
New Results on Machine Learning Based Distinguishers

Anubhab Baksi1, Jakub Breier2, Vishnu Asutosh Dasu3, Xiaolu Hou4, Hyunji Kim5, and Hwajeong Seo5

1 Nanyang Technological University, Singapore; anubhab001@e.ntu.edu.sg
2 Silicon Austria Labs, Austria; jakub.breier@gmail.com

3 Pennsylvania State University, Pennsylvania, USA; vishnu98dasu@gmail.com
4 Slovak University of Technology in Bratislava, Slovakia; xiaolu.hou@stuba.sk

5 Hansung University, Seoul, South Korea; khj1594012@gmail.com, hwajeong84@gmail.com

Abstract. Machine Learning (ML) is almost ubiquitously used in multiple disciplines nowadays. Recently,
we have seen its usage in the realm of differential distinguishers for symmetric key ciphers. In this work, we
explore the possibility of a number of ciphers with respect to various ML-based distinguishers.
We show new distinguishers on the unkeyed and round reduced version of SPECK-32, SPECK-128, ASCON,
SIMECK-32, SIMECK-64 and SKINNY-128. We explore multiple avenues in the process. In summary, we
use neural network as well as support vector machine in various settings (such as varying the activation
function), apart from experimenting with a number of input difference tuples. Among other results, we show
a distinguisher of 8-round SPECK-32 that works with practical data complexity (most of the experiments
take a few hours on a personal computer).

Keywords: speck · ascon · simeck · skinny · distinguisher · machine learning · differential

1 Introduction

Machine learning (ML) is becoming ubiquitous in multiple research areas in computer science. Naturally,
there have been a number of attempts to use of ML in cryptography, particularly fitting it to work with
the well-known differential attack model. In fact, ML tools typically have native support for classification
problem, which is similar to the distinguisher model where one attempts to classify the CIPHER from
RANDOM. Particularly after Gohr’s work on SPECK-32 [23], the proper application of ML seems to be
growing quite fast, as many research works including (but not limited to) [3,11,15,16,18,19,22,26,28,30]
have taken interest in this.

In this work, we humbly attempt to extend the ML-assisted differential attack model. As the starting
point, we adopt the differential distinguishing model presented in [7, Section 3.1]. We apply the concept
of [7] to new ciphers, namely ASCON [21], SPECK [12], SKINNY [13], and SIMECK [31]. While SPECK-32 has
been the major, if not the only, focus of the previous works (a trend initiated/popularised by [23]); rest
ciphers have never been analyzed with respect to ML-assisted attacks, to the best of our knowledge.

We carry out experiment with the two major Neural Network (NN) library, PyTorch and Ten-
sorFlow/Keras. Further, we explore the applicability of the Support Vector Machine (SVM), thus
supplementing the NN which is the only ML tool used in the existing literature up to this point. More
details on ML are deferred till Section 2.2.

1.1 Contributions

We argue the traditional analysis of the differential distinguisher (that does not involve ML tools), in
all likelihood, has been underestimating the attacker’s true power, who is free to use ML tools. Unlike
some of the recent works (most notably, by Gohr [23]), where it is assumed the attacker is an expert in
machine learning (thus is capable of designing a special purposed ML architecture), here we assume the
other way around. We show, how the attacker is able to achieve the task of distinguishing cipher by
using very simple ML tools – the parameters of which are decided arbitrarily. Even with that, we easily
beat the non-ML based analysis, and yield same (if not better) result compared to a specialized ML
architecture.

Our results, which are detailed in Section 5, can be summarized as follows:

This is the full version of the paper with the same title accepted in IEEE Access.

https://ieeexplore.ieee.org/document/10108966


2 A. Baksi et al.

• In Section 5.1, we present distinguishers on up to 8-round SPECK-32 and 7-round SPECK-128, using
MLPs. We experiment with various options for the choice of the input differences (contrasting, e.g.,
Gohr’s work [23]) where only one such option is considered.
• In Section 5.2, we present results on 3-round ASCON. These are obtained by using a linear-kernel
SVM.
• In Section 5.3, we show results on 9-round SIMECK-32 and 14-round SIMECK-64, obtained using
MLPs.
• In Section 5.4, we present distinguishers on 5-round SKINNY-128 reduced to 7 rounds, using SVMs
(linear, RBF and polynomial kernels).

Note that our data generation method is similar to that of Gohr’s [23], i.e., un-keyed permutation.
In our case, t (> 1) input differences are used to create a t-class classification problem; whereas one
input difference is used together to create a 2-class classification problem in [23]. The way the un-keyed
permutations are considered, it is inherently considered that the full round keys are XORed at each
round. Also, our analysis seems to question SKINNY’s security claim made by the designers [14].

1.2 Novelty and Advancement of State-of-the-art

Reflection on ML-assisted Results on SPECK-32.

Number of Rounds. To the best of our knowledge, Gohr (CRYPTO’19 in [23]) reports the maximum
number of rounds of SPECK-32 attacked by ML-based distinguisher as 8. To the best of our finding, the
follow-up works fail to extend to increase the number of rounds from 8 [3, 11, 16]. We achieve the same
number of rounds (Section 5.1), with simpler models and with lower data complexity (thus requiring
much less time).

Simplicity of ML Model. Our model for distinguishger is adopted from [7, Model 1 in Section 3.1]. Thus,
the number of neurons at the input layer is same as the state size of the cipher. This contrasts with the
model used in [3, 11,16,23], where the number of neurons is double at the input layer. Further, we need
less number of epochs (≤ 20), whereas Gohr’s model requires much more (such as, 200) epochs. Thus,
in some sense, our NN model is simpler. Apart from that we only use MLP for its simplicity, this is not
intrinsic; thus other NN models can be used instead. For instance, the Convolutional Neural Network
(CNN), which seems to the exclusive choice [3,11,16,23], can also be used. More relevant discussion can
be found in Section 3.3.

Level of Significance. As only 2-class classification is for the most part in this work, any case with
training/testing accuracy of > 0.5 can be potentially taken as a distinguisher. In this work, we only
consider those cases with training and testing accuracy both matching and > 0.51.

Since the inner working of a machine learning is typically poorly understood, it might happen
that this minute deviation (i.e., less than 0.01) is caused due to some artefact of the tool (cf. the
performance of Tensorflow/Keras and PyTorch discussed in Section 5.1), rather than being a true
indicator of deviation from randomness. Until this minute deviation is confirmed otherwise (such as,
some other method that does not involve ML), there is an off-chance that it may not hold up in the
future (say, with an updated version of the same ML tool sometime in the future). Thus, we keep 0.01
as the threshold for detection.

We have noticed certain distinguishers achieve (marginally) accuracy of > 0.5 for higher rounds in
some experiments with 9-round SPECK-32. This hints that it may be possibly that the distinguishers
follow through more rounds than reported in this work. We do not immediately claim any confirmation
about 9-round distinguisher (since the gap of accuracy from the RANDOM case is very similar), though it
is an interesting case to study.

Apart from 2-class classification, we also use 3-class and 32-class classification, where we want to
distinguish accuracy of 0.33333 and 0.03125, respectively. Here the threshold for distinguisher detection
is kept at 0.01 and 0.001, respectively.



New Results on Machine Learning Based Distinguishers 3

Practicality. All our results are practical and take in the ballpark of a couple of hours (except for
the SVM which seems to take longer, though it may be possible to reduce run time by tweaking
some parameters) to perform on a modern computer (without high-performance computing compatible
hardware). Compared to the previous works (e.g., [23]), ours probably takes the least amount of time.

It can be further mentioned that we do not assume any more power to the attacker, Eve, than
allowed in the classical differential distinguisher model. The only new ability the attacker has comes
from how she analyses the information collected.

New Methods and Ciphers. We experiment with PyTorch and TensorFlow/Keras. As far as we
are concerned, there has not been any attempt to study the impact of the choice of the NN library.
While it is true that in a typical application these tools perform almost identically (where the accuracy
is near-perfect), it may not be the case for the current situation where a meager 0.51 accuracy is
considered a success. As a matter of fact, it seems that PyTorch outperforms TensorFlow/Keras; as the
former can distinguisher up to 7-round SPECK-32 (Table 3a) but the latter only works up to 6-round
(Table 3b); despite using the same parameters, training/testing data and default options (though further
experimentation is needed).

