
Attacking the IETF/ISO Standard for Internal
Re-keying CTR-ACPKM

Orr Dunkelman, Shibam Ghosh and Eran Lambooij

Department of Computer Science, University Of Haifa, Haifa, Israel
orrd@cs.haifa.ac.il,sghosh03@campus.haifa.ac.il,eran@hideinplainsight.io

Abstract. Encrypting too much data using the same key is a bad prac-
tice from a security perspective. Hence, it is customary to perform re-
keying after a given amount of data is transmitted. While in many cases,
the re-keying is done using a fresh execution of some key exchange pro-
tocol (e.g., in IKE or TLS), there are scenarios where internal re-keying,
i.e., without exchange of information, is performed, mostly due to per-
formance reasons.
Originally suggested by Abdalla and Bellare, there are several proposals
on how to perform this internal re-keying mechanism. For example, Liliya
et al. offered the CryptoPro Key Meshing (CPKM) to be used together
with GOST 28147-89 (known as the GOST block cipher). Later, ISO and
the IETF adopted the Advanced CryptoPro Key Meshing (ACKPM) in
ISO 10116 and RFC 8645, respectively.
In this paper, we study the security of ACPKM and CPKM. We show
that the internal re-keying suffers from an entropy loss in successive
repetitions of the re-keying mechanism. We show some attacks based on
this issue. The most prominent one has time and data complexities of
O(2κ/2) and success rate of O(2−κ/4) for a κ-bit key.
Furthermore, we show that a malicious block cipher designer or a faulty
implementation can exploit the ACPKM (or the original CPKM) mecha-
nism to significantly hinder the security of a protocol employing ACPKM
(or CPKM). Namely, we show that in such cases, the entropy of the re-
keyed key can be greatly reduced.

Keywords: CTR-ACPKM· Multi-user Attack · Entropy Loss · Key Col-
lision

1 Introduction

A common security-enhancing practice is to restrict the duration in which a given
key is used. This is done, for example, as a simple mitigation to attacks relying
on collisions, such as Sweet32 [15]. It is thus, customary to change the encryption
key after a set amount of time or encryptions. The maximum amount of data
that can be safely encrypted under a single key in any cryptographic protocol is
called the key lifetime.

Changing the key usually requires to run a key-exchange protocol, which can
incur high computation and communication costs. This inspired further research
on re-keying the existing secret key without running a key-exchange protocol.

2 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

To avoid frequent updates of the key, there are several ways of extending the
key lifetime in symmetric key cryptosystems. One of these mechanisms, originally
suggested by Abdalla and Bellare [2], is the internal re-keying mechanism. This
mechanism generates a new secret key Ki for the i-th epoch based on the previous
key(s).

The re-keying mechanism can occur in various protocol levels: At the block
cipher level (fresh re-keying [25]), at the mode of operation level (internal re-
keying [4,41]), and at the protocol level (external re-keying [4,41]).

In this paper, we study the security of an internal re-keying mechanism called
Advanced CryptoPro Key Meshing (ACPKM) [41] and its predecessor CryptoPro
Key Meshing (CPKM) [39]. The main idea behind these two internal re-keying
mechanisms is to call a key update function after a key is used to encrypt a pre-
defined number of blocks (i.e., a section). The ACPKM transformation generates
a new key by encrypting one or more public constants with the previous key.

We provide a security analysis of CTR-ACPKM [7], which combines the counter
mode (CTR) operation using the ACPKM mechanism for internal re-keying. The
CTR-ACPKM mode is currently passing through the last formal standardization
process in IETF (CFRG) [41] and was standardized by ISO (ISO 10116) [1].
Also, the internal re-keying technique is being widely used in the Russian vari-
ants of TLS [3] and CMS [32]. Thus, it is essential to analyze the security of
these mechanisms as tens, if not hundreds, of millions of users are relying on
their security.

1.1 Related Work

The re-keying mechanism was first introduced by Abdalla and Bellare in [2].
The idea is that frequent re-keying increases the security as well the key lifetime.
An interesting proposal for a re-keying mechanism is CPKM [39], used with the
GOST 28147-89 cipher (which today is called MAGMA). This method generates
a new key in the following manner:

Ki+1 = E−1
Ki

(D1)∥E−1
Ki

(D2)∥E−1
Ki

(D3)∥E−1
Ki

(D4)

for some constants D1, D2, D3 and D4. Its security properties when combined
with the CTR mode of operation are analyzed by Liliya et al. in [5].

Since counter mode does not use decryption, the use of decryption in the
CPKMmechanism is considered a drawback. Another drawback is that the inputs
to the block cipher may collide with the constants used for the key generation.
When this happens (i.e., when Di is equal to some output of the block cipher),
information about the key leaks. This would of course result in a trivial attack.

The ACPKM (advanced CPKM) mechanism, proposed in CTCrypt’2016, ad-
dresses one of these problems. The new method generates a new key in the
following way:

Ki+1 = EKi(D1)∥ · · · ∥EKi(Dr)

for some carefully chosen constants D1, D2, D3, ..., Dr. As a result there is no
need to implement decryption, and if ACPKM is used in a mode of operation

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 3

where the user cannot control the input to the cipher, such as in CTR-mode,
then the second problem is avoided.

The security of CTR-ACPKM was analyzed in [7]. In [6], Liliya et al., analyse
ACPKM in combination with the GCM mode of operation (GCM-ACPKM). The
analysis of CTR-ACPKM in [7] claims IND-CPNA security (indistinguishability
under Chosen Plaintext and Nonce Attack) model. The claimed bound on the
IND-CPNA advantage is

(σ1 + r)2 + . . .+ (σℓ−1 + r)2 + σ2
ℓ

2n+1

where n is the block size, κ is the key size, σj is the total length of data blocks
processed under the j-th key (called a section), ℓ is the maximal number of
sections, and r =

⌈
κ
n

⌉
. This led both IETF and ISO to accept ACPKM as a

mechanism for internal re-keying. In this paper, we show that despite the security
proof, the proposed update causes an entropy drop in the key space. We show
that this entropy loss impacts the security of CTR-ACPKM and puts users at risk.
We note that entropy loss of repeated invocations of random functions has been
studied before [26,?], as it also impacts the analysis of MACs and hash functions
[40,33,24]. A survey covering these attacks can be found in [8]. We build on these
results and offer a somewhat more delicate analysis of the entropy (specifically,
we consider Shannon entropy rather than the H0 entropy considered and used
in most previous works).

In addition, if the designer of a cipher can successfully embed a high proba-
bility differential in the design (e.g., such as in the MALICIOUS framework [38]),
then this entropy loss can be significantly accelerated.1

1.2 The Multi User Security Setting

In the multi-user security setting the adversary is allowed to distribute its online
queries adaptively across multiple instances of the construction. This setting is
originally proposed in Biham’s technical report [16,18] and formalized by Bellare
et al. [12] in the context of public-key encryption. In other words, the adversary
can obtain the encryption of a message with respect to a large number of users
under independent keys K1,K2, ...,Ku. For a nonce-based encryption algorithm,
the adversary gets an encryption oracle that takes an index i ∈ {1, 2, ..., u}, a
message, and a nonce, and returns an encryption of these under Ki. The attacker
can fix a pair of nonce and message (N,M), and send them to different users.
Consequently, the attacker receives Ci = EKi

(N,M) for each i = 1, 2, ..., u. Upon

1 One can argue that such ciphers, where we do not trust the designer, should not
be accepted as standards. However, as evident by reality, many times such ciphers
are being selected for widely deployed standards — e.g., the GEA-1 algorithm, the
DUAL-EC DRBG, or Speck (which was standardized by ISO in RFID communica-
tion standards). Furthermore, some people, e.g., residents of the Russian Federation,
must use some cryptographic standards that were not openly negotiated. Hence, it is
important to understand what level of security they can expect from a given system.

4 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

receiving the responses, the attacker’s goal is to recover at least one of the users’
keys in a key-recovery attack. In a distinguishing game the adversary gets an
encryption oracle that takes an index i ∈ {1, 2, ..., u}, a message, and a nonce,
after which it returns either an encryption of these under Ki in the real world or
a random string of the same length in the ideal world.

The key recovery attack in the multi-user setting is an important aspect to
consider from a mass-surveillance perspective, where billions of users use the
same cryptographic algorithm with independent keys (e.g., CTR-ACPKM [41] or
AES-GCM [14] is now widely used in TLS [3] protocol to protect web traffic and
is currently used by billions of users daily). Due to its practical relevance, key
recovery attacks in multi-user setting have been studied in a series of work in
the last few years [11,14,19,21,22,29,34,36,35].

1.3 Our Contributions

In this work, we propose several attacks on the CTR-CPKM and on the CTR-ACPKM
mode. These modes use the CPKM or the ACPKM internal re-keying technique
to update the key (i.e. generating a new key for each section of a hard drive).
Our work studies the entropy loss due to frequent re-keying using these schemes.
Based on this entropy loss, we propose three attacks on the CTR-ACPKM (or
the CTR-CPKM) mode. Our first attack is an improved exhaustive search. Sec-
ondly, we propose a distinguishing attack based on key collisions, which are more
frequent due to the entropy loss. Our third attack is a key-recovery attack, moti-
vated by [16]. In the last two attacks, the adversary is modeled in the multi-user
security setting. Furthermore, we show that these attacks may be more efficient
when the key size is greater than the block size. Furthermore, our experiments
on several ciphers showed that the H1-entropy loss in the ACPKM transforma-
tion is much more effective than the H0-entropy loss. Based on this, we propose
an improved master-key recovery attack.

