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Abstract. Current messaging protocols are incapable of detecting active
man-in-the-middle threats. Even common continuous key agreement pro-
tocols such as Signal, which offers forward secrecy and post-compromise
security, are dependent on the adversary being passive immediately fol-
lowing state compromise, and healing guarantees are lost if the attacker
is not. This work offers the first solution for detecting active man-in-the-
middle attacks on such protocols by extending authentication beyond the
initial public keys and binding it to the entire continuous key agreement.
In this, any adversarial fork is identifiable to the protocol participants.
We provide a modular construction generic for application with any con-
tinuous key agreement protocol, a specific construction for application to
Signal, and security analysis. The modularity of our solution enables it
to be seamlessly adopted by any continuous key agreement protocol.
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1 Introduction

Modern messaging protocols have changed the way we look at security, adversar-
ial compromise, and session establishment. While prior key exchange protocols
focus on the ‘per-session’ establishment of keys, these modern protocols minimize
latency by maintaining a long-lived session that continuously develops keying
material over multiple epochs, i.e. a Continuous Key Agreement (CKA). Due to
its single-session and asynchronous nature, a CKA is particularly attractive for
messaging environments where the same communication partners may intermit-
tently reconnect. In this context, the effects of compromise have gained increased
attention, with the properties of forward secrecy (FS) and post-compromise
security (PCS) [7] being the norm for competitive messaging protocols, as well as
appearing as guarantees in analysis of other protocols. In the event of adversarial
compromise, FS provides a guarantee of secrecy for past session data, while PCS
provides a similar guarantee of future session data – contingent absence of active
adversarial injections for one epoch. This PCS assumption results in an incon-
sistent adversarial model, wherein an adversary that is active for a compromise
? The views expressed in this document are those of the author and do not reflect the
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attack must be assumed passive immediately following the compromise in order
for security healing guarantees to be applicable.

The reason behind this assumption is that FS and PCS properties are tra-
ditionally tied to key confidentiality and a failure in entity authenticity of com-
munication partners implies that confidentiality itself may no longer hold. Thus
any action on the part of the adversary to impersonate parties through key
updates of its own nullifies PCS healing. Prior works note that key compromise
followed by an active attacker 1 can be catastrophic to both confidentiality and
authentication guarantees in a CKA [20,10]. Hence our question:

Is it possible to detect an attacker actively
impersonating parties after a compromise?

If an adversary completely controls the channel between the communicating
parties and has compromised all secrets, then the answer is clearly negative. But
what if there exists another channel between the two parties that the adversary
cannot fully control? The remainder of this work shows a generic construction for
achieving this channel, answering in the affirmative – even in the case of entire
state and long-term key compromise.

1.1 Security After Compromise

In common session-based protocols, such as TLS 1.3 [23] and QUIC [15], both
key agreement and entity authentication occur only once per session during
session initiation, a.k.a. the handshake phase. Two noteworthy attributes arise
from this: (1) Periodic Re-authentication. If a state compromise occurs, all
current state and keys associated with the given session are assumed to be lost;
yet security may again be achieved in a following session if an adversary has not
gained access to long-term keys, e.g., signing keys. Entity authentication with
secret long-term keys essentially allows for a re-bootstrapping of a secure channel
even in the presence of an active attacker. (2) Shared Memory. “Memory”
between the communicating parties is essentially erased at the end of every
session2, implying no mutual, long-standing history of shared session state to
bootstrap from (this will be important later).

In contrast, a CKA protocol constitutes a long, continuous session with an
ongoing key agreement evolving throughout. The CKA session may in fact have
a multi-year lifespan – with entity authentication occurring only once, at the
1 To avoid a potential terminology ambiguity around use of active adversary (active key
compromise attacks or active impersonation attacks through message or key update
injection), we will henceforth use active adversary strictly to refer to an adversary
that is injecting messages or key updates, e.g. an adversarial Diffie-Hellman share.
Key compromise will be treated as separate action in an attack, and will be referred
to as a compromise.

2 TLS [23] offers a session resumption option using a pre-shared key. As this mode is
an option only and refreshment of keying material inside of the mode is a further
sub-option in the standard we do not go into a detailed comparison.
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very start. Again, we notice two attributes: (1) Periodic Re-authentication.
There is no periodic entity re-authentication in CKA, unlike in session-based
protocols. This implies that a secure channel cannot be re-bootstrapped from
long-term keys, even if that adversary has not gained access to them during the
compromise. (2) Shared Memory. A CKA provides a continuous “memory”
between the communicating parties. Thus, to combat the risk of compromise
in such a long-lived session, the CKA can periodically refresh its secret values
by dividing the entire session into a series of epochs, where the state from one
epoch is input to the next. If communicating parties authentically communicate
at epoch i and one of them is compromised, then the routine process of updating
the key would lock out the attacker at epoch i+1 (provided entity authentication
is not broken by an adversary’s injected update). Future impersonation attempts
would also be blocked. PCS is predicated on the requirement that the adversary is
passive for one epoch, else the lack of re-authentication could lead to potentially
years of an undetected man-in-the-middle (MitM) attacker. Epochs may be far
shorter than a typical TLS session length, which significantly limits data exposure
(i.e., FS and PCS guarantees are linked to epochs).

In the first instance, session-based protocols have advantages under (1) but
disadvantages under (2), while the reverse is true under a CKA. To illustrate this
contrast between session-based and CKA protocols, consider the following case
example comparing TLS and CKA security under passive and active attackers.
Suppose, for simplicity, that two devices need to communicate on a regular
basis for 3 years. The developer can choose between using a CKA, supporting
asynchronous communication, or TLS, supporting synchronous communication
only. CKA epochs will change over every time a party sends a message, while
in the case of TLS sessions will be 1 hour in duration, thrice a day. Now, if
an adversary compromises device A approximately one year in, we have the
outcomes shown in Table 1, dependent on whether the adversary is passive or
active immediately following the compromise (i.e., attempting impersonation
along with key updates if necessary). For illustration, we assume that the attack
is not detected.

Protocol # Session Data Compromised / Impersonation
Establishments MitM Eavesdrop Capability Capability

A
dv

.
Pa

ss
iv
e CKA 1 1-2 msg. 1-2 msg.

TLS 3285 1 hour of data 2 years

A
dv

.
A
ct
iv
e CKA 1 2 years of data 2 years

TLS 3285 1 hour of data 2 years
Table 1: Simple example scenario, comparison under session state compromise.

As seen, active or passive adversarial behavior immediately the time of
compromise can have a drastic effect on the attractiveness of using a CKA protocol.
Under a passive attacker, PCS in a CKA can allow precise epochal update control
and consequent smaller vulnerability windows than in TLS. Meanwhile, if the
attacker is active in the epoch immediately following compromise, the lack of
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re-authentication in CKA broadens the MitM vulnerability window beyond that
of TLS. How can this problem be addressed?

Prior work [9] suggested combining long-term secret keys with continuous
authentication [10]. This would essential match CKA security assumptions to
TLS, allowing channel security to be bootstrapped from secret long-term keys
and changing the active adversary CKA row in Table 1 to match the passive
adversary CKA row (in green) – conditioned on the secrecy of the long-term
keys.

If the long-term keys are also compromised, there is nothing that can be
done for TLS (under its current use) to improve the vulnerability situation
due to the lack of continuous session state. This is where the shared “memory”
of a CKA becomes advantageous again: an active adversary in possession of
all keys would need to fork the session history between communicating parties
in order to perform a MitM attack. This begs the question: Can such a fork
be detected, even under full compromise? If so, then we also address the prior
question on detecting active impersonation. Note that in achieving this, CKA
would provide a stronger security property under full compromise than TLS or
similar session-based protocols provide.

We model the guarantee of forking detection under active MitM attacks and
full compromise as an Authenticated Continuous Key Agreement (ACKA) security
model, and provide a construction as a Signal add-on that achieves this security.

1.2 Related Works

Security healing following compromise was first investigated under the term
post-compromise security (PCS) [8]. The first investigations looked strictly at
confidentiality of data and specifically focused on compromise of session keys. Loss
of signature keys and impersonation were not accounted for, leaving authentication
issues and active attacks out of scope. PCS is a key property in both Signal [19] and
OTR [6]. Forward Secrecy (FS) [14] was another and much earlier topic of research
in the security-following-compromise scenario. Continuous Key Agreement, aka.
Ratcheted Key Exchange, covers a line research for achieving both PCS and FS
[8,21,7,22,2,12,16,5,17,24,3,11,1].

Some CKA messaging protocols such as Signal [19] claim to support on-
demand user controlled re-authentication (e.g., through comparison of QR codes
or numeric identifiers). However, the keys used in QR code or numeric code
generation are not used inside of the CKA protocol evolution, so such action
only authenticates to the time of session initiation and not the current protocol
state [10]. Note that this also applies to the “trust-on-first-use” model – in case of
certificate authority validation, keys are verified during initiation while for trusted-
on-first-use they are assumed to be valid. In neither case does authentication
extend past the session initiation phase, beyond some exploratory theoretical
constructions [9].