We employ SVM to study its impact on ML-based differential distinguishers. One major comment
in [16] is about interpreting ML-based distinguishers by using equivalent representation that do not
involve ML-specific terminology. In this regard, (linear kernel) SVM is a natural choice, since it gives
an interpretation which can be readily interpreted. In particular, the linear kernel SVM gives a linear
expression.

To top it all off, we show ML-assisted distinguishing results on some ciphers probably for the first
time.

Low Data Complexity. All of our experiments (with same parameters) have been conducted multiple
times independently. Therefore, even though the data complexity per experiment is relatively low, the
possibility that the results are statistical outliers can be excluded.

Second Order Differential. Since the Model 1 from [7] naturally supports multiple differences, it
is possible to realize higher order differential (see Table 5d for second order differential analysis on
SPECK-32). To the best of our knowledge, this is the first time this is used in the literature.

2 Background

2.1 Motivation

In the classical differential distinguisher, the attacker, Eve chooses an input difference δ and XORs
it the to the input of the state of the (possibly round reduced) CIPHER. Then CIPHER is run multiple
times with randomly chosen inputs. The attacker finds the output differences for each run. Eve is also
able to deduce a pre-calculated output difference ∆ (which is a constant) with a certain probability at
which the (δ,∆) pair appears. When this probability is significantly more than what would be expected
if (possibly round reduced) CIPHER is substituted by a random source, then the attacker would be
successful in distinguishing (possibly reduced roud version of CIPHER) from RANDOM.

The modelling of probability distribution for δ ; ∆ is done through various methods, such as the
wide trail strategy [2, Chapter 1.4] or some tool [4, 27,29] in the classical differential distinguisher.

One may note that, the attacker discards all the output differences which do not match ∆ in
the classical setting. This happens due to the very nature of the classical distinguisher. However, the
assumption that the attacker will necessarily do this, possibly acts as a hindsight, since this may
underestimate the attacker’s capability.



4 A. Baksi et al.

Instead of discarding any output difference, we feed all to a suitable ML model. However, for this
purpose, we need at least 2 input differences. Therefore, we consider the general case with t distinct
input differences which are denoted as δ0, δ1, . . . , δt−1. When the accuracy of the ML model exceeds what
is to be expected for RANDOM, this acts as a differential distinguisher. Thus, at its core an ML-assisted
differential distinguisher model works by distinguishing between (possibly round-reduced) CIPHER from
RANDOM; by formulating the challenger–adversary game to a suitable classification problem [7,8, 9], for
which native support is available. It is sometimes possible to reduce the complexity of the differential
distinguisher drastically, even to the cube root of what is required for the classical case [7].

One point to note here is that we use the testing data for validation. This is generally not recom-
mended in typical ML applications, due to the problem of overfitting. However, this is not a problem in
our case, as there is only one test case (i.e., the testing data which is either generated from RANDOM or
from CIPHER).

Another interesting question that may come to one’s mind is about the usage of a differential model;
since on the surface it appears that a classification problem can be formulated by setting, Class 0:
CIPHER and Class 1: RANDOM; and watch out for accuracy > 0.5. However, the caveat is that this model
(generally) returns accuracy of 0.5, even if a constant datum is used in case of CIPHER.

2.2 Machine Learning Basics

Multi Layer Perceptron (MLP). An MLP [24] is a supervised learning algorithm which is a type
of a feed-forward NN (also called, Artificial Neural Network, which is abbreviated as ANN). An MLP
consists of three or more layers of neurons (which is the basic unit of computation in a neural network).
The first and the last layers are called the input layer, and the output layer, respectively, while all the
middle layers are called the hidden layers. One characteristic of an MLP is that each neuron in a layer
is connected to every neuron in the subsequent layer. Based on a rule, known as activation (where
non-linear functions can be used), each neuron may fire with a different intensity. The back-propagation
algorithm is used for training of feed-forward neural networks with the usage of gradient descent
optimization method to update the weights of the neuron connections between each layer.

Support Vector Machine (SVM). SVMs [20] are supervised learning algorithms which are pre-
dominantly used for classification problems with two classes. An SVM constructs a set hyper-planes to
separate the classes. The points from the two classes which are closest to the hyper-plane are known
as support vectors. The distance between the hyper-plane and the support vectors are called margins.
In order to find the hyper-plane that best divides the classes, an SVM tries to maximize the margin.
Thus an SVM can be thought as an optimization problem. The classes need to be linearly separable to
construct the optimal hyper-plane. If the classes are not linearly separable, the original space is mapped
to a higher dimensional space, where separation of the classes is possible with a linear boundary. The
data in each class are then defined in terms of a kernel function, which the SVM uses to compute the
optimal hyper-plane. The usage of SVM in cryptography is not new, one may refer to [25].

3 Machine Learning Based Distinguisher

3.1 Basic Idea and Overall Description

As already mentioned, our model is adopted from that of [7, Section 3.1] (or [5, Chapter 6.4.1]). Here,
Eve chooses t (≥ 2) distinct input differences δ0, δ1, . . . , δt−1 and creates t differentials. In the process,
she converts the problem of distinguisher to the problem of classification, which can be efficiently tackled
by ML tools. More specifically, she assumes the output differences corresponding to the input difference
δi belong to class i, for i = 0, 1, . . . , t− 1.

As for the actual attack procedure, we assume the following set-up. The ORACLE tosses an unbi-
ased coin, and chooses either RANDOM (a random source; which can be emulated, for example, with



New Results on Machine Learning Based Distinguishers 5

/dev/random1) or CIPHER, depending on the outcome of the coin toss. Which output between RANDOM

and CIPHER is chosen is kept secret from the attacker, and she has to find it out with probability
significantly > 1

2 . For that purpose, she can query the ORACLE with inputs of her choice as many times
she wants (but it has to be significantly less than that of the exhaustive search) and the ORACLE will
return the output from either RANDOM or CIPHER.

In our context, she first builds the ML model during the training (offline) phase with sufficient
training data. This is possible as she knows the specification of the CIPHER. Essentially, she chooses a
random input P , computes the corresponding output C (= CIPHER(P )); then for each δi, she computes
the output differences (C ⊕ Ci where Ci = CIPHER(P ⊕ δi)); and finally labels the output differences as
belonging from class i. If the accuracy for training is > 1

t (measurement of the training accuracy is
possible as she knows which output difference belongs from which class), she proceeds to the testing
(online) phase.

In the online phase, she chooses random inputs P and queries it to ORACLE. Then she queries with
P ⊕ δi for i = 0(1)t− 1, and computes the output differences corresponding to each input difference.
However, it is to be noted that she is not able to measure the testing accuracy, as it is not known which
output difference belongs to which class. To overcome this issue, we propose to use the ordering of
the input differences. Therefore, she queries in the sequence: P ⊕ δ0, P ⊕ δ1, . . . , P ⊕ δt−1. In doing so,
she can now expect which output difference should belong to which class (i.e., the output difference
ORACLE(P ) ⊕ ORACLE(P ⊕ δi) should be classified as belonging to class i). This way, she is able to
measure the accuracy during testing. If ORACLE = CIPHER, then the testing accuracy should match that
of the training phase, which is > 1

t . Otherwise, i.e., if ORACLE = RANDOM, then the ML model would
arbitrarily predict the classes for the output differences, hence the testing accuracy would be 1

t . This
constitutes the distinguisher.

Algorithm 1: Differential distinguisher with machine learning

1: procedure Offline phase (Training)
2: TD ← (·) ▷ Training data
3: Choose random P
4: C ← CIPHER(P )
5: for i = 0; i ≤ t− 1; i← i+ 1 do
6: Pi ← P ⊕ δi
7: Ci ← CIPHER(Pi)
8: Append TD with (i, Ci ⊕ C)

▷ Ci ⊕ C is from class i

9: Repeat from Step 3 if required
10: Train ML model with TD
11: ML training reports accuracy a
12: if a > 1

t
then

13: Proceed to Online phase
14: else ▷ a = 1

t

15: Abort

1: procedure Online phase (Testing)
2: TD′ ← (·) ▷ Testing data
3: Choose random P
4: C ← ORACLE(P )
5: for i = 0; i ≤ t− 1; i← i+ 1 do
6: Pi ← P ⊕ δi
7: Ci ← ORACLE(Pi)
8: Append TD′ with Ci ⊕ C

9: Test ML model with TD′ to get C
▷ C is sequence of classes by ML

10: a′ = probability that C matches
(0, 1, . . . , t− 1)

11: if a′ = a > 1
t
then

12: ORACLE = CIPHER

13: else ▷ a′ = 1
t

14: ORACLE = RANDOM

15: Repeat from Step 3 if required

3.2 Training and Testing the Model

With the algorithmic description given in Algorithm 1, the basic work-flow is described here (also
adopted from [7, Section 3.1]):

Training (Offline).