In addition we propose two different attacks based on differential properties
of the underlying block cipher. The crucial part of these attacks is that updated
keys can be directly recovered if a differential property exists in the underlying
block cipher. This may occur either accidentally or if the cipher was backdoored.
We want to mention that all the attacks we have presented here are equally
applicable to GCM-ACPKM [6] due to its similarity in the encryption part with
CTR-ACPKM mode.

Next, we show that a malicious designer can further harm the mode, if a
specific high probability related-key differential or linear property exists in the
underlying block cipher. We show that such a property leads to a significantly
higher entropy loss. Furthermore, we show that even an innocent implementation
error can lead to devastating attacks. This issue may even be triggered when
following the current ACPKM standard with a block size that is not a power of
two. Finally, we proposes a related-key distinguisher on the CTR-ACPKM mode.

We discuss the attacks on the CTR-ACPKM mode, but these attacks trivially
carry over to the CTR-CPKM mode.

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 5

1.4 Organization of the Paper

We develop necessary notations and conventions in section 2. In section 3 we
apply the existing analysis to the ACPKM construction and analyse its security.
Afterwards, in section 4, we refine the analysis of the loss of entropy and intro-
duce new attacks based on this analysis. In section 5, we consider the misuse
resistance of the ACPKM construction. In section 6 we discuss the security of
ACPKM in the multi-user setting. Finally, we conclude the paper in section 7.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, 2, . . . , n}. For any positive integer N and
p, (N)p denotes N(N − 1)...(N − p + 1). We refer to an element of {0, 1}n as
block. For X ∈ {0, 1}∗, if ∥X∥ is a multiple of n, ∥X∥n denotes the length of
X in n-bit blocks, i.e., ∥X∥n = ⌈∥X∥/n⌉. For any non-empty binary string X,

(X[1], . . . , X[k])
n← X denotes the n-bit block parsing of X, where ∥X[i]∥ = n

for 1 ≤ i ≤ k − 1, and 1 ≤ ∥X[k]∥ ≤ n. For X ∈ {0, 1}∗ and a positive integer
t ≤ ∥X∥, we use MSBt(X) and LSBt(X) to denote the bit string of the t most
significant bits and the t least significant bits of X, respectively. For any non-
negative integer I and t, we denote the t-bit representation of I with strt[I] where
the least significant bit is on the right. Similarly, from a bit string X ∈ {0, 1}t,
we write int(X) to denote the integer representation of X. For a positive integer
c < n, let INCc(X) be the function which takes the input X ∈ {0, 1}n and
outputs the increment of X as

INCc(X) = MSBn−c(X)∥strc(int(LSBc(X)) + 1 mod 2c).

Consequently, we denote i consecutive increments as INCi
c(X) which is the com-

position of the INCc function i times.

Definition 1. (H0-entropy) Let X be a discrete random variable such that
Pr[X = x] > 0 for all x ∈ A. The H0-entropy is defined as

H0[X] = log(|A|).

Definition 2. (H1-entropy) Let X be a discrete random variable with possible
outcomes in the set A = {x1, x2, ..., xn}. The H1-entropy is defined as

H1[X] =
∑
x∈A

Pr[X = x] log2

(
1

Pr[X = x]

)
.

2.1 The CTR-ACPKM Internal Re-keying Mode

CryptoPro Key Meshing (CPKM) is an internal re-keying mode introduced in [39].
However, several issues with performance and security led to an improved version
of CPKM, called ACPKM introduced in [41]. RFC 8645 [41] defines two kinds

6 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

of internal re-keying mechanisms, namely ACPKM and ACPKM-Master,
where ACPKM stands for Advanced Cryptographic Prolongation of Key Mate-
rial. The ACPKM mode does not use a master key, and the ACPKM-Master
uses a master key during the key transformation. In our discussion, we focus
on the Counter mode of encryption with ACPKM transformation. For a detailed
discussion on the ACPKM-Master, we refer the interested reader to [41].

The CTR-ACPKM encryption mode takes a key K ∈ {0, 1}κ, a nonce IV ∈
{0, 1}n

2 and a message M ∈ {0, 1}∗ and returns a ciphertext C ∈ {0, 1}|M|.
We use the increment function INCn

2
as used in [7] to increment the counter.

However, RFC 8645 documentation [41] uses INCc with 32 ≤ c ≤ 3n
4 . In that

case, IV ∈ {0, 1}n−c. Here let us recall the notion of a section from [41].

– A set of consecutive blocks encrypted under the same key is called a section.
We use s to denote the number of blocks in a section.

The CTR-ACPKM works as follows. At first the message M is divided into w =
⌈∥M∥n/s⌉ sections as

(M[1],M[2], ...M[s],M[s+ 1], ...,M[(w − 1)s+ r])
n← M,

where ∥M[i]∥ = n for each i ∈ {1, ..., (w−1)s+(r−1)} and 1 ≤ ∥M[(w−1)s+r]∥ ≤
n for some r ≤ s. So the α-th block in the β-th section is M[βs + α] for all
β ∈ [0, w− 1] and α ∈ [1, s]. In this mechanism the 0-th section of each message
is processed by the CTR mode of operation with the initial counter IV∥0n

2 and
K0 = K where K is the input key to the process. The β-th section is encrypted
by the CTR mode with the section key Kβ−1 without initializing the counter to
0, i.e., with the counter starting from βs. This section key is calculated using
the ACPKM transformation as follows:

Kβ = ACPKM(Kβ−1) = MSBκ(EKβ−1
(D1)| · · · |EKβ−1

(Dr))

where κ is the size of the key used in the block cipher EK and r = ⌈κ/n⌉. Thus
we can view the ACPKM transformation as a function from {0, 1}κ to itself.
Moreover, D1, D2, ..., Dr are pairwise different constants in {0, 1}n such that the
n
2 -th bit (counting from the least significant bit) of each Di is equal to 1. The
plaintext length is at most 2

n
2 −1 blocks. Also, the section size in bits must be

divisible by the block size.
We note that both ISO 10116 [1] and RFC 8645 [41] suggest the use of

Di’s which are a sequence of bytes whose most significant bits are set to 1:
80x, 81x, 82x, 83x, . . . , FFx. This was done to ensure a complete domain sepa-
ration between calls to E made during encryption and the key update. As we
discussed in Section 5.1 this separation does not hold when a non-power of 2
block size is used.

3 Security Issues with the ACPKM Transformation

In this section we look at the security of multiple invocations of the ACPKM
transformation. First we note that a cipher with a fixed plaintext and a ran-
dom key behaves like a random function. This is a well known result and has,

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 7

most notably, been used in the analysis of Hellman’s time-memory trade-off
attack [27].

Another well-known fact is that the iterative application of a random function
is expected to reduce the H0-entropy of the image set [26]. We analyse how this
loss of H0-entropy impacts the security of the ACPKM construction and show
how to use this to recover section keys.

We denote the ACPKM transformation with key and block size κ by f :
{0, 1}κ → {0, 1}κ. We can now construct the functional graph Gf corresponding
to the function f . Let Gf = (Vf , Ef) where Vf = {0, 1}κ is the set of vertices
and the set of edges, Ef , consists of all the ordered pairs of the form (v, f(v))
for every vertex v ∈ {0, 1}κ. Statistical analysis of a random function’s func-
tional graph reveals some information about the function’s multiple invocations.
One of the most important properties we study here is the H0-entropy loss on
multiple invocations of the ACPKM transformation. Notably, we are interested
in the approximate size of the output set after, say, ν iterations of the ACPKM
transformation over {0, 1}κ. We recall the definition of the ν-th iterate image
point from [26]:

Definition 3 (ν-th iterate image point [26]). A vertex in the functional
graph Gf is called an ν-th iterate image point if this is an image of the ν-th
iterate fν of the function f . We denote the set of all the ν-th iterate image
points as Iν .

Flajolet and Odlyzko analyzed many properties of the functional graphs of
random functions [26]. We recall one result from [26] to motivate our analysis in
Theorem 1.

Theorem 1 ([26]). If f : D → D be random function over a domain D of size
N = 2κ with a functional graph Gf . Then as N→∞, the expected size of Iν is

E(|Iν |) = (1− τν)N, where τ0 = 0, τν+1 = e−(1−τν).

The above theorem (Theorem 1) suggests that the number of ν-th iterate
image points decreases, i.e., there is H0-entropy loss as H0 is the codomain size.
Hong et al. used this idea to find collisions in the state of the MICKEY stream
cipher [30]. Moreover, based on their experiments, Hong et al. proposed the
following conjecture: As ν goes to infinity, (1− τν) goes to 21−log2(ν). This con-
jecture was proven to be true for ν ≤ 2

κ
2 by Bao et al. [8]. To conclude, in the

ACPKM construction with key size κ, the H0 entropy of the key-space after ν
iterations is approximately κ+ 1− log2(ν) where ν ≤ 2

κ
2 .

The above analysis holds for any key and block size. However, as is evident
in the case of GOST, it may be that k > n. Suppose that the size of the key, κ
is rn where n is the size of the block cipher. Then the ACPKM method performs
the key transformation as

Kj = EKj−1
(D1)||EKj−1

(D2)|| . . . ||EKj−1
(Dr).