Our work leverages the CKA definition of a ratcheting protocol [2], and is
composable with any CKA-secure protocol. CKA and its security was introduced
as a generalization of the lessons learned from ratcheting protocols such as Signal
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[19], which is used in Facebook Messaging, WhatsApp, and Skype as well as
variants such as the Proteus protocol used in the Wire messaging application
[13]. The CKA protocol description is highly generalized, allowing alignment to
many ratcheting-style protocols.

While we specifically focus on CKA as a general framework in this research,
other works have also analyzed and provided security experiments for ratcheting
key exchange protocols, as mentioned above. These works largely forgo the
question of an active attacker, as such an attacker is largely viewed to be fatal
to the protocol’s security. A notable exception is a line of enquiry [16] wherein
the authors investigate the tie-in of authenticity to PCS healing. In that work,
the authors achieve PCS under the restriction that compromise of secret keys
does not include secret authentication (signature) keys, making it more closely
aligned to the assumptions of [9]. For the [16] proposed solution, a signature
key is generated for the next epoch and committed to in the current epoch. If
an adversary then compromises a protocol member and obtains state secrets,
it cannot impersonate that member in the following epoch as it does not have
access to the authentication secrets. A similar approach is considered in [22].

While these approaches improve on the confidentiality-only PCS assumptions,
they still do not consider the case of total compromise wherein the adversary
obtains both state and long-term (signature) secrets. Consequently, to date, there
is no clear solution for some of the strong-adversary scenarios that originally
motivated PCS, namely cases when the adversary has“short-term physical access”
or devices are “confiscation at a border crossing” [8]. In all practicality, these
cases suggest that compromise of signature keys should also be considered. Our
solution covers not only the case of full compromise but also an unrestricted
adversary, allowing for active attacks immediately following compromise and
providing key misuse detection and prevention.

In real-world applications key misuse detection has gained interest, with
industry efforts including Certificate Transparency [4]. While focused on a client-
server protocol design, the ideas of [21] are also related to our work, in that
a log-based system can be used as a transparency overlay. Our stateful CEA
protocol falls in line with the authors’ discussion that contradicting observations
(forks or breaks in a shared “memory”) are one of three possible foundational
concepts for supporting active attacker detection (a straightforward extension
to CEA also supports acausal observations where an agent can detect misuse
of their own secret). While the authors take a symbolic analysis approach and
focus on server-client protocols such as for Cloudflare’s Keyless SSL [25], our
work provides the first computational analysis model and applies to end-to-end
security in continuous key agreement.

Detection of active MitM attacks for CKAs was first covered in [10] via the
Mediated Epoch Three-party Authentication (META) protocol. The concepts
presented in that research provide another foundational piece to our design and
analysis through computation of epoch-specific authentication keys. However,
the research was reliant on the pre-existing human construct of users comparing
authentication tokens (QR-codes or numeric codes). Naturally, involving the user
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implies an unpredictable frequency in code comparison and therefore authen-
tication, as well as the potential for human error. While work has been done
towards improving the user experience [26], the ideal case is that authentication
is achieved through automated means and without relying on the user’s conscious
action. Thus, we extend the META concept to be automated.

1.3 Contributions and Outline

Our contributions are as follows:

– The first continuous entity authentication (CEA) protocol for full-compromise
and active MitM attacks on continuous key agreement protocols, and accom-
panying security model for CEA and unlinkability model for CEA.

– The first CKA (CKALOG) that allows for active MitM detection and preven-
tion, and accompanying security experiment (ACKA).

– An example CEA construction.
– Security analysis of the composed CKALOG using our CEA construction under

ACKA.

The remainder of this paper is organized in the following way. In Section 2.1
we provide background on CKA and the existing security model. In Section 3.1
we introduce CEA, associated security experiments, and a CEA construction.
Section 4 introduces an expanded CKA construction based on CEA and CKA sub-
components, and a combined security experiment for CKA and CEA. Section 6
provides security analyses for the constructions.

2 High-Level Intuition and Preliminaries

We begin with some intuition as to how the generic ACKA protocol is built.
In our setting, Alice and Bob continually establish secrets via a CKA protocol.

As standard in CKA literature, Alice and Bob already share a pre-shared secret
value pss (to be updated and maintained as part of the secret state sk). Critically,
we require this to be shared and globally unique among honest pairwise sessions –
but not secret. If Alice and Bob have ever held an agreed upon state pss3, then pss
can be used to bootstrap authentication. Our adversary is allowed to compromise
this initial shared state. In the context of long-lived messaging protocols, this
setting is equivalent to a correctly-assumed trust-on-first-use scenario or even
that the parties authenticated initial keying materials.

We begin with a Continuous Key Agreement protocol, where users exchange
public keying material and output new keys per epoch. The core issue is that once
the attacker knows the secret shared state, they can inject public keying material
themselves and fork the user’s view. We use a Continuous Entity Authentication
(CEA) scheme to generate so-called fingerprints of the public keying material of
the communicating party: when exchanged reliably, they can confirm that the
keying material received by the opposite party was indeed generated honestly.
3 The pre-shared state pss can be modelled as an initial state, without loss of generality.
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Of course, if the adversary controls the communication channel, reliable
exchange of this fingerprint cannot be assumed and it achieves nothing. Thus, the
parties require a communication channel that the adversary cannot manipulate or
use to fork user’s views: here we use a Secure Logging scheme. Senders will upload
their locally-generated fingerprints to the log – which they can themselves verify
correct posting to – thus preventing the adversary from dropping their fingerprint
in transit. This allows the users to exchange and verify their fingerprints – failure
of the adversary to similarly post fingerprints if impersonating a user raises an
alert flag for the receiver, while doing so also forces the adversary to advertise
their active attacks (detectable by the impersonated user).

Unlinkability on Log

State leakedState Secure

CKALOG: ACKA

Traditional PCS Active Detection

Authenticated Continuous Key Agreement

CKA: CKA-PCSCEA: Unlink CEA: CEAsec
+

Log: Logsec

Adv. Passive Adv. Active

Fig. 1: Case Scenarios around Compromise. Following a compromise, the protocol
could heal through traditional PCS via the underlying CKA if the adversary is passive
(CKA-PCS). If the adversary is not passive, then the CEA protocol allows for detection
and prevention of a MitM, assuming CEAsec and immutability of the log (Logsec). The
combined CKALOG protocol provides Authenticated Continuous Key Agreement (PCS
+ active detection). In absence of a compromise, we require that the CEA-generated
fingerprints do not increase linkability of the conversation between epochs (Unlink).

Such a logging action requires the users (and the adversary) to notate epoch
fingerprints so that they cannot be confused for fingerprints in other sessions/e-
pochs, and cannot be forked by a key compromising adversary within the same
epoch. Thus, our CEA also uses unkeyed cryptographic primitives (specifically
collision-resistant hash functions) to generate generate a label for a given epoch
based on the previous epoch state. This provides a deductive step – a previous
shared state is used to generate labels, which in turn aid in identifying forks in
fingerprints. As long as a shared state exists at some point (even if known to the
adversary), a fork is detectable.

Specifically, an adversary will collide on a fingerprint label with the honest
party that they are trying to impersonate, and the presence of two fingerprints
for a single label will alert all communication parties to a impersonation attack;
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or an adversary will impersonate a party, introducing a fingerprint that the
impersonated user can identify as dishonest.

Thus, an honest execution of the protocol will follow this pattern: the com-
municating parties share some initial pre-shared state (pss) that is input to the
CEA. Whenever a sender generates some new keying material from their CKA
session, they also generate a label (based on prior state), and a fingerprint pair
(based on the current key update) via the CEA protocol, and upload this to the
secure logging scheme. (The sender will also check if the label has already been
uploaded to the log with a fingerprint, which would indicate an impersonation,
instigating the sender to initiate appropriate – likely out-of-band – action on
detection of the attack.) Afterwards, the internal sender CEA state is updated
with the CKA key, and the internal sender CKA state is also updated with the
CKA key per its normal functionality, i.e., generating an independent key for
users to use in some symmetric key ratchet using a key derivation function.

Whenever the receiver gets new public keying material from their commu-
nicating partner, the receiver uses the keying material as input to the CEA to
generate a local label and fingerprint, and looks up the label in the log – if
two such fingerprints of the same label exist, or a different fingerprint exists at
the label then they have locally generated, then an active (key compromising)
impersonation attack is taking place, and the receiver will initiate appropriate
action. Thus, past agreement on shared state (via the computed label) is used to
bootstrap agreement on the next ratchet state (matching fingerprints). A MitM
attack would fork the fingerprints, and be identifiable as there is a history prior to
that fork. The ACKA security model captures this ability – which we demonstrate
is feasible based on the security of the log (Logsec) and CEA (CEAsec).

Naturally, an adversary may be either active or passive following a compromise.
Ergo we define not only security for detection of an active MitM adversary,
but also design for the holistic after compromise solution space. Depending
on adversarial behavior, the security guarantees diverge as follows (shown in
Fig. 1): If the adversary is passive for an epoch following compromise, the
protocol security follows the route of traditional PCS. If the adversary is active
in impersonating parties as a MitM and injects their own update to form a
forked view of the conversation between Alice and Bob, our protocol detects the
adversarial activity. Furthermore, we require that any introduced fingerprinting
from CEA for detecting an active adversary do not impact conversation tracking
(linkability) for the underlying CKA in the case of a passive adversary, i.e., that
the use of fingerprints do not introduce a linkability advantage.