1. Select t (≥ 2) non-zero input differences δ0, δ1, . . . , δt−1.

1https://man7.org/linux/man-pages/man7/random.7.html

https://man7.org/linux/man-pages/man7/random.7.html


6 A. Baksi et al.

2. For each input difference δi, generate (an arbitrary number of) input pairs (P, Pi = P ⊕ δi). Run the
(unkeyed) permutation the input pairs to get the output pairs: C ← CIPHER(P ), Ci ← CIPHER(Pi)
for all i. Then XOR the outputs within a pair to generate the output difference (Ci⊕C). The output
difference together with its label i (i.e., this sample belongs from class i) form a training sample.

3. Check if the training accuracy is > 1
t . Otherwise (i.e., if accuracy = 1

t ), the procedure is aborted.

Testing (Online).

1. Generate the input pairs in the same way as training. In other words, randomly generate an input
P . With the same input differences chosen during training δ0, δ1, . . . , δt−1; generate new inputs
Pi = P ⊕ δi for all i = 0(1)t− 1.

2. Collect the outputs C and Ci’s by querying ORACLE with input P and Pi’s in order, for all i = 0(1)t−1.
3. Generate the testing data as C ⊕ Ci for all i and in order.

4. Get the predicted classes from the trained model with the testing data.

5. Find the accuracy of class prediction. In other words, tally the classes returned by the trained ML
with the sequence: (0, 1, . . . , t− 1, 0, 1, . . . , t− 1, . . . , 0, 1, . . . , t− 1), and find the probability that
both match.

6. (a) If ORACLE = CIPHER, the ML would predict the class for C ⊕ Ci as i wtih the same probability
as training. Therefore in this case, the accuracy for class prediction (in Step 5) would be same
(or, close to) the accuracy observed during training, i.e., > 1

t .

(b) If ORACLE = RANDOM, the ML would arbitrarily predict the classes. Therefore the accuracy for
predicting classes by the trained ML (in Step 5) would be equal to (or, close to) 1

t .

3.3 Comparison of Machine Learning Models

At this place, it is perhaps worth noting the differences with our ML model with the previous ones,
most notably with Gohr’s [23] (other works like [3, 11,16] use some variation of that model).

The following points can be noted:

1. In Gohr’s model, the input layer neuron size is doubled.

2. It seems that Gohr’s model intrinsically requires CNN (some justification on CNN is given in [23,
Section 4.2]) at least for the time being; which is relaxed in our case, any ML tool that supports
classification (including an SVM) can be used.

3. Gohr does not use dropout layers, while we do. Instead he uses L2 regularization for the dense and
convolution layers.

4. Gohr’s model requires high number of epochs (like, 200), whereas we use much less (not more than
20). Our model takes considerably less time.

5. Gohr uses sigmoid activation (as the problem is always about binary classification) in the last layer
while we use softmax (as we need support for multiple classes).

6. Gohr uses mean squared error (MSE) as the loss function while we use cross-entropy.

7. Gohr trains 8-round SPECK-32 classifier using a transfer learning approach, as the regular (directly
observed) distinguisher stops working after 7 rounds2. In contrast, our model can directly observe
up to 8-round of SPECK-32 with training/testing accuracy > 0.51 without any transfer learning.

8. Compared to Gohr, we need one-third entropy (for 2-class classification).

9. Due to the way the classification problem is formulated by Gohr, the cipher query complexity is
double of the data complexity. In our case, the number of queries to the cipher is same as the total
data complexity3.

2While the efficacy of this approach is clear, we remark that transfer learning is typically used where there is a dearth
of data (the reasoning for choosing the transfer learning approach is not clear given the context).

3To avoid any possible ambiguity, we count the data complexity as the total amount data (not the amount of data per
class) in our results.



New Results on Machine Learning Based Distinguishers 7

10. In Gohr’s model, it can be argued that “RANDOM” is a misnomer, since it is actually a pair of
ciphertexts which are obtained by encrypting two random plaintexts.

Note that the choices (such as, loss function, batch size, number of epochs) made in our architecture
are mostly arbitrary, since we want to emulate an attacker who has merely a basic understanding of ML.
For this reason, we consider the most basic neural network, MLP (apart from SVM). In any case, we
would like to emphasize that, all these choices (including the choice of MLP) are no way linked to the
basic ML-based distinguisher model — any design option can be considered in conjunction with/instead
of our design choices. More specialized architecture that follow the same basic model can be expected
to give better accuracy for a given round of a cipher than this work, and more importantly it can be
expected to cover more round than this work.

Having said all that, one may note that, there is no inherent incompatibility from the ML model
used here (adopted from [7, Section 3.1] with that of Gohr’s (one can be converted to-and-from another
if needed). For reference, in Gohr’s model, one class corresponds to the ciphertext pair coming from
input difference δ, and the other class corresponds to ciphertext pair coming from random plaintext
pair.

4 Cipher Description in Brief

4.1 SPECK

SPECK [12] is a lightweight block cipher family, based on Feistel structure, designed by the National
Security Agency (NSA) in 2013. There are 10 variants of SPECK, of which only two with state size of
32 and 128 bits are considered here. That one with state size of 32-bits runs for 22 rounds in the full
version; and the other one runs for 32, 33, or 34 rounds depending on the key size. The round function
of SPECK divides the input value into l and r, and rotation, modular addition, and xor are performed as
follows: li = (ROR7(li)⊞ ri)⊕ ki and ri = ROL3(ri)⊕ li.

4.2 ASCON

ASCON [21] is a well-known lightweight authenticated encryption with associated data (AEAD). ASCON
uses a 320-bit permutation, that runs for 12 rounds. It consists of Addition of Round Constants,
Nonlinear Substitution Layer, and Linear Diffusion Layer, and operates by dividing it into 5 64-bit
words (x0, x1, x2, x3, x4). The round constants are XORed of byte-1 of x2 during Addition of Round
Constants. In Nonlinear Substitution Layer, 5-bit SBox is applied. In Linear Diffusion Layer, rotation
operation is applied to each word as follows: Σ(x0) = x0⊕ (x0 ≫ 19)⊕ (x0 ≫ 28),Σ(x1) = x1⊕ (x1 ≫
61)⊕ (x1 ≫ 39),Σ(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6),Σ(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17),Σ(x4) =
x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41).

4.3 SIMECK

The lightweight block cipher family SIMECK [31] allows three (state size/key size) variants: 32/64 (32
rounds), 48/96 (36 rounds) and 64/128 (44 rounds). The round function and the key schedule are based
on the Feistel architecture. Round function of SIMECK is similar to SIMON. Before the round function,
the input plaintext is divided by l0 (plaintext to be encrypted) and r0 (plaintext to be encrypted). The
round function(ith) is as follows: Rki(li, ri) = (ri ⊕ f(li)⊕ ki, li). The number of rotations of SIMECK
round function are (0, 5, 1), and ROLi means rotation left operation (ith bit). The following f is used
in the round function Rki update: f(x) = x ∧ ROL5(x)⊕ ROL1(x).



8 A. Baksi et al.

4.4 SKINNY

SKINNY is a tweakable block cipher family which is introduced in CRYPTO 2016 targeting lightweight
application scenario [13]. It supports 64-bit and 128-bit block sizes. The internal state is composed of a
4× 4 array of cells according to the block size (each cell consists of a 4-bit cell in the case of a 64-bit
block, and an 8-bit cell in the case of a 128-bit block size).

5 Results on Round-Reduced Ciphers

Set-ups

The following tools are used:

• For experiment on SPECK (Section 5.1, except those with the fixed input difference 28000010), ASCON
(Section 5.2) and SIMECK (Section 5.3); our platform consists of 16× Intel Xeon E7-8880 CPUs, and
1× Nvidia Tesla-P100 16GB GPU accelerator (CUDA-10.2); and runs Ubuntu-18.04 (shared among
multiple users); with Python-3.6.9 and Numpy-1.16.4.

• For experiment on SPECK (Section 5.1 with the fixed input difference of 28000010), and SKINNY

(Section 5.4); our platform consists of an Apple M1 Pro 16GB with 10-core CPU, 16-core GPU, and
16-Neural Engine; with Python-3.8.9, Numpy-1.23.1 and Pytorch 1.12.0.