8 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

These D1, D2, . . . , Dr are pairwise different constants. Then a key is valid only if
all the parts are different. So there are at most 2n(2n−1) . . . (2n−r+1) = (2n)r
valid keys in each section from the second section onward. In this case, the
entropy of the key-space in the s-th section reduces more than in the previous
case. From the Theorem 1 we can obtain the entropy in the s-th section is
reduced to (2n)r2

1−log2(s).

4 Attack Based on Entropy Loss

Next we look at how we can use the reduction in entropy to improve exhaustive
search of later section keys. Since the entropy drops with each iteration, we need
to try about 2κ+1−log2 ν keys for the ν-th section. For example, consider the
following scenario with a key size of κ = 128 bits, a block size of n = 128 bits
and a section size of 1024 bits (i.e., 8 blocks of 128 bits). To find the key for the
264-th section, we need to try, as Theorem 1 suggests, about 265 keys.

While there are indeed only 265 possible keys, we do not get a simple list of
them. For example, if we choose an arbitrary key, it is, with high probability, not
a valid key for this section. Thus, to make use of the entropy loss of the function
we need an efficient way to enumerate all the valid keys for the ν-th section.

The first way to enumerate all ν-th section keys is by using a naive pre-
computation approach: Take all possible 2κ keys and update them ν − 1 times.
Store the resulting values sorted by their frequency in a dictionary Dν . Once the
sorted dictionary Dν is prepared, we can use it to find keys for the ν-th section.
This approach takes ν2κ time and requires about 2κ+1−log2 νκ memory.

The second approach is an immediate optimization of the naive approach. We
can use O(E(|I1|)κ) memory to reduce the time complexity of the preprocessing

to
∑ν−1

i=0 E(|Ii|) updates.2 To do so we use the set of keys that were valid keys
for the (i− 1)-th section to compute the keys that are valid for the i-th section.
Naturally, when i = 0 we use the full key space.

In both cases we need to build a dictionary Dν of keys which are valid
for the ν-th section only once. This means that we can amortize the cost of
its construction cost over many applications of the brute-force phase (like in
Hellman’s time memory trade-off attacks [27]). To conclude, givenDν , containing
all valid keys for the ν-th section (and their frequency), one can find the keys of
the ν-th section by an exhaustive search. Next we look at an improved exhaustive
search algorithm to find the ν-th section key.

4.1 Improved Exhaustive Search

We now discuss improving the exhaustive search for the ν-th section keys. The
main idea is that all keys in the functional graph of f , which have ν predeces-
sors, are valid section keys (even if they are in a cycle). Thus by exploring the

2 The approximate value of
∑ν−1

i=0 E(|Ii|) can be computed as
∑ν−1

i=0 E(|Ii|) = 2κ +∑ν−1
i=1 E(|Ii|) = 2κ +

∑ν−1
i=1 2κ+1/i ≈ 2κ+1(1 + log(ν − 1)).

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 9

functional graph of f , we can find a large number of valid section keys for the
ν-th section.

Using the above fact, we present Algorithm 1 to find valid section keys for
the ν-th section. Algorithm 1 takes a random key K as an input and outputs a
list L of candidate keys that are valid for the ν-th section. As long as we do not
detect a cycle, we update the key K using ACPKM. We note that detecting a
cycle is easy, as we maintain a list L of keys we encountered in the traversal of the
graph. After ν calls to update, we start recording the keys we encounter. Once
we identify a recorded key, we know we are in a cycle and stop. We note that even
if we entered the cycle before we start recording keys – there is nothing wrong,
as we need to enumerate the entire cycle to find all the candidate ν-section keys
(as each value in the cycle has ν predecessors for sure). One can slightly optimize
our algorithm by detecting if we entered a cycle before we start recording the
keys (and then traverse the cycle once more to record it). Note that if it updates
the key ν times without detecting a cycle, all subsequent updates produce valid
section keys for the ν-th section which are stored in L.

If the size of the key is κ, we can expect, by the birthday paradox, to get a
cycle after 2κ/2 updates. Once we get a list L, we can choose another key outside
of this list and start the algorithm again.

Algorithm 1 Algorithm to find section keys for the ν-th section

Require: A key K
Ensure: A list L of keys
1: L = ∅;
2: if ν == 0 then
3: L = L ∪ {K};
4: return L;
5: Counter = 0;
6: while True do
7: K = ACPKM(K);
8: if K ∈ L then ▷ Cycle Detected
9: return L;
10: Counter = Counter + 1;
11: if Counter ≥ ν then
12: L = L ∪ {K};

4.2 The H1-Entropy of the ACPKM Transformation

Previously we discussed the H0-entropy loss which is based on the cardinality
of the section keys. We now focus on the H1-entropy or the Shannon entropy of
the section keys. For any key K we define the following set

P ν
K = {k ∈ {0, 1}κ : fν(k) = K},

10 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

where f is the ACPKM transformation. As we can see, P ν
K is the set of master-keys

that after ν sections can reach the section key K. Let Prν(K) be the probability
that a key K is a valid key for the ν-th section. We can define this probability
as:

Prν(K) =
|P ν

K |
2κ

.

Based on this definition, we can compute the Shannon entropy for the valid keys
of the ν-th section as

H1(I
ν) =

∑
K∈Iν

Prν(K) log

(
1

Prν(K)

)
The loss of H1-entropy suggests that the distribution of the master-keys is

not uniform across the valid section keys. We ran an experiment to study the H1-
entropy loss for truncated versions of AES-128 [23] and Simon [10]. The details
of these ciphers are given in section A. The results of the experiments are given
in Table 1 and Table 2. We can observe that the entropy loss for the H1-entropy
is higher than H0-entropy.

AES: Key Size = 32, Block Size = 32

Section H0 H1 log2(κ)− H0 log2(κ)− H1 H1 − H0

1 31.338262 31.172745 0.661738 0.827255 -0.165517
2 30.906223 30.654303 1.093777 1.345697 -0.251920
4 30.319969 29.974669 1.680031 2.025331 -0.345300
8 29.596806 29.167126 2.403194 2.832874 -0.429680
16 28.769438 28.274307 3.230562 3.725693 -0.495131
32 27.871677 27.331245 4.128323 4.668755 -0.540432
64 26.930389 26.361420 5.069611 5.638580 -0.568969
128 25.963864 25.377889 6.036136 6.622111 -0.585975
256 24.982210 24.386729 7.017790 7.613271 -0.595481

Table 1: H0 and H1-entropy for 32-bit truncated AES-128 (key size is 32 bits).

4.3 Attack Motivated by H1-entropy Loss

We now propose a section key recovery attack motivated by the H1-entropy loss.
The loss of the H1-entropy on key update suggests one crucial issue: the master
keys are not uniformly distributed over the section keys. This fact suggests that
not only one can cover many master keys by a ν-th section key, but also that
there are section keys which cover more master keys (and thus have a greater
probability of being correct, compared to other keys which may be valid ν-th
section keys). We can thus look for the keys for which |P ν

K | is larger, or enjoy
the fact that by applying the ACPKM transform many times, they appear with

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 11

Section H0 H1 log2(κ)− H0 log2(κ)− H1 H1 − H0

1 31.338258 31.172739 0.661742 0.827261 -0.165519
2 30.906216 30.654282 1.093784 1.345718 -0.251934
4 30.319954 29.974645 1.680046 2.025355 -0.345309
8 29.596808 29.167133 2.403192 2.832867 -0.429675
16 28.769431 28.274346 3.230569 3.725654 -0.495085
32 27.871809 27.331440 4.128191 4.668560 -0.540369
64 26.930347 26.360492 5.069653 5.639508 -0.569855
128 25.962123 25.375141 6.037877 6.624859 -0.586982
256 24.978940 24.382827 7.021060 7.617173 -0.596113

Table 2: H0 and H1-entropy for 16-bit truncated Simon (key size is 32 bits).

a larger probability. Such keys are of interest, as testing them costs only a single
trial encryption, yet offers better success rate for the attack.

We designed Algorithm 2 based on this idea. We start with a random key, test
it for the ν-th section. If the trial encryption succeeded, we are done. Otherwise,
we apply the ACPKM transform repeatedly (like in Algorithm 1), and each time
test the new computed value. Once a cycle is detected, we abort the experiment
and pick a new random master key to start the process from. We continue to
do so until either the correct ν-th section key is recovered, or if some number of
experiments is reached.

Algorithm 2 Algorithm to find the ν-th section master key

1: for cnt = 1 to thresholdκ,ν do
2: Pick a key K at random.
3: Set cycledetected← 0
4: while cycledetected == 0 do
5: Test the key K using trial encryption
6: if The key K is the ν-th section key then
7: Output K and terminate

8: Compute K = ACPKM(K)
9: if Cycle Detected then
10: Set cycledetected← 1

11: Declare “Failure”

First, we note that this could be viewed as the application of Algorithm 1 to
various random keys, and testing the keys suggested by Algorithm 1. One could
avoid testing the same key twice by storing a large bitmap of 2κ bits suggesting
which keys were already covered before. In this case, one could also pick the next
key by taking one of the keys that were not encountered during the attack.

Second, we note that unless such a large table is stored, one could simply
run Algorithm 2 until all keys were covered. However, we note that the first

12 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

iteration of the loop is expected to cover only keys that were not encountered
before, whereas starting from the second iteration, we expect some of the found
keys to be already explored (this follows the fact that the functional graph of the
ACPKM, if modeled as a random graph, is expected to have one large component
with a large cycle of length 2κ/2). Hence, it is easy to see that each new iteration
of Algorithm 2 offers diminishing returns.