2.1 Preliminaries

We follow standard assumptions by requiring a KDF to be a PRF [18].

Definition 1 (Key Derivation Function (KDF)). A key derivation function,
KDF(sk, id)→ k, is a pseudorandom function K ×N → E that takes as input
original keying material sk and a key identifier id and outputs a key k.
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2.2 Continuous Key Agreement

The continuous key agreement (CKA) definition and its security experiment [2]
are provided below. On a high-level, a CKA protocol is a multi-stage key exchange
protocol, where protocol participants continually exchange public keyshares and
output (after each message) a new symmetric key.

Definition 2 (Continuous Key Agreement). A continuous-key-agreement
(CKA) scheme is quadruple of algorithms CKA = (CKA-Init-A,CKA-Init-B,
CKA-S,CKA-R) where

– CKA-Init-A (and similarly CKA-Init-B) is an algorithm that takes a key ik
and produces an initial state γA ← CKA-Init-A(ik) (γB resp.),

– CKA-S is a potentially probabilistic algorithm takes a state γ, and produces
a new state, message, and key (γ′, T, I)←$CKA-S(γ), and

– CKA-R takes a state γ and a message T , and produces a new state and key
(γ′, I)← CKA-R(γ, T )

The space of initialization keys ik is denoted IK and the space of CKA keys is
denoted I.

ExpCKA-PCS,t∗,∆CKA
CKA,A (λ):
ik←$ IK
γA ← CKA-Init-A(ik)
γB ← CKA-Init-B(ik)
tA, tB ← 0
b←$ {0, 1}
b′ ← Acorr-A,send-A,send-A′(·),receive-A,chall-A

return b = b′

corr-A:
req allow-corr or finishedA
return γA

send-A:
tA + +
(γ, TtA , ItA )←$CKA-S(γ)
return (TtA , ItA )

send-A′(r):
tA + +
req allow-corr
(γ, TtA , ItA )←$CKA-S(γ; r)

return (TtA , ItA )
receive-A:
tA + +
(γA, ∗)← CKA-R(γA, TtA )

chall-A:
tA + +
req tA = t∗∗
(γ, TtA , ItA )←$CKA-S(γ)
if b = 0 then

return (TtA , ItA )
else
I←$ I
return (TtA , I)

end if

Fig. 2: The queries for party A in the CKA-PCS security experiment; queries for
party B are defined analogously.

CKA Security Intuitively, CKA security could best be described as “having seen
a transcript T1, T2, . . ., the keys I1, I2, . . . look uniformly random and independent.
The adversary is given the power to control the random coins used by the sender
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and leak the current state of either party, but may not modify the messages
Ti. Since the adversary may leak the state and control randomness, the keys
produced under such circumstances need not be secure. CKA security, initially
described in [2], is shown in Figure 2. Next, we formalise what it means for a
CKA to be secure.

Definition 3 (CKA Security). Let CKA be a continuous key agreement pro-
tocol, and let t∗ ∈ N be an epoch index and ∆CKA ∈ N be the number of epochs
until an epoch no longer contains secret information pertaining to a challenge.
For a particular pair of predicates allow-corr P :⇐⇒ max(tA, tB) ≤ t∗ − 2, and
finishedP :⇐⇒ tP ≥ t∗ +∆CKA, and a PPT algorithm A, we define the advan-
tage of A in the CKA-PCS security experiment to be: AdvCKA-PCS,t∗,∆CKA

CKA,A (λ) =
|Pr[ExpCKA-PCS,t∗,∆CKA

CKA,A (λ) = 1]− 1
2 |. We say that CKA is CKA-PCS-secure if, for

all A, AdvCKA-PCS,t∗,∆CKA
CKA,A (λ) is negligible in the security parameter λ.

2.3 Secure logging schemes

To support the CKA in detection of adversarial action, we leverage an append-only
and immutable logging scheme. In practice, this may be realized by blockchain
or other distributed ledger protocols; to provide maximum flexibility in choice,
we define the logging scheme here generically as well as its required security. One
additional functionality that our logging scheme requires is the ability to query
labels to return values stored in the log.

When formalized in literature, logging schemes usually separate algorithms to
one for promising to add an entry to the log, and one update-style algorithm that
actually adds the entries to the log. We combine these into Append to simplify
our definitions. In addition, we require that the logging scheme is able to prove
that two views of the log (from different users) are consistent, i.e. that the log
has not been retroactively modified, but simply appended to. This is captured in
ProveAppend. Logged values, val, are indexed by labels.

Definition 4 (Logging Algorithm). A logging scheme Log consists of the
following algorithms, some of which are run by the log itself, and some run by a ver-
ifier. We define Log as a tuple of algorithms: Log.{Setup,Append,ProveAppend,
Query,AppendVerify,ConVfy}. Setup() is used by a logger to initialize its log:

– Setup()→$ (st, pkLog) is a probabilistic algorithm which outputs some initial
secret state st for the log, and a logging public key pk. The corresponding
secret key is stored with other secret state values.

The following are used by a logger to prove various properties to verifiers:

– Append(st, label , val) →$ (st′, c, V ) is a potentially probabilistic algorithm
which takes as input the log state st, a label for val to be “appended at”, and
outputs an updated state st′, membership commitment proof c, and a view of
the log V .
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– ProveAppend(st, V0, V1)→$ C is a potentially probabilistic algorithm which
takes as input the log state st, two views of the log V0, V1, and outputs a
consistency proof C, or an error symbol ⊥.

– Query(st, label )→ (val, c) is a deterministic algorithm which takes as input
the log state st, a label , and outputs all values val corresponding to label in
the log, as well as their corresponding membership proofs c.

The following algorithms are used by verifiers to verify membership proofs for val,
and to check the consistency (append-only-ness) of the log.

– AppendVerify(val, c, V, pkLog)→ b is a deterministic algorithm which takes
as input a value val, membership proof c, a view of the log V , and the log
public key pkLog. It outputs a bit b indicating success or failure of verification.

– ConVfy(V0, V1, C, pkLog) → b is a deterministic algorithm which takes as
input two views V0, V1, a consistency proof C, and the log public key pkLog,
and outputs a bit b indicating success or failure of verification.

Definition 5 (Logging Algorithm Correctness). We say that a logging
scheme Log is correct if

– for all (st, pkLog) such that Setup()→$ (st, pkLog),
– all n ∈ N, all ordered lists of label, value pairs (l0, val0), . . ., (ln, valn) ∈ L×V,
and

– all membership proof and view pairs (c0, V0), . . ., (cn, Vn) such that

Append(st, l0, val0)→$ (st0, c0, V0), . . . ,Append(stn−1, ln, valn)→$ (stn, cn, Vn)

– ∀i, j, k ∈ N such that i, j ≤ k, ProveAppend(stk, Vi, Vj)→$ Ci,j,k and
– ∀m, p ∈ N such that m ≤ p, Query(stp, lm)→ (valm, cm)

the following holds ∀q, r ∈ N:

1. If lq = labelm, then valq ∈ valm, cq ∈ cm

2. AppendVerify(valq, cq, Vr, pkLog)→ 1 ⇐⇒ r > q
3. ConVfy(Vi, Vj , Ci,j,k, pkLog)→ 1 ⇐⇒ i, j ≤ k

Definition 6 (Secure Log). We say that a logging scheme tuple
Log.{Setup,Append,ProveAppend,Query,AppendVerify,ConVfy} is secure if
Pr[(ExpLogsec-Consistency

Log,A (λ) = 1) ∨ (ExpLogsec-Exclude
Log,A (λ) = 1)] ≤ negl for some negli-

gible function negl.