• We use TensorFlow-2.1.64 back-end with Keras-2.1.65 API, and PyTorch-0.4.16. Among the ML
models, only MLP is used throughout, with Adam as the optimizer.

Implementation of SPECK-32 and SPECK-128 unkeyed permutations are taken from a publicly
available repository7. For the rest ciphers, the implementation provided by its designers’ are used.
Unless otherwise mentioned, by time, we indicate the total time (data generation + training + testing
time).

5.1 SPECK

Arbitrary/Ad-hoc Input Differences. The results in this part are obtained from an MLP with
TensorFlow/Keras that runs for 5 epochs. The size of the input to the MLP is same as the state size
and the hidden layers have (128, 256, 256, 256, 128) neurons respectively. A dropout layer (of rate 0.2) is
included after the input layer to reduce the possibility of overfitting. The activation function for all the
layers, save for the output layer, is ReLU. We use 215 data for training and the same amount of data
for testing. The batch size is kept at default, 32.

For 5-round SPECK-32 and 7-round SPECK-128, the results are summarized in Table 1, where the
valid distinguishers (i.e., the accuracy is significantly > 1

t ) are marked for better readability. While
considering more the two input differences together, it appears that the input difference 100000 has a
greater impact on SPECK-32. Including this input difference in a previous set of input differences (for
which a valid distinguisher is not found) yields a valid distinguisher. More research would be needed to
explain the observation.

We also describe distinguishers for SPECK-32 and SPECK-128 for smaller rounds. The outcomes are
given in in Table 2 (Table 2a for SPECK-32, Table 2b for SPECK-128). The results for SPECK-32 are
done for the input differences (79042080, 1000000), and that for SPECK-128 are done for the input
differences (1000000, 1).

4https://www.tensorflow.org/
5https://keras.io/
6https://pytorch.org/
7https://github.com/inmcm/Simon_Speck_Ciphers/blob/master/Python/simonspeckciphers/speck/speck.py

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://github.com/inmcm/Simon_Speck_Ciphers/blob/master/Python/simonspeckciphers/speck/speck.py


New Results on Machine Learning Based Distinguishers 9

Table 1: Accuracy of ML training for 5-round SPECK-32 and 7-round SPECK-128 (TensorFlow/Keras)
Input Differences Accuracy

SPECK-32

5-round

79042080, 100000 0.5416

79042080, 100000, 52030701 0.3595

79042080, 100000, 52030701, 8710609 0.2729

20400040, 52030701, 8710609 0.3333

SPECK-128

7-round
1000000, 1 0.8266

1240004000000000801042004000000, 1 0.7580

Table 2: Accuracy of ML training for reduced round SPECK-32 and SPECK-128 (TensorFlow/Keras)
(a) SPECK-32

Rounds Accuracy

3 0.83

4 0.68

(b) SPECK-128

Rounds Accuracy

5 0.99

6 0.96

One-bit Input Differences. We apply the concept of choosing the 1-bit input differences, which is
inspired from [10]. While the choice of such input differences in [10] is proposed to find the location
of the differential fault attack (DFA) [6, Section 5.1], we notice that it can be linked to the classical
differential distinguisher (for a systematic method to generate the input differences).

Taken from [10], the input differences in this category are all possible 1-Hamming weight cases.
In other words, given the state size of the cipher n, we choose n input differences; where the bit at
location i is set to 1 and the rest are 0, ∀i ∈ {0, 1, . . . , n− 1}. Thus, the input differences are chosen
systematically (instead of those in Section 5.1, which are chosen in arbitrary or in ad-hoc manner).
SPECK-32, having state size of 32; the number of classes is 32 in this category, and the accuracy for
RANDOM is 0.03125.

The average time in seconds for training and validation (not counting the time taken for data
generation) per round is indicated in Table 3a (PyTorch) and Table 3b (TensorFlow/Keras). It may
be noted that, PyTorch (with default options) can possibly distinguish 7-rounds of SPECK-32, but
TensorFlow/Keras (with default options) cannot go beyond 6 rounds; even though size of training/testing
data and hyper-parameters are kept the same. Although, the choice of the activation function appears
to drastically affect the accuracy/coverage. More experiments are needed to understand the observations
fully.

Results from PyTorch. The results from PyTorch over various settings are given in Table 3a (rest
settings are kept at default). The in_features size of the first linear layer and the out_features

size of the last linear layer is 328. The rest in_features/out_features are as indicated. A dropout
layer of rate 0.2 is applied after the first linear layer. No separate SoftMax layer is used at the output
layer for PyTorch, as the CrossEntropyLoss9 combines LogSoftMax. Differential distinguishers can be
observed till 6 rounds of SPECK-32 with all the activation functions tested, except for the TanhShrink
activation function which does not seem to find any distinguisher even at 1-round (not included in
Table 3a). On top, a strong indication that the distinguisher follows through the 7th round can be
noted with activation functions ReLU; as well as with its general forms, PReLU, RReLU, ReLU6 and
LeakyReLU10.

Results from TensorFlow/Keras. Results for round-reduced SPECK-32 from TensorFlow/Keras are given
in Table 3b. A SoftMax layer is applied at the output layer with neuron size 32, which is not included for

8https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
9https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss

10Although the deviation of accuracy for the RANDOM case is small, the same deviation is observed through repeated
trials of the same experiment.

https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss


10 A. Baksi et al.

Table 3: Results for one-bit input differences for round reduced SPECK-32

(a) PyTorch

SPECK-32

Rounds
Architecture (MLP) Data Size Accuracy Average

Time (s)Layers Activation Batch Epochs Training Testing Training Testing

5

32, 128, 256,
112, 96, 128,
256, 128, 64

PReLU

32 12 223.2604 223.0211

0.37183 0.35452
36457.56 0.09460 0.09638

7 0.03439 0.03490

5
ReLU

0.27554 0.23028
21748.36 0.08190 0.07742

7 0.03375 0.03395

5

128, 256, 112,
256, 128, 64

ReLU 32

10 221.5049 220.9881

0.35440 0.37222
4279.66 0.09169 0.09386

7 0.03406 0.03442

5
RReLU

128

0.32060 0.33570
1591.66 0.08538 0.08615

7 0.03407 0.03386

5
ReLU6

0.32116 0.33948
1502.46 0.08596 0.08760

7 0.03476 0.03367

5
LeakyReLU

32

0.35932 0.37501
4828.36 0.09220 0.09365

7 0.03404 0.03386

5
SELU

0.36505 0.37348
5558.9

6 0.09592 0.09746
7 0.03172 0.03112

5
HardTanh

0.37314 0.37872
5533.0

6 0.09111 0.09250
7 0.03135 0.03118

5
Tanh

0.37794 0.38250
6162.5

6 0.09481 0.09516
7 0.03131 0.03123

5
LogSigmoid 128

0.26537 0.27944
2142.7

6 0.06671 0.06753
7 0.03135 0.03124

the sake of brevity. Note that the differential distinguisher works till the 6th round, with the activation
functions ELU, SELU and ReLU. No indication for it to follow at the 7th round is observed.

28000010 as a Fixed Input Difference. One notable contribution of [16, Section 4], is to find
an interesting input difference for SPECK-32, 28000010. Gohr’s idea is to choose the input difference
400000 (taken from [1, Table 7]), the idea here is to use an input difference with a low Hamming
weight. When this constraint of low Hamming weight is lifted, as per the authors of [16], the best input
difference turns out to be 28000010. Interestingly (or not), this input difference does not bode well
when used with Gohr’s distinguisher [23]. As the authors put it [16, Section 4]:

In contrast, when we do not restrict the input difference, the best differential
characteristics for 5 rounds is 0x2800/0010→ 0x850a/9520, with probability
of 2−9. However, when we trained the neural distinguishers to recognize cipher-
text pairs with the input difference of 0x2800/0010, the neural distinguishers
performed worse (an accuracy of 75.85% for 5 rounds). This is surprising as it
is generally natural for a cryptanalyst to maximize the differential probability
when choosing a differential characteristic.