At some point the cost of covering the list of proposed keys (which can
be done in a memory-less fashion using any of the memory-less cycle finding
algorithms), would be greater than the number of new keys offered by the new
iteration. While we tried to find an exact formula to estimate the actual point in
which the gain is negative (or close to zero), we could not. Hence, we suggest to
perform tests or trails to determine the point, thresholdκ,ν that for a κ-bit key in
the ν-th section, the gain of this is approach (over a random guess) is positive.

We ran experiments to verify our attack on the 32-bit truncated version of
AES-128 [23]. Table 3 gives for each iteration of Algorithm 2 what is the compu-
tational effort to do the iteration, how many new keys were encountered, what
is the effectiveness (average number of recovered master key per computation
of the ACPKM transformation), as well as on how many keys were covered so
far. We note that these experiments were done for the case of κ = 32, ν = 256.
We performed 100 experiments and report the average of the results. As can
be seen in Table 3, for κ = 32, ν = 256, the gain becomes very close to 1 after
512 iterations. The results of one iteration in Algorithm 2 for various section
numbers is given in Table 4.

Iteration Avg. recovered key Avg. computation Effectiveness Total recovered key

1 224.40 216.42 27.98 224.40

2 223.71 216.46 27.34 225.09

3 223.12 216.38 26.74 225.42

4 222.64 216.46 26.18 225.61

8 221.98 216.53 25.44 225.99

16 221.19 216.38 24.80 226.50

32 220.78 216.53 24.24 226.99

64 220.35 216.41 23.93 227.49

128 219.76 216.38 23.37 227.89

256 219.44 216.51 22.93 228.33

512 216.69 216.33 20.35 228.82

Table 3: Results on Algorithm 2 (κ = 32, ν = 256).

We conclude this section with a discussion on the success probability of the
attack. The size of the set of recovered master keys is

∑
K∈Kν |P ν

K | and conse-
quently, the success probability of the attack is

∑
K∈Kν |P ν

K |/2κ. To give a lower
bound on the success probability we need to bound the size of P ν

K . To find ex-

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 13

Section(ν) Avg. recovered key Avg. computation Effectiveness

16 220.49 216.49 23.99

32 221.49 216.46 25.03

64 222.51 216.53 25.97

128 223.39 216.41 26.99

256 224.37 216.39 27.99

512 225.40 216.42 28.99

Table 4: Experimental verification of running Algorithm 2 with a single iteration
(κ = 32).

pected number of ν-th preimage, we recall the following Theorem 2 from [9].

Theorem 2. Let f be a random function from {0, 1}κ to itself and ν be a positive
integer. Let y be a random image of fν . Then the expected size of the set P ν

y is

E(|P ν
y |) ≥ ν.

Using Theorem 2 we can get the following lower bound

E(| ∪K∈Kν P ν
K |) = E(

∑
K∈Kν

|P ν
K |), since P ν

K ∩ P ν
K′ = ∅ for K ̸= K′

=
∑
K∈Kν

E(|P ν
K |)

≥
∑
K∈Kν

ν = |Kν |ν.

As an example, consider the case that we choose the threshold to be 1,
namely, Algorithm 2 performs only one iteration of the attack. One can see that
of a section ν in the range 2κ/4 ≤ ν < 2κ/2, we expect to cover 23κ/4 master-keys
(this was also supported by our experiments, suggested in Table 3 and Table 4).
In other words, the first iteration of Algorithm 2 alone, suggests an attack whose
time complexity is about 2κ/2 and its success rate is 2−κ/4.

5 ACPKM is not Misuse Resistant

While the previous attacks are inherent to the ACPKM mode (as well as the
CPKM mode), these modes can also be wrongly instantiated in a way which
further hinders the security. This increases the burden on the implementer, as
a wrong implementation may have significant issues leading to a complete lack
of security. As we show later, if the block size is not a multiple of 8 bits (as
may happen in the case of Format Preserving Encryption), the use of the con-
stants proposed in the RFC or the ISO standard may cause an immediate trivial

14 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

attack on the scheme. Furthermore, when the underlining block cipher has a
high probability differential or related-key differential (either as a design error
or as a backdoor), the entropy of the new section keys significantly drops, and
one should expect the previous attacks to aggravate. These issues suggest that
ACPKM may be less suitable for deployment than other modes.

5.1 Special Block Sizes

Both ISO 10116 and RFC 8645 offer a concrete suggestion for the constants
Di, which are required to update the key in ACPKM. The constants should be
pairwise different for any block size n and key size k and the most significant bit
of every byte should be 1. The latter condition is important to prevent the trivial
collision in the inputs to the block cipher in the cases of message processing and
key updating: if somehow this collision occurs in some section, one can recover
the next section key and consequently all the onward section keys. Specifically,
consider the case with key size and block size of n.3 If the input to the sκ+α-th
block (i.e., IV∥(sκ+ α)) is equal with the constant D, then

Ek(IV∥(sκ+ α)) = M [sκ+ α]⊕ C[sκ+ α]

is the next section key. This vulnerability can be prevented by choosing D such
that the counter update can never be D.

We now turn our attention to the case where the block size is not a multiple
of 8 (e.g., in format-preserving encryption scheme). Suppose that the block size
is n = 66 and the initial counter is IV∥033. If the adversary can set the IV then he
can set the IV to the first 33 bits of D. For example, let us consider the example
of D given in RFC 8645 [41]. The 33-rd to 65-th bits of D are 00001001 . . . 0111.
We can see that the 33-rd bit is not 1, so it is possible to reach this D within
a valid number of sections. For the constant given in RFC 8645, this requires
303438365 ≈ 228 blocks to be encrypted (i.e., updates in the counter) which is
less than 232. According to RFC 8645 the maximum message size can be 2c−1

blocks where 32 ≤ c ≤ (3/4)n. So the above attack is practical. Once this key is
recovered (in a known-plaintext attack), all the keys can also be recovered easily.

In other words, ACPKM (as well as CPKM) should not be instantiated with
ciphers whose block sizes are not a multiple of 8 bits, if they are used with
the constants suggested in RFC 8645 and in ISO 10116. Hence, we urge the
standardization bodies to explicitly disallow this combination (though as we later
argue, it may be better to remove these modes from the standards altogether).

5.2 A Related-key Distinguisher on CTR-ACPKM

This section proposes a related-key distinguisher on the CTR-ACPKM mode.
The related-key attack model was independently suggested by Biham [17] and

3 When the key size is larger than n, the following reveals n-bit of information about
the next section key.

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 15

Knudesn [31]. In the common interpretation of the RK model, the adversary
may choose any reasonable relation between the keys, where the exact definition
of “reasonable” is left to the cryptanalyst (see for example the discussion of
permissible relations in [13]). We now propose an attack based on the following
key relation: let K and K′ be two keys such that K ′ = ACPKM(K).4

Let us consider two CTR-ACPKM instances with section size s and s′ such
that 2s > s′ > s. To find a related-key distinguisher, we consider two master
keys K and K′ for the CTR-ACPKM with section size s and s′, respectively, such
that K′ = ACPKM(K) = K1. Thus, the master key K′ matches with the first
section key of the master key K.

Now we choose a nonce IV and two random message M1,M2 for the two
instances such that the number of blocks in the messages is at least s′ blocks.
Suppose that we query (M1, IV) to the CTR-ACPKM instance with section size s
and obtain the ciphertext C1. Similarly, we query (M2, IV) to the CTR-ACPKM
instance with section size s′ and obtain the ciphertext C2. Now as we query with
the same nonce, in this settings, we get the following relation

EK′(INCs+1
n
2

(IV∥0n
2)) = EK1

(INCs+1
n
2

(IV∥0n
2)).

This distinguishing property is easily detectable as we have the following relation
on the (s+ 1)-th block:

C2[s+ 1]⊕M2[s+ 1] = EK′(INCs+1
n
2

(IV∥0n
2)) = EK1

(INCs+1
n
2

(IV∥0n
2)) = C1[s+ 1]⊕M1[s+ 1]

=⇒ C1[s+ 1]⊕ C2[s+ 1] = M1[s+ 1]⊕M2[s+ 1].

5.3 Weak Block Ciphers

A high probability differential (whether it exists in the block cipher by accident
or as a backdoor) is far from a good thing from a security perspective. However,
for the case of ACPKM, the existence of a differential or even a related-key
differential is significantly worse. In some cases such a (related-key) differential
may significantly hinder the security of ACPKM in real life; especially when the
constants Di’s are chosen to exploit the (related-key) differential property. We
discuss a few attacks based on (related-key) differential and linear property of
the underlying cipher in the following. The summary of our attacks is shown
in Table 5.

4 We note that the ACPKM transform is not invertible, as we suggested before. Most
definitions of “permissible” relations assume that the key relation is invertible (to
avoid trivial attacks or a huge entropy loss). Indeed, we need to consider a non-
invertible transform, but to the best of our knowledge the ACPKM transformation
does not allow a trivial key recovery attack (unlike the relations which were “dis-
allowed”) nor (in most of the cases) offer a huge entropy loss in the key after one
application of ACPKM. Of course, if the block cipher is really weak or the entropy
loss is huge, CTR-ACPKM has bigger issues than the proposed related-key attacks.

