
Fast Practical Lattice Reduction

through Iterated Compression

Keegan Ryan and Nadia Heninger

University of California, San Diego, USA
kryan@ucsd.edu,nadiah@cs.ucsd.edu

Abstract. We introduce a new lattice basis reduction algorithm with
approximation guarantees analogous to the LLL algorithm and practical
performance that far exceeds the current state of the art. We achieve
these results by iteratively applying precision management techniques
within a recursive algorithm structure and show the stability of this ap-
proach. We analyze the asymptotic behavior of our algorithm, and show
that the heuristic running time is O(nω(C+n)1+ε) for lattices of dimen-
sion n, ω ∈ (2, 3] bounding the cost of size reduction, matrix multiplica-
tion, and QR factorization, and C bounding the log of the condition num-
ber of the input basis B. This yields a running time of O

(
nω(p+ n)1+ε

)
for precision p = O(log ∥B∥max) in common applications. Our algorithm
is fully practical, and we have published our implementation. We ex-
perimentally validate our heuristic, give extensive benchmarks against
numerous classes of cryptographic lattices, and show that our algorithm
signi�cantly outperforms existing implementations.

1 Introduction

Lattice basis reduction is a fundamental technique in cryptanalysis. The cele-
brated LLL algorithm [38] achieves a 2O(n) approximation factor for lattice re-
duction in time O(n5+ε(p+log n)2+ε) for a lattice of dimension n with entries of
size p = O(log ∥B∥max). This is polynomial time, but the large exponents ensure
that this algorithm quickly becomes infeasible in practice for even moderately
sized lattices.

The current gold standard lattice basis reduction algorithm used in practice is
the L2 algorithm [47] implemented in fpLLL [55], which improves the dependence
on p by carefully managing precision for a runtime of O(n4+ε(p+ log n)(p+n)).
Current implementations take advantage of hardware �oating-point support and
are fast up to a few hundred dimensions, but the running time again becomes
an obstacle beyond this point.

A separate line of work reduces the running time dependence on n by devel-
oping reduction algorithms with a recursive structure [35,43]. These algorithms
have impressive performance, but have practical drawbacks in that they only
output a single short vector and lack practical implementations.

Kirchner, Espitau, and Fouque [32] combined both approaches by giving an
algorithm with a recursive structure that decreases the working precision as the

lattice basis is reduced. They report impressive performance numbers on lattice
bases of high dimension and precision, and claim a running time of Õ(nωC) for
C > log(∥B∥∥B−1∥) and ω equaling the matrix multiplication exponent. These
results are based on a very strong heuristic assumption about linear regressions
of log-Gram-Schmidt norms related to the Geometric Series Assumption (GSA).
They use this assumption to argue that the required precision decreases expo-
nentially throughout execution of their algorithm.

Heuristic precision issues. Unfortunately, the heuristic of [32] fails for large
classes of cryptanalytically relevant lattices that include some of the most canon-
ical applications of the LLL algorithm in cryptography: NTRU [16], Coppersmith
lattices for solving low-degree polynomials modulo integers [14,28], and factor-
ing with partial information [29]. These deviations from the GSA result in either
unfavorable running times or computational errors due to insu�cient precision.
In practice, their implementation simply fails to reduce many of these lattices.

Our contribution. In this work, we give a new recursive variant of the LLL al-
gorithm with a novel iterative strategy for managing precision. Our algorithm
is extremely fast in practice and parallelizes naturally. We benchmark its per-
formance against a diverse collection of families of lattices of theoretical and
practical interest to showcase how the wildly di�ering structures of these lattices
exhibit di�ering behaviors during lattice reduction. We �nd that our algorithm
signi�cantly outperforms fpLLL in every test case, and the algorithm of [32] on
almost all families of lattices. Our test cases included a three-gigabyte lattice
basis of dimension 8192, which we were able to reduce in 6.4 core-years.

Existing analysis tools are incompatible with our algorithm, so we develop
new theoretical results to explain the behavior of and increase con�dence in the
stability and correctness of our approach. Our asymptotic running time matches
the claimed running time of [32] while requiring signi�cantly weaker heuristic
assumptions, and our approximation guarantees for the reduced basis match
those of the LLL algorithm.

We have made our implementation1 available to the community with the aim
for it to become a practical drop-in replacement for fpLLL.

1.1 Overview of Techniques

Iterated Compression. We develop several new tools to support the implementa-
tion and analysis of our algorithm. Our algorithm uses a new metric for lattice
reduction distinct from prior work, which we call the drop of a lattice basis. Our
new de�nition is used analogously to the Lovász condition of traditional LLL
reduction. We say a basis B of rank n is α-lattice-reduced if it is size-reduced
and drop(B) ≤ αn.

1 Our implementation is available at https://github.com/keeganryan/�atter

2

https://github.com/keeganryan/flatter

In addition, we apply a type of lattice basis �compression�, which transforms
a lattice basis into one with similar geometric properties but with smaller en-
tries and superior numerical stability. This compression is largely akin to [51],
although our analysis is new.

Our algorithm is summarized by the pseudocode in Algorithm 1.

Algorithm 1: Reduce (sketch)

Input : Lattice basis B of rank n and reduction quality α
Output: Unimodular matrix U such that BU is α-lattice-reduced

1 while drop(B) > αn do

2 for Proj. sublattice indices [i : j] in {[n
4
: 3n

4
], [0 : n

2
], [n

2
: n]} do

3 Uk ← Reduce(B[i:j], α
′) for improved reduction quality α′ < α.

4 B ← Compress(BUk) to decrease entry size

5 return U ← accumulation of all previous unimodular transformations

While the general description of the algorithm is simple and reminiscent of
prior algorithms, the details and its analysis are not. The design of the com-
pression function is critical to achieving numerical stability in practice, and, like
[51], it is more sophisticated than simply taking the most signi�cant bits. Unlike
[51], our algorithm iterates the compression process, so extra care is needed to
ensure accumulating rounding errors remain manageable. We develop �rst-order
and asymptotic results using perturbation theory to bound the entry size of
compressed bases and the accuracy of iterated compression.

Using heuristic assumptions, we prove the following running time for our
algorithm, given here in a simpli�ed form.

Theorem 1 (Simpli�ed). Let B be an integer lattice basis of dimension n and
let C > log(∥B∥∥B−1∥). If the running time of size reduction, matrix multiplica-
tion, and QR factorization has a O(nω) dependence on the dimension for some
ω ∈ (2, 3], and our heuristic assumptions are true, then the running time of our
algorithm is

O
(
nω(C + n)1+ε

)
.

For B that are also upper triangular and size-reduced, as is common in
cryptanalytic attacks, this is O

(
nω(log ∥B∥max + n)1+ε

)
.

A deep dive into pro�les. We analyze the behavior of our algorithm without
relying upon the Geometric Series Assumption (GSA), which is clearly false for
major classes of lattices of cryptanalytic importance, including Coppersmith,
NTRU, LWE, and hidden number problem lattices. We do this by studying the
evolution of the pro�le, or the log-norms of the Gram-Schmidt vectors, during
lattice reduction. Unlike [32], which assumed via heuristic that the pro�le closely
followed a linear trend of known slope, our analysis considers all possible pro�le

3

shapes and their evolutions. We use the basis drop, as computed from the pro�le,
to relate the change in lattice potential to the change in required precision.

In addition to its utility in analyzing the behavior of our algorithm, our
rede�nition of reduction quality in terms of the basis drop leads to bases with
the same properties as LLL-reduced bases, and we achieve results analogous to
[45, Theorem 9]. In practice, our algorithm returns approximations of equivalent
quality to LLL.

Theorem 2. Let B be a α-lattice-reduced rank-n basis satisfying our new de�-
nition of reduction quality. Let b⃗∗i denote the ith Gram-Schmidt vector and λi(B)
denote the ith successive minimum of the lattice spanned by B. Then B satis�es

1. ∥⃗b1∥ ≤ 2αn(detB)1/n.

2. ∥⃗b∗n∥ ≥ 2−αn(detB)1/n.

3. For all i ∈ {1, . . . , n}, ∥⃗bi∥ ≤ 2αn+O(n)λi(B).

4. ∥⃗b1∥ × · · · × ∥⃗bn∥ ≤ 2αn
2+O(n2) detB.

A focus on applications. Finally, we benchmark our algorithm against a wide
variety of lattice families. We comprehensively analyze the behavior of our im-
plementation on lattices of research interest, particularly lattice constructions
from numerous cryptanalytic applications. Our selected test cases exhibit pro-
�les that evolve in wildly di�erent ways, and our implementation signi�cantly
outperforms existing tools on these lattices.

The main goal of this work is to produce a fully practical, implementable
algorithm that outperforms existing lattice reduction implementations, and is
intended to be used in practice. To that end, our theoretical results characterize
the behavior of the algorithm and give con�dence in the numerical stability of
our approach with the help of weaker heuristic assumptions than prior work. We
experimentally justify our heuristics.

2 Background

2.1 Notation

In this work, we represent bases in column notation, with the columns of B
being basis vectors of the lattice. We index the vectors from 1 to n and denote
the ith vector by b⃗i. We use ∥ · ∥ to refer to the Euclidean norm for vectors and
spectral norm for matrices, unless otherwise speci�ed. We use log to denote the
base-2 logarithm. We use κ(B) = ∥B∥∥B−1∥ to represent the condition number
of matrix B. We use B[i:j] for 0 ≤ i < j ≤ n to denote the projected sublattice of
rank j− i formed by taking the lattice generated by the �rst j vectors projected
orthogonally to the �rst i vectors. For brevity, we may use the term �sublattice�
when we refer to a projected sublattice, as our algorithm does not consider
sublattices in the non-projected sense.

4

2.2 History of Lattice Reduction Algorithms

The running time to reduce a lattice basis B is typically given in terms of
the dimension n of the lattice and the size of the largest basis vector β =
logmaxi ∥⃗bi∥ = O(log ∥B∥max + log n). The goal of lattice reduction is to �nd
a reduced basis where the n output vectors approximate the optimally smallest
basis by an exponential factor 2O(n). The original LLL algorithm [38] terminates
in O(n5+εβ2+ε) bit operations where ε > 0 allows fast integer arithmetic. Two
main lines of work have made progress towards reducing the running time of
lattice reduction.

One line of work reduces the dependence on the dimension by using a recur-
sive algorithm structure. Koy and Schnorr [35] proposed minimizing the cost by
iteratively reducing overlapping sublattices, and the resulting algorithm required
O(n3+εβ2+ε) bit operations. However, the output of the algorithm only bounded
the length of the �rst vector by a factor of 2O(n logn) and made no guarantees on
the other vectors. While their reported performance is impressive, to our knowl-
edge the algorithm has not been implemented since. The recursive reduction idea
was improved upon by Neumaier and Stehlé [43], achieving a proven runtime of
O(n4+εβ1+ε) and bounding the �rst vector by a factor of 2O(n). This algorithm
uses exact precision, so the algorithm may need to compute with integers of
bit-size O(nβ). For this reason, the algorithm is not considered practical, and to
our knowledge, it has never been implemented.

A second line of work reduces the running time by carefully managing preci-
sion [10,41]. The L2 algorithm of Nguyen and Stehlé [47] takes time O(n4+εβ(n+
β)) and returns a basis of essentially the same quality as LLL. Essentially, the
L2 algorithm progressively reduces the �rst k basis vectors and observes that
O(k) bits su�ce to represent the reduced partial basis. This algorithm is im-
plemented in fpLLL, is fast, and is the tool most commonly used in practice.
The L̃1 algorithm [48] uses numerical stability results to reduce the runtime to
O(n5+εβ + nω+1+εβ1+ε) and achieves essentially the same reduction quality as
LLL. Here, ω is an exponent for matrix multiplication. However, this algorithm
is also considered impractical and to our knowledge has not been implemented.
An alternative approach of Bi et al. [5] and Saruchi et al. [51] improves lattice
reduction running time in practice by reducing the bit sizes of entries to form
an approximate basis with smaller vector precision β′ < β, then applying lattice
reduction algorithms to reduce the smaller basis.

It has long been a goal to unify these two lines of research, but there are
many challenges to doing so. Kirchner, Espitau, and Fouque [32] recently pub-
lished an algorithm that has a recursive structure and also decreases the working
precision as the lattice basis becomes more reduced. Their algorithm is fast in
practice for certain classes of bases, and they claim a running time of Õ(nωC)
for C > log(∥B∥∥B−1∥) by using strong heuristics to bound the necessary pre-
cision at each step. Unfortunately, their heuristic assumptions do not hold for
important classes of lattice bases like NTRU and Coppersmith lattices, and their
implementation does not work on these lattices in practice.

5

An orthogonal line of work, which includes sieving and enumeration (see [45]),
and BKZ [11,52], achieves better approximation factors than LLL, although not
in polynomial time. These algorithms are typically used to set parameter sizes
for post-quantum cryptography. The exponential approximation factors achieved
in this work do not impact the security of modern lattice-based cryptography.
However, LLL is used as a preprocessing step for these SVP algorithms, and our
parallelized reduction algorithm can be used as a drop-in improvement.

2.3 Lattice Reduction Basics

Many algorithms based on LLL operate on the Gram-Schmidt orthogonalization
(GSO) of a lattice basis B, or the closely related QR-factorization which repre-
sents B = QR as the product of an orthogonal matrix Q and upper triangular
R. For a Gram-Schmidt vector b⃗∗i , note that we have ∥⃗b∗i ∥ = |Ri,i|. Recursive lat-
tice reduction algorithms frequently consider projected sublattices; that is, the
lattice generated by vectors b⃗i+1, . . . , b⃗j projected onto the vector space orthog-

onal to b⃗1, . . . , b⃗i. Using the upper triangular Gram-Schmidt coe�cient matrix
or R-factor, such a projected sublattice basis is easily computed from a block
matrix of dimension n2 = j − i along the diagonal.

The basic steps of the LLL algorithm are a swap operation on neighboring
vectors b⃗i and b⃗i+1 followed by a size-reduction step to ensure the new vector
at index i + 1 is small relative to indices 1 through i. This size reduction step
ensures the GSO coe�cients are not too large. The process repeats until the
reduction criteria are satis�ed and the algorithm terminates.

Variants of the LLL algorithm have a similar structure. Recursive algorithms
determine a projected sublattice basis Bsub of dimension n2 from R, and use
a lattice reduction algorithm to �nd unimodular U ∈ Zn2×n2 such that BsubU
is reduced. This U is applied to n2 columns of the lattice of dimension n, and
the Gram-Schmidt norms ∥⃗b∗k∥, . . . , ∥⃗b∗k+n2

∥ are changed in the exact same way
as the Gram-Schmidt norms of Bsub. In essence, recursive algorithms are more
e�cient because they avoid having to update the full basis, and instead batch
together many swapping and size-reduction operations in dimension n2 into a
single e�cient update U to apply to dimension n. We say an algorithm is LLL-
like if it generates update matrices U through a combination of neighbor swaps
and size reductions.

There are multiple de�nitions of size reduction in the literature. We will
not restrict ourselves to a particular one, and instead allow any de�nition that
satis�es the following property:

De�nition 1 (Size reduction). Let B be a basis of rank n and let B =
QDM be the Gram-Schmidt orthogonalization where Q is orthogonal, D =
diag(∥⃗b∗1∥, . . . , ∥⃗b∗n∥), and M is unitriangular. B is size-reduced if ∥M∥ = 2O(n)

and ∥M−1∥ = 2O(n).

This property is satis�ed by the η size reduction of L2 (see [51, Lemma 12])
and the Seysen block size reduction of [32] (see Theorem 2), and it allows us to
bound matrix condition numbers and norms easily.

6

2.4 Heuristic Assumptions

Heuristic assumptions are frequently used to understand the empirical behavior
of lattice algorithms.

The geometric series assumption (GSA) states that reduced lattice

bases heuristically have ∥⃗b∗i ∥/∥⃗b∗i+1∥ constant. While this holds for some appli-
cations, it is false in general. Our results do not depend on the GSA.

The heuristic assumption of [32] states that the slope of a linear re-

gression of the log ∥⃗b∗i ∥ values decreases exponentially quickly throughout lattice
reduction, and in its limit it approximates a known, small value. This assump-
tion is used recursively to bound the maximum and minimum Gram-Schmidt
norm, which is in turn used to conclude that an exponentially decreasing work-
ing precision su�ces for their algorithm. Their assumption is validated against
Knapsack and NTRU-like lattices.

This assumption is violated when the �nal pro�le does not closely follow the
GSA. For example, consider overstretched NTRU. We note that NTRU-like [55]
bases are not generated in the same way as genuine NTRU bases, and their
empirical behavior during lattice reduction is di�erent. Kirchner and Fouque [33]
use a lemma by Pataki and Tural [49] to prove by contradiction that genuine
NTRU bases do not follow the GSA, and the Gram-Schmidt norms are shorter
than the GSA predicts. As a result, the required working precision does not
decrease exponentially.

It is also claimed in [32] that QR factorization (Cholesky decomposition
to be precise) and size reduction can heuristically be performed with the same
asymptotic running time as matrix multiplication. We do not evaluate this claim
in our work, but we observe that if it is true, it lowers the asymptotic running
time of our algorithm as well.

3 Lattice Pro�les and Their Application

De�ne the pro�le of a lattice basis as a vector ℓ⃗ with ℓi = log ∥⃗b∗i ∥. The origin
of this name is unclear; we note the term has been used in various forms by
Kirchner, Espitau, and Fouque [30,31], and Ducas and van Woerden [21,22]. The
pro�le of a lattice basis encodes a wealth of information about its properties
and its behavior under lattice reduction, and it can vary signi�cantly across
di�erent problems. Works by Kirchner and Fouque [34], Albrecht and Ducas [1],
and Ducas and van Woerden [22] have used the behavior of the lattice pro�le to
analyze speci�c problems, for example to identify dense sublattices and uniquely
short vectors for NTRU and LWE lattices that allow solving these problems
more e�ciently. In our case, we will use the pro�le to characterize the behavior
of lattice reduction algorithms on general lattices. This section recounts some
properties of lattice pro�les found in prior work, and also develops our new
concept of lattice reduction.

7

3.1 Example Pro�les

The cryptanalytic applications of lattice reduction vary signi�cantly, and so too
do the input and output pro�les of the bases involved in solving these problems,
computed before and after performing lattice reduction. Example input and
output pairs are given in Figure 1.

We can observe that there are several common input shapes for these pro�les.
Input bases for q-ary lattices, LWE lattices, and NTRU lattices [40] all resemble
a step function, where the �rst half of the pro�le is large (log q), and the second
half is small (0). We loosely classify these input bases as being �balanced.� On
the other hand, input pro�les for Goldstein-Mayer lattices [26], Gentry-Halevi
lattices [25], and knapsack-lattices [36] consist of a single large entry, and the
remaining ones are small. Input bases with such pro�les were named �knapsack-
like� by [32]. Finally, we note several cases where the input pro�le is neither
balanced or knapsack-like, such as the Coppersmith lattices for RSA [39], Ellip-
tic Curve Hidden Number Problem (ECHNP) [57], Modular Inversion Hidden
Number Problem (MIHNP) [9], Ajtai bases [46], or Goldreich-Goldwasser-Halevi
encryption lattices [44]. We call such pro�les irregular. These categories are not
formal or strict; rather they aid in understanding the spectrum of pro�les that
appear in lattice cryptanalysis.

The output pro�les for these cryptanalytic problems are similarly diverse.
One class of output pro�les seems to follow the GSA. We use the term �GSA-
like� to describe the output pro�les of lattice problems which follow such a
pattern. The output pro�les for random q-ary lattices, Goldstein-Mayer lattices,
and Ajtai lattices are all GSA-like. A second class of output pro�les consists
of a single small element followed by a GSA-like decay. Output pro�les of this
shape imply that lattice reduction has found a single short vector b⃗0 with small
norm, and all other vectors are signi�cantly longer. This context appears when
solving the unique SVP problem, so we call such output pro�les �uSVP-like.�
Finally, we observe that several output bases are neither GSA-like nor uSVP-
like. Instead, we observe the presence of two or more levels where the pro�le
is basically �at within a level before increasing to the start of the next level.
We call these output pro�les �structured� because their shape implies the pres-
ence of unexpectedly dense sublattices within a lattice, demonstrating additional
structure when compared to random lattices. Output pro�les for NTRU lattices,
NTRU-like lattices [55], and Coppersmith lattices are all structured.