New Results on Machine Learning Based Distinguishers 11

(b) TensorFlow/Keras

SPECK-32

Rounds
Architecture (MLP) Data Size Accuracy Average

Time (s)Layers Activation Batch Epochs Training Testing Training Testing

5

128, 256, 112,
256, 128, 64

Sigmoid 128

10
221.5049 220.9881

0.31239 0.31239 4087.1

5 Tanh

32

0.23050 0.24706 14040.7

5
ELU

0.34536 0.35649
15462.6

6 0.07299 0.07551

5
SELU

0.33400 0.33844
15214.0

6 0.06105 0.06585

5
ReLU 128 223.2558 223.0156

0.38132 0.39083
12400.5

6 0.07923 0.08075

Not to be deterred by this revelation, we decide to have a try with the model from [7, Section 3.1]11.
As the model from [7, Section 3.1] requires at least one more input difference, we choose some other
difference(s) along with 28000010 and give it a try with some arbitrarily chosen MLP. Results for the
smaller (5-, 6- and 7-rounds) are given in Table 4. Since the results are promising at the first glance
(the ML accuracy for 5-rounds is typically higher than that is reported in [16]), we decide to attempt
larger (≥ 8) rounds As. luck would have it, basically everything paired up with 28000010 works as a
distinguisher up to 8-round SPECK-32 with accuracy > 0.51. In some cases, the accuracy for 9-round is
> 0.5, and very close to 0.51 (but < 0.51), but we refrain from counting those. As the icing on the cake,
we choose some of the input differences reported in [11], and show the 8-round distinguisher.

Table 4: Results for SPECK-32 smaller (5, 6 and 7) rounds with 28000010 as an input difference (PyTorch)
(a) Large batch size and epochs (pair of differences)

SPECK-32 Input Difference Architecture (MLP) Data Size Accuracy Average
Time (s)Round (with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

5
1

128, 128, 128,
128, 64

ReLU

5000 150 223.7389 222.9315

0.81429 0.80833

18604.1

6 0.64266 0.64436

7 0.57286 0.57229

5
8000001

0.77971 0.78283

6 0.63979 0.64164

7 0.57277 0.57153

5
02110A04

0.77721 0.77898

6 0.64165 0.64328

7 0.57289 0.57243

5
1000000

PReLU

0.85139 0.85337

18182.3

6 0.66785 0.66860

7 0.57372 0.57248

5
80604101

0.79591 0.79705

6 0.63662 0.63640

7 0.57336 0.57221

The results with 28000010 as a fixed input difference are consolidated in Table 5. As it can be seen,
we adopt PyTorch and try with pairing 28000010 with various input differences. Overall, we use various
MLPs (by varying number of layers/neuron size and activation function), with varying batch sizes and
epochs; and with varying training/testing data sizes. We present 8-round distinguisher for SPECK-32,
with some indication that it follows through the 9th round as well. More specifically; Table 5a uses
larger batch size (5000) and epochs (150) with pairs of input differences; Table 5b uses smaller batch
size (32) and epochs (20) with pairs of input differences; Table 5c uses triplets of input differences; and

11The model from [7, Section 3.1] was already in released in public at the time (or before) of publication of [16], it is
not clear why the authors of [16] did not attempt their newly found input difference with that model.



12 A. Baksi et al.

(a) Small batch size and epochs (pair of differences)

SPECK-32 Input Difference Architecture (MLP) Data Size Accuracy Average
Time (s)Round (with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

5
1000000 128, 128, 128,

128, 64
ReLU

32 20 223.7389 222.9315

0.84429 0.84646
9913.76 0.66208 0.66523

7 0.56956 0.56909

5
02110A04

256, 128, 64,
32, 16

0.78481 0.78772
10064.36 0.64322 0.64537

7 0.57167 0.57249

5
4000000 PReLU

0.86837 0.87020
9042.36 0.69521 0.69672

7 0.57334 0.57315

5
1000080 Tanh

0.77490 0.77520
9665.86 0.63378 0.63409

7 0.56608 0.56594

Table 5: Results for SPECK-32 8-round with 28000010 as an input difference (PyTorch)
(a) Large batch size and epochs (pair of differences)

Input Difference Architecture (MLP) Data Size Accuracy Average

Time (s)(with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

1

128, 128, 128,

128, 64

ReLU

5000 150 223.7389 222.9315

0.51946 0.51039

19628.9

8000001 0.51965 0.51158

4000000 0.52005 0.51160

1000000 0.51948 0.51041

400000 0.51983 0.51055

02110A04 0.52055 0.51315

80204101 0.51877 0.51065

80604101 0.51936 0.51069

80214101 0.51915 0.51075

80614101 0.51922 0.51069

10004440 0.51961 0.51027

1000000

PReLU

0.52425 0.51322

21719.5
02110A04 0.52406 0.51151

80204101 0.52337 0.51013

80604101 0.52511 0.51413

Table 5d uses triplets of input differences which form the second order differential. Some more results
corresponding to possible distinguishers of 9-round SPECK-32 are shown in Table 6.

We remark that, using more epochs may tend to overfit. For instance, with respect to 9-round
SPECK-32; (28000010, 1, 28000011), (28000010, 8000001, 20000011), (28000010, 4000000, 2C000010),
(28000010, 1000000, 29000010), (28000010, 400000, 28400010); the training accuracy is less than 0.34
for 4000 batch size (and 20 epochs), but more than 0.34 for 5000 batch 150 epochs (shown in Table 6).

Thus, it is owing to the hard work of the authors of [16], we could ultimately find the 8-round
distinguishers of SPECK-32 (i.e., by fixing 28000010 as an input difference. This is in a way ironic,
since the best result from [16] covers only till 7 rounds of SPECK-32. Before that, our best result (with
accuracy of about 0.59), was up to 7-rounds, with the following pairs of input differences: (1, 400000),
(2, 400000), (8, 400000), (40, 400000), (200, 400000), (800, 400000), (1000, 400000), (10000, 400000),
(400000, 20000000). Note that 400000 is common – this is the same input difference is used by Gohr [23]
– though, in our case it is found by individually trying with all

(
32
2

)
input difference pairs of Hamming

weight 1 and thereafter choosing the best pairs. Granted, our 7-round distinguishers take only a few



New Results on Machine Learning Based Distinguishers 13

(b) Small batch size and epochs (pair of differences)

Input Difference Architecture (MLP) Data Size Accuracy Average

Time (s)(with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

1

128, 128, 128,

128, 64

ReLU

32 20 223.7389 222.9315

0.51342 0.51270

8196.0

804002 0.51333 0.51321

80604101 0.51341 0.51303

A604205 0.51356 0.51273

28000011 0.51336 0.51343

2000000 0.51298 0.51279

4800020 0.51335 0.51306

80000000 0.51358 0.51354

800000 0.51321 0.51322

1000000 0.51417 0.51413

20000000 0.51321 0.51286

8000 0.51357 0.51313

1000080

256, 128, 64,

32, 16

0.51483 0.51369

8092.3

800001 0.51445 0.51334

4000000 0.51428 0.51313

10000 0.51281 0.51290

40000000 0.51319 0.51314

8000000 0.51308 0.51312

2000 0.51331 0.51297

4002 0.51320 0.51305

4000 0.51334 0.51309

2110A04 0.51607 0.51556

80214101 0.51409 0.51261

A204205 0.51497 0.51335

80204101 0.51456 0.51343

80614101 0.51455 0.51367

400000 0.51373 0.51380

1000000
128, 128, 128,

128, 64

PReLU

0.51322 0.51307 10084.5

1000080

256, 128, 64,

32, 16

0.51395 0.51256

7902.3
800001 0.51407 0.51279

4000000 0.51526 0.51450

2110A04 0.51639 0.51502

1000080 Tanh 0.51380 0.51330 9103.2

minutes (thus considerably faster than probably all the competitors), still we would want to increment
the number of rounds; this arguably would not have been possible without the assistance from [16].