16 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

Differential Property

Source Issue Complexity(Time) Section

∆X
p−→ ∆Y Section key-recovery 2n/p 5.3

∆X1

p1−→ ∆Y1
Section key-recovery 2n/γ, γ = max{p1p2, p21, p22} 5.3

∆X2

p2−→ ∆Y2

Related-key Differential Property

Source Issue Complexity(Time) Section

0
p−−→

∆K

0 Key entropy loss – 5.3

Linear Property

Source Issue Complexity(Time) Section

λI
ϵ−→ λO Key entropy loss – 5.3

Table 5: Summary of attacks on ACPKM instantiated with a weak block cipher.

Differential Property Suppose that the underlying block cipher E has a dif-
ferential property such that the plaintext difference ∆X propagates to the ci-
phertext difference ∆Y with probability p. Consider the case of k = 2n, i.e., the
key size is twice the block size. So if the ACPKM transformation is

Kj = EKj−1
(D1)||EKj−1

(D2)

and D1 ⊕D2 = ∆X then with probability p, we get that the next section key is

Kj = Kj,1||Kj,2 = Kj,1||Kj,1 ⊕∆Y .

This property holds for any section key from the second section onwards. Using
this differential, the attacker expects such an output difference by observing
O(1/p) sections and finding the instance for which the differential was satisfied
in time O(2n/p). In other words it is trivial to try in all sections (starting from
2nd section) the keys (K,K⊕∆Y). After one such a pair is found the adversary
can determine all the future section keys. In fact, this attack offers gain for any
key size κ with κ > n+ log2(1/p).

For the case of κ ≥ 4n, we get a better attack. Suppose that the key update
is

Kj = EKj−1
(D1)||EKj−1

(D2)||EKj−1
(D3)||EKj−1

(D4).

In this case, one can observe difference between any of the
(
4
2

)
pairs from

{D1, D2, D3, D4}. Suppose that the underlying block cipher E has a differential
property that the plaintext difference ∆X1

propagates to the ciphertext differ-
ence ∆Y1

with probability p1 and the plaintext difference ∆X2
propagates to the

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 17

ciphertext difference ∆Y2
with probability p2. If D1⊕D2 = ∆X1

and D3⊕D4 =
∆X2

then with probability p1p2, the section key Kj = Kj,1||Kj,2||Kj,3||Kj,4 =
Kj,1||Kj,1 ⊕∆Y1 ||Kj,3||Kj,3 ⊕∆Y2 . Furthermore, picking D1 ⊕D2 = ∆X1 , D3 ⊕
D4 = ∆X1 and D1 ⊕ D3 = ∆X2 (which implies D2 ⊕ D4 = ∆X2 as well) offers
multiple “possibilities” for using the differentials. For example, with probability
p21 the resulting updated key is Kj,1||Kj,1⊕∆Y1

||Kj,3||Kj,3⊕∆Y1
, and with prob-

ability p22 it is Kj,1||Kj,2||Kj,1⊕∆Y2
||Kj,2⊕∆Y2

. We note that, in RFC 8645 [41]
the suggested values for Di have the following equality: D1 ⊕ D2 = D3 ⊕ D4,
D1 ⊕ D3 = D2 ⊕ D4 and D1 ⊕ D4 = D2 ⊕ D3. Thus, if there is a differential
property such that the difference of one pair of the constants is equal to the input
difference, then other pair also satisfies that. In that case, with probability p2,
the section key is Kj = Kj,1||Kj,2||Kj,3||Kj,4 = Kj,1||Kj,1 ⊕∆Y||Kj,3||Kj,3 ⊕∆Y.
To reduce the chances of misuse, we suggest that the constants D′

is should not
have such relations.

A differential weakness of the underlying cipher can also be used differently.
An adversary can choose a suitable nonce such that for some block, the counter
becomes D1 ⊕ ∆X. Suppose this counter occurs in the ν-th section, i.e., the
νs + α-th input to the block cipher is D1 ⊕ ∆X for some α ∈ [1, s]. Then the
(ν +1)-th section key is ∆Y ⊕ (M[νs+α]⊕C[νs+α]) with probability p. If one
guesses this key with high probability, all the onward keys are known.

Related-key Differential Property In addition to the above issues with
regular differential, related-key differential may offer another attack strategy.
Assume that the input difference 0 leads to an output difference 0 under some
input key difference ∆K with probability p. In this case, let us consider two
different keys K and K ′ with K ⊕K ′ = ∆K . Observe that during updates, the
ACPKM transformation uses the same constant input to the underlying block
cipher, i.e., the input difference is 0. So both the updates produce the same keys
for the next round with probability p. This definitely reduces the entropy of the
keys for the next round.

We have experimented with our-made variants of SIMON [10] and of TEA [42]
block ciphers, where we have taken both block size of 16 bits and key size of
32 bits (see section A for details of these ciphers). For a random function the
key entropy drops by about 0.66 bits in the first update. However, due to the
related-key differential properties of TEA,5 we observe a drop of almost 2.34 bits
in the key entropy already in the first update. For SIMON, we observed a drop
of 0.67 bits in the H0-entropy after the first update.

Linear Property High probability linear characteristics also effectively reduces
the key entropy. Consider the key-update of ACPKM

Kj = EKj−1(D1)||EKj−1(D2).

5 We remind the reader that TEA has 3 related key differential properties of the form

0
1−−→

∆K

0 These related-key properties are discussed in Appendix A.2.

18 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

Suppose that there are linear characteristics (λI → λO) with bias ϵ, i.e., we have

λI ·D1 ⊕ λO · EKj−1
(D1) = λK · Kj−1 (1)

λI ·D2 ⊕ λO · EKj−1
(D2) = λK · Kj−1 (2)

where λK is the key mask and both equations holds with probability ϵ+ 1
2 . Using

the pilling-up lemma:

λI · (D1 ⊕D2)⊕ λO · (EKj−1(D1)⊕ ·EKj−1(D2)) = 0

holds with probability 2ϵ2 + 1
2 . Here (D1 ⊕ D2) is known to the adversary, so

information about the j-th section key is revealed. Moreover , the existence of
such a relation reduces the key entropy.

6 ACPKM in the Multi-User Setting

We now discuss the multi-user security of the ACPKM contstruction, taking into
consideration the H0-entropy loss. One of the most critical implications of the
H0-entropy loss is that the probability of a collision between two or more user
keys increases. We take u to be the number of users and we let ν ≤ 2

κ
2 be the

section number, then, due to the H0-entropy loss and by the birthday paradox,
we can observe that if

u > 2
κ+1−log2(ν)

2 =

√
2κ+1

ν
,

then, with high probability, two or more user keys collide after ν iterations of
ACPKM. This vulnerability in the ACPKM construction highlights the impact
of the entropy loss in real life. For example, if two different user keys collide
in section ν, then all the section keys of those two users after the ν-th section
are the same. Thus, if two or more user keys collide in some section ν, then the
counter mode in CTR-ACPKM provides the same keystream for all the subse-
quent sections, provided that the users use the same IV.

6.1 Distinguishing Attack Using Key Collision

We propose a distinguishing attack on CTR-ACPKM, using the above key colli-
sion. Assume that there are u users, where the adversary makes a single query
to each user asking for the encryptions of wi sections, with i ∈ {1, 2, ..., u}. We
denote the set of all encryptions by w = min{w1, ..., wu}. In this setting, we con-
struct a deterministic distinguisher D for a distinguishing game to distinguish
CTR-ACPKM construction from the ideal world as follows:
Attack Algorithm. First, the adversary picks a random nonce, say IV and
messages Mi for the i-th user with ∥Mi∥n = 2sw for all i ∈ {1, 2, ..., u}. So each
Mi has w sections numbered 0, ..., w−1. Recall that s is the length of each section
in n-bit blocks and κ is the key size. Then the adversary advances as follows:

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 19

1. Choose a suitable section ν with ν ≤ 2
κ
2 and u2ν ≥ 2κ+2.

2. For i = 1, ..., u, asks for the encryption of (i, IV,Mi) form the i-th user under
key Ki and obtained Ci.

3. If there are i and j such that Ci[βs+α]+Mi[βs+α] = Cj [βs+α]+Mj [βs+α]
for all β ∈ [ν, w − 1] and α ∈ [1, s] then output 1, else output 0.

The distinguishing advantage of D is more than 1/2 when the number of users
is at least 2κ/2+1/

√
ν and D makes at least one query through each users. The

detailed analysis of the algorithm is given in section B.

We now look at the practical security implications of the key collision between
multiple users. Consider a system with a key size of κ = 128 bits, a block size
of n = 128 bits, and a section size of s = 23 blocks. Now consider a message
M consisting of 2m blocks. From this we can see that the maximum number
of sections is 2m−3. Note that due to Theorem 1 we cannot ask for more than
ν ≤ 264 sections per user. However, since we are in the multi-user setting we can
still generate a collision. As we have seen before we can generate a key collision
at the ν-th section using u users where

u > 2
128+1−log2(ν)

2 = 2
129−log2(ν)

2

with ν ≤ min{264, 2m−3}. Thus, in this example we need 232 users to get a
collision in the 264-th section key.

Naturally we can increase the number of users to reduce the number of sec-
tions each user needs to encrypt. If in the above example we use 236 users, the
attacker only needs to request for 256 sections to generate a collision in the
section key.