One important observation is that di�erent lattice problems may have identi-
cal input pro�les, but completely di�erent output pro�les. Random q-ary, LWE,
and NTRU lattices all have balanced input pro�les, but their outputs are GSA-
like, uSVP-like, and structured respectively. Representing a lattice basis by its
pro�le therefore discards information about the lattice and makes it impossible
to exactly predict the properties and behavior of the lattice pro�le during lattice
reduction. Although the lattice pro�le does not encode every property about a
lattice basis, our analysis demonstrates that the lattice pro�le is a powerful tool
for analyzing general lattice problems.

8

0

50

100

Input

49

50

51

Output

q-ary

0

10

20

Input

4

6

8

10

12

Output

LWE

0

20

40

60

Input

0

20

40

60

Output

NTRU

0

20

40

60

Input

0

20

40

60

Output

NTRU-like

0

200

400

Input

9

10

11

Output

Goldstein-Mayer

0

500

1,000

Input

5

10

15

Output

Knapsack

0

2,000

4,000

Input

100

200

300

400

Output

Approximate GCD

0

100

200

Input

257

258

259

260

Output

HNP

200

300

Input

240

242

244

Output

Ajtai

−20

0

20

40

Input

6

8

Output

GGH

5,000

10,000

Input

6,135

6,140

Output

RSA Partial Factorization

400

600

Input

460

480

500

520

Output

ECHNP

Fig. 1. Sample Lattice Input and Output Pro�les. We generated sample lattices
for a number of cryptanalytic problems, then LLL-reduced them. There is a wide variety
of input types and output types. Note that the scales on the y-axes vary enormously
across di�erent problem instances.

9

3.2 Functions of the Lattice Pro�le

The pro�le of a lattice basis encodes signi�cant information about how the pro�le
might evolve during reduction by an LLL-like algorithm. While in some applica-
tions it is justi�ed to use the geometric series assumption to predict the results of
lattice reduction, it is clear from Figure 1 that this assumption is false for many
lattices of interest. For our algorithm to perform well on generic lattices, we must
consider all possible ways the pro�le can change during lattice reduction.

One useful quantity is the spread of a basis, which we de�ne in terms of its
pro�le ℓ⃗ as spread(B) = maxi ℓi−mini ℓi. Kirchner et al. [32] use the spread to set
the working precision of their algorithm, and they use their heuristic assumption
to argue that the spread decreases exponentially quickly.

Neumaier and Stehlé give a key result about the spread [43, Lemma 2].

During every pro�le-altering step in an LLL-like algorithm that updates ℓ⃗→ ℓ⃗′,
we have maxi ℓ

′
i ≤ maxi ℓi. Similarly, mini ℓ

′
i ≥ mini ℓi. That is, spread(B) never

increases. Unfortunately, the spread is not guaranteed to decrease: consider the

basis

[
2p 0
0 1

]
. The spread is p, and the spread of reduced basis

[
0 2p

1 0

]
is also p.

In this work, we consider the lattice potential Π(B) of a basis in the loga-
rithmic domain

Potential: Π(B) =

n∑
i=1

(n− i+ 1)ℓi.

With every swap in an LLL-like algorithm, the potential decreases. Additionally,
if we have a sublattice Bsub and reduce to B′

sub, the change in potential of the
sublattice equals the change in potential of the updated full lattice: Π(Bsub)−
Π(B′

sub) = Π(B)−Π(B′).
Although not directly used in this work, many useful properties of the pro�le

are found in the work of Ducas and van Woerden [21].

3.3 Pro�le Compression and Pro�le Drop

The pro�le of a lattice basis also encodes information about how individual
vectors of that basis may be scaled without interfering with the behavior of an
LLL-like algorithm. This scaling was �rst described by Saruchi et al. [51] and
plays a central role in our ability to bound the precision required of our lattice
reduction algorithm. We recount their technique here, and this motivates the
de�nition of a new function of the lattice pro�le we call the drop.

At a high level, the number of bits of precision required to reduce an arbitrary
basis B depends on the log-condition number of B. If B is size-reduced, the log-
condition number depends on the spread. If B is also compressed by the scaling
method, the spread depends on the drop. We show that the drop decreases during
reduction, bounding the precision necessary at each step.

The key observation from the work of Saruchi et al. [51] is that some lattice
bases can naturally be split into contiguous blocks where no LLL swaps are ever
performed between neighboring blocks. When the pro�le is known, as in the case

10

of upper-triangular bases, these blocks can be detected and exploited to reduce
the number of bits of precision needed to represent the lattice.

Consider a pro�le ℓ⃗ of dimension n where there exists index k satisfying

max
1≤i≤k

ℓi < min
k+1≤i≤n

ℓi.

This naturally splits the lattice into one projected sublattice of dimension k
and one of dimension n − k. Because the pro�le-altering swaps of an LLL-like
algorithm will never increase the maximum pro�le value of the �rst sublattice
and will never decrease the minimum of the second, there will never be a point
at which an LLL swap occurs at indices (k, k + 1).

We can make changes to the basis without interfering with this property. For
any d < mink+1≤i≤n ℓi−max1≤i≤k ℓi, we may scale vectors b⃗k+1, . . . , b⃗n by 2−d,
and the resulting basis still has the property that no LLL swaps occur at (k, k+1).
Since the vectors reduced within a block are scaled uniformly, this operation does
not interfere with the order of LLL swaps within a projected sublattice. We call
any scaling that preserves this block structure and the relative di�erences within
a block a valid scaling. This operation is depicted in Figure 2, and Saruchi et al.
give an example method for computing valid scalings [51, Algorithm 2].

0 20 40 60 80 100
0

10

20

30

Before Compression

0 20 40 60 80 100
0

10

20

30

After Compression

Fig. 2. Example scaling operation. The pro�le on the left is scaled with integer
scaling factors to create the pro�le on the right. These pro�les can be divided into three
blocks: 1 to 55, 56 to 72, and 73 to 100. These three blocks can be scaled independently,
so the second and third blocks are scaled down so that the gaps between blocks are
small. The blue bars on the right depict the di�erent components of the drop. Although
the spread decreases with compression, the drop is unchanged.

Similar to how the Lovász condition ensures the decrease between ℓi and ℓi+1

is bounded, the drop is used to ensure that the decrease within each disjoint
region of the lattice pro�le is bounded. The drop is the in�mum of the spread of
a valid scaling of the pro�le, or equivalently it is the sum of the spreads of each
independent block in the pro�le. A formal de�nition is given below.

De�nition 2 (Pro�le drop). Let ℓ⃗ be the pro�le of a lattice of dimension n,
and de�ne the set

D = ∪1≤i≤n−1,ℓi+1<ℓi [ℓi+1, ℓi].

Then the drop of the pro�le is the volume of this set.

11

A few properties are apparent. First, the drop is invariant under valid scaling.
Second, by rescaling the regions so the gap between each region is O(1), there

is a way to create a scaled lattice with pro�le ℓ⃗′ = ℓ⃗− d⃗ such that spread(ℓ⃗′) =

drop(ℓ⃗) + O(n). Finally, just as Neumeier and Stehlé show the spread never
increases during LLL swaps, the same is true of the drop.

3.4 Lattice Reduction Condition

We use the newly de�ned drop of a lattice pro�le to specify our reduction con-
dition. The Lovász condition of LLL reduction is unsuitable for our application
because it bounds the decrease between all neighboring pro�le elements by the
same amount. For our recursive algorithm, reducing a projected sublattice results
in two large decreases between the pro�le elements directly neighboring the sub-
lattice. Although possible, it is prohibitively expensive to iterate the algorithm
until all decreases between neighbors are small. By weakening the de�nition of
a reduced lattice, we obtain an algorithm that is asymptotically and practically
more powerful.

De�nition 3 (α lattice reduction). A basis B is α-lattice-reduced for α > 0
if it is size-reduced and if drop(B) ≤ αn.

Theorem 2 shows that bases reduced in our sense are just as useful as bases
reduced in the traditional sense, and we �nd the same to be true in practice.

Proof of Theorem 2. The proof of this theorem proceeds in much the same way
as in [45, Theorem 9]. One key observation that makes our proof di�erent is

that drop(B) ≤ αn ⇒ maxi<j(ℓi − ℓj) ≤ αn. The other is that log ∥⃗bi∥ ≤
maxj≤i ℓj +O(n) by size reducedness. Full details are in Appendix B.3.

4 Improved Lattice Reduction Algorithm

A crucial component of our algorithm is how we manage the growth of numerical
error as we repeatedly scale, rotate, and round lattice bases. This is analogous
to tracking �oating point error in a computation, except we apply the concept
to entire lattices. While many works [41,48,51] rely on the rigorous numerical
bounds of Chang et al. [10] to analyze the e�ects of small perturbations, we
unfortunately cannot rely on their results here. They require an analog of the
Lovász condition which is prohibitively strict for our algorithm, and there seems
to be no easy way to adapt their results to support our weaker condition on
reduced bases. As a consequence, our results are asymptotic and to �rst order;
we leave the important goal of developing rigorous bounds to future work.

Our approach to relating two lattice bases comes from normwise perturbation
analysis [54], which uses an exponentially small parameter γ = 2−u to quantify
the maximum deviation between two values. Frequently analysis is done up to
�rst order in γ, and terms involving γ2 are assumed to be negligibly small.

12

De�nition 4 (Similar Lattice Bases). Let B and B̂ be two bases of the same
rank and dimension, and let γ be a small parameter. We say B and B̂ are similar
if there exists orthogonal Q such that for all nonzero x⃗, up to �rst order in γ,

∥Bx⃗−QB̂x⃗∥
∥Bx⃗∥ ≤ γ.

For simplicity, we write B ≈γ B̂.

For integer values of x⃗, note that Bx⃗ and QB̂x⃗ are lattice vectors; the def-
inition therefore states that every vector in lattice L(B) is normwise close to a
particular (rotated) vector in the lattice L(B̂). This is di�erent from [10], which
considers matrix perturbations and basis vector perturbations, but our de�ni-
tion implies that if U is invertible, B ≈γ B̂ ⇔ BU ≈γ B̂U . The above de�nition
leads to several other useful results.

Lemma 1. Let B1, B2, B3 ∈ Rn×n, and let γ, γ′ ≥ 0. Then

1. B1 ≈γ B2 ⇔ B2 ≈γ B1

2. B1 ≈γ B2 and B2 ≈γ′ B3 ⇒ B1 ≈γ+γ′ B3.
3. If B1 ≈γ B2, then to �rst order

∥B2∥ ≤ (1 + γ) ∥B1∥ and ∥B−1
2 ∥ ≤ (1 + κ(B1)γ) ∥B−1

1 ∥

4. Let ℓ⃗1 and ℓ⃗2 be the pro�les of B1 and B2, and let B1 ≈γ B2. Then

|ℓ1,i − ℓ2,i| <
√
2n3κ(B1)γ for all i ∈ {1, . . . , n}.

The proofs are not particularly enlightening, and they involve routine appli-
cations of perturbation theory. These proofs are included in Appendix B.4.

There are a few important things to note with this lemma. First, lattice
basis similarity is symmetric, and error grows slowly when considering transitive
similarity. This fact allows us to bound the accumulated error after calculating a
chain of multiple similar lattice bases. Second, for γ ≪ 1/κ(B), we see that lattice
similarity implies that the condition number and pro�les of similar bases are
provably close. This shows how the condition number κ(B) plays an important
role in similarity, and it justi�es our focus on constraining the condition number
during lattice reduction.

4.1 Basis Compression

The central object in our algorithm is a compressed lattice basis which plays an
analogous role to the size reduction and Gram-Schmidt orthogonalization in the
original LLL algorithm. In particular, we use lattice compression to convert an
arbitrary basis B into a new basis B̂ that captures the same geometric properties
with respect to lattice reduction, except B̂ is upper-triangular with small integer
entries and has a small condition number, making it easier to work with.

13

De�nition 5 (γ-Compressed Lattice Basis). Let B ∈ Rn×n be a basis of
rank n. We say B̂ ∈ Zn×n is a γ-compressed basis of B if it satis�es the following:

� B̂ ≈γ BUD for some unimodular U and diagonal D.

� B̂ ∈ Zn×n is upper-triangular with nonzero diagonal.

� B̂ is size-reduced: log κ(B̂) = drop(B̂) +O(n).

� Entries are small: log ∥B̂∥max = O(drop(B)− log γ + n)

� If U2 is a unimodular matrix obtained by performing LLL swaps or size-
reduction operations on B̂, then DU2D

−1 is unimodular.

The last property is related to the scaling technique of Saruchi et al. [51,
Theorem 2], and it is due to U2 having a block upper triangular structure that
respects the independent blocks described in Section 3.3. It is possible to ef-
�ciently compute a γ-compressed basis given an estimate of κ(B). We outline
the basic compression operation in Algorithm 2, and give additional details in
Appendix B.5.

Algorithm 2: CompressLattice (Simpli�ed)

Input : B ∈ Zn×n, γ ≤ 1/2, C > log κ(B)
Output: B̂ compressed, U ∈ Zn×n, D = diag(2d1 , . . . , 2dn) with di ∈ Z

satisfying B̂ ≈2−O(drop(B)+n)γ BUD. The pro�le of B̂ is close to the
(D-scaled) pro�le of B with absolute error γ.

1 QR-Factorize B to get an upper-triangular, �oating point, γ-similar basis.

2 Compute pro�le ℓ⃗ from the diagonal of the R-factor.

3 Compute integer scaling vector d⃗ using the pro�le and the technique of [51].
4 Scale and round the entries to integer values.

5 Size reduce to get basis B̂ and unimodular U .

6 return B̂, U, diag(2d1 , . . . , 2dn)

Lemma 2. Let ω ∈ (2, 3] and ε be global parameters bounding the complexity
of algorithms as follows. We assume there exists algorithm QR that on input B,
C > log κ(B), returns a γ-similar basis R with κ(R) = 2O(C) in time O(nω(C −
log γ + log n)1+ε). We also assume that there exists algorithm SizeReduce that
size reduces an integer, upper-triangular basis B (with C > log κ(B)) in time
O(nω(C + log ∥B∥max + n)1+ε). Finally, we assume there exists a matrix multi-
plication algorithm which computes product A1A2 of two n× n matrices in time
O(nω(log ∥A1∥max + log ∥A2∥max)

1+ε).

Algorithm CompressLattice returns a compressed basis B̂, diagonal D =
diag(2d1 , . . . , 2dn), and unimodular U satisfying B̂ ≈2−O(drop(B)+n)γ BUD. In

addition, if ℓ⃗B is the pro�le of B and ℓ⃗B̂ is the pro�le of B̂, then we have∣∣∣ℓ⃗B̂,i − (ℓ⃗B,i + di)
∣∣∣ ≤ γ. This algorithm takes time O(nω(C − log γ + n)1+ε).

14

Example QR factorization and size reduction algorithms satisfying the con-
dition with ω = 3 are provided in Appendix B.5, and heuristic algorithms for
ω < 3 are suggested in [32].

The proof of this lemma involves tracking how the condition number changes
after each operation, showing how each operation results in a similar lattice.
The resulting lattice has small condition number and is upper-triangular as a
result of the size-reduction and QR operations. The scaling operation ensures
that spread(ℓ̂i) = drop(B)+O(n), which in turn bounds the resulting precision.

4.2 Reducing Sublattices

An important feature of recursive lattice reduction algorithms is the ability to
compute projected sublattices Bsub, reduce them to obtain unimodular Usub,
then use Usub to apply the same transformation to the original lattice ba-
sis [35,43]. For completeness, we include a description of this operation using
our notation of compression and γ-similarity.

Algorithm 3: ReduceSublattice

Input : Compressed basis B(k) ∈ Zn×n, sublattice index 1 ≤ i < j ≤ n,
reduction quality α(·), approximation quality γ ≤ 2−1, reduction
function LatRed

Output: Compressed basis B(k+1), unimodular U , and diagonal D such that

B(k+1) ≈γ′ B(k)UD for γ′ = 2−O(drop(B(k+1))+n)γ and

drop(B
(k+1)

[i:j]) ≤ (α(j − i) + γ)(j − i).

1 B′
sub, U

′
sub, Dsub ← CompressLattice(B

(k)

[i:j], γ)

2 U ′′
sub ← LatRed(B′

sub,α, γ)

3 U ′ ← diag(Ii−1, U
′
subDsubU

′′
subD

−1
sub, In−j)

4 B(k+1), U ′′, D ← CompressLattice(B(k)U ′, γ)
5 U ← U ′U ′′

6 return B(k+1), U,D

Lemma 3 (Correctness of Algorithm 3 (ReduceSublattice)). Consider
compressed basis B(k), sublattice index [i : j], approximation quality γ, lattice
reduction function LatRed, and lattice reduction quality α. Algorithm 3 returns
compressed basis B(k+1), unimodular U , and diagonal D such that for γ′ =

2−O(drop(B(k+1))+n)γ, we have B(k+1) ≈γ′ B(k)UD. In addition, the pro�le of
B(k+1) matches the (D-scaled) pro�le of B(k) outside of index [i : j] to absolute

error γ and has bounded drop on index [i : j]: drop(B
(k+1)
[i:j]) ≤ (α(j−i)+γ)(j−i).

The running time of this algorithm, excluding the call to LatRed, is

O
(
nω(drop(B(k))− log γ + n)1+ε

)
.

15

The Global Pro�le. In both the practical implementation and theoretical
analysis of our algorithm, it is helpful to make use of a concept we call the
�global pro�le.� As explored in Lemma 3, sublattice reduction returns a new
basis whose (scaled) pro�le is almost unchanged outside of the sublattice index,
and the drop is almost bounded within the sublattice index, where the absolute
error scales with γ. We note that the cost of this algorithm scales with − log γ,
so it is exceedingly cheap to trade o� running time for accuracy.

The closeness of these pro�les means that we can relate the explicitly com-
puted pro�le of the current (local) sublattice to the (global) pro�le of the orig-
inal input had we applied the same unimodular transformations to the input
basis. If we are currently reducing the sublattice Bsub of input B at global in-
dex [i : j] with pro�les ℓ⃗sub and ℓ⃗ respectively, then there exist unimodular U ,
D = diag(2d1 , . . . , 2dn), and similarity γ such that

|ℓ̄i+k − (ℓsub,k − di+k)| ≤ γ for k ∈ {1, . . . , j − i}.
For the purpose of our practical implementation and asymptotic analysis, we
assume γ is parameterized so that the absolute error in the pro�le is negligibly
small. This makes the notation much cleaner and more intuitive. We revisit this
assumption later when we use our heuristic assumptions to select γ, but we note
that the accumulated error is swallowed by the γ′ term in Algorithm 3, is o�set
by the strictly decreasing α in Lemma 4, and does not a�ect the reducedness of
bases, since similarity to a basis with drop O(αn) implies a drop of O((α+γ)n) =
O(αn). We leave rigorous analyses to future work.

This de�nition is practically useful, since d⃗ can be e�ciently computed by
tracking how the bases have been scaled during compression. Therefore at any
point in the computation, the global pro�le is known to high accuracy. We use

Π̄ to refer to the potential computed from the global pro�le ⃗̄ℓ, and we observe
that this is a useful tool for understanding the remaining work to be done during
lattice reduction. For more information, we refer to Appendix B.1.

4.3 Lattice Reduction of Partially Reduced Bases

So far, we have demonstrated how to take a speci�ed sublattice and reduce it, all
while e�ciently maintaining a �compressed� representation whose size depends
on the current pro�le drop. Depending on the pro�le of the compressed basis, the
choice of sublattice can have a large impact on the running time. It is important
to select these sublattices carefully, and in this section we develop a particular
strategy that is e�cient for input bases whose pro�les are slightly constrained.
Section 4.5 uses this subroutine to reduce arbitrary input bases.

Our constraints enable us to construct a simple recursive algorithm that
maintains these properties, and we use this invariance to argue that our al-
gorithm makes progress no matter the particular evolution of the pro�le. This
de�nition and recursive subroutine is the core of our algorithm, and we show how
it is used to reduce generic lattice bases in Section 4.5. We call such constrained
bases LR-reduced, since we require that the Left (B[0:n2]) and Right (B[n2 :n])
projected sublattices each have bounded drop.

16

0 20 40 60
300

400

500

600

700

B(3i)

0 20 40 60
300

400

500

600

700

B(3i+1)

0 20 40 60
300

400

500

600

700

B(3i+2)

0 20 40 60
300

400

500

600

700

B(3i+3)

Fig. 3. Changes in Pro�le during LR Reduction. We logged the pro�le (without
compression scalings) at di�erent stages while running Algorithm 4 on a q-ary lattice
basis. The dashed box indicates the pro�le of the sublattice reduce in each step, cor-
responding to the Middle, Left, and Right sublattices. Observe that B(3i) and B(3i+3)

are LR-reduced, and all sublattices are LR-reduced.

De�nition 6 (LR-reduced basis). We consider a basis B of rank n = 2k and
a reduction parameter α(·). B is LR-reduced if k = 0 or:

� B[0:n2] and B[n2 :n] have bounded drop ≤ α(n/2)n/2, and
� B[0:n2] and B[n2 :n] are LR-reduced with parameter α.

Algorithm 4: ReduceLR

Input : Compressed LR-reduced basis B(3i) of rank n ≥ 2 a power of 2,
reduction quality α, similarity quality γ

Output: Unimodular U such that B(3i)UD ≈2−O(αn)γ B(3r) for diagonal D

and number of rounds r − i. B(3r) is LR-reduced and
α(n)-lattice-reduced.

1 if n = 2 then
2 return U ← output of Schönhage's reduction algorithm [53]

3 B(3i+1), UM , DM ← ReduceSublattice(B(3i), n
4
, 3n

4
,α, γ, ReduceLR)

4 B(3i+2), UL, DL ← ReduceSublattice(B(3i+1), 0, n
2
,α, γ, ReduceLR)

5 B(3i+3), UR, DR ← ReduceSublattice(B(3i+2), n
2
, n,α, γ, ReduceLR)

6 if drop(B(3i+3)) > α(n)n then

7 U2 ← ReduceLR(B(3i+3),α, γ)
8 else

9 U2 ← In
10 U ← UMDMUL(DLUR(DRU2D

−1
R)D−1

L)D−1
M

11 return U

We describe a method to fully reduce LR-reduced bases in Algorithm 4, and
we depict the behavior in Figure 3. The main appeal of this construction is
how the inputs to each recursive call are LR-reduced, so we can temporarily
avoid some of the complexity of analyzing the behavior of our algorithm on
completely arbitrary lattice bases. We conclude this section by exploring how to

17

set some of the input arguments for this algorithm, and investigate the behavior
in Section 4.4.

Setting Reduction Parameter α. We have so far used α(·) to represent
the approximation factors used to bound the quality of reduced sublattices of
di�erent sizes. The particular choice of α has signi�cant impact on the behavior
of the algorithm. If α(n/2) ≈ α(n), then the process depicted in Figure 3 takes
too many rounds to converge, since we require the overall slope in this example
to match the slope in both the left and right halves of the pro�le. Ideally, we want
the sublattices to be reduced to higher quality, so we want α(n/2) < α(n). Fewer
rounds are needed to reduce a basis of rank n, but if α(n/2) is too small, the
high-quality sublattice reductions become prohibitively expensive. In addition,
we require α(2) ≥ α∗ = log(4/3), a bound determined by Hermite's constant for
rank-2 lattices.

A similar phenomenon was observed by Kirchner, Espitau, and Fouque [32],
and they suggest asymptotic ranges for determining the reduction quality of
sublattices. Since our main goal is to have a practical algorithm that concretely
achieves comparable reduction quality to LLL, we develop an entirely new, con-
crete method for setting this parameter. In particular, if our end goal is reducing
a lattice of rank N to quality α, we reduce sublattices of rank n to quality

α(n) = α∗ +
(n

N

)log g

(α− α∗)

for some �xed parameter 1 < g < 2ω−2. This choice of α geometrically interpo-
lates between α∗ and α, and it guarantees α(2) ≥ α∗ and α(N) = α.

Bounding the Number of Rounds. The description of Algorithm 4 refer-
ences the number of rounds r, which counts how many iterations the cycle of
three sublattice reduction steps are applied to input basis B(0). Understanding
r is crucial to bounding the running time and numerical error of the algorithm,
but although r is small in practice, it is challenging to bound this value for all
possible lattice bases without making heuristic assumptions.

Koy and Schnorr [35, Theorem 3] bound the number of iterations of their
recursive algorithm with a block variant of the potential function, but they
�nd it is �impractical� to bound the spread of Gram-Schmidt norms between
blocks, so their approach fails to bound the pro�le drop and is incompatible
with our algorithm. Neumaier and Stehle [43, Lemma 5] use dynamical systems
to bound the number of iterations, but the resulting bases are similarly ill-
behaved. Kirchner et al. [32, Section 4.2] suggest using six iterations in practice.

We make the following heuristic assumptions involving r. These assumptions
hold for the diverse suite of lattice families we tested our algorithm on, and we
were unable to create any pathological counterexamples.

18

Heuristic 1. The potential reduced in the current round is bounded by the
potential reduced in all remaining rounds. In particular,

Π̄(B(3i))− Π̄(B(3(i+1))) = Ω
(
Π̄(B(3i))− Π̄(B(3r))

)
.

Heuristic 2. The change in potential in the current round is bounded in all
except the last two rounds. That is, for all i < r − 2,

Π̄(B(3i))− Π̄(B(3(i+1))) = Ω
(
n3(α(n)−α(n/2))

)
.

Recalling Figure 3, the �rst heuristic assumption captures the idea that the
bulk of the remaining reduction work happens in the next three sublattice reduc-
tions. Intuitively, since the left and right sublattices are already reduced, all of
the remaining potential must be between these two halves; reducing the middle
sublattice decreases much of this potential. The second heuristic is designed to
handle cases where the change in potential is small, like when there is a solitary
long vector in the left sublattice of an otherwise reduced basis. Although we
cannot completely avoid these cases, this heuristic states that if no sublattice
reduction in a round removes much potential, the pro�le is very nearly reduced.

As can be found in Appendix B.6, it is possible to show by induction that
our heuristic assumptions imply that the number of rounds r is

O

(
log

(
Π̄(B(3i))− Π̄(B(3r))

n3(α− α∗)

))
= O

(
log(drop(B(3i))/n) + log

(
1

α− α∗

))
.

Setting the Similarity Parameter γ. Algorithm 3 returns a γ′-similar ba-

sis where γ′ = 2−O(drop(B(k+1))+n)γ; since Algorithm 4 calls this subroutine a
total of 3r times within the r rounds of reduction, this creates a similarity

relationship with parameter
∑r−1

i=0 2−O(drop(B(i+1))+n)γ ≤ 3r2−O(drop(B(3r))+n)γ
= 3r2−O(αn)γ, and this achieves that the pro�les of B(0) and B(3r) are the same
up to scaling and absolute error 3rγ.

This suggests setting the working value of γ at each round i to − log(γ) =
Θ (log r) . The heuristic contribution of log r = O(log(log drop(B(3i)) + log n))
is small, so we infer that the heuristic assumptions about the number of rounds
does not matter much when it comes to evaluating the numerical stability. In
fact, any choice of γ satisfying

γ = 2−O(drop(B(3i))+n).

does not a�ect the O(drop(B(k))− log γ + n) term in the running time.

4.4 Analyzing the Behavior of Left-Right Reduction

Relating the Potential to the Pro�le Drop. The lattice potential is a
useful tool for bounding the remaining work, but the cost of performing basis
compression and matrix multiplication depends on the pro�le drop. We wish to

19

relate these two quantities, but this is challenging. If a lattice does not follow
the GSA, large changes in potential do not necessarily imply large changes in
the drop, and large changes in the drop do not imply large changes in potential.

While [32, Section 4.2] bounds the cost complexity per unit reduction in
potential, it does so using the heuristic assumption which predicts exponentially
decreasing spread. This fails to consider the common cases where sublattice
reduction �nds vectors shorter than predicted by the GSA. We require a new
approach to relate the change in lattice potential to the cost of future updates.

The following lemma shows that the three sublattice reductions in Algo-
rithm 4 either decrease the drop (and therefore future update cost) by a large
amount or decrease the potential by a large amount. We prove this by using
the LR-reduction property to bound the maximum and minimum values of the
pro�le in sublattices of rank n/4 after each of the three sublattice reductions.

Lemma 4. Let B(3i) be the compressed LR-reduced basis of rank n at round i
used as input to Algorithm 4, and let B(3i+3) be the basis after the three sublattice
reductions. The drop of the input basis for the next round is bounded by the
current round's change in global potential Π̄:

n2
(
drop(B(3i+3))− 5α(n)n/2

)
= O

(
Π̄(B(3i))− Π̄(B(3i+3))

)
.

We will use this lemma to amortize the cost of expensive update steps with
the overall change in lattice potential.

Bounding the Running Time. There are many factors that go into bounding
the running time of Algorithm 4. Our goal in analyzing this algorithm is to �nd
a cost function T that can bound the running time at all levels. One piece of the
running time on input B is the cost of the nonrecursive steps, which by Lemma 3
and our choice of γ is O(nω(drop(B) + n)1+ε). We write this as O(nωp1+ε) for
p = Θ(drop(B) + n). Note that log(∥B∥max) = O(p) and log(∥U∥max) = O(p),
so it is natural to think of p as the working precision. Note also that in the base
case, the cost of Schönhage reduction [53] takes time O(p1+ε) = O(nωp1+ε).

The cost function T also contains the recursive cost of Algorithm 4, which
calls itself three times on sublattices of rank n/2, and once on a lattice of rank
n. A cost function T is therefore a valid bound on the running time if

T (B(3i)) ≥ T (BM) + T (BL) + T (BR) + Cun
ωp1+ε + T (B(3i+3)) ≥ 0 (1)

for some constant Cu > 0 bounding the cost of the base case and nonrecursive
steps. We have found that the cost function naturally depends on three values.

1. Potential Change. Like in the original LLL algorithm, the potential of a
lattice basis conveys important information about how much work remains.
Including this term allows us to distinguish between lattice bases that require
the same amount of precision but di�erent amounts of remaining potential.
We set this term to

TΠ̄(B(3i)) = nω−2
(
Π̄(B(3i))− Π̄(B(3r))

)
pε.

20

2. Precision. Lattice basis potential does not capture the entire picture. A
lattice basis may have asymptotically small potential, but require arbitrarily
large precision. Since the nonrecursive steps depend on the precision, this
term must be present. We set this term to

Tprec(B
(3i)) = nωp1+ε.

3. Approximation. We require at least one term to depend on the approx-
imation factor of lattice reduction. Otherwise, this would imply that it is
possible to achieve lattice bases with arbitrarily good approximation. We set
this term to

TA(B
(3i)) =

(
Π̄(B(3i))− Π̄(B(3r))

n3(α(n)−α(n/2))
+ c1

)
nω(n+α(n)n)pε

for i < r for some c1 > 0 and TA(B
(3r)) = 0.

We de�ne function T (B(3i)) = CΠ̄TΠ̄(B(3i)) + CprecTprec(B
(3i)) + CATA(B

(3i))
for some constants CΠ̄ , Cprec, CA. While the �rst two terms make intuitive sense,
the third is more di�cult to explain. As the basis becomes more reduced, the
approximation factor of sublattice reduction remains a �xed cost that always
contributes to the drop. To bound the contribution of this �xed cost in each
node of the recursion tree, we use the heuristic assumptions to bound the recur-
sive behavior and show that this choice of TA(·) satis�es the requirements. Our
conclusion does not rule out the possibility of simpler constructions; we only aim
to give a reasonable construction that works.

Lemma 5. Let ω ∈ (2, 3] be a parameter bounding the complexity of matrix
multiplication, size reduction, and QR factorization as described in Lemma 2.
If the heuristic assumptions 1 and 2 are correct, then there exists appropriate
choice of constants CΠ̄ , Cprec, CA > 0 such that T (·) satis�es Equation 1.

As a corollary, this means that for input B and reduction goal α, it is possible
to instantiate α and γ such that the running time of Algorithm 4 on these inputs
is O(T (B)) =

O

((
α

α− α∗

)
nωp1+ε + αnω+1pε

)
where p = O(drop(B) + n).

4.5 Reducing Generic Lattice Bases

Algorithm 4 provides a method for α-reducing bases with rank n = 2k that are
LR-reduced and compressed, but most lattice bases do not satisfy this condition.
Fortunately, it is comparatively easy to reduce generic bases using this method.

We begin by padding the lattice with a number of large, orthogonal vectors
in higher-dimensional space until the rank of the padded lattice is a power of 2.
These extraneous vectors are chosen so that they are never modi�ed by lattice

21

reduction. In particular, for an input basis B of rank n with κ(B) < 2C , we
generate the padded basis of dimension N = 2⌈log(n)⌉

Bpad =

[
B 0
0 ⌈2n∥B∥max⌉IN−n

]
.

We have drop(B) = drop(Bpad) and κ(Bpad) = 2C+O(logn). The latter state-
ment is because the singular values of Bpad are the singular values of B and
⌈2n∥B∥max⌉. The largest singular value of Bpad is only up to O(n) times larger
than the largest of B, and the smallest singular value is unchanged.

We next compress Bpad to obtain a compressed basis for input to Algorithm 3.
This basis is not LR-reduced, however. We recursively reduce the left sublattice
to quality α, and then do the same with the right. Now that the basis is LR-
reduced and compressed, we use Algorithm 4 to reduce it the rest of the way.
Although this algorithm is also recursive, its recursive structure is simply a
binary tree, and it is fully analyzable.

Lattice reduction of Bpad returns Upad such that, for some scaling Dpad,
drop(BpadUpad) = drop(BpadUpadDpad) ≤ αN/2. In addition, the padding scheme
yields the special structure

Upad =

[
U ′ 0
0 IN−n

]
,

so drop(BU ′) ≤ αn. We �nally size-reduce BU ′ to obtain U which α-lattice-
reduces B. These operations are described in detail in Appendix B.7. We arrive
at the following result.

Theorem 1 (Full). Let B ∈ Zn×n be a lattice basis and C > log(κ(B)) a bound
on its condition number. Let α∗ be a constant determined by the Hermite constant
in small dimension, and let α > 2α∗ be the desired reduction quality. Finally, let
ω ∈ (2, 3] and ε > 0 be parameters bounding the runtime of size reduction, matrix
multiplication, and QR factorization as described in Lemma 2. If the heuristic
assumptions 1 and 2 are correct, then our algorithm returns unimodular U such
that BU is O(α)-lattice-reduced. The running time of our reduction algorithm is

O

((
α

α− α∗

)
nω(C + n)1+ε

)
.

5 Implementation Details

We implemented our algorithm in C++. Our implementation is currently about
14,000 lines of code. We have two versions of our algorithm: the �provable� ver-
sion, where the padding scheme, recursion decisions, and reduction parameters
match those described in our proofs, and the �heuristic� version, which we use
to evaluate the practical performance in our running time experiments.

22

Heuristic and optimization improvements. Our heuristic implementation does
not implement the padding scheme from Section 4.5. Rather than limit ReduceLR
to operate on bases of rank 2k, we simply round when subdividing the lattice. In
addition, we also use an approach similar to [32] to reduce sublattices to quality
α ≫ α(n/2) in early rounds, avoiding expensive reductions of sublattices that
have little e�ect on global potential. Until the drop is su�ciently small, we reduce
sublattices to quality Θ(drop(B)/n), which improves running time considerably.

We also do not always recurse down to rank 2. Instead, if the dimension is
≤ 32 and required precision is at most 128 bits, we use fpLLL to reduce that
basis using LLL or BKZ, depending on the desired reduction quality. This allows
us to achieve α better than log(4/3) in practice.

Typically, we perform compression so the resulting size is 2·drop(B)+3n+30
bits and �nd that our algorithm is stable for all of our test cases. For some of
the ultra-large test cases, we aggressively set the precision to drop(B) + 30 bits.
This is more memory e�cient, but it is not stable for some of the lattice bases
with structured output, so we do not do this by default.

Many optimizations are found in the compression function, as this is a signif-
icant cost in our algorithm. We note that B(k)U ′ in Algorithm 3 is block-upper-

triangular, with B2,2 corresponding to B
(k)
[i:j] in the following example:

B(k)U ′ =

B1,1 B1,2 B1,3

0 B2,2 B2,3

0 0 B3,3

 .

The only non-upper-triangular block on the diagonal is B2,2, so
[
B2,2 B2,3

]
can

be QR-factorized on its own. If B(k) was η-size-reduced before sublattice reduc-
tion, then B1,1 and B3,3 remain size-reduced. B1,2 changed with multiplication
by U ′, but only B1,1 is needed to size-reduce B1,2. This is independent of the
QR-factorization in the second row, so we are able to exploit the data dependen-
cies to do multiple operations in parallel, including reducing multiple sublattices
simultaneously. If we use do a variant of Seysen size reduction, we avoid a po-
tentially unstable inversion of B1,1 by exploiting its triangularity [27, Chapter
8] to size-reduce B1,2.

We additionally adopt a version of [32, Algorithm 8] to make a basis LR-
reduced, rather than exactly implement the method described in Section 4.5.
This is because in practice, knapsack-like lattices often behave like random,
GSA-like lattices at the beginning of computation. The �rst sublattice reduction
of rank 2 often decreases the drop by half, and it is cheaper to recompress the
entire rank-n basis now since only two rows are not η-size-reduced. However,
it is easy to construct knapsack-like counterexamples that do not behave like
random lattices (a diagonal knapsack-like basis is one example), so while this is
a worthwhile case to optimize for, and there is no downside to performing early
reduction in this way, it is not possible to prove that our algorithm runs faster
on knapsack-like input bases.

23

6 Experimental Evaluation

We conducted a series of experiments to demonstrate the performance of our
algorithm. All of our experiments were carried out on a single core of a 2.20GHz
Intel Xeon E5-2699v4 processor of a machine with 512GB of RAM unless noted
otherwise. This machine was built in 2016. For fpLLL, we used version 5.4.2
available on GitHub, compiled and run on this same machine. For the Kirchner,
Espitau, and Fouque (KEF) algorithm, the authors kindly shared their source
code with us, which we also compiled and ran on this same machine.

The speci�c details of a problem determine what approximation factor is
required to solve the problem, and we con�gure all three implementations to
heuristically obtain equivalently short vectors. Typically, this corresponds to a
root Hermite factor of 1.02 or 1.03, as is achieved by the default L2 implemen-
tation of fpLLL. Better approximation factors are achieved using fpLLL's BKZ
implementation, and worse approximation factors are achieved by doing L2 with
a smaller value of δ. Each measurement is collected over a single instance of
the respective problem, since the running time does not vary signi�cantly across
multiple trials. Additional experiments are found in Appendix A.

6.1 Knapsack Lattices

Knapsack lattices are one of the canonical applications of lattice reduction in
cryptography and cryptanalysis, and one of the most common classes of lattices
encountered in lattice reduction problems. One of the �rst applications of lattice
reduction in cryptography was to solve the low-density subset sum problem to
attack knapsack public-key cryptography. We use the lattice basis construction of
[36], which is knapsack-like in input and uSVP-like in output, since the solution
to the subset sum problem corresponds to a uniquely short vector.

We constructed the lattice bases for the knapsack instances in [32] and re-
duced them using our implementation, fpLLL, and the implementation of [32].
Because their implementation crashes partway through the reduction process,
we present their reported values. All examples were run single-threaded and
reduced to quality α = 0.0852, equivalent to root Hermite factor 1.03.

Table 1. Performance on knapsack lattices.

Dimension Bit size fpLLL (s) [32, reported] (s) Ours (s)

128 100000 3831 400 69
256 10000 2764 200 83
384 10000 10855 780 246

We conjecture that the presence of this uniquely short vector, which means
that the heuristic assumption of [32] does not hold at all recursion levels, leads
to their algorithm requiring more bits of precision than ours, and therefore a
longer runtime.

24

6.2 Gentry-Halevi Fully Homomorphic Encryption

Gentry proposed a Fully Homomorphic Encryption (FHE) scheme based on ideal
lattices in 2009 [24] with concrete parameters suggested by Gentry and Halevi
in [25]. The scheme relied on two hardness assumptions. First, the di�culty of
breaking the underlying somewhat homomorphic encryption scheme was based
on ideal lattice problems, and the hardness of the transformation that made it
bootstrappable was based on the sparse subset sum problem (SSSP). Gentry
and Halevi have created several public keys for this scheme as a cryptanalytic
key recovery challenge.2

Due to a polynomial-time quantum algorithm [6] and subexponential-time
classical algorithms [7,8] solving the principal ideal problem, FHE based on ideals
is no longer considered secure. The SSSP challenges were solved in practice by
[37], breaking the bootstrapping argument of Gentry and Halevi's scheme. We
are unaware of a practical break of the underlying ideal lattice problems for the
proposed small, medium, and large parameters in the main challenges.

Gentry and Halevi propose di�erent security levels s that naturally lead to
lattices in Hermite Normal Form of dimension n = 2s+1 and bit size 380(2s+1).

The goal of lattice reduction is �nding a basis with ∥⃗b∗n∥ su�ciently large. Gentry-
Halevi lattices are knapsack-like in input and GSA-like in output.

Chen and Nguyen reduced the toy parameters (dimension 512) in 30 core-
days in 2011 using generic lattice reduction algorithms [11]. They estimated that
the small parameters (dimension 2048) would take 45 core-years and the medium
parameters (dimension 8192) would take 68582 core-years. Plantard, Susilo, and
Zhang exploited extra algebraic structure to solve the toy challenge in 24 core-
days in 2015 and estimated 15.7 years to solve the small parameters [50].

Our implementation solves the toy parameters in 15 core-minutes and the
small parameters in under 31 core-hours running single-threaded on the 2.2GHz
processors. We additionally broke the small parameters in 4 hours 10 minutes
wall time running in multithreaded mode on an AMD EPYC 72F3 8-core pro-
cessor running at up to 4.1GHz. Gentry and Halevi's small main challenge has
solution 201 216 186 242 353 55 335 420 104 13 299 262 510 414 239.

We solved the medium parameters in about 6.4 core-years running in mul-
tithreaded mode on a 2.6GHz Intel Xeon E7-4860v2 processor of a machine
with one terabyte of RAM, taking 151 days of wall time. The calculation re-
quired over 400 gigabytes of RAM and minor manual intervention to calibrate
the working precision and stopping point. To solve the challenge, we reduced an
8192-dimensional knapsack-like lattice with 375-kilobyte entries, and we achieved
a root Hermite factor of 1.033 with ∥⃗b∗n∥ > 16. The medium main challenge has
solution 137 215 285 520 251 145 157 205 510 389 110 38 203 248 116.

The KEF implementation [32] ran on lattices up to dimension 128, and fpLLL
ran up to dimension 256. As shown in Figure 4, our implementation is both faster
than the alternatives and terminates for larger parameter sizes.

2 https://shaih.github.io/pubs/FHE-challenge-2010.html

25

https://shaih.github.io/pubs/FHE-challenge-2010.html

211 213 215 217 219 221 223 225 227 229 231

20

210

4 8 16 32 64 128 256 512 1024 2048

lattice potential

se
co
n
d
s

KEF
fpLLL
Ours

dimension

Fig. 4. Gentry-Halevi Ideal FHE. We compare the single-threaded performance of
our lattice reduction algorithm on Gentry-Halevi ideal lattices. The 512-dimensional
parameters correspond to the �toy� parameter settings in the original scheme, and 2048
dimensions were the �small� parameters.

6.3 Univariate Coppersmith

Coppersmith's method can be used to �nd small roots of low-degree polynomials
modulo integers of possibly unknown factorization. This method is particularly
interesting in cryptanalysis because it is fully provable using only the approxi-
mation guarantees of LLL, and is one of the canonical applications for LLL in
cryptanalysis. However, the dimension and parameters increase quickly as the
size of the problem approaches the asymptotic limits.

We implemented Howgrave-Graham's version [28] of Coppersmith's original
method [14,15] to solve the problem of decrypting low public exponent RSA with
stereotyped messages. We set e = 3 for a 2048-bit modulus N , and varied the
number of unknown bits of the message from 400 (solvable with a dimension 5
lattice) and 678 (solvable with a 382-dimensional lattice with 430,000 bit entries).
The asymptotic limit for the method with these parameters (without additional
brute forcing) would be expected to be ≈ ⌊(logN)/3⌋ = 682 bits.

These lattices violate the GSA, and the heuristic assumption in [32] does
not hold for them. These lattices have irregular input and structured output.
We note that this application only requires �nding a single short vector, so the
provable guarantees of some of the recursive algorithms would su�ce to solve it.

We compare our algorithm to fpLLL, the KEF algorithm [32], and these
implementations with the rounding approach of Bi et al. [5] which achieves an
asymptotic improvement over LLL for this lattice construction.

The experimental results are shown in Figure 5. We can see that the LLL
with rounding technique achieves an asymptotic improvement over plain LLL,
and our algorithm improves further. The implementation of [32] crashed on all
instances after dimension 20, even when using the rounding technique.

We attempted to determine why their implementation crashed to rule out
simple programming errors. The most common cause of failure occurred while
performing size reduction; an assertion failed, indicating that the function failed
to converge on a stable solution within 1000 iterations. We hypothesize that
the lack of stability is due to incorrectly setting the working precision of their

26

214 216 218 220 222 224 226 228 230 232 234 236

20
24
28
212
216
220

lattice potential

se
co
n
d
s

KEF

KEF with Rounding

fpLLL

fpLLL with Rounding

Ours

Fig. 5. RSA with Stereotyped Messages. We generated Coppersmith/Howgrave-
Graham lattices for 2048-bit RSA plaintext recovery from stereotyped messages, and
compare our running time to the KEF algorithm, fpLLL, and both with the rounding
approach of Bi et al. [5]. The KEF algorithm crashed on instances above dimension 20.

213 215 217 219 221 223 225 227 229 231 233

20
24
28
212
216

324 342 410 473 496 505 508 509 510

lattice potential

se
co
n
d
s

KEF
fpLLL
Ours

unknown bits

Fig. 6. RSA Partial Factorization. We generated Howgrave-Graham lattices for
2048-bit RSA factorization with high bits known. The dimension and potential grow
quickly as the number of unknown bits approaches the asymptotic limit of 512. The
KEF code crashed after 487 unknown bits, solvable with a 19-dimensional lattice.
The largest parameters we were able to solve required a 265-dimensional lattice with
270,000-bit entries.

algorithm. Occasionally, their implementation exhausted the 512GB RAM on our
test machines, and the process was killed by the operating system. These failures
appear to stem from weaknesses in the algorithm rather than the programming
of the implementation.

6.4 RSA Factorization with High Bits Known

In [14], Coppersmith gave a polynomial-time algorithm for factoring an RSA
modulus from half of the most or least signi�cant bits of one of the factors,
assuming only the approximation guarantee of LLL.

Later, Howgrave-Graham gave an alternative formulation of factoring with
partial information as an instance of the problem of computing approximate com-
mon divisors [29], with an alternative lattice construction that has become the
preferred method of solving this problem in practice. This method has seen sev-
eral real-world applications, including cryptanalysis of broken random number

27

generation in Taiwanese smartcards [4], cryptanalyzing broken In�neon prime
generation [42], and cryptanalyzing MEGA encryption [3].

In theory, using this method it is possible to factor an RSA modulus in
polynomial time with knowledge of half of the most or least signi�cant bits of
one of the factors. In practice, this method can be remarkably e�cient when
relatively few bits need to be recovered, but the parameters required to solve
the problem increase quickly as the number of bits to solve for approaches half
the bits of a factor. To be concrete, for a 2048-bit RSA modulus, a 3-dimensional
lattice with 2048-bit entries su�ces to solve for 341 unknown bits of one of the
1024-bit factors, but if one wishes to solve for 511 unknown bits, the minimum
parameters that result in a solvable problem instance dictate that one needs
to reduce a 545-dimensional lattice with 557,000-bit entries, assuming that the
reduction achieves an approximation factor of 1.02dimL.

Figure 6 shows experimental results comparing algorithm performance on
Howgrave-Graham lattices of minimal parameters to solve each problem size.
The largest problem instance we were able to solve recovered 510 bits of a 1024-
bit factor; this required reducing a 265-dimensional lattice with 270,000-bit en-
tries in under 8 hours of computation time. The largest instance fpLLL was able
to solve recovered 508 unknown bits by reducing a lattice of dimension 135 with
133,000-bit entries. For this problem size, fpLLL took around 20 hours of compu-
tational time; our implementation reduced the same lattice in 20 minutes. The
implementation of [32] crashed on all instances larger than the 19-dimensional
lattice that solves the problem for 487 unknown bits.

In practice, one can brute force some of these unknown bits to avoid pro-
hibitively expensive lattice reduction times, and apply the �chaining� approach
of Bi et al. [5] to the successive lattice reductions. Improving the runtime of the
lattice reduction step is an important step in reducing the total runtime of this
process. The lattice for this problem has irregular input and structured output,
violates the GSA, and falsi�es the heuristic of [32].

6.5 q-ary Lattice Reduction

Lattice-reduction algorithms are frequently run on q-ary lattices of the form

B =

[
qI A
0 I

]
.

It is easy to generate lattices of this form uniformly at random by sampling A
from Zm×n

q . Input bases like this are balanced, but their outputs types can vary
depending on the problem. Although the pro�les for LWE and NTRU lattices
behave in the same way as for a random q-ary lattice, there is a �phase transition�
where the extra structure in these lattices becomes apparent [1,22]. For LWE
and NTRU, this divergence from randomness occurs when the secret vector is
found, and lattice reduction can terminate early. It is therefore interesting to
consider the performance of our algorithm on random q-ary lattice bases, and
the output of these bases is GSA-like.

28

We ran our lattice reduction implementation on the same parameter sizes as
reported in [32] and to approximation quality equivalent to root Hermite factor
1.02. We reduced the same lattices using fpLLL and the implementation from
[32]. All experiments were single-threaded.

222 224 226 228 230 232 234 236 238 240 242
20
24
28
212
216

nΠ

se
co
n
d
s

KEF
fpLLL
Ours

Fig. 7. q-ary. The algorithm of [32] has been optimized for the case of q-ary lattices,
and performs quite well on them. Our implementation shows similar asymptotic be-
havior. [32] did not terminate for instance sizes above 1024 dimensions.

Our implementation is signi�cantly faster than fpLLL, but slower than [32].
The implementation of [32] did not terminate for instance sizes above dimension
1024 with precision 512, dimension 512 with precision 4096. The largest basis
successfully reduced by fpLLL had dimension 256 with 2048-bit entries. The
implementation of [32] has been aggressively optimized for this lattice pro�le,
and such optimizations could likely be used to speed up our own implementation
even further. We also note that our implementation was capable of running
on even larger instances. The largest q-ary basis we successfully reduced had
dimension 1536 with 3072-bit entries.

6.6 Approximate GCD

Numerous FHE and multilinear map schemes [12,17,18,19,20,56] have been pro-
posed which rely on the hardness of the approximate greatest common divisor
(AGCD) [29] problem. There are many di�erent lattice constructions for solv-
ing AGCD (see [56, Appendix B] and [13,23,32]), and the solvability depends
on both the number of samples and the approximation factor. While Kirchner
et al. mention that they vary the approximation factor and dimension out of
memory concerns, they do not document the �nal parameters for each test case.
We derive and run experiments for our own construction and parameters.

We build and reduce the dual of the lattice construction (3.1) presented in
van Dijk et al. [56] to solve AGCD, which we note is related to the multiplicity-
one Coppersmith construction [13]. We focus on the dual because the resulting
unimodular update matrices are smaller in practice, and computing the update
matrices for the primal is prohibitively expensive. It is e�cient to compute the
dual of the reduced dual and recover the secret short vector in the primal.

Like [32], we observe a tradeo� between approximation quality α, dimension,
and attack time. As predicted by Theorem 1, we experimentally observe that

29

Table 2. Performance on AGCD lattices. We perform a lattice attack on FHE
and multilinear map schemes by solving instances of the AGCD problem. The reported
size is the maximum size of entries in the basis in millions of bits.

Scheme Sec. Lvl. Size (Mb) Our dim. Our α KEF (s) Our time (s)

CMNT [19] 42 0.16 152 0.220 300 59
52 0.86 556 0.210 3300 1406
62 4.2 2156 0.179 52016

CNT [20] 42 0.06 204 0.199 200 54
52 0.27 876 0.135 1700 1673
62 1.02 3422 0.065 531005

CLT [18] 42 0.27 144 0.314 780 85
52 1.1 600 0.213 10560 1946
62 4.2 2486 0.167 68940

CCK [12] 52 0.9 621 0.209 4400 1665
62 4.6 2478 0.172 82920 116400

CLT [17] 52 0.99 601 0.210 4000 1779
62 4.26 2514 0.167 79320 67599

both high dimension and small α can lead to long running times. We �nd a
curve that �ts the behavior on small instances to predict parameter settings
that lead to fast reduction times for large instances. Our choice of parameters
may not be optimal, but our strategy is e�ective for solving AGCD in practice.

We generated lattice bases for the same schemes described in [32] and at-
tempted to reduce them using both their implementation and our implementa-
tion in multithreaded mode to match the original evaluation. Their implemen-
tation crashed partway through reduction on all instances, so we present their
running times as originally reported. We present the results in Table 2.

We see that our implementation is faster in almost all cases. However, since
we do not have the full details of their construction, we are unsure if the im-
proved performance is due to the nature of our algorithm, the details of our
implementation, or the parametrization of our attack. Regardless of the reason,
we also note that our implementation successfully broke larger instances of the
AGCD problem than previously reported for three of the schemes, corresponding
to a 62-bit security level.

Acknowledgments

We are grateful to Thomas Espitau for helpful discussions and sharing source
code, we thank Jonathan M. Smith for graciously providing computing time
on di�erent, modern processors for our experiments, and we thank Daniel J.
Bernstein for numerous discussions and grantwriting. We also thank Léo Ducas
for informative discussions and Shai Halevi for �nding and reuploading an o�ine
copy of the Gentry and Halevi FHE challenges. Finally, we thank the anonymous
reviewers for their extensive comments on an earlier version of this work. This
work was supported by NSF grant no. 1913210.

30

References

1. Albrecht, M., Ducas, L.: Lattice attacks on NTRU and LWE: A history of re�ne-
ments. Cryptology ePrint Archive, Report 2021/799 (2021), https://eprint.iacr.
org/2021/799

2. Albrecht, M.R., Bai, S., Ducas, L.: A sub�eld lattice attack on overstretched NTRU
assumptions - cryptanalysis of some FHE and graded encoding schemes. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 153�178.
Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/978-3-662-53018-4_6

3. Backendal, M., Haller, M., Paterson, K.G.: MEGA: Malleable Encryption Goes
Awry. In: 2023 IEEE Symposium on Security and Privacy (SP). pp. 450�467 (May
2023). https://doi.org/10.1109/SP46215.2023.00026

4. Bernstein, D.J., Chang, Y.A., Cheng, C.M., Chou, L.P., Heninger, N., Lange, T.,
van Someren, N.: Factoring RSA keys from certi�ed smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 341�360. Springer, Heidelberg (Dec 2013). https://doi.org/10.1007/
978-3-642-42045-0_18

5. Bi, J., Coron, J.S., Faugère, J.C., Nguyen, P.Q., Renault, G., Zeitoun, R.: Round-
ing and chaining LLL: Finding faster small roots of univariate polynomial congru-
ences. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 185�202. Springer,
Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0_11

6. Biasse, J.F., Song, F.: E�cient quantum algorithms for computing class groups
and solving the principal ideal problem in arbitrary degree number �elds. In:
Krauthgamer, R. (ed.) 27th SODA. pp. 893�902. ACM-SIAM (Jan 2016). https:
//doi.org/10.1137/1.9781611974331.ch64

7. Biasse, J.F.: Subexponential time relations in the class group of large degree num-
ber �elds. Advances in Mathematics of Communications 8(4), 407�425 (2014).
https://doi.org/10.3934/amc.2014.8.407

8. Biasse, J.F., Fieker, C.: Subexponential class group and unit group computation in
large degree number �elds. LMS Journal of Computation and Mathematics 17(A),
385�403 (2014). https://doi.org/10.1112/S1461157014000345

9. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden num-
ber problem. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 36�51.
Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_3

10. Chang, X.W., Stehlé, D., Villard, G.: Perturbation analysis of the QR factor R in
the context of LLL lattice basis reduction. Mathematics of Computation 81(279),
1487�1511 (2012), https://hal-ens-lyon.archives-ouvertes.fr/ensl-00529425

11. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1�20. Springer, Heidel-
berg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

12. Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315�335. Springer, Heidel-
berg (May 2013). https://doi.org/10.1007/978-3-642-38348-9_20

13. Cohn, H., Heninger, N.: Approximate common divisors via lattices. ANTS X p. 271
(2012). https://doi.org/10.2140/obs.2013.1.271

14. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233�260 (Sep 1997). https://doi.org/
10.1007/s001459900030

31

https://eprint.iacr.org/2021/799
https://eprint.iacr.org/2021/799
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1007/978-3-662-53018-4_6
https://doi.org/10.1109/SP46215.2023.00026
https://doi.org/10.1109/SP46215.2023.00026
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-42045-0_18
https://doi.org/10.1007/978-3-642-54631-0_11
https://doi.org/10.1007/978-3-642-54631-0_11
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.1137/1.9781611974331.ch64
https://doi.org/10.3934/amc.2014.8.407
https://doi.org/10.3934/amc.2014.8.407
https://doi.org/10.1112/S1461157014000345
https://doi.org/10.1112/S1461157014000345
https://doi.org/10.1007/3-540-45682-1_3
https://doi.org/10.1007/3-540-45682-1_3
https://hal-ens-lyon.archives-ouvertes.fr/ensl-00529425
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.2140/obs.2013.1.271
https://doi.org/10.2140/obs.2013.1.271
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030
https://doi.org/10.1007/s001459900030

15. Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silver-
man, J.H. (ed.) Cryptography and Lattices. pp. 20�31. Springer, Heidelberg (2001)

16. Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EU-
ROCRYPT'97. LNCS, vol. 1233, pp. 52�61. Springer, Heidelberg (May 1997).
https://doi.org/10.1007/3-540-69053-0_5

17. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the
integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 476�493. Springer, Heidelberg (Aug 2013). https://doi.org/10.1007/
978-3-642-40041-4_26

18. Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic
encryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS,
vol. 8383, pp. 311�328. Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/
978-3-642-54631-0_18

19. Coron, J.S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic en-
cryption over the integers with shorter public keys. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 487�504. Springer, Heidelberg (Aug 2011).
https://doi.org/10.1007/978-3-642-22792-9_28

20. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446�464. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_27

21. Ducas, L., van Woerden, W.: A note on a claim of Eldar & Hallgren: LLL already
solves it. Cryptology ePrint Archive, Report 2021/1391 (2021), https://eprint.iacr.
org/2021/1391

22. Ducas, L., van Woerden, W.P.J.: NTRU fatigue: How stretched is overstretched?
In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol.
13093, pp. 3�32. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/
978-3-030-92068-5_1

23. Galbraith, S.D., Gebregiyorgis, S.W., Murphy, S.: Algorithms for the approximate
common divisor problem. LMS Journal of Computation and Mathematics 19(A),
58�72 (2016). https://doi.org/10.1112/S1461157016000218

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169�178. ACM Press (May / Jun 2009). https:
//doi.org/10.1145/1536414.1536440

25. Gentry, C., Halevi, S.: Implementing Gentry's fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632,
pp. 129�148. Springer, Heidelberg (May 2011). https://doi.org/10.1007/
978-3-642-20465-4_9

26. Goldstein, D., Mayer, A.: On the equidistribution of Hecke points 15(2), 165�189
(2003). https://doi.org/10.1515/form.2003.009

27. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, second edn. (2002)

28. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) 6th IMA International Conference on Cryptography and
Coding. LNCS, vol. 1355, pp. 131�142. Springer, Heidelberg (Dec 1997)

29. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) Cryptography and Lattices. pp. 51�66. Springer, Heidelberg (2001)

30. Kirchner, P., Espitau, T., Fouque, P.A.: Algebraic and euclidean lattices: Optimal
lattice reduction and beyond. Cryptology ePrint Archive, Report 2019/1436 (2019),
https://eprint.iacr.org/2019/1436

32

https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/3-540-69053-0_5
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-40041-4_26
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-22792-9_28
https://doi.org/10.1007/978-3-642-29011-4_27
https://doi.org/10.1007/978-3-642-29011-4_27
https://eprint.iacr.org/2021/1391
https://eprint.iacr.org/2021/1391
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1112/S1461157016000218
https://doi.org/10.1112/S1461157016000218
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1007/978-3-642-20465-4_9
https://doi.org/10.1515/form.2003.009
https://doi.org/10.1515/form.2003.009
https://eprint.iacr.org/2019/1436

31. Kirchner, P., Espitau, T., Fouque, P.A.: Fast reduction of algebraic lattices over
cyclotomic �elds. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II.
LNCS, vol. 12171, pp. 155�185. Springer, Heidelberg (Aug 2020). https://doi.org/
10.1007/978-3-030-56880-1_6

32. Kirchner, P., Espitau, T., Fouque, P.A.: Towards faster polynomial-time lattice
reduction. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol.
12826, pp. 760�790. Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.
org/10.1007/978-3-030-84245-1_26

33. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU pa-
rameters. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS,
vol. 10210, pp. 3�26. Springer, Heidelberg (Apr / May 2017). https://doi.org/10.
1007/978-3-319-56620-7_1

34. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU pa-
rameters. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptology � EURO-
CRYPT 2017. pp. 3�26. Springer International Publishing, Cham (2017)

35. Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases. In: Silverman, J.H.
(ed.) Cryptography and Lattices. pp. 67�80. Springer, Heidelberg (2001)

36. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. In: 24th
FOCS. pp. 1�10. IEEE Computer Society Press (Nov 1983). https://doi.org/10.
1109/SFCS.1983.70

37. Lee, M.S.: On the sparse subset sum problem from gentry-halevi's implementation
of fully homomorphic encryption. Cryptology ePrint Archive, Report 2011/567
(2011), https://eprint.iacr.org/2011/567

38. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coe�cients. Mathematische Annalen 261(4), 515�534 (Dec 1982). https://doi.org/
10.1007/BF01457454

39. May, A.: Using LLL-reduction for solving RSA and factorization problems. pp. 315�
348. ISC, Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1

40. Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147�191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-540-88702-7_5

41. Morel, I., Stehlé, D., Villard, G.: H-LLL: Using householder inside LLL. In: Pro-
ceedings of the 2009 International Symposium on Symbolic and Algebraic Compu-
tation. p. 271�278. ISSAC '09, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1576702.1576740

42. Nemec, M., Sýs, M., Svenda, P., Klinec, D., Matyas, V.: The return of copper-
smith's attack: Practical factorization of widely used RSA moduli. In: Thuraising-
ham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1631�1648.
ACM Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3133969

43. Neumaier, A., Stehlé, D.: Faster LLL-type reduction of lattice bases. In: Proceed-
ings of the ACM on International Symposium on Symbolic and Algebraic Compu-
tation. p. 373�380. ISSAC '16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2930889.2930917

44. Nguyen, P.Q.: The two faces of lattices in cryptology (invited talk). In: Vaudenay,
S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, p. 313. Springer, Heidelberg
(Aug 2001). https://doi.org/10.1007/3-540-45537-X_24

45. Nguyen, P.Q.: Hermite's constant and lattice algorithms. pp. 19�69. ISC, Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-02295-1

46. Nguyen, P.Q., Stehlé, D.: LLL on the average. In: Hess, F., Pauli, S., Pohst, M.
(eds.) Algorithmic Number Theory. pp. 238�256. Springer, Heidelberg (2006)

33

https://doi.org/10.1007/978-3-030-56880-1_6
https://doi.org/10.1007/978-3-030-56880-1_6
https://doi.org/10.1007/978-3-030-56880-1_6
https://doi.org/10.1007/978-3-030-56880-1_6
https://doi.org/10.1007/978-3-030-84245-1_26
https://doi.org/10.1007/978-3-030-84245-1_26
https://doi.org/10.1007/978-3-030-84245-1_26
https://doi.org/10.1007/978-3-030-84245-1_26
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1007/978-3-319-56620-7_1
https://doi.org/10.1109/SFCS.1983.70
https://doi.org/10.1109/SFCS.1983.70
https://doi.org/10.1109/SFCS.1983.70
https://doi.org/10.1109/SFCS.1983.70
https://eprint.iacr.org/2011/567
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1145/1576702.1576740
https://doi.org/10.1145/1576702.1576740
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/3133956.3133969
https://doi.org/10.1145/2930889.2930917
https://doi.org/10.1145/2930889.2930917
https://doi.org/10.1007/3-540-45537-X_24
https://doi.org/10.1007/3-540-45537-X_24
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1

47. Nguyen, P.Q., Stehlé, D.: An LLL algorithm with quadratic complexity. SIAM
Journal on Computing 39(3), 874�903 (2009). https://doi.org/10.1137/070705702

48. Novocin, A., Stehlé, D., Villard, G.: An LLL-reduction algorithm with quasi-linear
time complexity: Extended abstract. In: Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing. p. 403�412. STOC '11, Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
1993636.1993691

49. Pataki, G., Tural, M.: On sublattice determinants in reduced bases (2008). https:
//doi.org/10.48550/ARXIV.0804.4014

50. Plantard, T., Susilo, W., Zhang, Z.: LLL for ideal lattices: re-evaluation of the
security of Gentry-Halevi's FHE scheme. Designs, Codes and Cryptography 76(2),
325�344 (Aug 2015). https://doi.org/10.1007/s10623-014-9957-1

51. Saruchi, Morel, I., Stehlé, D., Villard, G.: LLL reducing with the most signi�cant
bits. In: Proceedings of the 39th International Symposium on Symbolic and Alge-
braic Computation. p. 367�374. ISSAC '14, Association for Computing Machinery,
New York, NY, USA (2014). https://doi.org/10.1145/2608628.2608645

52. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Mathematical Programming 66(1), 181�
199 (Aug 1994). https://doi.org/10.1007/BF01581144, https://doi.org/10.1007/
BF01581144

53. Schönhage, A.: Fast reduction and composition of binary quadratic forms. In: Pro-
ceedings of the 1991 International Symposium on Symbolic and Algebraic Compu-
tation. p. 128�133. ISSAC '91, Association for Computing Machinery, New York,
NY, USA (1991). https://doi.org/10.1145/120694.120711

54. Stewart, G.W., Sun, J.g.: Matrix perturbation theory (1990)
55. The FPLLL development team: fplll, a lattice reduction library, Version: 5.4.2

(2022), https://github.com/fplll/fplll, available at https://github.com/fplll/fplll
56. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic

encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24�43. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.
1007/978-3-642-13190-5_2

57. Xu, J., Hu, L., Sarkar, S.: Cryptanalysis of elliptic curve hidden number problem
from PKC 2017. Designs, Codes and Cryptography 88(2), 341�361 (Feb 2020).
https://doi.org/10.1007/s10623-019-00685-y

34

https://doi.org/10.1137/070705702
https://doi.org/10.1137/070705702
https://doi.org/10.1145/1993636.1993691
https://doi.org/10.1145/1993636.1993691
https://doi.org/10.1145/1993636.1993691
https://doi.org/10.1145/1993636.1993691
https://doi.org/10.48550/ARXIV.0804.4014
https://doi.org/10.48550/ARXIV.0804.4014
https://doi.org/10.48550/ARXIV.0804.4014
https://doi.org/10.48550/ARXIV.0804.4014
https://doi.org/10.1007/s10623-014-9957-1
https://doi.org/10.1007/s10623-014-9957-1
https://doi.org/10.1145/2608628.2608645
https://doi.org/10.1145/2608628.2608645
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/BF01581144
https://doi.org/10.1145/120694.120711
https://doi.org/10.1145/120694.120711
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/s10623-019-00685-y
https://doi.org/10.1007/s10623-019-00685-y

A Extra Experiments

A.1 Validation of Heuristics

We perform two experiments to validate Heuristics 1 and Heuristic 2. We ran
Algorithm 4 with g = 1.9 and α ≥ 1.17 on a diverse set of test cases exhibiting
a wide variety of reduction behavior. We logged the pro�les at every iteration
and computed global pro�les Π̄(B(3i)), Π̄(B(3i+3)), and Π̄(B(3r)) for close to

150000 samples. Heuristic 1 predicts Π̄(B(3i))−Π̄(B(3(i+1)))
Π̄(B(3i))−Π̄(B(3r))

= Ω (1), so we plot the

distribution of these values in Figure 8. At every single step, at least 25% of the
total remaining potential was eliminated before the next round, supporting the
Ω(1) claim.

0 0.2 0.4 0.6 0.8 1
0

2,000

4,000

6,000

8,000

10,000

Next change in potential/Remaining change

C
ou

n
ts

Fig. 8. Distribution of ratios of potential change. We experimentally examined
the change in potential in each round of sublattice reductions and found that at least
25% and typically 50% or more of the remaining potential is eliminated with each
round. There is a signi�cant peak at 75% which corresponds to the dense sublattice
structure particular to the reduction of NTRU lattices.

To validate Heuristic 2, we compared the change in potential in each round
to n3(α(n)−α(n/2)) and identi�ed the minimum ratio over all of our samples.
We �nd that the behavior is exponential in the �nal rounds as predicted by
Heuristic 1, but in the last round r−1, the change in potential no longer appears
to be bounded below. This matches and exceeds our Heuristic 2. In addition, the
changes in potential are the same order of magnitude as the 1

12 (α(n)−α(n/2))n3

change in potential when the slope goes from α(n) to α(n/2), so it is reasonable
for these minima to be in this range.

A.2 NTRU

When the modulus of an NTRU instance is too large, it is called overstretched
and can be solved e�ciently by using reduction quality equivalent to LLL [2,22,34].
We run similar tests of Overstretched NTRU as those reported in [32]. However,

35

Table 3. Behavior in �nal rounds. We compare the smallest ratio of change in
potential to n3(α(n) − α(n/2)) in each round, and also compare the 1st and 5th per-
centile to show that the minimum is not an extreme outlier. There is an approximately
exponential pattern up until round r−1, at which point the change in potential can be-
come extremely small. This is stronger than our heuristic, which predicted exponential
behavior up until round r − 2.

Round Minimum ratio 1% 5%

r − 5 0.30557 0.53677 0.88857
r − 4 0.12630 0.36312 0.75744
r − 3 0.04374 0.23439 1.48293

r − 2 0.02492 0.58072 2.61102
r − 1 10−11 0.38456 1.31462

we are not certain we have replicated their test cases properly. Based on the
reported running time of fpLLL, it appears that the table in their Section 6.1
under-reports the dimension of NTRU lattices by a factor of 2. Assuming this was
the case for these experiments, we perform the experiments with the reported
dimension doubled.

Table 4. Performance on NTRU lattices.

Dimension Bit size fpLLL KEF reported (s) Ours (s)

512 80 2042 200 147
768 70 11173 600 558
1024 70 35300 2000 1204

For larger instances, Table 2 of [32] reduces sublattices of NTRU lattices. We
are uncertain we have properly replicated their construction, as it appears that
in one case their construction suggests taking a lattice of dimension 1024 and
extracting a sublattice of dimension 1648.

Table 5. Performance on overstretched NTRU lattices.

Dimension Bit size KEF Ours

2560 883 15800 8752
3086 11 839000 Memory error

A.3 Multivariate Coppersmith

There are a number of heuristic multivariate extensions to Coppersmith meth-
ods, which quickly produce large lattices with very high dimension. For our
evaluation, we look at the Elliptic Curve Hidden Number Problem (ECHNP) as

36

presented in [57]. In this problem, an oracle reveals a fraction of the bits of the
x-coordinate of an elliptic curve point, and Coppersmith's method provides a
way to recover the remainder. As the fraction of revealed bits becomes smaller,
the dimension and entry size of the corresponding lattice basis quickly grows
larger. We classify these bases as having irregular input and structured output.

We consider a 256-bit curve and leakage varying from 80% to 70% of the bits.
The largest lattice we successfully reduced had rank 891 and 1794-bit entries.
We reduced the same lattices using fpLLL and the implementation of [32]; the
latter implementation crashed on the smallest instance and did not terminate
on any larger test cases.

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

20

24

28

212

216

dimension times change in lattice potential

se
co
n
d
s

fpLLL
Ours

Fig. 9. Multivariate Coppersmith ECHNP lattices. The KEF [32] implementa-
tion did not terminate on any test cases so we omit it from the plot.

37

B Proofs of Theorems and Lemmas

B.1 Bounding the Decrease in Global Potential

As mentioned in Section 6, the global pro�le can be used to bound the remaining
change in potential before the lattice is fully reduced. This can be used as an
estimate of how much work remains in lattice reduction and the progress made
so far. Although the original LLL paper bounds the change in log-potential by
Õ(n2 maxi ∥⃗bi∥) [38, Proposition 1.26], our bound is signi�cantly stronger in
several common cases. On top of this, our bound is easy to compute, and it is
the tightest bound that can be computed from the pro�le.

Lemma 6 (Bounding the change in potential). Let B be a lattice basis of
rank n, and let B′ be any other basis of the same lattice with smaller potential,
for example the end result of lattice reducing B. Let ℓi = log ∥⃗b∗i ∥ be the pro�le of
B, and similarly for ℓend,i and B′. We can compute a new vector ℓ⃗↗ which is the

entries of ℓ⃗ sorted in ascending order. Then the maximum change in potential
Π(ℓ⃗) =

∑n
i=1(n− i+ 1)ℓi is bounded by

Π(ℓ⃗)−Π(ℓ⃗end) ≤ Π(ℓ⃗)−Π(ℓ⃗↗).

This bound is easily computed from ℓ⃗ alone. Furthermore, this bound is opti-
mally tight among all bounds computable from ℓ⃗ alone.

Our proof makes use of the following result from Pataki and Tural [49], which
we rewrite in our notation.

Lemma 7 (Pataki-Tural). Let B1 and B2 be bases for a lattice of rank n, and

let ℓ⃗1 and ℓ⃗2 be their respective pro�les. For any r ≤ n we have

r∑
i=1

ℓ2,i ≥ min
I⊂{1,...,n},|I|=r

∑
i∈I

ℓ1,i.

Proof of Lemma 6. To �nd the upper bound, we would like to calculate the
maximum possible change in potential

max
ℓ⃗∗∈S

(
Π(ℓ⃗)−Π(ℓ⃗∗)

)
where S is the set of lattice pro�les that could be reached from ℓ⃗ via a LLL-like
algorithm. We �rst prove a lower bound for minℓ⃗∗ Π(ℓ⃗∗) and then show this

bound is achieved by ℓ⃗∗ = ℓ⃗↗.

We use the partial sums s∗k =
∑k

j=1 ℓ
∗
j , observing that Π(ℓ⃗∗) =

∑n
k=1 s

∗
k.

Lemma 7 gives a lower bound for each k which is achieved by ℓ⃗↗:

s∗k ≥ min
I⊂{1,...,n},|I|=k

∑
i∈I

ℓi =

k∑
i=1

ℓ↗,i.

38

Therefore Π(ℓ⃗) ≥ Π(ℓ⃗end) ≥ Π(ℓ⃗↗), proving the bound.
We now show the bound is optimally tight for bounds solely computed from

the pro�le. Given pro�le ℓ⃗, we will give an example basis where the bound is
achieved. Consider the lattice basis B = diag(2ℓ1 , . . . , 2ℓn) which has pro�le ℓ⃗.
Let B′ be the basis which has the columns of B sorted by size. Clearly this
is a basis of the same lattice, and the pro�le of B′ is ℓ⃗↗. Because we have

constructed an example where the change in potential of a basis with pro�le ℓ⃗
is Π(ℓ⃗)−Π(ℓ⃗↗), our bound is tight.

B.2 Properties of Size-Reduced Lattices

Our de�nition of size reduction is asymptotic in nature, but despite the lack of
additional speci�city in De�nition 1, this is su�cient to conclude several easy
but interesting things about size-reduced bases.

Lemma 8. Let B be a size-reduced basis of rank n, and let ℓ⃗ be the pro�le. Then

log κ(B) = spread(B) +O(n).

Proof. Let B = QDM be the decomposition in De�nition 1. We have κ(B) =
∥B∥∥B−1∥ = ∥QDM∥∥(QDM)−1∥ ≤ ∥D∥∥M∥∥M−1∥∥D−1∥. Thus log κ(B) =
maxi ℓi −mini ℓi +O(n) = spread(B) +O(n).

Another useful property of size-reduced bases is that they allow us to bound
condition numbers of the update matrices.

Lemma 9. Let B be a basis of rank n and let U be a unimodular matrix such
that BU is size-reduced. We bound the size of the largest element of U by

log ∥U∥max ≤ log ∥U∥ = O(log κ(B) + n).

The same bound holds for U−1.

Proof. First, note that ∥U∥ ≤ ∥B−1∥∥BU∥ and ∥U−1∥ ≤ ∥B∥∥(BU)−1∥. This
means log κ(U) ≤ log κ(B) + log κ(BU), and

log κ(U) = log κ(B) + spread(BU) +O(n) = O(log κ(B) + n)

by Lemma 8. Since U is unimodular and has integer entries, 1 ≤ ∥U∥ and
1 ≤ ∥U−1∥. Thus

log ∥U∥ = O(log κ(B) + n).

Lemma 10. Let B be a size-reduced basis of rank n. The size of each vector is
bounded by the pro�le ℓ⃗. That is, for all i ∈ {1, . . . , n}

log ∥⃗bi∥ = max
1≤j≤i

ℓj +O(n).

Proof. We note that it is possible to decompose B = QDM as the product of
an orthogonal matrix, diagonal matrix, and unitriangular matrix. For any index
i, ∥⃗bi∥ = ∥(DM)i∥, and since M is upper-triangular, only the �rst i entries

along the diagonal of D a�ect vector (DM)i. This property implies ∥⃗bi∥ ≤
max1≤j≤i ∥⃗b∗j∥∥Mi∥ ≤ 2max1≤j≤i ℓj∥M∥. Thus log ∥⃗bi∥ = max1≤j≤i ℓj+O(n).

39

B.3 Properties of Reduced Lattices

We recall the statement of Theorem 2.

Theorem 2. Let B be a α-lattice-reduced rank-n basis satisfying our new de�-
nition of reduction quality. Let b⃗∗i denote the ith Gram-Schmidt vector and λi(B)
denote the ith successive minimum of the lattice spanned by B. Then B satis�es

1. ∥⃗b1∥ ≤ 2αn(detB)1/n.

2. ∥⃗b∗n∥ ≥ 2−αn(detB)1/n.

3. For all i ∈ {1, . . . , n}, ∥⃗bi∥ ≤ 2αn+O(n)λi(B).

4. ∥⃗b1∥ × · · · × ∥⃗bn∥ ≤ 2αn
2+O(n2) detB.

Proof of Theorem 2. Let ℓ⃗ be the pro�le or B.

To prove 1, we have ℓ1−mini ℓi ≤ drop(B) ≤ αn and 1
n log(detB) = 1

n

∑n
i=1 ℓi ≥

mini ℓi ≥ ℓ1 − αn. Exponentiating gives det(B)1/n ≥ ∥⃗b1∥2−αn ⇒ ∥⃗b1∥ ≤
2αn det(B)1/n.

The proof of 2 follows in the same way: maxi ℓi − ℓn ≤ drop(B) ≤ αn and
1
n log(detB) = 1

n

∑n
i=1 ℓi ≤ maxi ℓi ≤ ℓn + αn. Exponentiating gives ∥⃗b∗n∥ ≤

2−αn det(B)1/n.

To prove 3, we �rst have mini≤j≤n ℓj ≤ log λi(B) by [45, Lemma 7]. Because B
is α-lattice-reduced, it is size-reduced. By Lemma 10,

log ∥⃗bi∥ = max
1≤j≤i

ℓj +O(n)

= (max
1≤j≤i

ℓj − min
i≤j≤n

ℓj) + min
i≤j≤n

ℓj +O(n)

= αn+ log λi(B) +O(n).

Exponentiating gives ∥⃗bi∥ ≤ 2αn+O(n)λi(L).

To prove 4, note that we have log ∥⃗bi∥ ≤ max1≤j≤i ℓj +O(n) ≤ ℓi +αn+O(n).
Summing over i gives

n∑
i=1

log ∥⃗bi∥ ≤ O(n2) + αn2 +

n∑
i=1

ℓi

⇒ ∥⃗b1∥ × · · · × ∥⃗bn∥ ≤ 2αn
2+O(n2) detB.

40

B.4 Properties of Similar Lattices

We recall the statement of Lemma 1.

Lemma 1. Let B1, B2, B3 ∈ Rn×n, and let γ, γ′ ≥ 0. Then

1. B1 ≈γ B2 ⇔ B2 ≈γ B1

2. B1 ≈γ B2 and B2 ≈γ′ B3 ⇒ B1 ≈γ+γ′ B3.
3. If B1 ≈γ B2, then to �rst order

∥B2∥ ≤ (1 + γ) ∥B1∥ and ∥B−1
2 ∥ ≤ (1 + κ(B1)γ) ∥B−1

1 ∥

4. Let ℓ⃗1 and ℓ⃗2 be the pro�les of B1 and B2, and let B1 ≈γ B2. Then

|ℓ1,i − ℓ2,i| <
√
2n3κ(B1)γ for all i ∈ {1, . . . , n}.

Proof.

Item 1. By assumption in the forward direction, there exists orthogonal Q such
that for all nonzero x⃗, ∥B1x⃗−QB2x⃗∥ ≤ γ∥B1x⃗∥. Using the triangle inequality,
∥B1x⃗∥−∥QB2x⃗∥ ≤ ∥B1x⃗−QB2x⃗∥. Combining these, we get ∥B1x⃗∥ ≤ 1

1−γ ∥B2x⃗∥
To �rst order in γ, this is (1+γ)∥B2x⃗∥. Finally, ∥B1x⃗−QB2x⃗∥ ≤ γ(1+γ)∥B2x⃗∥
gives the required bound to �rst order. The reverse direction is identical.

Item 2. We have by assumption the existence of Q,Q′ such that for nonzero x⃗,

∥B1x⃗−QB2x⃗∥ ≤ γ∥B1x⃗∥
∥B2x⃗−Q′B3x⃗∥ ≤ γ′∥B2x⃗∥.

Thus,

∥B1x⃗−QQ′B3x⃗∥
≤ ∥B1x⃗−QB2x⃗∥+ ∥QB2x⃗−QQ′B3x⃗∥
= ∥B1x⃗−QB2x⃗∥+ ∥B2x⃗−Q′B3x⃗∥
≤ ∥B1x⃗−QB2x⃗∥+ γ′∥B2x⃗∥
≤ ∥B1x⃗−QB2x⃗∥+ γ′(∥B1x⃗−QB2x⃗∥+ ∥B1x⃗∥)
≤ (1 + γ′)γ∥B1x⃗∥+ γ′∥B1x⃗∥
≤ (γ + γ′)∥B1x⃗∥

after discarding the higher-order γ terms.

Item 3. We have by assumption the existence of Q such that for nonzero x⃗,

∥B1x⃗−QB2x⃗∥ ≤ γ∥B1x⃗∥.

By de�nition of the spectral norm, ∥B1−QB2∥ = maxx̸⃗=0 ∥B1x⃗−QB2x⃗∥/∥x⃗∥ ≤
maxx̸⃗=0 γ∥B1x⃗∥/∥x⃗∥ = γ∥B1∥. This means

∥B2∥ = ∥QB2∥ ≤ ∥B1 −QB2∥+ ∥B1∥ ≤ (1 + γ)∥B1∥.

41

For the inverse,

∥(QB2)
−1 −B−1

1 ∥ ≤
κ(B1)

∥B1−QB2∥
∥B1∥

1− κ(B1)
∥B1−QB2∥

∥B1∥

∥B−1
1 ∥

by Stewart and Sun [54, Corollary III.2.7]. Therefore

∥B−1
2 ∥ ≤ ∥B−1

1 ∥+ ∥(QB2)
−1 −B−1

1 ∥ <
(
1 +

κ(B1)γ

1− κ(B1)γ

)
∥B−1

1 ∥

and the condition holds to �rst order.

Item 4. We have ∥B1x⃗ −QB2x⃗∥ ≤ γ∥B1x⃗∥. We set B1 +∆B1 = QB2 and use
standard results from [54]. We have

∥∆B1∥ = max
x̸⃗=0

∥∆B1x⃗∥
∥x⃗∥ = max

x̸⃗=0

∥B1x⃗−QB2x⃗∥
∥B1x⃗∥

∥B1x⃗∥
∥x⃗∥ ≤ γ∥B1∥.

Therefore, ∥∆B1∥F ≤ γ
√
n∥B1∥. If we let R and R̂ be the R-factors of B1 and

QB2D, then

|Rii − R̂ii|/|Rii| ≤ n(|Rii − R̂ii|)/∥R∥
≤ n∥R− R̂∥/∥R∥
≤
√
2n∥B1∥∥B−1

1 ∥∥∆B1∥F /∥R∥
≤ γ
√
2n3∥B1∥∥B−1

1 ∥.

This can be used to relate the pro�les ℓ⃗1 and ℓ⃗2 of B1 and B2 in terms of γ and
the condition number of B1. Thus, to �rst order,

ℓ2,i − ℓ1,i = log |R̂ii| − log |Rii|
≤ log((|Rii − R̂ii|+ |Rii|)/|Rii|)
= log(1 + |Rii − R̂ii|/|Rii|)
≤ |Rii − R̂ii|/|Rii|
≤ γ
√
2n3κ(B1).

A similar bound applies to ℓ1,i − ℓ2,i.

We also develop the following results, which are helpful for analyzing our
algorithm.

Lemma 11 (Lattice Similarity via Matrix Perturbation). Let B, B̂ ∈
Rn×n be bases of rank n and γ such that B ≈γ B̂. Then there exists Q such that

∥B −QB̂∥ ≤ γ∥B∥.
Conversely, let B, B̂ ∈ Rn×n be bases of rank n and Q an orthogonal matrix.

For γ ≥ ∥B −QB̂∥∥B−1∥ we have

B ≈γ B̂.

42

Proof. For the �rst claim, the de�nition of lattice similarity establishes the exis-
tence of Q such that ∥Bx⃗−QB̂x⃗∥ ≤ γ∥Bx⃗∥ for all nonzero x⃗. Thus ∥B−QB̂∥ ≤
maxx̸⃗=0 ∥(B −QB̂)x⃗∥/∥x⃗∥ ≤ maxx̸⃗=0 γ∥Bx⃗∥/∥x⃗∥ = γ∥B∥.

For the second claim, we wish to bound ∥Bx⃗ − QB̂x⃗∥/∥Bx⃗∥ by γ for all
nonzero x⃗. We have

max
x̸⃗=0

∥Bx⃗−QB̂x⃗∥
∥Bx⃗∥ ≤ ∥B −QB̂∥max

x̸⃗=0

∥x⃗∥
∥Bx⃗∥ = ∥B −QB̂∥∥B−1∥ ≤ γ.

Lemma 12 (Lattice Similarity after Rounding). Let B be a basis of rank n
with κ(B) < 2C , and let ⌊B⌉ ∈ Zn×n be the same basis with each entry rounded
to the closest integer. For γ ≥ n2C/∥B∥max, B ≈γ ⌊B⌉.

Proof. Rounding gives ∥B − ⌊B⌉∥ ≤ n∥B − ⌊B⌉∥max = n/2. By Lemma 11,
we therefore have B ≈γ ⌊B⌉ for γ ≥ n∥B−1∥/2. Since ∥B−1∥ < 2C/∥B∥ ≤
2C/∥B∥max, the condition holds for γ ≥ n2C−1/∥B∥max.

B.5 The Compression Algorithm

In this section, we analyze the stability and running time of algorithms involved
in lattice basis compression. We begin by giving example methods to perform
QR factorization and size reduction, and we analyze their behavior under our
framework of lattice basis similarity.

Lemma 13 (Running time of QR factorization). Let B ∈ Zn×n be a basis
of rank n where κ(B) < 2C . For any γ, there exists an algorithm that computes
upper-triangular R in �oating point representation such that

R ≈γ B and κ(R) = 2O(C)

This operation takes time O(n3(C − log(γ) + log(n))1+ε).

Proof. Our algorithm performs Householder QR factorization of B with �oating
point precision p′, to be speci�ed later. Let R be the output of this algorithm.
By [27, Theorem 19.4], there exists orthogonal Q such that B + ∆B = QR

where ∥∆b⃗j∥ ≤ γ̃′
n2 ∥⃗bj∥ for j ∈ {1, . . . , n} and γ̃′

n2 as de�ned in [27], noting
− log(γ̃′

n2) + log(n2) = Θ(p′) to �rst order. We have ∥B − QRI∥ = ∥∆B∥ ≤∑n
j=1 ∥∆b⃗j∥ ≤ nγ̃′

n2 maxj ∥⃗bj∥ ≤ nγ̃′
n2∥B∥. By Lemma 11, B ≈γ′ R for γ′ ≥

nγ̃′
n22C > nγ̃′

n2κ(B). What remains is choosing γ′ based on γ and choosing p′

such that γ′ ≥ nγ̃′
n22C .

We choose γ′ = 2−Θ(C−log(γ)). This is done so that B ≈γ′ R implies κ(R) =
O(κ(B)γ′) = 2O(C). It then su�ces to take p′ = Θ(C − log(γ) + log(n)). House-
holder factorization involves O(n3) �oating point operations, so the overall run-
ning time is is O(n3(C − log(γ) + log(n))1+ε).

43

Algorithm 5: SizeReduce adapted from [43,45]

Input : Upper-triangular basis B ∈ Zn×n and bound C > log(κ(B))
Output: Basis B′ and unimodular U such that B′ = BU is size-reduced

1 bi,j,1 ← Bi,j for i, j ∈ {1, . . . , n}
2 U ← In
3 p′ ← ⌈C + log(n)⌉+ 2
4 for j ← 1 to n do

5 for i← j − 1 to 1 do
6 qi,j ← ⌊bi,j,(j−i)/bi,i,1⌉
7 for k ← 1 to i do
8 bk,j,(j−i+1) ← bk,j,(j−i) − qi,jbk,i,(i−k+1)

9 Uk,j ← Uk,j − qi,jUk,i (mod 2p
′
)

10 B′
i,j ← bi,j,(j−i+1)

11 return B′, U

We also analyze the size-reduction operation in depth. We consider size-
reduction on integer, upper-triangular lattices, which means we do not need to
worry about numerical precision or representing large rational numbers in the
Gram-Schmidt decomposition. While our results are not di�cult to prove, we
are not aware of a good reference for the running time in this context, so we
present our analysis of Algorithm 5 here.

Lemma 14 (Running Time of Size Reduction). Let B ∈ Zn×n be an upper-
triangular basis of rank n and C > log(κ(B)) be an upper bound on the condition
number. Let p > log ∥B∥max bound the input size. On this input, Algorithm 5
takes time O(n3(C + p+ n)1+ε) to size-reduce B.

Proof. Clearly, there are O(n3) arithmetic operations, so we wish to bound the
sizes of integers encountered during computation. We �rst bound the q and b
variables by tracking how each is updated throughout the course of the algo-
rithm, and then separately bound the size of entries of U .

Unsurprisingly, we use the size-reduction property to show that intermediate
values of bk,j,(j−i+1) are have reduced size. Note that the (i, j) entry in the
basis B is updated j − i times before the value in B′ is computed. We have
|qi,j | = ⌊bi,j,(j−i)/bi,i,1⌉ ≤ |bi,j,(j−i)|/|bi,i,1|+1, so it is helpful to have a bound on
|bk,j,(j−k)|. Since bk,j,(j−i+1) = bk,j,(j−i)− qi,jbk,i,(i−k+1), we have |bk,j,(j−i+1)| ≤
|bk,j,(j−i)|+ |qi,j ||bk,i,(i−k+1)|, and size-reducedness gives |bk,i,(i−k+1)| < |bk,k,1|.

44

We therefore have

|bk,j,(j−k)| < |q(k+1),j ||bk,k,1|+ |bk,j,(j−k−1)|

<

j−1∑
i=k+1

|qi,j ||bk,k,1|+ |bk,j,1|

< |bk,k,1|
(

j−1∑
i=k+1

|bi,j,(j−i)|
|bi,i,1|

+ 1

)
+ |bk,j,1|

< |bk,k,1|
(

j−1∑
i=k+1

|bi,j,(j−i)|
|bi,i,1|

)
+ (j − k)2p

⇒ |bk,j,(j−k)|
|bk,k,1|

<

(
j−1∑

i=k+1

|bi,j,(j−i)|
|bi,i,1|

)
+ (j − k)2p/|bk,k,1|

<

(
j−1∑

i=k+1

|bi,j,(j−i)|
|bi,i,1|

)
+ (j − k)2p.

This gives a recursive relation that is satis�ed by
|bi,j,(j−i)|
|bi,i,1| < (2j−i − 1)2p for

1 ≤ i < j ≤ n. Thus we have |bk,j,(j−k)| < 2n+2p and |bk,j,(j−i+1)| < |bk,j,j |. This
means the largest value of bi,j,k (and qi,j) can be stored with ⌈n+ 2p⌉+ 1 bits.

To bound the precision needed to calculate the �nal U , it su�ces to deter-
mine p′ > log ∥U∥max and perform all updates to U modulo 2p

′
. We could use

Lemma 9 to do this, but because additional information about BU is known,
we can derive an exact bound. We have ∥U∥max ≤ ∥U∥ ≤ ∥B−1∥∥BU∥ and
∥BU∥2 ≤ ∥BU∥2F ≤ n

∑n
i=1 B

2
i,i ≤ n2∥B∥2max ≤ n2∥B∥2. Because ∥U∥max ≤

n2C , p′ = ⌈C + log(n)⌉+ 2 bits su�ce to calculate each entry of U .
Combining these, we see that the largest value encountered during execution

has O(C+p+n) bits, so the running time of Algorithm 5 is O(n3(C+p+n)1+ε).

Algorithm 6: ScaleAndRound

Input : B ∈ Rn×n in �oating point representation, γ ≤ 2−1, C > log κ(B)
Output: B′ ∈ Zn×n in integer representation, d ∈ Z with B ≈γ B′2d

1 γ′ ← 2−Cγ
2 d← ⌈C + log(n)− log(γ′)− log(∥B∥max)⌉+ 1

3 B1 ← 2dB
4 B′ ← ⌊B1⌉
5 return B′, d

Next, we examine an auxiliary method that aids in the compression of lat-
tice bases. Our compression algorithm frequently needs to convert a basis from

45

�oating point representation to integer representation, and abstracting out this
method gives useful stability bounds.

Lemma 15. On input B, γ, and C > log κ(B), Algorithm 6 (ScaleAndRound)
returns an integer basis B′ and integer scaling factor d satisfying B ≈γ B′2d.
The resulting basis B′ has bounded condition number and entry size, satisfying
κ(B′) = 2O(C) and ∥B′∥max = 2O(C+log(n)−log(γ)). The running time on this
input is O(n2(C + log(n)− log(γ)).

Proof. After computing γ′ and d, Algorithm 6 scales the �oating point values in
B by 2d, which can be done exactly. This gives B ≈0 2−dB1. We have ∥B1∥max >
n2C/γ′ and ∥B1∥max < n2C+2/γ′.

After rounding the values in B1 to obtain B′, Lemma 12 establishes that
since γ′ > n2C/∥B1∥max, B1 ≈γ′ B′. We bound κ(B′) < 2C

′
using Lemma 1.

We have

κ(B′) ≤ (1 + κ(B1)γ
′)κ(B1) < (1 + γ)κ(B1)

so κ(B′) ≈ κ(B1) = κ(B) < 2C up to �rst order in γ, and we can compute
bound log κ(B′) = C + log(1 + γ). Since γ ≤ 2−1 and condition numbers are
always at least 1, C1 = O(C).

We bound ∥B′∥max < 2p
′
for p′ = Θ(C+log(n)−log(γ)) by noting ∥B′∥max ≤

∥B1∥max + 1 ≤ n2C+2/γ′ + 1 ≤ n22C+3/γ.
The running time is dominated by the cost of outputting the n2 values of

size O(C + log(n)− log(γ)) bits.

These tools allow us to construct the full compression algorithm. We describe
the full proven algorithm in Algorithm 7 and prove the claims made in Lemma 2,
which we recall here.

Lemma 2. Let ω ∈ (2, 3] and ε be global parameters bounding the complexity
of algorithms as follows. We assume there exists algorithm QR that on input B,
C > log κ(B), returns a γ-similar basis R with κ(R) = 2O(C) in time O(nω(C −
log γ + log n)1+ε). We also assume that there exists algorithm SizeReduce that
size reduces an integer, upper-triangular basis B (with C > log κ(B)) in time
O(nω(C + log ∥B∥max + n)1+ε). Finally, we assume there exists a matrix multi-
plication algorithm which computes product A1A2 of two n× n matrices in time
O(nω(log ∥A1∥max + log ∥A2∥max)

1+ε).
Algorithm CompressLattice returns a compressed basis B̂, diagonal D =

diag(2d1 , . . . , 2dn), and unimodular U satisfying B̂ ≈2−O(drop(B)+n)γ BUD. In

addition, if ℓ⃗B is the pro�le of B and ℓ⃗B̂ is the pro�le of B̂, then we have∣∣∣ℓ⃗B̂,i − (ℓ⃗B,i + di)
∣∣∣ ≤ γ. This algorithm takes time O(nω(C − log γ + n)1+ε).

Proof. Algorithm 7 performs a number of manipulations of basis B. Throughout
the execution of the algorithm, we must show that the condition number and
size of entries remain bounded, and we must also establish that output lattice
basis is similar to the input basis.

46

Algorithm 7: CompressLattice

Input : B ∈ Zn×n, γ ≤ 1/2, C > log κ(B)
Output: B̂ compressed, U ∈ Zn×n, D = diag(2d1 , . . . , 2dn) with di ∈ Z

satisfying B̂ ≈2−O(drop(B)+n)γ BUD. The pro�le of B̂ is close to the
(D-scaled) pro�le of B with absolute error γ.

1 γ′ ← γ2−C−1/
√
2n3

2 B1 ← QR(B, γ′/3) ; // κ(B) = 2O(C)

3 B2, s
′ ← ScaleAndRound(B1, γ

′/3) ; // κ(B1) = 2O(C)

4 B3, U
′ ← SizeReduce(B2) ; // κ(B2) = 2O(C)

5 Compute pro�le ℓi ← log(|B3|i,i) for i ∈ {1, . . . , n}
6 d⃗← 0, ℓ⃗′ ← ℓ⃗
7 for k ← 1 to n do

8 if max1≤i≤k ℓi + 1 < mink+1≤i≤n ℓi then
9 t← ⌊mink+1≤i≤n ℓi −max1≤i≤k ℓi⌋

10 di ← di − t for k + 1 ≤ i ≤ n
11 ℓ′i ← ℓ′i − t for k + 1 ≤ i ≤ n

12 D′ ← diag(2d1 , . . . , 2dn)

13 B4 ← B3D
′ ; // κ(B3) = 2O(spread(ℓ⃗)+n)

14 B5, s
′′ ← ScaleAndRound(B4, γ

′/3) ; // κ(B4) = 2O(spread(ℓ⃗)+n)

15 B6, U
′′ ← SizeReduce(B5) ; // κ(B5) = 2O(spread(ℓ⃗)+n)

16 γ′′ ← γ2−O(spread(ℓ⃗′)+n)

17 B7, s
′′′ ← ScaleAndRound(B6, γ

′′) ; // κ(B6) = 2O(spread(ℓ⃗′)+n)

18 B8, U
′′′ ← SizeReduce(B7) ; // κ(B7) = 2O(spread(ℓ⃗′)+n)

19 U ← U ′D′U ′′U ′′′D′−1

20 D ← 2−(s′+s′′+s′′′)D′

21 B̂ ← B8

22 return B̂, U,D

47

We begin by QR-factorizing B to quality γ′/3. Since κ(B) = 2O(C), the
assumption implies that B1 ≈γ′/3 B and κ(B1) = 2O(C). The operation takes
time O(nω(C − log γ′ + log n)1+ε).

Scaling and rounding returns B2 and s′ satisfying B1 ≈γ′/3 2s
′
B2, κ(B2) =

2O(c), and ∥B2∥max = 2O(C+logn−log γ′). The running time of scaling and round-
ing is negligible compared to QR-factorization and size reduction.

Size reduction of B2 takes time O(nω(C− log γ′+n)1+ε) and returns B3, U
′.

Because B3 is size-reduced, κ(B3) = 2O(spread(ℓ⃗)+n) and κ(U ′) = 2O(C+n).

Computing the pro�le and scaling coe�cients d⃗ as described takes O(n2)
operations on logarithmically small values, so it does not contribute to the overall
running time. We note it is possible to do this in O(n) operations by considering
the cumulative maximum from the left and cumulative minimum from the right.
We have B4 ≈0 B3D

′. Since ∥B4∥ ≤ ∥B3∥∥D′∥ and ∥B−1
4 ∥ ≤ ∥B−1

3 ∥∥D′−1∥,
κ(B4) = κ(B3)2

O(maxi di−mini di) = 2O(spread(ℓ⃗))+n.

Scaling and rounding of B4 returns B5 and s′′ satisfying B4 ≈γ′/3 2s
′′
B5. We

have κ(B5) = 2O(spread(ℓ⃗)+n) and ∥B5∥max = 2O(spread(ℓ⃗)+n−log γ′). The running
time is again negligible.

Size reduction of B5 takes time O(nω(spread(ℓ⃗) − log γ′ + n)1+ε) and re-

turns B6, U
′′. Because B6 is size-reduced, κ(B6) = 2O(spread(ℓ⃗′)+n) and κ(U ′′) =

2O(spread(ℓ⃗)+n).

Scaling and rounding of B6 returns B7 and s′′′ satisfying B6 ≈γ′′ 2s
′′′
B7. We

have κ(B7) = 2O(spread(ℓ⃗′)+n) and ∥B7∥max = 2O(spread(ℓ⃗′)−log γ′′+n).

The �nal size reduction of B7 takes time O(nω(spread(ℓ⃗′) − log γ′′ + n)1+ε)

and returns B8, U
′′′. Because B8 is size-reduced, κ(B8) = 2O(spread(ℓ⃗′)+n) and

κ(U ′′′) = 2O(spread(ℓ⃗′)+n).

It remains to show that U and D satisfy B̂ ≈γ BUD, B̂ = B8 is compressed,
the pro�les are close to absolute error γ, and the overall running time is bounded.
We have B ≈γ′/3 B1, B1 ≈γ′/3 2s

′
B2, B2U

′ = B3, B3 = B4D
′−1, B4 ≈γ′/3

2s
′′
B5, B5U

′′ = B6, B6 ≈γ′′ 2s
′′′
B7, and B7U

′′′ = B8. Combining these, we

get BU ′D′U ′′D′−1 ≈γ′ 2s
′+s′′B6D

′−1 and B6U
′′′ ≈γ′′ 2s

′′′
B8. Altogether, this

is BU ′D′U ′′U ′′′D′−1 ≈γ′+γ′′ B82
s′+s′′+s′′′D′−1, simplifying to B̂ ≈γ′+γ′′ BUD.

Since γ′ + γ′′ ≤ 2−O(spread(ℓ⃗′)+n)γ = 2−O(drop(B)+n)γ, this is B̂ ≈2−O(drop(B)+n)γ

BUD.

Next, let ℓ⃗B be the pro�le of B, let ℓ⃗B6 be the pro�le of B6, and let and let

ℓ⃗B̂ be the pro�le of B̂. First, we have BU ′D′U ′′D′−1 ≈γ′ 2s
′+s′′B6D

′−1. Observe

that the pro�le of the left hand side is ℓ⃗B , because size reduction operations do
not alter the pro�le. The pro�le of the right hand side is ℓ⃗B6 + s′ + s′′ − d⃗′. By

Lemma 1, |ℓB,i− (ℓB6,i+ s′+ s′′− d′i)| ≤
√
2n3κ(B)γ′ ≤ γ/2. By the same logic,

B6U
′′′ ≈γ′′ 2s

′′′
B8 implies |ℓB6,i − (ℓB̂,i + s′′′)| ≤

√
2n3κ(B6)γ

′′ ≤ γ/2. Thus

|ℓB,i − (ℓB̂,i − di)| ≤ γ, and the pro�le of B̂ is close to the (D-scaled) pro�le of
B with absolute error γ.

48

We note that B̂ has integer entries, is upper-triangular, is non-singular, and
is size-reduced. The size of entries in B̂ is log ∥B̂∥max = O(spread(ℓ⃗′)−log γ+n).

By the similarity of the bases, O(spread(ℓ⃗′)−log γ+n) = O(drop(B̂)+n−log γ).
This means that B̂ is compressed.

The running time of the algorithm is dominated by the calls to QR factoriza-
tion and size reduction. The total running time is O(nω(C − log γ + n)1+ε).

B.6 The LR Reduction Algorithm

With the tools in place to evaluate lattice similarity and e�ciently perform lat-
tice basis compression, we now turn to understanding the subroutines involving
lattice reduction. We begin by proving Lemma 3, which we recall here.

Lemma 3. Consider compressed basis B(k), sublattice index [i : j], approxi-
mation quality γ, lattice reduction function LatRed, and lattice reduction qual-
ity α. Algorithm 3 returns compressed basis B(k+1), unimodular U , and diag-

onal D such that for γ′ = 2−O(drop(B(k+1))+n)γ, we have B(k+1) ≈γ′ B(k)UD.
In addition, the pro�le of B(k+1) matches the (D-scaled) pro�le of B(k) out-
side of index [i : j] to absolute error γ and has bounded drop on index [i : j]:

drop(B
(k+1)
[i:j]) ≤ (α(j−i)+γ)(j−i). The running time of this algorithm, excluding

the call to LatRed, is

O
(
nω(drop(B(k))− log γ + n)1+ε

)
.

Proof. By the properties of CompressLattice, we have B′
sub ≈γ1 BsubU

′
subDsub

for γ1 = 2−O(drop(Bsub)+n)γ. Lattice reduction of B′
sub generates U

′′
sub such that

there exists B∗
sub that is α(j− i)-lattice-reduced and B∗

sub ≈γ2 B′
subU

′′
subDsub for

γ2 = 2−O(drop(B∗
sub)+n)γ and some Dsub. This means that the pro�le of B′

subU
′′
sub

matches the pro�le of B∗
sub (up to scaling by D) with absolute error γ.

By the second lattice compression, the pro�le of B(k+1) matches the pro�le
of B(k)U ′ (up to scaling) with absolute error γ, and by construction of U ′, this
matches the pro�le of B(k) outside of [i : j] and matches the pro�le of B′

subU
′′
sub

inside. Thus, since B∗
sub is α(j− i)-lattice-reduced, drop(B∗

sub) ≤ α(j− i)(j− i).

The absolute error of γ leads to at most γ(j − i) error in the drop of B
(k+1)
[i:j] ,

concluding the bounds about the pro�le error.

Clearly the returned basis B(k+1) is compressed and D is diagonal as a re-
sult of the second call to CompressLattice. Because Dsub is a valid scaling,
U ′
subDsubU

′′
subD

−1
sub is unimodular, so U ′U ′′ is unimodular.

The running time of ReduceSublattice involves calls to CompressLattice,
calls to matrix multiplication, and potentially recursive calls to LatRed. We can
bound the cost of CompressLattice by Lemma 2 and we can bound the condition

number and entry size of all matrices involved by 2O(drop(B(k))+n), which bounds
the cost of matrix multiplication. Excluding the call to LatRed, the running time
is O(nω(drop(B(k))− log γ + n)1+ε).

49

We wish to bound the number of rounds r required in the execution of Algo-
rithm 4. To prove the �niteness of the number of rounds, we introduce Π̄(end) as
a formality, de�ning Π̄(end) = Π̄(B(3r)) if Algorithm 4 terminates in r rounds
and Π̄(end) = limi→∞ Π̄(B(3i)) if it never terminates. Since Π̄(B(3i)) is mono-
tonically decreasing and bounded below by Lemma 6, the limit exists.

Lemma 16 (The number of rounds is heuristically bounded). Let B(0) ∈
Zn×n and α(·) be the input to Algorithm 4. Let α be the global reduction param-
eter. Assuming Heuristics 1 and 2 are true, the number of rounds r is bounded
by

r = O

(
log

(
Π̄(B(0))− Π̄(end)

n3(α− α∗)

))
.

Proof. Let ∆(i) = Π̄(B(3i)) − Π̄(end). Heuristic 2 tells us that there exists c1
such that for i < r − 2,

Π̄(B(3i))− Π̄(B(3(i+1))) ≥ c1n
3(α(n)−α(n/2)),

and by Heuristic 1, there exists c2 ∈ [0, 1) such that

Π̄(B(3i))− Π̄(B(3(i+1))) ≥ c2∆
(i).

We make the claim that if ∆(i) ≤ (1− c2)
−kc1n

3(α(n)−α(n/2)), then r − i ≤
k + 2, and we prove the claim by induction on k ≥ 0.

Clearly for k = 0, then ∆(i) ≤ c1n
3(α(n) − α(n/2)), so Heuristic 2 tells us

that r − i ≤ 2 = k + 2.
If the claim is satis�ed for k−1 and∆(i) ≤ (1−c2)−(k−1)c1n

3(α(n)−α(n/2)),
then Π̄(B(3i)) − Π̄(B(3(i+1))) ≥ c2∆

(i) by Heuristic 1. This implies ∆(i+1) =
∆(i) − (Π̄(B(3i)) − Π̄(B(3(i+1)))) ≤ (1 − c2)∆

(0) ≤ (1 − c2)
−(k−1)c1n

3(α(n) −
α(n/2)). We use the inductive hypothesis to conclude r− (i+1) ≤ (k−1)+2 ≡
r − i ≤ k + 2.

We then have

r ≤ k + 2 = log

(
∆(0)

c1n3(α(n)−α(n/2))

)
/ log(1/(1− c2))

= O

(
log

(
Π̄(B(0))− Π̄(end)

n3(α− α∗)

))
.

Next, we wish to relate the pro�le drop to the change in potential. This is
expressed through Lemma 4, which we recall here.

Lemma 4. Let B(3i) be the compressed LR-reduced basis of rank n at round i
used as input to Algorithm 4, and let B(3i+3) be the basis after the three sublattice
reductions. The drop of the input basis for the next round is bounded by the
current round's change in global potential Π̄:

n2
(
drop(B(3i+3))− 5α(n)n/2

)
= O

(
Π̄(B(3i))− Π̄(B(3i+3))

)
.

50

Proof. At a high level, we want to show that if drop(B(3i+3)) is large, then the
change in potential from the �rst sublattice reduction must have been large.

We introduce the following shorthand to make the proof more concise. Since
n > 2 is a power of 2, we split the pro�le into four sections: 1 (referring to the
�rst n/4 entries) through 4 (the last n/4) entries. We also label the �rst n/2
entries and last n/2 entries by L and R respectively, and the middle n/2 entries
by M . These blocks overlap; block 2 is contained in both block L and block M .

Let ℓ⃗ be the subset of the global pro�le corresponding to B(3i), and let ℓ⃗′,
ℓ⃗′′, and ℓ⃗′′′ be the subset of the global pro�le for B(3i+1) through B(3i+3).

Our proof involves the drop, maxima and minima of the blocks of these
pro�les, so in our shorthand,

drop = drop(ℓ⃗)

drop′′L = drop((ℓ′′1 , . . . , ℓ
′′
n/4))

max′2 = max
n/4+1≤j≤n/2

ℓ′j

min′′′R = min
n/2+1≤j≤n

ℓ′′′j .

Our lattice reduction de�nition introduces constraints on these values. We let
α = α(n) be shorthand. Because blocks L and R have α-bounded drop, we have
dropL,dropR ≤ αn/2. The �rst sublattice reduction works on block M, so blocks

1 and 4 remain unchanged between ℓ⃗ and ℓ⃗′. Since block M in ℓ⃗′ is reduced, we
have drop′M ≤ αn/2. Similar constraints are introduced by sublattice reducing
blocks L and R, and we use these constraints to bound the change in potential.

At the end of all three sublattice reductions, we have drop′′′L , drop′′′R ≤ αn/2.
By properties of the pro�le drop,

drop′′′ ≤ drop′′′L + drop′′′R +max′′′L −min′′′R ≤ αn+max′′′L −min′′′R

so the overall pro�le drop forms a lower bound on max′′′L −min′′′R .
Since the minimum of a pro�le cannot decrease during lattice reduction,

min′′′R ≥ min′′R = min′R. Similarly, max′′′L = max′′L ≤ max′L. We therefore have

drop′′′ ≤ max′L −min′R + αn.

In other words, if the drop after three rounds is large, the drop after one round
was also large.

If max′L − min′R is large, then we have four cases to consider. max′L =
max(max′1,max′2) and min′R = min(min′3,min′4), so the four cases refer to which
part of pro�le l′ value determines max′L and which part determines min′R.

If max′L = max′2 and min′R = min′3, then max′L−min′R large implies max′2−
min′3 large. However, this contradicts the condition that block M of pro�le l′

is α-reduced, since max′2 − min′3 ≤ αn/2. This case is therefore impossible for
max′L −min′R > αn/2⇐ drop′′′ > 3αn/2.

In the remaining three cases, we therefore have max′L = max′1 or min′R =
min′4. We wish to show that either min2 −max′2 or min′3 −max3 is large. This

51

means that either every pro�le element in block 2 dropped signi�cantly dur-
ing the �rst sublattice reduction or every pro�le element in block 3 increased
signi�cantly; in either case, this implies a signi�cant change in potential.

If max′L = max′1 and min′R = min′3, then max′L = max1, and by the reduced-
ness of the L block in l, we have min2 ≥ max1 − αn/2. By the reducedness of
the M block in l′, we have max′2 ≤ min′3 + αn/2 = min′R + αn/2. Therefore in
this case

min2 −max′2 ≥ max1 −min′3 − αn

= max′L −min′R − αn

≥ drop′′′ − 2αn

We therefore have a nontrivial lower bound on min2−max′2 when drop′′′ > 2αn.
If max′L = max′2 and min′R = min′4, then similar logic shows that min′3 −

max3 ≥ drop′′′ − 2αn.
If max′L = max′1 and min′R = min′4, then the reducedness of L and R in

l implies min2 ≥ max1 − αn/2 = max′L − αn/2 and max3 ≤ min4 + αn/2 =
min′R + αn/2. Therefore,

min2 −max3 ≥ max′L −min′R − αn

≥ drop′′′ − 2αn.

We also have

min2 −max3 = min2 −max′2 +max′2 −min′3 +min′3 −max3

≤ (min2 −max′2) + (min′3 −max3) + αn/2,

so combining these gives

(min2 −max′2) + (min′3 −max3) ≥ drop′′′ − 5αn/2.

One ofmin2−max′2 ormin′3−max3 must therefore be at least (drop
′′′−5αn/2)/2.

No matter which case we are in, we have shown that either

min2 −max′2 ≥ d or min′3 −max3 ≥ d for d = drop′′′ − 5αn/2.

With these bounds in mind, we can now bound the change in potential during
the �rst sublattice reduction of the M block. We consider the case where min2−
max′2 ≥ d, since the analysis for the other case is similar. Our analysis is based
on the partial sums sk. To recall, we have

sk =

k∑
i=1

ℓi s′k =

k∑
i=1

ℓ′i

Π̄(ℓ⃗) =

n∑
k=1

sk Π̄(ℓ⃗′) =

n∑
k=1

s′k

52

and
s′k ≤ sk for all 1 ≤ k ≤ n.

To lower bound the change in potential, we have

Π̄(ℓ⃗)− Π̄(ℓ⃗′) =

n∑
k=1

sk −
n∑

k=1

s′k

=

n∑
k=1

(sk − s′k)

≥
n/2∑

k=n/4+1

(sk − s′k)

=

n/2∑
k=n/4+1

k∑
i=1

(ℓk − ℓ′k)

=

n/2∑
k=n/4+1

n/4∑
i=1

(ℓk − ℓ′k) +

k∑
i=n/4+1

(ℓk − ℓ′k)

≥

n/2∑
k=n/4+1

0 +

k∑
i=n/4+1

d

 = d

(
n(n+ 4)

32

)
.

Therefore we have (n2 + 4n)d ≤ Π̄(ℓ⃗) − Π̄(ℓ⃗′), so n2d = O(Π̄(ℓ⃗) − Π̄(ℓ⃗′)).
when min2 − max′2 ≥ d. In the case where min′3 − max3 ≥ d, the only trick
involves using the identical form sk =

∑n
i=1 ℓi −

∑n
i=k+1 ℓi and the observation∑n

i=1 ℓi =
∑n

i=1 ℓ
′
i. This analysis also gives n2d = O(Π̄(ℓ⃗)− Π̄(ℓ⃗′)).

Combining this part with the previous part, we have that if drop(B(3i+3)) =
drop′′′ > 5αn/2, then

n2(drop(B(3i+3))− 5αn/2) = O(Π̄(ℓ⃗)− Π̄(ℓ⃗′)).

Analyzing the running time of Algorithm 4 is challenging, mainly due to how
the evolution of the pro�le in�uences both the necessary precision and recursive
behavior of the algorithm. Our proposed cost bound T (·) is complex, but all
terms are necessary in our analysis. Before we prove Lemma 5, we �rst present
an intermediate result which relies on Lemma 4 to simplify our argument.

Lemma 17. Let B(3i) be a lattice basis of rank n input to Algorithm 4, α the
reduction quality parameter, and let B(3r) be as de�ned in the algorithm. Let
ω ∈ (2, 3] and ε be parameters bounding the complexity of matrix multiplica-
tion, size reduction, and QR factorization as described in Lemma 2. We let
p = O(drop(B(3i)) + n) represent the working precision which bounds the size of
integers that appear in the computation.

53

We de�ne the following function T (B(3i)) =

CΠ̄nω−2
(
Π̄(B(3i))− Π̄(B(3r))

)
pε+Cprecn

ωp1+ε+CAA(B(3i))nω(n+α(n)n)pε,

which has a term involving the potential change, a term involving the precision,
and an term A(·) involving the approximation factor.

If A(·) satis�es

A(B(3i)) ≥ 1

2ω+1
(A(BM) +A(BL) +A(BR)) +A(B(3i+3)) + c

for all i < r and for some constant c > 0, then there exist positive constants CΠ̄ ,
Cp, and CA such that T (·) satis�es Equation (1).

Proof. For the time being, we will introduce the auxiliary Ã(B) = CAA(B)nω(n+
α(n)n)pε to make the inequalities more concise. After substituting into Equa-
tion (1), we wish to prove the following behemoth:

CΠ̄nω−2
(
Π̄(B(3i))− Π̄(B(3r))

)
pε + Cprecn

ωp1+ε + Ã(B(3i))

≥CΠ̄

(n
2

)ω−2 (
Π̄(Bsub,M)− Π̄(B

(rM)
sub,M)

)
pM

ε + Cprec

(n
2

)ω
p1+ε
M + Ã(Bsub,M)

+CΠ̄

(n
2

)ω−2 (
Π̄(Bsub,L)− Π̄(B

(rL)
sub,L)

)
p′L

ε
+ Cprec

(n
2

)ω
p′

1+ε
L + Ã(Bsub,L)

+CΠ̄

(n
2

)ω−2 (
Π̄(Bsub,R)− Π̄(B

(rR)
sub,R)

)
p′′R

ε
+ Cprec

(n
2

)ω
p′′

1+ε
R + Ã(Bsub,R)

+Cun
ωp1+ε

+CΠ̄nω−2
(
Π̄(B(3i+3))− Π̄(B(3r))

)
p′′′

ε
+ Cprecn

ωp′′′
1+ε

+ Ã(B(3i+3))

We work term by term to simplify this inequality. First, we examine the
terms involving CΠ̄ . Because the change in potential in the sublattices is the
same as the change in potential in the original lattice, we have

Π̄(B(3i))− Π̄(B(3i+3)) = Π̄(Bsub,M)− Π̄(B
(rM)
sub,M)

+ Π̄(Bsub,L)− Π̄(B
(rL)
sub,L)

+ Π̄(Bsub,R)− Π̄(B
(rR)
sub,R).

We have the condition that the drop always decreases, so the working preci-
sion always decreases, and this means pM , p′L, p

′′
R, p

′′′ ≤ p. Using this observa-
tion, we can substitute the above into the massive inequality and show that it
su�ces to prove the simpli�ed inequality

CΠ̄

(
1− 1

2ω−2

)
nω−2

(
Π̄(B(3i))− Π̄(B(3i+3))

)
pε + Cprecn

ωp1+ε + Ã(B(3i))

≥3Cprec

(n
2

)ω
p1+ε + Ã(Bsub,M) + Ã(Bsub,L) + Ã(Bsub,R)

+Cun
ωp1+ε

+Cprecn
ωp′′′pε + Ã(B(3i+3))

54

which we rewrite as

CΠ̄

(
1− 1

2ω−2

)
nω−2

(
Π̄(B(3i))− Π̄(B(3i+3))

)
pε

+

(
Cprec

(
1− 3

2ω

)
− Cu

)
nωp1+ε

+Ã(B(3i))

≥Cprecn
ωp′′′pε

+Ã(Bsub,M) + Ã(Bsub,L) + Ã(Bsub,R) + Ã(B(3i+3)).

By Lemma 4, there exists constant C1 such that n
2(drop(B(3i+3))−5α(n)n/2) ≤

C1(Π̄(B(3i))− Π̄(B(3i+3))), so we can simplify further to

CΠ̄

C1

(
1− 1

2ω−2

)
nω
(
drop(B(3i+3))− 5α(n)n/2

)
pε

+

((
1− 3

2ω

)
Cprec − Cu

)
nωp1+ε

+Ã(B(3i))

≥Cprecn
ωp′′′pε

+Ã(Bsub,M) + Ã(Bsub,L) + Ã(Bsub,R) + Ã(B(3i+3)).

Since Cu is the non-recursive update cost, we can set Cprec large enough such
that

(
1− 3

2ω

)
Cprec − Cu ≥ 0. This allows us to eliminate the second term.

Because B(3i+3) is compressed, p′′′ = O(drop(B(3i+3)) + n), so there exists
C2 ≥ 5α/2 such that p′′′ ≤ C2(drop(B

(3i+3)) + n). Therefore, in order to prove
the original claim, it su�ces to prove

CΠ̄

C1

(
1− 1

2ω−2

)
nω
(
drop(B(3i+3))− 5αn/2

)
pε + Ã(B(3i))

≥CprecC2n
ω(drop(B(3i+3)) + n)pε + Ã(Bsub,M)+

Ã(Bsub,L) + Ã(Bsub,R) + Ã(B(3i+3)).

Rearranging terms,(
CΠ̄

C1

(
1− 1

2ω−2

)
− CprecC2

)
drop(B(3i+3))nωpε + Ã(B(3i))

≥
(
CprecC2n+

CΠ̄

C1

(
1− 1

2ω−2

)
(5α(n)n/2)

)
nωpε

+Ã(Bsub,M) + Ã(Bsub,L) + Ã(Bsub,R) + Ã(B(3i+3)).

Since C1, Cprec, and C2 are all constants, and since ω > 2, we may set CΠ̄

such that
(

CΠ̄

C1

(
1− 1

2ω−2

)
− CprecC2

)
≥ 0.

55

Substituting back Ã(B) = CAA(B)nω(n+α(n)n)pε gives

CAA(B(3i))nω(n+α(n)n)pε ≥
(
CprecC2n+

CΠ̄

C1

(
1− 1

2ω−2

)(
5α(n)n

2

))
nωpε

+CAA(Bsub,M)
(n
2

)ω (n
2
+α

(n
2

) n

2

)
pM

ε

+CAA(Bsub,L)
(n
2

)ω (n
2
+α

(n
2

) n

2

)
p′L

ε

+CAA(Bsub,R)
(n
2

)ω (n
2
+α

(n
2

) n

2

)
p′′R

ε

+CAA(B(3i+3))nω(n+α(n)n)p′′′
ε
.

We use the bound on the precision and (n+α(n)n) ≥ 2
(
n
2 +α

(
n
2

)
n
2

)
to show

it su�ces to prove

A(B(3i)) ≥ 1

2ω+1
(A(Bsub,M) +A(Bsub,L) +A(Bsub,R)) +A(B(3i+3))

+
1

CA

(
CprecC2n+

CΠ̄

C1

(
1− 1

2ω−2

)
(5α(n)n/2)

)
(n+α(n)n)−1

Since α = Ω(1) and since by assumption about A we have A(B(3i)) ≥
1

2ω+1 (A(Bsub,M) +A(Bsub,L) +A(Bsub,R))+A(B(3i+3))+c, we may set CA large
enough that the inequality is satis�ed. This proves the original claim.

We have transformed the problem of proving something about all terms of
cost function T (·) to a question about only the approximation term. We pro-
pose a candidate term that satis�es the necessary condition under our heuristic
assumptions.

Lemma 18. Let {B(0), . . . , B(3r)} be bases created during the execution of Al-
gorithm 4. Assume Heuristic 2 holds. Next, de�ne

A(B(3i)) =
Π(B(3i))−Π(B(3r))

n3(α(n)−α(n/2))
+ c1

for i < r and A(B(3r)) = 0 otherwise. There exists positive constants c1, c2 such
that

A(B(3i)) ≥ 2−(ω+1)(A(B
(3i)
M) +A(B

(3i+1)
L) +A(B

(3i+2)
R)) +A(B(3(i+1))) + c2

for all i < r. This choice of A satis�es the conditions of Lemma 17.

Proof. At many points, we will use the observation that the change in potential
globally equals the total change in potential in each sublattice. We will use
∆(i) = Π̄(B(3i)) − Π̄(B(3r)) to denote the total change in potential from the

current input, and we use ∆
(i)
M , ∆

(i)
L , ∆

(i)
R to denote the total change in potential

56

from the input to the recursive sublattice calls. In this notation, ∆(i) = ∆
(i)
M +

∆
(i)
L +∆

(i)
R +∆(i+1). We also denote ξn = n3(α(n)−α(n/2)).

We begin by considering the case i < r−2. Then our inequality is equivalent
to

∆(i)

ξn
+ c1 ≥ 2−(ω+1)

(
∆

(i)
M

ξn/2
+ c1 +

∆
(i)
L

ξn/2
+ c1 +

∆
(i)
R

ξn/2
+ c1

)

+
∆(i+1)

ξn
+ c1 + c2

which is equivalent to

∆(i) −∆(i+1)

ξn
≥ 2−(ω+1)

(
∆

(i)
M +∆

(i)
L +∆

(i)
R

ξn/2
+ 3c1

)
+ c2.

This inequality is satis�ed when(
1− ξn

ξn/22ω+1

)
∆(i) −∆(i+1)

ξn
≥ 3c1

2ω+1
+ c2.

By Heuristic 2, ∆(i) −∆(i+1) = Ω(n3(α(n)−α(n/2))) = Ω(ξn). That means it
is possible to select positive c1, c2 satisfying this equality so long as

ξn
ξn/2

< 2ω+1.

We have

ξn
ξn/2

=
n3(α(n)−α(n/2))

(n/2)3(α(n/2)−α(n/4))
=

8

((
n
N

)log g
(α− α∗)−

(
n/2
N

)log g

(α− α∗)

)
(

n/2
N

)log g

(α− α∗)−
(

n/4
N

)log g

(α− α∗)

=
8(1− (12)

log g)

(12)
log g − (14)

log g
= 8

g − 1

g

g2

g − 1
= 8g < 2ω+1.

Next, we consider the case i = r − 1. Our inequality is equivalent to

∆(r−1)

ξn
+ c1 ≥ 2−(ω+1)

(
∆

(r−1)
M

ξn/2
+ c1 +

∆
(r−1)
L

ξn/2
+ c1 +

∆
(r−1)
R

ξn/2
+ c1

)
+ 0 + c2

which we rewrite as(
1− ξn

ξn/22ω+1

)
∆(r−1)

ξn
≥
(

3

2ω+1
− 1

)
c1 + c2.

Since the left hand side is nonnegative, it su�ces to show that the right hand

side is negative. This imposes the condition c2 ≤
(

2ω+1−3
2ω+1

)
c1, which we will

show later can be satis�ed.

57

Finally, we consider the case i = r − 2. We use the bound for A(B(3(r−1)))
just developed to show that it su�ces to prove(

1− ξn
ξn/22ω+1

)
∆(r−2)

ξn
≥
(

6

2ω+1
− 1

)
c1 + 2c2.

By the same logic as before, this imposes the requirement c2 ≤
(

2ω+1−6
2ω+2

)
c1.

We have shown that the inequality is satis�ed in all cases if

c1

(
3

2ω+1
+

c2
c1

)
= O(1)

c2
c1
≤
(
2ω+1 − 3

2ω+1

)
c2
c1
≤
(
2ω+1 − 6

2ω+2

)
.

Because ω > 2, we can select c2
c1

> 0 �rst, then select c1 > 0. Therefore there
exists c1, c2 > 0 such that the claim is true.

Using our heuristic assumptions, we have constructed a candidate function
T (·) such that the running time of Algorithm 4 on input B(3i) and α is bounded
by T (B(3i)). We now recall Lemma 5, which simpli�es this asymptotic running
time.

Lemma 5. Let ω ∈ (2, 3] be a parameter bounding the complexity of matrix
multiplication, size reduction, and QR factorization as described in Lemma 2.
If the heuristic assumptions 1 and 2 are correct, then there exists appropriate
choice of constants CΠ̄ , Cprec, CA > 0 such that T (·) satis�es Equation 1.

As a corollary, this means that for input B and reduction goal α, it is possible
to instantiate α and γ such that the running time of Algorithm 4 on these inputs
is O(T (B)) =

O

((
α

α− α∗

)
nωp1+ε + αnω+1pε

)
where p = O(drop(B) + n).

Proof. We let CΠ̄ , Cprec, CA, and T (·) be as in Lemmas 17 and 18. We let
∆ = Π̄(B(0))− Π̄(B(3r)). By Lemmas 17 and 18, our cost function T (·) bounds
the execution time at each level; we have T (B(0))

=O
(
nω−2∆pε + nωp1+ε +A(B)nω(n+α(n)n)pε

)
=O

(
nω−2pε

(
∆+ n2p+

∆

n(α(n)−α(n/2))
(n+α(n)n) + (1 +α(n))n3

))
=O

(
nω−2pε

(
∆

(
1 +

1 +α(n)

α(n)−α(n/2)

)
+ n2p+ (1 +α(n))n3

))
.

58

By the boundedness of potential for integer bases [38], ∆ = O(n2p), so the
runtime is

O

((
1 +

1 +α(n)

α(n)−α(n/2)

)
nωp1+ε + (1 +α(n))nω+1pε

)
.

Finally, using α(n) = Ω(α∗), α∗ = Θ(1), and the de�nition of α,

O

((
α

α− α∗

)
nωp1+ε + αnω+1pε

)
.

B.7 The General Reduction Algorithm

We present two new wrappers around Algorithm 4 that allow us to reduce more
general lattice bases. First, we will consider how to reduce compressed bases
whose dimension is a power of 2 by making it LR-reduced. This idea is presented
in Algorithm 8.

Algorithm 8: ReducePow2

Input : Compressed lattice basis B of rank n = 2k, reduction parameter α
Output: U ∈ Zn×n such that drop(BU) ≤ αn

1 if n = 1 then
2 return U ← I1

3 γ ← 2−Θ(drop(B)+n)

4 B′, UL, DL ← ReduceSublattice(B, 0, n
2
,α, γ, ReducePow2)

5 B′′, UR, DR ← ReduceSublattice(B′, n
2
, n,α, γ, ReducePow2)

6 U1 ← ULDLURD
−1
L

7 BLR, Uc, Dc ← CompressLattice(BU1, γ)
8 U2 ← ReduceLR(BLR,α, γ)
9 U ← U1UcDcU2D

−1
c

10 return U

In this algorithm, we begin with a compressed basis that is not LR-reduced.
We use ReducePow2 recursively to �rst LR-reduce and α-reduce the left sublat-
tice, then the same for the right. This new basis is LR-reduced and compressed,
so we reduce it the rest of the way with ReduceLR. Overall, this method calls
ReduceLR n/2 times on bases of rank 2, n/4 times on bases of rank 4, and so on,
and it also performs the O(nωp1+ε) update steps associated with compression
at each level of the recursion tree. This allows us to use Lemma 3 and Lemma 5
to bound the runtime of Algorithm 8.

Lemma 19. Let B be a basis of rank n input to Algorithm 8 and assume the
same conditions as Lemma 5. The running time of the algorithm on this input
is

O

(
α

α− α∗n
ω (drop(B) + n)

1+ε

)

59

Proof. Let p = O(drop(B) + n) be the initial working precision. Note that for
any sublattice Bsub, nsub < n and drop(Bsub) ≤ drop(B), so p bounds the
working precision in any called process. At each recursion level, there is a call
to ReduceLR and the O(nω

subp
1+ε) update steps for compressing the basis and

multiplying matrices. Summing over all nodes in the recursion tree, the running
time of the algorithm is therefore

logn∑
i=1

n

2i
O

((
α(2i)

(α(2i)− α∗)

)
(2i)ωp1+ε +α(2i)(2i)ω+1pε + (2i)ωp1+ε

)

= O

(
p1+ε

logn∑
i=1

(
α

α(2i)− α∗

)
2logn−i+iω + αpε

logn∑
i=1

2logn+ωi

)

= O

(
αnω+1pε + p1+ε

logn∑
i=1

(
α

α(2i)− α∗

)
2logn−i+iω

)
.

The second term can be bounded as

O

(
α

α− α∗ p
1+ε

logn∑
i=1

2log g(logn−i)+logn−i+iω

)

= O

(
α

α− α∗ p
1+ε2log g logn+logn(2ω−log g−1)logn

)
= O

(
α

α− α∗n
ωp1+ε

)
.

This makes the running time of the function

O

((
α

α− α∗

)
nωp1+ε + αnω+1pε

)
= O

((
α

α− α∗

)
nω(p+ αn)1+ε

)
= O

((
α

α− α∗

)
nω (drop(B) + n)

1+ε

)
using the fact that for B not yet reduced, drop(B) = Ω(αn).

Note that as α approaches α∗, the algorithm becomes more expensive, but
as α grows, the bound roughly stays the same.

The last piece in the puzzle is a method to convert an arbitrary basis to
one that is compressed with rank a power of 2. We present one such method in
Algorithm 9, and we use this construction to prove Theorem 1.

To prove the correctness of the algorithm, we need to do one more trick to
show the output is size-reduced. The tools to do this are in the following lemma.

Lemma 20. Let B ≈γ B′ be two similar bases of rank n, and assume B′ is
size-reduced. If − log γ = Ω(spread(B) + n), then B is also size-reduced.

60

Algorithm 9: Reduce

Input : Lattice basis B of rank n, bound C > log(κ(B)), reduction
parameter α

Output: U ∈ Zn×n such that BU is O(α)-lattice-reduced
1 N ← 2⌈log(n)⌉

2 P ← ⌈2n∥B∥max⌉IN−n

3 Bpad ← diag(B,P)

4 γ ← 2−Θ(C+N)

5 B̂pad, U1, D1 ← CompressLattice(Bpad, γ)

6 U2 ← ReducePow2(B̂pad, α)

7 U ′
pad ← U1D1U2D

−1
1

8 γ2 ← 2−Θ(spread(B)+N)

9 B2, s← ScaleAndRound(Bpad, γ22
−O(C+N))

10 B3 ← B2U
′
pad

11 B4 ← QR(B3, γ2)
12 B5, s

′ ← ScaleAndRound(B4, γ2)
13 B6, Usr ← SizeReduce(B5)
14 Upad ← U ′

padUsr

15 U ← top left n× n block of Upad

16 return U

Proof. We let B = QDM and B′ = Q′D′M ′ decompose our two bases. By
de�nition of similarity, we have DM ≈γ D′M ′. Ideally, we would like to show
M ≈γ2 M ′ for some γ2 so we can bound κ(M) by κ(M ′). Instead, we show
M ≈γ2

D′D−1M ′ and κ(D′D−1) is small. For any nonzero x⃗, we have

∥DMx⃗−D′M ′x⃗∥ ≤ γ∥DMx⃗∥
≤ γ∥D∥∥Mx⃗∥
= γ(max

i
Dii)∥Mx⃗∥

∥DMx⃗−D′M ′x⃗∥ ≥ ∥Mx⃗−D′D−1M ′∥/∥D−1∥
= ∥Mx⃗−D′D−1M ′∥(min

i
Dii),

thus ∥Mx⃗−D′D−1M ′∥ ≤ (γ(maxi Dii)(mini Dii)
−1)∥Mx⃗∥, so we haveM ≈γ2

D′D−1M for γ2 = γ(maxi Dii)(mini Dii)
−1) = γ2spread(B). Item 3 of Lemma 1

tells us that κ(M) ≤ (1+κ(D′D−1M ′)γ2)κ(D
′D−1M ′), so our goal is to bound

κ(D′D−1M ′) ≤ κ(D′D−1)κ(M ′).

D′D−1 is a diagonal matrix whose entries are D′
1,1/D1,1, . . . D

′
n,n/Dn,n. This

implies that κ(D′D−1) = maxi(D
′
ii/Dii)/(mini(D

′
ii/Dii)). Since D is the diag-

onal of the R-factor of B, we use the result in the proof of Item 4 of Lemma 1

61

to bound

D′
ii/Dii = 1 + (R′

ii −Rii)/(Rii)

≤ 1 + |R′
ii −Rii|/|Rii|

≤ 1 + γ
√
2n3κ(B).

We bound Dii/D
′
ii in the same way to get κ(D′D−1) ≤ (1 + 2γ

√
2n3κ(B))

to �rst order in γ. Since κ(M ′) = ∥M∥∥M−1∥ = 2O(n) by size-reducedness,

κ(D′D−1M) = (1 + γ
√
2n3κ(B))2O(n). Therefore, we have

κ(M) = (1 + (1 + γ
√
2n3κ(B))2O(n)γ2)(1 + γ

√
2n3κ(B))2O(n)

which implies

κ(M) = (1 + (1 + γ2O(spread(B)+n))γ2O(spread(B)+n))(1 + γ2O(spread(B)+n))2O(n).

Because − log γ = Ω(spread(B) + n), then κ(M) = 2O(n). Since M is unitrian-
gular, ∥M∥ ≥ 1 and ∥M−1∥ ≥ 1, so ∥M∥ = 2O(n) and ∥M−1∥ = 2O(n), proving
that B is size-reduced.

Finally, we can prove the correctness and running time of Algorithm 9.

Theorem 1 (Full). Let B ∈ Zn×n be a lattice basis and C > log(κ(B)) a bound
on its condition number. Let α∗ be a constant determined by the Hermite constant
in small dimension, and let α > 2α∗ be the desired reduction quality. Finally, let
ω ∈ (2, 3] and ε > 0 be parameters bounding the runtime of size reduction, matrix
multiplication, and QR factorization as described in Lemma 2. If the heuristic
assumptions 1 and 2 are correct, then our algorithm returns unimodular U such
that BU is O(α)-lattice-reduced. The running time of our reduction algorithm is

O

((
α

α− α∗

)
nω(C + n)1+ε

)
.

Proof. First, we argue that the result of Algorithm 9 is correct. The algorithm
begins by padding B to form Bpad, a basis of rank N . We then compress Bpad,

at a cost of O(nω(C+n)1+ε) to obtain B̂pad After reduction by ReducePow2, we

have that drop(B̂padU1) is bounded. We compute U ′
pad such that drop(BpadU

′
pad)

is bounded. We are close to done; we just need to perform a size reduction
operation to ensure the �nal BpadUpad is size-reduced. We just need to �nd
an upper triangular basis that is suitably similar to BpadU

′
pad, size-reduce it,

and apply Lemma 20. This is what the computation of B2 through B6 accom-
plishes. Note that we are careful to avoid computing BpadU

′
pad directly, because

we do not have a bound on ∥Bpad∥max. Once we have size reducing matrix Usr,
we compute Upad ← U ′

padUsr. Because of the sequence of operations, we have

BpadUpad ≈O(γ2) 2
s+s′B6 for size-reduced B6, so with appropriate choice of γ2,

Lemma 20 implies BpadUpad is size-reduced. By the construction of Bpad, we have

62

that BU has drop bounded by αN ≤ 2αn, and by de�nition of size reduction,
BU is size-reduced as well. Therefore BU is O(α)-lattice-reduced.

The running time of this algorithm involves a call to ReducePow2, which by
Lemma 19 costs

O

(
α

α− α∗N
ω
(
drop(B̂pad) +N

)1+ε
)

= O

(
α

α− α∗n
ω (drop(B) + n)

1+ε

)
.

The calls to all the other functions are dominated by operations which involve
at least logC bits. In particular, this is the �rst lattice compression and the
multiplication B2U

′
pad. These operations are bounded by O(nω(C + n)). Noting

that drop(B) ≤ spread(B) ≤ log κ(B) < C, the running time of our lattice
reduction algorithm is

O

(
α

α− α∗n
ω (C + n)

1+ε

)
.

63

	Fast Practical Lattice Reduction through Iterated Compression