14 A. Baksi et al.

(c) Triplet of differences

Input Differences Architecture (MLP) Data Size Accuracy Average

Time (s)(with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

1, 8000001

128, 128, 128,

128, 64

ReLU

5000 150 224.3238 223.5165

0.35035 0.34454

31331.2

1, 4000000 0.34802 0.34068

1, 1000000 0.34835 0.34093

1, 400000 0.35285 0.34866

1, FF8FFF8F 0.34975 0.34425

1, 400000 0.35083 0.34542

1, 80008000 0.34827 0.34082

1, 850A9520 0.34814 0.34082

4000000, 800001 0.34835 0.34073

4000000, 1000000 0.34878 0.34077

4000000, 400000 0.34856 0.34121

800001, 400000 0.35308 0.34990

800001, 1000000 0.34838 0.34110

1, 4000000

PReLU

0.35068 0.34071

34340.4

1, 1000000 0.35086 0.34055

1, 400000 0.35109 0.34035

1, FF8FFF8F 0.35149 0.34143

1, 80008000 0.35109 0.34046

4000000, 800001 0.35135 0.34089

4000000, 1000000 0.35088 0.34068

800001, 1000000 0.35088 0.34071

(d) Second order differential (triplet of differences)

Input Differences Architecture (MLP) Data Size Accuracy Average

Time (s)(with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

1, 28000011

128, 128, 128,

128, 64

ReLU

4000 20

224.3238 223.5165

0.34299 0.34202

5131.6

8000001, 20000011 0.34304 0.34242

4000000, 2C000010 0.34266 0.34214

1000000, 29000010 0.34285 0.34231

400000, 28400010 0.34267 0.34176

1, 28000011

5000 150

0.34389 0.34094

35028.5

8000001, 20000011 0.34855 0.34102

4000000, 2C000010 0.34851 0.34135

1000000, 29000010 0.34992 0.34429

400000, 28400010 0.34871 0.34111

1, 28000011

PReLU

0.35283 0.34366

32816.8
8000001, 20000011 0.35049 0.34007

4000000, 2C000010 0.35255 0.34379

1000000, 29000010 0.35141 0.34166

Table 6 shows some potential candidates for 9-round SPECK-32 distinguisher.



New Results on Machine Learning Based Distinguishers 15

Table 6: Results for SPECK-32 9-round with 28000010 as an input difference (PyTorch; no confirmed distinguisher)
Input Difference(s) Architecture (MLP) Data Size Accuracy Average

Time (s)(with 28000010) Middle Layers Activation Batch Epochs Training Testing Training Testing

1000080
128, 128, 128, 128

128, 128, 64

ReLU

32

20

223.7389 222.9315
0.49992 0.50000

9348.6
28000011 0.50014 0.50000

1000000 224.2534 223.2534 0.50003 0.50000 15673.0

1

128, 128, 128,
128, 64

128

223.7389 222.9315

0.51400 0.50026
3811.9

800001 0.50315 0.49996

4000000

4000
0.50552 0.50015

3287.61000000 0.50473 0.50018

400000 0.50466 0.49992

1

5000 150

0.51529 0.49995

21621.2

800001 0.51506 0.50021

4000000 0.51549 0.50011

1000000 0.51517 0.49999

400000 0.51055 0.49997

02110A04 0.51581 0.50042

80204101 0.51599 0.50016

80604101 0.51503 0.50017

80214101 0.51566 0.50010

80614101 0.51540 0.50035

10004440 0.51547 0.49995

1, 28000011

224.3238 223.5165

0.34520 0.33346

30006.0

8000001, 20000011 0.34493 0.33367

4000000, 2C000010 0.34484 0.33333

1000000, 29000010 0.34532 0.33345

400000, 28400010 0.34537 0.33355

1, 800001 0.34537 0.33346

1, 4000000 0.34532 0.33342

1, 1000000 0.34548 0.33316

1, 400000 0.34532 0.33360

1, FF8FFF8F 0.34494 0.33347

1, 400000 0.34552 0.33329

1, 80008000 0.34502 0.33355

1, 850A9520 0.34512 0.33374

4000000, 800001 0.34530 0.33361

4000000, 1000000 0.34547 0.33345

4000000, 400000 0.34514 0.33342

800001, 400000 0.34550 0.33369

800001, 1000000 0.34498 0.33325

1

PReLU

223.7389 222.9315

0.51647 0.49981

20667.9

800001 0.51794 0.50001

4000000 0.51782 0.50018

1000000 0.51839 0.50018

400000 0.51808 0.49980

02110A04 0.51681 0.50010

80204101 0.51647 0.49992

80604101 0.51783 0.50033

1, 28000011

224.3238 223.5165

0.34640 0.33325

31879.6

8000001, 20000011 0.34694 0.33363

4000000, 2C000010 0.34712 0.33351

1000000, 29000010 0.34637 0.33350

400000, 28400010 0.34734 0.33334

1, 800001 0.34616 0.33312

1, 4000000 0.34670 0.33347

1, 1000000 0.34605 0.33355

1, 400000 0.34656 0.33330

1, FF8FFF8F 0.34603 0.33329

1, 400000 0.34665 0.33340

1, 80008000 0.34744 0.33337

1, 850A9520 0.34595 0.33356

4000000, 800001 0.34622 0.33340

4000000, 1000000 0.34653 0.33330

4000000, 400000 0.34652 0.33340

800001, 400000 0.34642 0.33329

800001, 1000000 0.34676 0.33344



16 A. Baksi et al.

5.2 ASCON

The result for the rate part of ASCON12 [21], which is the first 128-bits, is presented in Expression (1). For
simplicity, each coefficient is rounded off to 5-decimal places. This acts a 3-round distinguisher which
works with accuracy of 0.916. It is obtained using linear-kernel SVM where all the hyper-parameters
are kept at its default value (except for kernel which is set to linear instead of the default rbf) with
around 214.96 training data and validated with 212.96 testing data. For the input differences, we choose
the mask value 1000. We then XOR it with the 64-bit register x) to get δ0, and XOR the same mask
value with the register x1 to get δ1. For a given output difference, if the expression results as < 0, then
it belongs to class 0 (i.e., corresponds to input difference δ0). Otherwise, i.e., if the expression results as
≥ 0, then it belongs to class 1 (i.e., corresponds to input difference δ1).

Effect of Truncation. Note that, taking only the rate part (128-bits, instead of the full state of 320-bits)
does not give us any extra leverage. After collecting the output differences the attacker can employ any
method, including truncating a part of it. Therefore, this falls within the model. Apart from that; so
far our experiments suggest that when taking the full state, the same distinguisher always works with
the same/higher accuracy than that of the truncated case. Thus, we believe that truncating part of the
state may make the attacker’s job more difficult, but will definitely not make it easy than it currently
is. Indeed, with the full state of ASCON (320-bits) and keeping everything as-is, the accuracy increases
to 1.00. This is obtained for around 214.96 training data and the model is validated with around 212.96

testing data.

Expression 1 SVM distinguisher for 3-round ASCON (rate/128-bits, accuracy 0.916)

+ 0.06524x0 + 0.25818x1 − 0.07127x2 − 0.02698x3 − 0.00589x4 − 0.32018x5 + 0.00419x6

+ 0.10561x7 − 4.89209x8 − 0.07874x9 − 0.23816x10 − 0.01899x11 − 0.03706x12

+ 0.00224x13 − 0.13761x14 + 0.03035x15 − 0.01552x16 − 1.70353x17 − 0.32852x18

+ 0.16048x19 − 0.02296x20 − 0.03522x21 − 0.02862x22 − 0.01690x23 − 0.32018x24

− 0.04786x25 + 0.00340x26 − 0.13893x27 − 0.05532x28 + 0.16708x29 − 0.06691x30

− 0.02850x31 − 0.06942x32 − 0.03979x33 + 0.08352x34 − 0.12548x35 + 0.95676x36

+ 0.00000x37 − 0.14355x38 − 0.06691x39 − 0.03362x40 − 0.11080x41 − 0.07196x42

+ 0.19412x43 − 0.00180x44 − 0.00503x45 + 0.27334x46 + 0.04656x47 + 0.05862x48

+ 0.01036x49 − 0.22783x50 + 0.00008x51 − 0.10638x52 − 0.02959x53 + 0.09513x54

− 0.05866x55 − 0.02052x56 − 0.06191x57 + 0.10620x58 + 0.11661x59 + 0.04581x60

+ 0.57142x61 + 0.00000x62 − 1.00000x63 + 0.00708x64 − 0.02973x65 − 0.02207x66

− 0.00509x67 − 0.02888x68 − 0.28811x69 + 0.07271x70 + 0.01869x71 − 0.10360x72

− 0.01156x73 − 0.31847x74 − 0.06710x75 + 0.02993x76 − 0.00578x77 − 0.18291x78

+ 0.09424x79 + 0.84935x80 + 0.00000x81 + 0.08682x82 + 0.39318x83 + 0.13964x84

− 1.05348x85 + 0.03237x86 − 0.12471x87 + 0.16543x88 + 0.08003x89 + 0.07077x90

+ 0.02339x91 − 0.00371x92 − 0.03341x93 + 0.13572x94 + 0.20409x95 + 0.01148x96

− 0.04107x97 + 0.14575x98 − 0.30807x99 − 0.00354x100 − 0.69512x101 + 0.86495x102

− 0.06458x103 + 0.02611x104 + 0.34864x105 − 0.02176x106 − 0.02630x107 + 0.58935x108

− 0.02643x109 + 0.00852x110 − 0.06558x111 − 0.00644x112 − 0.05778x113 + 0.52099x114

+ 0.00206x115 + 0.03979x116 − 0.01654x117 + 0.01060x118 + 0.00693x119 + 0.07832x120

− 0.10912x121 + 0.00012x122 + 0.16375x123 + 0.18298x124 − 0.97580x125 + 0.28003x126

− 0.81702x127 − 0.03862

12The latest version, ASCONv1.2 is used here and denoted as ASCON for simplicity.