6.2 Multi-user Key Recovery Attack

Next we discuss a section-key recovery attack in the multi-user setting. We use
a similar idea to the H0-entropy loss and birthday paradox as we discussed in
the previous distinguishing attack. This idea is motivated by [16]. Again, we
consider a case with u users. We construct an adversary that makes a single
query to each user. Let wi be the number of sections in the i-th user query for
all i ∈ {1, 2, ..., u} and w = min{w1, ..., wu}. We show that the adversary can
recover the section key of a targeted section for at least one user. We present
the result in the following Lemma 1.

Lemma 1. Let ν ∈ [1, w] be a fixed section number and s be the section size
in the n-bit blocks. There exists an adversary A that makes a single query cor-
responding to each of the u users, can recover the ν-th section key of at least
one user on the CTR-ACPKM in the multi-user setting. The success probability
of the attack is more than 1/2 when the number of users is at least 2κ+1/νℓ and
A makes at least one query through each users, where κ is the key size and each
query is with at least νs blocks.

20 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

Proof. We construct a deterministic adversary A. Let us consider there are u
users and A makes queries to the i-th user of the form (i, IVi,Mi).
Attack Algorithm. A randomly chooses a nonce IV and chooses message Mi

for the i-th user for all i ∈ {1, 2, ..., u}. In that case, the adversary does the
following:

1. Choose a suitable section ν with ν ≤ 2
κ
2 .

2. For i = 1, ..., u, queries encryption of (i, IV,Mi) for i-th user under key Ki

and obtained Ci.
3. Compute the following set {X1, ...,Xs}, where Xj = INCsκ+j

n
2

(IV∥0n
2) for j ∈

[1, s].
4. Guess a set of ℓ keys {Kg

1,K
g
2, ...,K

g
ℓ} which are valid for the ν-th section (to

find valid keys, one can use Algorithm 1 as described in Section 4.1).
5. For all j ∈ [1, κ], encrypt Xj with each guessed key and obtain Yp,j =

EKg
p
(Xj) for all p ∈ {1, 2, ..., ℓ}.

6. If there exists i and p such that

Ci[νs+ j]⊕Mi[νs+ j] = Yp,j∀j = 1, 2, ..., s

then output Kg
p as the i-th user key.

Analysis of the attack. The condition in step 6 holds if one user’s ν-th
section-key matches with one of the guessed key. We consider the indicator ran-
dom variables

Ri,p =

{
1, if Kg

p = Ki
ν

0, otherwise

and R =
∑

i,p Pr[Rj,k]. From Theorem 1 we can get the H0-entropy of the ν-th

section key is H = 2κ+1−log2(ν). Thus we have Pr[Ri,p = 1] = 1
2H

. From the
pairwise independence of the variables Rj,k and using Chebyshev’s inequality,
we have

Pr[R ≥ 1] ≥
(
1− ℓu

2H

)
≥

(
1− ℓuν

2κ+1

)
.

Finally, as we have the condition uνℓ ≥ 2κ+2 from the statement of the lemma,

Pr[R ≥ 1] ≥ 1

2
.

Again, random collision can occurs that satisfies the condition on the step 6 of
the attack without being the key match. Such cases are false positive cases and
the attack fails in such cases. Let us consider the following indicator random
variables

Si,p =

{
1, if step 6 holds

0, otherwise

and S =
∑

i,p Pr[Sj,k]. Thus we get the expected number of false positive cases

E(S|R = 0) =
∑
i,p

Pr[Sj,k = 1|R = 0] =
ℓu

((2n)s)
≤ ℓu

2κ+d
, (3)

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 21

for some sufficiently large d such that s =
⌈
κ+d
n−1

⌉
. Thus, for sufficiently large d,

the expected number of false positive cases are small enough.
Again, if one section key is known to the adversary, all the onward section

keys are revealed.
We can observe that the total complexity of the above attack critically de-

pends on the adversary’s target section. For a fixed number of users, if the
adversary targets a section towards the end, it needs less computation. In Ta-
ble 6 we can see the number of primitive queries (ℓ) and the number of users (u)
that are required to get a key-recovery advantage of ≈ 1

2 in a fixed section (ν).

(a) log2(ν) = 64

log2(u) log2(ℓ)

20 45
25 40
30 35
35 30
40 25
45 20
50 15

(b) log2(ν) = 48

log2(u) log2(ℓ)

20 61
25 56
30 51
35 46
40 41
45 36
50 31

(c) log2(ν) = 32

log2(u) log2(ℓ)

20 77
25 72
30 67
35 62
40 57
45 52
50 47

Table 6: These tables are showing the relation between the number of user and
number of offline block cipher calls required to get a key-recovery advantage near
1
2 . We consider a key size of κ = 128 bits, a block size of n = 128 bits and section
size s = 1024.

The same idea can also be implemented in the single-user setting. In that
case the adversary also needs to guess the IV and the required condition is

uνℓ ≥ 2κ+m+2,

where m is the size of the nonce IV.

7 Discussion and Future Work

We have presented attacks based on the entropy reduction of the key-space
in the ACPKM internal re-keying technique. Based on the H0-entropy loss, we
proposed an improved exhaustive search for the section keys. We also discussed
a key collision attack, and a key-recovery attack in the multi-user setting due to
the H0-entropy loss. Finally, we discussed that the H1-entropy loss is much more
effective than H0-entropy loss and based on this, we propose a novel master-key
recovery attack.

In addition to the attacks based on entropy loss, we proposed attacks based
on faulty or backdoored implementations of CTR-ACPKM. Furthermore, we show

22 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

that a malicious designer may further harm the mode if a specific related-key
differential property exists in the underlying block cipher. Finally, we propose a
related-key distinguisher on the CTR-ACPKM mode which is independent of the
underlying primitive.

One open direction of research is to consider the entropy reduction into the
security proofs of [7]. Note that using ACPKM without any change is acceptable
if the key size is large (to begin with), the number of sections encrypted under one
master key is not too large, and the delicate implementation issues are addressed.
However, given our findings, we suggest that ISO and IETF will reconsider the
use of ACPKM. Even if the use of ACPKM is not discouraged, appropriate
warnings about the use cases should be clearly added to the respective standards.

Finally, we note that ACPKM (and CPKM) is suggested to use together with
Russian standards such as GOST 28147-89 (Magam) and Kuznyechik. The de-
sign rationale of these ciphers was never revealed, and in the case of Kuznyechik
multiple works suggested hidden design rationale [20,37]. Given that these modes
are extremely sensitive to differential-based backdoors in the design, we further
suggest using these modes only with block ciphers whose design criteria are
completely trustworthy, and security against differential cryptanalysis can be
guaranteed (as much as possible).

References

1. ISO/IEC 10116:2017/Amd 1:2021, Information technology — Security techniques
— Modes of operation for an n-bit block cipher, CTR-ACPKM mode of oper-
ation, 2021. Standard, International Organization for Standardization, Geneva,
CH, https://www.iso.org/standard/64575.html

2. Abdalla, M., Bellare, M.: Increasing the lifetime of a key: A comparative analysis of
the security of re-keying techniques. In: Advances in Cryptology – Proceedings of
ASIACRYPT. Lecture Notes in Computer Science, vol. 1976, pp. 546–559. Springer
(2000)

3. Afanasiev, A., Nikishin, N., Izotov, B., Minaeva, E., Murugov, S., Ustinov, I.,
Erkin, A., Chudov, G., Leontiev, S.: GOST 28147-89 Cipher Suites for Trans-
port Layer Security (TLS). Internet-Draft draft-chudov-cryptopro-cptls-04, Inter-
net Engineering Task Force (Dec 2008), https://datatracker.ietf.org/doc/

html/draft-chudov-cryptopro-cptls-04, work in Progress
4. Ahmetzyanova, L.R., Alekseev, E.K., Oshkin, I.B., Smyshlyaev, S.V.: Increasing

the lifetime of symmetric keys for the GCM mode by internal re-keying. IACR
Cryptol. ePrint Arch. p. 697 (2017)

5. Ahmetzyanova, L.R., Alekseev, E.K., Oshkin, I.B., Smyshlyaev, S.V., Sonina, L.A.:
On the properties of the CTR encryption mode of the Magma and Kuznyechik
block ciphers with re-keying method based on cryptopro key meshing. IACR Cryp-
tol. ePrint Arch. p. 628 (2016)

6. Akhmetzyanova, L.R., Alekseev, E.K., Smyshlyaev, S., Oshkin, I.B.: On internal
re-keying. In: SSR. Lecture Notes in Computer Science, vol. 12529, pp. 23–45.
Springer (2020)

7. Akhmetzyanova, L.R., Alekseev, E.K., Smyshlyaev, S.V.: Security bound for CTR-
ACPKM internally re-keyed encryption mode. IACR Cryptol. ePrint Arch. p. 950
(2018)

https://www.iso.org/standard/64575.html
https://datatracker.ietf.org/doc/html/draft-chudov-cryptopro-cptls-04
https://datatracker.ietf.org/doc/html/draft-chudov-cryptopro-cptls-04

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 23

8. Bao, Z., Guo, J., Wang, L.: Functional graphs and their applications in generic
attacks on iterated hash constructions. IACR Trans. Symmetric Cryptol. 2018(1),
201–253 (2018)

9. Bao, Z., Wang, L., Guo, J., Gu, D.: Functional graph revisited: Updates on (second)
preimage attacks on hash combiners. In: Advances in Cryptology – Proceedings
of CRYPTO (2). Lecture Notes in Computer Science, vol. 10402, pp. 404–427.
Springer (2017)

10. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual
Design Automation Conference. DAC ’15, Association for Computing Machinery,
New York, NY, USA (2015)

11. Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based prfs: AMAC and its
multi-user security. In: Advances in Cryptology – Proceedings of EUROCRYPT
(1). Lecture Notes in Computer Science, vol. 9665, pp. 566–595. Springer (2016)

12. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Advances in Cryptology – Proceed-
ings of EUROCRYPT. Lecture Notes in Computer Science, vol. 1807, pp. 259–274.
Springer (2000)

13. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-prps,
rka-prfs, and applications. In: EUROCRYPT. Lecture Notes in Computer Science,
vol. 2656, pp. 491–506. Springer (2003)

14. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Advances in Cryptology – Proceedings of CRYPTO (1).
Lecture Notes in Computer Science, vol. 9814, pp. 247–276. Springer (2016)

15. Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block ci-
phers: Collision attacks on http over tls and OpenVPN. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Se-
curity. p. 456–467. CCS ’16, Association for Computing Machinery (2016).
https://doi.org/10.1145/2976749.2978423

16. Biham, E.: How to forge DES-encrypted messages in 228 steps (1996)
17. Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4),

229–246 (1994)

18. Biham, E.: How to decrypt or even substitute des-encrypted messages in 228 steps.
Inf. Process. Lett. 84(3), 117–124 (2002)

19. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Selected Areas in Cryptography. Lecture Notes in Computer
Science, vol. 3897, pp. 110–127. Springer (2005)

20. Biryukov, A., Perrin, L., Udovenko, A.: Reverse-engineering the s-box of streebog,
kuznyechik and stribobr1. In: Advances in Cryptology – Proceedings of EURO-
CRYPT (1). Lecture Notes in Computer Science, vol. 9665, pp. 372–402. Springer
(2016)

21. Bose, P., Hoang, V.T., Tessaro, S.: Revisiting AES-GCM-SIV: multi-user security,
faster key derivation, and better bounds. In: Advances in Cryptology – Proceedings
of EUROCRYPT (1). Lecture Notes in Computer Science, vol. 10820, pp. 468–499.
Springer (2018)

22. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Selected
Areas in Cryptography. Lecture Notes in Computer Science, vol. 7118, pp. 293–
319. Springer (2011)

23. Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In: Advances in
Cryptology – Proceedings of EUROCRYPT. Lecture Notes in Computer Science,
vol. 2332, pp. 108–109. Springer (2002)

https://doi.org/10.1145/2976749.2978423

24 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

24. Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and
HAIFA. In: Advances in Cryptology – Proceedings of CRYPTO (1). Lecture Notes
in Computer Science, vol. 8616, pp. 149–168. Springer (2014)

25. Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D., Standaert, F.:
Towards sound fresh re-keying with hard (physical) learning problems. In: Ad-
vances in Cryptology – Proceedings of CRYPTO (2). Lecture Notes in Computer
Science, vol. 9815, pp. 272–301. Springer (2016)

26. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Advances in Cryptol-
ogy – Proceedings of EUROCRYPT. Lecture Notes in Computer Science, vol. 434,
pp. 329–354. Springer (1989)

27. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

28. Hoang, V.T., Tessaro, S.: The multi-user security of double encryption. In: Ad-
vances in Cryptology – Proceedings of EUROCRYPT (2). Lecture Notes in Com-
puter Science, vol. 10211, pp. 381–411 (2017)

29. Hoang, V.T., Tessaro, S., Thiruvengadam, A.: The multi-user security of GCM,
revisited: Tight bounds for nonce randomization. In: CCS. pp. 1429–1440. ACM
(2018)

30. Hong, J., Kim, W.: Tmd-tradeoff and state entropy loss considerations of stream-
cipher MICKEY. In: Progress in Cryptology – INDOCRYPT. Lecture Notes in
Computer Science, vol. 3797, pp. 169–182. Springer (2005)

31. Knudsen, L.R.: Cryptanalysis of LOKI91. In: AUSCRYPT. Lecture Notes in Com-
puter Science, vol. 718, pp. 196–208. Springer (1992)

32. Leontiev, S., Chudov, G.: Using the GOST 28147-89, GOST R 34.11-94, GOST R
34.10-94, and GOST R 34.10-2001 Algorithms with Cryptographic Message Syn-
tax (CMS). RFC 4490 (May 2006). https://doi.org/10.17487/RFC4490, https:
//rfc-editor.org/rfc/rfc4490.txt

33. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Advances in Cryptology – Proceedings of ASIACRYPT (2). Lecture Notes in
Computer Science, vol. 8270, pp. 1–20. Springer (2013)

34. Luykx, A., Mennink, B., Paterson, K.G.: Analyzing multi-key security degradation.
In: Advances in Cryptology – Proceedings of ASIACRYPT (2). Lecture Notes in
Computer Science, vol. 10625, pp. 575–605. Springer (2017)

35. Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In:
Advances in Cryptology – Proceedings of ASIACRYPT (1). Lecture Notes in Com-
puter Science, vol. 12491, pp. 724–753. Springer (2020)

36. Mouha, N., Luykx, A.: Multi-key security: The even-mansour construction revis-
ited. In: Advances in Cryptology – Proceedings of CRYPTO (1). Lecture Notes in
Computer Science, vol. 9215, pp. 209–223. Springer (2015)

37. Perrin, L.: Partitions in the s-box of streebog and kuznyechik. IACR Trans. Sym-
metric Cryptol. 2019(1), 302–329 (2019)

38. Peyrin, T., Wang, H.: The MALICIOUS framework: Embedding backdoors into
tweakable block ciphers. In: Advances in Cryptology – Proceedings of CRYPTO
(3). Lecture Notes in Computer Science, vol. 12172, pp. 249–278. Springer (2020)

39. Popov, V., Leontiev, S., Kurepkin, I.: Additional Cryptographic Algorithms for
Use with GOST 28147-89, GOST R 34.10-94, GOST R 34.10-2001, and GOST R
34.11-94 Algorithms. RFC 4357 (Jan 2006). https://doi.org/10.17487/RFC4357,
https://rfc-editor.org/rfc/rfc4357.txt

40. Preneel, B., van Oorschot, P.C.: On the security of two MAC algorithms. In: Ad-
vances in Cryptology – Proceedings of EUROCRYPT. Lecture Notes in Computer
Science, vol. 1070, pp. 19–32. Springer (1996)

https://doi.org/10.17487/RFC4490
https://rfc-editor.org/rfc/rfc4490.txt
https://rfc-editor.org/rfc/rfc4490.txt
https://doi.org/10.17487/RFC4357
https://rfc-editor.org/rfc/rfc4357.txt

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 25

41. Smyshlyaev, S.: Re-keying mechanisms for symmetric keys. RFC 8645, RFC Editor
(August 2019)

42. Wheeler, D.J., Needham, R.M.: Tea, a tiny encryption algorithm. In: FSE. Lecture
Notes in Computer Science, vol. 1008, pp. 363–366. Springer (1994)

A Reduced Versions of the Ciphers Used in the
Experiment

To provide experimental supports to our analysis in this paper, we instantiated
CTR-ACPKM with toy versions of Simon [10], TEA [42] and AES [23]. We give
a detailed configuration of our-made version the ciphers.

A.1 TEA16

TEA16 is the reduced version of the TEA [42] block cipher, reduced to a 16-bit
block cipher with a 32-bit key master key, where the word size is 8 bits. TEA16
is a 32-rounds balanced Feistel cipher with a 32-bit master key K. TEA16’s key
schedule follows that of TEA [42]. At first the 32-bit master key parsed into four

keys of size 8 bits as K[3]||K[2]||K[1]||K[0]
8← K. Then, in the even rounds we

use the 16-bit part K[1]||K[0] and in the odd rounds we use the other 16-bit
part K[3]||K[2]. The round function of TEA16 is applied to the block (Lr, Rr)
as follows:{

Rr+1 = Lr + (((Rr ≪4) +K2
r)⊕ (Rr + c)⊕ ((Rr ≫5) +K1

r))

Lr+1 = Rr

for r = 0 · · · 32 and K1
r∥K2

r is the r-th round key. X ≪i and X ≫i denotes the i
bit left shift and i bit right shift of X, respectively. The value c is initially 0 and
incremented by a fixed constant 0x9E at every two rounds. A schematic diagram
of one cycle (two rounds) is given in Figure 1.

A.2 Related Key Properties of TEA16

Here we recall three related-key differential property of the block cipher TEA16,
that holds for zero input difference. Let us denote one cycle of TEA16 by F .
The following iterative differential characteristics holds with probability 1:

F (X∥Y,K1[3]∥K1[2]∥K1[1]∥K1[0], c)⊕ F (X∥Y,K2[3]∥K2[2]∥K2[1]∥K2[0], c) = 0

where two keys K1[3]∥K1[2]∥K1[1]∥K1[0] and K2[3]∥K2[2]∥K2[1]∥K2[0] hold any
of the following relations:

1. Simultaneously flipping the most significant bit of K1[2] and K1[3], i.e.,
K2[0] = K1[0]

K2[1] = K1[1]

K2[2] = K1[2] + 27

K2[3] = K1[3] + 27

26 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

Lr Rr

≪4

≫5

≪4

≫5

Lr+2 Rr+2

c

K[0]

K[1]

c

K[2]

K[3]

1

Fig. 1: Round function of the TEA16.