Logging security is separated into two sub-experiments. The first experi-
ment, Logsec-Exclude captures the adversary’s ability to produce a commitment
that verifies for different sets of committed values. The second experiment,
Logsec-Consistency captures the adversary’s ability to fork the view of the log,
which would break immutability and append-only properties.
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ExpLogsec-Exclude
Log,A (λ):

1: Setup()→$ (st, pkLog)
2: (label0 , val0, σ0), . . . , (labelN , valN , σI), labelI , valI , cI ←$ A(1λ, st, pkLog)
3: ∀i = 0, . . . , N : LOG[labeli ]← vali
4: ∀j s.t. labelj = labelI : val′ ∪←− LOG[labelj ]
5: Append(st, label,0 val0;σ0)→ (st0, c0, V0)
6: ∀i = 1, . . . , N : Append(sti−1, labeli , vali;σi)→ (sti, ci, Vi)
7: if (AppendVerify(valI , cI , labelI , VN , pkLog) = 1) ∧ (val 6= val′) then
8: return 1
9: end if
10: return 0

ExpLogsec-Consistency
Log,A (λ):

1: Setup()→$ (st, pkLog)
2: (label0 , val0, σ0), . . . , (labelN , valN , σN ), (label0 ′, val ′0, σ′0), . . . , (labelN ′, val ′N , σ′N ),

valI , cI , VI , valJ , cJ , VJ , CI,J ←$ A(1λ, st, pkLog)
3: ∀i = 0, . . . , N : LOG[labeli ]← vali
4: ∀i = 0, . . . , N : LOG′[labeli ′]← val ′i
5: Append(st, label0 , val0;σ0)→ (st0, c0, V0)
6: ∀i = 1, . . . , N : Append(sti−1, labeli , vali;σi)→ (sti, ci, Vi)
7: Append(st, label0 ′, val ′0;σ′0)→ (st′0, c′0, V ′0 )
8: ∀i = 1, . . . , N : Append(st′i−1, labeli ′, val ′i;σ′i)→ (st′i, c′i, V ′i )
9: if (LOG6=LOG′) ∧ (AppendVerify(valI , cI , VI) = 1) ∧

(AppendVerify(valJ , cJ , VJ) = 1) ∧ (ConVfy(VI , VJ , CI,J , pkLog) = 1) then
10: return 1
11: end if
12: return 0

Fig. 3: Immutable and Append-Only Logging Security Experiments. Note that
Append is a potentially probabilistic algorithm – in the event that it is instantiated
probabilistically, the notation Append(st, labeli , vali;σi) captures the that the
adversary has access to the appender’s random coins.

3 Continuous Entity Authentication

In this section we motivate the formalism and security for our first contribution,
a continuous entity authentication (CEA) protocol. Roughly, CEA protocols
can be viewed at a high level as analogous to Message Authentication Codes
(MAC),4 where a key from one epoch is used to authenticate update information
for the next. We term the analogous “MAC tag” output the fingerprint of the
epoch. However, CEA protocols do not only generate fingerprints; they also
enable users to update their shared secret state (analogous to updating a MAC
“authentication key”) and additionally generate public identification labels. To
maintain generality, we define CEA as its own independent primitive as opposed
to strengthening CKAs with additional functionalities.
4 We will discuss in the constructions in Section 5 why a MAC is an analogy vs. a
practical instantiation of the CEA fingerprinting sub-primitive.
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Recall that our motivation is to detect when a key-compromising attacker
injects CKA updates T between communicating partners. Our CEA protocol
computes digests (or fingerprints) of these updates; comparing these fingerprints
ensures the absence of an active attacker. These fingerprints will (eventually)
be logged by a logging scheme, and at some point a user will query the log to
recover fingerprints for comparison, requiring a public label to query.5 Finally,
since a CEA protocol is intended to be composed with a CKA, the output keys
from a CKA can be used to update the secret state of the CEA protocol.

Notation Since we intend to compose CEA with a CKA, our notation, maintained
state and outputs align. To maintain generality, we define separate notation for
CEA, as CEA also does not need to share full state with the CKA. This highlights
its use as an independent primitive and allows flexibility over what is being
authenticated through CEA (e.g. whether the users wish to authenticate info
that equates to an update value, T , or to a ciphertext). Thus, Table 2 describes
terminology in gray (left column) and provides a loose alignment of notation and
real-world examples (right columns) for intuition.

Consider, for example, the Signal protocol. In Signal, a shared root key rk is
maintained and asymmetrically “ratcheted” forward via asymmetric ratchet keys
ratchetPK. This results not only in a next epoch root state for forward chaining
but also an epoch-specific state ck (which can be used to derive application data
protection keys). In the CKA definition, CKA-S will output a message T and a
new epoch secret I at the same time. Consequently, when considered as a CKA,
Signal’s ratchet update is the update message (T = ratchetPK) and the new
epochal chain key is the epoch secret (I = ck).

Signal currently derives so-called fingerprints fprint on demand; however, the
onus is on the user to compare these out-of-band (e.g. via QR codes). Additionally,
Signal uses no secret state to generate these fingerprints (simply computed as an
iterative hash over the public keys and identifiers of the communicating parties).

To give intuition to the composition of CKA with CEA, we establish the
following order: the fingerprint is first computed over the new update message
T and current CEA state. Afterwards I is used to update the CEA state and
the fingerprint is sent to the log. Before CKA-R is executed on the receiver side,
the fingerprint is retrieved from the log and verified. The output of CKA-R (the
epoch secret I) is used to update the CEA state.We now turn to formalising a CEA protocol and capturing its security.

3.1 CEA Definition

The formal definition and security experiment for CEA are as follows.

Definition 7. A Continuous Entity Authentication Protocol CEA is a tuple
of algorithms CEA.{Setup,Update,Fprint,Lprint,Verify}. Associated with CEA
are respective input and output spaces ID, S, E, F , L. We describe the algorithms
below:

5 In absence of a label, a user can only identify a matching (potentially forged)
fingerprint, but no instances of duplicate postings or mis-matching fingerprints.
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Variable description CKA CEA Signal
Preshared secret state ik ∈ K pss ∈ S rk ∈ K
Protocol state γ ∈ Γ st ∈ S a, b ∈ Zp, rk ∈ K
Per-epoch keys (output / input) It ∈ I epk ∈ E ck ∈ K
Messages T ∈M info ∈ {0, 1}∗ ratchetPK = ga

(resp. gb)
Fingerprints fprint fprint
An index for a given fprint label

Table 2: Intuition for rough notation alignment for CKA schemes and CEA
schemes. Signal is included as a real-world example.

– Setup(λ, pss, idA, idB)→$ (st0
A), (st0

B): a probabilistic initialization algorithm
takes as input a security parameter λ and some preshared secret state pss ∈ S,
and party identities idA, idB ∈ ID, and outputs some initial state st0

U for
each party U ∈ {A,B}. We assume that there exists some unique mapping
between the preshared secret state pss and the identities {A,B} sharing this
state, and also that some global ordering of identities exists.

– Update(sttU , epk ) → (stt+1
U ): a deterministic algorithm that takes as input

the local state sttU for a party U ∈ {A,B} in epoch t, and some secret epoch
value epk ∈ E, and outputs an updated state stt+1

U for the party U in the next
epoch t+ 1.

– Fprint(sttU , info)→$ fprint : a potentially probabilistic algorithm that takes as
input the local state sttU for a party U ∈ {A,B} in epoch t, and an arbitrary-
length bit string info ∈ {0, 1}∗ to be authenticated. It outputs a fingerprint
fprint ∈ F .

– Lprint(sttU , context) → label : a deterministic algorithm that takes as input
the local state sttU for a party U ∈ {A,B} in epoch t, and an arbitrary-length
bit string context ∈ {0, 1}∗. It outputs a label label ∈ L for the fingerprint.

– Verify(sttU , info, context , fprint , label ) → {accept, reject}: a deterministic
algorithm that takes as input the local state sttU of a party U in epoch t, an
arbitrary-length bit string info ∈ {0, 1}∗ to be authenticated, optional context
information context ∈ {0, 1}∗∪{⊥}, the fingerprint fprint , and the label label
to be verified, and outputs a flag indicating whether verification was accepted
or rejected.

Definition 8 (Correctness of CEA). For all pss ∈ S, let
CEA.Setup(λ, pss, idA, idB) →$ (st0

A), (st0
B) and let (st0

A), . . . , (sttA), (st0
B), . . . ,

(sttB) be a series of outputs such that:

CEA.Update(st0
A, ek0)→$ st1

A, . . . ,CEA.Update(stt−1
A , ekt−1)→$ (sttA)

CEA.Update(st0
B , ek0)→$ st1

B , . . . ,CEA.Update(stt−1
B , ekt−1)→$ (sttB)

for all t ∈ N where ek0, . . . , ekt ∈ U . Then for all epochs t ∈ N:
CEA.Verify(sttA, infot+1

B , contexttB , fprintt+1
B , labelt+1

B ) = accept and
CEA.Verify(sttB , infot+1

A , contexttA, fprintt+1
A , labelt+1

A ) = accept
where
CEA.Fprint(sttB , infot+1

B )→$ fprintt+1
B ,CEA.Lprint(sttB , contexttB)→$ labelt+1

B ,

CEA.Fprint(sttA, infot+1
A )→ fprintt+1

A , and CEA.Lprint(sttA, contexttA)→ labelt+1
A .
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The motivation behind separating the Fprint and Update algorithms may not
be immediately clear – especially in the context of the Signal protocol, where
there is only a single fingerprint generated per epoch. The first reason is that this
separation makes it easier to extend the formalism to capture constructions that
wish to output multiple fingerprints per epoch. Imagine generating a fingerprint
for each message exchanged between the two communicating parties, instead
of each update, and thereby authenticating the data sent, vs. the key schedule
state. The second reason is that it clearly separates the purposes between the
two crucial aspects of CEA protocols, where Update performs the ratcheting and
Fprint provides the fingerprint mechanism for authentication.

Fingerprints Messages Secret State Epoch Secrets

pss

Setup

st0 epk0

Update

st1

info1

Fprintfprint1

info2

Fprintfprint2

Update

epk1

st2

. . .

Fig. 4: CEA Key Schedule Diagram

Lprint and Fprint represent the label and fingerprint generation algorithms
for authentication. Labels act as indices based on prior agreed and authenticated
values, while fingerprints cover the new information to be authentication. Such
information would normally include update values (e.g. public Diffie-Hellman
ratcheting updates). Lprint also takes as input an optional context field. Fig. 4
illustrates the CEA key schedule.

3.2 CEA Security

Here we present the security model for a continuous entity authentication protocol.
We distinguish between the adversary’s ability to track conversations (given no
knowledge of secrets), and to break authentication (given full compromise of
secrets), and separate out CEA security for these two cases.
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Unlinkability The first guarantee is considered under adversarial ability to guess
whether or not a fingerprint corresponds to a given conversation (i.e. session). In
more detail, even if it does not imply breaking authentication, it a weakness if the
adversary is able to identify messaging or update frequency within a conversation.
This also applies to the compromise scenario; it would be a strict reduction in
security if the adversary was able to link session traffic even after post-compromise
healing. Thus the unlinkability guarantee is quite strong, and we require that
the adversary is not able to identify which session a fingerprint is tied to (i.e.
the Alice and Bob pair that are communicating). The unlinkability experiment
appears in Fig. 5.

ExpUnlink,IDS,E,F,L
CEA,A,U (λ):

1: pss ←$ S
2: A → idA, idB
3: if idA, idB /∈ ID then
4: return ⊥
5: end if
6: t← 0
7: b←$ {0, 1}
8: FC ← false
9: (st0

A), (st0
B)

←$ CEA.Setup(λ, pss, idA, idB)
10: AUpdate(·),Corrupt(),Fprint(·)(λ)→$ b

′

11: return b′ = b

Update(epk ):
1: t← t+ 1
2: Corrupt[t]← Corrupt[t− 1]
3: if epk = ⊥ then
4: epk ←$ E
5: Corrupt[t]← false
6: end if
7: sttA ← CEA.Update(stt−1

A , epk )
8: sttB ← CEA.Update(stt−1

B , epk )

Corrupt():
1: Corrupt[t]← true
2: if FC = true then
3: return ⊥
4: end if
5: return sttA, sttB

Fprint(info, context ):
1: if t mod 2 = 0 then
2: fprintt ←$ CEA.Fprint(sttA, info)
3: labelt ← CEA.Lprint(sttA, context )
4: else
5: fprintt ←$ CEA.Fprint(sttB , info)
6: labelt ← CEA.Lprint(sttB , context )
7: end if
8: if (Corrupt[t− 1] = false) ∧ (b) then
9: fprintt ←$ F
10: end if
11: if (Corrupt[t] = false) ∧ (b) then
12: labelt ←$ L
13: end if
14: FC ← true
15: return fprintt , labelt

Fig. 5: Unlinkability Experiment for CEA. Note that the lines in blue (Fprint
lines 11 and 12) only occur in the label unlinkability game.

Definition 9 (Unlinkability Security). We say that a CEA protocol
CEA.{Setup,Update,Fprint,Lprint,Verify} is Unlink-secure if

Pr[ExpUnlink,IDS,E,F,L
CEA,A,U (λ)− 1/2] ≤ negl

for some negligible function negl.

Authentication Intuitively this property says that if Alice and Bob start in a
consistent state (e.g. derived from the same pss) and receive consistent updates
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from the CKA, then the Bob (the receiver) will only accept an update message
sent by Alice, and vice versa. To simplify the formalization, we allow the adversary
more power than he is likely to have in the real world: the adversary will be able
to choose Alice and Bob’s shared CEA key pss. (We assume Alice is sender and
Bob is receiver for this round for clarity of discussion.) It may also choose any
epoch to play the experiment in and has access to the secret keying material
for all epochs (i.e. allowed access to an Update oracle and control of the update
material epk ).

Eventually the adversary selects some update material infoU = infoA for
Alice and generates Alice’s fprintU = fprintA and labelU = labelA based on this
choice. In this way security is based on the consistency of Alice’s update material
with that which Bob received, and not its secrecy. We also allow the adversary
to choose the other label/fingerprint pairs stored in the log.

Bob proceeds to verify the received infoU ′ = infoB against his state and the
real fprintA and labelA. The adversary wins the game if: 1) the labelB was not the
valid label generated by Alice (i.e. the adversary has succeeded in desynchronizing
the states of Alice and Bob) or 2) infosent 6= inforeceived . Further details are
shown in Fig. 6.

ExpCEAsec
CEA,A(λ):

1: A →$ (pss, idA, idB)
2: if idA, idB /∈ ID then
3: return ⊥
4: end if
5: (st0

A), (st0
B)←$ CEA.Setup(λ, pss, idA, idB)

6: AUpdate(·)(st0
A, st0

B)→$ (U, infoU , contextU )
7: if U = A then
8: U ′ ← B
9: else
10: U ′ ← A
11: end if
12: fprintU ←$ CEA.Fprint(sttU , infoU )
13: labelU ← CEA.Lprint(sttU , contextU )
14: A(fprintU , labelU )→$ infoU′
15: if infoU = infoU′ then
16: return 0
17: end if
18: fprintU′ ←$ CEA.Fprint(sttU′ , infoU′)
19: labelU′ ← CEA.Lprint(sttU′ , contextU )
20: vfy ← CEA.Verify(sttU′ , infoU′ , contextU , fprintU , labelU ))
21: if (labelU′ 6= labelU ) ∨

(
(labelU′ = labelU ) ∧

(vfy = 1)
)

then
22: return 1
23: end if
24: return 0

Update(epk ):
1: stt+1

A ← CEA.Update(sttA, epk )
2: stt+1

B ← CEA.Update(sttB , epk )
3: return stt+1

A , stt+1
B

Fig. 6: Security experiment for CEA algorithm and adversary A.
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Remark 1. In the above experiments we allow A to choose the context . For our
particular CEA construction, the context is not needed; however, we wished to
capture strong adversarial capabilities. Namely – similarly to how we require
that security is not predicated on secrecy of keys – we do not predicate security
on the authenticity of the context data.

Remark 2. For the unlinkability experiment, A’s control of context means that
even if A knows or influences the choice of context information, A should not be
able to link the resultant fingerprints. This has parallels to IND-CPA security
where control of input plaintext does not provide A with a guessing advantage.
If a verification oracle was added to the unlinkability experiment (e.g. analogous
to IND-CCA) then it would be a further requirement that the any context
data previously provided during an Fprint query must be used during the a
corresponding verification query.

Definition 10 (CEA Security). We say that a CEA protocol
CEA.{Setup, Update,Fprint,Lprint,Verify} is CEAsec-secure if

Pr[ExpCEAsec
CEA,A(λ) = 1] ≤ negl

for some negligible function negl.

4 Composed Protocol

In this second we introduce our second contribution by building an authenticated
continuous key agreement protocol from the composition of a CKA, CEA and
a logging scheme. If the underlying CKA satisfies CKA-PCS, and CEA satisfies
the CEAsec experiment, then the new combined CKA protocol should satisfy
an extended security notion – Authenticated and Continuous Key Agreement
(ACKA).

4.1 Authenticated Continuous Key Agreement (ACKA) protocol

We begin by formalising the notion of an Authenticated Continuous Key Agree-
ment (ACKA) protocol. On a high-level, an ACKA protocol is an extension of
CKA protocols that achieve security even in the face of an adversary that is capa-
ble of compromising secret state and injecting messages between communicating
parties – as a result, it is a stronger notion of security than previous notions of
CKA security.

Definition 11 (Authenticated Continuous Key Agreement). An authen-
ticated continuous key-agreement (ACKA) scheme is a tuple of algorithms
ACKA(ACKA-Init-A,ACKA-Init-A,ACKA-S,ACKA-R) where

– ACKA-Init-A (and similarly ACKA-Init-A) is an algorithm that takes a
preshared key pss and produces an initial state γA ← ACKA-Init-A(pss)
(and γB),
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– ACKA-S is a potentially probabilistic algorithm takes a state γ, and produces
a new state, message, and key (γ′, T, I)←$ ACKA-S(γ), and

– ACKA-R takes a state γ and a message T , and produces a new state and
key (γ′, I)← ACKA-R(γ, T ).

The space of preshared keys pss is denote P and the space of ACKA keys is
denoted I.

ExpACKA
ACKA,A(λ):

1: pss ←$ A
2: allow-chalA, allow-chalB ← false
3: rtA ←$ false, rtB ←$ false
4: if pss = ⊥ then
5: pss ←$ S
6: allow-chalA, allow-chalB ← true
7: rtA ←$ true, rtB ←$ true
8: end if
9: tA ← 0, tB ← 0, TrtA ← ∅, TrtB ← ∅
10: ACKA-γtAA ←$ ACKA-Init-A(pss)
11: ACKA-γtBB ←$ ACKA-Init-A(pss)
12: b←$ {0, 1}, win← 0
13: b′ ←$ Aqueries
14: return (b′ = b) ∨win

corr-A:
1: allow-chalA ← false
2: allow-chalB ← false
3: return CKA-γtA

send-A:
1: tA + +
2: (ACKA-γtAA , TtA , ItA )
←$ ACKA-S(CKA-γtA−1

A )
3: if rtA−i = true ∀i ∈ [1, dR/2e − 1] then
4: if rtB−i = true ∀i ∈ [1, dR/2e] then
5: allow-chalA = true
6: end if
7: end if
8: TrtA ← TtA
9: rtA = true
10: return (TtA , ItA )

send-A′(r):
1: tA + +
2: rtA ← false
3: (ACKA-γtAA , TtA , ItA )
←$ ACKA-S(CKA-γtA−1

A ; r)
4: TrtA ← TtA
5: return (TtA , ItA )

receive-A:
1: tA + +
2: (ACKA-γtAA , ItA ) ←

ACKA-R(CKA-γtA−1
A , TtB )

3: if rtA−i = true ∀i ∈ [1, dR/2e−1] then
4: if rtB−i = true ∀i ∈ [1, dR/2e] then
5: allow-chalA = true
6: end if
7: end if
8: return ItA

inject-a(T ′):
1: (ACKA-γtA+1

A , ItA+1)
← ACKA-R(CKA-γtAA , T ′)

2: if T ′ 6= TrtB ∧ ItA+1 6= ⊥ then
3: win← 1
4: end if
5: return ItA+1

chall-A:
1: tA + +
2: (ACKA-γtAA , TtA , ItA )
← ACKA-S(CKA-γtA−1

A )
3: if b = 1 ∧ allow-chalA then
4: ItA←$K
5: end if
6: return (TtA , ItA )

Fig. 7: Full ACKA Security Experiment Under Active A.

ACKA Security Intuitively, ACKA security could best be described as modifying
the original CKA security definition in the following way: “any attacker attempting
for forge messages will be rejected, and having seen a transcript T1, T2, . . ., the
keys I1, I2, . . . look uniformly random and independent. The adversary is given the

19



power to control the random coins used by the sender and leak the current state of
either party, and may also modify the messages Ti. Since the adversary may leak
the state and control randomness, the keys produced under such circumstances
need not be secure. ACKA security is shown in Fig. 7. Next, we formalise what
it means for an ACKA protocol to be secure.
Definition 12 (ACKA Security). Let ACKA be a continuous key agreement
protocol and R ∈ N be the number of epochs until an epoch no longer contains
secret information pertaining to a challenge. For a PPT algorithm A, we define
the advantage of A in the ACKA security experiment to be:

AdvACKA,R
ACKA,A(λ) =

∣∣∣Pr[ExpACKA,R
ACKA,A(λ) = 1]− 1

2

∣∣∣ .
We say that ACKA is ACKA-secure if, for all A, AdvACKA,R

ACKA,A(λ) is negligible in
the security parameter λ.

The combined Authenticated Continuous Key Agreement security experiment
is depicted in Fig. 7. This experiment starts by allowing the adversary A to
sample the pre-shared secret pss, capturing the scenario where the adversary has
knowledge of the state involved in the protocol and may even have influenced the
randomness involved, e.g. through backdooring a random number generator. The
only restriction that is enforced is that at initialization the state is the same (i.e.
pss is used to initialize both A and B). However, the alternative is also possible;
the session may be established without the adversary’s intervention, leading to
the case of honest and secret state generation pss ←$ S. At this point, the ACKA
algorithm state for parties A and B is initialized.

In addition to the option of A controlling the pre-shared secret, we also allow
the ability for the adversary to corrupt at any point (corr-A).

The model captures two cases for message sending (send-A and send-A′(r)).
Either query may be made at any epoch. In the former case, the protocol operates
as normal, with A (resp. B) providing updates; furthermore, as long as the last
pair of updates from each entity was honestly generated, we also set a flag to
allow the adversary to challenge the given run of the protocol (i.e. guessing b′).
In parallel, allowing a challenge when the two most recent updates are honest on
the receiver side is captured with receive-A.

In the alternative case, send-A′(r), the adversary is allowed to provide
malicious ratchet randomness of its choice to be processed by the sender (including
after corruption). Likewise, although in a different form of malicious action, on
the receiver side we allow the adversary to inject an update message its choice
to the receiver (inject-a(T ′)). However, if the receiver correctly processes an
adversarially injected update message without failure, then we allow a win to
the adversary.

Finally, we permit the adversary to challenge ciphertext as normal.

4.2 CKALOG Protocol
We provide an generalized ACKA construction, CKALOG, that leverages any CKA
protocol in composition with any CEA protocol and any Log scheme satisfying
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CKA-Init-ALOG(CKALOG-pss)
1: (ik, pss)← PRG(CKALOG-pss)
2: CKA-γ ← CKA-Init-A(ik)
3: CEA-st ←$ Setup(λ, pss)
4: context ← ⊥
5: return (CKA-γ,CEA-st )

CKA-Init-BLOG(CKALOG-pss)

1: (ik, pss)← PRG(CKALOG-pss)
2: CKA-γ ← CKA-Init-B(ik)
3: CEA-st ←$ Setup(λ, pss)
4: context ← ⊥
5: return (CKA-γ,CEA-st )

CKA-SLOG(CKALOG-γ)

1: Parse CKALOG-γ = (CKA-γ,CEA-st )
2: (CKA-γ′, T, I)←$ CKA-S(CKA-γ)
3: fprint ←$ Fprint(CEA-st , T )
4: label ← Lprint(CEA-st ,⊥)
5: LOG-Append(label , fprint )→ (c, V )
6: if LOG-AppendVerify(fprint , c, V, pkLOG) = 0)

then
7: return 0
8: end if
9: CEA-st ′ ← Update(CEA-st ,KDF(I, CEA))
10: return ((CKA-γ′,CEA-st ′), T,KDF(I, CKA))

CKA-RLOG(CKALOG-γ, T )
1: Parse CKALOG-γ = (CKA-γ,CEA-st )
2: (CKA-γ′, I)← CKA-R(CKA-γ, T )
3: label ← Lprint(CEA-st ,⊥)
4: (fprint , c)← LOG-Query(label )
5: if |fprint | 6= |c| 6= 1 then
6: return 0
7: end if
8: if (LOG-AppendVerify(fprint , c, V, pkLog) =

0) ∨ Verify(CEA-st , T,⊥, fprint , label ) = 0
then

9: return 0
10: end if
11: CEA-st ′ ← Update(CEA-st ,KDF(I, CEA))
12: return ((CKA-γ′,CEA-st ′),KDF(I, CKA))

Fig. 8: Composed CKALOG construction for an ACKA protocol. fprint represents
a vector of fingerprint values stored at the provided label in the log.

Logsec to achieve ACKA security. The CKALOG protocol construction shown in
Fig. 8 is based on one-sided man-in-the-middle detection (the receive detects
forgery). Other constructions for various detection combinations are also possible.

The construction proceeds with the normal CKA update information genera-
tion, which is then also used to generate a corresponding fingerprint. We align
the output space of the KDF, fingerprint space E , and the second component of
the input space of Update.

The sender then posts the label and fingerprint for the epoch on the log,
receiving a confirmation, and updates the CEA state. On receive of CKA up-
date information, the receiver proceeds with the normal CKA key computation
and state update, but also generates the epochal label. Note that the label is
deterministic and generated off of the last shared state, being independent of the
current update information. The receiver then queries the Log on the label and
receives back all fingerprints.

For both the sender and receiver, the underlying CKA epochal key I is used
to derive two separate keys – one for the authentication CEA state and one for
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the key exchange CKA state. This is done via a KDF over text differentiators CKA
and CEA, and is to ensure key separation. Fig. 9 provides a high-level illustration
of an ACKA composed protocol.

SECURE LOGGING SCHEME

ik

pss

CKA-Init-A CKA-Init-B

CKA-S CKA-R

CKA-S CKA-R

A CEA:
Setup

B CEA:
Setup

A CEA:
Fprint & Lprint

B CEA:
Verify

A CEA:
Update

B CEA:
Update

A CEA:
Fprint & Lprint

B CEA:
Verify

γs γr

T 0

γ′s γ′r

T 1

st0 st0

st1 st1

st0

T 0

st0

T 0

I0 I0

st1

T 1

st1

T 1

fprint0 , label0 fprint0 , label0

fprint1 , label1 fprint1 , label1

Fig. 9: Detailed Composition Diagram. For cleanness of presentation, some details
are omitted. In addition, in this figure A produces fingerprints and B verifies
them – in our formalism both parties have the ability for these actions.

The composed protocol is designed to meet the ACKA security experiment
description (Fig. 7), based on its ability to satisfy CKA security (Fig. 2), CEA
authentication security (Fig. 6), CEA unlinkability security (Fig. 5), and Log
security (Fig. 3).

Remark 3. While Fig. 8 is a CKA-based construction (i.e. following the CKA
definition), it is modified to include oracle access to a log, LOG, with corresponding
Append and AppendVerify queries. These correspond to the logging algorithm in
Definition 4 with the exception of secret state, i.e. they represent how an external
party, Alice, may query the log to process the Append (resp. AppendVerify)
algorithm on the provided inputs.

5 Constructions
We now give a specific CEA construction as a proof of concept.

5.1 CEA Construction
Fig. 10 shows a CEA protocol construction. There are other potential construc-
tions that satisfy the CEA definition. The choices made in this construction are
for simplicity of the protocol as well as its security analysis.
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Setup(λ, pss, idA, idB)
1: k0 ← KDF(pss, idA||idB)
2: st0

A.pid← B
3: st0

A.k ← k0
4: st0

B .pid← A
5: st0

B .k ← k0
6: context ← ⊥
7: return (st0

A), (st0
B)

Update(sttU , epkt)
1: stt+1

U .k ← KDF(sttU .k , epkt)
2: return stt+1

U

Lprint(sttU ,⊥)
1: labelt+1

← H(sttU .k‖idA‖idB‖t)
2: return labelt+1

Fprint(sttU , infot+1)

1: fkey ← KDF(sttU .k , idU‖sttU .pid‖t)
2: fprintt+1 ← H(fkey , infot+1)
3: stt+1

U .owner ← U
4: return fprintt+1

Verify(sttU , info,⊥, fprint , label )→ {0, 1}
1: labelt+1 ← Lprint(sttU ,⊥)
2: fprintt+1 ← Fprint(sttU , info)
3: if fprintt+1 6= fprint then
4: return 0
5: end if
6: stt+1

U .owner ← stU .pid
7: return 1

Fig. 10: An instantiation of a Continuous Entity Authentication Protocol.

Lprint computes the label over the current state and partner identities, i.e.
already agreed values. Then Fprint computes the fingerprint over the intended
update info. For key separation in the proof, Fprint calculates fkey based on the
current state, before the hash over the update information.

It is of note that, despite the analogous view mentioned in Section 3 of fprint
as a MAC tag, we do not actually use a MAC algorithm to generate it in this
construction. Instead, we rely on a hash algorithm. This is due to the collision
resistance that is required vs. key randomness properties (see Section 6).

When collision resistance is assessed for a MAC, it is about collision over the
function inputs exclusive of the MAC key. In normal MAC use this is a natural
requirement; an adversary without access to the key should not be able to find
two inputs that result in collision on the MAC tag. However, under CEA security
we assume that a compromise has taken place and the adversary therefore has
access to all keying material – thus collision resistance must also cover keying
material, making the security assumption different from typical MAC collision
resistance. Since collision resistance must be across all inputs, we are led to a
natural choice of a hash algorithm in Line 2 of fprint generation.

Remark 4. This construction and the ensuing security analyses in Section 6
provide insight into non-standard assumptions for cryptographic security. Cryp-
tographic security is usually bootstrapped from secret keying material of some
variety (symmetric or asymmetric) which is inaccessible to the adversary during
a time window of interest. Naturally, this leads to assumptions on pseudorandom-
ness and occasional reliance on the Random Oracle Model for a KDF. This work
highlights that a form of cryptographic security for a protocol is still possible even
if the adversary has access to all secret keys – both session keys and long-term
authentication secrets, with the only constraint being consistency at some point
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in the past (Alice and Bob holding the same view). Perhaps unsurprisingly,
this protocol authentication property is bootstrapped from a related algorithm-
level property; collision resistance of a hash function be the analogous security
definition enforcing a matching view of prior inputs.

While we do not exploit the context field for our construction in Fig. 10,
due to selection of one-way detection (only the receive side detects a MitM), it
can be used to generate separate labels for different parties, thus allowing for
bi-directional detection.
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5.2 ACKA Construction

Fig. 11 provides a high-level illustration of an ACKA composed protocol, using
the Signal Double Ratchet protocol as an example underlying CKA (shown in
gray) and the specific CEA construction as Fig. 10 (shown in color). Note that
by the generalized construction in Fig. 8, other CKA variants could also replace
Signal – this is a construction example only.

6 Security Analysis

In this section, we prove that our instantiation of a continuous entity authen-
tication protocol (described in Figure 10) achieves CEAsec and Unlink security.
Then we turn to proving that our generalized, composed CKALOG construction
achieves active CKA (or ACKA) security.

CEAsec-security of the CEA instantiation. We begin by analysing the
CEAsec-security of the CEA instantiation.

Theorem 1. The continuous entity authentication protocol CEA described in
Figure 10 is CEAsec-secure under the collision-resistance of the hash function H.
That is, for any PPT algorithm A against the CEAsec security game (described
in Figure 6) AdvCEAsec,

CEA,A(λ) is negligible.

Proof. Recall that by the description of the CEAsec security game in Figure 6,
that A can win in two ways:

1. A outputs a pair of strings (infoU , infoU ′) such that:
(fprintU , labelU )← CEA.Fprint(U.st, infoU )
(fprintU ′ , labelU ′)← CEA.Fprint(U ′.st, infoU ′)

but labelU 6= labelU ′
2. A outputs a pair of strings (infoU , infoU ′) such that:

(fprintU , labelU )← CEA.Fprint(U.st, infoU )
1← CEA.Verify(U ′.st, infoU ′ , fprintU , labelU ).

In either case, the adversary A has full control of the update and preshared
state inputs, there exists no secret state unknown nor uncontrolled by A. In what
follows, we divide the proof into the two cases above, and bound A’s advantage
in the CEAsec game by the sum of their advantages in either case.

Case 1 We begin by analyzing the case where A has caused the challenger to
output two distinct labels after the same update values. We note that for our
construction, the label is computed as labelt = H(sttU .k‖idA‖idB‖t) in epoch t.

We note that the epoch index t is incremented during each Update query
sent by A, which updates both parties epoch index identically. In addition, idA
and idB are public, static values. Thus for the computation of labelU and labelU ′ ,
these values are equal. Thus, since H is a deterministic hash function, all we must
do is demonstrate that for both parties, sttU .k = sttU ′ .k in each epoch.
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Both parties will compute the secret state as sttU .k ← KDF(sttU .k, ekt). In
addition, when A calls the Update query, both parties receive the same ekt. Thus,
if sttU .k = sttU ′ .k and KDF is a deterministic function, then when A calls Update,
both parties compute stt+1

U .k = stt+1
U ′ .k. We note that when the experiment begins,

both parties compute the first epoch secret state as st0
U .k = KDF(pss, idA‖idB).

Since both parties are given the same value pss as input, all other values are
public and static, and KDF is a deterministic function, then the advantage of A
in causing the challenger to output two distinct labels labelU , labelU ′ is 0.

Case 2 We now analyze the case where A outputs a pair of strings (infoU , infoU ′)
such that (fprintU , labelU )← CEA.Fprint(U.st, infoU ) but 1← CEA.Verify(U ′.st,
infoU ′ , fprintU , labelU ).

We note that for our construction, fprint ′ ← H(fkeyt, info), and Verify simply
computes the fprint value locally and accepts (and thus outputs 1 if fprintU =
fprintU ′ . Note that fkeyt is computed as fkeyt ← KDF(stt−1

U .k , idU‖idU ′‖t). By
the same argument as Case 1, since KDF is a deterministic function and stt−1

U .k
are computed identically for both parties, thus fkeyt is similarly equal for both
parties.

Thus, it must be that for the challenger to output 1, H(fkeyt, infoU ) =
H(fkeyt, infoU ′). We bound the advantage of A in winning in this case by the
collision-resistance of the hash function H. Specifically, the challenger aborts if
any two hash evaluations compute the same hash value for different inputs. We
can trivially break the collision-resistance of H when this occurs by outputting
the two distinct input values to the collision-resistance challenger of H.

Combining our results we find that AdvCEAsec
CEA,A(λ) ≤ AdvCOLL

H (λ) .

Unlink-security of the CEA instantiation.
We now analyse the Unlink-security of the CEA instantiation. This will later

allow us to argue that displaying the fingerprints and labels generated by the
communicating parties does not negatively impact the user traceability of the
overall CKA protocol.

Theorem 2. The continuous entity authentication protocol CEA described in
Figure 10 is Unlink-secure under the PRF and dual-PRF security of KDF and
modelling H as a random oracle. That is, for any PPT algorithm A against the
Unlink security game (described in Figure 5) AdvUnlink

CEA,nS ,A(λ) is negligible.

Proof. Recall that in the Unlink security game in Figure 5, A can win by guessing
the bit b sampled uniformly at random by the challenger at the beginning of the
game. We note that the behaviour of the experiment differs depending on the
value of b when A has not compromised the state of the parties at an epoch t,
and then calls Fprint. In this case, then the fingerprint fprint and the label label
is not computed normally but instead sampled uniformly at random from the
corresponding fingerprint and label spaces F , L. We prove that A’s advantage in
distinguishing this change is negligible in the following game hops.
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Game 0. This is the unlinkability game described in Figure 5. Thus we have:

AdvUnlink
CEA,nS ,A(λ) ≤ AdvGame0

A (λ) .

Game 1. In this game, we replace the secret state computed by both parties
stt+1
U .k ← KDF(sttU .k , epkt) with a uniformly random value ˜stt+1

U .k when A calls
Update(⊥). Note that when this occurs, epkt is sampled uniformly at random from
the epoch space E instead of being provided by A. Note that for the behaviour of
the Unlink game to change based on the bit b, such an Update call must be made.

We make this replacement by calling a dual-PRF challenger PRF with input
sttU .k , and replace stt+1

U .k with the output from the dual-PRF challenger. Since
epki is uniformly at random and unknown to A, this replacement is sound.
We note that by the security of the dual-PRF assumption, A’s advantage in
distinguishing this replacement is negligible. Since there are a maximum of nS
epochs, the difference in A’s advantage is bound by:

AdvGame0
A (λ) ≤ nS · AdvdualPRF

KDF,B (λ) + AdvGame1
A (λ) .

Game 2. In this game, we replace the secret state computed by both parties
stt+1
U .k ← KDF(s̃ttU .k , epkt) with a uniformly random value ˜stt+1

U .k when A calls
Update(epkt) but epoch t is uncorrupted.

We make this replacement by calling a PRF challenger with input epkt, and
replace stt+1

U .k with the output from the PRF challenger. Since s̃ttU .k is uniformly
at random and unknown to A, this replacement is sound. We note that by the
security of the PRF assumption, A’s advantage in distinguishing this replacement
is negligible. Since there are a maximum of nS epochs, the difference in A’s
advantage is bound by:

AdvGame1
A (λ) ≤ nS · AdvPRF

KDF,B(λ) + AdvGame2
A (λ) .

Game 3. In this game, we replace the fingerprint key fkey computed by both
parties fkey ← KDF( ˜stt−1

U .k , idU‖sttU .pid‖t) with uniformly random values f̃key ,
ãux when A calls Fprint(info) but epoch t− 1 is uncorrupted.

We make this replacement by calling a PRF challenger with input idU‖sttU .pid‖t,
and replace fkey with the output from the KDF challenger. Since ˜stt−1

U .k is
uniformly at random (by Game 1 and Game 2) and unknown to A (since
Corrupt[t− 1] 6= true), this replacement is sound. We note that by the security
of the PRF assumption, A’s advantage in distinguishing this replacement is neg-
ligible. Since there are a maximum of nS epochs, the difference in A’s advantage
is bound by:

AdvGame2
A (λ) ≤ nS · AdvPRF

KDF,B(λ) + AdvGame3
A (λ) .
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Game 4. In this game, we replace the fingerprint computed by both parties
fprint ← H(f̃key , info) with a uniformly random value f̃print when A calls
Fprint(info) but epoch t − 1 is uncorrupted. In addition, we replace the label
label computed by both parties label ← H(s̃ttU .k‖idU‖sttU .pid‖t) with a uniformly
random value l̃abel when A calls Fprint(sttU , info) but epoch t is uncorrupted.

Recall that we model hash functions as random oracles. Thus, this game
is merely a syntatic change, as the fingerprint and label are already sampled
uniformly at random by the random oracle. Since s̃ttU .k is uniformly at random
(by Game 1 and Game 2) and unknown to A (since Corrupt[t− 1] 6= true), and
f̃key is uniformly at random (by Game 3), this replacement is sound. Thus both
label and fprint are computed uniformly-at-random, and thus the behaviour of
the challenger when b = 0 and b = 1 is identical. Thus we have: AdvGame3

A (λ) = 0 .
Summing our advantages we arrive at our result:

AdvUnlink
CEA,nS ,A(λ) ≤ nS · AdvdualPRF

KDF,B (λ) + 2nS · AdvPRF
KDF,B(λ) .

ACKA-security of the CKALOG composed protocol.
With all pieces in place, we can now analyse the ACKA-security of the

CKALOG composed protocol.

Theorem 3. The composed CKALOG protocol CEA described in Figure 8 is
ACKA-secure under the CKA-PCS security of the continuous key agreement pro-
tocol CKA, the CEAsec-security of the continuous entity authentication protocol
CEA and the Logsec-Exclude security of the logging scheme LOG. That is, for any
PPT algorithm A against the ACKA security experiment (described in Figure 7),
AdvACKA

CKALOG,A(λ) is negligible.

Proof. Recall that by the description of the ACKA security game (in Figure 7)
that A can win if it guesses the bit b sampled by the challenger at the beginning
of the experiment. We note that bit b only influences the behaviour of the security
game when sampling the ItA value created during a chall-A (resp. ItB during a
chall-b) query. In what follows, we divide the proof into two cases:

1. A never queried inject-a(T ′), and;
2. A has queried inject-a(T ′) at least once.

We focus on the second case first, and show that any adversary that queries
inject-a(T ′) will cause the game to be aborted when processing inject-a(T ′). As
a result, we need only prove that an attacker that has never called inject-a(T ′)
cannot distinguish between the cases where b = 0 and b = 1.

Case 1: A has queried inject-a(T ′) at least once.

Game 0. This is the ACKA game described in Figure 7. Thus we have:

AdvACKA
CKALOG,A(λ) ≤ AdvGame0

A (λ) .
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Game 1. In this game, we abort the game if A causes A and B to produce two
different labels from the underlying CEA protocol.

Specifically, when A queries inject-a(T ′), the challenger aborts if A computes
a different label labelB

′ to B’s labelB. To do so, whenever A queries send-A, the
challenger calls Update(ItA) to the CEAsec challenger. The first time A queries
inject-aT ′, then the challenger returns (B, TtB ) to the CEAsec challenger (where
TtB is the last public keyshare output by B). The CEAsec challenger will output
fprintB, labelB, which will then be uploaded to the LOG, and T ′ is returned to
the CEAsec challenger.

We note that if T ′ 6= TtB and CEA.Lprint(stAt ,⊥) 6= labelB, then A has won
the CEAsec security experiment. Thus we have

AdvGame0
A (λ) ≤ AdvCEAsec

CEA,B(λ) + AdvGame1
A (λ) .

Game 2. In this game, we abort if the adversary A injects T ′ to A (in some
epoch t), but A and B compute the same fingerprint in epoch t, despite T ′ 6= TtB .
We proceed identically as in Game 2, and note that if A causes this to occur,
then A can be used to win the CEAsec game (specifically, the two fingerprints
fprintA, fprintB generated by A and B are returned to the CEAsec challenger).

Since we made no additional changes to the behaviour of the challenger, this
introduces no additional advantage for A. Thus we have

AdvGame1
A (λ) ≤ AdvGame2

A (λ) .

Game 3. In this game, we abort if the adversary A causes a view VA of the
log LOG such that AppendVerify(fprintA, c

′, V, pkLog) = 1. We do so by inter-
acting with a Logsec-Exclude challenger. Each time A calls send-A or send-b,
the challenger saves (label , Tt′ , r) (where r is some sampled randomness for
LOG). When A calls inject-a(T ′) at some epoch t, then the challenger returns
((label0 , fprint0 , r0), . . . , (labelt−1 , fprintt−1 , rt−1), (labelt , fprint , r)), label , fprint
to the Logsec-Exclude challenger. If this sequence of (label, fingerprint) pairs would
allow A to create a view of the log that would verify AppendVerify(fprintA, c

′, V,
pkLog) = 1 (thus creating a view of the log that “excludes” B’s fingerprint
fprintt−1 by verifying without it), then the challenger would win against the
Logsec-Exclude security game. Thus we have

AdvGame2
A (λ) ≤ AdvLogsec-Exclude,

LOG,B (λ) + AdvGame3
A (λ) .

At the end of Game 3 we note that if A calls inject-a(T ′) in epoch t such
that Tt−1 6= T ′, then:

– If only one fingerprint fprint corresponding to A’s label in epoch t exists in
the log, then this must be B’s fingerprint. Not that A would not generate
the same fingerprint as B, and thus the A would reject the new epoch when
comparing B’s fingerprint to her own.

30



– If more than one fingerprint fprint corresponding to A’s label in epoch t
exists in the log, then this is both B’s and A’s fingerprint, and AppendVerify
would fail to verify correctly, since A will only be verifying the fingerprint
that results from A’s injected keyshare, and thus A would reject the new
epoch.

Thus, in Game 3 the advantage A has in causing A to process an inject-a(T ′)
is negligible. Symmetrically, this argument can be applied to B at the cost of an
additional factor of 2 to A’s advantage, and thus:

AdvGame3
A (λ) = 0 .

We now turn to the case where A never queries inject-a(T ′).

Case 2: A has never queried inject-a(T ′).

Game 0. This is the ACKA game described in Figure 7. Thus we have:

AdvACKA
CKALOG,A(λ) ≤ AdvGame0

A (λ) .

Game 1. In this game, we replace the secrets output by chall-A with uniformly
random values Ĩ ←$ I. We do so by replacing all computations for the underlying
CKA scheme with queries to a CKA-PCS challenger. We note that the CKA-PCS
security experiment almost identically matches the ACKA security game, with
the exception that in the ACKA security game A is able to inject keyshares.
However, we are in Case 2, where A never calls inject-a. As a result, this exactly
matches the CKA-PCS game, and thus whenever A is successful in the ACKA
security experiment, we can construct an adversary A′ against the CKA-PCS of
the underlying CKA. Thus we have

AdvACKA
CKALOG,A(λ) ≤ AdvCKA-PCS

CKA,B (λ) .
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