New Results on Machine Learning Based Distinguishers 17

5.3 SIMECK

Here we describe our findings for SIMECK-32 and SIMECK-64 [31]. We take δ0 = 1 and δ1 = 2 for all the
cases. All the results are from an MLP model with the hidden layers having (128, 256, 256, 256, 128)
neurons respectively, and run for 5 epochs. We achieve accuracy of 0.526 for 9-round SIMECK-32,
and 0.55 for 14-round SIMECK-64, both with 215 training data (validation is done with equal amount
of testing data). More information regarding earlier rounds can be found in Table 7 (Table 7a for
SIMECK-32, Table 7b for SIMECK-64).

Table 7: Accuracy of ML training for reduced round SIMECK-32 and SIMECK-64

(a) SIMECK-32

Rounds Accuracy

8 0.683

9 0.526

10 0.500

(b) SIMECK-64

Rounds Accuracy

11 0.83

12 0.75

13 0.64

14 0.55

15 0.50

5.4 SKINNY

Similar to ASCON SVM (Section 5.2), we show the results for SKINNY-128 unkeyed permutation [13].
Table 8 shows the summarized results (only training data size and training accuracy are shown), with
two input difference pairs. Further, Expression (2) shows an example for input difference pair (1,
00005900000000000000000000000000) for 6-round SKINNY-128 with linear kernel SVM (that works
with accuracy of 0.54556). For a particular test case, if it results as < 0 then it belongs to class 0
(i.e., corresponds to input difference δ0 = 1), otherwise it belongs to class 1 (i.e., corresponds to input
difference δ1 = ffffffffffffffffffffffffffffffff).

Table 8: Results for SKINNY-128 with SVM
(a) 6-round

Input differences Kernel
Data size Accuracy

Training Testing Training Testing

1,

ffffffffffffffffffffffffffffffff

Linear

214.28771 213.7732

0.54865 0.5535

RBF 0.9997 0.9895

Polynomial 1.0 0.9912

1,

8000000000000000000000000080

Linear 0.56725 0.5562

RBF 0.9992 0.9875

Polynomial 1.0 0.9897

(b) 7-round

Input differences Kernel
Data size Accuracy

Training Testing Training Testing

1,

5900000000000000000000000000

Linear

219.93157 219.194605
0.5049 0.5050

RBF 0.7745 0.5396

Polynomial 0.7639 0.5456



18 A. Baksi et al.

Expression 2 SVM distinguisher for 6-round SKINNY-128 (accuracy 0.54556)

− 0.000002458x0 − 0.00000453x1 − 0.00001726x2 − 0.00002808x3 + 0.00001783x4 − 0.00000363x5 − 0.00002760x6

− 0.00001677x7 − 0.00003956x8 − 0.00000467x9 − 0.00001278x10 + 0.00000166x11 + 0.00001986x12

+ 0.00001712x13 + 0.00000503x14 + 0.00001689x15 + 0.00002077x16 − 0.00003732x17 − 0.00001814x18

− 0.00002409x19 − 0.00003847x20 − 0.00006143x21 − 0.00000067x22 + 0.00000691x23 − 0.00000597x24

+ 0.00000018x25 + 0.00000000x26 + 0.00002974x27 − 0.00000331x28 − 0.00008007x29 + 0.00001104x30

− 0.00000219x31 − 0.00000038x32 − 0.00005310x33 − 0.00004009x34 − 0.00002686x35 − 0.00000967x36

− 0.00024361x37 − 0.00004561x38 − 0.00007616x39 − 0.00003045x40 + 0.00000026x41 − 0.00001561x42

− 0.00000510x43 − 0.00000569x44 − 0.00001290x45 + 0.00000030x46 − 0.000000976x47 − 0.00000400x48

+ 0.00006144x49 − 0.00003996x50 + 0.00000411x51 − 0.00004234x52 − 0.00000999x53 − 0.00001662x54

− 0.00001821x55 + 0.00002785x56 + 0.00016537x57 + 0.00001928x58 + 0.00001700x59 − 0.00006496x60

− 0.00011006x61 + 0.00000138x62 − 0.00006339x63 − 0.00005156x64 + 0.00003192x65 − 0.00001398x66

+ 0.00001874x67 − 0.00012107x68 − 0.00010488x69 − 0.00005654x70 − 0.00005476x71 + 0.00000765x72

+ 0.00004549x73 + 0.00001019x74 − 0.00000517x75 − 0.00001394x76 − 0.00022932x77 + 0.00001376x78

− 0.00002833x79 − 0.00000946x80 − 0.00000643x81 − 0.00000823x82 + 0.00001040x83 − 0.00003902x84

− 0.00001667x85 − 0.00000758x86 + 0.00003016x87 − 0.00003748x88 − 1.99938367x89 − 0.00004061x90

− 0.00002421x91 − 0.00001997x92 − 0.00008293x93 − 0.00011033x94 + 0.00004228x95 + 0.00000025x96

+ 0.00002680x97 + 0.00000691x98 − 0.00001166x99 − 0.00003569x100 − 0.00000056x101 + 0.00001540x102

− 0.00000333x103 + 0.00001192x104 + 0.00000612x105 − 0.00001477x106 − 0.00001475x107 + 0.00000492x108

+ 0.00000779x109 + 0.00001762x110 + 0.00001734x111 + 0.00000166x112 + 0.00001838x113 + 0.00003240x114

− 0.00000428x115 − 0.00001534x116 − 0.00003687x117 + 0.00001803x118 + 0.00000481119 + 0.00003978x120

+ 0.00001102x121 + 0.00004022x122 − 0.00000616x123 − 0.00000095x124 − 0.00007751x125 − 0.00001126x126

− 0.00001836x127 + 1.00047451

6 Conclusion and Future Directions

Similar to its predecessor [7], we anticipate this work too would be useful to the community. It shows
the machine learning based differential distinguishers for the (round-reduced version of) unkeyed
permutations — SPECK-32 and SPECK-128 [12], ASCON [21], SIMECK [31] and SKINNY [13].

For reduced-round version of the ciphers, we show how an attacker equipped with moderate
understanding of machine learning tools can severely lower down the search complexity which would
otherwise be expected for distinguishing it from the random scenario, while staying completely within the
by classical differential attack model. Indeed, much of our work relies on some ad-hoc ML architecture
and arbitrarily chosen input differences; still we are able to out-compete the otherwise computed
complexity, and match the same number of rounds as the currently best-known ML-based attacks (that
use more specialized/sophisticated architecture than ours) on SPECK-32.

It is possible to extend our existing model to do one/more of the followings:

1. Concatenate multiple ML distinguishers to cover more rounds.

2. Combine with traditional differential distinguishers (i.e., that does not involve ML).

3. Use specialized ML architecture (our ML-based distinguisher models are not tied to any particular
ML architecture). For instance, one may use reinforcement learning to generate such architecture.
In that case, Gohr’s model would require twice as much neuron in the input layer. (as Optuna is
used in [26]).

4. Support key recovery.

In this work, however, we keep the focus on the basic observation on how the state-of-the-art methods
in traditional differential distinguishers might have underestimated the power of an attacker who has
only basic knowledge of ML.



New Results on Machine Learning Based Distinguishers 19

In response to the 8-round distinguisher on GIMLI reported in [7], the designers of GIMLI have
commented in [17] that, “it is not possible to extend their model to cover further rounds”. This
assumption, in reality, is not true. There is no inherent limitation of the model that blocks itself from
covering more rounds.

In the long run, we expect the bound for our ML assisted model can be increased with further
research, as our results do not constitute the upper limit. The coverage of rounds could likely be
extended with more training/testing data, deeper network, different choice of hyper-parameters, various
activation functions etc. Also, the choice of the input differences play an important role. Therefore, it
may be possible to increase the coverage only by choosing suitable input differences.