2. Simultaneously flipping the most significant bit of K1[0] and K1[1], i.e.,
K2[0] = K1[0] + 27

K2[1] = K1[1] + 27

K2[2] = K1[2]

K2[3] = K1[3]

3. Simultaneously flipping the most significant bit of K1[0],K1[1],K1[2] and
K1[3], i.e., 

K2[0] = K1[0] + 27

K2[1] = K1[1] + 27

K2[2] = K1[2] + 27

K2[3] = K1[3] + 27

Thus, TEA has 3 related-key differential property that takes zero input difference
to zero output difference under 3 possible key difference.

A.3 Simon16

Simon16 is a reduced version of Simon [10] with a 16-bit block and 32-bit master
key. It is an Feistel structure where the round function follows ARX construction
and has 32 Feistel rounds. One round of Simon16 applied to the block Lr||Rr

and produce Lr+1||Rr+1 as follows:{
Lr+1 = Rr ⊕ ((S1(Lr) ∧ S2(Lr))⊕ S3(Lr)⊕Kr)

Rr+1 = Rr

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 27

where Sj(X) denotes the left circular shift of X by j positions and Ki denotes
the round key. Thus, we have changes the left circular shift amounts to 1,2, and
3 instead of 8, 1 and 2 used in the original Simon [10]. A schematic diagram of
one round is given in Figure 2.

Lr Rr

S1

S2

S3

K[r]

Lr+1 Rr+1

Fig. 2: Round function of the Simon16.

The key schedule of Simon16 follows exactly the same key schedule as used in
the original Simon [10]. At first the 32-bit master keyK is parsed into four keys of

size 8 bits to generate subkeys for the first 4 rounds, i.e.,K[3]∥K[2]∥K[1]∥K[0]
8←

K. The rest of the 28 keys are generated as follows: for i = 0, ..., 27 we compute

K[i+4] = K[i]+(S−3(K[i+3])⊕K[i+1])⊕S−1((S−3(K[i+3])⊕K[i+1]))⊕Zi⊕0xF3,

where S−j(X) denotes the right circular shift of X by j positions. Here Zi is the
i-th bit of a fixed bit sequence Z = 00011001110000110101001000101111.

We are not aware of any high probability related-key differential in Simon [10]
and we expect none exist in Simon16.

A.4 AES16/AES32

AES16 (AES32) is the reduced version of AES [23] reduced to a 16-bit (32-bit)
block cipher with 32-bit key. We take 32-bit key and plaintext, and add zero
to the 12 most significant bytes to make it 128-bit key. Finally, the output of
AES-128 is chopped to 16 bits (32 bits).

B Analysis of the Distinguishing Attack
from subsection 6.1

Assume that there are u users, where the adversary makes a single query to
each user. Let wi be the number of sections in the i-th user-query for all i ∈
{1, 2, ..., u} and w = min{w1, ..., wu}. We show that this adversary can distin-
guish CTR-ACPKM from a random function. We present our main result of this
section in the following Lemma 2.

28 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

Lemma 2. Let ν ∈ [1, w] be a fixed section number and s is the section size in
n-bit blocks. There exists an adversary D that makes a single query to each of
the u users, can distinguish CTR-ACPKM construction from a random function
in the multi-user setting. The distinguishing advantage of D is more than 1/2
when the number of users is at least 2κ/2+1/

√
ν and D makes at least one query

through each users, where κ is the key size and each query is with at least νs
blocks.

Proof. We construct a deterministic distingusher D on a distinguishing game
to distinguish CTR-ACPKM construction from the ideal world. Let us consider
there are u users and D makes queries to the i-th user of the form (i, IVi,Mi).
Attack Algorithm. First, the adversary picks a random nonce, say IV and
messages Mi for the i-th user with ∥Mi∥n = 2sw for all i ∈ {1, 2, ..., u}. Recall
that s is the length of each section in n-bit blocks. So each Mi has w sections
numbered 0, ..., w − 1. Then the adversary does the following:

1. Choose a suitable section ν with ν ≤ 2
κ
2 and u2ν ≥ 2κ+2.

2. For i = 1, ..., u, asks for the encryption of (i, IV,Mi) form the i-th user under
key Ki and obtained Ci.

3. If there are i and j such that Ci[βs+α]+Mi[βs+α] = Cj [βs+α]+Mj [βs+α]
for all β ∈ [ν, w − 1] and α ∈ [1, s] then output 1, else output 0.

Analysis of the attack. We show that in the above attack D outputs 1 with
high probability while interacting with the CTR-ACPKM construction and with
very low probability in the ideal world. Note that Ci[βs + α] + Mi[βs + α] =

Cj [βs+α] +Mj [βs+α] implies EKi
β
(INCβs+α

n
2

(IV∥0n
2)) = EKj

β
(INCβs+α

n
2

(IV∥0n
2))

where K∗
β denotes the β-th section key of the ∗-th user. Thus, in the real

world, if the i-th user key and j-th user key collide at the ν-th section, then
EKi

β
(INCβs+α

n
2

(IV∥0n
2)) = EKj

β
(INCβs+α

n
2

(IV∥0n
2)) for all β ∈ [ν, w − 1] and α ∈

[1, s] and the D outputs 1 at step 3 of the algorithm.
We analyze the attack in two steps. In the first step we show that such key col-

lision occurs with high probability. To find this collision probability of two users
key at the ν-th section, we recall a result from [24] in the following Lemma 3.

Lemma 3 ([24]). Let ν ≤ 2
κ
2 be a non-negative integer and f is a random

function from {0, 1}κ to itself. Then, the image of two arbitrary inputs to the
ν-th iterate fν collide with probability about ν

2κ .

In the second step we show that in the ideal world, D outputs 1 at step 3
of the algorithm with low probability. Thus D can distinguish the CTR-ACPKM
construction from the ideal world.
Step-I: Let us consider the following indicator random variable

Ui,j =

{
1, if Ki

ν = Kj
ν

0, otherwise.

Now from Lemma 3, any two user keys collide at the ν-th section with probability
ν
2k

where ν ≤ 2
κ
2 . Thus, Pr[Uj,k = 1] = ν

2κ . Also, let U =
∑

i,j Ui,j and we have to

Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM 29

show that U ≥ 1 with high probability. As all the Ui,j ’s are pairwise independent
random variables, by using Chebyshev’s inequality we have

Pr[∥U − E(U)∥ ≥ E(U)] ≤ V(U)

E(U)2

⇒Pr[U = 0] ≤ Pr[∥U − E(U)∥ ≥ E(U)] ≤ V(U)

E(U)2

⇒Pr[U ≥ 1] ≥ 1− V(U)

E(U)2
. (4)

We compute the expectation as follows:

E(U) = E
[∑

j,k

Uj,k

]
=

∑
j,k

Pr[Uj,k = 1] =

(
u
2

)
ν

2κ
. (5)

Similarly, from the pairwise independence of the variables Uj,k, we can compute
the variance as follows:∑

j,k

V[Uj,k] =
∑
j,k

E[U2
j,k]− (E[Uj,k])

2 =
∑
j,k

ν

2κ
−
(ν

2κ

)2

≤
∑
j,k

ν

2κ
=

(
u
2

)
ν

2κ
. (6)

Thus from Equation 4, we get

Pr[U ≥ 1] ≥
(
1− 2κ(

u
2

)
ν

)
≥

(
1− 2κ+1

u2ν

)
.

Finally, from the statement of the lemma, as Dmakes at least 2κ/2+1/
√
ν queries,

we have the relation that u2ν ≥ 2κ+2. Thus, we get

Pr[U ≥ 1] ≥ 1

2
.

Step-II: In this step, we bound the probability that D outputs 1 in the step 3 of
the above algorithm while interacting with the ideal world. Note that, D outputs
1 if two user keys collides. However, the condition Ci[βs + α] + Mi[βs + α] =
Cj [βs + α] +Mj [βs + α] can occur for all β ∈ [ν, w − 1] and α ∈ [1, s] without
being a key collision. Such cases are due to random collisions and can occur in
ideal world. Let us consider the indicator random variable

Zi,j =

{
1, if Ci[βs+ α] +Mi[βs+ α] = Cj [βs+ α] +Mj [βs+ α] ∀β ∈ [ν, w − 1], α ∈ [1, s]

0, otherwise

and let Z =
∑

i,j Zj,k. It is easy to observe that a random collision occurs if there
exist i, j such that Zi,j = 1. As the outputs are chosen at uniformly random in
the ideal world, such a random collision occurs with the probability at most

1
((2n)s)w−ν . Thus the expected number of such cases:

E(Z|U = 0) =
∑
j,k

Pr[Zj,k = 1|U = 0] =

(
u
2

)
((2n)s)w−ν

≤ u2

((2n)s)w−ν
. (7)

30 Orr Dunkelman, Shibam Ghosh, Eran Lambooij

To simplify the above inequality, we recall an idea from [28]. Let s(w − ν) =⌈
κ+d
n−1

⌉
for some suitable choice of d. In that case we have

(2n)s = 2n(2n − 1)...(2n − s+ 1) ≥ 2(n−1)s.

Thus from the above Equation 7 and using Markov’s inequality we can bound
the probability that D outputs 1 in the ideal world as follows:

Pr[Z ≥ 1] ≤ E(Z|U = 0) ≤ u2

((2n)s)w−ν
≤ u2

2κ+d
.

Thus, for sufficiently large d (consequently, for sufficiently large w − ν), the
expected number of random collisions is small enough.

	Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM

