The rest of the reduction is identical as the one given
in [CLLZ21], we omit the full details here.

D Proof of Anti-Piracy Security of Construction 1

We present below a security proof for our Construction 1. We will proceed with the proof by
doing a reduction between the anti-piracy security of single-decryptor (real-or-random style) of
Construction 5 and the anti-piracy security of our copy-protection construction (Construction 1).
The security proof of our semi-quantum copy-protection of point functions (Construction 2) is done
identically by reducing to the security of the semi-quantum single-decryptor.

Notations. In the proof, we will sometimes parse x ∈ {0, 1}n as (x0, x1, x2) such that x = x0∥x1∥x2
(where ∥ is the concatenation operator) and the length of xi is ℓi for i ∈ {0, 1, 2}.

Procedure. We define the GenTrigger procedure (Figure 3) which, given an input’s prefix x0 and a
PRF image y returns a so-called trigger input x′ that: passes the “Hidden Trigger” condition of the
program P.

• Given as input x0 ∈ {0, 1}ℓ0 , z ∈ {0, 1}m, k2, k3 ∈ K2 ×K3 and cosets {Ai,si,s′
i
}i∈J1,ℓ0K:

• Let Q be the program which, given v0, . . . , vℓ0 , returns y if Rx0,i

i (vi) = 1 for all i or ⊥
otherwise.

• x′
1 ← PRF2(k2, x0∥Q);

• x′
2 ← PRF3(k3, x

′
1)⊕ (x0∥Q);

• Return x0∥x′
1∥x′

2.

Fig. 3. GenTrigger procedure.
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Trigger’s Inputs Lemma. The following lemma follows from [CLLZ21, Lemma 7.17].

Lemma 19. Assuming post-quantum iO and one-way functions, any efficient QPT algorithm A
cannot win the following game with non-negligible advantage:

• A challenger samples k1 ← Setup(1λ) and prepares a quantum key ρk := ({|Ai,si,s′
i
⟩}i∈J1,l0K,

iO(P)) (recall that P has keys k1, k2, k3 hardcoded).

• The challenger then samples a random input x← {0, 1}n. Let z ← PRF1(k1, x).
• The challenger samples challenges x1, x2 according to the following distribution:
− x1 := x and x2

$← {0, 1}n with probability 1/3;

− x1
$← {0, 1}n and x2 := x with probability 1/3;

− x1, x2
$← {0, 1}n with probability 1/3;

• The challenger computes zi ← PRF1(k1, xi), and parses the inputs xi as xi = xi,0||xi,1||xi,2 for
i ∈ {1, 2}. Let x′i ← GenTrigger(xi,0, zi, k2, k3, {Aj , sj , s′j}j∈J1,ℓ0K) for i ∈ {1, 2}.
• The challenger flips a coin b, and sends either x1, x2 or x′1, x′2 to respectively Bob and Charlie,

depending on the value of the coin. A wins if it guesses b correctly.

Proof of Anti-Piracy Security.

Proof. We proceed with the proof via a sequence of hybrids. We note the differences between the
current hybrid and the previous one in red. For any pair of hybrids (Gi, Gj), we say that Gi is
negligibly close to Gj if for every QPT adversary A := (A0,A1,A2), the probability that A wins Gi
is negligibly close to the probability that they win Gj . For the sake of simplicity, we denote the
uniform distribution over {(0, 1), (1, 0), (1, 1)} as D1/3.

Game G0: This is the piracy game of our copy-protection protocol.
• Setup phase: The challenger does the following:
− Sample ℓ0 random cosets {Ai, si, s′i}i∈J1,ℓ0K, and prepare the associated coset states {|Ai,si,s′

i
⟩}i∈J1,ℓ0K

and the obfuscated membership programs {(R0
i ,R1

i )}i∈J1,ℓ0K.

− Sample ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
− Generate the obfuscated program P̂← iO(P).

− Sample y $← {0, 1}n, compute z := PRF1(k1, y).

− Send ρy :=
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

• Splitting phase: A0 prepares a bipartite quantum state σ12, then sends σ1 to A1 and σ2 to A2.
• Challenge phase:
− The challenger samples (b1, b2) $← D1/3.
− For i ∈ {1, 2}:

∗ If bi = 0: the challenger sets xi := y.

∗ Otherwise, the challenger samples xi $← {0, 1}n.
− The challenge sends x1 to A1 and x2 to A2.
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• Answer phase:
− A1 returns b′1 and A2 returns b′2.
− The adversary wins if b′1 = b1 and b′2 = b2.

Game G1: In this game, we replace x1, x2 by the trigger inputs. The trigger’s inputs lemma
(Lemma 19) implies that G1 is negligibly close to G0.
• Setup phase: The challenger does the following:
− Sample ℓ0 random cosets {Ai, si, s′i}i∈J1,ℓ0K, and prepare the associated coset states {|Ai,si,s′

i
⟩}i∈J1,ℓ0K

and the obfuscated membership programs {(R0
i ,R1

i )}i∈J1,ℓ0K.

− Sample ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
− Generate the obfuscated program P̂← iO(P).

− Sample y $← {0, 1}n, compute z := PRF1(k1, y).

− Send ρy :=
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

• Splitting phase: A0 prepares a bipartite quantum state σ12, then sends σ1 to A1 and σ2 to A2.
• Challenge phase:
− The challenger samples (b1, b2) $← D1/3.
− For i ∈ {1, 2}:

∗ If bi = 0: the challenger sets xi := y and zi := z.

∗ Otherwise, the challenger samples xi $← {0, 1}n and computes zi ← PRF1(k1, xi).
∗ In both case, the challenger computes x′i ← GenTrigger(xi,0, zi, k2, k3, {Ai,si,s′

i
}i∈J1,ℓ0K).

− The challenge sends x′1 to A1 and x′2 to A2.
• Answer phase:
− A1 returns b′1 and A2 returns b′2.
− The adversary wins if b′1 = b1 and b′2 = b2.

Game G2: In this game, we replace z, z1, z2 by uniformly random strings. Since all the inputs
have enough min-entropy ℓ1 + ℓ2 ≥ m+ 2λ+ 4 and PRF1 is extracting, the outcomes z, z1, z2 are
statistically close to independently random outcomes. Thus G2 is negligibly close to G1.
• Setup phase: The challenger does the following:
− Sample ℓ0 random cosets {Ai, si, s′i}i∈J1,ℓ0K, and prepare the associated coset states {|Ai,si,s′

i
⟩}i∈J1,ℓ0K

and the obfuscated membership programs {(R0
i ,R1

i )}i∈J1,ℓ0K.

− Sample ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
− Generate the obfuscated program P̂← iO(P).

− Sample y $← {0, 1}n, sample z $← {0, 1}m.

− Send ρy :=
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

• Splitting phase: A0 prepares a bipartite quantum state σ12, then sends σ1 to A1 and σ2 to A2.
• Challenge phase:
− The challenger samples (b1, b2) $← D1/3.
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− For i ∈ {1, 2}:
∗ If bi = 0: the challenger sets xi := y and zi := z.

∗ Otherwise, the challenger samples xi $← {0, 1}n and samples zi $← {0, 1}m.
∗ In both case, the challenger computes x′i ← GenTrigger(xi,0, zi, k2, k3, {Ai,si,s′

i
}i∈J1,ℓ0K).

− The challenge sends x′1 to A1 and x′2 to A2.

• Answer phase:
− A1 returns b′1 and A2 returns b′2.
− The adversary wins if b′1 = b1 and b′2 = b2.

Game G3: This game has exactly the same distribution as that of G2. We only change the order in
which some values are sampled, and recognize that certain procedures become identical to encryp-
tions in the single-decryptor encryption scheme ⟨SD.Setup,SD.QKeyGen, SD.Encrypt, SD.Decrypt⟩
from Appendix C. Thus, the probability of winning in G3 is the same as in G2.
• Setup phase: The challenger does the following:
− Run SD.Setup(1λ) to obtain ℓ0 random cosets {Ai, si, s′i}i∈J1,ℓ0K, the associated coset states
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K and the obfuscated membership programs {(R0

i ,R1
i )}i∈J1,ℓ0K. Let ρsk :=

{|Ai,si,s′
i
⟩}i∈J1,ℓ0K.

− Sample ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3}.
− Generate the obfuscated program P̂← iO(P).

− Sample y $← {0, 1}n, sample z $← {0, 1}m.

− Send ρy :=
(
{|Ai,si,s′

i
⟩}i∈J1,ℓ0K, P̂, z

)
to A0.

• Splitting phase: A0 prepares a bipartite quantum state σ12, then sends σ1 to A1 and σ2 to A2.

• Challenge phase
− The challenger samples (b1, b2) $← D1/3.
− For i ∈ {1, 2}:

∗ If bi = 0: the challenger sets zi := z.

∗ Otherwise, the challenger samples zi $← {0, 1}m.
∗ In both case, the challenger computes (xi, Q)← SD.Encrypt(pk, zi).
∗ Finally, the challenger computes x′i as in GenTrigger using xi,0 and Q.

− The challenge sends x′1 to A1 and x′2 to A2.

• Answer phase
− A1 returns b′1 and A2 returns b′2.
− The adversary wins if b′1 = b1 and b′2 = b2.

Reduction to Single-Decryptor’s Piracy Game. Assume that there exists a QPT adversary
(A0,A1,A2) who wins the last hybrid G3 with advantage δ. We construct an adversary (B0,B1,B2)
who wins the piracy game of the Single-Decryptor scheme with the same advantage δ.
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• Setup phase: The challenger samples (sk, pk)← Setup(1λ), then samples ρsk ← QKeyGen(sk)
and finally sends (pk, ρsk) to B0.
• Splitting phase:
− B0 samples ki ← PRFi.KeyGen(1λ) for i ∈ {1, 2, 3} and use these keys and pk to prepare the

obfuscated program P̂← iO(P);

− Then B0 samples z $← {0, 1}m and runs A0 on (ρsk, P̂, z) to get σ12;
− Finally, B0 sends σ′1 := (σ1, k2, k3) to B1, σ′2 := (σ2, k2, k3) to B2 and z as the challenge

message to its challenger.
• Challenge phase: For i ∈ {1, 2}:
− Bi samples zi $← {0, 1}m and sends zi as the challenge message to its challenger. Upon receiv-

ing the challenge ciphertext ci, Bi parses ci as (xi,0, Q), then prepares x′i := (xi,0||x′i,1||x′i,2)
as in GenTrigger: x′i,1 := PRF2(k2, xi,0||Q) and x′i,2 := PRF3(k3, x

′
i,1)⊕ (xi,0||Q).

• Answer phase: For i ∈ {1, 2}:
− Bi runs Ai on (σi, x′i) and returns the outcome b′i;

The adversary B = (B0,B1,B2) perfectly simulates (A0,A1,A2), and thus B breaks the anti-
piracy security of the single-decryptor scheme with the same probability δ, which completes the
proof.

E Direct Product Hardness of Coset States

Informally, the computational direct product hardness [CLLZ21] states that given |As,s′⟩ and
programs iO(PA+s) and iO(PA⊥+s′) for uniformly random A ⊆ Fn2 , s, s′ ∈ Fn2 , no QPT adversary
can produce a pair (v, w) ∈ (A+ s)× (A⊥ + s′), except with negligible probability in n, where PA+s
and PA⊥+s′ are programs that check membership in the cosets A+ s and A⊥+ s′, respectively. This
direct product hardness is at the heart of the tokenized signature construction presented in [CLLZ21].
The notion of quantum tokens for digital signatures was initiated by Ben-David and Sattath [BS17].
In a (weakly unforgeable) tokenized digital signature scheme, a signer who gets one copy of the
signing token sig can sign a single bit b using a QPT algorithm Sign(b, sig) whose output is a classical
signature. The correctness guarantees that the verification will accept the result as a signature on
b. We note that the signing algorithm is a unitary and will produce a superposition of all valid
signatures of b; to obtain a classical signature, a destructive measurement to the state is necessary
which leads to a collapse of the token state. Thus, a signing token sig can only be used to produce
one classical signature of a single bit and any attempt to produce a classical signature of the other
bit would fail. We refer the reader to Section 7 for formal definitions and constructions of tokenized
signatures.

We now elaborate on the main motivation for seeking a stronger direct product hardness of coset
states. Consider the construction of tokenized digital signatures in [CLLZ21]: very roughly, the
signing token is |As,s′⟩, one can measure the state in the computational basis to obtain a signature
for 0, and measure the state in the Hadamard basis to obtain a signature for 1. Security of this
scheme follows directly from the aforementioned direct product hardness of coset states. However,
[CLLZ21] is only weakly unforgeable.

To construct strongly unforgeable tokenized digital signatures (where it is computationally hard
to generate two different signatures of the same message, given a single signing token), we would
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need a variant of the computational direct product theorem, where the task is now to find a pair of
vectors (v, w) ∈ (A+ s)× (A+ s) or (v, w) ∈ (A⊥+ s′)× (A⊥+ s′) such that v ̸= w. Combining this
variant with [CLLZ21]’s direct product hardness would immediately yield a strongly unforgeable
tokenized signature scheme.

Next, we give some intuition behind the proof of [CLLZ21]’s direct product hardness of coset
states, and then explain why it does not straightforwardly give rise to a proof for the direct product
hardness variant we are seeking. Recall that for [CLLZ21]’s direct product hardness, the task is to
find a pair of non-zero vectors (v, w) ∈ (A+ s)× (A⊥ + s′) given a random coset state |As,s′⟩ and
its (obfuscated) membership checking programs. The proof of this direct product hardness is done
in the following way. We assume that A ⊆ Fn2 has dimension n

2 .

• Replace iO(PA+s) by iO(PB+s) for a uniformly random superspace B of A, where dim(B) = 3n
4 .

Similarly, replace iO(PA⊥+s′) by iO(PC⊥+s′) for a uniformly random superspace C⊥ of A⊥,
where dim(C⊥) = 3n

4 . This modification is indistinguishable due to the subspace hiding property
of iO.
• Argue that the task of finding a pair of vectors in (A+ s)× (A⊥ + s′) given |As,s′⟩ , B,C for a

uniformly random subspace C ⊆ A ⊆ B is as hard as the task of finding a pair of vectors in
(Ã + z) × (Ã + z′) given |Ãz,z′⟩ for some uniformly random subspace Ã of dimension n

4 . The
crucial observation is that, since B + s = B + s+ t for any vector t ∈ B, the programs PB+s and
PB+s+t are functionally equivalent. So, an adversary who receives iO(PB+s) cannot distinguish
this from iO(PB+s+t) for any t. We can think of t as a randomizing masking of s, which removes
the adversary’s knowledge about the membership programs.
• The latter task of finding such a pair of vectors corresponding to Ã, z, z′ is information-theoretically

hard (it would even be hard with black-box access to the membership checking oracles for Ã+ z
and Ã⊥ + z′).

In our variant of direct product hardness, the task is now to find a pair of vectors (v, w) ∈
(A+ s)× (A+ s) or (v, w) ∈ (A⊥ + s′)× (A⊥ + s′) such that v ̸= w. Applying the same reduction
above allows us to reduce this task to the task of finding a pair of different vectors v, w ∈ A + s
given |As,s′⟩ , B,C such that C ⊆ A ⊆ B. Unfortunately, we cannot directly reduce this task to the
information-theoretic direct product theorem. The reason is that the adversary can just measure the
state in the computational basis (or in the Hadamard basis if the task is to find a pair of different
vectors in A⊥+ s′) to obtain a random vector v ∈ A+ s, sample a non-zero vector c ∈ C and output
(v, c+ v). Since c ∈ C ⊆ A, we have that c+ v is also in A+ s. This shows that the adversary can
win the game without violating any complexity-theoretic arguments. Overcoming this technical
hurdle requires a more involved analysis. We refer to subsequent sections for a formal description
and proofs.

E.1 Information-Theoretic Direct Product Hardness - A Variant

Theorem 11. Let A ⊆ Fn2 be a uniformly random subspace of dimension n/2, and s, s′ be uniformly
random in Fn2 . Let ϵ > 0 such that 1/ϵ = o

(
2n/2

)
. Let

Λ(A, s) := (A+ s)× (A+ s),

and
Λ(A⊥, s′) := (A⊥ + s′)× (A⊥ + s′).
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Given one copy of |As,s′⟩ and quantum membership oracles for A+s and A⊥+s′, an adversary needs
Ω

(√
ϵ2n/2

)
queries to output a pair (v, w) such that v ̸= w and (v, w) ∈ Λ(A, s) with probability at

least ϵ.
The same number of queries is also required to output a pair (v, w) ∈ Λ(A⊥, s′) satisfying v ̸= w

with probability at least ϵ.

The proof of this theorem is similar to the proof of the original information-theoretic direct-
product hardness [CLLZ21], which is a random self-reduction to the statement from Ben-David and
Sattath [BS17]. We first present the theorem from [BS17].

Theorem 12 ([BS17, Theorem 28]). Let A ⊆ Fn2 be a uniformly random subspace of dimension
n/2, and let ϵ > 0 such that 1/ϵ = o

(
2n/2

)
. Given one copy of |A⟩ and quantum membership oracles

for A and A⊥ an adversary needs Ω
(√

ϵ2n/2
)

queries to output a pair (v, w) such that v ̸= w and
(v, w) ∈ (A \ {0})× (A \ {0}) with probability at least ϵ.

The same number of queries is also required to output a pair (v, w) ∈ (A⊥ \ {0})× (A⊥ \ {0})
satisfying v ̸= w with probability at least ϵ.

Proof of Theorem 11. We note that finding such a pair of elements in A and finding such a pair in
A⊥ are essentially the same task; thus it suffices to prove the result for a pair in A \ {0}, and the
result for the other case will follow by symmetry.

Let A be an adversary for Theorem 11 who suceeds with probability p, we construct an adversary
B for Theorem 12 with almost the same success probability making the same number of queries. B
proceeds as follows.

• B receives |A⟩ for some A ⊆ Fn2 . Sample s, s′ ∈ Fn2 uniformly at random, and creates the state
|As,s′⟩.
• B gives |As,s′⟩ as input to A. B simulates the membership oracles A+ s and A⊥ + s′ as follows.

If it is a query to the oracle A + s, B receives v from A, and sends a query as v − s to its
membership oracle for A. It forwards the answer to A. The other case is handled similarly,
using its membership oracle for A⊥ and s′.
• Finally, B receives (v, w) in return from A. B then outputs (v − s, w − s).

With probability p, A outputs (v, w) ∈ Λ(A, s) such that v ≠ w. Thus the output of B is (v−s, w−s)
such that (v − s, w − s) ∈ A × A and v − s ≠ w − s. Next, we argue that with overwhelming
probability, we have that v−s ≠ 0 and w−s ≠ 0. This is equivalent to show that the probability that
v − s = 0 or w − s = 0 is negligible. Note that there are 2n/2 values of s̃ such that |As̃,s′⟩ = |As,s′⟩,
since translating s by an element s̃ of A does not affect the state. Since s is sampled uniformly at
random, the probability that v − s = 0 or w − s = 0 is equal to the probability that v − s̃ = 0 or
w − s̃ = 0. This probability is 2 · 1

2n/2 , which is negligible.

E.2 Computational Direct Product Hardness - A Variant

In this section, we prove a computational version of the direct product problem, in which the
adversary is given obfuscations of the subspace membership checking programs, but is restricted
to be computationally bounded. Our computational version extends the original statement given
in [CLLZ21, Theorem 4.6] to include the computational version of Theorem 11.
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Theorem 13. Assume the existence of quantum-secure indistinguishability obfuscation and quantum-
secure injective one-way functions. Let A ⊆ Fn2 be a uniformly random subspace of dimension n/2,
and s, s′ be uniformly random in Fn2 . Given one copy of |As,s′⟩, iO(PA+s) and iO(PA⊥+s′), any
QPT adversary outputs a pair (v, w) such that either

(i) (v, w) ∈ Λ(A, s) and v ̸= w;

(ii) or (v, w) ∈ Λ(A⊥, s′) and v ̸= w;

(iii) or (v, w) ∈ (A+ s)× (A⊥ + s′);

with negligible probability.

We first state the two lemmas required to prove Theorem 13, and then assume correctness of
these lemmas to prove Theorem 13. In the subsequent section, we prove the required lemmas.

The first required lemma (proven in Appendix E.3) shows that the first and the second require-
ment (i)–(ii) are provably satisfied, except that we strengthen these requirements to require that
the output vectors differ in the last 7n/8 positions.

Lemma 20. Let T := Jn8 , n− 1K. Under the same assumptions as Theorem 13, given one copy of
|As,s′⟩, iO(PA+s) and iO(PA⊥+s′) any QPT adversary outputs a pair (v, w) such that either

(i) (v, w) ∈ Λ(A, s) and v|T ̸= w|T ;

(ii) or (v, w) ∈ Λ(A⊥, s′) and v|T ̸= w|T ;

with negligible probability.

The second required lemma is identical to the first lemma, except that now we require the output
vectors to be different in the first 7n/8 positions. The proof of this lemma is trivially adapted from
that one of Lemma 20.

Lemma 21. Let T := J0, 7n
8 − 1K. Under the same assumptions as Theorem 13, given one copy of

|As,s′⟩, iO(PA+s) and iO(PA⊥+s′), any QPT adversary outputs a pair (v, w) such that either

(i) (v, w) ∈ Λ(A, s) and v|T ̸= w|T ;

(ii) or (v, w) ∈ Λ(A⊥, s′) and v|T ̸= w|T ;

with negligible probability.

We also recall the original computational direct product hardness stated in [CLLZ21] for
completeness.

Theorem 14 ([CLLZ21, Theorem 4.6]). Assume the existence of quantum-secure indistin-
guishability obfuscation and injective one-way functions. Let A ⊆ Fn2 be a uniformly random subspace
of dimension n/2, and s, s′ be uniformly random in Fn2 . Given one copy of |As,s′⟩, iO(PA+s) and
iO(PA⊥+s′), any QPT adversary outputs a pair v, w such that v ∈ A + s and w ∈ A⊥ + s′ with
negligible probability.

Assuming Lemma 20 and Lemma 21, we prove Theorem 13 as follows.
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Proof of Theorem 13. We note that the third item (iii) is proven by Theorem 14, and that finding
such a different pair of vectors in Λ(A, s) and finding such a pair in Λ(A⊥, s′) are essentially the same
task. Thus, it suffices to prove the first item (i), and the second item (ii) will follow by symmetry.

We prove item (i) by contrapositive. Suppose it is false. Then there exists a QPT adversary A
that given |As,s′⟩ , iO(PA+s) and iO(PA⊥+s′) for a uniformly random A ⊆ Fn2 and uniformly random
vectors s, s′ ∈ Fn2 , returns (v, w) ∈ Λ(A, s) such that v ̸= w with non-negligible probability ϵ.

Let T1 := J0, 7n
8 −1K and T2 := Jn8 , n−1K. For any pair v ̸= w, it must be the case that v|T1 ̸= w|T1

or v|T2 ̸= w|T2 . Let p1 be the probability that A returns (v, w) such that v|T1 ̸= w|T1 , and p2 be
the probability that A A returns (v, w) such that v|T2 ̸= w|T2 . (These probabilities are taken over
everything: the randomness of the challenger and of the adversary.) Then, by the union bound, we
have that p1 + p2 ≥ ϵ. Since ϵ is non-negligible, at least one of p1 or p2 must be non-negligible. If p2
is non-negligible, then the adversary A contradicts Lemma 20. Similarly, if p1 is non-negligible, A
contradicts Lemma 21.

E.3 Proof of Lemma 20

Proof. We note that finding such a pair of elements in Λ(A, s) and finding such a pair in Λ(A⊥, s′)
are essentially the same task; thus it suffices to prove the result for a pair in Λ(A, s), and the result
for the other case will follow by symmetry.

Let A be a QPT adversary for the direct product game of Lemma 20. The proof of the lemma
proceeds by a sequence of hybrids. For any hybrid Gi, we denote by Advi(A) the advantage of A in
Gi, where the probability is taken over the random coins of Gi and A.

Game G0: This is the direct product game of Lemma 20.
Game G1: This is identical to G0, except that now the obfuscation iO(PA+s) is replaced by
iO(iO(PA)(·−s)). For simplicity, in the following, we abuse the notation and write iO(iO(PA)(·−s))
as iO(PA(· − s)).

Claim 3 (From G0 to G1). For any QPT adversary A, we have that

|Adv0(A)− Adv1(A)| ≤ AdviO(λ,A).

Proof. We note that both PA+s and PA(· − s) compute the same functionality, since any vector
v ∈ A + s if and only if v − s ∈ A. By security of iO, the two games are computationally
indistinguishable.

Game G2: This is identical to G1, except that now the challenger samples uniformly at random a
superspace B of A of dimension 7n

8 , and the obfuscation iO(PA(·− s)) is replaced by iO(PB(·− s)).

Claim 4 (From G1 to G2). For any QPT adversary A, we have that

|Adv1(A)− Adv2(A)| ≤ AdviO(λ,A).

Proof. Since B is a superspace of A of dimension 7n
8 , by the subspace hiding property of iO

(Lemma 6), the two games are computationally indistinguishable.

Game G3: This is identical to G2, except that now the challenger samples uniformly at random an
element wB from B, and the obfuscation iO(PB(·−s) is replaced by iO(PB(·− t)), where t = s+wB .
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Claim 5 (From G2 to G3). For any QPT adversary A, we have that

|Adv2(A)− Adv3(A)| ≤ AdviO(λ,A).

Proof. We note that both PB(·−t) and PB(·−s) compute the same functionality, since for any vector
wB ∈ B, we have B + wB is the same as B. By security of iO, the two games are computationally
indistinguishable.

Game G4: This is identical to G3, except that now the obfuscation iO(PA⊥+s′) is replaced by
iO(PA⊥(· − s′)).

Claim 6 (From G3 to G4). For any QPT adversary A, we have that

|Adv3(A)− Adv4(A)| ≤ AdviO(λ,A).

Proof. We note that both PA⊥+s′ and PA⊥(· − s′) compute the same functionality, since any vector
v ∈ A⊥ + s′ if and only if v − s′ ∈ A⊥. By security of iO, the two games are computationally
indistinguishable.

Game G5: This is identical to G4, except that now the challenger samples uniformly at random
a superspace C⊥ of A⊥ of dimension 7n

8 , and the obfuscation iO(PA⊥(· − s′)) is replaced by
iO(PC⊥(· − s′)).

Claim 7 (From G4 to G5). For any QPT adversary A, we have that

|Adv4(A)− Adv5(A)| ≤ AdviO(λ,A).

Proof. Since C⊥ is a superspace of A⊥ of dimension 7n
8 , by security of subspace hiding obfuscation,

the two games are computationally indistinguishable.

Game G6: This is identical to G5, except that now the challenger samples uniformly at random an
element wC⊥ from C⊥, and the obfuscation iO(PC⊥(· − s′) is replaced by iO(PC⊥(· − t′)), where
t′ = s′ + wC⊥ .

Claim 8 (From G5 to G6). For any QPT adversary A, we have that

|Adv5(A)− Adv6(A)| ≤ AdviO(λ,A).

Proof. We note that both PC⊥(· − t′) and PC⊥(· − s′) compute the same functionality, since for any
vector wC⊥ ∈ C⊥, we have C⊥ + wC⊥ is the same as C⊥. By security of iO, the two games are
computationally indistinguishable.

Game G7: This is identical to G6, except that now we change the winning condition of the hybrid:
instead of asking the adversary to output two vectors v, w ∈ Λ(A, s) such that v|T ̸= w|T , we ask
the adversary to output two vectors v, w ∈ Λ(A, s) such that v|T ̸= w|T and v −w ∈ (A \C), where
C, the dual subspace of C⊥, is of dimension n

8 .

Claim 9 (From G6 to G7). For any QPT adversary A, if Adv6(A) is non-negligible, then there
exists a non-negligible function ε = ε(λ) such that

Adv7(A) ≥ ε.
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Proof. Due to our choice of dimension of subspaces B,C, we can apply the anti-concentration of the
subspace obfuscator to prove the claim. Formally, we invoke the following lemma from [Shm22b],
which states that any adversary, given an obfuscation iO(PC⊥) where C⊥ is a random high-
dimensional superspace of A⊥ and outputting a vector in A, has to accidentally hit the subspace
A \ C with a noticeable probability.

Lemma 22 ([Shm22b, Lemma 5.1]). Let S = {Sλ}λ∈N a subspace Sλ ⊆ Fλ2 of dimension
d = {dλ}λ∈N. Let t = {tλ}λ∈N such that there is some constant δ ∈ (0, 1) with ∀λ ∈ N : tλ ≥ λδ and
λ− dλ− 2 · tλ ≥ Ω(λ). Let iO a quantum-secure indistinguishability obfuscation scheme for classical
circuits and assume that post-quantum injective one-way functions exist. Then, there is no quantum
polynomial-time algorithm A = {Aλ,ρλ

}λ∈N, a negligible function negl and a non-negligible function
η such that

Pr
[
Aλ(ρλ, iO(PT )) ∈ T⊥ | T $← S⊆λ−t

]
≥ η(λ),

and
Pr

[
Aλ(ρλ, iO(PT )) ∈ (S⊥ \ T⊥) | T $← S⊆λ−t

]
≤ negl(λ),

where {S⊆λ−t}λ∈N is the uniform distribution over subspaces of dimension λ− tλ that contain S.

By applying the anti-concentration lemma above with λ = n, t = n
8 and d = n

2 , we have that if
Adv6(A) is non-negligible, then the probability that v − w ∈ (A \ C) is at least Adv6(A)− negl(λ),
concluding the claim.

Game G8: This is identical to G7, except that now instead of sending obfuscations of membership
checking programs, the challenger sends B,C, t, t′ in clear to A.

Claim 10 (From G7 to G8). For any QPT adversary A for G7, there exists an adversary B for
G8 such that

Adv7(A) ≤ Adv8(B).

Proof. This is immediate.

Claim 11. For any (possibly unbounded) adversary A, we have that

Adv8(A) ≤ negl(λ).

Proof. We will follow the proof of [CLLZ21, Lemma 4.13]. Suppose there exists a QPT adversary A
for G8 that wins with probability p.

We first show that, without loss of generality, one can take B to be the subspace of vectors such
that the last n/8 entries are zero (and the rest are free), and one can take C to be such that the
last 7n/8 entries are zero (and the rest are free). We construct the following adversary B for the
game where B and C have the special form above with trailing zeros, call these B∗ and C∗, from an
adversary A for the game of G8.
• B receives a state |As,s′⟩ together with t, t′, for some C∗ ⊆ A ⊆ B∗, where t = s + wB∗ for
wB∗

$← B∗, and t′ = s′ + wC⊥
∗

for wC⊥
∗

$← C⊥∗ .
• B picks uniformly at random subspaces B and C of dimension 7n/8 and n/8 respectively, such

that C ⊆ B. B also picks a uniformly random isomorphism T mapping C∗ to C and B∗ to B.
B applies to |As,s′⟩ the unitary UT which acts as T on the standard basis elements. B gives
UT |As,s′⟩ to A together with B,C, T (t), (T −1)T (t′).
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• B receives (v, w) from A, and outputs (T −1(v), T −1(w))).
First, notice that

UT |As,s′⟩ = UT
∑
v∈A

(−1)⟨v,s′⟩ |v + s⟩

=
∑
v∈A

(−1)⟨v,s′⟩ |T (v) + T (s)⟩

=
∑

w∈T (A)
(−1)⟨T −1(w),s′⟩ |w + T (s)⟩

=
∑

w∈T (A)
(−1)⟨w,(T −1)T (s′)⟩ |w + T (s)⟩

= |T (A)z,z′⟩ ,

where z = T (s) and z′ = (T −1)T (s′).
Furthermore, notice that T (A) is a uniformly random subspace between C and B, and that z

and z′ are uniformly random vectors in Fn2 . We argue that:
(i) T (t) is distributed as a uniformly random element of B + z.

(ii) (T −1)T (t′) is distributed as a uniformly random element of C⊥ + z′.
For (i), notice that

T (t) = T (s+ wB∗) = T (s) + T (wB∗) = z + T (wB∗),

where wB∗ is uniformly random in B∗. Since T is an isomorphism with T (B∗) = B, T (wB∗) is
uniformly random in B. Thus, T (t) is distributed as a uniformly random element in B + z.

For (ii), notice that

(T −1)T (t′) = (T −1)T (s′ + wC⊥
∗

) = (T −1)T (s′) + (T −1)T (wC⊥
∗

)
= z′ + (T −1)T (wC⊥

∗
),

where wC⊥
∗

is uniformly random in C⊥∗ . Let x ∈ C, then

⟨(T −1)T (wC⊥
∗

), x⟩ = ⟨wC⊥
∗
, T −1(x)⟩ = 0,

where the last equality follows because wC⊥
∗
∈ C⊥∗ and T −1(C) = C∗. Thus (T −1)T (wC⊥

∗
) belongs

to C⊥. Since (T −1)T is a bijection, (T −1)T (wC⊥
∗

) is uniformly random in C⊥. It follows that
(T −1)T (t′) is distributed as a uniformly random element in C⊥ + z′.

Hence, A receives the correct distribution, and thus, with probability p, A returns a pair
(v, w) ∈ Λ(T (A), z) satisfying v|T ̸= w|T and v − w ∈ (T (A) \ C).

Notice that:
• If v ∈ T (A) + z, where z = T (s), then T −1(v) ∈ A+ s.

• If v − w ∈ (T (A) \ C), then v − w /∈ C. Thus, we have T −1(v) − T −1(w) = T −1(v − w) /∈
T −1(C) = C∗. Since C∗ is the subspace of vectors such that the last 7n/8 entries are zero, we
also have that T −1(v)|T ̸= T −1(w)|T .
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Thus, with the same probability p, B returns a pair (v′, w′) ∈ Λ(A, s) such that v′|T ≠ w′|T and
v′ − w′ ∈ (A \ C∗), as desired.

So, we can now assume that B is the space of vectors such that the last n
8 entries are zero, and

C is the space of vectors such that the last 7n
8 entries are zero. Then, the sampled subspace A is a

uniformly random subspace subject to the last n
8 entries being zero, and the first n

8 entries being
free. From an adversary A for G8 with such B and C, we will construct an adversary B for the
information-theoretic direct product problem described in Theorem 11, where the ambient subspace
is Fm2 where m = 3n

4 . B works as follows.
• B receives |As,s′⟩ for uniformly random A ⊆ Fm2 of dimension m

2 and uniformly random s, s′ ∈ Fm2 .
B samples s̃, s̃′, ŝ, ŝ′ $← F

n
8
2 .

Let |ϕ⟩ = 1
2n/16

∑
x∈{0,1}n/8(−1)⟨x,s̃′⟩ |x+ s̃⟩. B creates the state

|W ⟩ = |ϕ⟩ ⊗ |As,s′⟩ ⊗ |ŝ⟩ .

B gives to A as input the state |W ⟩, together with t = 07n/8∥ŝ + wB for wB $← B, and
t′ = ŝ′∥07n/8 + wC⊥ , for wC⊥

$← C⊥.
• A returns a pair (v, w) ∈ Fn2 ×Fn2 . Let v′ = v|J n

8 ,
7n
8 −1K ∈ Fm2 be the “middle” 3n

4 entries of v. Let
w′ = w|J n

8 ,
7n
8 −1K. B outputs (v′, w′).

Notice that

|W ⟩ = |ϕ⟩ ⊗ |As,s′⟩ ⊗ |ŝ⟩

=
∑

x∈{0,1}n/8,v∈A

(−1)⟨x,s̃′⟩(−1)⟨v,s′⟩ |(x+ s̃)∥(v + s)∥ŝ⟩

=
∑

x∈{0,1}n/8,v∈A

(−1)⟨(x∥v∥0n/8),(s̃′∥s′∥ŝ′)⟩
∣∣∣(x∥v∥0n/8 + s̃∥s∥ŝ)

〉
=

∑
w∈Ã

(−1)⟨w,z′⟩ |w + z⟩ = |Ãz,z′⟩ ,

where z = s̃∥s∥ŝ, z′ = s̃′∥s′∥ŝ′, and Ã is the subspace in which the first n/8 entries are free, the
middle 3n/4 entries belong to the subspace A, and the last n/8 entries are zero.

Notice that the subspace Ã, when averaging over the choice of A, is distributed precisely as in
the game G8 (with B and C of special form with trailing zeros); z, z′ are uniformly random in Fn2 ; t
is uniformly random from B + z and t′ is uniformly random from C⊥ + z′. Thus, with probability
p, A returns to B a pair (v, w) ∈ Λ(Ã, z) such that v|T ̸= w|T and v − w ∈ Ã \ C. Furthermore,
we note that if (v, w) ∈ Λ(Ã, z), the last n/8 entries of both v and w must be ŝ. It follows that,
if v|T ̸= w|T , we have that v′ ̸= w′. Overall, we have that with probability p, the answer (v′, w′)
returned by B is such that (v′, w′) ∈ Λ(A, s) satisfying v′ ̸= w′.

By Theorem 11, we deduce that p must be negligible.

Therefore we show that the advantage of distinguishing G0 and G6 is negligible, and the success
probability in G7 is at most the success probability in G8, which is negligible. We finish the proof
by invoking Claim 9, which concludes that the success probability in G6 must also be negligible.
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