References

1. Abed, F., List, E., Lucks, S., Wenzel, J.: Differential cryptanalysis of round-reduced simon and speck. In Cid, C.,
Rechberger, C., eds.: Fast Software Encryption - 21st International Workshop, FSE 2014, London, UK, March 3-5,
2014. Revised Selected Papers. Volume 8540 of Lecture Notes in Computer Science., Springer (2014) 525–545 10

2. Avanzi, R.: A salad of block ciphers. Cryptology ePrint Archive, Report 2016/1171 (2016) https://eprint.iacr.
org/2016/1171. 3

3. Bacuieti, N., Batina, L., Picek, S.: Deep neural networks aiding cryptanalysis: A case study of the speck distinguisher.
In Ateniese, G., Venturi, D., eds.: Applied Cryptography and Network Security - 20th International Conference, ACNS
2022, Rome, Italy, June 20-23, 2022, Proceedings. Volume 13269 of Lecture Notes in Computer Science., Springer
(2022) 809–829 1, 2, 6

4. Baksi, A.: New insights on differential and linear bounds using mixed integer linear programming (full version).
Cryptology ePrint Archive, Report 2020/1414 (2020) https://eprint.iacr.org/2020/1414. 3

5. Baksi, A.: Classical and Physical Security of Symmetric Key Cryptographic Algorithms. Springer (2022) https:

//link.springer.com/book/10.1007/978-981-16-6522-6. 4
6. Baksi, A., Bhasin, S., Breier, J., Jap, D., Saha, D.: Fault attacks in symmetric key cryptosystems. Cryptology ePrint

Archive, Report 2020/1267 (2020) 9
7. Baksi, A., Breier, J., Chen, Y., Dong, X.: Machine learning assisted differential distinguishers for lightweight ciphers.

Cryptology ePrint Archive, Report 2020/571 (2020) https://eprint.iacr.org/2020/571. 1, 2, 3, 4, 5, 7, 11, 18, 19
8. Baksi, A., Breier, J., Dasu, V.A., Dong, X., Yi, C.: Following-up On Machine Learning Assisted Differential

Distinguishers. SILC Workshop – Security and Implementation of Lightweight Cryptography (2021) https://www.
esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission4.pdf. 4

9. Baksi, A., Breier, J., Dasu, V.A., Hou, X.: Machine Learning Attacks On SPECK. SILC Workshop – Security
and Implementation of Lightweight Cryptography (2021) https://www.esat.kuleuven.be/cosic/events/silc2020/
wp-content/uploads/sites/4/2021/09/Submission10.pdf. 4

10. Baksi, A., Sarkar, S., Siddhanti, A., Anand, R., Chattopadhyay, A.: Fault location identification by machine learning.
IACR Cryptology ePrint Archive (2020) 717 https://eprint.iacr.org/2020/717. 9

11. Bao, Z., Guo, J., Liu, M., Ma, L., Tu, Y.: Conditional differential-neural cryptanalysis. Cryptology ePrint Archive,
Paper 2021/719 (2021) https://eprint.iacr.org/2021/719. 1, 2, 6, 11

12. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Simon and speck: Block ciphers for the
internet of things. Cryptology ePrint Archive, Report 2015/585 (2015) https://eprint.iacr.org/2015/585. 1, 7, 18

13. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY
family of block ciphers and its low-latency variant MANTIS. IACR Cryptology ePrint Archive 2016 (2016) 660 1, 8,
17, 18

14. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The SKINNY
family of block ciphers and its low-latency variant MANTIS. In: Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II.
(2016) 123–153 2

15. Bellini, E., Rossi, M.: Performance comparison between deep learning-based and conventional cryptographic distin-
guishers. Cryptology ePrint Archive, Paper 2020/953 (2020) https://eprint.iacr.org/2020/953. 1

16. Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine learning-based cryptanalysis. Cryptology
ePrint Archive, Paper 2021/287 (2021) https://eprint.iacr.org/2021/287. 1, 2, 3, 6, 10, 11, 12, 13

17. Bernstein, D.J., Kölbl, S., Lucks, S., Massolino, P.M.C., Mendel, F., Nawaz, K., Schneider, T., Schwabe,
P., Standaert, F., Todo, Y., Viguier, B.: Gimli: Nist lwc second-round candidate (status up-
date) (September 2021) https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/

round-2/status-update-sep2020/gimli_update.pdf. 19
18. Chen, Y., Shen, Y., Yu, H., Yuan, S.: A new neural distinguisher considering features derived from multiple ciphertext

pairs. Cryptology ePrint Archive, Paper 2021/310 (2021) https://eprint.iacr.org/2021/310. 1
19. Chen, Y., Yu, H.: Bridging machine learning and cryptanalysis via edlct. Cryptology ePrint Archive, Paper 2021/705

(2021) https://eprint.iacr.org/2021/705. 1

https://eprint.iacr.org/2016/1171
https://eprint.iacr.org/2016/1171
https://eprint.iacr.org/2020/1414
https://link.springer.com/book/10.1007/978-981-16-6522-6
https://link.springer.com/book/10.1007/978-981-16-6522-6
https://eprint.iacr.org/2020/571
https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission4.pdf
https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2020/10/Submission4.pdf
https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2021/09/Submission10.pdf
https://www.esat.kuleuven.be/cosic/events/silc2020/wp-content/uploads/sites/4/2021/09/Submission10.pdf
https://eprint.iacr.org/2020/717
https://eprint.iacr.org/2021/719
https://eprint.iacr.org/2015/585
https://eprint.iacr.org/2020/953
https://eprint.iacr.org/2021/287
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/gimli_update.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/status-update-sep2020/gimli_update.pdf
https://eprint.iacr.org/2021/310
https://eprint.iacr.org/2021/705


20 A. Baksi et al.

20. Cortes, C., Vapnik, V.: Support-vector networks. In: Machine Learning. (1995) 273–297 4
21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to NIST (2019)

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/

ascon-spec-round2.pdf. 1, 7, 16, 18
22. Ebrahimi, A., Regazzoni, F., Palmieri, P.: Reducing the cost of machine learning differential attacks using bit selection

and a partial ml-distinguisher. Cryptology ePrint Archive, Paper 2021/1479 (2021) https://eprint.iacr.org/2021/
1479. 1

23. Gohr, A.: Improving attacks on round-reduced speck32/64 using deep learning. Cryptology ePrint Archive, Paper
2019/037 (2019) https://eprint.iacr.org/2019/037. 1, 2, 3, 6, 10, 12

24. Haykin, S.: Neural Networks and Learning Machines (third edition). Pearson (2008) 4
25. Heuser, A., Zohner, M.: Intelligent machine homicide. In Schindler, W., Huss, S.A., eds.: Constructive Side-Channel

Analysis and Secure Design, Berlin, Heidelberg, Springer Berlin Heidelberg (2012) 249–264 4
26. Kimura, H., Emura, K., Isobe, T., Ito, R., Ogawa, K., Ohigashi, T.: Output prediction attacks on block ciphers using

deep learning. Cryptology ePrint Archive, Paper 2021/401 (2021) https://eprint.iacr.org/2021/401. 1, 18
27. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming.

In: Information Security and Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers. (2011) 57–76 3

28. Pal, D., Mandal, U., Chaudhury, M., Das, A., Chowdhury, D.R.: A deep neural differential distinguisher for arx based
block cipher. Cryptology ePrint Archive, Paper 2022/1195 (2022) https://eprint.iacr.org/2022/1195. 1

29. Sun, L., Wang, W., Wang, M.: Accelerating the search of differential and linear characteristics with the sat method.
Cryptology ePrint Archive, Report 2021/213 (2021) https://eprint.iacr.org/2021/213. 3

30. Yadav, T., Kumar, M.: Differential-ml distinguisher: Machine learning based generic extension for differential
cryptanalysis. Cryptology ePrint Archive, Paper 2020/913 (2020) https://eprint.iacr.org/2020/913. 1

31. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The simeck family of lightweight block ciphers. Cryptology
ePrint Archive, Report 2015/612 (2015) https://eprint.iacr.org/2015/612. 1, 7, 17, 18

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://eprint.iacr.org/2021/1479
https://eprint.iacr.org/2021/1479
https://eprint.iacr.org/2019/037
https://eprint.iacr.org/2021/401
https://eprint.iacr.org/2022/1195
https://eprint.iacr.org/2021/213
https://eprint.iacr.org/2020/913
https://eprint.iacr.org/2015/612

	New Results on Machine Learning Based Distinguishers

